Tactical Synthesis Of Efficient Global Search Algorithms
NASA Technical Reports Server (NTRS)
Nedunuri, Srinivas; Smith, Douglas R.; Cook, William R.
2009-01-01
Algorithm synthesis transforms a formal specification into an efficient algorithm to solve a problem. Algorithm synthesis in Specware combines the formal specification of a problem with a high-level algorithm strategy. To derive an efficient algorithm, a developer must define operators that refine the algorithm by combining the generic operators in the algorithm with the details of the problem specification. This derivation requires skill and a deep understanding of the problem and the algorithmic strategy. In this paper we introduce two tactics to ease this process. The tactics serve a similar purpose to tactics used for determining indefinite integrals in calculus, that is suggesting possible ways to attack the problem.
The MINERVA Software Development Process
NASA Technical Reports Server (NTRS)
Narkawicz, Anthony; Munoz, Cesar A.; Dutle, Aaron M.
2017-01-01
This paper presents a software development process for safety-critical software components of cyber-physical systems. The process is called MINERVA, which stands for Mirrored Implementation Numerically Evaluated against Rigorously Verified Algorithms. The process relies on formal methods for rigorously validating code against its requirements. The software development process uses: (1) a formal specification language for describing the algorithms and their functional requirements, (2) an interactive theorem prover for formally verifying the correctness of the algorithms, (3) test cases that stress the code, and (4) numerical evaluation on these test cases of both the algorithm specifications and their implementations in code. The MINERVA process is illustrated in this paper with an application to geo-containment algorithms for unmanned aircraft systems. These algorithms ensure that the position of an aircraft never leaves a predetermined polygon region and provide recovery maneuvers when the region is inadvertently exited.
NASA Astrophysics Data System (ADS)
Howerton, William
This thesis presents a method for the integration of complex network control algorithms with localized agent specific algorithms for maneuvering and obstacle avoidance. This method allows for successful implementation of group and agent specific behaviors. It has proven to be robust and will work for a variety of vehicle platforms. Initially, a review and implementation of two specific algorithms will be detailed. The first, a modified Kuramoto model was developed by Xu [1] which utilizes tools from graph theory to efficiently perform the task of distributing agents. The second algorithm developed by Kim [2] is an effective method for wheeled robots to avoid local obstacles using a limit-cycle navigation method. The results of implementing these methods on a test-bed of wheeled robots will be presented. Control issues related to outside disturbances not anticipated in the original theory are then discussed. A novel method of using simulated agents to separate the task of distributing agents from agent specific velocity and heading commands has been developed and implemented to address these issues. This new method can be used to combine various behaviors and is not limited to a specific control algorithm.
Development and Validation of an Algorithm to Identify Planned Readmissions From Claims Data.
Horwitz, Leora I; Grady, Jacqueline N; Cohen, Dorothy B; Lin, Zhenqiu; Volpe, Mark; Ngo, Chi K; Masica, Andrew L; Long, Theodore; Wang, Jessica; Keenan, Megan; Montague, Julia; Suter, Lisa G; Ross, Joseph S; Drye, Elizabeth E; Krumholz, Harlan M; Bernheim, Susannah M
2015-10-01
It is desirable not to include planned readmissions in readmission measures because they represent deliberate, scheduled care. To develop an algorithm to identify planned readmissions, describe its performance characteristics, and identify improvements. Consensus-driven algorithm development and chart review validation study at 7 acute-care hospitals in 2 health systems. For development, all discharges qualifying for the publicly reported hospital-wide readmission measure. For validation, all qualifying same-hospital readmissions that were characterized by the algorithm as planned, and a random sampling of same-hospital readmissions that were characterized as unplanned. We calculated weighted sensitivity and specificity, and positive and negative predictive values of the algorithm (version 2.1), compared to gold standard chart review. In consultation with 27 experts, we developed an algorithm that characterizes 7.8% of readmissions as planned. For validation we reviewed 634 readmissions. The weighted sensitivity of the algorithm was 45.1% overall, 50.9% in large teaching centers and 40.2% in smaller community hospitals. The weighted specificity was 95.9%, positive predictive value was 51.6%, and negative predictive value was 94.7%. We identified 4 minor changes to improve algorithm performance. The revised algorithm had a weighted sensitivity 49.8% (57.1% at large hospitals), weighted specificity 96.5%, positive predictive value 58.7%, and negative predictive value 94.5%. Positive predictive value was poor for the 2 most common potentially planned procedures: diagnostic cardiac catheterization (25%) and procedures involving cardiac devices (33%). An administrative claims-based algorithm to identify planned readmissions is feasible and can facilitate public reporting of primarily unplanned readmissions. © 2015 Society of Hospital Medicine.
NASA Technical Reports Server (NTRS)
Key, Jeff; Maslanik, James; Steffen, Konrad
1995-01-01
During the second phase project year we have made progress in the development and refinement of surface temperature retrieval algorithms and in product generation. More specifically, we have accomplished the following: (1) acquired a new advanced very high resolution radiometer (AVHRR) data set for the Beaufort Sea area spanning an entire year; (2) acquired additional along-track scanning radiometer(ATSR) data for the Arctic and Antarctic now totalling over eight months; (3) refined our AVHRR Arctic and Antarctic ice surface temperature (IST) retrieval algorithm, including work specific to Greenland; (4) developed ATSR retrieval algorithms for the Arctic and Antarctic, including work specific to Greenland; (5) developed cloud masking procedures for both AVHRR and ATSR; (6) generated a two-week bi-polar global area coverage (GAC) set of composite images from which IST is being estimated; (7) investigated the effects of clouds and the atmosphere on passive microwave 'surface' temperature retrieval algorithms; and (8) generated surface temperatures for the Beaufort Sea data set, both from AVHRR and special sensor microwave imager (SSM/I).
Solar Occultation Retrieval Algorithm Development
NASA Technical Reports Server (NTRS)
Lumpe, Jerry D.
2004-01-01
This effort addresses the comparison and validation of currently operational solar occultation retrieval algorithms, and the development of generalized algorithms for future application to multiple platforms. initial development of generalized forward model algorithms capable of simulating transmission data from of the POAM II/III and SAGE II/III instruments. Work in the 2" quarter will focus on: completion of forward model algorithms, including accurate spectral characteristics for all instruments, and comparison of simulated transmission data with actual level 1 instrument data for specific occultation events.
Runtime support for parallelizing data mining algorithms
NASA Astrophysics Data System (ADS)
Jin, Ruoming; Agrawal, Gagan
2002-03-01
With recent technological advances, shared memory parallel machines have become more scalable, and offer large main memories and high bus bandwidths. They are emerging as good platforms for data warehousing and data mining. In this paper, we focus on shared memory parallelization of data mining algorithms. We have developed a series of techniques for parallelization of data mining algorithms, including full replication, full locking, fixed locking, optimized full locking, and cache-sensitive locking. Unlike previous work on shared memory parallelization of specific data mining algorithms, all of our techniques apply to a large number of common data mining algorithms. In addition, we propose a reduction-object based interface for specifying a data mining algorithm. We show how our runtime system can apply any of the technique we have developed starting from a common specification of the algorithm.
Li, Ye; Whelan, Michael; Hobbs, Leigh; Fan, Wen Qi; Fung, Cecilia; Wong, Kenny; Marchand-Austin, Alex; Badiani, Tina; Johnson, Ian
2016-06-27
In 2014/2015, Public Health Ontario developed disease-specific, cumulative sum (CUSUM)-based statistical algorithms for detecting aberrant increases in reportable infectious disease incidence in Ontario. The objective of this study was to determine whether the prospective application of these CUSUM algorithms, based on historical patterns, have improved specificity and sensitivity compared to the currently used Early Aberration Reporting System (EARS) algorithm, developed by the US Centers for Disease Control and Prevention. A total of seven algorithms were developed for the following diseases: cyclosporiasis, giardiasis, influenza (one each for type A and type B), mumps, pertussis, invasive pneumococcal disease. Historical data were used as baseline to assess known outbreaks. Regression models were used to model seasonality and CUSUM was applied to the difference between observed and expected counts. An interactive web application was developed allowing program staff to directly interact with data and tune the parameters of CUSUM algorithms using their expertise on the epidemiology of each disease. Using these parameters, a CUSUM detection system was applied prospectively and the results were compared to the outputs generated by EARS. The outcome was the detection of outbreaks, or the start of a known seasonal increase and predicting the peak in activity. The CUSUM algorithms detected provincial outbreaks earlier than the EARS algorithm, identified the start of the influenza season in advance of traditional methods, and had fewer false positive alerts. Additionally, having staff involved in the creation of the algorithms improved their understanding of the algorithms and improved use in practice. Using interactive web-based technology to tune CUSUM improved the sensitivity and specificity of detection algorithms.
STAR Algorithm Integration Team - Facilitating operational algorithm development
NASA Astrophysics Data System (ADS)
Mikles, V. J.
2015-12-01
The NOAA/NESDIS Center for Satellite Research and Applications (STAR) provides technical support of the Joint Polar Satellite System (JPSS) algorithm development and integration tasks. Utilizing data from the S-NPP satellite, JPSS generates over thirty Environmental Data Records (EDRs) and Intermediate Products (IPs) spanning atmospheric, ocean, cryosphere, and land weather disciplines. The Algorithm Integration Team (AIT) brings technical expertise and support to product algorithms, specifically in testing and validating science algorithms in a pre-operational environment. The AIT verifies that new and updated algorithms function in the development environment, enforces established software development standards, and ensures that delivered packages are functional and complete. AIT facilitates the development of new JPSS-1 algorithms by implementing a review approach based on the Enterprise Product Lifecycle (EPL) process. Building on relationships established during the S-NPP algorithm development process and coordinating directly with science algorithm developers, the AIT has implemented structured reviews with self-contained document suites. The process has supported algorithm improvements for products such as ozone, active fire, vegetation index, and temperature and moisture profiles.
Morrison, C S; Sekadde-Kigondu, C; Miller, W C; Weiner, D H; Sinei, S K
1999-02-01
Sexually transmitted diseases (STD) are an important contraindication for intrauterine device (IUD) insertion. Nevertheless, laboratory testing for STD is not possible in many settings. The objective of this study is to evaluate the use of risk assessment algorithms to predict STD and subsequent IUD-related complications among IUD candidates. Among 615 IUD users in Kenya, the following algorithms were evaluated: 1) an STD algorithm based on US Agency for International Development (USAID) Technical Working Group guidelines: 2) a Centers for Disease Control and Prevention (CDC) algorithm for management of chlamydia; and 3) a data-derived algorithm modeled from study data. Algorithms were evaluated for prediction of chlamydial and gonococcal infection at 1 month and complications (pelvic inflammatory disease [PID], IUD removals, and IUD expulsions) over 4 months. Women with STD were more likely to develop complications than women without STD (19% vs 6%; risk ratio = 2.9; 95% CI 1.3-6.5). For STD prediction, the USAID algorithm was 75% sensitive and 48% specific, with a positive likelihood ratio (LR+) of 1.4. The CDC algorithm was 44% sensitive and 72% specific, LR+ = 1.6. The data-derived algorithm was 91% sensitive and 56% specific, with LR+ = 2.0 and LR- = 0.2. Category-specific LR for this algorithm identified women with very low (< 1%) and very high (29%) infection probabilities. The data-derived algorithm was also the best predictor of IUD-related complications. These results suggest that use of STD algorithms may improve selection of IUD users. Women at high risk for STD could be counseled to avoid IUD, whereas women at moderate risk should be monitored closely and counseled to use condoms.
Time-saving impact of an algorithm to identify potential surgical site infections.
Knepper, B C; Young, H; Jenkins, T C; Price, C S
2013-10-01
To develop and validate a partially automated algorithm to identify surgical site infections (SSIs) using commonly available electronic data to reduce manual chart review. Retrospective cohort study of patients undergoing specific surgical procedures over a 4-year period from 2007 through 2010 (algorithm development cohort) or over a 3-month period from January 2011 through March 2011 (algorithm validation cohort). A single academic safety-net hospital in a major metropolitan area. Patients undergoing at least 1 included surgical procedure during the study period. Procedures were identified in the National Healthcare Safety Network; SSIs were identified by manual chart review. Commonly available electronic data, including microbiologic, laboratory, and administrative data, were identified via a clinical data warehouse. Algorithms using combinations of these electronic variables were constructed and assessed for their ability to identify SSIs and reduce chart review. The most efficient algorithm identified in the development cohort combined microbiologic data with postoperative procedure and diagnosis codes. This algorithm resulted in 100% sensitivity and 85% specificity. Time savings from the algorithm was almost 600 person-hours of chart review. The algorithm demonstrated similar sensitivity on application to the validation cohort. A partially automated algorithm to identify potential SSIs was highly sensitive and dramatically reduced the amount of manual chart review required of infection control personnel during SSI surveillance.
SPHINX--an algorithm for taxonomic binning of metagenomic sequences.
Mohammed, Monzoorul Haque; Ghosh, Tarini Shankar; Singh, Nitin Kumar; Mande, Sharmila S
2011-01-01
Compared with composition-based binning algorithms, the binning accuracy and specificity of alignment-based binning algorithms is significantly higher. However, being alignment-based, the latter class of algorithms require enormous amount of time and computing resources for binning huge metagenomic datasets. The motivation was to develop a binning approach that can analyze metagenomic datasets as rapidly as composition-based approaches, but nevertheless has the accuracy and specificity of alignment-based algorithms. This article describes a hybrid binning approach (SPHINX) that achieves high binning efficiency by utilizing the principles of both 'composition'- and 'alignment'-based binning algorithms. Validation results with simulated sequence datasets indicate that SPHINX is able to analyze metagenomic sequences as rapidly as composition-based algorithms. Furthermore, the binning efficiency (in terms of accuracy and specificity of assignments) of SPHINX is observed to be comparable with results obtained using alignment-based algorithms. A web server for the SPHINX algorithm is available at http://metagenomics.atc.tcs.com/SPHINX/.
Crisis management during anaesthesia: the development of an anaesthetic crisis management manual
Runciman, W; Kluger, M; Morris, R; Paix, A; Watterson, L; Webb, R
2005-01-01
Background: All anaesthetists have to handle life threatening crises with little or no warning. However, some cognitive strategies and work practices that are appropriate for speed and efficiency under normal circumstances may become maladaptive in a crisis. It was judged in a previous study that the use of a structured "core" algorithm (based on the mnemonic COVER ABCD–A SWIFT CHECK) would diagnose and correct the problem in 60% of cases and provide a functional diagnosis in virtually all of the remaining 40%. It was recommended that specific sub-algorithms be developed for managing the problems underlying the remaining 40% of crises and assembled in an easy-to-use manual. Sub-algorithms were therefore developed for these problems so that they could be checked for applicability and validity against the first 4000 anaesthesia incidents reported to the Australian Incident Monitoring Study (AIMS). Methods: The need for 24 specific sub-algorithms was identified. Teams of practising anaesthetists were assembled and sets of incidents relevant to each sub-algorithm were identified from the first 4000 reported to AIMS. Based largely on successful strategies identified in these reports, a set of 24 specific sub-algorithms was developed for trial against the 4000 AIMS reports and assembled into an easy-to-use manual. A process was developed for applying each component of the core algorithm COVER at one of four levels (scan-check-alert/ready-emergency) according to the degree of perceived urgency, and incorporated into the manual. The manual was disseminated at a World Congress and feedback was obtained. Results: Each of the 24 specific crisis management sub-algorithms was tested against the relevant incidents among the first 4000 reported to AIMS and compared with the actual management by the anaesthetist at the time. It was judged that, if the core algorithm had been correctly applied, the appropriate sub-algorithm would have been resolved better and/or faster in one in eight of all incidents, and would have been unlikely to have caused harm to any patient. The descriptions of the validation of each of the 24 sub-algorithms constitute the remaining 24 papers in this set. Feedback from five meetings each attended by 60–100 anaesthetists was then collated and is included. Conclusion: The 24 sub-algorithms developed form the basis for developing a rational evidence-based approach to crisis management during anaesthesia. The COVER component has been found to be satisfactory in real life resuscitation situations and the sub-algorithms have been used successfully for several years. It would now be desirable for carefully designed simulator based studies, using naive trainees at the start of their training, to systematically examine the merits and demerits of various aspects of the sub-algorithms. It would seem prudent that these sub-algorithms be regarded, for the moment, as decision aids to support and back up clinicians' natural responses to a crisis when all is not progressing as expected. PMID:15933282
Crisis management during anaesthesia: the development of an anaesthetic crisis management manual.
Runciman, W B; Kluger, M T; Morris, R W; Paix, A D; Watterson, L M; Webb, R K
2005-06-01
All anaesthetists have to handle life threatening crises with little or no warning. However, some cognitive strategies and work practices that are appropriate for speed and efficiency under normal circumstances may become maladaptive in a crisis. It was judged in a previous study that the use of a structured "core" algorithm (based on the mnemonic COVER ABCD-A SWIFT CHECK) would diagnose and correct the problem in 60% of cases and provide a functional diagnosis in virtually all of the remaining 40%. It was recommended that specific sub-algorithms be developed for managing the problems underlying the remaining 40% of crises and assembled in an easy-to-use manual. Sub-algorithms were therefore developed for these problems so that they could be checked for applicability and validity against the first 4000 anaesthesia incidents reported to the Australian Incident Monitoring Study (AIMS). The need for 24 specific sub-algorithms was identified. Teams of practising anaesthetists were assembled and sets of incidents relevant to each sub-algorithm were identified from the first 4000 reported to AIMS. Based largely on successful strategies identified in these reports, a set of 24 specific sub-algorithms was developed for trial against the 4000 AIMS reports and assembled into an easy-to-use manual. A process was developed for applying each component of the core algorithm COVER at one of four levels (scan-check-alert/ready-emergency) according to the degree of perceived urgency, and incorporated into the manual. The manual was disseminated at a World Congress and feedback was obtained. Each of the 24 specific crisis management sub-algorithms was tested against the relevant incidents among the first 4000 reported to AIMS and compared with the actual management by the anaesthetist at the time. It was judged that, if the core algorithm had been correctly applied, the appropriate sub-algorithm would have been resolved better and/or faster in one in eight of all incidents, and would have been unlikely to have caused harm to any patient. The descriptions of the validation of each of the 24 sub-algorithms constitute the remaining 24 papers in this set. Feedback from five meetings each attended by 60-100 anaesthetists was then collated and is included. The 24 sub-algorithms developed form the basis for developing a rational evidence-based approach to crisis management during anaesthesia. The COVER component has been found to be satisfactory in real life resuscitation situations and the sub-algorithms have been used successfully for several years. It would now be desirable for carefully designed simulator based studies, using naive trainees at the start of their training, to systematically examine the merits and demerits of various aspects of the sub-algorithms. It would seem prudent that these sub-algorithms be regarded, for the moment, as decision aids to support and back up clinicians' natural responses to a crisis when all is not progressing as expected.
Liao, Katherine P; Ananthakrishnan, Ashwin N; Kumar, Vishesh; Xia, Zongqi; Cagan, Andrew; Gainer, Vivian S; Goryachev, Sergey; Chen, Pei; Savova, Guergana K; Agniel, Denis; Churchill, Susanne; Lee, Jaeyoung; Murphy, Shawn N; Plenge, Robert M; Szolovits, Peter; Kohane, Isaac; Shaw, Stanley Y; Karlson, Elizabeth W; Cai, Tianxi
2015-01-01
Typically, algorithms to classify phenotypes using electronic medical record (EMR) data were developed to perform well in a specific patient population. There is increasing interest in analyses which can allow study of a specific outcome across different diseases. Such a study in the EMR would require an algorithm that can be applied across different patient populations. Our objectives were: (1) to develop an algorithm that would enable the study of coronary artery disease (CAD) across diverse patient populations; (2) to study the impact of adding narrative data extracted using natural language processing (NLP) in the algorithm. Additionally, we demonstrate how to implement CAD algorithm to compare risk across 3 chronic diseases in a preliminary study. We studied 3 established EMR based patient cohorts: diabetes mellitus (DM, n = 65,099), inflammatory bowel disease (IBD, n = 10,974), and rheumatoid arthritis (RA, n = 4,453) from two large academic centers. We developed a CAD algorithm using NLP in addition to structured data (e.g. ICD9 codes) in the RA cohort and validated it in the DM and IBD cohorts. The CAD algorithm using NLP in addition to structured data achieved specificity >95% with a positive predictive value (PPV) 90% in the training (RA) and validation sets (IBD and DM). The addition of NLP data improved the sensitivity for all cohorts, classifying an additional 17% of CAD subjects in IBD and 10% in DM while maintaining PPV of 90%. The algorithm classified 16,488 DM (26.1%), 457 IBD (4.2%), and 245 RA (5.0%) with CAD. In a cross-sectional analysis, CAD risk was 63% lower in RA and 68% lower in IBD compared to DM (p<0.0001) after adjusting for traditional cardiovascular risk factors. We developed and validated a CAD algorithm that performed well across diverse patient populations. The addition of NLP into the CAD algorithm improved the sensitivity of the algorithm, particularly in cohorts where the prevalence of CAD was low. Preliminary data suggest that CAD risk was significantly lower in RA and IBD compared to DM.
Liao, Katherine P.; Ananthakrishnan, Ashwin N.; Kumar, Vishesh; Xia, Zongqi; Cagan, Andrew; Gainer, Vivian S.; Goryachev, Sergey; Chen, Pei; Savova, Guergana K.; Agniel, Denis; Churchill, Susanne; Lee, Jaeyoung; Murphy, Shawn N.; Plenge, Robert M.; Szolovits, Peter; Kohane, Isaac; Shaw, Stanley Y.; Karlson, Elizabeth W.; Cai, Tianxi
2015-01-01
Background Typically, algorithms to classify phenotypes using electronic medical record (EMR) data were developed to perform well in a specific patient population. There is increasing interest in analyses which can allow study of a specific outcome across different diseases. Such a study in the EMR would require an algorithm that can be applied across different patient populations. Our objectives were: (1) to develop an algorithm that would enable the study of coronary artery disease (CAD) across diverse patient populations; (2) to study the impact of adding narrative data extracted using natural language processing (NLP) in the algorithm. Additionally, we demonstrate how to implement CAD algorithm to compare risk across 3 chronic diseases in a preliminary study. Methods and Results We studied 3 established EMR based patient cohorts: diabetes mellitus (DM, n = 65,099), inflammatory bowel disease (IBD, n = 10,974), and rheumatoid arthritis (RA, n = 4,453) from two large academic centers. We developed a CAD algorithm using NLP in addition to structured data (e.g. ICD9 codes) in the RA cohort and validated it in the DM and IBD cohorts. The CAD algorithm using NLP in addition to structured data achieved specificity >95% with a positive predictive value (PPV) 90% in the training (RA) and validation sets (IBD and DM). The addition of NLP data improved the sensitivity for all cohorts, classifying an additional 17% of CAD subjects in IBD and 10% in DM while maintaining PPV of 90%. The algorithm classified 16,488 DM (26.1%), 457 IBD (4.2%), and 245 RA (5.0%) with CAD. In a cross-sectional analysis, CAD risk was 63% lower in RA and 68% lower in IBD compared to DM (p<0.0001) after adjusting for traditional cardiovascular risk factors. Conclusions We developed and validated a CAD algorithm that performed well across diverse patient populations. The addition of NLP into the CAD algorithm improved the sensitivity of the algorithm, particularly in cohorts where the prevalence of CAD was low. Preliminary data suggest that CAD risk was significantly lower in RA and IBD compared to DM. PMID:26301417
Recognition of military-specific physical activities with body-fixed sensors.
Wyss, Thomas; Mäder, Urs
2010-11-01
The purpose of this study was to develop and validate an algorithm for recognizing military-specific, physically demanding activities using body-fixed sensors. To develop the algorithm, the first group of study participants (n = 15) wore body-fixed sensors capable of measuring acceleration, step frequency, and heart rate while completing six military-specific activities: walking, marching with backpack, lifting and lowering loads, lifting and carrying loads, digging, and running. The accuracy of the algorithm was tested in these isolated activities in a laboratory setting (n = 18) and in the context of daily military training routine (n = 24). The overall recognition rates during isolated activities and during daily military routine activities were 87.5% and 85.5%, respectively. We conclude that the algorithm adequately recognized six military-specific physical activities based on sensor data alone both in a laboratory setting and in the military training environment. By recognizing type of physical activities this objective method provides additional information on military-job descriptions.
Gulshan, Varun; Peng, Lily; Coram, Marc; Stumpe, Martin C; Wu, Derek; Narayanaswamy, Arunachalam; Venugopalan, Subhashini; Widner, Kasumi; Madams, Tom; Cuadros, Jorge; Kim, Ramasamy; Raman, Rajiv; Nelson, Philip C; Mega, Jessica L; Webster, Dale R
2016-12-13
Deep learning is a family of computational methods that allow an algorithm to program itself by learning from a large set of examples that demonstrate the desired behavior, removing the need to specify rules explicitly. Application of these methods to medical imaging requires further assessment and validation. To apply deep learning to create an algorithm for automated detection of diabetic retinopathy and diabetic macular edema in retinal fundus photographs. A specific type of neural network optimized for image classification called a deep convolutional neural network was trained using a retrospective development data set of 128 175 retinal images, which were graded 3 to 7 times for diabetic retinopathy, diabetic macular edema, and image gradability by a panel of 54 US licensed ophthalmologists and ophthalmology senior residents between May and December 2015. The resultant algorithm was validated in January and February 2016 using 2 separate data sets, both graded by at least 7 US board-certified ophthalmologists with high intragrader consistency. Deep learning-trained algorithm. The sensitivity and specificity of the algorithm for detecting referable diabetic retinopathy (RDR), defined as moderate and worse diabetic retinopathy, referable diabetic macular edema, or both, were generated based on the reference standard of the majority decision of the ophthalmologist panel. The algorithm was evaluated at 2 operating points selected from the development set, one selected for high specificity and another for high sensitivity. The EyePACS-1 data set consisted of 9963 images from 4997 patients (mean age, 54.4 years; 62.2% women; prevalence of RDR, 683/8878 fully gradable images [7.8%]); the Messidor-2 data set had 1748 images from 874 patients (mean age, 57.6 years; 42.6% women; prevalence of RDR, 254/1745 fully gradable images [14.6%]). For detecting RDR, the algorithm had an area under the receiver operating curve of 0.991 (95% CI, 0.988-0.993) for EyePACS-1 and 0.990 (95% CI, 0.986-0.995) for Messidor-2. Using the first operating cut point with high specificity, for EyePACS-1, the sensitivity was 90.3% (95% CI, 87.5%-92.7%) and the specificity was 98.1% (95% CI, 97.8%-98.5%). For Messidor-2, the sensitivity was 87.0% (95% CI, 81.1%-91.0%) and the specificity was 98.5% (95% CI, 97.7%-99.1%). Using a second operating point with high sensitivity in the development set, for EyePACS-1 the sensitivity was 97.5% and specificity was 93.4% and for Messidor-2 the sensitivity was 96.1% and specificity was 93.9%. In this evaluation of retinal fundus photographs from adults with diabetes, an algorithm based on deep machine learning had high sensitivity and specificity for detecting referable diabetic retinopathy. Further research is necessary to determine the feasibility of applying this algorithm in the clinical setting and to determine whether use of the algorithm could lead to improved care and outcomes compared with current ophthalmologic assessment.
Seizures in the elderly: development and validation of a diagnostic algorithm.
Dupont, Sophie; Verny, Marc; Harston, Sandrine; Cartz-Piver, Leslie; Schück, Stéphane; Martin, Jennifer; Puisieux, François; Alecu, Cosmin; Vespignani, Hervé; Marchal, Cécile; Derambure, Philippe
2010-05-01
Seizures are frequent in the elderly, but their diagnosis can be challenging. The objective of this work was to develop and validate an expert-based algorithm for the diagnosis of seizures in elderly people. A multidisciplinary group of neurologists and geriatricians developed a diagnostic algorithm using a combination of selected clinical, electroencephalographical and radiological criteria. The algorithm was validated by multicentre retrospective analysis of data of patients referred for specific symptoms and classified by the experts as epileptic patients or not. The algorithm was applied to all the patients, and the diagnosis provided by the algorithm was compared to the clinical diagnosis of the experts. Twenty-nine clinical, electroencephalographical and radiological criteria were selected for the algorithm. According to criteria combination, seizures were classified in four levels of diagnosis: certain, highly probable, possible or improbable. To validate the algorithm, the medical records of 269 elderly patients were analyzed (138 with epileptic seizures, 131 with non-epileptic manifestations). Patients were mainly referred for a transient focal deficit (40%), confusion (38%), unconsciousness (27%). The algorithm best classified certain and probable seizures versus possible and improbable seizures, with 86.2% sensitivity and 67.2% specificity. Using logistical regression, 2 simplified models were developed, the first with 13 criteria (Se 85.5%, Sp 90.1%), and the second with 7 criteria only (Se 84.8%, Sp 88.6%). In conclusion, the present study validated the use of a revised diagnostic algorithm to help diagnosis epileptic seizures in the elderly. A prospective study is planned to further validate this algorithm. Copyright 2010 Elsevier B.V. All rights reserved.
NOSS Altimeter Detailed Algorithm specifications
NASA Technical Reports Server (NTRS)
Hancock, D. W.; Mcmillan, J. D.
1982-01-01
The details of the algorithms and data sets required for satellite radar altimeter data processing are documented in a form suitable for (1) development of the benchmark software and (2) coding the operational software. The algorithms reported in detail are those established for altimeter processing. The algorithms which required some additional development before documenting for production were only scoped. The algorithms are divided into two levels of processing. The first level converts the data to engineering units and applies corrections for instrument variations. The second level provides geophysical measurements derived from altimeter parameters for oceanographic users.
Optimization of the double dosimetry algorithm for interventional cardiologists
NASA Astrophysics Data System (ADS)
Chumak, Vadim; Morgun, Artem; Bakhanova, Elena; Voloskiy, Vitalii; Borodynchik, Elena
2014-11-01
A double dosimetry method is recommended in interventional cardiology (IC) to assess occupational exposure; yet currently there is no common and universal algorithm for effective dose estimation. In this work, flexible and adaptive algorithm building methodology was developed and some specific algorithm applicable for typical irradiation conditions of IC procedures was obtained. It was shown that the obtained algorithm agrees well with experimental measurements and is less conservative compared to other known algorithms.
Determination of colonoscopy indication from administrative claims data.
Ko, Cynthia W; Dominitz, Jason A; Neradilek, Moni; Polissar, Nayak; Green, Pam; Kreuter, William; Baldwin, Laura-Mae
2014-04-01
Colonoscopy outcomes, such as polyp detection or complication rates, may differ by procedure indication. To develop methods to classify colonoscopy indications from administrative data, facilitating study of colonoscopy quality and outcomes. We linked 14,844 colonoscopy reports from the Clinical Outcomes Research Initiative, a national repository of endoscopic reports, to the corresponding Medicare Carrier and Outpatient File claims. Colonoscopy indication was determined from the procedure reports. We developed algorithms using classification and regression trees and linear discriminant analysis (LDA) to classify colonoscopy indication. Predictor variables included ICD-9CM and CPT/HCPCS codes present on the colonoscopy claim or in the 12 months prior, patient demographics, and site of colonoscopy service. Algorithms were developed on a training set of 7515 procedures, then validated using a test set of 7329 procedures. Sensitivity was lowest for identifying average-risk screening colonoscopies, varying between 55% and 86% for the different algorithms, but specificity for this indication was consistently over 95%. Sensitivity for diagnostic colonoscopy varied between 77% and 89%, with specificity between 55% and 87%. Algorithms with classification and regression trees with 7 variables or LDA with 10 variables had similar overall accuracy, and generally lower accuracy than the algorithm using LDA with 30 variables. Algorithms using Medicare claims data have moderate sensitivity and specificity for colonoscopy indication, and will be useful for studying colonoscopy quality in this population. Further validation may be needed before use in alternative populations.
Squara, Fabien; Chik, William W; Benhayon, Daniel; Maeda, Shingo; Latcu, Decebal Gabriel; Lacaze-Gadonneix, Jonathan; Tibi, Thierry; Thomas, Olivier; Cooper, Joshua M; Duthoit, Guillaume
2014-08-01
Pacemaker (PM) interrogation requires correct manufacturer identification. However, an unidentified PM is a frequent occurrence, requiring time-consuming steps to identify the device. The purpose of this study was to develop and validate a novel algorithm for PM manufacturer identification, using the ECG response to magnet application. Data on the magnet responses of all recent PM models (≤15 years) from the 5 major manufacturers were collected. An algorithm based on the ECG response to magnet application to identify the PM manufacturer was subsequently developed. Patients undergoing ECG during magnet application in various clinical situations were prospectively recruited in 7 centers. The algorithm was applied in the analysis of every ECG by a cardiologist blinded to PM information. A second blinded cardiologist analyzed a sample of randomly selected ECGs in order to assess the reproducibility of the results. A total of 250 ECGs were analyzed during magnet application. The algorithm led to the correct single manufacturer choice in 242 ECGs (96.8%), whereas 7 (2.8%) could only be narrowed to either 1 of 2 manufacturer possibilities. Only 2 (0.4%) incorrect manufacturer identifications occurred. The algorithm identified Medtronic and Sorin Group PMs with 100% sensitivity and specificity, Biotronik PMs with 100% sensitivity and 99.5% specificity, and St. Jude and Boston Scientific PMs with 92% sensitivity and 100% specificity. The results were reproducible between the 2 blinded cardiologists with 92% concordant findings. Unknown PM manufacturers can be accurately identified by analyzing the ECG magnet response using this newly developed algorithm. Copyright © 2014 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Wearable physiological sensors and real-time algorithms for detection of acute mountain sickness.
Muza, Stephen R
2018-03-01
This is a minireview of potential wearable physiological sensors and algorithms (process and equations) for detection of acute mountain sickness (AMS). Given the emerging status of this effort, the focus of the review is on the current clinical assessment of AMS, known risk factors (environmental, demographic, and physiological), and current understanding of AMS pathophysiology. Studies that have examined a range of physiological variables to develop AMS prediction and/or detection algorithms are reviewed to provide insight and potential technological roadmaps for future development of real-time physiological sensors and algorithms to detect AMS. Given the lack of signs and nonspecific symptoms associated with AMS, development of wearable physiological sensors and embedded algorithms to predict in the near term or detect established AMS will be challenging. Prior work using [Formula: see text], HR, or HRv has not provided the sensitivity and specificity for useful application to predict or detect AMS. Rather than using spot checks as most prior studies have, wearable systems that continuously measure SpO 2 and HR are commercially available. Employing other statistical modeling approaches such as general linear and logistic mixed models or time series analysis to these continuously measured variables is the most promising approach for developing algorithms that are sensitive and specific for physiological prediction or detection of AMS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumuluru, Jaya Shankar; McCulloch, Richard Chet James
In this work a new hybrid genetic algorithm was developed which combines a rudimentary adaptive steepest ascent hill climbing algorithm with a sophisticated evolutionary algorithm in order to optimize complex multivariate design problems. By combining a highly stochastic algorithm (evolutionary) with a simple deterministic optimization algorithm (adaptive steepest ascent) computational resources are conserved and the solution converges rapidly when compared to either algorithm alone. In genetic algorithms natural selection is mimicked by random events such as breeding and mutation. In the adaptive steepest ascent algorithm each variable is perturbed by a small amount and the variable that caused the mostmore » improvement is incremented by a small step. If the direction of most benefit is exactly opposite of the previous direction with the most benefit then the step size is reduced by a factor of 2, thus the step size adapts to the terrain. A graphical user interface was created in MATLAB to provide an interface between the hybrid genetic algorithm and the user. Additional features such as bounding the solution space and weighting the objective functions individually are also built into the interface. The algorithm developed was tested to optimize the functions developed for a wood pelleting process. Using process variables (such as feedstock moisture content, die speed, and preheating temperature) pellet properties were appropriately optimized. Specifically, variables were found which maximized unit density, bulk density, tapped density, and durability while minimizing pellet moisture content and specific energy consumption. The time and computational resources required for the optimization were dramatically decreased using the hybrid genetic algorithm when compared to MATLAB's native evolutionary optimization tool.« less
Formal verification of a fault tolerant clock synchronization algorithm
NASA Technical Reports Server (NTRS)
Rushby, John; Vonhenke, Frieder
1989-01-01
A formal specification and mechanically assisted verification of the interactive convergence clock synchronization algorithm of Lamport and Melliar-Smith is described. Several technical flaws in the analysis given by Lamport and Melliar-Smith were discovered, even though their presentation is unusally precise and detailed. It seems that these flaws were not detected by informal peer scrutiny. The flaws are discussed and a revised presentation of the analysis is given that not only corrects the flaws but is also more precise and easier to follow. Some of the corrections to the flaws require slight modifications to the original assumptions underlying the algorithm and to the constraints on its parameters, and thus change the external specifications of the algorithm. The formal analysis of the interactive convergence clock synchronization algorithm was performed using the Enhanced Hierarchical Development Methodology (EHDM) formal specification and verification environment. This application of EHDM provides a demonstration of some of the capabilities of the system.
ComprehensiveBench: a Benchmark for the Extensive Evaluation of Global Scheduling Algorithms
NASA Astrophysics Data System (ADS)
Pilla, Laércio L.; Bozzetti, Tiago C.; Castro, Márcio; Navaux, Philippe O. A.; Méhaut, Jean-François
2015-10-01
Parallel applications that present tasks with imbalanced loads or complex communication behavior usually do not exploit the underlying resources of parallel platforms to their full potential. In order to mitigate this issue, global scheduling algorithms are employed. As finding the optimal task distribution is an NP-Hard problem, identifying the most suitable algorithm for a specific scenario and comparing algorithms are not trivial tasks. In this context, this paper presents ComprehensiveBench, a benchmark for global scheduling algorithms that enables the variation of a vast range of parameters that affect performance. ComprehensiveBench can be used to assist in the development and evaluation of new scheduling algorithms, to help choose a specific algorithm for an arbitrary application, to emulate other applications, and to enable statistical tests. We illustrate its use in this paper with an evaluation of Charm++ periodic load balancers that stresses their characteristics.
Bousquet, P-J; Caillet, P; Coeuret-Pellicer, M; Goulard, H; Kudjawu, Y C; Le Bihan, C; Lecuyer, A I; Séguret, F
2017-10-01
The development and use of healthcare databases accentuates the need for dedicated tools, including validated selection algorithms of cancer diseased patients. As part of the development of the French National Health Insurance System data network REDSIAM, the tumor taskforce established an inventory of national and internal published algorithms in the field of cancer. This work aims to facilitate the choice of a best-suited algorithm. A non-systematic literature search was conducted for various cancers. Results are presented for lung, breast, colon, and rectum. Medline, Scopus, the French Database in Public Health, Google Scholar, and the summaries of the main French journals in oncology and public health were searched for publications until August 2016. An extraction grid adapted to oncology was constructed and used for the extraction process. A total of 18 publications were selected for lung cancer, 18 for breast cancer, and 12 for colorectal cancer. Validation studies of algorithms are scarce. When information is available, the performance and choice of an algorithm are dependent on the context, purpose, and location of the planned study. Accounting for cancer disease specificity, the proposed extraction chart is more detailed than the generic chart developed for other REDSIAM taskforces, but remains easily usable in practice. This study illustrates the complexity of cancer detection through sole reliance on healthcare databases and the lack of validated algorithms specifically designed for this purpose. Studies that standardize and facilitate validation of these algorithms should be developed and promoted. Copyright © 2017. Published by Elsevier Masson SAS.
Investigations of quantum heuristics for optimization
NASA Astrophysics Data System (ADS)
Rieffel, Eleanor; Hadfield, Stuart; Jiang, Zhang; Mandra, Salvatore; Venturelli, Davide; Wang, Zhihui
We explore the design of quantum heuristics for optimization, focusing on the quantum approximate optimization algorithm, a metaheuristic developed by Farhi, Goldstone, and Gutmann. We develop specific instantiations of the of quantum approximate optimization algorithm for a variety of challenging combinatorial optimization problems. Through theoretical analyses and numeric investigations of select problems, we provide insight into parameter setting and Hamiltonian design for quantum approximate optimization algorithms and related quantum heuristics, and into their implementation on hardware realizable in the near term.
NASA Technical Reports Server (NTRS)
Mielke, R.; Stoughton, J.; Som, S.; Obando, R.; Malekpour, M.; Mandala, B.
1990-01-01
A functional description of the ATAMM Multicomputer Operating System is presented. ATAMM (Algorithm to Architecture Mapping Model) is a marked graph model which describes the implementation of large grained, decomposed algorithms on data flow architectures. AMOS, the ATAMM Multicomputer Operating System, is an operating system which implements the ATAMM rules. A first generation version of AMOS which was developed for the Advanced Development Module (ADM) is described. A second generation version of AMOS being developed for the Generic VHSIC Spaceborne Computer (GVSC) is also presented.
NASA Technical Reports Server (NTRS)
Cross, James H., II; Morrison, Kelly I.; May, Charles H., Jr.; Waddel, Kathryn C.
1989-01-01
The first phase of a three-phase effort to develop a new graphically oriented specification language which will facilitate the reverse engineering of Ada source code into graphical representations (GRs) as well as the automatic generation of Ada source code is described. A simplified view of the three phases of Graphical Representations for Algorithms, Structure, and Processes for Ada (GRASP/Ada) with respect to three basic classes of GRs is presented. Phase 1 concentrated on the derivation of an algorithmic diagram, the control structure diagram (CSD) (CRO88a) from Ada source code or Ada PDL. Phase 2 includes the generation of architectural and system level diagrams such as structure charts and data flow diagrams and should result in a requirements specification for a graphically oriented language able to support automatic code generation. Phase 3 will concentrate on the development of a prototype to demonstrate the feasibility of this new specification language.
Pliszka, S R; Greenhill, L L; Crismon, M L; Sedillo, A; Carlson, C; Conners, C K; McCracken, J T; Swanson, J M; Hughes, C W; Llana, M E; Lopez, M; Toprac, M G
2000-07-01
Expert consensus methodology was used to develop a medication treatment algorithm for attention-deficit/hyperactivity disorder (ADHD). The algorithm broadly outlined the choice of medication for ADHD and some of its most common comorbid conditions. Specific tactical recommendations were developed with regard to medication dosage, assessment of drug response, management of side effects, and long-term medication management. The consensus conference of academic clinicians and researchers, practicing clinicians, administrators, consumers, and families developed evidence-based tactics for the pharmacotherapy of childhood ADHD and its common comorbid disorders. The panel discussed specifics of treatment of ADHD and its comorbid conditions with stimulants, antidepressants, mood stabilizers, alpha-agonists, and (when appropriate) antipsychotics. Specific tactics for the use of each of the above agents are outlined. The tactics are designed to be practical for implementation in the public mental health sector, but they may have utility in many practice settings, including the private practice environment. Tactics for psychopharmacological management of ADHD can be developed with consensus.
Advanced CHP Control Algorithms: Scope Specification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katipamula, Srinivas; Brambley, Michael R.
2006-04-28
The primary objective of this multiyear project is to develop algorithms for combined heat and power systems to ensure optimal performance, increase reliability, and lead to the goal of clean, efficient, reliable and affordable next generation energy systems.
Optimizing construction quality management of pavements using mechanistic performance analysis.
DOT National Transportation Integrated Search
2004-08-01
This report presents a statistical-based algorithm that was developed to reconcile the results from several pavement performance models used in the state of practice with systematic process control techniques. These algorithms identify project-specif...
Fuzzy Logic Based Anomaly Detection for Embedded Network Security Cyber Sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ondrej Linda; Todd Vollmer; Jason Wright
Resiliency and security in critical infrastructure control systems in the modern world of cyber terrorism constitute a relevant concern. Developing a network security system specifically tailored to the requirements of such critical assets is of a primary importance. This paper proposes a novel learning algorithm for anomaly based network security cyber sensor together with its hardware implementation. The presented learning algorithm constructs a fuzzy logic rule based model of normal network behavior. Individual fuzzy rules are extracted directly from the stream of incoming packets using an online clustering algorithm. This learning algorithm was specifically developed to comply with the constrainedmore » computational requirements of low-cost embedded network security cyber sensors. The performance of the system was evaluated on a set of network data recorded from an experimental test-bed mimicking the environment of a critical infrastructure control system.« less
Filtered-x generalized mixed norm (FXGMN) algorithm for active noise control
NASA Astrophysics Data System (ADS)
Song, Pucha; Zhao, Haiquan
2018-07-01
The standard adaptive filtering algorithm with a single error norm exhibits slow convergence rate and poor noise reduction performance under specific environments. To overcome this drawback, a filtered-x generalized mixed norm (FXGMN) algorithm for active noise control (ANC) system is proposed. The FXGMN algorithm is developed by using a convex mixture of lp and lq norms as the cost function that it can be viewed as a generalized version of the most existing adaptive filtering algorithms, and it will reduce to a specific algorithm by choosing certain parameters. Especially, it can be used to solve the ANC under Gaussian and non-Gaussian noise environments (including impulsive noise with symmetric α -stable (SαS) distribution). To further enhance the algorithm performance, namely convergence speed and noise reduction performance, a convex combination of the FXGMN algorithm (C-FXGMN) is presented. Moreover, the computational complexity of the proposed algorithms is analyzed, and a stability condition for the proposed algorithms is provided. Simulation results show that the proposed FXGMN and C-FXGMN algorithms can achieve better convergence speed and higher noise reduction as compared to other existing algorithms under various noise input conditions, and the C-FXGMN algorithm outperforms the FXGMN.
Dobson-Belaire, Wendy; Goodfield, Jason; Borrelli, Richard; Liu, Fei Fei; Khan, Zeba M
2018-01-01
Using diagnosis code-based algorithms is the primary method of identifying patient cohorts for retrospective studies; nevertheless, many databases lack reliable diagnosis code information. To develop precise algorithms based on medication claims/prescriber visits (MCs/PVs) to identify psoriasis (PsO) patients and psoriatic patients with arthritic conditions (PsO-AC), a proxy for psoriatic arthritis, in Canadian databases lacking diagnosis codes. Algorithms were developed using medications with narrow indication profiles in combination with prescriber specialty to define PsO and PsO-AC. For a 3-year study period from July 1, 2009, algorithms were validated using the PharMetrics Plus database, which contains both adjudicated medication claims and diagnosis codes. Positive predictive value (PPV), negative predictive value (NPV), sensitivity, and specificity of the developed algorithms were assessed using diagnosis code as the reference standard. Chosen algorithms were then applied to Canadian drug databases to profile the algorithm-identified PsO and PsO-AC cohorts. In the selected database, 183,328 patients were identified for validation. The highest PPVs for PsO (85%) and PsO-AC (65%) occurred when a predictive algorithm of two or more MCs/PVs was compared with the reference standard of one or more diagnosis codes. NPV and specificity were high (99%-100%), whereas sensitivity was low (≤30%). Reducing the number of MCs/PVs or increasing diagnosis claims decreased the algorithms' PPVs. We have developed an MC/PV-based algorithm to identify PsO patients with a high degree of accuracy, but accuracy for PsO-AC requires further investigation. Such methods allow researchers to conduct retrospective studies in databases in which diagnosis codes are absent. Copyright © 2018 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
A Toolbox to Improve Algorithms for Insulin-Dosing Decision Support
Donsa, K.; Plank, J.; Schaupp, L.; Mader, J. K.; Truskaller, T.; Tschapeller, B.; Höll, B.; Spat, S.; Pieber, T. R.
2014-01-01
Summary Background Standardized insulin order sets for subcutaneous basal-bolus insulin therapy are recommended by clinical guidelines for the inpatient management of diabetes. The algorithm based GlucoTab system electronically assists health care personnel by supporting clinical workflow and providing insulin-dose suggestions. Objective To develop a toolbox for improving clinical decision-support algorithms. Methods The toolbox has three main components. 1) Data preparation: Data from several heterogeneous sources is extracted, cleaned and stored in a uniform data format. 2) Simulation: The effects of algorithm modifications are estimated by simulating treatment workflows based on real data from clinical trials. 3) Analysis: Algorithm performance is measured, analyzed and simulated by using data from three clinical trials with a total of 166 patients. Results Use of the toolbox led to algorithm improvements as well as the detection of potential individualized subgroup-specific algorithms. Conclusion These results are a first step towards individualized algorithm modifications for specific patient subgroups. PMID:25024768
Parameterized Algorithmics for Finding Exact Solutions of NP-Hard Biological Problems.
Hüffner, Falk; Komusiewicz, Christian; Niedermeier, Rolf; Wernicke, Sebastian
2017-01-01
Fixed-parameter algorithms are designed to efficiently find optimal solutions to some computationally hard (NP-hard) problems by identifying and exploiting "small" problem-specific parameters. We survey practical techniques to develop such algorithms. Each technique is introduced and supported by case studies of applications to biological problems, with additional pointers to experimental results.
Webb, Samuel J; Hanser, Thierry; Howlin, Brendan; Krause, Paul; Vessey, Jonathan D
2014-03-25
A new algorithm has been developed to enable the interpretation of black box models. The developed algorithm is agnostic to learning algorithm and open to all structural based descriptors such as fragments, keys and hashed fingerprints. The algorithm has provided meaningful interpretation of Ames mutagenicity predictions from both random forest and support vector machine models built on a variety of structural fingerprints.A fragmentation algorithm is utilised to investigate the model's behaviour on specific substructures present in the query. An output is formulated summarising causes of activation and deactivation. The algorithm is able to identify multiple causes of activation or deactivation in addition to identifying localised deactivations where the prediction for the query is active overall. No loss in performance is seen as there is no change in the prediction; the interpretation is produced directly on the model's behaviour for the specific query. Models have been built using multiple learning algorithms including support vector machine and random forest. The models were built on public Ames mutagenicity data and a variety of fingerprint descriptors were used. These models produced a good performance in both internal and external validation with accuracies around 82%. The models were used to evaluate the interpretation algorithm. Interpretation was revealed that links closely with understood mechanisms for Ames mutagenicity. This methodology allows for a greater utilisation of the predictions made by black box models and can expedite further study based on the output for a (quantitative) structure activity model. Additionally the algorithm could be utilised for chemical dataset investigation and knowledge extraction/human SAR development.
Quantum-inspired algorithm for estimating the permanent of positive semidefinite matrices
NASA Astrophysics Data System (ADS)
Chakhmakhchyan, L.; Cerf, N. J.; Garcia-Patron, R.
2017-08-01
We construct a quantum-inspired classical algorithm for computing the permanent of Hermitian positive semidefinite matrices by exploiting a connection between these mathematical structures and the boson sampling model. Specifically, the permanent of a Hermitian positive semidefinite matrix can be expressed in terms of the expected value of a random variable, which stands for a specific photon-counting probability when measuring a linear-optically evolved random multimode coherent state. Our algorithm then approximates the matrix permanent from the corresponding sample mean and is shown to run in polynomial time for various sets of Hermitian positive semidefinite matrices, achieving a precision that improves over known techniques. This work illustrates how quantum optics may benefit algorithm development.
Pediatric medical complexity algorithm: a new method to stratify children by medical complexity.
Simon, Tamara D; Cawthon, Mary Lawrence; Stanford, Susan; Popalisky, Jean; Lyons, Dorothy; Woodcox, Peter; Hood, Margaret; Chen, Alex Y; Mangione-Smith, Rita
2014-06-01
The goal of this study was to develop an algorithm based on International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM), codes for classifying children with chronic disease (CD) according to level of medical complexity and to assess the algorithm's sensitivity and specificity. A retrospective observational study was conducted among 700 children insured by Washington State Medicaid with ≥1 Seattle Children's Hospital emergency department and/or inpatient encounter in 2010. The gold standard population included 350 children with complex chronic disease (C-CD), 100 with noncomplex chronic disease (NC-CD), and 250 without CD. An existing ICD-9-CM-based algorithm called the Chronic Disability Payment System was modified to develop a new algorithm called the Pediatric Medical Complexity Algorithm (PMCA). The sensitivity and specificity of PMCA were assessed. Using hospital discharge data, PMCA's sensitivity for correctly classifying children was 84% for C-CD, 41% for NC-CD, and 96% for those without CD. Using Medicaid claims data, PMCA's sensitivity was 89% for C-CD, 45% for NC-CD, and 80% for those without CD. Specificity was 90% to 92% in hospital discharge data and 85% to 91% in Medicaid claims data for all 3 groups. PMCA identified children with C-CD (who have accessed tertiary hospital care) with good sensitivity and good to excellent specificity when applied to hospital discharge or Medicaid claims data. PMCA may be useful for targeting resources such as care coordination to children with C-CD. Copyright © 2014 by the American Academy of Pediatrics.
Schneider, Gary; Kachroo, Sumesh; Jones, Natalie; Crean, Sheila; Rotella, Philip; Avetisyan, Ruzan; Reynolds, Matthew W
2012-01-01
The Food and Drug Administration's Mini-Sentinel pilot program aims to conduct active surveillance to refine safety signals that emerge for marketed medical products. A key facet of this surveillance is to develop and understand the validity of algorithms for identifying health outcomes of interest from administrative and claims data. This article summarizes the process and findings of the algorithm review of hypersensitivity reactions. PubMed and Iowa Drug Information Service searches were conducted to identify citations applicable to the hypersensitivity reactions of health outcomes of interest. Level 1 abstract reviews and Level 2 full-text reviews were conducted to find articles using administrative and claims data to identify hypersensitivity reactions and including validation estimates of the coding algorithms. We identified five studies that provided validated hypersensitivity-reaction algorithms. Algorithm positive predictive values (PPVs) for various definitions of hypersensitivity reactions ranged from 3% to 95%. PPVs were high (i.e. 90%-95%) when both exposures and diagnoses were very specific. PPV generally decreased when the definition of hypersensitivity was expanded, except in one study that used data mining methodology for algorithm development. The ability of coding algorithms to identify hypersensitivity reactions varied, with decreasing performance occurring with expanded outcome definitions. This examination of hypersensitivity-reaction coding algorithms provides an example of surveillance bias resulting from outcome definitions that include mild cases. Data mining may provide tools for algorithm development for hypersensitivity and other health outcomes. Research needs to be conducted on designing validation studies to test hypersensitivity-reaction algorithms and estimating their predictive power, sensitivity, and specificity. Copyright © 2012 John Wiley & Sons, Ltd.
Automatic detection of ECG cable interchange by analyzing both morphology and interlead relations.
Han, Chengzong; Gregg, Richard E; Feild, Dirk Q; Babaeizadeh, Saeed
2014-01-01
ECG cable interchange can generate erroneous diagnoses. For algorithms detecting ECG cable interchange, high specificity is required to maintain a low total false positive rate because the prevalence of interchange is low. In this study, we propose and evaluate an improved algorithm for automatic detection and classification of ECG cable interchange. The algorithm was developed by using both ECG morphology information and redundancy information. ECG morphology features included QRS-T and P-wave amplitude, frontal axis and clockwise vector loop rotation. The redundancy features were derived based on the EASI™ lead system transformation. The classification was implemented using linear support vector machine. The development database came from multiple sources including both normal subjects and cardiac patients. An independent database was used to test the algorithm performance. Common cable interchanges were simulated by swapping either limb cables or precordial cables. For the whole validation database, the overall sensitivity and specificity for detecting precordial cable interchange were 56.5% and 99.9%, and the sensitivity and specificity for detecting limb cable interchange (excluding left arm-left leg interchange) were 93.8% and 99.9%. Defining precordial cable interchange or limb cable interchange as a single positive event, the total false positive rate was 0.7%. When the algorithm was designed for higher sensitivity, the sensitivity for detecting precordial cable interchange increased to 74.6% and the total false positive rate increased to 2.7%, while the sensitivity for detecting limb cable interchange was maintained at 93.8%. The low total false positive rate was maintained at 0.6% for the more abnormal subset of the validation database including only hypertrophy and infarction patients. The proposed algorithm can detect and classify ECG cable interchanges with high specificity and low total false positive rate, at the cost of decreased sensitivity for certain precordial cable interchanges. The algorithm could also be configured for higher sensitivity for different applications where a lower specificity can be tolerated. Copyright © 2014 Elsevier Inc. All rights reserved.
Benchmarking Procedures for High-Throughput Context Specific Reconstruction Algorithms
Pacheco, Maria P.; Pfau, Thomas; Sauter, Thomas
2016-01-01
Recent progress in high-throughput data acquisition has shifted the focus from data generation to processing and understanding of how to integrate collected information. Context specific reconstruction based on generic genome scale models like ReconX or HMR has the potential to become a diagnostic and treatment tool tailored to the analysis of specific individuals. The respective computational algorithms require a high level of predictive power, robustness and sensitivity. Although multiple context specific reconstruction algorithms were published in the last 10 years, only a fraction of them is suitable for model building based on human high-throughput data. Beside other reasons, this might be due to problems arising from the limitation to only one metabolic target function or arbitrary thresholding. This review describes and analyses common validation methods used for testing model building algorithms. Two major methods can be distinguished: consistency testing and comparison based testing. The first is concerned with robustness against noise, e.g., missing data due to the impossibility to distinguish between the signal and the background of non-specific binding of probes in a microarray experiment, and whether distinct sets of input expressed genes corresponding to i.e., different tissues yield distinct models. The latter covers methods comparing sets of functionalities, comparison with existing networks or additional databases. We test those methods on several available algorithms and deduce properties of these algorithms that can be compared with future developments. The set of tests performed, can therefore serve as a benchmarking procedure for future algorithms. PMID:26834640
Development of an Algorithm for Satellite Remote Sensing of Sea and Lake Ice
NASA Astrophysics Data System (ADS)
Dorofy, Peter T.
Satellite remote sensing of snow and ice has a long history. The traditional method for many snow and ice detection algorithms has been the use of the Normalized Difference Snow Index (NDSI). This manuscript is composed of two parts. Chapter 1, Development of a Mid-Infrared Sea and Lake Ice Index (MISI) using the GOES Imager, discusses the desirability, development, and implementation of alternative index for an ice detection algorithm, application of the algorithm to the detection of lake ice, and qualitative validation against other ice mapping products; such as, the Ice Mapping System (IMS). Chapter 2, Application of Dynamic Threshold in a Lake Ice Detection Algorithm, continues with a discussion of the development of a method that considers the variable viewing and illumination geometry of observations throughout the day. The method is an alternative to Bidirectional Reflectance Distribution Function (BRDF) models. Evaluation of the performance of the algorithm is introduced by aggregating classified pixels within geometrical boundaries designated by IMS and obtaining sensitivity and specificity statistical measures.
Hu, Yi; Loizou, Philipos C
2010-06-01
Attempts to develop noise-suppression algorithms that can significantly improve speech intelligibility in noise by cochlear implant (CI) users have met with limited success. This is partly because algorithms were sought that would work equally well in all listening situations. Accomplishing this has been quite challenging given the variability in the temporal/spectral characteristics of real-world maskers. A different approach is taken in the present study focused on the development of environment-specific noise suppression algorithms. The proposed algorithm selects a subset of the envelope amplitudes for stimulation based on the signal-to-noise ratio (SNR) of each channel. Binary classifiers, trained using data collected from a particular noisy environment, are first used to classify the mixture envelopes of each channel as either target-dominated (SNR>or=0 dB) or masker-dominated (SNR<0 dB). Only target-dominated channels are subsequently selected for stimulation. Results with CI listeners indicated substantial improvements (by nearly 44 percentage points at 5 dB SNR) in intelligibility with the proposed algorithm when tested with sentences embedded in three real-world maskers. The present study demonstrated that the environment-specific approach to noise reduction has the potential to restore speech intelligibility in noise to a level near to that attained in quiet.
Development and application of unified algorithms for problems in computational science
NASA Technical Reports Server (NTRS)
Shankar, Vijaya; Chakravarthy, Sukumar
1987-01-01
A framework is presented for developing computationally unified numerical algorithms for solving nonlinear equations that arise in modeling various problems in mathematical physics. The concept of computational unification is an attempt to encompass efficient solution procedures for computing various nonlinear phenomena that may occur in a given problem. For example, in Computational Fluid Dynamics (CFD), a unified algorithm will be one that allows for solutions to subsonic (elliptic), transonic (mixed elliptic-hyperbolic), and supersonic (hyperbolic) flows for both steady and unsteady problems. The objectives are: development of superior unified algorithms emphasizing accuracy and efficiency aspects; development of codes based on selected algorithms leading to validation; application of mature codes to realistic problems; and extension/application of CFD-based algorithms to problems in other areas of mathematical physics. The ultimate objective is to achieve integration of multidisciplinary technologies to enhance synergism in the design process through computational simulation. Specific unified algorithms for a hierarchy of gas dynamics equations and their applications to two other areas: electromagnetic scattering, and laser-materials interaction accounting for melting.
Population-based metaheuristic optimization in neutron optics and shielding design
NASA Astrophysics Data System (ADS)
DiJulio, D. D.; Björgvinsdóttir, H.; Zendler, C.; Bentley, P. M.
2016-11-01
Population-based metaheuristic algorithms are powerful tools in the design of neutron scattering instruments and the use of these types of algorithms for this purpose is becoming more and more commonplace. Today there exists a wide range of algorithms to choose from when designing an instrument and it is not always initially clear which may provide the best performance. Furthermore, due to the nature of these types of algorithms, the final solution found for a specific design scenario cannot always be guaranteed to be the global optimum. Therefore, to explore the potential benefits and differences between the varieties of these algorithms available, when applied to such design scenarios, we have carried out a detailed study of some commonly used algorithms. For this purpose, we have developed a new general optimization software package which combines a number of common metaheuristic algorithms within a single user interface and is designed specifically with neutronic calculations in mind. The algorithms included in the software are implementations of Particle-Swarm Optimization (PSO), Differential Evolution (DE), Artificial Bee Colony (ABC), and a Genetic Algorithm (GA). The software has been used to optimize the design of several problems in neutron optics and shielding, coupled with Monte-Carlo simulations, in order to evaluate the performance of the various algorithms. Generally, the performance of the algorithms depended on the specific scenarios, however it was found that DE provided the best average solutions in all scenarios investigated in this work.
Common spaceborne multicomputer operating system and development environment
NASA Technical Reports Server (NTRS)
Craymer, L. G.; Lewis, B. F.; Hayes, P. J.; Jones, R. L.
1994-01-01
A preliminary technical specification for a multicomputer operating system is developed. The operating system is targeted for spaceborne flight missions and provides a broad range of real-time functionality, dynamic remote code-patching capability, and system fault tolerance and long-term survivability features. Dataflow concepts are used for representing application algorithms. Functional features are included to ensure real-time predictability for a class of algorithms which require data-driven execution on an iterative steady state basis. The development environment supports the development of algorithm code, design of control parameters, performance analysis, simulation of real-time dataflow applications, and compiling and downloading of the resulting application.
Development and implementation of clinical algorithms in occupational health practice.
Ghafur, Imran; Lalloo, Drushca; Macdonald, Ewan B; Menon, Manju
2013-12-01
Occupational health (OH) practice is framed by legal, ethical, and regulatory requirements. Integrating this information into daily practice can be a difficult task. We devised evidence-based framework standards of good practice that would aid clinical management, and assessed their impact. The clinical algorithm was the method deemed most appropriate to our needs. Using "the first OH consultation" as an example, the development, implementation, and evaluation of an algorithm is described. The first OH consultation algorithm was developed. Evaluation demonstrated an overall improvement in recording of information, specifically consent, recreational drug history, function, and review arrangements. Clinical algorithms can be a method for assimilating and succinctly presenting the various facets of OH practice, for use by all OH clinicians as a practical guide and as a way of improving quality in clinical record-keeping.
An historical survey of computational methods in optimal control.
NASA Technical Reports Server (NTRS)
Polak, E.
1973-01-01
Review of some of the salient theoretical developments in the specific area of optimal control algorithms. The first algorithms for optimal control were aimed at unconstrained problems and were derived by using first- and second-variation methods of the calculus of variations. These methods have subsequently been recognized as gradient, Newton-Raphson, or Gauss-Newton methods in function space. A much more recent addition to the arsenal of unconstrained optimal control algorithms are several variations of conjugate-gradient methods. At first, constrained optimal control problems could only be solved by exterior penalty function methods. Later algorithms specifically designed for constrained problems have appeared. Among these are methods for solving the unconstrained linear quadratic regulator problem, as well as certain constrained minimum-time and minimum-energy problems. Differential-dynamic programming was developed from dynamic programming considerations. The conditional-gradient method, the gradient-projection method, and a couple of feasible directions methods were obtained as extensions or adaptations of related algorithms for finite-dimensional problems. Finally, the so-called epsilon-methods combine the Ritz method with penalty function techniques.
Rector, Thomas S; Wickstrom, Steven L; Shah, Mona; Thomas Greeenlee, N; Rheault, Paula; Rogowski, Jeannette; Freedman, Vicki; Adams, John; Escarce, José J
2004-01-01
Objective To examine the effects of varying diagnostic and pharmaceutical criteria on the performance of claims-based algorithms for identifying beneficiaries with hypertension, heart failure, chronic lung disease, arthritis, glaucoma, and diabetes. Study Setting Secondary 1999–2000 data from two Medicare+Choice health plans. Study Design Retrospective analysis of algorithm specificity and sensitivity. Data Collection Physician, facility, and pharmacy claims data were extracted from electronic records for a sample of 3,633 continuously enrolled beneficiaries who responded to an independent survey that included questions about chronic diseases. Principal Findings Compared to an algorithm that required a single medical claim in a one-year period that listed the diagnosis, either requiring that the diagnosis be listed on two separate claims or that the diagnosis to be listed on one claim for a face-to-face encounter with a health care provider significantly increased specificity for the conditions studied by 0.03 to 0.11. Specificity of algorithms was significantly improved by 0.03 to 0.17 when both a medical claim with a diagnosis and a pharmacy claim for a medication commonly used to treat the condition were required. Sensitivity improved significantly by 0.01 to 0.20 when the algorithm relied on a medical claim with a diagnosis or a pharmacy claim, and by 0.05 to 0.17 when two years rather than one year of claims data were analyzed. Algorithms that had specificity more than 0.95 were found for all six conditions. Sensitivity above 0.90 was not achieved all conditions. Conclusions Varying claims criteria improved the performance of case-finding algorithms for six chronic conditions. Highly specific, and sometimes sensitive, algorithms for identifying members of health plans with several chronic conditions can be developed using claims data. PMID:15533190
An Atmospheric Guidance Algorithm Testbed for the Mars Surveyor Program 2001 Orbiter and Lander
NASA Technical Reports Server (NTRS)
Striepe, Scott A.; Queen, Eric M.; Powell, Richard W.; Braun, Robert D.; Cheatwood, F. McNeil; Aguirre, John T.; Sachi, Laura A.; Lyons, Daniel T.
1998-01-01
An Atmospheric Flight Team was formed by the Mars Surveyor Program '01 mission office to develop aerocapture and precision landing testbed simulations and candidate guidance algorithms. Three- and six-degree-of-freedom Mars atmospheric flight simulations have been developed for testing, evaluation, and analysis of candidate guidance algorithms for the Mars Surveyor Program 2001 Orbiter and Lander. These simulations are built around the Program to Optimize Simulated Trajectories. Subroutines were supplied by Atmospheric Flight Team members for modeling the Mars atmosphere, spacecraft control system, aeroshell aerodynamic characteristics, and other Mars 2001 mission specific models. This paper describes these models and their perturbations applied during Monte Carlo analyses to develop, test, and characterize candidate guidance algorithms.
Herscovici, Sarah; Pe'er, Avivit; Papyan, Surik; Lavie, Peretz
2007-02-01
Scoring of REM sleep based on polysomnographic recordings is a laborious and time-consuming process. The growing number of ambulatory devices designed for cost-effective home-based diagnostic sleep recordings necessitates the development of a reliable automatic REM sleep detection algorithm that is not based on the traditional electroencephalographic, electrooccolographic and electromyographic recordings trio. This paper presents an automatic REM detection algorithm based on the peripheral arterial tone (PAT) signal and actigraphy which are recorded with an ambulatory wrist-worn device (Watch-PAT100). The PAT signal is a measure of the pulsatile volume changes at the finger tip reflecting sympathetic tone variations. The algorithm was developed using a training set of 30 patients recorded simultaneously with polysomnography and Watch-PAT100. Sleep records were divided into 5 min intervals and two time series were constructed from the PAT amplitudes and PAT-derived inter-pulse periods in each interval. A prediction function based on 16 features extracted from the above time series that determines the likelihood of detecting a REM epoch was developed. The coefficients of the prediction function were determined using a genetic algorithm (GA) optimizing process tuned to maximize a price function depending on the sensitivity, specificity and agreement of the algorithm in comparison with the gold standard of polysomnographic manual scoring. Based on a separate validation set of 30 patients overall sensitivity, specificity and agreement of the automatic algorithm to identify standard 30 s epochs of REM sleep were 78%, 92%, 89%, respectively. Deploying this REM detection algorithm in a wrist worn device could be very useful for unattended ambulatory sleep monitoring. The innovative method of optimization using a genetic algorithm has been proven to yield robust results in the validation set.
Generic Kalman Filter Software
NASA Technical Reports Server (NTRS)
Lisano, Michael E., II; Crues, Edwin Z.
2005-01-01
The Generic Kalman Filter (GKF) software provides a standard basis for the development of application-specific Kalman-filter programs. Historically, Kalman filters have been implemented by customized programs that must be written, coded, and debugged anew for each unique application, then tested and tuned with simulated or actual measurement data. Total development times for typical Kalman-filter application programs have ranged from months to weeks. The GKF software can simplify the development process and reduce the development time by eliminating the need to re-create the fundamental implementation of the Kalman filter for each new application. The GKF software is written in the ANSI C programming language. It contains a generic Kalman-filter-development directory that, in turn, contains a code for a generic Kalman filter function; more specifically, it contains a generically designed and generically coded implementation of linear, linearized, and extended Kalman filtering algorithms, including algorithms for state- and covariance-update and -propagation functions. The mathematical theory that underlies the algorithms is well known and has been reported extensively in the open technical literature. Also contained in the directory are a header file that defines generic Kalman-filter data structures and prototype functions and template versions of application-specific subfunction and calling navigation/estimation routine code and headers. Once the user has provided a calling routine and the required application-specific subfunctions, the application-specific Kalman-filter software can be compiled and executed immediately. During execution, the generic Kalman-filter function is called from a higher-level navigation or estimation routine that preprocesses measurement data and post-processes output data. The generic Kalman-filter function uses the aforementioned data structures and five implementation- specific subfunctions, which have been developed by the user on the basis of the aforementioned templates. The GKF software can be used to develop many different types of unfactorized Kalman filters. A developer can choose to implement either a linearized or an extended Kalman filter algorithm, without having to modify the GKF software. Control dynamics can be taken into account or neglected in the filter-dynamics model. Filter programs developed by use of the GKF software can be made to propagate equations of motion for linear or nonlinear dynamical systems that are deterministic or stochastic. In addition, filter programs can be made to operate in user-selectable "covariance analysis" and "propagation-only" modes that are useful in design and development stages.
Koneru, Jayanthi N; Swerdlow, Charles D; Ploux, Sylvain; Sharma, Parikshit S; Kaszala, Karoly; Tan, Alex Y; Huizar, Jose F; Vijayaraman, Pugazhendi; Kenigsberg, David; Ellenbogen, Kenneth A
2017-02-01
Implantable cardioverter defibrillators (ICDs) must establish a balance between delivering appropriate shocks for ventricular tachyarrhythmias and withholding inappropriate shocks for lead-related oversensing ("noise"). To improve the specificity of ICD therapy, manufacturers have developed proprietary algorithms that detect lead noise. The SecureSense TM RV Lead Noise discrimination (St. Jude Medical, St. Paul, MN, USA) algorithm is designed to differentiate oversensing due to lead failure from ventricular tachyarrhythmias and withhold therapies in the presence of sustained lead-related oversensing. We report 5 patients in whom appropriate ICD therapy was withheld due to the operation of the SecureSense algorithm and explain the mechanism for inhibition of therapy in each case. Limitations of algorithms designed to increase ICD therapy specificity, especially for the SecureSense algorithm, are analyzed. The SecureSense algorithm can withhold appropriate therapies for ventricular arrhythmias due to design and programming limitations. Electrophysiologists should have a thorough understanding of the SecureSense algorithm before routinely programming it and understand the implications for ventricular arrhythmia misclassification. © 2016 Wiley Periodicals, Inc.
Muche-Borowski, Cathleen; Lühmann, Dagmar; Schäfer, Ingmar; Mundt, Rebekka; Wagner, Hans-Otto; Scherer, Martin
2017-06-22
The study aimed to develop a comprehensive algorithm (meta-algorithm) for primary care encounters of patients with multimorbidity. We used a novel, case-based and evidence-based procedure to overcome methodological difficulties in guideline development for patients with complex care needs. Systematic guideline development methodology including systematic evidence retrieval (guideline synopses), expert opinions and informal and formal consensus procedures. Primary care. The meta-algorithm was developed in six steps:1. Designing 10 case vignettes of patients with multimorbidity (common, epidemiologically confirmed disease patterns and/or particularly challenging health care needs) in a multidisciplinary workshop.2. Based on the main diagnoses, a systematic guideline synopsis of evidence-based and consensus-based clinical practice guidelines was prepared. The recommendations were prioritised according to the clinical and psychosocial characteristics of the case vignettes.3. Case vignettes along with the respective guideline recommendations were validated and specifically commented on by an external panel of practicing general practitioners (GPs).4. Guideline recommendations and experts' opinions were summarised as case specific management recommendations (N-of-one guidelines).5. Healthcare preferences of patients with multimorbidity were elicited from a systematic literature review and supplemented with information from qualitative interviews.6. All N-of-one guidelines were analysed using pattern recognition to identify common decision nodes and care elements. These elements were put together to form a generic meta-algorithm. The resulting meta-algorithm reflects the logic of a GP's encounter of a patient with multimorbidity regarding decision-making situations, communication needs and priorities. It can be filled with the complex problems of individual patients and hereby offer guidance to the practitioner. Contrary to simple, symptom-oriented algorithms, the meta-algorithm illustrates a superordinate process that permanently keeps the entire patient in view. The meta-algorithm represents the back bone of the multimorbidity guideline of the German College of General Practitioners and Family Physicians. This article presents solely the development phase; the meta-algorithm needs to be piloted before it can be implemented. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
A Specification for a Godunov-type Eulerian 2-D Hydrocode, Revision 0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nystrom, William D; Robey, Jonathan M
2012-05-01
The purpose of this code specification is to describe an algorithm for solving the Euler equations of hydrodynamics in a 2D rectangular region in sufficient detail to allow a software developer to produce an implementation on their target platform using their programming language of choice without requiring detailed knowledge and experience in the field of computational fluid dynamics. It should be possible for a software developer who is proficient in the programming language of choice and is knowledgable of the target hardware to produce an efficient implementation of this specification if they also possess a thorough working knowledge of parallelmore » programming and have some experience in scientific programming using fields and meshes. On modern architectures, it will be important to focus on issues related to the exploitation of the fine grain parallelism and data locality present in this algorithm. This specification aims to make that task easier by presenting the essential details of the algorithm in a systematic and language neutral manner while also avoiding the inclusion of implementation details that would likely be specific to a particular type of programming paradigm or platform architecture.« less
The Pandora multi-algorithm approach to automated pattern recognition in LAr TPC detectors
NASA Astrophysics Data System (ADS)
Marshall, J. S.; Blake, A. S. T.; Thomson, M. A.; Escudero, L.; de Vries, J.; Weston, J.;
2017-09-01
The development and operation of Liquid Argon Time Projection Chambers (LAr TPCs) for neutrino physics has created a need for new approaches to pattern recognition, in order to fully exploit the superb imaging capabilities offered by this technology. The Pandora Software Development Kit provides functionality to aid the process of designing, implementing and running pattern recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition: individual algorithms each address a specific task in a particular topology; a series of many tens of algorithms then carefully builds-up a picture of the event. The input to the Pandora pattern recognition is a list of 2D Hits. The output from the chain of over 70 algorithms is a hierarchy of reconstructed 3D Particles, each with an identified particle type, vertex and direction.
Automating software design system DESTA
NASA Technical Reports Server (NTRS)
Lovitsky, Vladimir A.; Pearce, Patricia D.
1992-01-01
'DESTA' is the acronym for the Dialogue Evolutionary Synthesizer of Turnkey Algorithms by means of a natural language (Russian or English) functional specification of algorithms or software being developed. DESTA represents the computer-aided and/or automatic artificial intelligence 'forgiving' system which provides users with software tools support for algorithm and/or structured program development. The DESTA system is intended to provide support for the higher levels and earlier stages of engineering design of software in contrast to conventional Computer Aided Design (CAD) systems which provide low level tools for use at a stage when the major planning and structuring decisions have already been taken. DESTA is a knowledge-intensive system. The main features of the knowledge are procedures, functions, modules, operating system commands, batch files, their natural language specifications, and their interlinks. The specific domain for the DESTA system is a high level programming language like Turbo Pascal 6.0. The DESTA system is operational and runs on an IBM PC computer.
Bogle, Brittany M; Asimos, Andrew W; Rosamond, Wayne D
2017-10-01
The Severity-Based Stroke Triage Algorithm for Emergency Medical Services endorses routing patients with suspected large vessel occlusion acute ischemic strokes directly to endovascular stroke centers (ESCs). We sought to evaluate different specifications of this algorithm within a region. We developed a discrete event simulation environment to model patients with suspected stroke transported according to algorithm specifications, which varied by stroke severity screen and permissible additional transport time for routing patients to ESCs. We simulated King County, Washington, and Mecklenburg County, North Carolina, distributing patients geographically into census tracts. Transport time to the nearest hospital and ESC was estimated using traffic-based travel times. We assessed undertriage, overtriage, transport time, and the number-needed-to-route, defined as the number of patients enduring additional transport to route one large vessel occlusion patient to an ESC. Undertriage was higher and overtriage was lower in King County compared with Mecklenburg County for each specification. Overtriage variation was primarily driven by screen (eg, 13%-55% in Mecklenburg County and 10%-40% in King County). Transportation time specifications beyond 20 minutes increased overtriage and decreased undertriage in King County but not Mecklenburg County. A low- versus high-specificity screen routed 3.7× more patients to ESCs. Emergency medical services spent nearly twice the time routing patients to ESCs in King County compared with Mecklenburg County. Our results demonstrate how discrete event simulation can facilitate informed decision making to optimize emergency medical services stroke severity-based triage algorithms. This is the first step toward developing a mature simulation to predict patient outcomes. © 2017 American Heart Association, Inc.
Thompson, William K; Rasmussen, Luke V; Pacheco, Jennifer A; Peissig, Peggy L; Denny, Joshua C; Kho, Abel N; Miller, Aaron; Pathak, Jyotishman
2012-01-01
The development of Electronic Health Record (EHR)-based phenotype selection algorithms is a non-trivial and highly iterative process involving domain experts and informaticians. To make it easier to port algorithms across institutions, it is desirable to represent them using an unambiguous formal specification language. For this purpose we evaluated the recently developed National Quality Forum (NQF) information model designed for EHR-based quality measures: the Quality Data Model (QDM). We selected 9 phenotyping algorithms that had been previously developed as part of the eMERGE consortium and translated them into QDM format. Our study concluded that the QDM contains several core elements that make it a promising format for EHR-driven phenotyping algorithms for clinical research. However, we also found areas in which the QDM could be usefully extended, such as representing information extracted from clinical text, and the ability to handle algorithms that do not consist of Boolean combinations of criteria.
Scheduling language and algorithm development study. Appendix: Study approach and activity summary
NASA Technical Reports Server (NTRS)
1974-01-01
The approach and organization of the study to develop a high level computer programming language and a program library are presented. The algorithm and problem modeling analyses are summarized. The approach used to identify and specify the capabilities required in the basic language is described. Results of the analyses used to define specifications for the scheduling module library are presented.
Development and validation of a registry-based definition of eosinophilic esophagitis in Denmark
Dellon, Evan S; Erichsen, Rune; Pedersen, Lars; Shaheen, Nicholas J; Baron, John A; Sørensen, Henrik T; Vyberg, Mogens
2013-01-01
AIM: To develop and validate a case definition of eosinophilic esophagitis (EoE) in the linked Danish health registries. METHODS: For case definition development, we queried the Danish medical registries from 2006-2007 to identify candidate cases of EoE in Northern Denmark. All International Classification of Diseases-10 (ICD-10) and prescription codes were obtained, and archived pathology slides were obtained and re-reviewed to determine case status. We used an iterative process to select inclusion/exclusion codes, refine the case definition, and optimize sensitivity and specificity. We then re-queried the registries from 2008-2009 to yield a validation set. The case definition algorithm was applied, and sensitivity and specificity were calculated. RESULTS: Of the 51 and 49 candidate cases identified in both the development and validation sets, 21 and 24 had EoE, respectively. Characteristics of EoE cases in the development set [mean age 35 years; 76% male; 86% dysphagia; 103 eosinophils per high-power field (eos/hpf)] were similar to those in the validation set (mean age 42 years; 83% male; 67% dysphagia; 77 eos/hpf). Re-review of archived slides confirmed that the pathology coding for esophageal eosinophilia was correct in greater than 90% of cases. Two registry-based case algorithms based on pathology, ICD-10, and pharmacy codes were successfully generated in the development set, one that was sensitive (90%) and one that was specific (97%). When these algorithms were applied to the validation set, they remained sensitive (88%) and specific (96%). CONCLUSION: Two registry-based definitions, one highly sensitive and one highly specific, were developed and validated for the linked Danish national health databases, making future population-based studies feasible. PMID:23382628
A Computational Algorithm for Functional Clustering of Proteome Dynamics During Development
Wang, Yaqun; Wang, Ningtao; Hao, Han; Guo, Yunqian; Zhen, Yan; Shi, Jisen; Wu, Rongling
2014-01-01
Phenotypic traits, such as seed development, are a consequence of complex biochemical interactions among genes, proteins and metabolites, but the underlying mechanisms that operate in a coordinated and sequential manner remain elusive. Here, we address this issue by developing a computational algorithm to monitor proteome changes during the course of trait development. The algorithm is built within the mixture-model framework in which each mixture component is modeled by a specific group of proteins that display a similar temporal pattern of expression in trait development. A nonparametric approach based on Legendre orthogonal polynomials was used to fit dynamic changes of protein expression, increasing the power and flexibility of protein clustering. By analyzing a dataset of proteomic dynamics during early embryogenesis of the Chinese fir, the algorithm has successfully identified several distinct types of proteins that coordinate with each other to determine seed development in this forest tree commercially and environmentally important to China. The algorithm will find its immediate applications for the characterization of mechanistic underpinnings for any other biological processes in which protein abundance plays a key role. PMID:24955031
Tien, M.; Kashyap, R.; Wilson, G. A.; Hernandez-Torres, V.; Jacob, A. K.; Schroeder, D. R.
2015-01-01
Summary Background With increasing numbers of hospitals adopting electronic medical records, electronic search algorithms for identifying postoperative complications can be invaluable tools to expedite data abstraction and clinical research to improve patient outcomes. Objectives To derive and validate an electronic search algorithm to identify postoperative thromboembolic and cardiovascular complications such as deep venous thrombosis, pulmonary embolism, or myocardial infarction within 30 days of total hip or knee arthroplasty. Methods A total of 34 517 patients undergoing total hip or knee arthroplasty between January 1, 1996 and December 31, 2013 were identified. Using a derivation cohort of 418 patients, several iterations of a free-text electronic search were developed and refined for each complication. Subsequently, the automated search algorithm was validated on an independent cohort of 2 857 patients, and the sensitivity and specificities were compared to the results of manual chart review. Results In the final derivation subset, the automated search algorithm achieved a sensitivity of 91% and specificity of 85% for deep vein thrombosis, a sensitivity of 96% and specificity of 100% for pulmonary embolism, and a sensitivity of 100% and specificity of 95% for myocardial infarction. When applied to the validation cohort, the search algorithm achieved a sensitivity of 97% and specificity of 99% for deep vein thrombosis, a sensitivity of 97% and specificity of 100% for pulmonary embolism, and a sensitivity of 100% and specificity of 99% for myocardial infarction. Conclusions The derivation and validation of an electronic search strategy can accelerate the data abstraction process for research, quality improvement, and enhancement of patient care, while maintaining superb reliability compared to manual review. PMID:26448798
NASA Astrophysics Data System (ADS)
Acciarri, R.; Adams, C.; An, R.; Anthony, J.; Asaadi, J.; Auger, M.; Bagby, L.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; Bass, M.; Bay, F.; Bishai, M.; Blake, A.; Bolton, T.; Camilleri, L.; Caratelli, D.; Carls, B.; Castillo Fernandez, R.; Cavanna, F.; Chen, H.; Church, E.; Cianci, D.; Cohen, E.; Collin, G. H.; Conrad, J. M.; Convery, M.; Crespo-Anadón, J. I.; Del Tutto, M.; Devitt, D.; Dytman, S.; Eberly, B.; Ereditato, A.; Escudero Sanchez, L.; Esquivel, J.; Fadeeva, A. A.; Fleming, B. T.; Foreman, W.; Furmanski, A. P.; Garcia-Gamez, D.; Garvey, G. T.; Genty, V.; Goeldi, D.; Gollapinni, S.; Graf, N.; Gramellini, E.; Greenlee, H.; Grosso, R.; Guenette, R.; Hackenburg, A.; Hamilton, P.; Hen, O.; Hewes, J.; Hill, C.; Ho, J.; Horton-Smith, G.; Hourlier, A.; Huang, E.-C.; James, C.; Jan de Vries, J.; Jen, C.-M.; Jiang, L.; Johnson, R. A.; Joshi, J.; Jostlein, H.; Kaleko, D.; Karagiorgi, G.; Ketchum, W.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Laube, A.; Li, Y.; Lister, A.; Littlejohn, B. R.; Lockwitz, S.; Lorca, D.; Louis, W. C.; Luethi, M.; Lundberg, B.; Luo, X.; Marchionni, A.; Mariani, C.; Marshall, J.; Martinez Caicedo, D. A.; Meddage, V.; Miceli, T.; Mills, G. B.; Moon, J.; Mooney, M.; Moore, C. D.; Mousseau, J.; Murrells, R.; Naples, D.; Nienaber, P.; Nowak, J.; Palamara, O.; Paolone, V.; Papavassiliou, V.; Pate, S. F.; Pavlovic, Z.; Piasetzky, E.; Porzio, D.; Pulliam, G.; Qian, X.; Raaf, J. L.; Rafique, A.; Rochester, L.; Rudolf von Rohr, C.; Russell, B.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, M. H.; Sinclair, J.; Smith, A.; Snider, E. L.; Soderberg, M.; Söldner-Rembold, S.; Soleti, S. R.; Spentzouris, P.; Spitz, J.; St. John, J.; Strauss, T.; Szelc, A. M.; Tagg, N.; Terao, K.; Thomson, M.; Toups, M.; Tsai, Y.-T.; Tufanli, S.; Usher, T.; Van De Pontseele, W.; Van de Water, R. G.; Viren, B.; Weber, M.; Wickremasinghe, D. A.; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Yang, T.; Yates, L.; Zeller, G. P.; Zennamo, J.; Zhang, C.
2018-01-01
The development and operation of liquid-argon time-projection chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens of algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.
Robust crop and weed segmentation under uncontrolled outdoor illumination.
Jeon, Hong Y; Tian, Lei F; Zhu, Heping
2011-01-01
An image processing algorithm for detecting individual weeds was developed and evaluated. Weed detection processes included were normalized excessive green conversion, statistical threshold value estimation, adaptive image segmentation, median filter, morphological feature calculation and Artificial Neural Network (ANN). The developed algorithm was validated for its ability to identify and detect weeds and crop plants under uncontrolled outdoor illuminations. A machine vision implementing field robot captured field images under outdoor illuminations and the image processing algorithm automatically processed them without manual adjustment. The errors of the algorithm, when processing 666 field images, ranged from 2.1 to 2.9%. The ANN correctly detected 72.6% of crop plants from the identified plants, and considered the rest as weeds. However, the ANN identification rates for crop plants were improved up to 95.1% by addressing the error sources in the algorithm. The developed weed detection and image processing algorithm provides a novel method to identify plants against soil background under the uncontrolled outdoor illuminations, and to differentiate weeds from crop plants. Thus, the proposed new machine vision and processing algorithm may be useful for outdoor applications including plant specific direct applications (PSDA).
Development of an algorithm for automatic detection and rating of squeak and rattle events
NASA Astrophysics Data System (ADS)
Chandrika, Unnikrishnan Kuttan; Kim, Jay H.
2010-10-01
A new algorithm for automatic detection and rating of squeak and rattle (S&R) events was developed. The algorithm utilizes the perceived transient loudness (PTL) that approximates the human perception of a transient noise. At first, instantaneous specific loudness time histories are calculated over 1-24 bark range by applying the analytic wavelet transform and Zwicker loudness transform to the recorded noise. Transient specific loudness time histories are then obtained by removing estimated contributions of the background noise from instantaneous specific loudness time histories. These transient specific loudness time histories are summed to obtain the transient loudness time history. Finally, the PTL time history is obtained by applying Glasberg and Moore temporal integration to the transient loudness time history. Detection of S&R events utilizes the PTL time history obtained by summing only 18-24 barks components to take advantage of high signal-to-noise ratio in the high frequency range. A S&R event is identified when the value of the PTL time history exceeds the detection threshold pre-determined by a jury test. The maximum value of the PTL time history is used for rating of S&R events. Another jury test showed that the method performs much better if the PTL time history obtained by summing all frequency components is used. Therefore, r ating of S&R events utilizes this modified PTL time history. Two additional jury tests were conducted to validate the developed detection and rating methods. The algorithm developed in this work will enable automatic detection and rating of S&R events with good accuracy and minimum possibility of false alarm.
Large space structures control algorithm characterization
NASA Technical Reports Server (NTRS)
Fogel, E.
1983-01-01
Feedback control algorithms are developed for sensor/actuator pairs on large space systems. These algorithms have been sized in terms of (1) floating point operation (FLOP) demands; (2) storage for variables; and (3) input/output data flow. FLOP sizing (per control cycle) was done as a function of the number of control states and the number of sensor/actuator pairs. Storage for variables and I/O sizing was done for specific structure examples.
Automated identification of drug and food allergies entered using non-standard terminology.
Epstein, Richard H; St Jacques, Paul; Stockin, Michael; Rothman, Brian; Ehrenfeld, Jesse M; Denny, Joshua C
2013-01-01
An accurate computable representation of food and drug allergy is essential for safe healthcare. Our goal was to develop a high-performance, easily maintained algorithm to identify medication and food allergies and sensitivities from unstructured allergy entries in electronic health record (EHR) systems. An algorithm was developed in Transact-SQL to identify ingredients to which patients had allergies in a perioperative information management system. The algorithm used RxNorm and natural language processing techniques developed on a training set of 24 599 entries from 9445 records. Accuracy, specificity, precision, recall, and F-measure were determined for the training dataset and repeated for the testing dataset (24 857 entries from 9430 records). Accuracy, precision, recall, and F-measure for medication allergy matches were all above 98% in the training dataset and above 97% in the testing dataset for all allergy entries. Corresponding values for food allergy matches were above 97% and above 93%, respectively. Specificities of the algorithm were 90.3% and 85.0% for drug matches and 100% and 88.9% for food matches in the training and testing datasets, respectively. The algorithm had high performance for identification of medication and food allergies. Maintenance is practical, as updates are managed through upload of new RxNorm versions and additions to companion database tables. However, direct entry of codified allergy information by providers (through autocompleters or drop lists) is still preferred to post-hoc encoding of the data. Data tables used in the algorithm are available for download. A high performing, easily maintained algorithm can successfully identify medication and food allergies from free text entries in EHR systems.
Engineering peptide ligase specificity by proteomic identification of ligation sites.
Weeks, Amy M; Wells, James A
2018-01-01
Enzyme-catalyzed peptide ligation is a powerful tool for site-specific protein bioconjugation, but stringent enzyme-substrate specificity limits its utility. We developed an approach for comprehensively characterizing peptide ligase specificity for N termini using proteome-derived peptide libraries. We used this strategy to characterize the ligation efficiency for >25,000 enzyme-substrate pairs in the context of the engineered peptide ligase subtiligase and identified a family of 72 mutant subtiligases with activity toward N-terminal sequences that were previously recalcitrant to modification. We applied these mutants individually for site-specific bioconjugation of purified proteins, including antibodies, and in algorithmically selected combinations for sequencing of the cellular N terminome with reduced sequence bias. We also developed a web application to enable algorithmic selection of the most efficient subtiligase variant(s) for bioconjugation to user-defined sequences. Our methods provide a new toolbox of enzymes for site-specific protein modification and a general approach for rapidly defining and engineering peptide ligase specificity.
Evaluating some computer exhancement algorithms that improve the visibility of cometary morphology
NASA Technical Reports Server (NTRS)
Larson, Stephen M.; Slaughter, Charles D.
1992-01-01
Digital enhancement of cometary images is a necessary tool in studying cometary morphology. Many image processing algorithms, some developed specifically for comets, have been used to enhance the subtle, low contrast coma and tail features. We compare some of the most commonly used algorithms on two different images to evaluate their strong and weak points, and conclude that there currently exists no single 'ideal' algorithm, although the radial gradient spatial filter gives the best overall result. This comparison should aid users in selecting the best algorithm to enhance particular features of interest.
NASA Technical Reports Server (NTRS)
Krosel, S. M.; Milner, E. J.
1982-01-01
The application of Predictor corrector integration algorithms developed for the digital parallel processing environment are investigated. The algorithms are implemented and evaluated through the use of a software simulator which provides an approximate representation of the parallel processing hardware. Test cases which focus on the use of the algorithms are presented and a specific application using a linear model of a turbofan engine is considered. Results are presented showing the effects of integration step size and the number of processors on simulation accuracy. Real time performance, interprocessor communication, and algorithm startup are also discussed.
Frequency-domain beamformers using conjugate gradient techniques for speech enhancement.
Zhao, Shengkui; Jones, Douglas L; Khoo, Suiyang; Man, Zhihong
2014-09-01
A multiple-iteration constrained conjugate gradient (MICCG) algorithm and a single-iteration constrained conjugate gradient (SICCG) algorithm are proposed to realize the widely used frequency-domain minimum-variance-distortionless-response (MVDR) beamformers and the resulting algorithms are applied to speech enhancement. The algorithms are derived based on the Lagrange method and the conjugate gradient techniques. The implementations of the algorithms avoid any form of explicit or implicit autocorrelation matrix inversion. Theoretical analysis establishes formal convergence of the algorithms. Specifically, the MICCG algorithm is developed based on a block adaptation approach and it generates a finite sequence of estimates that converge to the MVDR solution. For limited data records, the estimates of the MICCG algorithm are better than the conventional estimators and equivalent to the auxiliary vector algorithms. The SICCG algorithm is developed based on a continuous adaptation approach with a sample-by-sample updating procedure and the estimates asymptotically converge to the MVDR solution. An illustrative example using synthetic data from a uniform linear array is studied and an evaluation on real data recorded by an acoustic vector sensor array is demonstrated. Performance of the MICCG algorithm and the SICCG algorithm are compared with the state-of-the-art approaches.
Pediatric Medical Complexity Algorithm: A New Method to Stratify Children by Medical Complexity
Cawthon, Mary Lawrence; Stanford, Susan; Popalisky, Jean; Lyons, Dorothy; Woodcox, Peter; Hood, Margaret; Chen, Alex Y.; Mangione-Smith, Rita
2014-01-01
OBJECTIVES: The goal of this study was to develop an algorithm based on International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM), codes for classifying children with chronic disease (CD) according to level of medical complexity and to assess the algorithm’s sensitivity and specificity. METHODS: A retrospective observational study was conducted among 700 children insured by Washington State Medicaid with ≥1 Seattle Children’s Hospital emergency department and/or inpatient encounter in 2010. The gold standard population included 350 children with complex chronic disease (C-CD), 100 with noncomplex chronic disease (NC-CD), and 250 without CD. An existing ICD-9-CM–based algorithm called the Chronic Disability Payment System was modified to develop a new algorithm called the Pediatric Medical Complexity Algorithm (PMCA). The sensitivity and specificity of PMCA were assessed. RESULTS: Using hospital discharge data, PMCA’s sensitivity for correctly classifying children was 84% for C-CD, 41% for NC-CD, and 96% for those without CD. Using Medicaid claims data, PMCA’s sensitivity was 89% for C-CD, 45% for NC-CD, and 80% for those without CD. Specificity was 90% to 92% in hospital discharge data and 85% to 91% in Medicaid claims data for all 3 groups. CONCLUSIONS: PMCA identified children with C-CD (who have accessed tertiary hospital care) with good sensitivity and good to excellent specificity when applied to hospital discharge or Medicaid claims data. PMCA may be useful for targeting resources such as care coordination to children with C-CD. PMID:24819580
A sample implementation for parallelizing Divide-and-Conquer algorithms on the GPU.
Mei, Gang; Zhang, Jiayin; Xu, Nengxiong; Zhao, Kunyang
2018-01-01
The strategy of Divide-and-Conquer (D&C) is one of the frequently used programming patterns to design efficient algorithms in computer science, which has been parallelized on shared memory systems and distributed memory systems. Tzeng and Owens specifically developed a generic paradigm for parallelizing D&C algorithms on modern Graphics Processing Units (GPUs). In this paper, by following the generic paradigm proposed by Tzeng and Owens, we provide a new and publicly available GPU implementation of the famous D&C algorithm, QuickHull, to give a sample and guide for parallelizing D&C algorithms on the GPU. The experimental results demonstrate the practicality of our sample GPU implementation. Our research objective in this paper is to present a sample GPU implementation of a classical D&C algorithm to help interested readers to develop their own efficient GPU implementations with fewer efforts.
MacRae, J; Darlow, B; McBain, L; Jones, O; Stubbe, M; Turner, N; Dowell, A
2015-08-21
To develop a natural language processing software inference algorithm to classify the content of primary care consultations using electronic health record Big Data and subsequently test the algorithm's ability to estimate the prevalence and burden of childhood respiratory illness in primary care. Algorithm development and validation study. To classify consultations, the algorithm is designed to interrogate clinical narrative entered as free text, diagnostic (Read) codes created and medications prescribed on the day of the consultation. Thirty-six consenting primary care practices from a mixed urban and semirural region of New Zealand. Three independent sets of 1200 child consultation records were randomly extracted from a data set of all general practitioner consultations in participating practices between 1 January 2008-31 December 2013 for children under 18 years of age (n=754,242). Each consultation record within these sets was independently classified by two expert clinicians as respiratory or non-respiratory, and subclassified according to respiratory diagnostic categories to create three 'gold standard' sets of classified records. These three gold standard record sets were used to train, test and validate the algorithm. Sensitivity, specificity, positive predictive value and F-measure were calculated to illustrate the algorithm's ability to replicate judgements of expert clinicians within the 1200 record gold standard validation set. The algorithm was able to identify respiratory consultations in the 1200 record validation set with a sensitivity of 0.72 (95% CI 0.67 to 0.78) and a specificity of 0.95 (95% CI 0.93 to 0.98). The positive predictive value of algorithm respiratory classification was 0.93 (95% CI 0.89 to 0.97). The positive predictive value of the algorithm classifying consultations as being related to specific respiratory diagnostic categories ranged from 0.68 (95% CI 0.40 to 1.00; other respiratory conditions) to 0.91 (95% CI 0.79 to 1.00; throat infections). A software inference algorithm that uses primary care Big Data can accurately classify the content of clinical consultations. This algorithm will enable accurate estimation of the prevalence of childhood respiratory illness in primary care and resultant service utilisation. The methodology can also be applied to other areas of clinical care. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Ferentinos, Konstantinos P
2005-09-01
Two neural network (NN) applications in the field of biological engineering are developed, designed and parameterized by an evolutionary method based on the evolutionary process of genetic algorithms. The developed systems are a fault detection NN model and a predictive modeling NN system. An indirect or 'weak specification' representation was used for the encoding of NN topologies and training parameters into genes of the genetic algorithm (GA). Some a priori knowledge of the demands in network topology for specific application cases is required by this approach, so that the infinite search space of the problem is limited to some reasonable degree. Both one-hidden-layer and two-hidden-layer network architectures were explored by the GA. Except for the network architecture, each gene of the GA also encoded the type of activation functions in both hidden and output nodes of the NN and the type of minimization algorithm that was used by the backpropagation algorithm for the training of the NN. Both models achieved satisfactory performance, while the GA system proved to be a powerful tool that can successfully replace the problematic trial-and-error approach that is usually used for these tasks.
Classification of voting algorithms for N-version software
NASA Astrophysics Data System (ADS)
Tsarev, R. Yu; Durmuş, M. S.; Üstoglu, I.; Morozov, V. A.
2018-05-01
A voting algorithm in N-version software is a crucial component that evaluates the execution of each of the N versions and determines the correct result. Obviously, the result of the voting algorithm determines the outcome of the N-version software in general. Thus, the choice of the voting algorithm is a vital issue. A lot of voting algorithms were already developed and they may be selected for implementation based on the specifics of the analysis of input data. However, the voting algorithms applied in N-version software are not classified. This article presents an overview of classic and recent voting algorithms used in N-version software and the authors' classification of the voting algorithms. Moreover, the steps of the voting algorithms are presented and the distinctive features of the voting algorithms in Nversion software are defined.
Efficient design of nanoplasmonic waveguide devices using the space mapping algorithm.
Dastmalchi, Pouya; Veronis, Georgios
2013-12-30
We show that the space mapping algorithm, originally developed for microwave circuit optimization, can enable the efficient design of nanoplasmonic waveguide devices which satisfy a set of desired specifications. Space mapping utilizes a physics-based coarse model to approximate a fine model accurately describing a device. Here the fine model is a full-wave finite-difference frequency-domain (FDFD) simulation of the device, while the coarse model is based on transmission line theory. We demonstrate that simply optimizing the transmission line model of the device is not enough to obtain a device which satisfies all the required design specifications. On the other hand, when the iterative space mapping algorithm is used, it converges fast to a design which meets all the specifications. In addition, full-wave FDFD simulations of only a few candidate structures are required before the iterative process is terminated. Use of the space mapping algorithm therefore results in large reductions in the required computation time when compared to any direct optimization method of the fine FDFD model.
An ATR architecture for algorithm development and testing
NASA Astrophysics Data System (ADS)
Breivik, Gøril M.; Løkken, Kristin H.; Brattli, Alvin; Palm, Hans C.; Haavardsholm, Trym
2013-05-01
A research platform with four cameras in the infrared and visible spectral domains is under development at the Norwegian Defence Research Establishment (FFI). The platform will be mounted on a high-speed jet aircraft and will primarily be used for image acquisition and for development and test of automatic target recognition (ATR) algorithms. The sensors on board produce large amounts of data, the algorithms can be computationally intensive and the data processing is complex. This puts great demands on the system architecture; it has to run in real-time and at the same time be suitable for algorithm development. In this paper we present an architecture for ATR systems that is designed to be exible, generic and efficient. The architecture is module based so that certain parts, e.g. specific ATR algorithms, can be exchanged without affecting the rest of the system. The modules are generic and can be used in various ATR system configurations. A software framework in C++ that handles large data ows in non-linear pipelines is used for implementation. The framework exploits several levels of parallelism and lets the hardware processing capacity be fully utilised. The ATR system is under development and has reached a first level that can be used for segmentation algorithm development and testing. The implemented system consists of several modules, and although their content is still limited, the segmentation module includes two different segmentation algorithms that can be easily exchanged. We demonstrate the system by applying the two segmentation algorithms to infrared images from sea trial recordings.
A Particle Swarm Optimization-Based Approach with Local Search for Predicting Protein Folding.
Yang, Cheng-Hong; Lin, Yu-Shiun; Chuang, Li-Yeh; Chang, Hsueh-Wei
2017-10-01
The hydrophobic-polar (HP) model is commonly used for predicting protein folding structures and hydrophobic interactions. This study developed a particle swarm optimization (PSO)-based algorithm combined with local search algorithms; specifically, the high exploration PSO (HEPSO) algorithm (which can execute global search processes) was combined with three local search algorithms (hill-climbing algorithm, greedy algorithm, and Tabu table), yielding the proposed HE-L-PSO algorithm. By using 20 known protein structures, we evaluated the performance of the HE-L-PSO algorithm in predicting protein folding in the HP model. The proposed HE-L-PSO algorithm exhibited favorable performance in predicting both short and long amino acid sequences with high reproducibility and stability, compared with seven reported algorithms. The HE-L-PSO algorithm yielded optimal solutions for all predicted protein folding structures. All HE-L-PSO-predicted protein folding structures possessed a hydrophobic core that is similar to normal protein folding.
NASA Astrophysics Data System (ADS)
Rahnamay Naeini, M.; Sadegh, M.; AghaKouchak, A.; Hsu, K. L.; Sorooshian, S.; Yang, T.
2017-12-01
Meta-Heuristic optimization algorithms have gained a great deal of attention in a wide variety of fields. Simplicity and flexibility of these algorithms, along with their robustness, make them attractive tools for solving optimization problems. Different optimization methods, however, hold algorithm-specific strengths and limitations. Performance of each individual algorithm obeys the "No-Free-Lunch" theorem, which means a single algorithm cannot consistently outperform all possible optimization problems over a variety of problems. From users' perspective, it is a tedious process to compare, validate, and select the best-performing algorithm for a specific problem or a set of test cases. In this study, we introduce a new hybrid optimization framework, entitled Shuffled Complex-Self Adaptive Hybrid EvoLution (SC-SAHEL), which combines the strengths of different evolutionary algorithms (EAs) in a parallel computing scheme, and allows users to select the most suitable algorithm tailored to the problem at hand. The concept of SC-SAHEL is to execute different EAs as separate parallel search cores, and let all participating EAs to compete during the course of the search. The newly developed SC-SAHEL algorithm is designed to automatically select, the best performing algorithm for the given optimization problem. This algorithm is rigorously effective in finding the global optimum for several strenuous benchmark test functions, and computationally efficient as compared to individual EAs. We benchmark the proposed SC-SAHEL algorithm over 29 conceptual test functions, and two real-world case studies - one hydropower reservoir model and one hydrological model (SAC-SMA). Results show that the proposed framework outperforms individual EAs in an absolute majority of the test problems, and can provide competitive results to the fittest EA algorithm with more comprehensive information during the search. The proposed framework is also flexible for merging additional EAs, boundary-handling techniques, and sampling schemes, and has good potential to be used in Water-Energy system optimal operation and management.
NASA Astrophysics Data System (ADS)
Houchin, J. S.
2014-09-01
A common problem for the off-line validation of the calibration algorithms and algorithm coefficients is being able to run science data through the exact same software used for on-line calibration of that data. The Joint Polar Satellite System (JPSS) program solved part of this problem by making the Algorithm Development Library (ADL) available, which allows the operational algorithm code to be compiled and run on a desktop Linux workstation using flat file input and output. However, this solved only part of the problem, as the toolkit and methods to initiate the processing of data through the algorithms were geared specifically toward the algorithm developer, not the calibration analyst. In algorithm development mode, a limited number of sets of test data are staged for the algorithm once, and then run through the algorithm over and over as the software is developed and debugged. In calibration analyst mode, we are continually running new data sets through the algorithm, which requires significant effort to stage each of those data sets for the algorithm without additional tools. AeroADL solves this second problem by providing a set of scripts that wrap the ADL tools, providing both efficient means to stage and process an input data set, to override static calibration coefficient look-up-tables (LUT) with experimental versions of those tables, and to manage a library containing multiple versions of each of the static LUT files in such a way that the correct set of LUTs required for each algorithm are automatically provided to the algorithm without analyst effort. Using AeroADL, The Aerospace Corporation's analyst team has demonstrated the ability to quickly and efficiently perform analysis tasks for both the VIIRS and OMPS sensors with minimal training on the software tools.
Denoising and 4D visualization of OCT images
Gargesha, Madhusudhana; Jenkins, Michael W.; Rollins, Andrew M.; Wilson, David L.
2009-01-01
We are using Optical Coherence Tomography (OCT) to image structure and function of the developing embryonic heart in avian models. Fast OCT imaging produces very large 3D (2D + time) and 4D (3D volumes + time) data sets, which greatly challenge ones ability to visualize results. Noise in OCT images poses additional challenges. We created an algorithm with a quick, data set specific optimization for reduction of both shot and speckle noise and applied it to 3D visualization and image segmentation in OCT. When compared to baseline algorithms (median, Wiener, orthogonal wavelet, basic non-orthogonal wavelet), a panel of experts judged the new algorithm to give much improved volume renderings concerning both noise and 3D visualization. Specifically, the algorithm provided a better visualization of the myocardial and endocardial surfaces, and the interaction of the embryonic heart tube with surrounding tissue. Quantitative evaluation using an image quality figure of merit also indicated superiority of the new algorithm. Noise reduction aided semi-automatic 2D image segmentation, as quantitatively evaluated using a contour distance measure with respect to an expert segmented contour. In conclusion, the noise reduction algorithm should be quite useful for visualization and quantitative measurements (e.g., heart volume, stroke volume, contraction velocity, etc.) in OCT embryo images. With its semi-automatic, data set specific optimization, we believe that the algorithm can be applied to OCT images from other applications. PMID:18679509
Emanuele, Vincent A; Panicker, Gitika; Gurbaxani, Brian M; Lin, Jin-Mann S; Unger, Elizabeth R
2012-01-01
SELDI-TOF mass spectrometer's compact size and automated, high throughput design have been attractive to clinical researchers, and the platform has seen steady-use in biomarker studies. Despite new algorithms and preprocessing pipelines that have been developed to address reproducibility issues, visual inspection of the results of SELDI spectra preprocessing by the best algorithms still shows miscalled peaks and systematic sources of error. This suggests that there continues to be problems with SELDI preprocessing. In this work, we study the preprocessing of SELDI in detail and introduce improvements. While many algorithms, including the vendor supplied software, can identify peak clusters of specific mass (or m/z) in groups of spectra with high specificity and low false discover rate (FDR), the algorithms tend to underperform estimating the exact prevalence and intensity of peaks in those clusters. Thus group differences that at first appear very strong are shown, after careful and laborious hand inspection of the spectra, to be less than significant. Here we introduce a wavelet/neural network based algorithm which mimics what a team of expert, human users would call for peaks in each of several hundred spectra in a typical SELDI clinical study. The wavelet denoising part of the algorithm optimally smoothes the signal in each spectrum according to an improved suite of signal processing algorithms previously reported (the LibSELDI toolbox under development). The neural network part of the algorithm combines those results with the raw signal and a training dataset of expertly called peaks, to call peaks in a test set of spectra with approximately 95% accuracy. The new method was applied to data collected from a study of cervical mucus for the early detection of cervical cancer in HPV infected women. The method shows promise in addressing the ongoing SELDI reproducibility issues.
Traffic Flow Management Using Aggregate Flow Models and the Development of Disaggregation Methods
NASA Technical Reports Server (NTRS)
Sun, Dengfeng; Sridhar, Banavar; Grabbe, Shon
2010-01-01
A linear time-varying aggregate traffic flow model can be used to develop Traffic Flow Management (tfm) strategies based on optimization algorithms. However, there are no methods available in the literature to translate these aggregate solutions into actions involving individual aircraft. This paper describes and implements a computationally efficient disaggregation algorithm, which converts an aggregate (flow-based) solution to a flight-specific control action. Numerical results generated by the optimization method and the disaggregation algorithm are presented and illustrated by applying them to generate TFM schedules for a typical day in the U.S. National Airspace System. The results show that the disaggregation algorithm generates control actions for individual flights while keeping the air traffic behavior very close to the optimal solution.
Strategies for concurrent processing of complex algorithms in data driven architectures
NASA Technical Reports Server (NTRS)
Stoughton, John W.; Mielke, Roland R.
1988-01-01
Research directed at developing a graph theoretical model for describing data and control flow associated with the execution of large grained algorithms in a special distributed computer environment is presented. This model is identified by the acronym ATAMM which represents Algorithms To Architecture Mapping Model. The purpose of such a model is to provide a basis for establishing rules for relating an algorithm to its execution in a multiprocessor environment. Specifications derived from the model lead directly to the description of a data flow architecture which is a consequence of the inherent behavior of the data and control flow described by the model. The purpose of the ATAMM based architecture is to provide an analytical basis for performance evaluation. The ATAMM model and architecture specifications are demonstrated on a prototype system for concept validation.
Analysis of algorithms for predicting canopy fuel
Katharine L. Gray; Elizabeth Reinhardt
2003-01-01
We compared observed canopy fuel characteristics with those predicted by existing biomass algorithms. We specifically examined the accuracy of the biomass equations developed by Brown (1978. We used destructively sampled data obtained at 5 different study areas. We compared predicted and observed quantities of foliage and crown biomass for individual trees in our study...
Automatic Debugging Support for UML Designs
NASA Technical Reports Server (NTRS)
Schumann, Johann; Swanson, Keith (Technical Monitor)
2001-01-01
Design of large software systems requires rigorous application of software engineering methods covering all phases of the software process. Debugging during the early design phases is extremely important, because late bug-fixes are expensive. In this paper, we describe an approach which facilitates debugging of UML requirements and designs. The Unified Modeling Language (UML) is a set of notations for object-orient design of a software system. We have developed an algorithm which translates requirement specifications in the form of annotated sequence diagrams into structured statecharts. This algorithm detects conflicts between sequence diagrams and inconsistencies in the domain knowledge. After synthesizing statecharts from sequence diagrams, these statecharts usually are subject to manual modification and refinement. By using the "backward" direction of our synthesis algorithm. we are able to map modifications made to the statechart back into the requirements (sequence diagrams) and check for conflicts there. Fed back to the user conflicts detected by our algorithm are the basis for deductive-based debugging of requirements and domain theory in very early development stages. Our approach allows to generate explanations oil why there is a conflict and which parts of the specifications are affected.
Novel techniques for enhancement and segmentation of acne vulgaris lesions.
Malik, A S; Humayun, J; Kamel, N; Yap, F B-B
2014-08-01
More than 99% acne patients suffer from acne vulgaris. While diagnosing the severity of acne vulgaris lesions, dermatologists have observed inter-rater and intra-rater variability in diagnosis results. This is because during assessment, identifying lesion types and their counting is a tedious job for dermatologists. To make the assessment job objective and easier for dermatologists, an automated system based on image processing methods is proposed in this study. There are two main objectives: (i) to develop an algorithm for the enhancement of various acne vulgaris lesions; and (ii) to develop a method for the segmentation of enhanced acne vulgaris lesions. For the first objective, an algorithm is developed based on the theory of high dynamic range (HDR) images. The proposed algorithm uses local rank transform to generate the HDR images from a single acne image followed by the log transformation. Then, segmentation is performed by clustering the pixels based on Mahalanobis distance of each pixel from spectral models of acne vulgaris lesions. Two metrics are used to evaluate the enhancement of acne vulgaris lesions, i.e., contrast improvement factor (CIF) and image contrast normalization (ICN). The proposed algorithm is compared with two other methods. The proposed enhancement algorithm shows better result than both the other methods based on CIF and ICN. In addition, sensitivity and specificity are calculated for the segmentation results. The proposed segmentation method shows higher sensitivity and specificity than other methods. This article specifically discusses the contrast enhancement and segmentation for automated diagnosis system of acne vulgaris lesions. The results are promising that can be used for further classification of acne vulgaris lesions for final grading of the lesions. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Peck, Jay; Oluwole, Oluwayemisi O; Wong, Hsi-Wu; Miake-Lye, Richard C
2013-03-01
To provide accurate input parameters to the large-scale global climate simulation models, an algorithm was developed to estimate the black carbon (BC) mass emission index for engines in the commercial fleet at cruise. Using a high-dimensional model representation (HDMR) global sensitivity analysis, relevant engine specification/operation parameters were ranked, and the most important parameters were selected. Simple algebraic formulas were then constructed based on those important parameters. The algorithm takes the cruise power (alternatively, fuel flow rate), altitude, and Mach number as inputs, and calculates BC emission index for a given engine/airframe combination using the engine property parameters, such as the smoke number, available in the International Civil Aviation Organization (ICAO) engine certification databank. The algorithm can be interfaced with state-of-the-art aircraft emissions inventory development tools, and will greatly improve the global climate simulations that currently use a single fleet average value for all airplanes. An algorithm to estimate the cruise condition black carbon emission index for commercial aircraft engines was developed. Using the ICAO certification data, the algorithm can evaluate the black carbon emission at given cruise altitude and speed.
Enhancements on the Convex Programming Based Powered Descent Guidance Algorithm for Mars Landing
NASA Technical Reports Server (NTRS)
Acikmese, Behcet; Blackmore, Lars; Scharf, Daniel P.; Wolf, Aron
2008-01-01
In this paper, we present enhancements on the powered descent guidance algorithm developed for Mars pinpoint landing. The guidance algorithm solves the powered descent minimum fuel trajectory optimization problem via a direct numerical method. Our main contribution is to formulate the trajectory optimization problem, which has nonconvex control constraints, as a finite dimensional convex optimization problem, specifically as a finite dimensional second order cone programming (SOCP) problem. SOCP is a subclass of convex programming, and there are efficient SOCP solvers with deterministic convergence properties. Hence, the resulting guidance algorithm can potentially be implemented onboard a spacecraft for real-time applications. Particularly, this paper discusses the algorithmic improvements obtained by: (i) Using an efficient approach to choose the optimal time-of-flight; (ii) Using a computationally inexpensive way to detect the feasibility/ infeasibility of the problem due to the thrust-to-weight constraint; (iii) Incorporating the rotation rate of the planet into the problem formulation; (iv) Developing additional constraints on the position and velocity to guarantee no-subsurface flight between the time samples of the temporal discretization; (v) Developing a fuel-limited targeting algorithm; (vi) Initial result on developing an onboard table lookup method to obtain almost fuel optimal solutions in real-time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acciarri, R.; Adams, C.; An, R.
The development and operation of Liquid-Argon Time-Projection Chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens ofmore » algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.« less
On the suitability of the connection machine for direct particle simulation
NASA Technical Reports Server (NTRS)
Dagum, Leonard
1990-01-01
The algorithmic structure was examined of the vectorizable Stanford particle simulation (SPS) method and the structure is reformulated in data parallel form. Some of the SPS algorithms can be directly translated to data parallel, but several of the vectorizable algorithms have no direct data parallel equivalent. This requires the development of new, strictly data parallel algorithms. In particular, a new sorting algorithm is developed to identify collision candidates in the simulation and a master/slave algorithm is developed to minimize communication cost in large table look up. Validation of the method is undertaken through test calculations for thermal relaxation of a gas, shock wave profiles, and shock reflection from a stationary wall. A qualitative measure is provided of the performance of the Connection Machine for direct particle simulation. The massively parallel architecture of the Connection Machine is found quite suitable for this type of calculation. However, there are difficulties in taking full advantage of this architecture because of lack of a broad based tradition of data parallel programming. An important outcome of this work has been new data parallel algorithms specifically of use for direct particle simulation but which also expand the data parallel diction.
Acciarri, R.; Adams, C.; An, R.; ...
2018-01-29
The development and operation of Liquid-Argon Time-Projection Chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens ofmore » algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.« less
Robust Crop and Weed Segmentation under Uncontrolled Outdoor Illumination
Jeon, Hong Y.; Tian, Lei F.; Zhu, Heping
2011-01-01
An image processing algorithm for detecting individual weeds was developed and evaluated. Weed detection processes included were normalized excessive green conversion, statistical threshold value estimation, adaptive image segmentation, median filter, morphological feature calculation and Artificial Neural Network (ANN). The developed algorithm was validated for its ability to identify and detect weeds and crop plants under uncontrolled outdoor illuminations. A machine vision implementing field robot captured field images under outdoor illuminations and the image processing algorithm automatically processed them without manual adjustment. The errors of the algorithm, when processing 666 field images, ranged from 2.1 to 2.9%. The ANN correctly detected 72.6% of crop plants from the identified plants, and considered the rest as weeds. However, the ANN identification rates for crop plants were improved up to 95.1% by addressing the error sources in the algorithm. The developed weed detection and image processing algorithm provides a novel method to identify plants against soil background under the uncontrolled outdoor illuminations, and to differentiate weeds from crop plants. Thus, the proposed new machine vision and processing algorithm may be useful for outdoor applications including plant specific direct applications (PSDA). PMID:22163954
Design of a Synthetic Aperture Array to Support Experiments in Active Control of Scattering
1990-06-01
becomes necessary to validate the theory and test the control system algorithms . While experiments in open water would be most like the anticipated...mathematical development of the beamforming algorithms used as well as an estimate of their applicability to the specifics of beamforming in a reverberant...Chebyshev array have been proposed. The method used in ARRAY, a nested product algorithm , proposed by Bresler [21] is recommended by Pozar [19] and
Amra, Sakusic; O'Horo, John C; Singh, Tarun D; Wilson, Gregory A; Kashyap, Rahul; Petersen, Ronald; Roberts, Rosebud O; Fryer, John D; Rabinstein, Alejandro A; Gajic, Ognjen
2017-02-01
Long-term cognitive impairment is a common and important problem in survivors of critical illness. We developed electronic search algorithms to identify cognitive impairment and dementia from the electronic medical records (EMRs) that provide opportunity for big data analysis. Eligible patients met 2 criteria. First, they had a formal cognitive evaluation by The Mayo Clinic Study of Aging. Second, they were hospitalized in intensive care unit at our institution between 2006 and 2014. The "criterion standard" for diagnosis was formal cognitive evaluation supplemented by input from an expert neurologist. Using all available EMR data, we developed and improved our algorithms in the derivation cohort and validated them in the independent validation cohort. Of 993 participants who underwent formal cognitive testing and were hospitalized in intensive care unit, we selected 151 participants at random to form the derivation and validation cohorts. The automated electronic search algorithm for cognitive impairment was 94.3% sensitive and 93.0% specific. The search algorithms for dementia achieved respective sensitivity and specificity of 97% and 99%. EMR search algorithms significantly outperformed International Classification of Diseases codes. Automated EMR data extractions for cognitive impairment and dementia are reliable and accurate and can serve as acceptable and efficient alternatives to time-consuming manual data review. Copyright © 2016 Elsevier Inc. All rights reserved.
Devarajan, Karthik; Cheung, Vincent C.K.
2017-01-01
Non-negative matrix factorization (NMF) by the multiplicative updates algorithm is a powerful machine learning method for decomposing a high-dimensional nonnegative matrix V into two nonnegative matrices, W and H where V ~ WH. It has been successfully applied in the analysis and interpretation of large-scale data arising in neuroscience, computational biology and natural language processing, among other areas. A distinctive feature of NMF is its nonnegativity constraints that allow only additive linear combinations of the data, thus enabling it to learn parts that have distinct physical representations in reality. In this paper, we describe an information-theoretic approach to NMF for signal-dependent noise based on the generalized inverse Gaussian model. Specifically, we propose three novel algorithms in this setting, each based on multiplicative updates and prove monotonicity of updates using the EM algorithm. In addition, we develop algorithm-specific measures to evaluate their goodness-of-fit on data. Our methods are demonstrated using experimental data from electromyography studies as well as simulated data in the extraction of muscle synergies, and compared with existing algorithms for signal-dependent noise. PMID:24684448
NASA Astrophysics Data System (ADS)
Polan, Daniel F.; Brady, Samuel L.; Kaufman, Robert A.
2016-09-01
There is a need for robust, fully automated whole body organ segmentation for diagnostic CT. This study investigates and optimizes a Random Forest algorithm for automated organ segmentation; explores the limitations of a Random Forest algorithm applied to the CT environment; and demonstrates segmentation accuracy in a feasibility study of pediatric and adult patients. To the best of our knowledge, this is the first study to investigate a trainable Weka segmentation (TWS) implementation using Random Forest machine-learning as a means to develop a fully automated tissue segmentation tool developed specifically for pediatric and adult examinations in a diagnostic CT environment. Current innovation in computed tomography (CT) is focused on radiomics, patient-specific radiation dose calculation, and image quality improvement using iterative reconstruction, all of which require specific knowledge of tissue and organ systems within a CT image. The purpose of this study was to develop a fully automated Random Forest classifier algorithm for segmentation of neck-chest-abdomen-pelvis CT examinations based on pediatric and adult CT protocols. Seven materials were classified: background, lung/internal air or gas, fat, muscle, solid organ parenchyma, blood/contrast enhanced fluid, and bone tissue using Matlab and the TWS plugin of FIJI. The following classifier feature filters of TWS were investigated: minimum, maximum, mean, and variance evaluated over a voxel radius of 2 n , (n from 0 to 4), along with noise reduction and edge preserving filters: Gaussian, bilateral, Kuwahara, and anisotropic diffusion. The Random Forest algorithm used 200 trees with 2 features randomly selected per node. The optimized auto-segmentation algorithm resulted in 16 image features including features derived from maximum, mean, variance Gaussian and Kuwahara filters. Dice similarity coefficient (DSC) calculations between manually segmented and Random Forest algorithm segmented images from 21 patient image sections, were analyzed. The automated algorithm produced segmentation of seven material classes with a median DSC of 0.86 ± 0.03 for pediatric patient protocols, and 0.85 ± 0.04 for adult patient protocols. Additionally, 100 randomly selected patient examinations were segmented and analyzed, and a mean sensitivity of 0.91 (range: 0.82-0.98), specificity of 0.89 (range: 0.70-0.98), and accuracy of 0.90 (range: 0.76-0.98) were demonstrated. In this study, we demonstrate that this fully automated segmentation tool was able to produce fast and accurate segmentation of the neck and trunk of the body over a wide range of patient habitus and scan parameters.
Overby, Casey Lynnette; Pathak, Jyotishman; Gottesman, Omri; Haerian, Krystl; Perotte, Adler; Murphy, Sean; Bruce, Kevin; Johnson, Stephanie; Talwalkar, Jayant; Shen, Yufeng; Ellis, Steve; Kullo, Iftikhar; Chute, Christopher; Friedman, Carol; Bottinger, Erwin; Hripcsak, George; Weng, Chunhua
2013-01-01
Objective To describe a collaborative approach for developing an electronic health record (EHR) phenotyping algorithm for drug-induced liver injury (DILI). Methods We analyzed types and causes of differences in DILI case definitions provided by two institutions—Columbia University and Mayo Clinic; harmonized two EHR phenotyping algorithms; and assessed the performance, measured by sensitivity, specificity, positive predictive value, and negative predictive value, of the resulting algorithm at three institutions except that sensitivity was measured only at Columbia University. Results Although these sites had the same case definition, their phenotyping methods differed by selection of liver injury diagnoses, inclusion of drugs cited in DILI cases, laboratory tests assessed, laboratory thresholds for liver injury, exclusion criteria, and approaches to validating phenotypes. We reached consensus on a DILI phenotyping algorithm and implemented it at three institutions. The algorithm was adapted locally to account for differences in populations and data access. Implementations collectively yielded 117 algorithm-selected cases and 23 confirmed true positive cases. Discussion Phenotyping for rare conditions benefits significantly from pooling data across institutions. Despite the heterogeneity of EHRs and varied algorithm implementations, we demonstrated the portability of this algorithm across three institutions. The performance of this algorithm for identifying DILI was comparable with other computerized approaches to identify adverse drug events. Conclusions Phenotyping algorithms developed for rare and complex conditions are likely to require adaptive implementation at multiple institutions. Better approaches are also needed to share algorithms. Early agreement on goals, data sources, and validation methods may improve the portability of the algorithms. PMID:23837993
Improvements on a privacy-protection algorithm for DNA sequences with generalization lattices.
Li, Guang; Wang, Yadong; Su, Xiaohong
2012-10-01
When developing personal DNA databases, there must be an appropriate guarantee of anonymity, which means that the data cannot be related back to individuals. DNA lattice anonymization (DNALA) is a successful method for making personal DNA sequences anonymous. However, it uses time-consuming multiple sequence alignment and a low-accuracy greedy clustering algorithm. Furthermore, DNALA is not an online algorithm, and so it cannot quickly return results when the database is updated. This study improves the DNALA method. Specifically, we replaced the multiple sequence alignment in DNALA with global pairwise sequence alignment to save time, and we designed a hybrid clustering algorithm comprised of a maximum weight matching (MWM)-based algorithm and an online algorithm. The MWM-based algorithm is more accurate than the greedy algorithm in DNALA and has the same time complexity. The online algorithm can process data quickly when the database is updated. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
PID controller tuning using metaheuristic optimization algorithms for benchmark problems
NASA Astrophysics Data System (ADS)
Gholap, Vishal; Naik Dessai, Chaitali; Bagyaveereswaran, V.
2017-11-01
This paper contributes to find the optimal PID controller parameters using particle swarm optimization (PSO), Genetic Algorithm (GA) and Simulated Annealing (SA) algorithm. The algorithms were developed through simulation of chemical process and electrical system and the PID controller is tuned. Here, two different fitness functions such as Integral Time Absolute Error and Time domain Specifications were chosen and applied on PSO, GA and SA while tuning the controller. The proposed Algorithms are implemented on two benchmark problems of coupled tank system and DC motor. Finally, comparative study has been done with different algorithms based on best cost, number of iterations and different objective functions. The closed loop process response for each set of tuned parameters is plotted for each system with each fitness function.
An Innovative Thinking-Based Intelligent Information Fusion Algorithm
Hu, Liang; Liu, Gang; Zhou, Jin
2013-01-01
This study proposes an intelligent algorithm that can realize information fusion in reference to the relative research achievements in brain cognitive theory and innovative computation. This algorithm treats knowledge as core and information fusion as a knowledge-based innovative thinking process. Furthermore, the five key parts of this algorithm including information sense and perception, memory storage, divergent thinking, convergent thinking, and evaluation system are simulated and modeled. This algorithm fully develops innovative thinking skills of knowledge in information fusion and is a try to converse the abstract conception of brain cognitive science to specific and operable research routes and strategies. Furthermore, the influences of each parameter of this algorithm on algorithm performance are analyzed and compared with those of classical intelligent algorithms trough test. Test results suggest that the algorithm proposed in this study can obtain the optimum problem solution by less target evaluation times, improve optimization effectiveness, and achieve the effective fusion of information. PMID:23956699
An innovative thinking-based intelligent information fusion algorithm.
Lu, Huimin; Hu, Liang; Liu, Gang; Zhou, Jin
2013-01-01
This study proposes an intelligent algorithm that can realize information fusion in reference to the relative research achievements in brain cognitive theory and innovative computation. This algorithm treats knowledge as core and information fusion as a knowledge-based innovative thinking process. Furthermore, the five key parts of this algorithm including information sense and perception, memory storage, divergent thinking, convergent thinking, and evaluation system are simulated and modeled. This algorithm fully develops innovative thinking skills of knowledge in information fusion and is a try to converse the abstract conception of brain cognitive science to specific and operable research routes and strategies. Furthermore, the influences of each parameter of this algorithm on algorithm performance are analyzed and compared with those of classical intelligent algorithms trough test. Test results suggest that the algorithm proposed in this study can obtain the optimum problem solution by less target evaluation times, improve optimization effectiveness, and achieve the effective fusion of information.
HPC Programming on Intel Many-Integrated-Core Hardware with MAGMA Port to Xeon Phi
Dongarra, Jack; Gates, Mark; Haidar, Azzam; ...
2015-01-01
This paper presents the design and implementation of several fundamental dense linear algebra (DLA) algorithms for multicore with Intel Xeon Phi coprocessors. In particular, we consider algorithms for solving linear systems. Further, we give an overview of the MAGMA MIC library, an open source, high performance library, that incorporates the developments presented here and, more broadly, provides the DLA functionality equivalent to that of the popular LAPACK library while targeting heterogeneous architectures that feature a mix of multicore CPUs and coprocessors. The LAPACK-compliance simplifies the use of the MAGMA MIC library in applications, while providing them with portably performant DLA.more » High performance is obtained through the use of the high-performance BLAS, hardware-specific tuning, and a hybridization methodology whereby we split the algorithm into computational tasks of various granularities. Execution of those tasks is properly scheduled over the heterogeneous hardware by minimizing data movements and mapping algorithmic requirements to the architectural strengths of the various heterogeneous hardware components. Our methodology and programming techniques are incorporated into the MAGMA MIC API, which abstracts the application developer from the specifics of the Xeon Phi architecture and is therefore applicable to algorithms beyond the scope of DLA.« less
A computerized compensator design algorithm with launch vehicle applications
NASA Technical Reports Server (NTRS)
Mitchell, J. R.; Mcdaniel, W. L., Jr.
1976-01-01
This short paper presents a computerized algorithm for the design of compensators for large launch vehicles. The algorithm is applicable to the design of compensators for linear, time-invariant, control systems with a plant possessing a single control input and multioutputs. The achievement of frequency response specifications is cast into a strict constraint mathematical programming format. An improved solution algorithm for solving this type of problem is given, along with the mathematical necessities for application to systems of the above type. A computer program, compensator improvement program (CIP), has been developed and applied to a pragmatic space-industry-related example.
Improve threshold segmentation using features extraction to automatic lung delimitation.
França, Cleunio; Vasconcelos, Germano; Diniz, Paula; Melo, Pedro; Diniz, Jéssica; Novaes, Magdala
2013-01-01
With the consolidation of PACS and RIS systems, the development of algorithms for tissue segmentation and diseases detection have intensely evolved in recent years. These algorithms have advanced to improve its accuracy and specificity, however, there is still some way until these algorithms achieved satisfactory error rates and reduced processing time to be used in daily diagnosis. The objective of this study is to propose a algorithm for lung segmentation in x-ray computed tomography images using features extraction, as Centroid and orientation measures, to improve the basic threshold segmentation. As result we found a accuracy of 85.5%.
Computational Fluid Dynamics. [numerical methods and algorithm development
NASA Technical Reports Server (NTRS)
1992-01-01
This collection of papers was presented at the Computational Fluid Dynamics (CFD) Conference held at Ames Research Center in California on March 12 through 14, 1991. It is an overview of CFD activities at NASA Lewis Research Center. The main thrust of computational work at Lewis is aimed at propulsion systems. Specific issues related to propulsion CFD and associated modeling will also be presented. Examples of results obtained with the most recent algorithm development will also be presented.
Applications and development of communication models for the touchstone GAMMA and DELTA prototypes
NASA Technical Reports Server (NTRS)
Seidel, Steven R.
1993-01-01
The goal of this project was to develop models of the interconnection networks of the Intel iPSC/860 and DELTA multicomputers to guide the design of efficient algorithms for interprocessor communication in problems that commonly occur in CFD codes and other applications. Interprocessor communication costs of codes for message-passing architectures such as the iPSC/860 and DELTA significantly affect the level of performance that can be obtained from those machines. This project addressed several specific problems in the achievement of efficient communication on the Intel iPSC/860 hypercube and DELTA mesh. In particular, an efficient global processor synchronization algorithm was developed for the iPSC/860 and numerous broadcast algorithms were designed for the DELTA.
Alphus D. Wilson
2012-01-01
Novel mobile electronic-nose (e-nose) devices and algorithms capable of real-time detection of industrial and municipal pollutants, released from point-sources, recently have been developed by scientists worldwide that are useful for monitoring specific environmental-pollutant levels for enforcement and implementation of effective pollution-abatement programs. E-nose...
ERIC Educational Resources Information Center
Kim, So Hyun; Lord, Catherine
2012-01-01
Autism Diagnostic Interview-Revised (Rutter et al. in "Autism diagnostic interview-revised." Western Psychological Services, Los Angeles, 2003) diagnostic algorithms specific to toddlers and young preschoolers were created using 829 assessments of children aged from 12 to 47 months with ASD, nonspectrum disorders, and typical development. The…
Spectroscopy of Multilayered Biological Tissues for Diabetes Care
NASA Astrophysics Data System (ADS)
Yudovsky, Dmitry
Neurological and vascular complications of diabetes mellitus are known to cause foot ulceration in diabetic patients. Present clinical screening techniques enable the diabetes care provider to triage treatment by identifying diabetic patients at risk of foot ulceration. However, these techniques cannot effectively identify specific areas of the foot at risk of ulceration. This study aims to develop non-invasive optical techniques for accurate assessment of tissue health and viability with spatial resolution on the order of 1 mm². The thesis can be divided into three parts: (1) the use of hyperspectral tissue oximetry to detect microcirculatory changes prior to ulcer formation, (2) development of a two-layer tissue spectroscopy algorithm and its application to detection of callus formation or epidermal degradation prior to ulceration, and (3) multi-layered tissue fluorescence modeling for identification of bacterial growth in existing diabetic foot wounds. The first part of the dissertation describes a clinical study in which hyperspectral tissue oximetry was performed on multiple diabetic subjects at risk of ulceration. Tissue oxyhemoglobin and deoxyhemoglobin concentrations were estimated using the Modified Beer-Lambert law. Then, an ulcer prediction algorithm was developed based on retrospective analysis of oxyhemoglobin and deoxyhemoglobin concentrations in sites that were known to ulcerate. The ulcer prediction algorithm exhibited a large sensitivity but low specificity of 95 and 80%, respectively. The second part of the dissertation revisited the hyperspectral data presented in part one with a new and novel two-layer tissue spectroscopy algorithm. This algorithm was able to detect not only oxyhemoglobin and deoxyhemoglobin concentrations, but also the thickness of the epidermis, and the tissue's scattering coefficient. Specifically, change in epidermal thickness provided insight into the formation of diabetic foot ulcers over time. Indeed, callus formation or the thickening of the epidermis which preempts ulcer formation was detectable prior to ulceration. This added dimension of information increased the specificity of the ulcer prediction algorithm by 7% without reducing the sensitivity. Finally, the third part of the dissertation describes the feasibility of detecting bacteria in open ulcers. First, a semi-empirical model of multi-layered tissue fluorescence was developed. Then, an inverse method was developed and applied to simulated fluorescence emission spectra of diabetic foot wounds infected with Staphylococcus aureus and stained with indocyanine green dye (ICG). The inverse method was able to detect the blood volume fraction, oxygen saturation, and the intrinsic fluorescence spectrum of the ICG dye from simulated fluorescence emission spectra.
Bauquier, Sebastien H; Lai, Alan; Jiang, Jonathan L; Sui, Yi; Cook, Mark J
2015-10-01
The aim of this prospective blinded study was to evaluate an automated algorithm for spike-and-wave discharge (SWD) detection applied to EEGs from genetic absence epilepsy rats from Strasbourg (GAERS). Five GAERS underwent four sessions of 20-min EEG recording. Each EEG was manually analyzed for SWDs longer than one second by two investigators and automatically using an algorithm developed in MATLAB®. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated for the manual (reference) versus the automatic (test) methods. The results showed that the algorithm had specificity, sensitivity, PPV and NPV >94%, comparable to published methods that are based on analyzing EEG changes in the frequency domain. This provides a good alternative as a method designed to mimic human manual marking in the time domain.
Strategies for concurrent processing of complex algorithms in data driven architectures
NASA Technical Reports Server (NTRS)
Stoughton, John W.; Mielke, Roland R.
1987-01-01
The results of ongoing research directed at developing a graph theoretical model for describing data and control flow associated with the execution of large grained algorithms in a spatial distributed computer environment is presented. This model is identified by the acronym ATAMM (Algorithm/Architecture Mapping Model). The purpose of such a model is to provide a basis for establishing rules for relating an algorithm to its execution in a multiprocessor environment. Specifications derived from the model lead directly to the description of a data flow architecture which is a consequence of the inherent behavior of the data and control flow described by the model. The purpose of the ATAMM based architecture is to optimize computational concurrency in the multiprocessor environment and to provide an analytical basis for performance evaluation. The ATAMM model and architecture specifications are demonstrated on a prototype system for concept validation.
van't Hoog, Anna H; Cobelens, Frank; Vassall, Anna; van Kampen, Sanne; Dorman, Susan E; Alland, David; Ellner, Jerrold
2013-01-01
High costs are a limitation to scaling up the Xpert MTB/RIF assay (Xpert) for the diagnosis of tuberculosis in resource-constrained settings. A triaging strategy in which a sensitive but not necessarily highly specific rapid test is used to select patients for Xpert may result in a more affordable diagnostic algorithm. To inform the selection and development of particular diagnostics as a triage test we explored combinations of sensitivity, specificity and cost at which a hypothetical triage test will improve affordability of the Xpert assay. In a decision analytical model parameterized for Uganda, India and South Africa, we compared a diagnostic algorithm in which a cohort of patients with presumptive TB received Xpert to a triage algorithm whereby only those with a positive triage test were tested by Xpert. A triage test with sensitivity equal to Xpert, 75% specificity, and costs of US$5 per patient tested reduced total diagnostic costs by 42% in the Uganda setting, and by 34% and 39% respectively in the India and South Africa settings. When exploring triage algorithms with lower sensitivity, the use of an example triage test with 95% sensitivity relative to Xpert, 75% specificity and test costs $5 resulted in similar cost reduction, and was cost-effective by the WHO willingness-to-pay threshold compared to Xpert for all in Uganda, but not in India and South Africa. The gain in affordability of the examined triage algorithms increased with decreasing prevalence of tuberculosis among the cohort. A triage test strategy could potentially improve the affordability of Xpert for TB diagnosis, particularly in low-income countries and with enhanced case-finding. Tests and markers with lower accuracy than desired of a diagnostic test may fall within the ranges of sensitivity, specificity and cost required for triage tests and be developed as such.
Sorokine, Alexandre; Schlicher, Bob G.; Ward, Richard C.; ...
2015-05-22
This paper describes an original approach to generating scenarios for the purpose of testing the algorithms used to detect special nuclear materials (SNM) that incorporates the use of ontologies. Separating the signal of SNM from the background requires sophisticated algorithms. To assist in developing such algorithms, there is a need for scenarios that capture a very wide range of variables affecting the detection process, depending on the type of detector being used. To provide such a cpability, we developed an ontology-driven information system (ODIS) for generating scenarios that can be used in creating scenarios for testing of algorithms for SNMmore » detection. The ontology-driven scenario generator (ODSG) is an ODIS based on information supplied by subject matter experts and other documentation. The details of the creation of the ontology, the development of the ontology-driven information system, and the design of the web user interface (UI) are presented along with specific examples of scenarios generated using the ODSG. We demonstrate that the paradigm behind the ODSG is capable of addressing the problem of semantic complexity at both the user and developer levels. Compared to traditional approaches, an ODIS provides benefits such as faithful representation of the users' domain conceptualization, simplified management of very large and semantically diverse datasets, and the ability to handle frequent changes to the application and the UI. Furthermore, the approach makes possible the generation of a much larger number of specific scenarios based on limited user-supplied information« less
Comparison of Two Sepsis Recognition Methods in a Pediatric Emergency Department
Balamuth, Fran; Alpern, Elizabeth R.; Grundmeier, Robert W.; Chilutti, Marianne; Weiss, Scott L.; Fitzgerald, Julie C.; Hayes, Katie; Bilker, Warren; Lautenbach, Ebbing
2015-01-01
Objectives To compare the effectiveness of physician judgment and an electronic algorithmic alert to identify pediatric patients with severe sepsis/septic shock in a pediatric emergency department (ED). Methods This was an observational cohort study of patients older than 56 days with fever or hypothermia. All patients were evaluated for potential sepsis in real time by the ED clinical team. An electronic algorithmic alert was retrospectively applied to identify patients with potential sepsis independent of physician judgment. The primary outcome was the proportion of patients correctly identified with severe sepsis/septic shock defined by consensus criteria. Test characteristics were determined and receiver operating characteristic (ROC) curves were compared. Results Of 19,524 eligible patient visits, 88 patients developed consensus-confirmed severe sepsis or septic shock. Physician judgment identified 159, and the algorithmic alert identified 3,301 patients with potential sepsis. Physician judgment had sensitivity of 72.7% (95% CI = 72.1% to 73.4%) and specificity 99.5% (95% CI = 99.4% to 99.6%); the algorithmic alert had sensitivity 92.1% (95% CI = 91.7% to 92.4%), and specificity 83.4% (95% CI = 82.9% to 83.9%) for severe sepsis/septic shock. There was no significant difference in the area under the ROC curve for physician judgment (0.86, 95% CI = 0.81 to 0.91) or the algorithm (0.88, 95% CI = 0.85 to 0.91; p = 0.54). A combination method using either positive physician judgment or an algorithmic alert improved sensitivity to 96.6% and specificity to 83.3%. A sequential approach, in which positive identification by the algorithmic alert was then confirmed by physician judgment, achieved 68.2% sensitivity and 99.6% specificity. Positive and negative predictive values for physician judgment vs. algorithmic alert were 40.3% vs. 2.5% and 99.88 % vs. 99.96%, respectively. Conclusions The electronic algorithmic alert was more sensitive but less specific than physician judgment for recognition of pediatric severe sepsis and septic shock. These findings can help to guide institutions in selecting pediatric sepsis recognition methods based on institutional needs and priorities. PMID:26474032
Comparison of Two Sepsis Recognition Methods in a Pediatric Emergency Department.
Balamuth, Fran; Alpern, Elizabeth R; Grundmeier, Robert W; Chilutti, Marianne; Weiss, Scott L; Fitzgerald, Julie C; Hayes, Katie; Bilker, Warren; Lautenbach, Ebbing
2015-11-01
The objective was to compare the effectiveness of physician judgment and an electronic algorithmic alert to identify pediatric patients with severe sepsis/septic shock in a pediatric emergency department (ED). This was an observational cohort study of patients older than 56 days with fever or hypothermia. All patients were evaluated for potential sepsis in real time by the ED clinical team. An electronic algorithmic alert was retrospectively applied to identify patients with potential sepsis independent of physician judgment. The primary outcome was the proportion of patients correctly identified with severe sepsis/septic shock defined by consensus criteria. Test characteristics were determined and receiver operating characteristic (ROC) curves were compared. Of 19,524 eligible patient visits, 88 patients developed consensus-confirmed severe sepsis or septic shock. Physician judgment identified 159 and the algorithmic alert identified 3,301 patients with potential sepsis. Physician judgment had sensitivity of 72.7% (95% confidence interval [CI] = 72.1% to 73.4%) and specificity of 99.5% (95% CI = 99.4% to 99.6%); the algorithmic alert had sensitivity of 92.1% (95% CI = 91.7% to 92.4%) and specificity of 83.4% (95% CI = 82.9% to 83.9%) for severe sepsis/septic shock. There was no significant difference in the area under the ROC curve for physician judgment (0.86, 95% CI = 0.81 to 0.91) or the algorithm (0.88, 95% CI = 0.85 to 0.91; p = 0.54). A combination method using either positive physician judgment or an algorithmic alert improved sensitivity to 96.6% and specificity to 83.3%. A sequential approach, in which positive identification by the algorithmic alert was then confirmed by physician judgment, achieved 68.2% sensitivity and 99.6% specificity. Positive and negative predictive values for physician judgment versus algorithmic alert were 40.3% versus 2.5% and 99.88% versus 99.96%, respectively. The electronic algorithmic alert was more sensitive but less specific than physician judgment for recognition of pediatric severe sepsis and septic shock. These findings can help to guide institutions in selecting pediatric sepsis recognition methods based on institutional needs and priorities. © 2015 by the Society for Academic Emergency Medicine.
Sada, Yvonne; Hou, Jason; Richardson, Peter; El-Serag, Hashem; Davila, Jessica
2013-01-01
Background Accurate identification of hepatocellular cancer (HCC) cases from automated data is needed for efficient and valid quality improvement initiatives and research. We validated HCC ICD-9 codes, and evaluated whether natural language processing (NLP) by the Automated Retrieval Console (ARC) for document classification improves HCC identification. Methods We identified a cohort of patients with ICD-9 codes for HCC during 2005–2010 from Veterans Affairs administrative data. Pathology and radiology reports were reviewed to confirm HCC. The positive predictive value (PPV), sensitivity, and specificity of ICD-9 codes were calculated. A split validation study of pathology and radiology reports was performed to develop and validate ARC algorithms. Reports were manually classified as diagnostic of HCC or not. ARC generated document classification algorithms using the Clinical Text Analysis and Knowledge Extraction System. ARC performance was compared to manual classification. PPV, sensitivity, and specificity of ARC were calculated. Results 1138 patients with HCC were identified by ICD-9 codes. Based on manual review, 773 had HCC. The HCC ICD-9 code algorithm had a PPV of 0.67, sensitivity of 0.95, and specificity of 0.93. For a random subset of 619 patients, we identified 471 pathology reports for 323 patients and 943 radiology reports for 557 patients. The pathology ARC algorithm had PPV of 0.96, sensitivity of 0.96, and specificity of 0.97. The radiology ARC algorithm had PPV of 0.75, sensitivity of 0.94, and specificity of 0.68. Conclusion A combined approach of ICD-9 codes and NLP of pathology and radiology reports improves HCC case identification in automated data. PMID:23929403
Sada, Yvonne; Hou, Jason; Richardson, Peter; El-Serag, Hashem; Davila, Jessica
2016-02-01
Accurate identification of hepatocellular cancer (HCC) cases from automated data is needed for efficient and valid quality improvement initiatives and research. We validated HCC International Classification of Diseases, 9th Revision (ICD-9) codes, and evaluated whether natural language processing by the Automated Retrieval Console (ARC) for document classification improves HCC identification. We identified a cohort of patients with ICD-9 codes for HCC during 2005-2010 from Veterans Affairs administrative data. Pathology and radiology reports were reviewed to confirm HCC. The positive predictive value (PPV), sensitivity, and specificity of ICD-9 codes were calculated. A split validation study of pathology and radiology reports was performed to develop and validate ARC algorithms. Reports were manually classified as diagnostic of HCC or not. ARC generated document classification algorithms using the Clinical Text Analysis and Knowledge Extraction System. ARC performance was compared with manual classification. PPV, sensitivity, and specificity of ARC were calculated. A total of 1138 patients with HCC were identified by ICD-9 codes. On the basis of manual review, 773 had HCC. The HCC ICD-9 code algorithm had a PPV of 0.67, sensitivity of 0.95, and specificity of 0.93. For a random subset of 619 patients, we identified 471 pathology reports for 323 patients and 943 radiology reports for 557 patients. The pathology ARC algorithm had PPV of 0.96, sensitivity of 0.96, and specificity of 0.97. The radiology ARC algorithm had PPV of 0.75, sensitivity of 0.94, and specificity of 0.68. A combined approach of ICD-9 codes and natural language processing of pathology and radiology reports improves HCC case identification in automated data.
Assessment of algorithms to identify patients with thrombophilia following venous thromboembolism.
Delate, Thomas; Hsiao, Wendy; Kim, Benjamin; Witt, Daniel M; Meyer, Melissa R; Go, Alan S; Fang, Margaret C
2016-01-01
Routine testing for thrombophilia following venous thromboembolism (VTE) is controversial. The use of large datasets to study the clinical impact of thrombophilia testing on patterns of care and patient outcomes may enable more efficient analysis of this practice in a wide range of settings. We set out to examine how accurately algorithms using International Classification of Diseases 9th Revision (ICD-9) codes and/or pharmacy data reflect laboratory-confirmed thrombophilia diagnoses. A random sample of adult Kaiser Permanente Colorado patients diagnosed with unprovoked VTE between 1/2004 and 12/2010 underwent medical record abstraction of thrombophilia test results. Algorithms using "ICD-9" (positive if a thrombophilia ICD-9 code was present), "Extended anticoagulation (AC)" (positive if AC therapy duration was >6 months), and "ICD-9 & Extended AC" (positive for both) criteria to identify possible thrombophilia cases were tested. Using positive thrombophilia laboratory results as the gold standard, the sensitivity, specificity, positive predictive value (PPV), and negative predictive value of each algorithm were calculated, along with 95% confidence intervals (CIs). In our cohort of 636 patients, sensitivities were low (<50%) for each algorithm. "ICD-9" yielded the highest PPV (41.5%, 95% CI 26.3-57.9%) and a high specificity (95.9%, 95% CI 94.0-97.4%). "Extended AC" had the highest sensitivity but lowest specificity, and "ICD-9 & Extended AC" had the highest specificity but lowest sensitivity. ICD-9 codes for thrombophilia are highly specific for laboratory-confirmed cases, but all algorithms had low sensitivities. Further development of methods to identify thrombophilia patients in large datasets is warranted. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lloyd, Andrew; Kerr, Cicely; Breheny, Katie; Brazier, John; Ortiz, Aurora; Borg, Emma
2014-03-01
Condition-specific preference-based measures can offer utility data where they would not otherwise be available or where generic measures may lack sensitivity, although they lack comparability across conditions. This study aimed to develop an algorithm for estimating utilities from the short bowel syndrome health-related quality of life scale (SBS-QoL™). SBS-QoL™ items were selected based on factor and item performance analysis of a European SBS-QoL™ dataset and consultation with 3 SBS clinical experts. Six-dimension health states were developed using 8 SBS-QoL™ items (2 dimensions combined 2 SBS-QoL™ items). SBS health states were valued by a UK general population sample (N = 250) using the lead-time time trade-off method. Preference weights or 'utility decrements' for each severity level of each dimension were estimated by regression models and used to develop the scoring algorithm. Mean utilities for the SBS health states ranged from -0.46 (worst health state, very much affected on all dimensions) to 0.92 (best health state, not at all affected on all dimensions). The random effects model with maximum likelihood estimation regression had the best predictive ability and lowest root mean squared error and mean absolute error, and was used to develop the scoring algorithm. The preference-weighted scoring algorithm for the SBS-QoL™ developed is able to estimate a wide range of utility values from patient-level SBS-QoL™ data. This allows estimation of SBS HRQL impact for the purpose of economic evaluation of SBS treatment benefits.
Solving the infeasible trust-region problem using approximations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renaud, John E.; Perez, Victor M.; Eldred, Michael Scott
2004-07-01
The use of optimization in engineering design has fueled the development of algorithms for specific engineering needs. When the simulations are expensive to evaluate or the outputs present some noise, the direct use of nonlinear optimizers is not advisable, since the optimization process will be expensive and may result in premature convergence. The use of approximations for both cases is an alternative investigated by many researchers including the authors. When approximations are present, a model management is required for proper convergence of the algorithm. In nonlinear programming, the use of trust-regions for globalization of a local algorithm has been provenmore » effective. The same approach has been used to manage the local move limits in sequential approximate optimization frameworks as in Alexandrov et al., Giunta and Eldred, Perez et al. , Rodriguez et al., etc. The experience in the mathematical community has shown that more effective algorithms can be obtained by the specific inclusion of the constraints (SQP type of algorithms) rather than by using a penalty function as in the augmented Lagrangian formulation. The presence of explicit constraints in the local problem bounded by the trust region, however, may have no feasible solution. In order to remedy this problem the mathematical community has developed different versions of a composite steps approach. This approach consists of a normal step to reduce the amount of constraint violation and a tangential step to minimize the objective function maintaining the level of constraint violation attained at the normal step. Two of the authors have developed a different approach for a sequential approximate optimization framework using homotopy ideas to relax the constraints. This algorithm called interior-point trust-region sequential approximate optimization (IPTRSAO) presents some similarities to the two normal-tangential steps algorithms. In this paper, a description of the similarities is presented and an expansion of the two steps algorithm is presented for the case of approximations.« less
Rover Attitude and Pointing System Simulation Testbed
NASA Technical Reports Server (NTRS)
Vanelli, Charles A.; Grinblat, Jonathan F.; Sirlin, Samuel W.; Pfister, Sam
2009-01-01
The MER (Mars Exploration Rover) Attitude and Pointing System Simulation Testbed Environment (RAPSSTER) provides a simulation platform used for the development and test of GNC (guidance, navigation, and control) flight algorithm designs for the Mars rovers, which was specifically tailored to the MERs, but has since been used in the development of rover algorithms for the Mars Science Laboratory (MSL) as well. The software provides an integrated simulation and software testbed environment for the development of Mars rover attitude and pointing flight software. It provides an environment that is able to run the MER GNC flight software directly (as opposed to running an algorithmic model of the MER GNC flight code). This improves simulation fidelity and confidence in the results. Further more, the simulation environment allows the user to single step through its execution, pausing, and restarting at will. The system also provides for the introduction of simulated faults specific to Mars rover environments that cannot be replicated in other testbed platforms, to stress test the GNC flight algorithms under examination. The software provides facilities to do these stress tests in ways that cannot be done in the real-time flight system testbeds, such as time-jumping (both forwards and backwards), and introduction of simulated actuator faults that would be difficult, expensive, and/or destructive to implement in the real-time testbeds. Actual flight-quality codes can be incorporated back into the development-test suite of GNC developers, closing the loop between the GNC developers and the flight software developers. The software provides fully automated scripting, allowing multiple tests to be run with varying parameters, without human supervision.
Probabilistic Common Spatial Patterns for Multichannel EEG Analysis
Chen, Zhe; Gao, Xiaorong; Li, Yuanqing; Brown, Emery N.; Gao, Shangkai
2015-01-01
Common spatial patterns (CSP) is a well-known spatial filtering algorithm for multichannel electroencephalogram (EEG) analysis. In this paper, we cast the CSP algorithm in a probabilistic modeling setting. Specifically, probabilistic CSP (P-CSP) is proposed as a generic EEG spatio-temporal modeling framework that subsumes the CSP and regularized CSP algorithms. The proposed framework enables us to resolve the overfitting issue of CSP in a principled manner. We derive statistical inference algorithms that can alleviate the issue of local optima. In particular, an efficient algorithm based on eigendecomposition is developed for maximum a posteriori (MAP) estimation in the case of isotropic noise. For more general cases, a variational algorithm is developed for group-wise sparse Bayesian learning for the P-CSP model and for automatically determining the model size. The two proposed algorithms are validated on a simulated data set. Their practical efficacy is also demonstrated by successful applications to single-trial classifications of three motor imagery EEG data sets and by the spatio-temporal pattern analysis of one EEG data set recorded in a Stroop color naming task. PMID:26005228
Fayyaz S, S Kiavash; Liu, Xiaoyue Cathy; Zhang, Guohui
2017-01-01
The social functions of urbanized areas are highly dependent on and supported by the convenient access to public transportation systems, particularly for the less privileged populations who have restrained auto ownership. To accurately evaluate the public transit accessibility, it is critical to capture the spatiotemporal variation of transit services. This can be achieved by measuring the shortest paths or minimum travel time between origin-destination (OD) pairs at each time-of-day (e.g. every minute). In recent years, General Transit Feed Specification (GTFS) data has been gaining popularity for between-station travel time estimation due to its interoperability in spatiotemporal analytics. Many software packages, such as ArcGIS, have developed toolbox to enable the travel time estimation with GTFS. They perform reasonably well in calculating travel time between OD pairs for a specific time-of-day (e.g. 8:00 AM), yet can become computational inefficient and unpractical with the increase of data dimensions (e.g. all times-of-day and large network). In this paper, we introduce a new algorithm that is computationally elegant and mathematically efficient to address this issue. An open-source toolbox written in C++ is developed to implement the algorithm. We implemented the algorithm on City of St. George's transit network to showcase the accessibility analysis enabled by the toolbox. The experimental evidence shows significant reduction on computational time. The proposed algorithm and toolbox presented is easily transferable to other transit networks to allow transit agencies and researchers perform high resolution transit performance analysis.
Fayyaz S., S. Kiavash; Zhang, Guohui
2017-01-01
The social functions of urbanized areas are highly dependent on and supported by the convenient access to public transportation systems, particularly for the less privileged populations who have restrained auto ownership. To accurately evaluate the public transit accessibility, it is critical to capture the spatiotemporal variation of transit services. This can be achieved by measuring the shortest paths or minimum travel time between origin-destination (OD) pairs at each time-of-day (e.g. every minute). In recent years, General Transit Feed Specification (GTFS) data has been gaining popularity for between-station travel time estimation due to its interoperability in spatiotemporal analytics. Many software packages, such as ArcGIS, have developed toolbox to enable the travel time estimation with GTFS. They perform reasonably well in calculating travel time between OD pairs for a specific time-of-day (e.g. 8:00 AM), yet can become computational inefficient and unpractical with the increase of data dimensions (e.g. all times-of-day and large network). In this paper, we introduce a new algorithm that is computationally elegant and mathematically efficient to address this issue. An open-source toolbox written in C++ is developed to implement the algorithm. We implemented the algorithm on City of St. George’s transit network to showcase the accessibility analysis enabled by the toolbox. The experimental evidence shows significant reduction on computational time. The proposed algorithm and toolbox presented is easily transferable to other transit networks to allow transit agencies and researchers perform high resolution transit performance analysis. PMID:28981544
Akbari, Hamed; Bilello, Michel; Da, Xiao; Davatzikos, Christos
2015-01-01
Evaluating various algorithms for the inter-subject registration of brain magnetic resonance images (MRI) is a necessary topic receiving growing attention. Existing studies evaluated image registration algorithms in specific tasks or using specific databases (e.g., only for skull-stripped images, only for single-site images, etc.). Consequently, the choice of registration algorithms seems task- and usage/parameter-dependent. Nevertheless, recent large-scale, often multi-institutional imaging-related studies create the need and raise the question whether some registration algorithms can 1) generally apply to various tasks/databases posing various challenges; 2) perform consistently well, and while doing so, 3) require minimal or ideally no parameter tuning. In seeking answers to this question, we evaluated 12 general-purpose registration algorithms, for their generality, accuracy and robustness. We fixed their parameters at values suggested by algorithm developers as reported in the literature. We tested them in 7 databases/tasks, which present one or more of 4 commonly-encountered challenges: 1) inter-subject anatomical variability in skull-stripped images; 2) intensity homogeneity, noise and large structural differences in raw images; 3) imaging protocol and field-of-view (FOV) differences in multi-site data; and 4) missing correspondences in pathology-bearing images. Totally 7,562 registrations were performed. Registration accuracies were measured by (multi-)expert-annotated landmarks or regions of interest (ROIs). To ensure reproducibility, we used public software tools, public databases (whenever possible), and we fully disclose the parameter settings. We show evaluation results, and discuss the performances in light of algorithms’ similarity metrics, transformation models and optimization strategies. We also discuss future directions for the algorithm development and evaluations. PMID:24951685
NASA Astrophysics Data System (ADS)
Bera, Debajyoti
2015-06-01
One of the early achievements of quantum computing was demonstrated by Deutsch and Jozsa (Proc R Soc Lond A Math Phys Sci 439(1907):553, 1992) regarding classification of a particular type of Boolean functions. Their solution demonstrated an exponential speedup compared to classical approaches to the same problem; however, their solution was the only known quantum algorithm for that specific problem so far. This paper demonstrates another quantum algorithm for the same problem, with the same exponential advantage compared to classical algorithms. The novelty of this algorithm is the use of quantum amplitude amplification, a technique that is the key component of another celebrated quantum algorithm developed by Grover (Proceedings of the twenty-eighth annual ACM symposium on theory of computing, ACM Press, New York, 1996). A lower bound for randomized (classical) algorithms is also presented which establishes a sound gap between the effectiveness of our quantum algorithm and that of any randomized algorithm with similar efficiency.
Gilman, Robert H; Tielsch, James M; Steinhoff, Mark; Figueroa, Dante; Rodriguez, Shalim; Caffo, Brian; Tracey, Brian; Elhilali, Mounya; West, James; Checkley, William
2012-01-01
Introduction WHO case management algorithm for paediatric pneumonia relies solely on symptoms of shortness of breath or cough and tachypnoea for treatment and has poor diagnostic specificity, tends to increase antibiotic resistance. Alternatives, including oxygen saturation measurement, chest ultrasound and chest auscultation, exist but with potential disadvantages. Electronic auscultation has potential for improved detection of paediatric pneumonia but has yet to be standardised. The authors aim to investigate the use of electronic auscultation to improve the specificity of the current WHO algorithm in developing countries. Methods This study is designed to test the hypothesis that pulmonary pathology can be differentiated from normal using computerised lung sound analysis (CLSA). The authors will record lung sounds from 600 children aged ≤5 years, 100 each with consolidative pneumonia, diffuse interstitial pneumonia, asthma, bronchiolitis, upper respiratory infections and normal lungs at a children's hospital in Lima, Peru. The authors will compare CLSA with the WHO algorithm and other detection approaches, including physical exam findings, chest ultrasound and microbiologic testing to construct an improved algorithm for pneumonia diagnosis. Discussion This study will develop standardised methods for electronic auscultation and chest ultrasound and compare their utility for detection of pneumonia to standard approaches. Utilising signal processing techniques, the authors aim to characterise lung sounds and through machine learning, develop a classification system to distinguish pathologic sounds. Data will allow a better understanding of the benefits and limitations of novel diagnostic techniques in paediatric pneumonia. PMID:22307098
Using qualitative research to inform development of a diagnostic algorithm for UTI in children.
de Salis, Isabel; Whiting, Penny; Sterne, Jonathan A C; Hay, Alastair D
2013-06-01
Diagnostic and prognostic algorithms can help reduce clinical uncertainty. The selection of candidate symptoms and signs to be measured in case report forms (CRFs) for potential inclusion in diagnostic algorithms needs to be comprehensive, clearly formulated and relevant for end users. To investigate whether qualitative methods could assist in designing CRFs in research developing diagnostic algorithms. Specifically, the study sought to establish whether qualitative methods could have assisted in designing the CRF for the Health Technology Association funded Diagnosis of Urinary Tract infection in Young children (DUTY) study, which will develop a diagnostic algorithm to improve recognition of urinary tract infection (UTI) in children aged <5 years presenting acutely unwell to primary care. Qualitative methods were applied using semi-structured interviews of 30 UK doctors and nurses working with young children in primary care and a Children's Emergency Department. We elicited features that clinicians believed useful in diagnosing UTI and compared these for presence or absence and terminology with the DUTY CRF. Despite much agreement between clinicians' accounts and the DUTY CRFs, we identified a small number of potentially important symptoms and signs not included in the CRF and some included items that could have been reworded to improve understanding and final data analysis. This study uniquely demonstrates the role of qualitative methods in the design and content of CRFs used for developing diagnostic (and prognostic) algorithms. Research groups developing such algorithms should consider using qualitative methods to inform the selection and wording of candidate symptoms and signs.
Mixed raster content (MRC) model for compound image compression
NASA Astrophysics Data System (ADS)
de Queiroz, Ricardo L.; Buckley, Robert R.; Xu, Ming
1998-12-01
This paper will describe the Mixed Raster Content (MRC) method for compressing compound images, containing both binary test and continuous-tone images. A single compression algorithm that simultaneously meets the requirements for both text and image compression has been elusive. MRC takes a different approach. Rather than using a single algorithm, MRC uses a multi-layered imaging model for representing the results of multiple compression algorithms, including ones developed specifically for text and for images. As a result, MRC can combine the best of existing or new compression algorithms and offer different quality-compression ratio tradeoffs. The algorithms used by MRC set the lower bound on its compression performance. Compared to existing algorithms, MRC has some image-processing overhead to manage multiple algorithms and the imaging model. This paper will develop the rationale for the MRC approach by describing the multi-layered imaging model in light of a rate-distortion trade-off. Results will be presented comparing images compressed using MRC, JPEG and state-of-the-art wavelet algorithms such as SPIHT. MRC has been approved or proposed as an architectural model for several standards, including ITU Color Fax, IETF Internet Fax, and JPEG 2000.
NASA Technical Reports Server (NTRS)
Key, Jeff; Maslanik, James; Steffen, Konrad
1994-01-01
During the first half of our second project year we have accomplished the following: (1) acquired a new AVHRR data set for the Beaufort Sea area spanning an entire year; (2) acquired additional ATSR data for the Arctic and Antarctic now totaling over seven months; (3) refined our AVHRR Arctic and Antarctic ice surface temperature (IST) retrieval algorithm, including work specific to Greenland; (4) developed ATSR retrieval algorithms for the Arctic and Antarctic, including work specific to Greenland; (5) investigated the effects of clouds and the atmosphere on passive microwave 'surface' temperature retrieval algorithms; (6) generated surface temperatures for the Beaufort Sea data set, both from AVHRR and SSM/I; and (7) continued work on compositing GAC data for coverage of the entire Arctic and Antarctic. During the second half of the year we will continue along these same lines, and will undertake a detailed validation study of the AVHRR and ATSR retrievals using LEADEX and the Beaufort Sea year-long data. Cloud masking methods used for the AVHRR will be modified for use with the ATSR. Methods of blending in situ and satellite-derived surface temperature data sets will be investigated.
Value Addition to Cartosat-I Imagery
NASA Astrophysics Data System (ADS)
Mohan, M.
2014-11-01
In the sector of remote sensing applications, the use of stereo data is on the steady rise. An attempt is hereby made to develop a software suite specifically for exploitation of Cartosat-I data. A few algorithms to enhance the quality of basic Cartosat-I products will be presented. The algorithms heavily exploit the Rational Function Coefficients (RPCs) that are associated with the image. The algorithms include improving the geometric positioning through Bundle Block Adjustment and producing refined RPCs; generating portable stereo views using raw / refined RPCs autonomously; orthorectification and mosaicing; registering a monoscopic image rapidly with a single seed point. The outputs of these modules (including the refined RPCs) are in standard formats for further exploitation in 3rd party software. The design focus has been on minimizing the user-interaction and to customize heavily to suit the Indian context. The core libraries are in C/C++ and some of the applications come with user-friendly GUI. Further customization to suit a specific workflow is feasible as the requisite photogrammetric tools are in place and are continuously upgraded. The paper discusses the algorithms and the design considerations of developing the tools. The value-added products so produced using these tools will also be presented.
Calculating Least Risk Paths in 3d Indoor Space
NASA Astrophysics Data System (ADS)
Vanclooster, A.; De Maeyer, Ph.; Fack, V.; Van de Weghe, N.
2013-08-01
Over the last couple of years, research on indoor environments has gained a fresh impetus; more specifically applications that support navigation and wayfinding have become one of the booming industries. Indoor navigation research currently covers the technological aspect of indoor positioning and the modelling of indoor space. The algorithmic development to support navigation has so far been left mostly untouched, as most applications mainly rely on adapting Dijkstra's shortest path algorithm to an indoor network. However, alternative algorithms for outdoor navigation have been proposed adding a more cognitive notion to the calculated paths and as such adhering to the natural wayfinding behaviour (e.g. simplest paths, least risk paths). These algorithms are currently restricted to outdoor applications. The need for indoor cognitive algorithms is highlighted by a more challenged navigation and orientation due to the specific indoor structure (e.g. fragmentation, less visibility, confined areas…). As such, the clarity and easiness of route instructions is of paramount importance when distributing indoor routes. A shortest or fastest path indoors not necessarily aligns with the cognitive mapping of the building. Therefore, the aim of this research is to extend those richer cognitive algorithms to three-dimensional indoor environments. More specifically for this paper, we will focus on the application of the least risk path algorithm of Grum (2005) to an indoor space. The algorithm as proposed by Grum (2005) is duplicated and tested in a complex multi-storey building. The results of several least risk path calculations are compared to the shortest paths in indoor environments in terms of total length, improvement in route description complexity and number of turns. Several scenarios are tested in this comparison: paths covering a single floor, paths crossing several building wings and/or floors. Adjustments to the algorithm are proposed to be more aligned to the specific structure of indoor environments (e.g. no turn restrictions, restricted usage of rooms, vertical movement) and common wayfinding strategies indoors. In a later stage, other cognitive algorithms will be implemented and tested in both an indoor and combined indoor-outdoor setting, in an effort to improve the overall user experience during navigation in indoor environments.
Performance characterization of a combined material identification and screening algorithm
NASA Astrophysics Data System (ADS)
Green, Robert L.; Hargreaves, Michael D.; Gardner, Craig M.
2013-05-01
Portable analytical devices based on a gamut of technologies (Infrared, Raman, X-Ray Fluorescence, Mass Spectrometry, etc.) are now widely available. These tools have seen increasing adoption for field-based assessment by diverse users including military, emergency response, and law enforcement. Frequently, end-users of portable devices are non-scientists who rely on embedded software and the associated algorithms to convert collected data into actionable information. Two classes of problems commonly encountered in field applications are identification and screening. Identification algorithms are designed to scour a library of known materials and determine whether the unknown measurement is consistent with a stored response (or combination of stored responses). Such algorithms can be used to identify a material from many thousands of possible candidates. Screening algorithms evaluate whether at least a subset of features in an unknown measurement correspond to one or more specific substances of interest and are typically configured to detect from a small list potential target analytes. Thus, screening algorithms are much less broadly applicable than identification algorithms; however, they typically provide higher detection rates which makes them attractive for specific applications such as chemical warfare agent or narcotics detection. This paper will present an overview and performance characterization of a combined identification/screening algorithm that has recently been developed. It will be shown that the combined algorithm provides enhanced detection capability more typical of screening algorithms while maintaining a broad identification capability. Additionally, we will highlight how this approach can enable users to incorporate situational awareness during a response.
NASA Technical Reports Server (NTRS)
Trevino, Luis; Johnson, Stephen B.; Patterson, Jonathan; Teare, David
2015-01-01
The development of the Space Launch System (SLS) launch vehicle requires cross discipline teams with extensive knowledge of launch vehicle subsystems, information theory, and autonomous algorithms dealing with all operations from pre-launch through on orbit operations. The characteristics of these systems must be matched with the autonomous algorithm monitoring and mitigation capabilities for accurate control and response to abnormal conditions throughout all vehicle mission flight phases, including precipitating safing actions and crew aborts. This presents a large complex systems engineering challenge being addressed in part by focusing on the specific subsystems handling of off-nominal mission and fault tolerance. Using traditional model based system and software engineering design principles from the Unified Modeling Language (UML), the Mission and Fault Management (M&FM) algorithms are crafted and vetted in specialized Integrated Development Teams composed of multiple development disciplines. NASA also has formed an M&FM team for addressing fault management early in the development lifecycle. This team has developed a dedicated Vehicle Management End-to-End Testbed (VMET) that integrates specific M&FM algorithms, specialized nominal and off-nominal test cases, and vendor-supplied physics-based launch vehicle subsystem models. The flexibility of VMET enables thorough testing of the M&FM algorithms by providing configurable suites of both nominal and off-nominal test cases to validate the algorithms utilizing actual subsystem models. The intent is to validate the algorithms and substantiate them with performance baselines for each of the vehicle subsystems in an independent platform exterior to flight software test processes. In any software development process there is inherent risk in the interpretation and implementation of concepts into software through requirements and test processes. Risk reduction is addressed by working with other organizations such as S&MA, Structures and Environments, GNC, Orion, the Crew Office, Flight Operations, and Ground Operations by assessing performance of the M&FM algorithms in terms of their ability to reduce Loss of Mission and Loss of Crew probabilities. In addition, through state machine and diagnostic modeling, analysis efforts investigate a broader suite of failure effects and detection and responses that can be tested in VMET and confirm that responses do not create additional risks or cause undesired states through interactive dynamic effects with other algorithms and systems. VMET further contributes to risk reduction by prototyping and exercising the M&FM algorithms early in their implementation and without any inherent hindrances such as meeting FSW processor scheduling constraints due to their target platform - ARINC 653 partitioned OS, resource limitations, and other factors related to integration with other subsystems not directly involved with M&FM. The plan for VMET encompasses testing the original M&FM algorithms coded in the same C++ language and state machine architectural concepts as that used by Flight Software. This enables the development of performance standards and test cases to characterize the M&FM algorithms and sets a benchmark from which to measure the effectiveness of M&FM algorithms performance in the FSW development and test processes. This paper is outlined in a systematic fashion analogous to a lifecycle process flow for engineering development of algorithms into software and testing. Section I describes the NASA SLS M&FM context, presenting the current infrastructure, leading principles, methods, and participants. Section II defines the testing philosophy of the M&FM algorithms as related to VMET followed by section III, which presents the modeling methods of the algorithms to be tested and validated in VMET. Its details are then further presented in section IV followed by Section V presenting integration, test status, and state analysis. Finally, section VI addresses the summary and forward directions followed by the appendices presenting relevant information on terminology and documentation.
WAM: an improved algorithm for modelling antibodies on the WEB.
Whitelegg, N R; Rees, A R
2000-12-01
An improved antibody modelling algorithm has been developed which incorporates significant improvements to the earlier versions developed by Martin et al. (1989, 1991), Pedersen et al. (1992) and Rees et al. (1996) and known as AbM (Oxford Molecular). The new algorithm, WAM (for Web Antibody Modelling), has been launched as an online modelling service and is located at URL http://antibody.bath.ac.uk. Here we provide a summary only of the important features of WAM. Readers interested in further details are directed to the website, which gives extensive background information on the methods employed. A brief description of the rationale behind some of the newer methodology (specifically, the knowledge-based screens) is also given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akcakaya, Murat; Nehorai, Arye; Sen, Satyabrata
Most existing radar algorithms are developed under the assumption that the environment (clutter) is stationary. However, in practice, the characteristics of the clutter can vary enormously depending on the radar-operational scenarios. If unaccounted for, these nonstationary variabilities may drastically hinder the radar performance. Therefore, to overcome such shortcomings, we develop a data-driven method for target detection in nonstationary environments. In this method, the radar dynamically detects changes in the environment and adapts to these changes by learning the new statistical characteristics of the environment and by intelligibly updating its statistical detection algorithm. Specifically, we employ drift detection algorithms to detectmore » changes in the environment; incremental learning, particularly learning under concept drift algorithms, to learn the new statistical characteristics of the environment from the new radar data that become available in batches over a period of time. The newly learned environment characteristics are then integrated in the detection algorithm. Furthermore, we use Monte Carlo simulations to demonstrate that the developed method provides a significant improvement in the detection performance compared with detection techniques that are not aware of the environmental changes.« less
Know how to maximize maintenance spending
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrino, A.J.; Jones, R.B.; Platt, W.E.
Solomon has developed a methodology to determine a large optimum point where availability meets maintenance spending for Powder River Basin (PRB) coal-fired units. Using a database of sufficient size and composition across various operating ranges, Solomon generated an algorithm that predicts the relationship between maintenance spending and availability. Coupling this generalized algorithm with a unit-specific market-loss curve determines the optimum spending for a facility. The article presents the results of the analysis, how this methodology can be applied to develop optimum operating and financial targets for specific units and markets and a process to achieve those targets. It also describesmore » how this methodology can be used for other types of fossil-fired technologies and future enhancements to the analysis. 5 figs.« less
Shared Memory Parallelization of an Implicit ADI-type CFD Code
NASA Technical Reports Server (NTRS)
Hauser, Th.; Huang, P. G.
1999-01-01
A parallelization study designed for ADI-type algorithms is presented using the OpenMP specification for shared-memory multiprocessor programming. Details of optimizations specifically addressed to cache-based computer architectures are described and performance measurements for the single and multiprocessor implementation are summarized. The paper demonstrates that optimization of memory access on a cache-based computer architecture controls the performance of the computational algorithm. A hybrid MPI/OpenMP approach is proposed for clusters of shared memory machines to further enhance the parallel performance. The method is applied to develop a new LES/DNS code, named LESTool. A preliminary DNS calculation of a fully developed channel flow at a Reynolds number of 180, Re(sub tau) = 180, has shown good agreement with existing data.
Fenrich, Keith K; Zhao, Ethan Y; Wei, Yuan; Garg, Anirudh; Rose, P Ken
2014-04-15
Isolating specific cellular and tissue compartments from 3D image stacks for quantitative distribution analysis is crucial for understanding cellular and tissue physiology under normal and pathological conditions. Current approaches are limited because they are designed to map the distributions of synapses onto the dendrites of stained neurons and/or require specific proprietary software packages for their implementation. To overcome these obstacles, we developed algorithms to Grow and Shrink Volumes of Interest (GSVI) to isolate specific cellular and tissue compartments from 3D image stacks for quantitative analysis and incorporated these algorithms into a user-friendly computer program that is open source and downloadable at no cost. The GSVI algorithm was used to isolate perivascular regions in the cortex of live animals and cell membrane regions of stained spinal motoneurons in histological sections. We tracked the real-time, intravital biodistribution of injected fluorophores with sub-cellular resolution from the vascular lumen to the perivascular and parenchymal space following a vascular microlesion, and mapped the precise distributions of membrane-associated KCC2 and gephyrin immunolabeling in dendritic and somatic regions of spinal motoneurons. Compared to existing approaches, the GSVI approach is specifically designed for isolating perivascular regions and membrane-associated regions for quantitative analysis, is user-friendly, and free. The GSVI algorithm is useful to quantify regional differences of stained biomarkers (e.g., cell membrane-associated channels) in relation to cell functions, and the effects of therapeutic strategies on the redistributions of biomolecules, drugs, and cells in diseased or injured tissues. Copyright © 2014 Elsevier B.V. All rights reserved.
Glint-induced false alarm reduction in signature adaptive target detection
NASA Astrophysics Data System (ADS)
Crosby, Frank J.
2002-07-01
The signal adaptive target detection algorithm developed by Crosby and Riley uses target geometry to discern anomalies in local backgrounds. Detection is not restricted based on specific target signatures. The robustness of the algorithm is limited by an increased false alarm potential. The base algorithm is extended to eliminate one common source of false alarms in a littoral environment. This common source is glint reflected on the surface of water. The spectral and spatial transience of glint prevent straightforward characterization and complicate exclusion. However, the statistical basis of the detection algorithm and its inherent computations allow for glint discernment and the removal of its influence.
Schmidt, Taly Gilat; Wang, Adam S; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh
2016-10-01
The overall goal of this work is to develop a rapid, accurate, and automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using simulations to generate dose maps combined with automated segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. We hypothesized that the autosegmentation algorithm is sufficiently accurate to provide organ dose estimates, since small errors delineating organ boundaries will have minimal effect when computing mean organ dose. A leave-one-out validation study of the automated algorithm was performed with 20 head-neck CT scans expertly segmented into nine regions. Mean organ doses of the automatically and expertly segmented regions were computed from Monte Carlo-generated dose maps and compared. The automated segmentation algorithm estimated the mean organ dose to be within 10% of the expert segmentation for regions other than the spinal canal, with the median error for each organ region below 2%. In the spinal canal region, the median error was [Formula: see text], with a maximum absolute error of 28% for the single-atlas approach and 11% for the multiatlas approach. The results demonstrate that the automated segmentation algorithm can provide accurate organ dose estimates despite some segmentation errors.
Schmidt, Taly Gilat; Wang, Adam S.; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh
2016-01-01
Abstract. The overall goal of this work is to develop a rapid, accurate, and automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using simulations to generate dose maps combined with automated segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. We hypothesized that the autosegmentation algorithm is sufficiently accurate to provide organ dose estimates, since small errors delineating organ boundaries will have minimal effect when computing mean organ dose. A leave-one-out validation study of the automated algorithm was performed with 20 head-neck CT scans expertly segmented into nine regions. Mean organ doses of the automatically and expertly segmented regions were computed from Monte Carlo-generated dose maps and compared. The automated segmentation algorithm estimated the mean organ dose to be within 10% of the expert segmentation for regions other than the spinal canal, with the median error for each organ region below 2%. In the spinal canal region, the median error was −7%, with a maximum absolute error of 28% for the single-atlas approach and 11% for the multiatlas approach. The results demonstrate that the automated segmentation algorithm can provide accurate organ dose estimates despite some segmentation errors. PMID:27921070
NASA Astrophysics Data System (ADS)
Neriani, Kelly E.; Herbranson, Travis J.; Reis, George A.; Pinkus, Alan R.; Goodyear, Charles D.
2006-05-01
While vast numbers of image enhancing algorithms have already been developed, the majority of these algorithms have not been assessed in terms of their visual performance-enhancing effects using militarily relevant scenarios. The goal of this research was to apply a visual performance-based assessment methodology to evaluate six algorithms that were specifically designed to enhance the contrast of digital images. The image enhancing algorithms used in this study included three different histogram equalization algorithms, the Autolevels function, the Recursive Rational Filter technique described in Marsi, Ramponi, and Carrato1 and the multiscale Retinex algorithm described in Rahman, Jobson and Woodell2. The methodology used in the assessment has been developed to acquire objective human visual performance data as a means of evaluating the contrast enhancement algorithms. Objective performance metrics, response time and error rate, were used to compare algorithm enhanced images versus two baseline conditions, original non-enhanced images and contrast-degraded images. Observers completed a visual search task using a spatial-forcedchoice paradigm. Observers searched images for a target (a military vehicle) hidden among foliage and then indicated in which quadrant of the screen the target was located. Response time and percent correct were measured for each observer. Results of the study and future directions are discussed.
NASA Technical Reports Server (NTRS)
Fijany, Amir
1993-01-01
In this paper, parallel O(log n) algorithms for computation of rigid multibody dynamics are developed. These parallel algorithms are derived by parallelization of new O(n) algorithms for the problem. The underlying feature of these O(n) algorithms is a drastically different strategy for decomposition of interbody force which leads to a new factorization of the mass matrix (M). Specifically, it is shown that a factorization of the inverse of the mass matrix in the form of the Schur Complement is derived as M(exp -1) = C - B(exp *)A(exp -1)B, wherein matrices C, A, and B are block tridiagonal matrices. The new O(n) algorithm is then derived as a recursive implementation of this factorization of M(exp -1). For the closed-chain systems, similar factorizations and O(n) algorithms for computation of Operational Space Mass Matrix lambda and its inverse lambda(exp -1) are also derived. It is shown that these O(n) algorithms are strictly parallel, that is, they are less efficient than other algorithms for serial computation of the problem. But, to our knowledge, they are the only known algorithms that can be parallelized and that lead to both time- and processor-optimal parallel algorithms for the problem, i.e., parallel O(log n) algorithms with O(n) processors. The developed parallel algorithms, in addition to their theoretical significance, are also practical from an implementation point of view due to their simple architectural requirements.
NASA Technical Reports Server (NTRS)
Trevino, Luis; Patterson, Jonathan; Teare, David; Johnson, Stephen
2015-01-01
The engineering development of the new Space Launch System (SLS) launch vehicle requires cross discipline teams with extensive knowledge of launch vehicle subsystems, information theory, and autonomous algorithms dealing with all operations from pre-launch through on orbit operations. The characteristics of these spacecraft systems must be matched with the autonomous algorithm monitoring and mitigation capabilities for accurate control and response to abnormal conditions throughout all vehicle mission flight phases, including precipitating safing actions and crew aborts. This presents a large and complex system engineering challenge, which is being addressed in part by focusing on the specific subsystems involved in the handling of off-nominal mission and fault tolerance with response management. Using traditional model based system and software engineering design principles from the Unified Modeling Language (UML) and Systems Modeling Language (SysML), the Mission and Fault Management (M&FM) algorithms for the vehicle are crafted and vetted in specialized Integrated Development Teams (IDTs) composed of multiple development disciplines such as Systems Engineering (SE), Flight Software (FSW), Safety and Mission Assurance (S&MA) and the major subsystems and vehicle elements such as Main Propulsion Systems (MPS), boosters, avionics, Guidance, Navigation, and Control (GNC), Thrust Vector Control (TVC), and liquid engines. These model based algorithms and their development lifecycle from inception through Flight Software certification are an important focus of this development effort to further insure reliable detection and response to off-nominal vehicle states during all phases of vehicle operation from pre-launch through end of flight. NASA formed a dedicated M&FM team for addressing fault management early in the development lifecycle for the SLS initiative. As part of the development of the M&FM capabilities, this team has developed a dedicated testbed that integrates specific M&FM algorithms, specialized nominal and off-nominal test cases, and vendor-supplied physics-based launch vehicle subsystem models. Additionally, the team has developed processes for implementing and validating these algorithms for concept validation and risk reduction for the SLS program. The flexibility of the Vehicle Management End-to-end Testbed (VMET) enables thorough testing of the M&FM algorithms by providing configurable suites of both nominal and off-nominal test cases to validate the developed algorithms utilizing actual subsystem models such as MPS. The intent of VMET is to validate the M&FM algorithms and substantiate them with performance baselines for each of the target vehicle subsystems in an independent platform exterior to the flight software development infrastructure and its related testing entities. In any software development process there is inherent risk in the interpretation and implementation of concepts into software through requirements and test cases into flight software compounded with potential human errors throughout the development lifecycle. Risk reduction is addressed by the M&FM analysis group working with other organizations such as S&MA, Structures and Environments, GNC, Orion, the Crew Office, Flight Operations, and Ground Operations by assessing performance of the M&FM algorithms in terms of their ability to reduce Loss of Mission and Loss of Crew probabilities. In addition, through state machine and diagnostic modeling, analysis efforts investigate a broader suite of failure effects and associated detection and responses that can be tested in VMET to ensure that failures can be detected, and confirm that responses do not create additional risks or cause undesired states through interactive dynamic effects with other algorithms and systems. VMET further contributes to risk reduction by prototyping and exercising the M&FM algorithms early in their implementation and without any inherent hindrances such as meeting FSW processor scheduling constraints due to their target platform - ARINC 653 partitioned OS, resource limitations, and other factors related to integration with other subsystems not directly involved with M&FM such as telemetry packing and processing. The baseline plan for use of VMET encompasses testing the original M&FM algorithms coded in the same C++ language and state machine architectural concepts as that used by Flight Software. This enables the development of performance standards and test cases to characterize the M&FM algorithms and sets a benchmark from which to measure the effectiveness of M&FM algorithms performance in the FSW development and test processes.
Development of a Predictive Corrosion Model Using Locality-Specific Corrosion Indices
2017-09-12
6 3.2.1 Statistical data analysis methods ...6 3.2.2 Algorithm development method ...components, and method ) were compiled into an executable program that uses mathematical models of materials degradation, and statistical calcula- tions
NASA Technical Reports Server (NTRS)
Spratlin, Kenneth Milton
1987-01-01
An adaptive numeric predictor-corrector guidance is developed for atmospheric entry vehicles which utilize lift to achieve maximum footprint capability. Applicability of the guidance design to vehicles with a wide range of performance capabilities is desired so as to reduce the need for algorithm redesign with each new vehicle. Adaptability is desired to minimize mission-specific analysis and planning. The guidance algorithm motivation and design are presented. Performance is assessed for application of the algorithm to the NASA Entry Research Vehicle (ERV). The dispersions the guidance must be designed to handle are presented. The achievable operational footprint for expected worst-case dispersions is presented. The algorithm performs excellently for the expected dispersions and captures most of the achievable footprint.
Severson, Carl A; Pendharkar, Sachin R; Ronksley, Paul E; Tsai, Willis H
2015-01-01
To assess the ability of electronic health data and existing screening tools to identify clinically significant obstructive sleep apnea (OSA), as defined by symptomatic or severe OSA. The present retrospective cohort study of 1041 patients referred for sleep diagnostic testing was undertaken at a tertiary sleep centre in Calgary, Alberta. A diagnosis of clinically significant OSA or an alternative sleep diagnosis was assigned to each patient through blinded independent chart review by two sleep physicians. Predictive variables were identified from online questionnaire data, and diagnostic algorithms were developed. The performance of electronically derived algorithms for identifying patients with clinically significant OSA was determined. Diagnostic performance of these algorithms was compared with versions of the STOP-Bang questionnaire and adjusted neck circumference score (ANC) derived from electronic data. Electronic questionnaire data were highly sensitive (>95%) at identifying clinically significant OSA, but not specific. Sleep diagnostic testing-determined respiratory disturbance index was very specific (specificity ≥95%) for clinically relevant disease, but not sensitive (<35%). Derived algorithms had similar accuracy to the STOP-Bang or ANC, but required fewer questions and calculations. These data suggest that a two-step process using a small number of clinical variables (maximizing sensitivity) and objective diagnostic testing (maximizing specificity) is required to identify clinically significant OSA. When used in an online setting, simple algorithms can identify clinically relevant OSA with similar performance to existing decision rules such as the STOP-Bang or ANC.
Fernandez-Lozano, C.; Canto, C.; Gestal, M.; Andrade-Garda, J. M.; Rabuñal, J. R.; Dorado, J.; Pazos, A.
2013-01-01
Given the background of the use of Neural Networks in problems of apple juice classification, this paper aim at implementing a newly developed method in the field of machine learning: the Support Vector Machines (SVM). Therefore, a hybrid model that combines genetic algorithms and support vector machines is suggested in such a way that, when using SVM as a fitness function of the Genetic Algorithm (GA), the most representative variables for a specific classification problem can be selected. PMID:24453933
Meinhardt, Sarah; Swint-Kruse, Liskin
2008-12-01
In protein families, conserved residues often contribute to a common general function, such as DNA-binding. However, unique attributes for each homolog (e.g. recognition of alternative DNA sequences) must arise from variation in other functionally-important positions. The locations of these "specificity determinant" positions are obscured amongst the background of varied residues that do not make significant contributions to either structure or function. To isolate specificity determinants, a number of bioinformatics algorithms have been developed. When applied to the LacI/GalR family of transcription regulators, several specificity determinants are predicted in the 18 amino acids that link the DNA-binding and regulatory domains. However, results from alternative algorithms are only in partial agreement with each other. Here, we experimentally evaluate these predictions using an engineered repressor comprising the LacI DNA-binding domain, the LacI linker, and the GalR regulatory domain (LLhG). "Wild-type" LLhG has altered DNA specificity and weaker lacO(1) repression compared to LacI or a similar LacI:PurR chimera. Next, predictions of linker specificity determinants were tested, using amino acid substitution and in vivo repression assays to assess functional change. In LLhG, all predicted sites are specificity determinants, as well as three sites not predicted by any algorithm. Strategies are suggested for diminishing the number of false negative predictions. Finally, individual substitutions at LLhG specificity determinants exhibited a broad range of functional changes that are not predicted by bioinformatics algorithms. Results suggest that some variants have altered affinity for DNA, some have altered allosteric response, and some appear to have changed specificity for alternative DNA ligands.
SeqCompress: an algorithm for biological sequence compression.
Sardaraz, Muhammad; Tahir, Muhammad; Ikram, Ataul Aziz; Bajwa, Hassan
2014-10-01
The growth of Next Generation Sequencing technologies presents significant research challenges, specifically to design bioinformatics tools that handle massive amount of data efficiently. Biological sequence data storage cost has become a noticeable proportion of total cost in the generation and analysis. Particularly increase in DNA sequencing rate is significantly outstripping the rate of increase in disk storage capacity, which may go beyond the limit of storage capacity. It is essential to develop algorithms that handle large data sets via better memory management. This article presents a DNA sequence compression algorithm SeqCompress that copes with the space complexity of biological sequences. The algorithm is based on lossless data compression and uses statistical model as well as arithmetic coding to compress DNA sequences. The proposed algorithm is compared with recent specialized compression tools for biological sequences. Experimental results show that proposed algorithm has better compression gain as compared to other existing algorithms. Copyright © 2014 Elsevier Inc. All rights reserved.
A survey of psychiatrists' attitudes toward treatment guidelines.
Healy, Daniel J; Goldman, Mona; Florence, Timothy; Milner, Karen K
2004-04-01
We developed a survey to look at psychiatrists' attitudes toward psychotropic prescribing guidelines, specifically the Texas Medication Algorithm Project (TMAP) algorithms. The 22-page survey was distributed to 24 psychiatrists working in 4 CMHC's; 13 completed the survey. 90% agreed that guidelines should be general and flexible. The majority also agreed that guidelines should define how to measure response to a specific agent; fewer agreed guidelines should specify dosage, side effect management, or augmentation strategies. Psychiatrists were familiar with TMAP; none referred to it in their practice. In spite of this, psychiatrists' medication preferences were similar to those suggested by guidelines.
Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)
NASA Technical Reports Server (NTRS)
Niewoehner, Kevin R.; Carter, John (Technical Monitor)
2001-01-01
The research accomplishments for the cooperative agreement 'Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)' include the following: (1) previous IFC program data collection and analysis; (2) IFC program support site (configured IFC systems support network, configured Tornado/VxWorks OS development system, made Configuration and Documentation Management Systems Internet accessible); (3) Airborne Research Test Systems (ARTS) II Hardware (developed hardware requirements specification, developing environmental testing requirements, hardware design, and hardware design development); (4) ARTS II software development laboratory unit (procurement of lab style hardware, configured lab style hardware, and designed interface module equivalent to ARTS II faceplate); (5) program support documentation (developed software development plan, configuration management plan, and software verification and validation plan); (6) LWR algorithm analysis (performed timing and profiling on algorithm); (7) pre-trained neural network analysis; (8) Dynamic Cell Structures (DCS) Neural Network Analysis (performing timing and profiling on algorithm); and (9) conducted technical interchange and quarterly meetings to define IFC research goals.
Video data compression using artificial neural network differential vector quantization
NASA Technical Reports Server (NTRS)
Krishnamurthy, Ashok K.; Bibyk, Steven B.; Ahalt, Stanley C.
1991-01-01
An artificial neural network vector quantizer is developed for use in data compression applications such as Digital Video. Differential Vector Quantization is used to preserve edge features, and a new adaptive algorithm, known as Frequency-Sensitive Competitive Learning, is used to develop the vector quantizer codebook. To develop real time performance, a custom Very Large Scale Integration Application Specific Integrated Circuit (VLSI ASIC) is being developed to realize the associative memory functions needed in the vector quantization algorithm. By using vector quantization, the need for Huffman coding can be eliminated, resulting in superior performance against channel bit errors than methods that use variable length codes.
Chung, King
2004-01-01
This review discusses the challenges in hearing aid design and fitting and the recent developments in advanced signal processing technologies to meet these challenges. The first part of the review discusses the basic concepts and the building blocks of digital signal processing algorithms, namely, the signal detection and analysis unit, the decision rules, and the time constants involved in the execution of the decision. In addition, mechanisms and the differences in the implementation of various strategies used to reduce the negative effects of noise are discussed. These technologies include the microphone technologies that take advantage of the spatial differences between speech and noise and the noise reduction algorithms that take advantage of the spectral difference and temporal separation between speech and noise. The specific technologies discussed in this paper include first-order directional microphones, adaptive directional microphones, second-order directional microphones, microphone matching algorithms, array microphones, multichannel adaptive noise reduction algorithms, and synchrony detection noise reduction algorithms. Verification data for these technologies, if available, are also summarized. PMID:15678225
Optimized Algorithms for Prediction Within Robotic Tele-Operative Interfaces
NASA Technical Reports Server (NTRS)
Martin, Rodney A.; Wheeler, Kevin R.; Allan, Mark B.; SunSpiral, Vytas
2010-01-01
Robonaut, the humanoid robot developed at the Dexterous Robotics Labo ratory at NASA Johnson Space Center serves as a testbed for human-rob ot collaboration research and development efforts. One of the recent efforts investigates how adjustable autonomy can provide for a safe a nd more effective completion of manipulation-based tasks. A predictiv e algorithm developed in previous work was deployed as part of a soft ware interface that can be used for long-distance tele-operation. In this work, Hidden Markov Models (HMM?s) were trained on data recorded during tele-operation of basic tasks. In this paper we provide the d etails of this algorithm, how to improve upon the methods via optimization, and also present viable alternatives to the original algorithmi c approach. We show that all of the algorithms presented can be optim ized to meet the specifications of the metrics shown as being useful for measuring the performance of the predictive methods. 1
Computing Quantitative Characteristics of Finite-State Real-Time Systems
1994-05-04
Current methods for verifying real - time systems are essentially decision procedures that establish whether the system model satisfies a given...specification. We present a general method for computing quantitative information about finite-state real - time systems . We have developed algorithms that...our technique can be extended to a more general representation of real - time systems , namely, timed transition graphs. The algorithms presented in this
Adaptive Wiener filter super-resolution of color filter array images.
Karch, Barry K; Hardie, Russell C
2013-08-12
Digital color cameras using a single detector array with a Bayer color filter array (CFA) require interpolation or demosaicing to estimate missing color information and provide full-color images. However, demosaicing does not specifically address fundamental undersampling and aliasing inherent in typical camera designs. Fast non-uniform interpolation based super-resolution (SR) is an attractive approach to reduce or eliminate aliasing and its relatively low computational load is amenable to real-time applications. The adaptive Wiener filter (AWF) SR algorithm was initially developed for grayscale imaging and has not previously been applied to color SR demosaicing. Here, we develop a novel fast SR method for CFA cameras that is based on the AWF SR algorithm and uses global channel-to-channel statistical models. We apply this new method as a stand-alone algorithm and also as an initialization image for a variational SR algorithm. This paper presents the theoretical development of the color AWF SR approach and applies it in performance comparisons to other SR techniques for both simulated and real data.
A generic EEG artifact removal algorithm based on the multi-channel Wiener filter
NASA Astrophysics Data System (ADS)
Somers, Ben; Francart, Tom; Bertrand, Alexander
2018-06-01
Objective. The electroencephalogram (EEG) is an essential neuro-monitoring tool for both clinical and research purposes, but is susceptible to a wide variety of undesired artifacts. Removal of these artifacts is often done using blind source separation techniques, relying on a purely data-driven transformation, which may sometimes fail to sufficiently isolate artifacts in only one or a few components. Furthermore, some algorithms perform well for specific artifacts, but not for others. In this paper, we aim to develop a generic EEG artifact removal algorithm, which allows the user to annotate a few artifact segments in the EEG recordings to inform the algorithm. Approach. We propose an algorithm based on the multi-channel Wiener filter (MWF), in which the artifact covariance matrix is replaced by a low-rank approximation based on the generalized eigenvalue decomposition. The algorithm is validated using both hybrid and real EEG data, and is compared to other algorithms frequently used for artifact removal. Main results. The MWF-based algorithm successfully removes a wide variety of artifacts with better performance than current state-of-the-art methods. Significance. Current EEG artifact removal techniques often have limited applicability due to their specificity to one kind of artifact, their complexity, or simply because they are too ‘blind’. This paper demonstrates a fast, robust and generic algorithm for removal of EEG artifacts of various types, i.e. those that were annotated as unwanted by the user.
Jaakkimainen, R Liisa; Bronskill, Susan E; Tierney, Mary C; Herrmann, Nathan; Green, Diane; Young, Jacqueline; Ivers, Noah; Butt, Debra; Widdifield, Jessica; Tu, Karen
2016-08-10
Population-based surveillance of Alzheimer's and related dementias (AD-RD) incidence and prevalence is important for chronic disease management and health system capacity planning. Algorithms based on health administrative data have been successfully developed for many chronic conditions. The increasing use of electronic medical records (EMRs) by family physicians (FPs) provides a novel reference standard by which to evaluate these algorithms as FPs are the first point of contact and providers of ongoing medical care for persons with AD-RD. We used FP EMR data as the reference standard to evaluate the accuracy of population-based health administrative data in identifying older adults with AD-RD over time. This retrospective chart abstraction study used a random sample of EMRs for 3,404 adults over 65 years of age from 83 community-based FPs in Ontario, Canada. AD-RD patients identified in the EMR were used as the reference standard against which algorithms identifying cases of AD-RD in administrative databases were compared. The highest performing algorithm was "one hospitalization code OR (three physician claims codes at least 30 days apart in a two year period) OR a prescription filled for an AD-RD specific medication" with sensitivity 79.3% (confidence interval (CI) 72.9-85.8%), specificity 99.1% (CI 98.8-99.4%), positive predictive value 80.4% (CI 74.0-86.8%), and negative predictive value 99.0% (CI 98.7-99.4%). This resulted in an age- and sex-adjusted incidence of 18.1 per 1,000 persons and adjusted prevalence of 72.0 per 1,000 persons in 2010/11. Algorithms developed from health administrative data are sensitive and specific for identifying older adults with AD-RD.
NASA Satellite Monitoring of Water Clarity in Mobile Bay for Nutrient Criteria Development
NASA Technical Reports Server (NTRS)
Blonski, Slawomir; Holekamp, Kara; Spiering, Bruce A.
2009-01-01
This project has demonstrated feasibility of deriving from MODIS daily measurements time series of water clarity parameters that provide coverage of a specific location or an area of interest for 30-50% of days. Time series derived for estuarine and coastal waters display much higher variability than time series of ecological parameters (such as vegetation indices) derived for land areas. (Temporal filtering often applied in terrestrial studies cannot be used effectively in ocean color processing). IOP-based algorithms for retrieval of diffuse light attenuation coefficient and TSS concentration perform well for the Mobile Bay environment: only a minor adjustment was needed in the TSS algorithm, despite generally recognized dependence of such algorithms on local conditions. The current IOP-based algorithm for retrieval of chlorophyll a concentration has not performed as well: a more reliable algorithm is needed that may be based on IOPs at additional wavelengths or on remote sensing reflectance from multiple spectral bands. CDOM algorithm also needs improvement to provide better separation between effects of gilvin (gelbstoff) and detritus. (Identification or development of such algorithm requires more data from in situ measurements of CDOM concentration in Gulf of Mexico coastal waters (ongoing collaboration with the EPA Gulf Ecology Division))
Siddique, Juned; Ruhnke, Gregory W.; Flores, Andrea; Prochaska, Micah T.; Paesch, Elizabeth; Meltzer, David O.; Whelan, Chad T.
2015-01-01
Background Lower gastrointestinal bleeding (LGIB) is a common cause of acute hospitalization. Currently, there is no accepted standard for identifying patients with LGIB in hospital administrative data. The objective of this study was to develop and validate a set of classification algorithms that use hospital administrative data to identify LGIB. Methods Our sample consists of patients admitted between July 1, 2001 and June 30, 2003 (derivation cohort) and July 1, 2003 and June 30, 2005 (validation cohort) to the general medicine inpatient service of the University of Chicago Hospital, a large urban academic medical center. Confirmed cases of LGIB in both cohorts were determined by reviewing the charts of those patients who had at least 1 of 36 principal or secondary International Classification of Diseases, Ninth revision, Clinical Modification (ICD-9-CM) diagnosis codes associated with LGIB. Classification trees were used on the data of the derivation cohort to develop a set of decision rules for identifying patients with LGIB. These rules were then applied to the validation cohort to assess their performance. Results Three classification algorithms were identified and validated: a high specificity rule with 80.1% sensitivity and 95.8% specificity, a rule that balances sensitivity and specificity (87.8% sensitivity, 90.9% specificity), and a high sensitivity rule with 100% sensitivity and 91.0% specificity. Conclusion These classification algorithms can be used in future studies to evaluate resource utilization and assess outcomes associated with LGIB without the use of chart review. PMID:26406318
Automated detection of diabetic retinopathy on digital fundus images.
Sinthanayothin, C; Boyce, J F; Williamson, T H; Cook, H L; Mensah, E; Lal, S; Usher, D
2002-02-01
The aim was to develop an automated screening system to analyse digital colour retinal images for important features of non-proliferative diabetic retinopathy (NPDR). High performance pre-processing of the colour images was performed. Previously described automated image analysis systems were used to detect major landmarks of the retinal image (optic disc, blood vessels and fovea). Recursive region growing segmentation algorithms combined with the use of a new technique, termed a 'Moat Operator', were used to automatically detect features of NPDR. These features included haemorrhages and microaneurysms (HMA), which were treated as one group, and hard exudates as another group. Sensitivity and specificity data were calculated by comparison with an experienced fundoscopist. The algorithm for exudate recognition was applied to 30 retinal images of which 21 contained exudates and nine were without pathology. The sensitivity and specificity for exudate detection were 88.5% and 99.7%, respectively, when compared with the ophthalmologist. HMA were present in 14 retinal images. The algorithm achieved a sensitivity of 77.5% and specificity of 88.7% for detection of HMA. Fully automated computer algorithms were able to detect hard exudates and HMA. This paper presents encouraging results in automatic identification of important features of NPDR.
NASA Astrophysics Data System (ADS)
Janaki Sathya, D.; Geetha, K.
2017-12-01
Automatic mass or lesion classification systems are developed to aid in distinguishing between malignant and benign lesions present in the breast DCE-MR images, the systems need to improve both the sensitivity and specificity of DCE-MR image interpretation in order to be successful for clinical use. A new classifier (a set of features together with a classification method) based on artificial neural networks trained using artificial fish swarm optimization (AFSO) algorithm is proposed in this paper. The basic idea behind the proposed classifier is to use AFSO algorithm for searching the best combination of synaptic weights for the neural network. An optimal set of features based on the statistical textural features is presented. The investigational outcomes of the proposed suspicious lesion classifier algorithm therefore confirm that the resulting classifier performs better than other such classifiers reported in the literature. Therefore this classifier demonstrates that the improvement in both the sensitivity and specificity are possible through automated image analysis.
Enhancing Breast Cancer Recurrence Algorithms Through Selective Use of Medical Record Data.
Kroenke, Candyce H; Chubak, Jessica; Johnson, Lisa; Castillo, Adrienne; Weltzien, Erin; Caan, Bette J
2016-03-01
The utility of data-based algorithms in research has been questioned because of errors in identification of cancer recurrences. We adapted previously published breast cancer recurrence algorithms, selectively using medical record (MR) data to improve classification. We evaluated second breast cancer event (SBCE) and recurrence-specific algorithms previously published by Chubak and colleagues in 1535 women from the Life After Cancer Epidemiology (LACE) and 225 women from the Women's Health Initiative cohorts and compared classification statistics to published values. We also sought to improve classification with minimal MR examination. We selected pairs of algorithms-one with high sensitivity/high positive predictive value (PPV) and another with high specificity/high PPV-using MR information to resolve discrepancies between algorithms, properly classifying events based on review; we called this "triangulation." Finally, in LACE, we compared associations between breast cancer survival risk factors and recurrence using MR data, single Chubak algorithms, and triangulation. The SBCE algorithms performed well in identifying SBCE and recurrences. Recurrence-specific algorithms performed more poorly than published except for the high-specificity/high-PPV algorithm, which performed well. The triangulation method (sensitivity = 81.3%, specificity = 99.7%, PPV = 98.1%, NPV = 96.5%) improved recurrence classification over two single algorithms (sensitivity = 57.1%, specificity = 95.5%, PPV = 71.3%, NPV = 91.9%; and sensitivity = 74.6%, specificity = 97.3%, PPV = 84.7%, NPV = 95.1%), with 10.6% MR review. Triangulation performed well in survival risk factor analyses vs analyses using MR-identified recurrences. Use of multiple recurrence algorithms in administrative data, in combination with selective examination of MR data, may improve recurrence data quality and reduce research costs. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
A Simulation and Modeling Framework for Space Situational Awareness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olivier, S S
This paper describes the development and initial demonstration of a new, integrated modeling and simulation framework, encompassing the space situational awareness enterprise, for quantitatively assessing the benefit of specific sensor systems, technologies and data analysis techniques. The framework is based on a flexible, scalable architecture to enable efficient, physics-based simulation of the current SSA enterprise, and to accommodate future advancements in SSA systems. In particular, the code is designed to take advantage of massively parallel computer systems available, for example, at Lawrence Livermore National Laboratory. The details of the modeling and simulation framework are described, including hydrodynamic models of satellitemore » intercept and debris generation, orbital propagation algorithms, radar cross section calculations, optical brightness calculations, generic radar system models, generic optical system models, specific Space Surveillance Network models, object detection algorithms, orbit determination algorithms, and visualization tools. The use of this integrated simulation and modeling framework on a specific scenario involving space debris is demonstrated.« less
Strategies for concurrent processing of complex algorithms in data driven architectures
NASA Technical Reports Server (NTRS)
Stoughton, John W.; Mielke, Roland R.
1988-01-01
The purpose is to document research to develop strategies for concurrent processing of complex algorithms in data driven architectures. The problem domain consists of decision-free algorithms having large-grained, computationally complex primitive operations. Such are often found in signal processing and control applications. The anticipated multiprocessor environment is a data flow architecture containing between two and twenty computing elements. Each computing element is a processor having local program memory, and which communicates with a common global data memory. A new graph theoretic model called ATAMM which establishes rules for relating a decomposed algorithm to its execution in a data flow architecture is presented. The ATAMM model is used to determine strategies to achieve optimum time performance and to develop a system diagnostic software tool. In addition, preliminary work on a new multiprocessor operating system based on the ATAMM specifications is described.
MREG V1.1 : a multi-scale image registration algorithm for SAR applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eichel, Paul H.
2013-08-01
MREG V1.1 is the sixth generation SAR image registration algorithm developed by the Signal Processing&Technology Department for Synthetic Aperture Radar applications. Like its predecessor algorithm REGI, it employs a powerful iterative multi-scale paradigm to achieve the competing goals of sub-pixel registration accuracy and the ability to handle large initial offsets. Since it is not model based, it allows for high fidelity tracking of spatially varying terrain-induced misregistration. Since it does not rely on image domain phase, it is equally adept at coherent and noncoherent image registration. This document provides a brief history of the registration processors developed by Dept. 5962more » leading up to MREG V1.1, a full description of the signal processing steps involved in the algorithm, and a user's manual with application specific recommendations for CCD, TwoColor MultiView, and SAR stereoscopy.« less
Digital health technology and trauma: development of an app to standardize care.
Hsu, Jeremy M
2015-04-01
Standardized practice results in less variation, therefore reducing errors and improving outcome. Optimal trauma care is achieved through standardization, as is evidenced by the widespread adoption of the Advanced Trauma Life Support approach. The challenge for an individual institution is how does one educate and promulgate these standardized processes widely and efficiently? In today's world, digital health technology must be considered in the process. The aim of this study was to describe the process of developing an app, which includes standardized trauma algorithms. The objective of the app was to allow easy, real-time access to trauma algorithms, and therefore reduce omissions/errors. A set of trauma algorithms, relevant to the local setting, was derived from the best available evidence. After obtaining grant funding, a collaborative endeavour was undertaken with an external specialist app developing company. The process required 6 months to translate the existing trauma algorithms into an app. The app contains 32 separate trauma algorithms, formatted as a single-page flow diagram. It utilizes specific smartphone features such as 'pinch to zoom', jump-words and pop-ups to allow rapid access to the desired information. Improvements in trauma care outcomes result from reducing variation. By incorporating digital health technology, a trauma app has been developed, allowing easy and intuitive access to evidenced-based algorithms. © 2015 Royal Australasian College of Surgeons.
Mane, Vijay Mahadeo; Jadhav, D V
2017-05-24
Diabetic retinopathy (DR) is the most common diabetic eye disease. Doctors are using various test methods to detect DR. But, the availability of test methods and requirements of domain experts pose a new challenge in the automatic detection of DR. In order to fulfill this objective, a variety of algorithms has been developed in the literature. In this paper, we propose a system consisting of a novel sparking process and a holoentropy-based decision tree for automatic classification of DR images to further improve the effectiveness. The sparking process algorithm is developed for automatic segmentation of blood vessels through the estimation of optimal threshold. The holoentropy enabled decision tree is newly developed for automatic classification of retinal images into normal or abnormal using hybrid features which preserve the disease-level patterns even more than the signal level of the feature. The effectiveness of the proposed system is analyzed using standard fundus image databases DIARETDB0 and DIARETDB1 for sensitivity, specificity and accuracy. The proposed system yields sensitivity, specificity and accuracy values of 96.72%, 97.01% and 96.45%, respectively. The experimental result reveals that the proposed technique outperforms the existing algorithms.
Parameter Estimation for a Hybrid Adaptive Flight Controller
NASA Technical Reports Server (NTRS)
Campbell, Stefan F.; Nguyen, Nhan T.; Kaneshige, John; Krishnakumar, Kalmanje
2009-01-01
This paper expands on the hybrid control architecture developed at the NASA Ames Research Center by addressing issues related to indirect adaptation using the recursive least squares (RLS) algorithm. Specifically, the hybrid control architecture is an adaptive flight controller that features both direct and indirect adaptation techniques. This paper will focus almost exclusively on the modifications necessary to achieve quality indirect adaptive control. Additionally this paper will present results that, using a full non -linear aircraft model, demonstrate the effectiveness of the hybrid control architecture given drastic changes in an aircraft s dynamics. Throughout the development of this topic, a thorough discussion of the RLS algorithm as a system identification technique will be provided along with results from seven well-known modifications to the popular RLS algorithm.
Symbolic discrete event system specification
NASA Technical Reports Server (NTRS)
Zeigler, Bernard P.; Chi, Sungdo
1992-01-01
Extending discrete event modeling formalisms to facilitate greater symbol manipulation capabilities is important to further their use in intelligent control and design of high autonomy systems. An extension to the DEVS formalism that facilitates symbolic expression of event times by extending the time base from the real numbers to the field of linear polynomials over the reals is defined. A simulation algorithm is developed to generate the branching trajectories resulting from the underlying nondeterminism. To efficiently manage symbolic constraints, a consistency checking algorithm for linear polynomial constraints based on feasibility checking algorithms borrowed from linear programming has been developed. The extended formalism offers a convenient means to conduct multiple, simultaneous explorations of model behaviors. Examples of application are given with concentration on fault model analysis.
A novel acenocoumarol pharmacogenomic dosing algorithm for the Greek population of EU-PACT trial.
Ragia, Georgia; Kolovou, Vana; Kolovou, Genovefa; Konstantinides, Stavros; Maltezos, Efstratios; Tavridou, Anna; Tziakas, Dimitrios; Maitland-van der Zee, Anke H; Manolopoulos, Vangelis G
2017-01-01
To generate and validate a pharmacogenomic-guided (PG) dosing algorithm for acenocoumarol in the Greek population. To compare its performance with other PG algorithms developed for the Greek population. A total of 140 Greek patients participants of the EU-PACT trial for acenocoumarol, a randomized clinical trial that prospectively compared the effect of a PG dosing algorithm with a clinical dosing algorithm on the percentage of time within INR therapeutic range, who reached acenocoumarol stable dose were included in the study. CYP2C9 and VKORC1 genotypes, age and weight affected acenocoumarol dose and predicted 53.9% of its variability. EU-PACT PG algorithm overestimated acenocoumarol dose across all different CYP2C9/VKORC1 functional phenotype bins (predicted dose vs stable dose in normal responders 2.31 vs 2.00 mg/day, p = 0.028, in sensitive responders 1.72 vs 1.50 mg/day, p = 0.003, in highly sensitive responders 1.39 vs 1.00 mg/day, p = 0.029). The PG algorithm previously developed for the Greek population overestimated the dose in normal responders (2.51 vs 2.00 mg/day, p < 0.001). Ethnic-specific dosing algorithm is suggested for better prediction of acenocoumarol dosage requirements in patients of Greek origin.
Implementation on Landsat Data of a Simple Cloud Mask Algorithm Developed for MODIS Land Bands
NASA Technical Reports Server (NTRS)
Oreopoulos, Lazaros; Wilson, Michael J.; Varnai, Tamas
2010-01-01
This letter assesses the performance on Landsat-7 images of a modified version of a cloud masking algorithm originally developed for clear-sky compositing of Moderate Resolution Imaging Spectroradiometer (MODIS) images at northern mid-latitudes. While data from recent Landsat missions include measurements at thermal wavelengths, and such measurements are also planned for the next mission, thermal tests are not included in the suggested algorithm in its present form to maintain greater versatility and ease of use. To evaluate the masking algorithm we take advantage of the availability of manual (visual) cloud masks developed at USGS for the collection of Landsat scenes used here. As part of our evaluation we also include the Automated Cloud Cover Assesment (ACCA) algorithm that includes thermal tests and is used operationally by the Landsat-7 mission to provide scene cloud fractions, but no cloud masks. We show that the suggested algorithm can perform about as well as ACCA both in terms of scene cloud fraction and pixel-level cloud identification. Specifically, we find that the algorithm gives an error of 1.3% for the scene cloud fraction of 156 scenes, and a root mean square error of 7.2%, while it agrees with the manual mask for 93% of the pixels, figures very similar to those from ACCA (1.2%, 7.1%, 93.7%).
NASA Astrophysics Data System (ADS)
Lin, Chien-Liang; Su, Yu-Zheng; Hung, Min-Wei; Huang, Kuo-Cheng
2010-08-01
In recent years, Augmented Reality (AR)[1][2][3] is very popular in universities and research organizations. The AR technology has been widely used in Virtual Reality (VR) fields, such as sophisticated weapons, flight vehicle development, data model visualization, virtual training, entertainment and arts. AR has characteristics to enhance the display output as a real environment with specific user interactive functions or specific object recognitions. It can be use in medical treatment, anatomy training, precision instrument casting, warplane guidance, engineering and distance robot control. AR has a lot of vantages than VR. This system developed combines sensors, software and imaging algorithms to make users feel real, actual and existing. Imaging algorithms include gray level method, image binarization method, and white balance method in order to make accurate image recognition and overcome the effects of light.
Duraipandian, Shiyamala; Sylvest Bergholt, Mads; Zheng, Wei; Yu Ho, Khek; Teh, Ming; Guan Yeoh, Khay; Bok Yan So, Jimmy; Shabbir, Asim; Huang, Zhiwei
2012-08-01
Optical spectroscopic techniques including reflectance, fluorescence and Raman spectroscopy have shown promising potential for in vivo precancer and cancer diagnostics in a variety of organs. However, data-analysis has mostly been limited to post-processing and off-line algorithm development. In this work, we develop a fully automated on-line Raman spectral diagnostics framework integrated with a multimodal image-guided Raman technique for real-time in vivo cancer detection at endoscopy. A total of 2748 in vivo gastric tissue spectra (2465 normal and 283 cancer) were acquired from 305 patients recruited to construct a spectral database for diagnostic algorithms development. The novel diagnostic scheme developed implements on-line preprocessing, outlier detection based on principal component analysis statistics (i.e., Hotelling's T2 and Q-residuals) for tissue Raman spectra verification as well as for organ specific probabilistic diagnostics using different diagnostic algorithms. Free-running optical diagnosis and processing time of < 0.5 s can be achieved, which is critical to realizing real-time in vivo tissue diagnostics during clinical endoscopic examination. The optimized partial least squares-discriminant analysis (PLS-DA) models based on the randomly resampled training database (80% for learning and 20% for testing) provide the diagnostic accuracy of 85.6% [95% confidence interval (CI): 82.9% to 88.2%] [sensitivity of 80.5% (95% CI: 71.4% to 89.6%) and specificity of 86.2% (95% CI: 83.6% to 88.7%)] for the detection of gastric cancer. The PLS-DA algorithms are further applied prospectively on 10 gastric patients at gastroscopy, achieving the predictive accuracy of 80.0% (60/75) [sensitivity of 90.0% (27/30) and specificity of 73.3% (33/45)] for in vivo diagnosis of gastric cancer. The receiver operating characteristics curves further confirmed the efficacy of Raman endoscopy together with PLS-DA algorithms for in vivo prospective diagnosis of gastric cancer. This work successfully moves biomedical Raman spectroscopic technique into real-time, on-line clinical cancer diagnosis, especially in routine endoscopic diagnostic applications.
NASA Astrophysics Data System (ADS)
Duraipandian, Shiyamala; Sylvest Bergholt, Mads; Zheng, Wei; Yu Ho, Khek; Teh, Ming; Guan Yeoh, Khay; Bok Yan So, Jimmy; Shabbir, Asim; Huang, Zhiwei
2012-08-01
Optical spectroscopic techniques including reflectance, fluorescence and Raman spectroscopy have shown promising potential for in vivo precancer and cancer diagnostics in a variety of organs. However, data-analysis has mostly been limited to post-processing and off-line algorithm development. In this work, we develop a fully automated on-line Raman spectral diagnostics framework integrated with a multimodal image-guided Raman technique for real-time in vivo cancer detection at endoscopy. A total of 2748 in vivo gastric tissue spectra (2465 normal and 283 cancer) were acquired from 305 patients recruited to construct a spectral database for diagnostic algorithms development. The novel diagnostic scheme developed implements on-line preprocessing, outlier detection based on principal component analysis statistics (i.e., Hotelling's T2 and Q-residuals) for tissue Raman spectra verification as well as for organ specific probabilistic diagnostics using different diagnostic algorithms. Free-running optical diagnosis and processing time of < 0.5 s can be achieved, which is critical to realizing real-time in vivo tissue diagnostics during clinical endoscopic examination. The optimized partial least squares-discriminant analysis (PLS-DA) models based on the randomly resampled training database (80% for learning and 20% for testing) provide the diagnostic accuracy of 85.6% [95% confidence interval (CI): 82.9% to 88.2%] [sensitivity of 80.5% (95% CI: 71.4% to 89.6%) and specificity of 86.2% (95% CI: 83.6% to 88.7%)] for the detection of gastric cancer. The PLS-DA algorithms are further applied prospectively on 10 gastric patients at gastroscopy, achieving the predictive accuracy of 80.0% (60/75) [sensitivity of 90.0% (27/30) and specificity of 73.3% (33/45)] for in vivo diagnosis of gastric cancer. The receiver operating characteristics curves further confirmed the efficacy of Raman endoscopy together with PLS-DA algorithms for in vivo prospective diagnosis of gastric cancer. This work successfully moves biomedical Raman spectroscopic technique into real-time, on-line clinical cancer diagnosis, especially in routine endoscopic diagnostic applications.
Reid, Aylin Y; St Germaine-Smith, Christine; Liu, Mingfu; Sadiq, Shahnaz; Quan, Hude; Wiebe, Samuel; Faris, Peter; Dean, Stafford; Jetté, Nathalie
2012-12-01
The objective of this study was to develop and validate coding algorithms for epilepsy using ICD-coded inpatient claims, physician claims, and emergency room (ER) visits. 720/2049 charts from 2003 and 1533/3252 charts from 2006 were randomly selected for review from 13 neurologists' practices as the "gold standard" for diagnosis. Epilepsy status in each chart was determined by 2 trained physicians. The optimal algorithm to identify epilepsy cases was developed by linking the reviewed charts with three administrative databases (ICD 9 and 10 data from 2000 to 2008) including hospital discharges, ER visits and physician claims in a Canadian health region. Accepting chart review data as the gold standard, we calculated sensitivity, specificity, positive, and negative predictive value for each ICD-9 and ICD-10 administrative data algorithm (case definitions). Of 18 algorithms assessed, the most accurate algorithm to identify epilepsy cases was "2 physician claims or 1 hospitalization in 2 years coded" (ICD-9 345 or G40/G41) and the most sensitive algorithm was "1 physician clam or 1 hospitalization or 1 ER visit in 2 years." Accurate and sensitive case definitions are available for research requiring the identification of epilepsy cases in administrative health data. Copyright © 2012 Elsevier B.V. All rights reserved.
Hardware Acceleration of Adaptive Neural Algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, Conrad D.
As tradit ional numerical computing has faced challenges, researchers have turned towards alternative computing approaches to reduce power - per - computation metrics and improve algorithm performance. Here, we describe an approach towards non - conventional computing that strengthens the connection between machine learning and neuroscience concepts. The Hardware Acceleration of Adaptive Neural Algorithms (HAANA) project ha s develop ed neural machine learning algorithms and hardware for applications in image processing and cybersecurity. While machine learning methods are effective at extracting relevant features from many types of data, the effectiveness of these algorithms degrades when subjected to real - worldmore » conditions. Our team has generated novel neural - inspired approa ches to improve the resiliency and adaptability of machine learning algorithms. In addition, we have also designed and fabricated hardware architectures and microelectronic devices specifically tuned towards the training and inference operations of neural - inspired algorithms. Finally, our multi - scale simulation framework allows us to assess the impact of microelectronic device properties on algorithm performance.« less
Learning Cue Phrase Patterns from Radiology Reports Using a Genetic Algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patton, Robert M; Beckerman, Barbara G; Potok, Thomas E
2009-01-01
Various computer-assisted technologies have been developed to assist radiologists in detecting cancer; however, the algorithms still lack high degrees of sensitivity and specificity, and must undergo machine learning against a training set with known pathologies in order to further refine the algorithms with higher validity of truth. This work describes an approach to learning cue phrase patterns in radiology reports that utilizes a genetic algorithm (GA) as the learning method. The approach described here successfully learned cue phrase patterns for two distinct classes of radiology reports. These patterns can then be used as a basis for automatically categorizing, clustering, ormore » retrieving relevant data for the user.« less
Brief announcement: Hypergraph parititioning for parallel sparse matrix-matrix multiplication
Ballard, Grey; Druinsky, Alex; Knight, Nicholas; ...
2015-01-01
The performance of parallel algorithms for sparse matrix-matrix multiplication is typically determined by the amount of interprocessor communication performed, which in turn depends on the nonzero structure of the input matrices. In this paper, we characterize the communication cost of a sparse matrix-matrix multiplication algorithm in terms of the size of a cut of an associated hypergraph that encodes the computation for a given input nonzero structure. Obtaining an optimal algorithm corresponds to solving a hypergraph partitioning problem. Furthermore, our hypergraph model generalizes several existing models for sparse matrix-vector multiplication, and we can leverage hypergraph partitioners developed for that computationmore » to improve application-specific algorithms for multiplying sparse matrices.« less
NASA Astrophysics Data System (ADS)
Alves, A. F.; Pina, D. R.; Bacchim Neto, F. A.; Ribeiro, S. M.; Miranda, J. R. A.
2014-03-01
Our main purpose in this study was to quantify biological tissue in computed tomography (CT) examinations with the aim of developing a skull and a chest patient equivalent phantom (PEP), both specific to infants, aged between 1 and 5 years old. This type of phantom is widely used in the development of optimization procedures for radiographic techniques, especially in computed radiography (CR) systems. In order to classify and quantify the biological tissue, we used a computational algorithm developed in Matlab ®. The algorithm performed a histogram of each CT slice followed by a Gaussian fitting of each tissue type. The algorithm determined the mean thickness for the biological tissues (bone, soft, fat, and lung) and also converted them into the corresponding thicknesses of the simulator material (aluminum, PMMA, and air). We retrospectively analyzed 148 CT examinations of infant patients, 56 for skull exams and 92 were for chest. The results provided sufficient data to construct a phantom to simulate the infant chest and skull in the posterior-anterior or anterior-posterior (PA/AP) view. Both patient equivalent phantoms developed in this study can be used to assess physical variables such as noise power spectrum (NPS) and signal to noise ratio (SNR) or perform dosimetric control specific to pediatric protocols.
NASA Technical Reports Server (NTRS)
Shultz, Christopher J.; Carey, Lawrence D.; Schultz, Elise V.; Stano, Geoffrey T.; Blakeslee, Richard J.; Goodman, Steven J.
2014-01-01
The presence and rates of total lightning are both correlated to and physically dependent upon storm updraft strength, mixed phase precipitation volume and the size of the charging zone. The updraft modulates the ingredients necessary for electrification within a thunderstorm, while the updraft also plays a critical role in the development of severe and hazardous weather. Therefore utilizing this relationship, the monitoring of lightning rates and jumps provides an additional piece of information on the evolution of a thunderstorm, more often than not, at higher temporal resolution than current operational radar systems. This correlation is the basis for the total lightning jump algorithm that has been developed in recent years. Currently, the lightning jump algorithm is being tested in two separate but important efforts. Schultz et al. (2014; AMS 10th Satellite Symposium) is exploring the transition of the algorithm from its research based formulation to a fully objective algorithm that includes storm tracking, Geostationary Lightning Mapper (GLM) Proxy data and the lightning jump algorithm. Chronis et al. (2014; this conference) provides context for the transition to current operational forecasting using lightning mapping array based products. However, what remains is an end to end physical and dynamical basis for relating lightning rates to severe storm manifestation, so the forecaster has a reason beyond simple correlation to utilize the lightning jump algorithm within their severe storm conceptual models. Therefore, the physical basis for the lightning jump algorithm in relation to severe storm dynamics and microphysics is a key component that must be further explored. Many radar studies have examined flash rates and their relation to updraft strength, updraft volume, precipitation-sized ice mass, etc.; however, relation specifically to lightning jumps is fragmented within the literature. Thus the goal of this study is to use multiple Doppler techniques to resolve the physical and dynamical storm characteristics specifically around the time of the lightning jump. This information will help forecasters anticipate lightning jump occurrence, or even be of use to determine future characteristics of a given storm (e.g., development of a mesocyclone, downdraft, or hail signature on radar), providing additional lead time/confidence in the severe storm warning paradigm.
Taming the Wild: A Unified Analysis of Hogwild!-Style Algorithms.
De Sa, Christopher; Zhang, Ce; Olukotun, Kunle; Ré, Christopher
2015-12-01
Stochastic gradient descent (SGD) is a ubiquitous algorithm for a variety of machine learning problems. Researchers and industry have developed several techniques to optimize SGD's runtime performance, including asynchronous execution and reduced precision. Our main result is a martingale-based analysis that enables us to capture the rich noise models that may arise from such techniques. Specifically, we use our new analysis in three ways: (1) we derive convergence rates for the convex case (Hogwild!) with relaxed assumptions on the sparsity of the problem; (2) we analyze asynchronous SGD algorithms for non-convex matrix problems including matrix completion; and (3) we design and analyze an asynchronous SGD algorithm, called Buckwild!, that uses lower-precision arithmetic. We show experimentally that our algorithms run efficiently for a variety of problems on modern hardware.
SPITZER IRAC PHOTOMETRY FOR TIME SERIES IN CROWDED FIELDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novati, S. Calchi; Beichman, C.; Gould, A.
We develop a new photometry algorithm that is optimized for the Infrared Array Camera (IRAC) Spitzer time series in crowded fields and that is particularly adapted to faint or heavily blended targets. We apply this to the 170 targets from the 2015 Spitzer microlensing campaign and present the results of three variants of this algorithm in an online catalog. We present detailed accounts of the application of this algorithm to two difficult cases, one very faint and the other very crowded. Several of Spitzer's instrumental characteristics that drive the specific features of this algorithm are shared by Kepler and WFIRST,more » implying that these features may prove to be a useful starting point for algorithms designed for microlensing campaigns by these other missions.« less
Ni, Jingchao; Koyuturk, Mehmet; Tong, Hanghang; Haines, Jonathan; Xu, Rong; Zhang, Xiang
2016-11-10
Accurately prioritizing candidate disease genes is an important and challenging problem. Various network-based methods have been developed to predict potential disease genes by utilizing the disease similarity network and molecular networks such as protein interaction or gene co-expression networks. Although successful, a common limitation of the existing methods is that they assume all diseases share the same molecular network and a single generic molecular network is used to predict candidate genes for all diseases. However, different diseases tend to manifest in different tissues, and the molecular networks in different tissues are usually different. An ideal method should be able to incorporate tissue-specific molecular networks for different diseases. In this paper, we develop a robust and flexible method to integrate tissue-specific molecular networks for disease gene prioritization. Our method allows each disease to have its own tissue-specific network(s). We formulate the problem of candidate gene prioritization as an optimization problem based on network propagation. When there are multiple tissue-specific networks available for a disease, our method can automatically infer the relative importance of each tissue-specific network. Thus it is robust to the noisy and incomplete network data. To solve the optimization problem, we develop fast algorithms which have linear time complexities in the number of nodes in the molecular networks. We also provide rigorous theoretical foundations for our algorithms in terms of their optimality and convergence properties. Extensive experimental results show that our method can significantly improve the accuracy of candidate gene prioritization compared with the state-of-the-art methods. In our experiments, we compare our methods with 7 popular network-based disease gene prioritization algorithms on diseases from Online Mendelian Inheritance in Man (OMIM) database. The experimental results demonstrate that our methods recover true associations more accurately than other methods in terms of AUC values, and the performance differences are significant (with paired t-test p-values less than 0.05). This validates the importance to integrate tissue-specific molecular networks for studying disease gene prioritization and show the superiority of our network models and ranking algorithms toward this purpose. The source code and datasets are available at http://nijingchao.github.io/CRstar/ .
Zomer, Ella; Osborn, David; Nazareth, Irwin; Blackburn, Ruth; Burton, Alexandra; Hardoon, Sarah; Holt, Richard Ian Gregory; King, Michael; Marston, Louise; Morris, Stephen; Omar, Rumana; Petersen, Irene; Walters, Kate; Hunter, Rachael Maree
2017-09-05
To determine the cost-effectiveness of two bespoke severe mental illness (SMI)-specific risk algorithms compared with standard risk algorithms for primary cardiovascular disease (CVD) prevention in those with SMI. Primary care setting in the UK. The analysis was from the National Health Service perspective. 1000 individuals with SMI from The Health Improvement Network Database, aged 30-74 years and without existing CVD, populated the model. Four cardiovascular risk algorithms were assessed: (1) general population lipid, (2) general population body mass index (BMI), (3) SMI-specific lipid and (4) SMI-specific BMI, compared against no algorithm. At baseline, each cardiovascular risk algorithm was applied and those considered high risk ( > 10%) were assumed to be prescribed statin therapy while others received usual care. Quality-adjusted life years (QALYs) and costs were accrued for each algorithm including no algorithm, and cost-effectiveness was calculated using the net monetary benefit (NMB) approach. Deterministic and probabilistic sensitivity analyses were performed to test assumptions made and uncertainty around parameter estimates. The SMI-specific BMI algorithm had the highest NMB resulting in 15 additional QALYs and a cost saving of approximately £53 000 per 1000 patients with SMI over 10 years, followed by the general population lipid algorithm (13 additional QALYs and a cost saving of £46 000). The general population lipid and SMI-specific BMI algorithms performed equally well. The ease and acceptability of use of an SMI-specific BMI algorithm (blood tests not required) makes it an attractive algorithm to implement in clinical settings. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Reflectivity retrieval in a networked radar environment
NASA Astrophysics Data System (ADS)
Lim, Sanghun
Monitoring of precipitation using a high-frequency radar system such as X-band is becoming increasingly popular due to its lower cost compared to its counterpart at S-band. Networks of meteorological radar systems at higher frequencies are being pursued for targeted applications such as coverage over a city or a small basin. However, at higher frequencies, the impact of attenuation due to precipitation needs to be resolved for successful implementation. In this research, new attenuation correction algorithms are introduced to compensate the attenuation impact due to rain medium. In order to design X-band radar systems as well as evaluate algorithm development, it is useful to have simultaneous X-band observation with and without the impact of path attenuation. One way to obtain that data set is through theoretical models. Methodologies for generating realistic range profiles of radar variables at attenuating frequencies such as X-band for rain medium are presented here. Fundamental microphysical properties of precipitation, namely size and shape distribution information, are used to generate realistic profiles of X-band starting with S-band observations. Conditioning the simulation from S-band radar measurements maintains the natural distribution of microphysical parameters associated with rainfall. In this research, data taken by the CSU-CHILL radar and the National Center for Atmospheric Research S-POL radar are used to simulate X-band radar variables. Three procedures to simulate the radar variables at X-band and sample applications are presented. A new attenuation correction algorithm based on profiles of reflectivity, differential reflectivity, and differential propagation phase shift is presented. A solution for specific attenuation retrieval in rain medium is proposed that solves the integral equations for reflectivity and differential reflectivity with cumulative differential propagation phase shift constraint. The conventional rain profiling algorithms that connect reflectivity and specific attenuation can retrieve specific attenuation values along the radar path assuming a constant intercept parameter of the normalized drop size distribution. However, in convective storms, the drop size distribution parameters can have significant variation along the path. In this research, a dual-polarization rain profiling algorithm for horizontal-looking radars incorporating reflectivity as well as differential reflectivity profiles is developed. The dual-polarization rain profiling algorithm has been evaluated with X-band radar observations simulated from drop size distribution derived from high-resolution S-band measurements collected by the CSU-CHILL radar. The analysis shows that the dual-polarization rain profiling algorithm provides significant improvement over the current algorithms. A methodology for reflectivity and attenuation retrieval for rain medium in a networked radar environment is described. Electromagnetic waves backscattered from a common volume in networked radar systems are attenuated differently along the different paths. A solution for the specific attenuation distribution is proposed by solving the integral equation for reflectivity. The set of governing integral equations describing the backscatter and propagation of common resolution volume are solved simultaneously with constraints on total path attenuation. The proposed algorithm is evaluated based on simulated X-band radar observations synthesized from S-band measurements collected by the CSU-CHILL radar. Retrieved reflectivity and specific attenuation using the proposed method show good agreement with simulated reflectivity and specific attenuation.
Incorporating Auditory Models in Speech/Audio Applications
NASA Astrophysics Data System (ADS)
Krishnamoorthi, Harish
2011-12-01
Following the success in incorporating perceptual models in audio coding algorithms, their application in other speech/audio processing systems is expanding. In general, all perceptual speech/audio processing algorithms involve minimization of an objective function that directly/indirectly incorporates properties of human perception. This dissertation primarily investigates the problems associated with directly embedding an auditory model in the objective function formulation and proposes possible solutions to overcome high complexity issues for use in real-time speech/audio algorithms. Specific problems addressed in this dissertation include: 1) the development of approximate but computationally efficient auditory model implementations that are consistent with the principles of psychoacoustics, 2) the development of a mapping scheme that allows synthesizing a time/frequency domain representation from its equivalent auditory model output. The first problem is aimed at addressing the high computational complexity involved in solving perceptual objective functions that require repeated application of auditory model for evaluation of different candidate solutions. In this dissertation, a frequency pruning and a detector pruning algorithm is developed that efficiently implements the various auditory model stages. The performance of the pruned model is compared to that of the original auditory model for different types of test signals in the SQAM database. Experimental results indicate only a 4-7% relative error in loudness while attaining up to 80-90 % reduction in computational complexity. Similarly, a hybrid algorithm is developed specifically for use with sinusoidal signals and employs the proposed auditory pattern combining technique together with a look-up table to store representative auditory patterns. The second problem obtains an estimate of the auditory representation that minimizes a perceptual objective function and transforms the auditory pattern back to its equivalent time/frequency representation. This avoids the repeated application of auditory model stages to test different candidate time/frequency vectors in minimizing perceptual objective functions. In this dissertation, a constrained mapping scheme is developed by linearizing certain auditory model stages that ensures obtaining a time/frequency mapping corresponding to the estimated auditory representation. This paradigm was successfully incorporated in a perceptual speech enhancement algorithm and a sinusoidal component selection task.
A novel data-driven learning method for radar target detection in nonstationary environments
Akcakaya, Murat; Nehorai, Arye; Sen, Satyabrata
2016-04-12
Most existing radar algorithms are developed under the assumption that the environment (clutter) is stationary. However, in practice, the characteristics of the clutter can vary enormously depending on the radar-operational scenarios. If unaccounted for, these nonstationary variabilities may drastically hinder the radar performance. Therefore, to overcome such shortcomings, we develop a data-driven method for target detection in nonstationary environments. In this method, the radar dynamically detects changes in the environment and adapts to these changes by learning the new statistical characteristics of the environment and by intelligibly updating its statistical detection algorithm. Specifically, we employ drift detection algorithms to detectmore » changes in the environment; incremental learning, particularly learning under concept drift algorithms, to learn the new statistical characteristics of the environment from the new radar data that become available in batches over a period of time. The newly learned environment characteristics are then integrated in the detection algorithm. Furthermore, we use Monte Carlo simulations to demonstrate that the developed method provides a significant improvement in the detection performance compared with detection techniques that are not aware of the environmental changes.« less
Enhancing Breast Cancer Recurrence Algorithms Through Selective Use of Medical Record Data
Chubak, Jessica; Johnson, Lisa; Castillo, Adrienne; Weltzien, Erin; Caan, Bette J.
2016-01-01
Abstract Background: The utility of data-based algorithms in research has been questioned because of errors in identification of cancer recurrences. We adapted previously published breast cancer recurrence algorithms, selectively using medical record (MR) data to improve classification. Methods: We evaluated second breast cancer event (SBCE) and recurrence-specific algorithms previously published by Chubak and colleagues in 1535 women from the Life After Cancer Epidemiology (LACE) and 225 women from the Women’s Health Initiative cohorts and compared classification statistics to published values. We also sought to improve classification with minimal MR examination. We selected pairs of algorithms—one with high sensitivity/high positive predictive value (PPV) and another with high specificity/high PPV—using MR information to resolve discrepancies between algorithms, properly classifying events based on review; we called this “triangulation.” Finally, in LACE, we compared associations between breast cancer survival risk factors and recurrence using MR data, single Chubak algorithms, and triangulation. Results: The SBCE algorithms performed well in identifying SBCE and recurrences. Recurrence-specific algorithms performed more poorly than published except for the high-specificity/high-PPV algorithm, which performed well. The triangulation method (sensitivity = 81.3%, specificity = 99.7%, PPV = 98.1%, NPV = 96.5%) improved recurrence classification over two single algorithms (sensitivity = 57.1%, specificity = 95.5%, PPV = 71.3%, NPV = 91.9%; and sensitivity = 74.6%, specificity = 97.3%, PPV = 84.7%, NPV = 95.1%), with 10.6% MR review. Triangulation performed well in survival risk factor analyses vs analyses using MR-identified recurrences. Conclusions: Use of multiple recurrence algorithms in administrative data, in combination with selective examination of MR data, may improve recurrence data quality and reduce research costs. PMID:26582243
A computational geometry approach to pore network construction for granular packings
NASA Astrophysics Data System (ADS)
van der Linden, Joost H.; Sufian, Adnan; Narsilio, Guillermo A.; Russell, Adrian R.; Tordesillas, Antoinette
2018-03-01
Pore network construction provides the ability to characterize and study the pore space of inhomogeneous and geometrically complex granular media in a range of scientific and engineering applications. Various approaches to the construction have been proposed, however subtle implementational details are frequently omitted, open access to source code is limited, and few studies compare multiple algorithms in the context of a specific application. This study presents, in detail, a new pore network construction algorithm, and provides a comprehensive comparison with two other, well-established Delaunay triangulation-based pore network construction methods. Source code is provided to encourage further development. The proposed algorithm avoids the expensive non-linear optimization procedure in existing Delaunay approaches, and is robust in the presence of polydispersity. Algorithms are compared in terms of structural, geometrical and advanced connectivity parameters, focusing on the application of fluid flow characteristics. Sensitivity of the various networks to permeability is assessed through network (Stokes) simulations and finite-element (Navier-Stokes) simulations. Results highlight strong dependencies of pore volume, pore connectivity, throat geometry and fluid conductance on the degree of tetrahedra merging and the specific characteristics of the throats targeted by the merging algorithm. The paper concludes with practical recommendations on the applicability of the three investigated algorithms.
Virag, Nathalie; Erickson, Mark; Taraborrelli, Patricia; Vetter, Rolf; Lim, Phang Boon; Sutton, Richard
2018-04-28
We developed a vasovagal syncope (VVS) prediction algorithm for use during head-up tilt with simultaneous analysis of heart rate (HR) and systolic blood pressure (SBP). We previously tested this algorithm retrospectively in 1155 subjects, showing sensitivity 95%, specificity 93% and median prediction time of 59s. This study was prospective, single center, on 140 subjects to evaluate this VVS prediction algorithm and assess if retrospective results were reproduced and clinically relevant. Primary endpoint was VVS prediction: sensitivity and specificity >80%. In subjects, referred for 60° head-up tilt (Italian protocol), non-invasive HR and SBP were supplied to the VVS prediction algorithm: simultaneous analysis of RR intervals, SBP trends and their variability represented by low-frequency power generated cumulative risk which was compared with a predetermined VVS risk threshold. When cumulative risk exceeded threshold, an alert was generated. Prediction time was duration between first alert and syncope. Of 140 subjects enrolled, data was usable for 134. Of 83 tilt+ve (61.9%), 81 VVS events were correctly predicted and of 51 tilt-ve subjects (38.1%), 45 were correctly identified as negative by the algorithm. Resulting algorithm performance was sensitivity 97.6%, specificity 88.2%, meeting primary endpoint. Mean VVS prediction time was 2min 26s±3min16s with median 1min 25s. Using only HR and HR variability (without SBP) the mean prediction time reduced to 1min34s±1min45s with median 1min13s. The VVS prediction algorithm, is clinically-relevant tool and could offer applications including providing a patient alarm, shortening tilt-test time, or triggering pacing intervention in implantable devices. Copyright © 2018. Published by Elsevier Inc.
Cox, Zachary L; Lewis, Connie M; Lai, Pikki; Lenihan, Daniel J
2017-01-01
We aim to validate the diagnostic performance of the first fully automatic, electronic heart failure (HF) identification algorithm and evaluate the implementation of an HF Dashboard system with 2 components: real-time identification of decompensated HF admissions and accurate characterization of disease characteristics and medical therapy. We constructed an HF identification algorithm requiring 3 of 4 identifiers: B-type natriuretic peptide >400 pg/mL; admitting HF diagnosis; history of HF International Classification of Disease, Ninth Revision, diagnosis codes; and intravenous diuretic administration. We validated the diagnostic accuracy of the components individually (n = 366) and combined in the HF algorithm (n = 150) compared with a blinded provider panel in 2 separate cohorts. We built an HF Dashboard within the electronic medical record characterizing the disease and medical therapies of HF admissions identified by the HF algorithm. We evaluated the HF Dashboard's performance over 26 months of clinical use. Individually, the algorithm components displayed variable sensitivity and specificity, respectively: B-type natriuretic peptide >400 pg/mL (89% and 87%); diuretic (80% and 92%); and International Classification of Disease, Ninth Revision, code (56% and 95%). The HF algorithm achieved a high specificity (95%), positive predictive value (82%), and negative predictive value (85%) but achieved limited sensitivity (56%) secondary to missing provider-generated identification data. The HF Dashboard identified and characterized 3147 HF admissions over 26 months. Automated identification and characterization systems can be developed and used with a substantial degree of specificity for the diagnosis of decompensated HF, although sensitivity is limited by clinical data input. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peyret, Thomas; Poulin, Patrick; Krishnan, Kannan, E-mail: kannan.krishnan@umontreal.ca
The algorithms in the literature focusing to predict tissue:blood PC (P{sub tb}) for environmental chemicals and tissue:plasma PC based on total (K{sub p}) or unbound concentration (K{sub pu}) for drugs differ in their consideration of binding to hemoglobin, plasma proteins and charged phospholipids. The objective of the present study was to develop a unified algorithm such that P{sub tb}, K{sub p} and K{sub pu} for both drugs and environmental chemicals could be predicted. The development of the unified algorithm was accomplished by integrating all mechanistic algorithms previously published to compute the PCs. Furthermore, the algorithm was structured in such amore » way as to facilitate predictions of the distribution of organic compounds at the macro (i.e. whole tissue) and micro (i.e. cells and fluids) levels. The resulting unified algorithm was applied to compute the rat P{sub tb}, K{sub p} or K{sub pu} of muscle (n = 174), liver (n = 139) and adipose tissue (n = 141) for acidic, neutral, zwitterionic and basic drugs as well as ketones, acetate esters, alcohols, aliphatic hydrocarbons, aromatic hydrocarbons and ethers. The unified algorithm reproduced adequately the values predicted previously by the published algorithms for a total of 142 drugs and chemicals. The sensitivity analysis demonstrated the relative importance of the various compound properties reflective of specific mechanistic determinants relevant to prediction of PC values of drugs and environmental chemicals. Overall, the present unified algorithm uniquely facilitates the computation of macro and micro level PCs for developing organ and cellular-level PBPK models for both chemicals and drugs.« less
Wavelet analysis enables system-independent texture analysis of optical coherence tomography images.
Lingley-Papadopoulos, Colleen A; Loew, Murray H; Zara, Jason M
2009-01-01
Texture analysis for tissue characterization is a current area of optical coherence tomography (OCT) research. We discuss some of the differences between OCT systems and the effects those differences have on the resulting images and subsequent image analysis. In addition, as an example, two algorithms for the automatic recognition of bladder cancer are compared: one that was developed on a single system with no consideration for system differences, and one that was developed to address the issues associated with system differences. The first algorithm had a sensitivity of 73% and specificity of 69% when tested using leave-one-out cross-validation on data taken from a single system. When tested on images from another system with a different central wavelength, however, the method classified all images as cancerous regardless of the true pathology. By contrast, with the use of wavelet analysis and the removal of system-dependent features, the second algorithm reported sensitivity and specificity values of 87 and 58%, respectively, when trained on images taken with one imaging system and tested on images taken with another.
Indirect learning control for nonlinear dynamical systems
NASA Technical Reports Server (NTRS)
Ryu, Yeong Soon; Longman, Richard W.
1993-01-01
In a previous paper, learning control algorithms were developed based on adaptive control ideas for linear time variant systems. The learning control methods were shown to have certain advantages over their adaptive control counterparts, such as the ability to produce zero tracking error in time varying systems, and the ability to eliminate repetitive disturbances. In recent years, certain adaptive control algorithms have been developed for multi-body dynamic systems such as robots, with global guaranteed convergence to zero tracking error for the nonlinear system euations. In this paper we study the relationship between such adaptive control methods designed for this specific class of nonlinear systems, and the learning control problem for such systems, seeking to converge to zero tracking error in following a specific command repeatedly, starting from the same initial conditions each time. The extension of these methods from the adaptive control problem to the learning control problem is seen to be trivial. The advantages and disadvantages of using learning control based on such adaptive control concepts for nonlinear systems, and the use of other currently available learning control algorithms are discussed.
Wavelet analysis enables system-independent texture analysis of optical coherence tomography images
NASA Astrophysics Data System (ADS)
Lingley-Papadopoulos, Colleen A.; Loew, Murray H.; Zara, Jason M.
2009-07-01
Texture analysis for tissue characterization is a current area of optical coherence tomography (OCT) research. We discuss some of the differences between OCT systems and the effects those differences have on the resulting images and subsequent image analysis. In addition, as an example, two algorithms for the automatic recognition of bladder cancer are compared: one that was developed on a single system with no consideration for system differences, and one that was developed to address the issues associated with system differences. The first algorithm had a sensitivity of 73% and specificity of 69% when tested using leave-one-out cross-validation on data taken from a single system. When tested on images from another system with a different central wavelength, however, the method classified all images as cancerous regardless of the true pathology. By contrast, with the use of wavelet analysis and the removal of system-dependent features, the second algorithm reported sensitivity and specificity values of 87 and 58%, respectively, when trained on images taken with one imaging system and tested on images taken with another.
New developments in supra-threshold perimetry.
Henson, David B; Artes, Paul H
2002-09-01
To describe a series of recent enhancements to supra-threshold perimetry. Computer simulations were used to develop an improved algorithm (HEART) for the setting of the supra-threshold test intensity at the beginning of a field test, and to evaluate the relationship between various pass/fail criteria and the test's performance (sensitivity and specificity) and how they compare with modern threshold perimetry. Data were collected in optometric practices to evaluate HEART and to assess how the patient's response times can be analysed to detect false positive response errors in visual field test results. The HEART algorithm shows improved performance (reduced between-eye differences) over current algorithms. A pass/fail criterion of '3 stimuli seen of 3-5 presentations' at each test location reduces test/retest variability and combines high sensitivity and specificity. A large percentage of false positive responses can be detected by comparing their latencies to the average response time of a patient. Optimised supra-threshold visual field tests can perform as well as modern threshold techniques. Such tests may be easier to perform for novice patients, compared with the more demanding threshold tests.
Earth resources data analysis program, phase 3
NASA Technical Reports Server (NTRS)
1975-01-01
Tasks were performed in two areas: (1) systems analysis and (2) algorithmic development. The major effort in the systems analysis task was the development of a recommended approach to the monitoring of resource utilization data for the Large Area Crop Inventory Experiment (LACIE). Other efforts included participation in various studies concerning the LACIE Project Plan, the utility of the GE Image 100, and the specifications for a special purpose processor to be used in the LACIE. In the second task, the major effort was the development of improved algorithms for estimating proportions of unclassified remotely sensed data. Also, work was performed on optimal feature extraction and optimal feature extraction for proportion estimation.
Prediction of customer behaviour analysis using classification algorithms
NASA Astrophysics Data System (ADS)
Raju, Siva Subramanian; Dhandayudam, Prabha
2018-04-01
Customer Relationship management plays a crucial role in analyzing of customer behavior patterns and their values with an enterprise. Analyzing of customer data can be efficient performed using various data mining techniques, with the goal of developing business strategies and to enhance the business. In this paper, three classification models (NB, J48, and MLPNN) are studied and evaluated for our experimental purpose. The performance measures of the three classifications are compared using three different parameters (accuracy, sensitivity, specificity) and experimental results expose J48 algorithm has better accuracy with compare to NB and MLPNN algorithm.
NASA Technical Reports Server (NTRS)
Arduini, R. F.; Aherron, R. M.; Samms, R. W.
1984-01-01
A computational model of the deterministic and stochastic processes involved in multispectral remote sensing was designed to evaluate the performance of sensor systems and data processing algorithms for spectral feature classification. Accuracy in distinguishing between categories of surfaces or between specific types is developed as a means to compare sensor systems and data processing algorithms. The model allows studies to be made of the effects of variability of the atmosphere and of surface reflectance, as well as the effects of channel selection and sensor noise. Examples of these effects are shown.
User's Manual for the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA)
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.; Cheatwood, F. McNeil
1996-01-01
This user's manual provides detailed instructions for the installation and the application of version 4.1 of the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA). Also provides simulation of flow field in thermochemical nonequilibrium around vehicles traveling at hypersonic velocities through the atmosphere. Earlier versions of LAURA were predominantly research codes, and they had minimal (or no) documentation. This manual describes UNIX-based utilities for customizing the code for special applications that also minimize system resource requirements. The algorithm is reviewed, and the various program options are related to specific equations and variables in the theoretical development.
Passenger baggage object database (PBOD)
NASA Astrophysics Data System (ADS)
Gittinger, Jaxon M.; Suknot, April N.; Jimenez, Edward S.; Spaulding, Terry W.; Wenrich, Steve A.
2018-04-01
Detection of anomalies of interest in x-ray images is an ever-evolving problem that requires the rapid development of automatic detection algorithms. Automatic detection algorithms are developed using machine learning techniques, which would require developers to obtain the x-ray machine that was used to create the images being trained on, and compile all associated metadata for those images by hand. The Passenger Baggage Object Database (PBOD) and data acquisition application were designed and developed for acquiring and persisting 2-D and 3-D x-ray image data and associated metadata. PBOD was specifically created to capture simulated airline passenger "stream of commerce" luggage data, but could be applied to other areas of x-ray imaging to utilize machine-learning methods.
HEAVY DUTY DIESEL VEHICLE LOAD ESTIMATION: DEVELOPMENT OF VEHICLE ACTIVITY OPTIMIZATION ALGORITHM
The Heavy-Duty Vehicle Modal Emission Model (HDDV-MEM) developed by the Georgia Institute of Technology(Georgia Tech) has a capability to model link-specific second-by-second emissions using speed/accleration matrices. To estimate emissions, engine power demand calculated usin...
Cave, Andrew J; Davey, Christina; Ahmadi, Elaheh; Drummond, Neil; Fuentes, Sonia; Kazemi-Bajestani, Seyyed Mohammad Reza; Sharpe, Heather; Taylor, Matt
2016-01-01
An accurate estimation of the prevalence of paediatric asthma in Alberta and elsewhere is hampered by uncertainty regarding disease definition and diagnosis. Electronic medical records (EMRs) provide a rich source of clinical data from primary-care practices that can be used in better understanding the occurrence of the disease. The Canadian Primary Care Sentinel Surveillance Network (CPCSSN) database includes cleaned data extracted from the EMRs of primary-care practitioners. The purpose of the study was to develop and validate a case definition of asthma in children 1–17 who consult family physicians, in order to provide primary-care estimates of childhood asthma in Alberta as accurately as possible. The validation involved the comparison of the application of a theoretical algorithm (to identify patients with asthma) to a physician review of records included in the CPCSSN database (to confirm an accurate diagnosis). The comparison yielded 87.4% sensitivity, 98.6% specificity and a positive and negative predictive value of 91.2% and 97.9%, respectively, in the age group 1–17 years. The algorithm was also run for ages 3–17 and 6–17 years, and was found to have comparable statistical values. Overall, the case definition and algorithm yielded strong sensitivity and specificity metrics and was found valid for use in research in CPCSSN primary-care practices. The use of the validated asthma algorithm may improve insight into the prevalence, diagnosis, and management of paediatric asthma in Alberta and Canada. PMID:27882997
Cave, Andrew J; Davey, Christina; Ahmadi, Elaheh; Drummond, Neil; Fuentes, Sonia; Kazemi-Bajestani, Seyyed Mohammad Reza; Sharpe, Heather; Taylor, Matt
2016-11-24
An accurate estimation of the prevalence of paediatric asthma in Alberta and elsewhere is hampered by uncertainty regarding disease definition and diagnosis. Electronic medical records (EMRs) provide a rich source of clinical data from primary-care practices that can be used in better understanding the occurrence of the disease. The Canadian Primary Care Sentinel Surveillance Network (CPCSSN) database includes cleaned data extracted from the EMRs of primary-care practitioners. The purpose of the study was to develop and validate a case definition of asthma in children 1-17 who consult family physicians, in order to provide primary-care estimates of childhood asthma in Alberta as accurately as possible. The validation involved the comparison of the application of a theoretical algorithm (to identify patients with asthma) to a physician review of records included in the CPCSSN database (to confirm an accurate diagnosis). The comparison yielded 87.4% sensitivity, 98.6% specificity and a positive and negative predictive value of 91.2% and 97.9%, respectively, in the age group 1-17 years. The algorithm was also run for ages 3-17 and 6-17 years, and was found to have comparable statistical values. Overall, the case definition and algorithm yielded strong sensitivity and specificity metrics and was found valid for use in research in CPCSSN primary-care practices. The use of the validated asthma algorithm may improve insight into the prevalence, diagnosis, and management of paediatric asthma in Alberta and Canada.
Verhoye, E; Vandecandelaere, P; De Beenhouwer, H; Coppens, G; Cartuyvels, R; Van den Abeele, A; Frans, J; Laffut, W
2015-10-01
Despite thorough analyses of the analytical performance of Clostridium difficile tests and test algorithms, the financial impact at hospital level has not been well described. Such a model should take institution-specific variables into account, such as incidence, request behaviour and infection control policies. To calculate the total hospital costs of different test algorithms, accounting for days on which infected patients with toxigenic strains were not isolated and therefore posed an infectious risk for new/secondary nosocomial infections. A mathematical algorithm was developed to gather the above parameters using data from seven Flemish hospital laboratories (Bilulu Microbiology Study Group) (number of tests, local prevalence and hospital hygiene measures). Measures of sensitivity and specificity for the evaluated tests were taken from the literature. List prices and costs of assays were provided by the manufacturer or the institutions. The calculated cost included reagent costs, personnel costs and the financial burden following due and undue isolations and antibiotic therapies. Five different test algorithms were compared. A dynamic calculation model was constructed to evaluate the cost:benefit ratio of each algorithm for a set of institution- and time-dependent inputted variables (prevalence, cost fluctuations and test performances), making it possible to choose the most advantageous algorithm for its setting. A two-step test algorithm with concomitant glutamate dehydrogenase and toxin testing, followed by a rapid molecular assay was found to be the most cost-effective algorithm. This enabled resolution of almost all cases on the day of arrival, minimizing the number of unnecessary or missing isolations. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Tielking, John T.
1989-01-01
Two algorithms for obtaining static contact solutions are described in this presentation. Although they were derived for contact problems involving specific structures (a tire and a solid rubber cylinder), they are sufficiently general to be applied to other shell-of-revolution and solid-body contact problems. The shell-of-revolution contact algorithm is a method of obtaining a point load influence coefficient matrix for the portion of shell surface that is expected to carry a contact load. If the shell is sufficiently linear with respect to contact loading, a single influence coefficient matrix can be used to obtain a good approximation of the contact pressure distribution. Otherwise, the matrix will be updated to reflect nonlinear load-deflection behavior. The solid-body contact algorithm utilizes a Lagrange multiplier to include the contact constraint in a potential energy functional. The solution is found by applying the principle of minimum potential energy. The Lagrange multiplier is identified as the contact load resultant for a specific deflection. At present, only frictionless contact solutions have been obtained with these algorithms. A sliding tread element has been developed to calculate friction shear force in the contact region of the rolling shell-of-revolution tire model.
Seeking out SARI: an automated search of electronic health records.
O'Horo, John C; Dziadzko, Mikhail; Sakusic, Amra; Ali, Rashid; Sohail, M Rizwan; Kor, Daryl J; Gajic, Ognjen
2018-06-01
The definition of severe acute respiratory infection (SARI) - a respiratory illness with fever and cough, occurring within the past 10 days and requiring hospital admission - has not been evaluated for critically ill patients. Using integrated electronic health records data, we developed an automated search algorithm to identify SARI cases in a large cohort of critical care patients and evaluate patient outcomes. We conducted a retrospective cohort study of all admissions to a medical intensive care unit from August 2009 through March 2016. Subsets were randomly selected for deriving and validating a search algorithm, which was compared with temporal trends in laboratory-confirmed influenza to ensure that SARI was correlated with influenza. The algorithm was applied to the cohort to identify clinical differences for patients with and without SARI. For identifying SARI, the algorithm (sensitivity, 86.9%; specificity, 95.6%) outperformed billing-based searching (sensitivity, 73.8%; specificity, 78.8%). Automated searching correlated with peaks in laboratory-confirmed influenza. Adjusted for severity of illness, SARI was associated with more hospital, intensive care unit and ventilator days but not with death or dismissal to home. The search algorithm accurately identified SARI for epidemiologic study and surveillance.
A novel neural-inspired learning algorithm with application to clinical risk prediction.
Tay, Darwin; Poh, Chueh Loo; Kitney, Richard I
2015-04-01
Clinical risk prediction - the estimation of the likelihood an individual is at risk of a disease - is a coveted and exigent clinical task, and a cornerstone to the recommendation of life saving management strategies. This is especially important for individuals at risk of cardiovascular disease (CVD) given the fact that it is the leading causes of death in many developed counties. To this end, we introduce a novel learning algorithm - a key factor that influences the performance of machine learning-based prediction models - and utilities it to develop CVD risk prediction tool. This novel neural-inspired algorithm, called the Artificial Neural Cell System for classification (ANCSc), is inspired by mechanisms that develop the brain and empowering it with capabilities such as information processing/storage and recall, decision making and initiating actions on external environment. Specifically, we exploit on 3 natural neural mechanisms responsible for developing and enriching the brain - namely neurogenesis, neuroplasticity via nurturing and apoptosis - when implementing ANCSc algorithm. Benchmark testing was conducted using the Honolulu Heart Program (HHP) dataset and results are juxtaposed with 2 other algorithms - i.e. Support Vector Machine (SVM) and Evolutionary Data-Conscious Artificial Immune Recognition System (EDC-AIRS). Empirical experiments indicate that ANCSc algorithm (statistically) outperforms both SVM and EDC-AIRS algorithms. Key clinical markers identified by ANCSc algorithm include risk factors related to diet/lifestyle, pulmonary function, personal/family/medical history, blood data, blood pressure, and electrocardiography. These clinical markers, in general, are also found to be clinically significant - providing a promising avenue for identifying potential cardiovascular risk factors to be evaluated in clinical trials. Copyright © 2015 Elsevier Inc. All rights reserved.
Integrated Multiscale Modeling of Molecular Computing Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory Beylkin
2012-03-23
Significant advances were made on all objectives of the research program. We have developed fast multiresolution methods for performing electronic structure calculations with emphasis on constructing efficient representations of functions and operators. We extended our approach to problems of scattering in solids, i.e. constructing fast algorithms for computing above the Fermi energy level. Part of the work was done in collaboration with Robert Harrison and George Fann at ORNL. Specific results (in part supported by this grant) are listed here and are described in greater detail. (1) We have implemented a fast algorithm to apply the Green's function for themore » free space (oscillatory) Helmholtz kernel. The algorithm maintains its speed and accuracy when the kernel is applied to functions with singularities. (2) We have developed a fast algorithm for applying periodic and quasi-periodic, oscillatory Green's functions and those with boundary conditions on simple domains. Importantly, the algorithm maintains its speed and accuracy when applied to functions with singularities. (3) We have developed a fast algorithm for obtaining and applying multiresolution representations of periodic and quasi-periodic Green's functions and Green's functions with boundary conditions on simple domains. (4) We have implemented modifications to improve the speed of adaptive multiresolution algorithms for applying operators which are represented via a Gaussian expansion. (5) We have constructed new nearly optimal quadratures for the sphere that are invariant under the icosahedral rotation group. (6) We obtained new results on approximation of functions by exponential sums and/or rational functions, one of the key methods that allows us to construct separated representations for Green's functions. (7) We developed a new fast and accurate reduction algorithm for obtaining optimal approximation of functions by exponential sums and/or their rational representations.« less
Aguirre-Junco, Angel-Ricardo; Colombet, Isabelle; Zunino, Sylvain; Jaulent, Marie-Christine; Leneveut, Laurence; Chatellier, Gilles
2004-01-01
The initial step for the computerization of guidelines is the knowledge specification from the prose text of guidelines. We describe a method of knowledge specification based on a structured and systematic analysis of text allowing detailed specification of a decision tree. We use decision tables to validate the decision algorithm and decision trees to specify and represent this algorithm, along with elementary messages of recommendation. Edition tools are also necessary to facilitate the process of validation and workflow between expert physicians who will validate the specified knowledge and computer scientist who will encode the specified knowledge in a guide-line model. Applied to eleven different guidelines issued by an official agency, the method allows a quick and valid computerization and integration in a larger decision support system called EsPeR (Personalized Estimate of Risks). The quality of the text guidelines is however still to be developed further. The method used for computerization could help to define a framework usable at the initial step of guideline development in order to produce guidelines ready for electronic implementation.
Tai, David; Fang, Jianwen
2012-08-27
The large sizes of today's chemical databases require efficient algorithms to perform similarity searches. It can be very time consuming to compare two large chemical databases. This paper seeks to build upon existing research efforts by describing a novel strategy for accelerating existing search algorithms for comparing large chemical collections. The quest for efficiency has focused on developing better indexing algorithms by creating heuristics for searching individual chemical against a chemical library by detecting and eliminating needless similarity calculations. For comparing two chemical collections, these algorithms simply execute searches for each chemical in the query set sequentially. The strategy presented in this paper achieves a speedup upon these algorithms by indexing the set of all query chemicals so redundant calculations that arise in the case of sequential searches are eliminated. We implement this novel algorithm by developing a similarity search program called Symmetric inDexing or SymDex. SymDex shows over a 232% maximum speedup compared to the state-of-the-art single query search algorithm over real data for various fingerprint lengths. Considerable speedup is even seen for batch searches where query set sizes are relatively small compared to typical database sizes. To the best of our knowledge, SymDex is the first search algorithm designed specifically for comparing chemical libraries. It can be adapted to most, if not all, existing indexing algorithms and shows potential for accelerating future similarity search algorithms for comparing chemical databases.
Clustering analysis of moving target signatures
NASA Astrophysics Data System (ADS)
Martone, Anthony; Ranney, Kenneth; Innocenti, Roberto
2010-04-01
Previously, we developed a moving target indication (MTI) processing approach to detect and track slow-moving targets inside buildings, which successfully detected moving targets (MTs) from data collected by a low-frequency, ultra-wideband radar. Our MTI algorithms include change detection, automatic target detection (ATD), clustering, and tracking. The MTI algorithms can be implemented in a real-time or near-real-time system; however, a person-in-the-loop is needed to select input parameters for the clustering algorithm. Specifically, the number of clusters to input into the cluster algorithm is unknown and requires manual selection. A critical need exists to automate all aspects of the MTI processing formulation. In this paper, we investigate two techniques that automatically determine the number of clusters: the adaptive knee-point (KP) algorithm and the recursive pixel finding (RPF) algorithm. The KP algorithm is based on a well-known heuristic approach for determining the number of clusters. The RPF algorithm is analogous to the image processing, pixel labeling procedure. Both algorithms are used to analyze the false alarm and detection rates of three operational scenarios of personnel walking inside wood and cinderblock buildings.
A reliable algorithm for optimal control synthesis
NASA Technical Reports Server (NTRS)
Vansteenwyk, Brett; Ly, Uy-Loi
1992-01-01
In recent years, powerful design tools for linear time-invariant multivariable control systems have been developed based on direct parameter optimization. In this report, an algorithm for reliable optimal control synthesis using parameter optimization is presented. Specifically, a robust numerical algorithm is developed for the evaluation of the H(sup 2)-like cost functional and its gradients with respect to the controller design parameters. The method is specifically designed to handle defective degenerate systems and is based on the well-known Pade series approximation of the matrix exponential. Numerical test problems in control synthesis for simple mechanical systems and for a flexible structure with densely packed modes illustrate positively the reliability of this method when compared to a method based on diagonalization. Several types of cost functions have been considered: a cost function for robust control consisting of a linear combination of quadratic objectives for deterministic and random disturbances, and one representing an upper bound on the quadratic objective for worst case initial conditions. Finally, a framework for multivariable control synthesis has been developed combining the concept of closed-loop transfer recovery with numerical parameter optimization. The procedure enables designers to synthesize not only observer-based controllers but also controllers of arbitrary order and structure. Numerical design solutions rely heavily on the robust algorithm due to the high order of the synthesis model and the presence of near-overlapping modes. The design approach is successfully applied to the design of a high-bandwidth control system for a rotorcraft.
Sands, Bruce E; Duh, Mei-Sheng; Cali, Clorinda; Ajene, Anuli; Bohn, Rhonda L; Miller, David; Cole, J Alexander; Cook, Suzanne F; Walker, Alexander M
2006-01-01
A challenge in the use of insurance claims databases for epidemiologic research is accurate identification and verification of medical conditions. This report describes the development and validation of claims-based algorithms to identify colonic ischemia, hospitalized complications of constipation, and irritable bowel syndrome (IBS). From the research claims databases of a large healthcare company, we selected at random 120 potential cases of IBS and 59 potential cases each of colonic ischemia and hospitalized complications of constipation. We sought the written medical records and were able to abstract 107, 57, and 51 records, respectively. We established a 'true' case status for each subject by applying standard clinical criteria to the available chart data. Comparing the insurance claims histories to the assigned case status, we iteratively developed, tested, and refined claims-based algorithms that would capture the diagnoses obtained from the medical records. We set goals of high specificity for colonic ischemia and hospitalized complications of constipation, and high sensitivity for IBS. The resulting algorithms substantially improved on the accuracy achievable from a naïve acceptance of the diagnostic codes attached to insurance claims. The specificities for colonic ischemia and serious complications of constipation were 87.2 and 92.7%, respectively, and the sensitivity for IBS was 98.9%. U.S. commercial insurance claims data appear to be usable for the study of colonic ischemia, IBS, and serious complications of constipation. (c) 2005 John Wiley & Sons, Ltd.
Histopathological Image Analysis: A Review
Gurcan, Metin N.; Boucheron, Laura; Can, Ali; Madabhushi, Anant; Rajpoot, Nasir; Yener, Bulent
2010-01-01
Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement to the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe. PMID:20671804
Failure detection and isolation analysis of a redundant strapdown inertial measurement unit
NASA Technical Reports Server (NTRS)
Motyka, P.; Landey, M.; Mckern, R.
1981-01-01
The objective of this study was to define and develop techniques for failure detection and isolation (FDI) algorithms for a dual fail/operational redundant strapdown inertial navigation system are defined and developed. The FDI techniques chosen include provisions for hard and soft failure detection in the context of flight control and navigation. Analyses were done to determine error detection and switching levels for the inertial navigation system, which is intended for a conventional takeoff or landing (CTOL) operating environment. In addition, investigations of false alarms and missed alarms were included for the FDI techniques developed, along with the analyses of filters to be used in conjunction with FDI processing. Two specific FDI algorithms were compared: the generalized likelihood test and the edge vector test. A deterministic digital computer simulation was used to compare and evaluate the algorithms and FDI systems.
Ballenger, James C.; Davidson, Jonathan R. T.; Lecrubier, Yves; Nutt, David J.
2001-04-01
The International Consensus Group on Depression and Anxiety has held 7 meetings over the last 3 years that focused on depression and specific anxiety disorders. During the course of the meeting series, a number of common themes have developed. At the last meeting of the Consensus Group, we reviewed these areas of commonality across the spectrum of depression and anxiety disorders. With the aim of improving the recognition and management of depression and anxiety in the primary care setting, we developed an algorithm that is presented in this article. We attempted to balance currently available scientific knowledge about the treatment of these disorders and to reformat it to provide an acceptable algorithm that meets the practical aspects of recognizing and treating these disorders in primary care.
Study of phase clustering method for analyzing large volumes of meteorological observation data
NASA Astrophysics Data System (ADS)
Volkov, Yu. V.; Krutikov, V. A.; Botygin, I. A.; Sherstnev, V. S.; Sherstneva, A. I.
2017-11-01
The article describes an iterative parallel phase grouping algorithm for temperature field classification. The algorithm is based on modified method of structure forming by using analytic signal. The developed method allows to solve tasks of climate classification as well as climatic zoning for any time or spatial scale. When used to surface temperature measurement series, the developed algorithm allows to find climatic structures with correlated changes of temperature field, to make conclusion on climate uniformity in a given area and to overview climate changes over time by analyzing offset in type groups. The information on climate type groups specific for selected geographical areas is expanded by genetic scheme of class distribution depending on change in mutual correlation level between ground temperature monthly average.
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.; Sensmeier, mark D.; Stewart, Bret A.
2006-01-01
Algorithms for rapid generation of moderate-fidelity structural finite element models of air vehicle structures to allow more accurate weight estimation earlier in the vehicle design process have been developed. Application of these algorithms should help to rapidly assess many structural layouts before the start of the preliminary design phase and eliminate weight penalties imposed when actual structure weights exceed those estimated during conceptual design. By defining the structural topology in a fully parametric manner, the structure can be mapped to arbitrary vehicle configurations being considered during conceptual design optimization. Recent enhancements to this approach include the porting of the algorithms to a platform-independent software language Python, and modifications to specifically consider morphing aircraft-type configurations. Two sample cases which illustrate these recent developments are presented.
Lin, Kuan-Cheng; Hsieh, Yi-Hsiu
2015-10-01
The classification and analysis of data is an important issue in today's research. Selecting a suitable set of features makes it possible to classify an enormous quantity of data quickly and efficiently. Feature selection is generally viewed as a problem of feature subset selection, such as combination optimization problems. Evolutionary algorithms using random search methods have proven highly effective in obtaining solutions to problems of optimization in a diversity of applications. In this study, we developed a hybrid evolutionary algorithm based on endocrine-based particle swarm optimization (EPSO) and artificial bee colony (ABC) algorithms in conjunction with a support vector machine (SVM) for the selection of optimal feature subsets for the classification of datasets. The results of experiments using specific UCI medical datasets demonstrate that the accuracy of the proposed hybrid evolutionary algorithm is superior to that of basic PSO, EPSO and ABC algorithms, with regard to classification accuracy using subsets with a reduced number of features.
Manzanares-Laya, S; Burón, A; Murta-Nascimento, C; Servitja, S; Castells, X; Macià, F
2014-01-01
Hospital cancer registries and hospital databases are valuable and efficient sources of information for research into cancer recurrences. The aim of this study was to develop and validate algorithms for the detection of breast cancer recurrence. A retrospective observational study was conducted on breast cancer cases from the cancer registry of a third level university hospital diagnosed between 2003 and 2009. Different probable cancer recurrence algorithms were obtained by linking the hospital databases and the construction of several operational definitions, with their corresponding sensitivity, specificity, positive predictive value and negative predictive value. A total of 1,523 patients were diagnosed of breast cancer between 2003 and 2009. A request for bone gammagraphy after 6 months from the first oncological treatment showed the highest sensitivity (53.8%) and negative predictive value (93.8%), and a pathology test after 6 months after the diagnosis showed the highest specificity (93.8%) and negative predictive value (92.6%). The combination of different definitions increased the specificity and the positive predictive value, but decreased the sensitivity. Several diagnostic algorithms were obtained, and the different definitions could be useful depending on the interest and resources of the researcher. A higher positive predictive value could be interesting for a quick estimation of the number of cases, and a higher negative predictive value for a more exact estimation if more resources are available. It is a versatile and adaptable tool for other types of tumors, as well as for the needs of the researcher. Copyright © 2014 SECA. Published by Elsevier Espana. All rights reserved.
Generating Customized Verifiers for Automatically Generated Code
NASA Technical Reports Server (NTRS)
Denney, Ewen; Fischer, Bernd
2008-01-01
Program verification using Hoare-style techniques requires many logical annotations. We have previously developed a generic annotation inference algorithm that weaves in all annotations required to certify safety properties for automatically generated code. It uses patterns to capture generator- and property-specific code idioms and property-specific meta-program fragments to construct the annotations. The algorithm is customized by specifying the code patterns and integrating them with the meta-program fragments for annotation construction. However, this is difficult since it involves tedious and error-prone low-level term manipulations. Here, we describe an annotation schema compiler that largely automates this customization task using generative techniques. It takes a collection of high-level declarative annotation schemas tailored towards a specific code generator and safety property, and generates all customized analysis functions and glue code required for interfacing with the generic algorithm core, thus effectively creating a customized annotation inference algorithm. The compiler raises the level of abstraction and simplifies schema development and maintenance. It also takes care of some more routine aspects of formulating patterns and schemas, in particular handling of irrelevant program fragments and irrelevant variance in the program structure, which reduces the size, complexity, and number of different patterns and annotation schemas that are required. The improvements described here make it easier and faster to customize the system to a new safety property or a new generator, and we demonstrate this by customizing it to certify frame safety of space flight navigation code that was automatically generated from Simulink models by MathWorks' Real-Time Workshop.
An information adaptive system study report and development plan
NASA Technical Reports Server (NTRS)
Ataras, W. S.; Eng, K.; Morone, J. J.; Beaudet, P. R.; Chin, R.
1980-01-01
The purpose of the information adaptive system (IAS) study was to determine how some selected Earth resource applications may be processed onboard a spacecraft and to provide a detailed preliminary IAS design for these applications. Detailed investigations of a number of applications were conducted with regard to IAS and three were selected for further analysis. Areas of future research and development include algorithmic specifications, system design specifications, and IAS recommended time lines.
Szabo, Linda; Morey, Robert; Palpant, Nathan J; Wang, Peter L; Afari, Nastaran; Jiang, Chuan; Parast, Mana M; Murry, Charles E; Laurent, Louise C; Salzman, Julia
2015-06-16
The pervasive expression of circular RNA is a recently discovered feature of gene expression in highly diverged eukaryotes, but the functions of most circular RNAs are still unknown. Computational methods to discover and quantify circular RNA are essential. Moreover, discovering biological contexts where circular RNAs are regulated will shed light on potential functional roles they may play. We present a new algorithm that increases the sensitivity and specificity of circular RNA detection by discovering and quantifying circular and linear RNA splicing events at both annotated and un-annotated exon boundaries, including intergenic regions of the genome, with high statistical confidence. Unlike approaches that rely on read count and exon homology to determine confidence in prediction of circular RNA expression, our algorithm uses a statistical approach. Using our algorithm, we unveiled striking induction of general and tissue-specific circular RNAs, including in the heart and lung, during human fetal development. We discover regions of the human fetal brain, such as the frontal cortex, with marked enrichment for genes where circular RNA isoforms are dominant. The vast majority of circular RNA production occurs at major spliceosome splice sites; however, we find the first examples of developmentally induced circular RNAs processed by the minor spliceosome, and an enriched propensity of minor spliceosome donors to splice into circular RNA at un-annotated, rather than annotated, exons. Together, these results suggest a potentially significant role for circular RNA in human development.
Zou, Cheng; Sun, Zhenguo; Cai, Dong; Muhammad, Salman; Zhang, Wenzeng; Chen, Qiang
2016-01-01
A method is developed to accurately determine the spatial impulse response at the specifically discretized observation points in the radiated field of 1-D linear ultrasonic phased array transducers with great efficiency. In contrast, the previously adopted solutions only optimize the calculation procedure for a single rectangular transducer and required approximation considerations or nonlinear calculation. In this research, an algorithm that follows an alternative approach to expedite the calculation of the spatial impulse response of a rectangular linear array is presented. The key assumption for this algorithm is that the transducer apertures are identical and linearly distributed on an infinite rigid plane baffled with the same pitch. Two points in the observation field, which have the same position relative to two transducer apertures, share the same spatial impulse response that contributed from corresponding transducer, respectively. The observation field is discretized specifically to meet the relationship of equality. The analytical expressions of the proposed algorithm, based on the specific selection of the observation points, are derived to remove redundant calculations. In order to measure the proposed methodology, the simulation results obtained from the proposed method and the classical summation method are compared. The outcomes demonstrate that the proposed strategy can speed up the calculation procedure since it accelerates the speed-up ratio which relies upon the number of discrete points and the number of the array transducers. This development will be valuable in the development of advanced and faster linear ultrasonic phased array systems. PMID:27834799
Advani, Aneel; Jones, Neil; Shahar, Yuval; Goldstein, Mary K; Musen, Mark A
2004-01-01
We develop a method and algorithm for deciding the optimal approach to creating quality-auditing protocols for guideline-based clinical performance measures. An important element of the audit protocol design problem is deciding which guide-line elements to audit. Specifically, the problem is how and when to aggregate individual patient case-specific guideline elements into population-based quality measures. The key statistical issue involved is the trade-off between increased reliability with more general population-based quality measures versus increased validity from individually case-adjusted but more restricted measures done at a greater audit cost. Our intelligent algorithm for auditing protocol design is based on hierarchically modeling incrementally case-adjusted quality constraints. We select quality constraints to measure using an optimization criterion based on statistical generalizability coefficients. We present results of the approach from a deployed decision support system for a hypertension guideline.
Takahashi; Nakazawa; Watanabe; Konagaya
1999-01-01
We have developed the automated processing algorithms for 2-dimensional (2-D) electrophoretograms of genomic DNA based on RLGS (Restriction Landmark Genomic Scanning) method, which scans the restriction enzyme recognition sites as the landmark and maps them onto a 2-D electrophoresis gel. Our powerful processing algorithms realize the automated spot recognition from RLGS electrophoretograms and the automated comparison of a huge number of such images. In the final stage of the automated processing, a master spot pattern, on which all the spots in the RLGS images are mapped at once, can be obtained. The spot pattern variations which seemed to be specific to the pathogenic DNA molecular changes can be easily detected by simply looking over the master spot pattern. When we applied our algorithms to the analysis of 33 RLGS images derived from human colon tissues, we successfully detected several colon tumor specific spot pattern changes.
Whyte, Joanna L; Engel-Nitz, Nicole M; Teitelbaum, April; Gomez Rey, Gabriel; Kallich, Joel D
2015-07-01
Administrative health care claims data are used for epidemiologic, health services, and outcomes cancer research and thus play a significant role in policy. Cancer stage, which is often a major driver of cost and clinical outcomes, is not typically included in claims data. Evaluate algorithms used in a dataset of cancer patients to identify patients with metastatic breast (BC), lung (LC), or colorectal (CRC) cancer using claims data. Clinical data on BC, LC, or CRC patients (between January 1, 2007 and March 31, 2010) were linked to a health care claims database. Inclusion required health plan enrollment ≥3 months before initial cancer diagnosis date. Algorithms were used in the claims database to identify patients' disease status, which was compared with physician-reported metastases. Generic and tumor-specific algorithms were evaluated using ICD-9 codes, varying diagnosis time frames, and including/excluding other tumors. Positive and negative predictive values, sensitivity, and specificity were assessed. The linked databases included 14,480 patients; of whom, 32%, 17%, and 14.2% had metastatic BC, LC, and CRC, respectively, at diagnosis and met inclusion criteria. Nontumor-specific algorithms had lower specificity than tumor-specific algorithms. Tumor-specific algorithms' sensitivity and specificity were 53% and 99% for BC, 55% and 85% for LC, and 59% and 98% for CRC, respectively. Algorithms to distinguish metastatic BC, LC, and CRC from locally advanced disease should use tumor-specific primary cancer codes with 2 claims for the specific primary cancer >30-42 days apart to reduce misclassification. These performed best overall in specificity, positive predictive values, and overall accuracy to identify metastatic cancer in a health care claims database.
Nathan, D M; Buse, J B; Davidson, M B; Ferrannini, E; Holman, R R; Sherwin, R; Zinman, B
2009-01-01
The consensus algorithm for the medical management of type 2 diabetes was published in August 2006 with the expectation that it would be updated, based on the availability of new interventions and new evidence to establish their clinical role. The authors continue to endorse the principles used to develop the algorithm and its major features. We are sensitive to the risks of changing the algorithm cavalierly or too frequently, without compelling new information. An update to the consensus algorithm published in January 2008 specifically addressed safety issues surrounding the thiazolidinediones. In this revision, we focus on the new classes of medications that now have more clinical data and experience.
Autonomous Wheeled Robot Platform Testbed for Navigation and Mapping Using Low-Cost Sensors
NASA Astrophysics Data System (ADS)
Calero, D.; Fernandez, E.; Parés, M. E.
2017-11-01
This paper presents the concept of an architecture for a wheeled robot system that helps researchers in the field of geomatics to speed up their daily research on kinematic geodesy, indoor navigation and indoor positioning fields. The presented ideas corresponds to an extensible and modular hardware and software system aimed at the development of new low-cost mapping algorithms as well as at the evaluation of the performance of sensors. The concept, already implemented in the CTTC's system ARAS (Autonomous Rover for Automatic Surveying) is generic and extensible. This means that it is possible to incorporate new navigation algorithms or sensors at no maintenance cost. Only the effort related to the development tasks required to either create such algorithms needs to be taken into account. As a consequence, change poses a much small problem for research activities in this specific area. This system includes several standalone sensors that may be combined in different ways to accomplish several goals; that is, this system may be used to perform a variety of tasks, as, for instance evaluates positioning algorithms performance or mapping algorithms performance.
The theory of variational hybrid quantum-classical algorithms
NASA Astrophysics Data System (ADS)
McClean, Jarrod R.; Romero, Jonathan; Babbush, Ryan; Aspuru-Guzik, Alán
2016-02-01
Many quantum algorithms have daunting resource requirements when compared to what is available today. To address this discrepancy, a quantum-classical hybrid optimization scheme known as ‘the quantum variational eigensolver’ was developed (Peruzzo et al 2014 Nat. Commun. 5 4213) with the philosophy that even minimal quantum resources could be made useful when used in conjunction with classical routines. In this work we extend the general theory of this algorithm and suggest algorithmic improvements for practical implementations. Specifically, we develop a variational adiabatic ansatz and explore unitary coupled cluster where we establish a connection from second order unitary coupled cluster to universal gate sets through a relaxation of exponential operator splitting. We introduce the concept of quantum variational error suppression that allows some errors to be suppressed naturally in this algorithm on a pre-threshold quantum device. Additionally, we analyze truncation and correlated sampling in Hamiltonian averaging as ways to reduce the cost of this procedure. Finally, we show how the use of modern derivative free optimization techniques can offer dramatic computational savings of up to three orders of magnitude over previously used optimization techniques.
Image processing via VLSI: A concept paper
NASA Technical Reports Server (NTRS)
Nathan, R.
1982-01-01
Implementing specific image processing algorithms via very large scale integrated systems offers a potent solution to the problem of handling high data rates. Two algorithms stand out as being particularly critical -- geometric map transformation and filtering or correlation. These two functions form the basis for data calibration, registration and mosaicking. VLSI presents itself as an inexpensive ancillary function to be added to almost any general purpose computer and if the geometry and filter algorithms are implemented in VLSI, the processing rate bottleneck would be significantly relieved. A set of image processing functions that limit present systems to deal with future throughput needs, translates these functions to algorithms, implements via VLSI technology and interfaces the hardware to a general purpose digital computer is developed.
Gamut extension for cinema: psychophysical evaluation of the state of the art and a new algorithm
NASA Astrophysics Data System (ADS)
Zamir, Syed Waqas; Vazquez-Corral, Javier; Bertalmío, Marcelo
2015-03-01
Wide gamut digital display technology, in order to show its full potential in terms of colors, is creating an opportunity to develop gamut extension algorithms (GEAs). To this end, in this work we present two contributions. First we report a psychophysical evaluation of GEAs specifically for cinema using a digital cinema projector under cinematic (low ambient light) conditions; to the best of our knowledge this is the first evaluation of this kind reported in the literature. Second, we propose a new GEA by introducing simple but key modifications to the algorithm of Zamir et al. This new algorithm performs well in terms of skin tones and memory colors, with results that look natural and which are free from artifacts.
ICAROUS - Integrated Configurable Algorithms for Reliable Operations Of Unmanned Systems
NASA Technical Reports Server (NTRS)
Consiglio, María; Muñoz, César; Hagen, George; Narkawicz, Anthony; Balachandran, Swee
2016-01-01
NASA's Unmanned Aerial System (UAS) Traffic Management (UTM) project aims at enabling near-term, safe operations of small UAS vehicles in uncontrolled airspace, i.e., Class G airspace. A far-term goal of UTM research and development is to accommodate the expected rise in small UAS traffic density throughout the National Airspace System (NAS) at low altitudes for beyond visual line-of-sight operations. This paper describes a new capability referred to as ICAROUS (Integrated Configurable Algorithms for Reliable Operations of Unmanned Systems), which is being developed under the UTM project. ICAROUS is a software architecture comprised of highly assured algorithms for building safety-centric, autonomous, unmanned aircraft applications. Central to the development of the ICAROUS algorithms is the use of well-established formal methods to guarantee higher levels of safety assurance by monitoring and bounding the behavior of autonomous systems. The core autonomy-enabling capabilities in ICAROUS include constraint conformance monitoring and contingency control functions. ICAROUS also provides a highly configurable user interface that enables the modular integration of mission-specific software components.
NASA Astrophysics Data System (ADS)
Dervilllé, A.; Labrosse, A.; Zimmermann, Y.; Foucher, J.; Gronheid, R.; Boeckx, C.; Singh, A.; Leray, P.; Halder, S.
2016-03-01
The dimensional scaling in IC manufacturing strongly drives the demands on CD and defect metrology techniques and their measurement uncertainties. Defect review has become as important as CD metrology and both of them create a new metrology paradigm because it creates a completely new need for flexible, robust and scalable metrology software. Current, software architectures and metrology algorithms are performant but it must be pushed to another higher level in order to follow roadmap speed and requirements. For example: manage defect and CD in one step algorithm, customize algorithms and outputs features for each R&D team environment, provide software update every day or every week for R&D teams in order to explore easily various development strategies. The final goal is to avoid spending hours and days to manually tune algorithm to analyze metrology data and to allow R&D teams to stay focus on their expertise. The benefits are drastic costs reduction, more efficient R&D team and better process quality. In this paper, we propose a new generation of software platform and development infrastructure which can integrate specific metrology business modules. For example, we will show the integration of a chemistry module dedicated to electronics materials like Direct Self Assembly features. We will show a new generation of image analysis algorithms which are able to manage at the same time defect rates, images classifications, CD and roughness measurements with high throughput performances in order to be compatible with HVM. In a second part, we will assess the reliability, the customization of algorithm and the software platform capabilities to follow new specific semiconductor metrology software requirements: flexibility, robustness, high throughput and scalability. Finally, we will demonstrate how such environment has allowed a drastic reduction of data analysis cycle time.
Evaluation metrics for bone segmentation in ultrasound
NASA Astrophysics Data System (ADS)
Lougheed, Matthew; Fichtinger, Gabor; Ungi, Tamas
2015-03-01
Tracked ultrasound is a safe alternative to X-ray for imaging bones. The interpretation of bony structures is challenging as ultrasound has no specific intensity characteristic of bones. Several image segmentation algorithms have been devised to identify bony structures. We propose an open-source framework that would aid in the development and comparison of such algorithms by quantitatively measuring segmentation performance in the ultrasound images. True-positive and false-negative metrics used in the framework quantify algorithm performance based on correctly segmented bone and correctly segmented boneless regions. Ground-truth for these metrics are defined manually and along with the corresponding automatically segmented image are used for the performance analysis. Manually created ground truth tests were generated to verify the accuracy of the analysis. Further evaluation metrics for determining average performance per slide and standard deviation are considered. The metrics provide a means of evaluating accuracy of frames along the length of a volume. This would aid in assessing the accuracy of the volume itself and the approach to image acquisition (positioning and frequency of frame). The framework was implemented as an open-source module of the 3D Slicer platform. The ground truth tests verified that the framework correctly calculates the implemented metrics. The developed framework provides a convenient way to evaluate bone segmentation algorithms. The implementation fits in a widely used application for segmentation algorithm prototyping. Future algorithm development will benefit by monitoring the effects of adjustments to an algorithm in a standard evaluation framework.
Parra-Ruiz, Jorge; Ramos, V; Dueñas, C; Coronado-Álvarez, N M; Cabo-Magadán, R; Portillo-Tuñón, V; Vinuesa, D; Muñoz-Medina, L; Hernández-Quero, J
2015-10-01
Tuberculous meningitis (TBM) is one of the most serious and difficult to diagnose manifestations of TB. An ADA value >9.5 IU/L has great sensitivity and specificity. However, all available studies have been conducted in areas of high endemicity, so we sought to determine the accuracy of ADA in a low endemicity area. This retrospective study included 190 patients (105 men) who had ADA tested in CSF for some reason. Patients were classified as probable/certain TBM or non-TBM based on clinical and Thwaite's criteria. Optimal ADA cutoff was established by ROC curves and a predictive algorithm based on ADA and other CSF biochemical parameters was generated. Eleven patients were classified as probable/certain TBM. In a low endemicity area, the best ADA cutoff was 11.5 IU/L with 91 % sensitivity and 77.7 % specificity. We also developed a predictive algorithm based on the combination of ADA (>11.5 IU/L), glucose (<65 mg/dL) and leukocytes (≥13.5 cell/mm(3)) with increased accuracy (Se: 91 % Sp: 88 %). Optimal ADA cutoff value in areas of low TB endemicity is higher than previously reported. Our algorithm is more accurate than ADA activity alone with better sensitivity and specificity than previously reported algorithms.
NASA Astrophysics Data System (ADS)
Bostock, J.; Weller, P.; Cooklin, M.
2010-07-01
Automated diagnostic algorithms are used in implantable cardioverter-defibrillators (ICD's) to detect abnormal heart rhythms. Algorithms misdiagnose and improved specificity is needed to prevent inappropriate therapy. Knowledge engineering (KE) and artificial intelligence (AI) could improve this. A pilot study of KE was performed with artificial neural network (ANN) as AI system. A case note review analysed arrhythmic events stored in patients ICD memory. 13.2% patients received inappropriate therapy. The best ICD algorithm had sensitivity 1.00, specificity 0.69 (p<0.001 different to gold standard). A subset of data was used to train and test an ANN. A feed-forward, back-propagation network with 7 inputs, a 4 node hidden layer and 1 output had sensitivity 1.00, specificity 0.71 (p<0.001). A prospective study was performed using KE to list arrhythmias, factors and indicators for which measurable parameters were evaluated and results reviewed by a domain expert. Waveforms from electrodes in the heart and thoracic bio-impedance; temperature and motion data were collected from 65 patients during cardiac electrophysiological studies. 5 incomplete datasets were due to technical failures. We concluded that KE successfully guided selection of parameters and ANN produced a usable system and that complex data collection carries greater risk of technical failure, leading to data loss.
NASA Astrophysics Data System (ADS)
Chemla (林力娜), Karine
The texts of algorithms fall under the general rubric of instructional texts, discussed by J. Virbel in this book. An algorithm has two facets. It has a text—a written text—, which usually appears to be an enumerated list of operations. In addition, whenever an algorithm is applied to a specific set of numerical values, practitioners derive from its text a sequence of actions, or operations, to be carried out. In the execution of the algorithm, these actions generate events that constitute a flow of computations eventually yielding numerical results. This chapter aims mainly to develop some reflections on the relationship between these two facets: the text and the different sequences of actions that practitioners derive from it. I use two tools in my argumentation. Firstly, I use the description of textual enumerations, as developed by Jacques Virbel, to find out how enumerations of operations were carried out in the text of algorithms and how these enumerations were used. Then I focus on the language acts carried out in some of the sentences composing the texts, since, when prescribing operations, the texts of the algorithms differ in that they use distinct ways of carrying out directives. The conclusion highlights different ways in which the text of an algorithm can be general and convey meanings that go beyond simply prescribing operations.
NASA Astrophysics Data System (ADS)
Metzger, Andrew; Benavides, Amanda; Nopoulos, Peg; Magnotta, Vincent
2016-03-01
The goal of this project was to develop two age appropriate atlases (neonatal and one year old) that account for the rapid growth and maturational changes that occur during early development. Tissue maps from this age group were initially created by manually correcting the resulting tissue maps after applying an expectation maximization (EM) algorithm and an adult atlas to pediatric subjects. The EM algorithm classified each voxel into one of ten possible tissue types including several subcortical structures. This was followed by a novel level set segmentation designed to improve differentiation between distal cortical gray matter and white matter. To minimize the req uired manual corrections, the adult atlas was registered to the pediatric scans using high -dimensional, symmetric image normalization (SyN) registration. The subject images were then mapped to an age specific atlas space, again using SyN registration, and the resulting transformation applied to the manually corrected tissue maps. The individual maps were averaged in the age specific atlas space and blurred to generate the age appropriate anatomical priors. The resulting anatomical priors were then used by the EM algorithm to re-segment the initial training set as well as an independent testing set. The results from the adult and age-specific anatomical priors were compared to the manually corrected results. The age appropriate atlas provided superior results as compared to the adult atlas. The image analysis pipeline used in this work was built using the open source software package BRAINSTools.
Reliable fusion of control and sensing in intelligent machines. Thesis
NASA Technical Reports Server (NTRS)
Mcinroy, John E.
1991-01-01
Although robotics research has produced a wealth of sophisticated control and sensing algorithms, very little research has been aimed at reliably combining these control and sensing strategies so that a specific task can be executed. To improve the reliability of robotic systems, analytic techniques are developed for calculating the probability that a particular combination of control and sensing algorithms will satisfy the required specifications. The probability can then be used to assess the reliability of the design. An entropy formulation is first used to quickly eliminate designs not capable of meeting the specifications. Next, a framework for analyzing reliability based on the first order second moment methods of structural engineering is proposed. To ensure performance over an interval of time, lower bounds on the reliability of meeting a set of quadratic specifications with a Gaussian discrete time invariant control system are derived. A case study analyzing visual positioning in robotic system is considered. The reliability of meeting timing and positioning specifications in the presence of camera pixel truncation, forward and inverse kinematic errors, and Gaussian joint measurement noise is determined. This information is used to select a visual sensing strategy, a kinematic algorithm, and a discrete compensator capable of accomplishing the desired task. Simulation results using PUMA 560 kinematic and dynamic characteristics are presented.
Siauve, N; Nicolas, L; Vollaire, C; Marchal, C
2004-12-01
This article describes an optimization process specially designed for local and regional hyperthermia in order to achieve the desired specific absorption rate in the patient. It is based on a genetic algorithm coupled to a finite element formulation. The optimization method is applied to real human organs meshes assembled from computerized tomography scans. A 3D finite element formulation is used to calculate the electromagnetic field in the patient, achieved by radiofrequency or microwave sources. Space discretization is performed using incomplete first order edge elements. The sparse complex symmetric matrix equation is solved using a conjugate gradient solver with potential projection pre-conditionning. The formulation is validated by comparison of calculated specific absorption rate distributions in a phantom to temperature measurements. A genetic algorithm is used to optimize the specific absorption rate distribution to predict the phases and amplitudes of the sources leading to the best focalization. The objective function is defined as the specific absorption rate ratio in the tumour and healthy tissues. Several constraints, regarding the specific absorption rate in tumour and the total power in the patient, may be prescribed. Results obtained with two types of applicators (waveguides and annular phased array) are presented and show the faculties of the developed optimization process.
John, Ann; McGregor, Joanne; Fone, David; Dunstan, Frank; Cornish, Rosie; Lyons, Ronan A; Lloyd, Keith R
2016-03-15
The robustness of epidemiological research using routinely collected primary care electronic data to support policy and practice for common mental disorders (CMD) anxiety and depression would be greatly enhanced by appropriate validation of diagnostic codes and algorithms for data extraction. We aimed to create a robust research platform for CMD using population-based, routinely collected primary care electronic data. We developed a set of Read code lists (diagnosis, symptoms, treatments) for the identification of anxiety and depression in the General Practice Database (GPD) within the Secure Anonymised Information Linkage Databank at Swansea University, and assessed 12 algorithms for Read codes to define cases according to various criteria. Annual incidence rates were calculated per 1000 person years at risk (PYAR) to assess recording practice for these CMD between January 1(st) 2000 and December 31(st) 2009. We anonymously linked the 2799 MHI-5 Caerphilly Health and Social Needs Survey (CHSNS) respondents aged 18 to 74 years to their routinely collected GP data in SAIL. We estimated the sensitivity, specificity and positive predictive value of the various algorithms using the MHI-5 as the gold standard. The incidence of combined depression/anxiety diagnoses remained stable over the ten-year period in a population of over 500,000 but symptoms increased from 6.5 to 20.7 per 1000 PYAR. A 'historical' GP diagnosis for depression/anxiety currently treated plus a current diagnosis (treated or untreated) resulted in a specificity of 0.96, sensitivity 0.29 and PPV 0.76. Adding current symptom codes improved sensitivity (0.32) with a marginal effect on specificity (0.95) and PPV (0.74). We have developed an algorithm with a high specificity and PPV of detecting cases of anxiety and depression from routine GP data that incorporates symptom codes to reflect GP coding behaviour. We have demonstrated that using diagnosis and current treatment alone to identify cases for depression and anxiety using routinely collected primary care data will miss a number of true cases given changes in GP recording behaviour. The Read code lists plus the developed algorithms will be applicable to other routinely collected primary care datasets, creating a platform for future e-cohort research into these conditions.
NASA Astrophysics Data System (ADS)
Roche-Lima, Abiel; Thulasiram, Ruppa K.
2012-02-01
Finite automata, in which each transition is augmented with an output label in addition to the familiar input label, are considered finite-state transducers. Transducers have been used to analyze some fundamental issues in bioinformatics. Weighted finite-state transducers have been proposed to pairwise alignments of DNA and protein sequences; as well as to develop kernels for computational biology. Machine learning algorithms for conditional transducers have been implemented and used for DNA sequence analysis. Transducer learning algorithms are based on conditional probability computation. It is calculated by using techniques, such as pair-database creation, normalization (with Maximum-Likelihood normalization) and parameters optimization (with Expectation-Maximization - EM). These techniques are intrinsically costly for computation, even worse when are applied to bioinformatics, because the databases sizes are large. In this work, we describe a parallel implementation of an algorithm to learn conditional transducers using these techniques. The algorithm is oriented to bioinformatics applications, such as alignments, phylogenetic trees, and other genome evolution studies. Indeed, several experiences were developed using the parallel and sequential algorithm on Westgrid (specifically, on the Breeze cluster). As results, we obtain that our parallel algorithm is scalable, because execution times are reduced considerably when the data size parameter is increased. Another experience is developed by changing precision parameter. In this case, we obtain smaller execution times using the parallel algorithm. Finally, number of threads used to execute the parallel algorithm on the Breezy cluster is changed. In this last experience, we obtain as result that speedup is considerably increased when more threads are used; however there is a convergence for number of threads equal to or greater than 16.
Onboard Radar Processing Development for Rapid Response Applications
NASA Technical Reports Server (NTRS)
Lou, Yunling; Chien, Steve; Clark, Duane; Doubleday, Josh; Muellerschoen, Ron; Wang, Charles C.
2011-01-01
We are developing onboard processor (OBP) technology to streamline data acquisition on-demand and explore the potential of the L-band SAR instrument onboard the proposed DESDynI mission and UAVSAR for rapid response applications. The technology would enable the observation and use of surface change data over rapidly evolving natural hazards, both as an aid to scientific understanding and to provide timely data to agencies responsible for the management and mitigation of natural disasters. We are adapting complex science algorithms for surface water extent to detect flooding, snow/water/ice classification to assist in transportation/ shipping forecasts, and repeat-pass change detection to detect disturbances. We are near completion of the development of a custom FPGA board to meet the specific memory and processing needs of L-band SAR processor algorithms and high speed interfaces to reformat and route raw radar data to/from the FPGA processor board. We have also developed a high fidelity Matlab model of the SAR processor that is modularized and parameterized for ease to prototype various SAR processor algorithms targeted for the FPGA. We will be testing the OBP and rapid response algorithms with UAVSAR data to determine the fidelity of the products.
Optimization of a Turboprop UAV for Maximum Loiter and Specific Power Using Genetic Algorithm
NASA Astrophysics Data System (ADS)
Dinc, Ali
2016-09-01
In this study, a genuine code was developed for optimization of selected parameters of a turboprop engine for an unmanned aerial vehicle (UAV) by employing elitist genetic algorithm. First, preliminary sizing of a UAV and its turboprop engine was done, by the code in a given mission profile. Secondly, single and multi-objective optimization were done for selected engine parameters to maximize loiter duration of UAV or specific power of engine or both. In single objective optimization, as first case, UAV loiter time was improved with an increase of 17.5% from baseline in given boundaries or constraints of compressor pressure ratio and burner exit temperature. In second case, specific power was enhanced by 12.3% from baseline. In multi-objective optimization case, where previous two objectives are considered together, loiter time and specific power were increased by 14.2% and 9.7% from baseline respectively, for the same constraints.
Detection of nasopharyngeal cancer using confocal Raman spectroscopy and genetic algorithm technique
NASA Astrophysics Data System (ADS)
Li, Shao-Xin; Chen, Qiu-Yan; Zhang, Yan-Jiao; Liu, Zhi-Ming; Xiong, Hong-Lian; Guo, Zhou-Yi; Mai, Hai-Qiang; Liu, Song-Hao
2012-12-01
Raman spectroscopy (RS) and a genetic algorithm (GA) were applied to distinguish nasopharyngeal cancer (NPC) from normal nasopharyngeal tissue. A total of 225 Raman spectra are acquired from 120 tissue sites of 63 nasopharyngeal patients, 56 Raman spectra from normal tissue and 169 Raman spectra from NPC tissue. The GA integrated with linear discriminant analysis (LDA) is developed to differentiate NPC and normal tissue according to spectral variables in the selected regions of 792-805, 867-880, 996-1009, 1086-1099, 1288-1304, 1663-1670, and 1742-1752 cm-1 related to proteins, nucleic acids and lipids of tissue. The GA-LDA algorithms with the leave-one-out cross-validation method provide a sensitivity of 69.2% and specificity of 100%. The results are better than that of principal component analysis which is applied to the same Raman dataset of nasopharyngeal tissue with a sensitivity of 63.3% and specificity of 94.6%. This demonstrates that Raman spectroscopy associated with GA-LDA diagnostic algorithm has enormous potential to detect and diagnose nasopharyngeal cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saad, Yousef
2014-03-19
The master project under which this work is funded had as its main objective to develop computational methods for modeling electronic excited-state and optical properties of various nanostructures. The specific goals of the computer science group were primarily to develop effective numerical algorithms in Density Functional Theory (DFT) and Time Dependent Density Functional Theory (TDDFT). There were essentially four distinct stated objectives. The first objective was to study and develop effective numerical algorithms for solving large eigenvalue problems such as those that arise in Density Functional Theory (DFT) methods. The second objective was to explore so-called linear scaling methods ormore » Methods that avoid diagonalization. The third was to develop effective approaches for Time-Dependent DFT (TDDFT). Our fourth and final objective was to examine effective solution strategies for other problems in electronic excitations, such as the GW/Bethe-Salpeter method, and quantum transport problems.« less
Formal verification of an oral messages algorithm for interactive consistency
NASA Technical Reports Server (NTRS)
Rushby, John
1992-01-01
The formal specification and verification of an algorithm for Interactive Consistency based on the Oral Messages algorithm for Byzantine Agreement is described. We compare our treatment with that of Bevier and Young, who presented a formal specification and verification for a very similar algorithm. Unlike Bevier and Young, who observed that 'the invariant maintained in the recursive subcases of the algorithm is significantly more complicated than is suggested by the published proof' and who found its formal verification 'a fairly difficult exercise in mechanical theorem proving,' our treatment is very close to the previously published analysis of the algorithm, and our formal specification and verification are straightforward. This example illustrates how delicate choices in the formulation of the problem can have significant impact on the readability of its formal specification and on the tractability of its formal verification.
Evaluation of Sienna Cancer Diagnostics hTERT Antibody on 500 Consecutive Urinary Tract Specimens.
Allison, Derek B; Sharma, Rajni; Cowan, Morgan L; VandenBussche, Christopher J
2018-06-06
Telomerase activity can be detected in up to 90% of urothelial carcinomas (UC). Telomerase activity can also be detected in urinary tract cytology (UTC) specimens and indicate an increased risk of UC. We evaluated the performance of a commercially available antibody that putatively binds the telomerase reverse transcriptase (hTERT) subunit on 500 UTC specimens. Unstained CytospinTM preparations were created from residual urine specimens and were stained using the anti-hTERT antibody (SCD-A7). Two algorithms were developed for concatenating the hTERT result and cytologic diagnosis: a "no indeterminates algorithm," in which a negative cytology and positive hTERT result are considered positive, and a "high-specificity algorithm," in which a negative cytology and positive hTERT result are considered indeterminate (and thus negative for comparison to the gold standard). The "no indeterminates algorithm" and "high-specificity algorithm" yielded a sensitivity of 60.6 and 52.1%, a specificity of 70.4 and 90.7%, a positive predictive value of 39.1 and 63.8%, and a negative predictive value of 85.0 and 85.8%, respectively. A positive hTERT result may identify a subset of patients with an increased risk of high-grade UC (HGUC) who may otherwise not be closely followed, while a negative hTERT immunocytochemistry result is associated with a reduction in risk for HGUC. © 2018 The Author(s) Published by S. Karger AG, Basel.
Algorithm Engineering: Concepts and Practice
NASA Astrophysics Data System (ADS)
Chimani, Markus; Klein, Karsten
Over the last years the term algorithm engineering has become wide spread synonym for experimental evaluation in the context of algorithm development. Yet it implies even more. We discuss the major weaknesses of traditional "pen and paper" algorithmics and the ever-growing gap between theory and practice in the context of modern computer hardware and real-world problem instances. We present the key ideas and concepts of the central algorithm engineering cycle that is based on a full feedback loop: It starts with the design of the algorithm, followed by the analysis, implementation, and experimental evaluation. The results of the latter can then be reused for modifications to the algorithmic design, stronger or input-specific theoretic performance guarantees, etc. We describe the individual steps of the cycle, explaining the rationale behind them and giving examples of how to conduct these steps thoughtfully. Thereby we give an introduction to current algorithmic key issues like I/O-efficient or parallel algorithms, succinct data structures, hardware-aware implementations, and others. We conclude with two especially insightful success stories—shortest path problems and text search—where the application of algorithm engineering techniques led to tremendous performance improvements compared with previous state-of-the-art approaches.
Physical and Dynamical Linkages Between Lightning Jumps and Storm Conceptual Models
NASA Technical Reports Server (NTRS)
Schultz, Christopher J.; Carey, Lawrence D.; Schultz, Elise V.; Blakeslee, Richard J.; Goodman, Steven J.
2014-01-01
The presence and rates of total lightning are both correlated to and physically dependent upon storm updraft strength, mixed phase precipitation volume and the size of the charging zone. The updraft modulates the ingredients necessary for electrification within a thunderstorm, while the updraft also plays a critical role in the development of severe and hazardous weather. Therefore utilizing this relationship, the monitoring of lightning rates and jumps provides an additional piece of information on the evolution of a thunderstorm, more often than not, at higher temporal resolution than current operational radar systems. This correlation is the basis for the total lightning jump algorithm that has been developed in recent years. Currently, the lightning jump algorithm is being tested in two separate but important efforts. Schultz et al. (2014; this conference) is exploring the transition of the algorithm from its research based formulation to a fully objective algorithm that includes storm tracking, Geostationary Lightning Mapper (GLM) Proxy data and the lightning jump algorithm. Chronis et al. (2014) provides context for the transition to current operational forecasting using lightning mapping array based products. However, what remains is an end-to-end physical and dynamical basis for coupling total lightning flash rates to severe storm manifestation, so the forecaster has a reason beyond simple correlation to utilize the lightning jump algorithm within their severe storm conceptual models. Therefore, the physical basis for the lightning jump algorithm in relation to severe storm dynamics and microphysics is a key component that must be further explored. Many radar studies have examined flash rates and their relationship to updraft strength, updraft volume, precipitation-sized ice mass, etc.; however, their relationship specifically to lightning jumps is fragmented within the literature. Thus the goal of this study is to use multiple Doppler and polarimetric radar techniques to resolve the physical and dynamical storm characteristics specifically around the time of the lightning jump. This information will help forecasters anticipate lightning jump occurrence, or even be of use to determine future characteristics of a given storm (e.g., development of a mesocyclone, downdraft, or hail signature on radar), providing additional lead time/confidence in the severe storm warning paradigm.
Physical and Dynamical Linkages between Lightning Jumps and Storm Conceptual Models
NASA Technical Reports Server (NTRS)
Schultz, Christopher J.; Carey, Lawrence D.; Schultz, Elise V.; Blakeslee, Richard J.; Goodman, Steven J.
2014-01-01
The presence and rates of total lightning are both correlated to and physically dependent upon storm updraft strength, mixed phase precipitation volume and the size of the charging zone. The updraft modulates the ingredients necessary for electrification within a thunderstorm, while the updraft also plays a critical role in the development of severe and hazardous weather. Therefore utilizing this relationship, the monitoring of lightning rates and jumps provides an additional piece of information on the evolution of a thunderstorm, more often than not, at higher temporal resolution than current operational radar systems. This correlation is the basis for the total lightning jump algorithm that has been developed in recent years. Currently, the lightning jump algorithm is being tested in two separate but important efforts. Schultz et al. (2014; this conference) is exploring the transition of the algorithm from its research based formulation to a fully objective algorithm that includes storm tracking, Geostationary Lightning Mapper (GLM) Proxy data and the lightning jump algorithm. Chronis et al. (2014; this conference) provides context for the transition to current operational forecasting using lightning mapping array based products. However, what remains is an end-to-end physical and dynamical basis for coupling total lightning flash rates to severe storm manifestation, so the forecaster has a reason beyond simple correlation to utilize the lightning jump algorithm within their severe storm conceptual models. Therefore, the physical basis for the lightning jump algorithm in relation to severe storm dynamics and microphysics is a key component that must be further explored. Many radar studies have examined flash rates and their relationship to updraft strength, updraft volume, precipitation-sized ice mass, etc.; however, their relationship specifically to lightning jumps is fragmented within the literature. Thus the goal of this study is to use multiple Doppler and polarimetric radar techniques to resolve the physical and dynamical storm characteristics specifically around the time of the lightning jump. This information will help forecasters anticipate lightning jump occurrence, or even be of use to determine future characteristics of a given storm (e.g., development of a mesocyclone, downdraft, or hail signature on radar), providing additional lead time/confidence in the severe storm warning paradigm.
Post-processing interstitialcy diffusion from molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Bhardwaj, U.; Bukkuru, S.; Warrier, M.
2016-01-01
An algorithm to rigorously trace the interstitialcy diffusion trajectory in crystals is developed. The algorithm incorporates unsupervised learning and graph optimization which obviate the need to input extra domain specific information depending on crystal or temperature of the simulation. The algorithm is implemented in a flexible framework as a post-processor to molecular dynamics (MD) simulations. We describe in detail the reduction of interstitialcy diffusion into known computational problems of unsupervised clustering and graph optimization. We also discuss the steps, computational efficiency and key components of the algorithm. Using the algorithm, thermal interstitialcy diffusion from low to near-melting point temperatures is studied. We encapsulate the algorithms in a modular framework with functionality to calculate diffusion coefficients, migration energies and other trajectory properties. The study validates the algorithm by establishing the conformity of output parameters with experimental values and provides detailed insights for the interstitialcy diffusion mechanism. The algorithm along with the help of supporting visualizations and analysis gives convincing details and a new approach to quantifying diffusion jumps, jump-lengths, time between jumps and to identify interstitials from lattice atoms.
A Modified Distributed Bees Algorithm for Multi-Sensor Task Allocation.
Tkach, Itshak; Jevtić, Aleksandar; Nof, Shimon Y; Edan, Yael
2018-03-02
Multi-sensor systems can play an important role in monitoring tasks and detecting targets. However, real-time allocation of heterogeneous sensors to dynamic targets/tasks that are unknown a priori in their locations and priorities is a challenge. This paper presents a Modified Distributed Bees Algorithm (MDBA) that is developed to allocate stationary heterogeneous sensors to upcoming unknown tasks using a decentralized, swarm intelligence approach to minimize the task detection times. Sensors are allocated to tasks based on sensors' performance, tasks' priorities, and the distances of the sensors from the locations where the tasks are being executed. The algorithm was compared to a Distributed Bees Algorithm (DBA), a Bees System, and two common multi-sensor algorithms, market-based and greedy-based algorithms, which were fitted for the specific task. Simulation analyses revealed that MDBA achieved statistically significant improved performance by 7% with respect to DBA as the second-best algorithm, and by 19% with respect to Greedy algorithm, which was the worst, thus indicating its fitness to provide solutions for heterogeneous multi-sensor systems.
A Modified Distributed Bees Algorithm for Multi-Sensor Task Allocation †
Nof, Shimon Y.; Edan, Yael
2018-01-01
Multi-sensor systems can play an important role in monitoring tasks and detecting targets. However, real-time allocation of heterogeneous sensors to dynamic targets/tasks that are unknown a priori in their locations and priorities is a challenge. This paper presents a Modified Distributed Bees Algorithm (MDBA) that is developed to allocate stationary heterogeneous sensors to upcoming unknown tasks using a decentralized, swarm intelligence approach to minimize the task detection times. Sensors are allocated to tasks based on sensors’ performance, tasks’ priorities, and the distances of the sensors from the locations where the tasks are being executed. The algorithm was compared to a Distributed Bees Algorithm (DBA), a Bees System, and two common multi-sensor algorithms, market-based and greedy-based algorithms, which were fitted for the specific task. Simulation analyses revealed that MDBA achieved statistically significant improved performance by 7% with respect to DBA as the second-best algorithm, and by 19% with respect to Greedy algorithm, which was the worst, thus indicating its fitness to provide solutions for heterogeneous multi-sensor systems. PMID:29498683
Artifact removal algorithms for stroke detection using a multistatic MIST beamforming algorithm.
Ricci, E; Di Domenico, S; Cianca, E; Rossi, T
2015-01-01
Microwave imaging (MWI) has been recently proved as a promising imaging modality for low-complexity, low-cost and fast brain imaging tools, which could play a fundamental role to efficiently manage emergencies related to stroke and hemorrhages. This paper focuses on the UWB radar imaging approach and in particular on the processing algorithms of the backscattered signals. Assuming the use of the multistatic version of the MIST (Microwave Imaging Space-Time) beamforming algorithm, developed by Hagness et al. for the early detection of breast cancer, the paper proposes and compares two artifact removal algorithms. Artifacts removal is an essential step of any UWB radar imaging system and currently considered artifact removal algorithms have been shown not to be effective in the specific scenario of brain imaging. First of all, the paper proposes modifications of a known artifact removal algorithm. These modifications are shown to be effective to achieve good localization accuracy and lower false positives. However, the main contribution is the proposal of an artifact removal algorithm based on statistical methods, which allows to achieve even better performance but with much lower computational complexity.
Post-processing interstitialcy diffusion from molecular dynamics simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhardwaj, U., E-mail: haptork@gmail.com; Bukkuru, S.; Warrier, M.
2016-01-15
An algorithm to rigorously trace the interstitialcy diffusion trajectory in crystals is developed. The algorithm incorporates unsupervised learning and graph optimization which obviate the need to input extra domain specific information depending on crystal or temperature of the simulation. The algorithm is implemented in a flexible framework as a post-processor to molecular dynamics (MD) simulations. We describe in detail the reduction of interstitialcy diffusion into known computational problems of unsupervised clustering and graph optimization. We also discuss the steps, computational efficiency and key components of the algorithm. Using the algorithm, thermal interstitialcy diffusion from low to near-melting point temperatures ismore » studied. We encapsulate the algorithms in a modular framework with functionality to calculate diffusion coefficients, migration energies and other trajectory properties. The study validates the algorithm by establishing the conformity of output parameters with experimental values and provides detailed insights for the interstitialcy diffusion mechanism. The algorithm along with the help of supporting visualizations and analysis gives convincing details and a new approach to quantifying diffusion jumps, jump-lengths, time between jumps and to identify interstitials from lattice atoms. -- Graphical abstract:.« less
High-performance sparse matrix-matrix products on Intel KNL and multicore architectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagasaka, Y; Matsuoka, S; Azad, A
Sparse matrix-matrix multiplication (SpGEMM) is a computational primitive that is widely used in areas ranging from traditional numerical applications to recent big data analysis and machine learning. Although many SpGEMM algorithms have been proposed, hardware specific optimizations for multi- and many-core processors are lacking and a detailed analysis of their performance under various use cases and matrices is not available. We firstly identify and mitigate multiple bottlenecks with memory management and thread scheduling on Intel Xeon Phi (Knights Landing or KNL). Specifically targeting multi- and many-core processors, we develop a hash-table-based algorithm and optimize a heap-based shared-memory SpGEMM algorithm. Wemore » examine their performance together with other publicly available codes. Different from the literature, our evaluation also includes use cases that are representative of real graph algorithms, such as multi-source breadth-first search or triangle counting. Our hash-table and heap-based algorithms are showing significant speedups from libraries in the majority of the cases while different algorithms dominate the other scenarios with different matrix size, sparsity, compression factor and operation type. We wrap up in-depth evaluation results and make a recipe to give the best SpGEMM algorithm for target scenario. A critical finding is that hash-table-based SpGEMM gets a significant performance boost if the nonzeros are not required to be sorted within each row of the output matrix.« less
Point source detection in infrared astronomical surveys
NASA Technical Reports Server (NTRS)
Pelzmann, R. F., Jr.
1977-01-01
Data processing techniques useful for infrared astronomy data analysis systems are reported. This investigation is restricted to consideration of data from space-based telescope systems operating as survey instruments. In this report the theoretical background for specific point-source detection schemes is completed, and the development of specific algorithms and software for the broad range of requirements is begun.
NASA Technical Reports Server (NTRS)
Barszcz, Eric; Mosher, Marianne; Huff, Edward M.
2004-01-01
Healthwatch-2 (HW-2) is a research tool designed to facilitate the development and testing of in-flight health monitoring algorithms. HW-2 software is written in C/C++ and executes on an x86-based computer running the Linux operating system. The executive module has interfaces for collecting various signal data, such as vibration, torque, tachometer, and GPS. It is designed to perform in-flight time or frequency averaging based on specifications defined in a user-supplied configuration file. Averaged data are then passed to a user-supplied algorithm written as a Matlab function. This allows researchers a convenient method for testing in-flight algorithms. In addition to its in-flight capabilities, HW-2 software is also capable of reading archived flight data and processing it as if collected in-flight. This allows algorithms to be developed and tested in the laboratory before being flown. Currently HW-2 has passed its checkout phase and is collecting data on a Bell OH-58C helicopter operated by the U.S. Army at NASA Ames Research Center.
Load Balancing Scientific Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pearce, Olga Tkachyshyn
2014-12-01
The largest supercomputers have millions of independent processors, and concurrency levels are rapidly increasing. For ideal efficiency, developers of the simulations that run on these machines must ensure that computational work is evenly balanced among processors. Assigning work evenly is challenging because many large modern parallel codes simulate behavior of physical systems that evolve over time, and their workloads change over time. Furthermore, the cost of imbalanced load increases with scale because most large-scale scientific simulations today use a Single Program Multiple Data (SPMD) parallel programming model, and an increasing number of processors will wait for the slowest one atmore » the synchronization points. To address load imbalance, many large-scale parallel applications use dynamic load balance algorithms to redistribute work evenly. The research objective of this dissertation is to develop methods to decide when and how to load balance the application, and to balance it effectively and affordably. We measure and evaluate the computational load of the application, and develop strategies to decide when and how to correct the imbalance. Depending on the simulation, a fast, local load balance algorithm may be suitable, or a more sophisticated and expensive algorithm may be required. We developed a model for comparison of load balance algorithms for a specific state of the simulation that enables the selection of a balancing algorithm that will minimize overall runtime.« less
Schneider, Gary; Kachroo, Sumesh; Jones, Natalie; Crean, Sheila; Rotella, Philip; Avetisyan, Ruzan; Reynolds, Matthew W
2012-01-01
The Food and Drug Administration's Mini-Sentinel pilot program initially aims to conduct active surveillance to refine safety signals that emerge for marketed medical products. A key facet of this surveillance is to develop and understand the validity of algorithms for identifying health outcomes of interest from administrative and claims data. This article summarizes the process and findings of the algorithm review of anaphylaxis. PubMed and Iowa Drug Information Service searches were conducted to identify citations applicable to the anaphylaxis health outcome of interest. Level 1 abstract reviews and Level 2 full-text reviews were conducted to find articles using administrative and claims data to identify anaphylaxis and including validation estimates of the coding algorithms. Our search revealed limited literature focusing on anaphylaxis that provided administrative and claims data-based algorithms and validation estimates. Only four studies identified via literature searches provided validated algorithms; however, two additional studies were identified by Mini-Sentinel collaborators and were incorporated. The International Classification of Diseases, Ninth Revision, codes varied, as did the positive predictive value, depending on the cohort characteristics and the specific codes used to identify anaphylaxis. Research needs to be conducted on designing validation studies to test anaphylaxis algorithms and estimating their predictive power, sensitivity, and specificity. Copyright © 2012 John Wiley & Sons, Ltd.
A novel approach for medical research on lymphomas
Conte, Cécile; Palmaro, Aurore; Grosclaude, Pascale; Daubisse-Marliac, Laetitia; Despas, Fabien; Lapeyre-Mestre, Maryse
2018-01-01
Abstract The use of claims database to study lymphomas in real-life conditions is a crucial issue in the future. In this way, it is essential to develop validated algorithms for the identification of lymphomas in these databases. The aim of this study was to assess the validity of diagnosis codes in the French health insurance database to identify incident cases of lymphomas according to results of a regional cancer registry, as the gold standard. Between 2010 and 2013, incident lymphomas were identified in hospital data through 2 algorithms of selection. The results of the identification process and characteristics of incident lymphomas cases were compared with data from the Tarn Cancer Registry. Each algorithm's performance was assessed by estimating sensitivity, predictive positive value, specificity (SPE), and negative predictive value. During the period, the registry recorded 476 incident cases of lymphomas, of which 52 were Hodgkin lymphomas and 424 non-Hodgkin lymphomas. For corresponding area and period, algorithm 1 provides a number of incident cases close to the Registry, whereas algorithm 2 overestimated the number of incident cases by approximately 30%. Both algorithms were highly specific (SPE = 99.9%) but moderately sensitive. The comparative analysis illustrates that similar distribution and characteristics are observed in both sources. Given these findings, the use of claims database can be consider as a pertinent and powerful tool to conduct medico-economic or pharmacoepidemiological studies in lymphomas. PMID:29480830
NASA Technical Reports Server (NTRS)
Stramski, Dariusz; Stramska, Malgorzata; Starr, David OC. (Technical Monitor)
2002-01-01
The overall goal of this project was to validate and refine ocean color algorithms at high latitudes in the north polar region of the Atlantic. The specific objectives were defined as follows: (1) to identify and quantify errors in the satellite-derived water-leaving radiances and chlorophyll concentration; (2) to develop understanding of these errors; and (3) to improve in-water ocean color algorithms for retrieving chlorophyll concentration in the investigated region.
Algorithmic Enhancements for Unsteady Aerodynamics and Combustion Applications
NASA Technical Reports Server (NTRS)
Venkateswaran, Sankaran; Olsen, Michael (Technical Monitor)
2001-01-01
Research in the FY01 focused on the analysis and development of enhanced algorithms for unsteady aerodynamics and chemically reacting flowfields. The research was performed in support of NASA Ames' efforts to improve the capabilities of the in-house computational fluid dynamics code, OVERFLOW. Specifically, the research was focused on the four areas: (1) investigation of stagnation region effects; (2) unsteady preconditioning dual-time procedures; (3) dissipation formulation for combustion; and (4) time-stepping methods for combustion.
2012-10-01
use of R packages implemented in Bioconductor. Each dataset was normalized from raw data using the Frozen RMA (fRMA) algorithm . We applied the same...because development of the specific algorithms and fine tuning of the analytic strategy to accomplish this task was not immediately straightforward. We...express firefly luciferase using a retrovirus that encodes a fusion of luciferase and neomycin phosphotransferase (LucNeo), will be implanted and followed
The impact of database quality on keystroke dynamics authentication
NASA Astrophysics Data System (ADS)
Panasiuk, Piotr; Rybnik, Mariusz; Saeed, Khalid; Rogowski, Marcin
2016-06-01
This paper concerns keystroke dynamics, also partially in the context of touchscreen devices. The authors concentrate on the impact of database quality and propose their algorithm to test database quality issues. The algorithm is used on their own
Beretta, Lorenzo; Santaniello, Alessandro; van Riel, Piet L C M; Coenen, Marieke J H; Scorza, Raffaella
2010-08-06
Epistasis is recognized as a fundamental part of the genetic architecture of individuals. Several computational approaches have been developed to model gene-gene interactions in case-control studies, however, none of them is suitable for time-dependent analysis. Herein we introduce the Survival Dimensionality Reduction (SDR) algorithm, a non-parametric method specifically designed to detect epistasis in lifetime datasets. The algorithm requires neither specification about the underlying survival distribution nor about the underlying interaction model and proved satisfactorily powerful to detect a set of causative genes in synthetic epistatic lifetime datasets with a limited number of samples and high degree of right-censorship (up to 70%). The SDR method was then applied to a series of 386 Dutch patients with active rheumatoid arthritis that were treated with anti-TNF biological agents. Among a set of 39 candidate genes, none of which showed a detectable marginal effect on anti-TNF responses, the SDR algorithm did find that the rs1801274 SNP in the Fc gamma RIIa gene and the rs10954213 SNP in the IRF5 gene non-linearly interact to predict clinical remission after anti-TNF biologicals. Simulation studies and application in a real-world setting support the capability of the SDR algorithm to model epistatic interactions in candidate-genes studies in presence of right-censored data. http://sourceforge.net/projects/sdrproject/.
Zhong, Victor W.; Pfaff, Emily R.; Beavers, Daniel P.; Thomas, Joan; Jaacks, Lindsay M.; Bowlby, Deborah A.; Carey, Timothy S.; Lawrence, Jean M.; Dabelea, Dana; Hamman, Richard F.; Pihoker, Catherine; Saydah, Sharon H.; Mayer-Davis, Elizabeth J.
2014-01-01
Background The performance of automated algorithms for childhood diabetes case ascertainment and type classification may differ by demographic characteristics. Objective This study evaluated the potential of administrative and electronic health record (EHR) data from a large academic care delivery system to conduct diabetes case ascertainment in youth according to type, age and race/ethnicity. Subjects 57,767 children aged <20 years as of December 31, 2011 seen at University of North Carolina Health Care System in 2011 were included. Methods Using an initial algorithm including billing data, patient problem lists, laboratory test results and diabetes related medications between July 1, 2008 and December 31, 2011, presumptive cases were identified and validated by chart review. More refined algorithms were evaluated by type (type 1 versus type 2), age (<10 versus ≥10 years) and race/ethnicity (non-Hispanic white versus “other”). Sensitivity, specificity and positive predictive value were calculated and compared. Results The best algorithm for ascertainment of diabetes cases overall was billing data. The best type 1 algorithm was the ratio of the number of type 1 billing codes to the sum of type 1 and type 2 billing codes ≥0.5. A useful algorithm to ascertain type 2 youth with “other” race/ethnicity was identified. Considerable age and racial/ethnic differences were present in type-non-specific and type 2 algorithms. Conclusions Administrative and EHR data may be used to identify cases of childhood diabetes (any type), and to identify type 1 cases. The performance of type 2 case ascertainment algorithms differed substantially by race/ethnicity. PMID:24913103
Model and Algorithm for Substantiating Solutions for Organization of High-Rise Construction Project
NASA Astrophysics Data System (ADS)
Anisimov, Vladimir; Anisimov, Evgeniy; Chernysh, Anatoliy
2018-03-01
In the paper the models and the algorithm for the optimal plan formation for the organization of the material and logistical processes of the high-rise construction project and their financial support are developed. The model is based on the representation of the optimization procedure in the form of a non-linear problem of discrete programming, which consists in minimizing the execution time of a set of interrelated works by a limited number of partially interchangeable performers while limiting the total cost of performing the work. The proposed model and algorithm are the basis for creating specific organization management methodologies for the high-rise construction project.
A parallel algorithm for switch-level timing simulation on a hypercube multiprocessor
NASA Technical Reports Server (NTRS)
Rao, Hariprasad Nannapaneni
1989-01-01
The parallel approach to speeding up simulation is studied, specifically the simulation of digital LSI MOS circuitry on the Intel iPSC/2 hypercube. The simulation algorithm is based on RSIM, an event driven switch-level simulator that incorporates a linear transistor model for simulating digital MOS circuits. Parallel processing techniques based on the concepts of Virtual Time and rollback are utilized so that portions of the circuit may be simulated on separate processors, in parallel for as large an increase in speed as possible. A partitioning algorithm is also developed in order to subdivide the circuit for parallel processing.
Software for Data Analysis with Graphical Models
NASA Technical Reports Server (NTRS)
Buntine, Wray L.; Roy, H. Scott
1994-01-01
Probabilistic graphical models are being used widely in artificial intelligence and statistics, for instance, in diagnosis and expert systems, as a framework for representing and reasoning with probabilities and independencies. They come with corresponding algorithms for performing statistical inference. This offers a unifying framework for prototyping and/or generating data analysis algorithms from graphical specifications. This paper illustrates the framework with an example and then presents some basic techniques for the task: problem decomposition and the calculation of exact Bayes factors. Other tools already developed, such as automatic differentiation, Gibbs sampling, and use of the EM algorithm, make this a broad basis for the generation of data analysis software.
Mobile transporter path planning
NASA Technical Reports Server (NTRS)
Baffes, Paul; Wang, Lui
1990-01-01
The use of a genetic algorithm (GA) for solving the mobile transporter path planning problem is investigated. The mobile transporter is a traveling robotic vehicle proposed for the space station which must be able to reach any point of the structure autonomously. Elements of the genetic algorithm are explored in both a theoretical and experimental sense. Specifically, double crossover, greedy crossover, and tournament selection techniques are examined. Additionally, the use of local optimization techniques working in concert with the GA are also explored. Recent developments in genetic algorithm theory are shown to be particularly effective in a path planning problem domain, though problem areas can be cited which require more research.
Artificial Neural Network Approach in Laboratory Test Reporting: Learning Algorithms.
Demirci, Ferhat; Akan, Pinar; Kume, Tuncay; Sisman, Ali Riza; Erbayraktar, Zubeyde; Sevinc, Suleyman
2016-08-01
In the field of laboratory medicine, minimizing errors and establishing standardization is only possible by predefined processes. The aim of this study was to build an experimental decision algorithm model open to improvement that would efficiently and rapidly evaluate the results of biochemical tests with critical values by evaluating multiple factors concurrently. The experimental model was built by Weka software (Weka, Waikato, New Zealand) based on the artificial neural network method. Data were received from Dokuz Eylül University Central Laboratory. "Training sets" were developed for our experimental model to teach the evaluation criteria. After training the system, "test sets" developed for different conditions were used to statistically assess the validity of the model. After developing the decision algorithm with three iterations of training, no result was verified that was refused by the laboratory specialist. The sensitivity of the model was 91% and specificity was 100%. The estimated κ score was 0.950. This is the first study based on an artificial neural network to build an experimental assessment and decision algorithm model. By integrating our trained algorithm model into a laboratory information system, it may be possible to reduce employees' workload without compromising patient safety. © American Society for Clinical Pathology, 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Development and evaluation of task-specific NLP framework in China.
Ge, Caixia; Zhang, Yinsheng; Huang, Zhenzhen; Jia, Zheng; Ju, Meizhi; Duan, Huilong; Li, Haomin
2015-01-01
Natural language processing (NLP) has been designed to convert narrative text into structured data. Although some general NLP architectures have been developed, a task-specific NLP framework to facilitate the effective use of data is still a challenge in lexical resource limited regions, such as China. The purpose of this study is to design and develop a task-specific NLP framework to extract targeted information from particular documents by adopting dedicated algorithms on current limited lexical resources. In this framework, a shared and evolving ontology mechanism was designed. The result has shown that such a free text driven platform will accelerate the NLP technology acceptance in China.
Lee, Theresa M; Tu, Karen; Wing, Laura L; Gershon, Andrea S
2017-05-15
Little is known about using electronic medical records to identify patients with chronic obstructive pulmonary disease to improve quality of care. Our objective was to develop electronic medical record algorithms that can accurately identify patients with obstructive pulmonary disease. A retrospective chart abstraction study was conducted on data from the Electronic Medical Record Administrative data Linked Database (EMRALD ® ) housed at the Institute for Clinical Evaluative Sciences. Abstracted charts provided the reference standard based on available physician-diagnoses, chronic obstructive pulmonary disease-specific medications, smoking history and pulmonary function testing. Chronic obstructive pulmonary disease electronic medical record algorithms using combinations of terminology in the cumulative patient profile (CPP; problem list/past medical history), physician billing codes (chronic bronchitis/emphysema/other chronic obstructive pulmonary disease), and prescriptions, were tested against the reference standard. Sensitivity, specificity, and positive/negative predictive values (PPV/NPV) were calculated. There were 364 patients with chronic obstructive pulmonary disease identified in a 5889 randomly sampled cohort aged ≥ 35 years (prevalence = 6.2%). The electronic medical record algorithm consisting of ≥ 3 physician billing codes for chronic obstructive pulmonary disease per year; documentation in the CPP; tiotropium prescription; or ipratropium (or its formulations) prescription and a chronic obstructive pulmonary disease billing code had sensitivity of 76.9% (95% CI:72.2-81.2), specificity of 99.7% (99.5-99.8), PPV of 93.6% (90.3-96.1), and NPV of 98.5% (98.1-98.8). Electronic medical record algorithms can accurately identify patients with chronic obstructive pulmonary disease in primary care records. They can be used to enable further studies in practice patterns and chronic obstructive pulmonary disease management in primary care. NOVEL ALGORITHM SEARCH TECHNIQUE: Researchers develop an algorithm that can accurately search through electronic health records to find patients with chronic lung disease. Mining population-wide data for information on patients diagnosed and treated with chronic obstructive pulmonary disease (COPD) in primary care could help inform future healthcare and spending practices. Theresa Lee at the University of Toronto, Canada, and colleagues used an algorithm to search electronic medical records and identify patients with COPD from doctors' notes, prescriptions and symptom histories. They carefully adjusted the algorithm to improve sensitivity and predictive value by adding details such as specific medications, physician codes related to COPD, and different combinations of terminology in doctors' notes. The team accurately identified 364 patients with COPD in a randomly-selected cohort of 5889 people. Their results suggest opportunities for broader, informative studies of COPD in wider populations.
Needs, Pains, and Motivations in Autonomous Agents.
Starzyk, Janusz A; Graham, James; Puzio, Leszek
This paper presents the development of a motivated learning (ML) agent with symbolic I/O. Our earlier work on the ML agent was enhanced, giving it autonomy for interaction with other agents. Specifically, we equipped the agent with drives and pains that establish its motivations to learn how to respond to desired and undesired events and create related abstract goals. The purpose of this paper is to explore the autonomous development of motivations and memory in agents within a simulated environment. The ML agent has been implemented in a virtual environment created within the NeoAxis game engine. Additionally, to illustrate the benefits of an ML-based agent, we compared the performance of our algorithm against various reinforcement learning (RL) algorithms in a dynamic test scenario, and demonstrated that our ML agent learns better than any of the tested RL agents.This paper presents the development of a motivated learning (ML) agent with symbolic I/O. Our earlier work on the ML agent was enhanced, giving it autonomy for interaction with other agents. Specifically, we equipped the agent with drives and pains that establish its motivations to learn how to respond to desired and undesired events and create related abstract goals. The purpose of this paper is to explore the autonomous development of motivations and memory in agents within a simulated environment. The ML agent has been implemented in a virtual environment created within the NeoAxis game engine. Additionally, to illustrate the benefits of an ML-based agent, we compared the performance of our algorithm against various reinforcement learning (RL) algorithms in a dynamic test scenario, and demonstrated that our ML agent learns better than any of the tested RL agents.
West, Suzanne L; D'Aloisio, Aimee A; Ringel-Kulka, Tamar; Waller, Anna E; Clayton Bordley, W
2007-12-01
Anaphylaxis is a life-threatening condition; drug-related anaphylaxis represents approximately 10% of all cases. We assessed the utility of a statewide emergency department (ED) database for identifying drug-related anaphylaxis in children by developing and validating an algorithm composed of ICD-9-CM codes. There were 1 314,760 visits to South Carolina (SC) emergency departments (EDs) for patients <19 years in 2000-2002. We used ICD-9-CM disease or external cause of injury codes (E-codes) that suggested drug-related anaphylaxis or a severe drug-related allergic reaction. We found 50 cases classifiable as probable or possible drug-related anaphylaxis and 13 as drug-related allergic reactions. We used clinical evaluation by two pediatricians as the 'alloyed gold standard'1 for estimating sensitivity, specificity, and positive predictive value (PPV) of our algorithm. ED-treated drug-related anaphylaxis in the SC pediatric population was 1.56/100,000 person-years based on the algorithm and 0.50/100,000 person-years based on clinical evaluation. Assuming the disease codes we used identified all potential anaphylaxis cases in the database, the sensitivity was 1.00 (95%CI: 0.79, 1.00), specificity was 0.28 (95%CI: 0.16, 0.43), and the PPV was 0.32 (0.20, 0.47) for the algorithm. Sensitivity analyses improved the measurement properties of the algorithm. E-codes were invaluable for developing an anaphylaxis algorithm although the frequently used code of E947.9 was often incorrectly applied. We believe that our algorithm may have over-ascertained drug-related anaphylaxis patients seen in an ED, but the clinical evaluation may have under-represented this diagnosis due to limited information on the offending agent in the abstracted ED records. Post-marketing drug surveillance using ED records may be viable if clinicians were to document drug-related anaphylaxis in the charts so that billing codes could be assigned properly. Copyright 2007 John Wiley & Sons, Ltd.
A novel heuristic algorithm for capacitated vehicle routing problem
NASA Astrophysics Data System (ADS)
Kır, Sena; Yazgan, Harun Reşit; Tüncel, Emre
2017-09-01
The vehicle routing problem with the capacity constraints was considered in this paper. It is quite difficult to achieve an optimal solution with traditional optimization methods by reason of the high computational complexity for large-scale problems. Consequently, new heuristic or metaheuristic approaches have been developed to solve this problem. In this paper, we constructed a new heuristic algorithm based on the tabu search and adaptive large neighborhood search (ALNS) with several specifically designed operators and features to solve the capacitated vehicle routing problem (CVRP). The effectiveness of the proposed algorithm was illustrated on the benchmark problems. The algorithm provides a better performance on large-scaled instances and gained advantage in terms of CPU time. In addition, we solved a real-life CVRP using the proposed algorithm and found the encouraging results by comparison with the current situation that the company is in.
Image-algebraic design of multispectral target recognition algorithms
NASA Astrophysics Data System (ADS)
Schmalz, Mark S.; Ritter, Gerhard X.
1994-06-01
In this paper, we discuss methods for multispectral ATR (Automated Target Recognition) of small targets that are sensed under suboptimal conditions, such as haze, smoke, and low light levels. In particular, we discuss our ongoing development of algorithms and software that effect intelligent object recognition by selecting ATR filter parameters according to ambient conditions. Our algorithms are expressed in terms of IA (image algebra), a concise, rigorous notation that unifies linear and nonlinear mathematics in the image processing domain. IA has been implemented on a variety of parallel computers, with preprocessors available for the Ada and FORTRAN languages. An image algebra C++ class library has recently been made available. Thus, our algorithms are both feasible implementationally and portable to numerous machines. Analyses emphasize the aspects of image algebra that aid the design of multispectral vision algorithms, such as parameterized templates that facilitate the flexible specification of ATR filters.
NASA Astrophysics Data System (ADS)
Bolodurina, I. P.; Parfenov, D. I.
2017-10-01
The goal of our investigation is optimization of network work in virtual data center. The advantage of modern infrastructure virtualization lies in the possibility to use software-defined networks. However, the existing optimization of algorithmic solutions does not take into account specific features working with multiple classes of virtual network functions. The current paper describes models characterizing the basic structures of object of virtual data center. They including: a level distribution model of software-defined infrastructure virtual data center, a generalized model of a virtual network function, a neural network model of the identification of virtual network functions. We also developed an efficient algorithm for the optimization technology of containerization of virtual network functions in virtual data center. We propose an efficient algorithm for placing virtual network functions. In our investigation we also generalize the well renowned heuristic and deterministic algorithms of Karmakar-Karp.
Vectorized Rebinning Algorithm for Fast Data Down-Sampling
NASA Technical Reports Server (NTRS)
Dean, Bruce; Aronstein, David; Smith, Jeffrey
2013-01-01
A vectorized rebinning (down-sampling) algorithm, applicable to N-dimensional data sets, has been developed that offers a significant reduction in computer run time when compared to conventional rebinning algorithms. For clarity, a two-dimensional version of the algorithm is discussed to illustrate some specific details of the algorithm content, and using the language of image processing, 2D data will be referred to as "images," and each value in an image as a "pixel." The new approach is fully vectorized, i.e., the down-sampling procedure is done as a single step over all image rows, and then as a single step over all image columns. Data rebinning (or down-sampling) is a procedure that uses a discretely sampled N-dimensional data set to create a representation of the same data, but with fewer discrete samples. Such data down-sampling is fundamental to digital signal processing, e.g., for data compression applications.
NASA Technical Reports Server (NTRS)
Ramanathan, V.; Inamdar, Anand K.
2005-01-01
Our main task was to validate and improve the generation of surface long wave fluxes from the CERES TOA window channel flux measurements. We completed this task successfully for the clear sky fluxes in the presence of aerosols including dust during the first year of the project. The algorithm we developed for CERES was remarkably successful for clear sky fluxes and we have no further tasks that need to be performed past the requested termination date of December 31, 2004. We found that the information contained in the TOA fluxes was not sufficient to improve upon the current CERES algorithm for cloudy sky fluxes. Given this development and given our success in clear sky fluxes, we do not see any reason to continue our validation work beyond what we have completed. Specific details are given.
SALUTE Grid Application using Message-Oriented Middleware
NASA Astrophysics Data System (ADS)
Atanassov, E.; Dimitrov, D. Sl.; Gurov, T.
2009-10-01
Stochastic ALgorithms for Ultra-fast Transport in sEmiconductors (SALUTE) is a grid application developed for solving various computationally intensive problems which describe ultra-fast carrier transport in semiconductors. SALUTE studies memory and quantum effects during the relaxation process due to electronphonon interaction in one-band semiconductors or quantum wires. Formally, SALUTE integrates a set of novel Monte Carlo, quasi-Monte Carlo and hybrid algorithms for solving various computationally intensive problems which describe the femtosecond relaxation process of optically excited carriers in one-band semiconductors or quantum wires. In this paper we present application-specific job submission and reservation management tool named a Job Track Server (JTS). It is developed using Message-Oriented middleware to implement robust, versatile job submission and tracing mechanism, which can be tailored to application specific failover and quality of service requirements. Experience from using the JTS for submission of SALUTE jobs is presented.
Logical Differential Prediction Bayes Net, improving breast cancer diagnosis for older women.
Nassif, Houssam; Wu, Yirong; Page, David; Burnside, Elizabeth
2012-01-01
Overdiagnosis is a phenomenon in which screening identities cancer which may not go on to cause symptoms or death. Women over 65 who develop breast cancer bear the heaviest burden of overdiagnosis. This work introduces novel machine learning algorithms to improve diagnostic accuracy of breast cancer in aging populations. At the same time, we aim at minimizing unnecessary invasive procedures (thus decreasing false positives) and concomitantly addressing overdiagnosis. We develop a novel algorithm. Logical Differential Prediction Bayes Net (LDP-BN), that calculates the risk of breast disease based on mammography findings. LDP-BN uses Inductive Logic Programming (ILP) to learn relational rules, selects older-specific differentially predictive rules, and incorporates them into a Bayes Net, significantly improving its performance. In addition, LDP-BN offers valuable insight into the classification process, revealing novel older-specific rules that link mass presence to invasive, and calcification presence and lack of detectable mass to DCIS.
A Comparative Analysis of Community Detection Algorithms on Artificial Networks
Yang, Zhao; Algesheimer, René; Tessone, Claudio J.
2016-01-01
Many community detection algorithms have been developed to uncover the mesoscopic properties of complex networks. However how good an algorithm is, in terms of accuracy and computing time, remains still open. Testing algorithms on real-world network has certain restrictions which made their insights potentially biased: the networks are usually small, and the underlying communities are not defined objectively. In this study, we employ the Lancichinetti-Fortunato-Radicchi benchmark graph to test eight state-of-the-art algorithms. We quantify the accuracy using complementary measures and algorithms’ computing time. Based on simple network properties and the aforementioned results, we provide guidelines that help to choose the most adequate community detection algorithm for a given network. Moreover, these rules allow uncovering limitations in the use of specific algorithms given macroscopic network properties. Our contribution is threefold: firstly, we provide actual techniques to determine which is the most suited algorithm in most circumstances based on observable properties of the network under consideration. Secondly, we use the mixing parameter as an easily measurable indicator of finding the ranges of reliability of the different algorithms. Finally, we study the dependency with network size focusing on both the algorithm’s predicting power and the effective computing time. PMID:27476470
The Search for Effective Algorithms for Recovery from Loss of Separation
NASA Technical Reports Server (NTRS)
Butler, Ricky W.; Hagen, George E.; Maddalon, Jeffrey M.; Munoz, Cesar A.; Narawicz, Anthony J.
2012-01-01
Our previous work presented an approach for developing high confidence algorithms for recovering aircraft from loss of separation situations. The correctness theorems for the algorithms relied on several key assumptions, namely that state data for all local aircraft is perfectly known, that resolution maneuvers can be achieved instantaneously, and that all aircraft compute resolutions using exactly the same data. Experiments showed that these assumptions were adequate in cases where the aircraft are far away from losing separation, but are insufficient when the aircraft have already lost separation. This paper describes the results of this experimentation and proposes a new criteria specification for loss of separation recovery that preserves the formal safety properties of the previous criteria while overcoming some key limitations. Candidate algorithms that satisfy the new criteria are presented.
Real-time ECG monitoring and arrhythmia detection using Android-based mobile devices.
Gradl, Stefan; Kugler, Patrick; Lohmuller, Clemens; Eskofier, Bjoern
2012-01-01
We developed an application for Android™-based mobile devices that allows real-time electrocardiogram (ECG) monitoring and automated arrhythmia detection by analyzing ECG parameters. ECG data provided by pre-recorded files or acquired live by accessing a Shimmer™ sensor node via Bluetooth™ can be processed and evaluated. The application is based on the Pan-Tompkins algorithm for QRS-detection and contains further algorithm blocks to detect abnormal heartbeats. The algorithm was validated using the MIT-BIH Arrhythmia and MIT-BIH Supraventricular Arrhythmia databases. More than 99% of all QRS complexes were detected correctly by the algorithm. Overall sensitivity for abnormal beat detection was 89.5% with a specificity of 80.6%. The application is available for download and may be used for real-time ECG-monitoring on mobile devices.
Adaptive rehabilitation gaming system: on-line individualization of stroke rehabilitation.
Nirme, Jens; Duff, Armin; Verschure, Paul F M J
2011-01-01
The effects of stroke differ considerably in degree and symptoms for different patients. It has been shown that specific, individualized and varied therapy favors recovery. The Rehabilitation Gaming System (RGS) is a Virtual Reality (VR) based rehabilitation system designed following these principles. We have developed two algorithms to control the level of task difficulty that a user of the RGS is exposed to, as well as providing controlled variation in the therapy. In this paper, we compare the two algorithms by running numerical simulations and a study with healthy subjects. We show that both algorithms allow for individualization of the challenge level of the task. Further, the results reveal that the algorithm that iteratively learns a user model for each subject also allows a high variation of the task.
Boccaccio, Antonio; Fiorentino, Michele; Uva, Antonio E; Laghetti, Luca N; Monno, Giuseppe
2018-02-01
In a context more and more oriented towards customized medical solutions, we propose a mechanobiology-driven algorithm to determine the optimal geometry of scaffolds for bone regeneration that is the most suited to specific boundary and loading conditions. In spite of the huge number of articles investigating different unit cells for porous biomaterials, no studies are reported in the literature that optimize the geometric parameters of such unit cells based on mechanobiological criteria. Parametric finite element models of scaffolds with rhombicuboctahedron unit cell were developed and incorporated into an optimization algorithm that combines them with a computational mechanobiological model. The algorithm perturbs iteratively the geometry of the unit cell until the best scaffold geometry is identified, i.e. the geometry that allows to maximize the formation of bone. Performances of scaffolds with rhombicuboctahedron unit cell were compared with those of other scaffolds with hexahedron unit cells. We found that scaffolds with rhombicuboctahedron unit cell are particularly suited for supporting medium-low loads, while, for higher loads, scaffolds with hexahedron unit cells are preferable. The proposed algorithm can guide the orthopaedic/surgeon in the choice of the best scaffold to be implanted in a patient-specific anatomic region. Copyright © 2017 Elsevier B.V. All rights reserved.
Exploring context and content links in social media: a latent space method.
Qi, Guo-Jun; Aggarwal, Charu; Tian, Qi; Ji, Heng; Huang, Thomas S
2012-05-01
Social media networks contain both content and context-specific information. Most existing methods work with either of the two for the purpose of multimedia mining and retrieval. In reality, both content and context information are rich sources of information for mining, and the full power of mining and processing algorithms can be realized only with the use of a combination of the two. This paper proposes a new algorithm which mines both context and content links in social media networks to discover the underlying latent semantic space. This mapping of the multimedia objects into latent feature vectors enables the use of any off-the-shelf multimedia retrieval algorithms. Compared to the state-of-the-art latent methods in multimedia analysis, this algorithm effectively solves the problem of sparse context links by mining the geometric structure underlying the content links between multimedia objects. Specifically for multimedia annotation, we show that an effective algorithm can be developed to directly construct annotation models by simultaneously leveraging both context and content information based on latent structure between correlated semantic concepts. We conduct experiments on the Flickr data set, which contains user tags linked with images. We illustrate the advantages of our approach over the state-of-the-art multimedia retrieval techniques.
Papež, Václav; Denaxas, Spiros; Hemingway, Harry
2017-01-01
Electronic Health Records are electronic data generated during or as a byproduct of routine patient care. Structured, semi-structured and unstructured EHR offer researchers unprecedented phenotypic breadth and depth and have the potential to accelerate the development of precision medicine approaches at scale. A main EHR use-case is defining phenotyping algorithms that identify disease status, onset and severity. Phenotyping algorithms utilize diagnoses, prescriptions, laboratory tests, symptoms and other elements in order to identify patients with or without a specific trait. No common standardized, structured, computable format exists for storing phenotyping algorithms. The majority of algorithms are stored as human-readable descriptive text documents making their translation to code challenging due to their inherent complexity and hinders their sharing and re-use across the community. In this paper, we evaluate the two key Semantic Web Technologies, the Web Ontology Language and the Resource Description Framework, for enabling computable representations of EHR-driven phenotyping algorithms.
System theory in industrial patient monitoring: an overview.
Baura, G D
2004-01-01
Patient monitoring refers to the continuous observation of repeating events of physiologic function to guide therapy or to monitor the effectiveness of interventions, and is used primarily in the intensive care unit and operating room. Commonly processed signals are the electrocardiogram, intraarterial blood pressure, arterial saturation of oxygen, and cardiac output. To this day, the majority of physiologic waveform processing in patient monitors is conducted using heuristic curve fitting. However in the early 1990s, a few enterprising engineers and physicians began using system theory to improve their core processing. Applications included improvement of signal-to-noise ratio, either due to low signal levels or motion artifact, and improvement in feature detection. The goal of this mini-symposium is to review the early work in this emerging field, which has led to technologic breakthroughs. In this overview talk, the process of system theory algorithm research and development is discussed. Research for industrial monitors involves substantial data collection, with some data used for algorithm training and the remainder used for validation. Once the algorithms are validated, they are translated into detailed specifications. Development then translates these specifications into DSP code. The DSP code is verified and validated per the Good Manufacturing Practices mandated by FDA.
Demidov, German; Simakova, Tamara; Vnuchkova, Julia; Bragin, Anton
2016-10-22
Multiplex polymerase chain reaction (PCR) is a common enrichment technique for targeted massive parallel sequencing (MPS) protocols. MPS is widely used in biomedical research and clinical diagnostics as the fast and accurate tool for the detection of short genetic variations. However, identification of larger variations such as structure variants and copy number variations (CNV) is still being a challenge for targeted MPS. Some approaches and tools for structural variants detection were proposed, but they have limitations and often require datasets of certain type, size and expected number of amplicons affected by CNVs. In the paper, we describe novel algorithm for high-resolution germinal CNV detection in the PCR-enriched targeted sequencing data and present accompanying tool. We have developed a machine learning algorithm for the detection of large duplications and deletions in the targeted sequencing data generated with PCR-based enrichment step. We have performed verification studies and established the algorithm's sensitivity and specificity. We have compared developed tool with other available methods applicable for the described data and revealed its higher performance. We showed that our method has high specificity and sensitivity for high-resolution copy number detection in targeted sequencing data using large cohort of samples.
Diagnosis of paediatric HIV infection in a primary health care setting with a clinical algorithm.
Horwood, C.; Liebeschuetz, S.; Blaauw, D.; Cassol, S.; Qazi, S.
2003-01-01
OBJECTIVE: To determine the validity of an algorithm used by primary care health workers to identify children with symptomatic human immunodeficiency virus (HIV) infection. This HIV algorithm is being implemented in South Africa as part of the Integrated Management of Childhood Illness (IMCI), a strategy that aims to improve childhood morbidity and mortality by improving care at the primary care level. As AIDS is a leading cause of death in children in southern Africa, diagnosis and management of symptomatic HIV infection was added to the existing IMCI algorithm. METHODS: In total, 690 children who attended the outpatients department in a district hospital in South Africa were assessed with the HIV algorithm and by a paediatrician. All children were then tested for HIV viral load. The validity of the algorithm in detecting symptomatic HIV was compared with clinical diagnosis by a paediatrician and the result of an HIV test. Detailed clinical data were used to improve the algorithm. FINDINGS: Overall, 198 (28.7%) enrolled children were infected with HIV. The paediatrician correctly identified 142 (71.7%) children infected with HIV, whereas the IMCI/HIV algorithm identified 111 (56.1%). Odds ratios were calculated to identify predictors of HIV infection and used to develop an improved HIV algorithm that is 67.2% sensitive and 81.5% specific in clinically detecting HIV infection. CONCLUSIONS: Children with symptomatic HIV infection can be identified effectively by primary level health workers through the use of an algorithm. The improved HIV algorithm developed in this study could be used by countries with high prevalences of HIV to enable IMCI practitioners to identify and care for HIV-infected children. PMID:14997238
Identifying patients with ischemic heart disease in an electronic medical record.
Ivers, Noah; Pylypenko, Bogdan; Tu, Karen
2011-01-01
Increasing utilization of electronic medical records (EMRs) presents an opportunity to efficiently measure quality indicators in primary care. Achieving this goal requires the development of accurate patient-disease registries. This study aimed to develop and validate an algorithm for identifying patients with ischemic heart disease (IHD) within the EMR. An algorithm was developed to search the unstructured text within the medical history fields in the EMR for IHD-related terminology. This algorithm was applied to a 5% random sample of adult patient charts (n = 969) drawn from a convenience sample of 17 Ontario family physicians. The accuracy of the algorithm for identifying patients with IHD was compared to the results of 3 trained chart abstractors. The manual chart abstraction identified 87 patients with IHD in the random sample (prevalence = 8.98%). The accuracy of the algorithm for identifying patients with IHD was as follows: sensitivity = 72.4% (95% confidence interval [CI]: 61.8-81.5); specificity = 99.3% (95% CI: 98.5-99.8); positive predictive value = 91.3% (95% CI: 82.0-96.7); negative predictive value = 97.3 (95% CI: 96.1-98.3); and kappa = 0.79 (95% CI: 0.72-0.86). Patients with IHD can be accurately identified by applying a search algorithm for the medical history fields in the EMR of primary care providers who were not using standardized approaches to code diagnoses. The accuracy compares favorably to other methods for identifying patients with IHD. The results of this study may aid policy makers, researchers, and clinicians to develop registries and to examine quality indicators for IHD in primary care.
Profiling Arthritis Pain with a Decision Tree.
Hung, Man; Bounsanga, Jerry; Liu, Fangzhou; Voss, Maren W
2018-06-01
Arthritis is the leading cause of work disability and contributes to lost productivity. Previous studies showed that various factors predict pain, but they were limited in sample size and scope from a data analytics perspective. The current study applied machine learning algorithms to identify predictors of pain associated with arthritis in a large national sample. Using data from the 2011 to 2012 Medical Expenditure Panel Survey, data mining was performed to develop algorithms to identify factors and patterns that contribute to risk of pain. The model incorporated over 200 variables within the algorithm development, including demographic data, medical claims, laboratory tests, patient-reported outcomes, and sociobehavioral characteristics. The developed algorithms to predict pain utilize variables readily available in patient medical records. Using the machine learning classification algorithm J48 with 50-fold cross-validations, we found that the model can significantly distinguish those with and without pain (c-statistics = 0.9108). The F measure was 0.856, accuracy rate was 85.68%, sensitivity was 0.862, specificity was 0.852, and precision was 0.849. Physical and mental function scores, the ability to climb stairs, and overall assessment of feeling were the most discriminative predictors from the 12 identified variables, predicting pain with 86% accuracy for individuals with arthritis. In this era of rapid expansion of big data application, the nature of healthcare research is moving from hypothesis-driven to data-driven solutions. The algorithms generated in this study offer new insights on individualized pain prediction, allowing the development of cost-effective care management programs for those experiencing arthritis pain. © 2017 World Institute of Pain.
NASA Technical Reports Server (NTRS)
Li, Wei; Saleeb, Atef F.
1995-01-01
This two-part report is concerned with the development of a general framework for the implicit time-stepping integrators for the flow and evolution equations in generalized viscoplastic models. The primary goal is to present a complete theoretical formulation, and to address in detail the algorithmic and numerical analysis aspects involved in its finite element implementation, as well as to critically assess the numerical performance of the developed schemes in a comprehensive set of test cases. On the theoretical side, the general framework is developed on the basis of the unconditionally-stable, backward-Euler difference scheme as a starting point. Its mathematical structure is of sufficient generality to allow a unified treatment of different classes of viscoplastic models with internal variables. In particular, two specific models of this type, which are representative of the present start-of-art in metal viscoplasticity, are considered in applications reported here; i.e., fully associative (GVIPS) and non-associative (NAV) models. The matrix forms developed for both these models are directly applicable for both initially isotropic and anisotropic materials, in general (three-dimensional) situations as well as subspace applications (i.e., plane stress/strain, axisymmetric, generalized plane stress in shells). On the computational side, issues related to efficiency and robustness are emphasized in developing the (local) interative algorithm. In particular, closed-form expressions for residual vectors and (consistent) material tangent stiffness arrays are given explicitly for both GVIPS and NAV models, with their maximum sizes 'optimized' to depend only on the number of independent stress components (but independent of the number of viscoplastic internal state parameters). Significant robustness of the local iterative solution is provided by complementing the basic Newton-Raphson scheme with a line-search strategy for convergence. In the present second part of the report, we focus on the specific details of the numerical schemes, and associated computer algorithms, for the finite-element implementation of GVIPS and NAV models.
Fischer, Christoph; Domer, Benno; Wibmer, Thomas; Penzel, Thomas
2017-03-01
Photoplethysmography has been used in a wide range of medical devices for measuring oxygen saturation, cardiac output, assessing autonomic function, and detecting peripheral vascular disease. Artifacts can render the photoplethysmogram (PPG) useless. Thus, algorithms capable of identifying artifacts are critically important. However, the published PPG algorithms are limited in algorithm and study design. Therefore, the authors developed a novel embedded algorithm for real-time pulse waveform (PWF) segmentation and artifact detection based on a contour analysis in the time domain. This paper provides an overview about PWF and artifact classifications, presents the developed PWF analysis, and demonstrates the implementation on a 32-bit ARM core microcontroller. The PWF analysis was validated with data records from 63 subjects acquired in a sleep laboratory, ergometry laboratory, and intensive care unit in equal parts. The output of the algorithm was compared with harmonized experts' annotations of the PPG with a total duration of 31.5 h. The algorithm achieved a beat-to-beat comparison sensitivity of 99.6%, specificity of 90.5%, precision of 98.5%, and accuracy of 98.3%. The interrater agreement expressed as Cohen's kappa coefficient was 0.927 and as F-measure was 0.990. In conclusion, the PWF analysis seems to be a suitable method for PPG signal quality determination, real-time annotation, data compression, and calculation of additional pulse wave metrics such as amplitude, duration, and rise time.
NASA Astrophysics Data System (ADS)
Plaza, Antonio; Chang, Chein-I.; Plaza, Javier; Valencia, David
2006-05-01
The incorporation of hyperspectral sensors aboard airborne/satellite platforms is currently producing a nearly continual stream of multidimensional image data, and this high data volume has soon introduced new processing challenges. The price paid for the wealth spatial and spectral information available from hyperspectral sensors is the enormous amounts of data that they generate. Several applications exist, however, where having the desired information calculated quickly enough for practical use is highly desirable. High computing performance of algorithm analysis is particularly important in homeland defense and security applications, in which swift decisions often involve detection of (sub-pixel) military targets (including hostile weaponry, camouflage, concealment, and decoys) or chemical/biological agents. In order to speed-up computational performance of hyperspectral imaging algorithms, this paper develops several fast parallel data processing techniques. Techniques include four classes of algorithms: (1) unsupervised classification, (2) spectral unmixing, and (3) automatic target recognition, and (4) onboard data compression. A massively parallel Beowulf cluster (Thunderhead) at NASA's Goddard Space Flight Center in Maryland is used to measure parallel performance of the proposed algorithms. In order to explore the viability of developing onboard, real-time hyperspectral data compression algorithms, a Xilinx Virtex-II field programmable gate array (FPGA) is also used in experiments. Our quantitative and comparative assessment of parallel techniques and strategies may help image analysts in selection of parallel hyperspectral algorithms for specific applications.
NASA Astrophysics Data System (ADS)
Bastidas, L. A.; Pande, S.
2009-12-01
Pattern analysis deals with the automatic detection of patterns in the data and there are a variety of algorithms available for the purpose. These algorithms are commonly called Artificial Intelligence (AI) or data driven algorithms, and have been applied lately to a variety of problems in hydrology and are becoming extremely popular. When confronting such a range of algorithms, the question of which one is the “best” arises. Some algorithms may be preferred because of the lower computational complexity; others take into account prior knowledge of the form and the amount of the data; others are chosen based on a version of the Occam’s razor principle that a simple classifier performs better. Popper has argued, however, that Occam’s razor is without operational value because there is no clear measure or criterion for simplicity. An example of measures that can be used for this purpose are: the so called algorithmic complexity - also known as Kolmogorov complexity or Kolmogorov (algorithmic) entropy; the Bayesian information criterion; or the Vapnik-Chervonenkis dimension. On the other hand, the No Free Lunch Theorem states that there is no best general algorithm, and that specific algorithms are superior only for specific problems. It should be noted also that the appropriate algorithm and the appropriate complexity are constrained by the finiteness of the available data and the uncertainties associated with it. Thus, there is compromise between the complexity of the algorithm, the data properties, and the robustness of the predictions. We discuss the above topics; briefly review the historical development of applications with particular emphasis on statistical learning theory (SLT), also known as machine learning (ML) of which support vector machines and relevant vector machines are the most commonly known algorithms. We present some applications of such algorithms for distributed hydrologic modeling; and introduce an example of how the complexity measure can be applied for appropriate model choice within the context of applications in hydrologic modeling intended for use in studies about water resources and water resources management and their direct relation to extreme conditions or natural hazards.
Anatomy-Based Algorithms for Detecting Oral Cancer Using Reflectance and Fluorescence Spectroscopy
McGee, Sasha; Mardirossian, Vartan; Elackattu, Alphi; Mirkovic, Jelena; Pistey, Robert; Gallagher, George; Kabani, Sadru; Yu, Chung-Chieh; Wang, Zimmern; Badizadegan, Kamran; Grillone, Gregory; Feld, Michael S.
2010-01-01
Objectives We used reflectance and fluorescence spectroscopy to noninvasively and quantitatively distinguish benign from dysplastic/malignant oral lesions. We designed diagnostic algorithms to account for differences in the spectral properties among anatomic sites (gingiva, buccal mucosa, etc). Methods In vivo reflectance and fluorescence spectra were collected from 71 patients with oral lesions. The tissue was then biopsied and the specimen evaluated by histopathology. Quantitative parameters related to tissue morphology and biochemistry were extracted from the spectra. Diagnostic algorithms specific for combinations of sites with similar spectral properties were developed. Results Discrimination of benign from dysplastic/malignant lesions was most successful when algorithms were designed for individual sites (area under the receiver operator characteristic curve [ROC-AUC], 0.75 for the lateral surface of the tongue) and was least accurate when all sites were combined (ROC-AUC, 0.60). The combination of sites with similar spectral properties (floor of mouth and lateral surface of the tongue) yielded an ROC-AUC of 0.71. Conclusions Accurate spectroscopic detection of oral disease must account for spectral variations among anatomic sites. Anatomy-based algorithms for single sites or combinations of sites demonstrated good diagnostic performance in distinguishing benign lesions from dysplastic/malignant lesions and consistently performed better than algorithms developed for all sites combined. PMID:19999369
Sampling Approaches for Multi-Domain Internet Performance Measurement Infrastructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calyam, Prasad
2014-09-15
The next-generation of high-performance networks being developed in DOE communities are critical for supporting current and emerging data-intensive science applications. The goal of this project is to investigate multi-domain network status sampling techniques and tools to measure/analyze performance, and thereby provide “network awareness” to end-users and network operators in DOE communities. We leverage the infrastructure and datasets available through perfSONAR, which is a multi-domain measurement framework that has been widely deployed in high-performance computing and networking communities; the DOE community is a core developer and the largest adopter of perfSONAR. Our investigations include development of semantic scheduling algorithms, measurement federationmore » policies, and tools to sample multi-domain and multi-layer network status within perfSONAR deployments. We validate our algorithms and policies with end-to-end measurement analysis tools for various monitoring objectives such as network weather forecasting, anomaly detection, and fault-diagnosis. In addition, we develop a multi-domain architecture for an enterprise-specific perfSONAR deployment that can implement monitoring-objective based sampling and that adheres to any domain-specific measurement policies.« less
Song, JooBong; Lee, Chaiwoo; Lee, WonJung; Bahn, Sangwoo; Jung, ChanJu; Yun, Myung Hwan
2015-01-01
For the successful implementation of job rotation, jobs should be scheduled systematically so that physical workload is evenly distributed with the use of various body parts. However, while the potential benefits are widely recognized by research and industry, there is still a need for a more effective and efficient algorithm that considers multiple work-related factors in job rotation scheduling. This study suggests a type of job rotation algorithm that aims to minimize musculoskeletal disorders with the approach of decreasing the overall workload. Multiple work characteristics are evaluated as inputs to the proposed algorithm. Important factors, such as physical workload on specific body parts, working height, involvement of heavy lifting, and worker characteristics such as physical disorders, are included in the algorithm. For evaluation of the overall workload in a given workplace, an objective function was defined to aggregate the scores from the individual factors. A case study, where the algorithm was applied at a workplace, is presented with an examination on its applicability and effectiveness. With the application of the suggested algorithm in case study, the value of the final objective function, which is the weighted sum of the workload in various body parts, decreased by 71.7% when compared to a typical sequential assignment and by 84.9% when compared to a single job assignment, which is doing one job all day. An algorithm was developed using the data from the ergonomic evaluation tool used in the plant and from the known factors related to workload. The algorithm was developed so that it can be efficiently applied with a small amount of required inputs, while covering a wide range of work-related factors. A case study showed that the algorithm was beneficial in determining a job rotation schedule aimed at minimizing workload across body parts.
Quadratic Finite Element Method for 1D Deterministic Transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolar, Jr., D R; Ferguson, J M
2004-01-06
In the discrete ordinates, or SN, numerical solution of the transport equation, both the spatial ({und r}) and angular ({und {Omega}}) dependences on the angular flux {psi}{und r},{und {Omega}}are modeled discretely. While significant effort has been devoted toward improving the spatial discretization of the angular flux, we focus on improving the angular discretization of {psi}{und r},{und {Omega}}. Specifically, we employ a Petrov-Galerkin quadratic finite element approximation for the differencing of the angular variable ({mu}) in developing the one-dimensional (1D) spherical geometry S{sub N} equations. We develop an algorithm that shows faster convergence with angular resolution than conventional S{sub N} algorithms.
Analysis and simulation tools for solar array power systems
NASA Astrophysics Data System (ADS)
Pongratananukul, Nattorn
This dissertation presents simulation tools developed specifically for the design of solar array power systems. Contributions are made in several aspects of the system design phases, including solar source modeling, system simulation, and controller verification. A tool to automate the study of solar array configurations using general purpose circuit simulators has been developed based on the modeling of individual solar cells. Hierarchical structure of solar cell elements, including semiconductor properties, allows simulation of electrical properties as well as the evaluation of the impact of environmental conditions. A second developed tool provides a co-simulation platform with the capability to verify the performance of an actual digital controller implemented in programmable hardware such as a DSP processor, while the entire solar array including the DC-DC power converter is modeled in software algorithms running on a computer. This "virtual plant" allows developing and debugging code for the digital controller, and also to improve the control algorithm. One important task in solar arrays is to track the maximum power point on the array in order to maximize the power that can be delivered. Digital controllers implemented with programmable processors are particularly attractive for this task because sophisticated tracking algorithms can be implemented and revised when needed to optimize their performance. The proposed co-simulation tools are thus very valuable in developing and optimizing the control algorithm, before the system is built. Examples that demonstrate the effectiveness of the proposed methodologies are presented. The proposed simulation tools are also valuable in the design of multi-channel arrays. In the specific system that we have designed and tested, the control algorithm is implemented on a single digital signal processor. In each of the channels the maximum power point is tracked individually. In the prototype we built, off-the-shelf commercial DC-DC converters were utilized. At the end, the overall performance of the entire system was evaluated using solar array simulators capable of simulating various I-V characteristics, and also by using an electronic load. Experimental results are presented.
A fast bilinear structure from motion algorithm using a video sequence and inertial sensors.
Ramachandran, Mahesh; Veeraraghavan, Ashok; Chellappa, Rama
2011-01-01
In this paper, we study the benefits of the availability of a specific form of additional information—the vertical direction (gravity) and the height of the camera, both of which can be conveniently measured using inertial sensors and a monocular video sequence for 3D urban modeling. We show that in the presence of this information, the SfM equations can be rewritten in a bilinear form. This allows us to derive a fast, robust, and scalable SfM algorithm for large scale applications. The SfM algorithm developed in this paper is experimentally demonstrated to have favorable properties compared to the sparse bundle adjustment algorithm. We provide experimental evidence indicating that the proposed algorithm converges in many cases to solutions with lower error than state-of-art implementations of bundle adjustment. We also demonstrate that for the case of large reconstruction problems, the proposed algorithm takes lesser time to reach its solution compared to bundle adjustment. We also present SfM results using our algorithm on the Google StreetView research data set.
Comparison of algorithms to generate event times conditional on time-dependent covariates.
Sylvestre, Marie-Pierre; Abrahamowicz, Michal
2008-06-30
The Cox proportional hazards model with time-dependent covariates (TDC) is now a part of the standard statistical analysis toolbox in medical research. As new methods involving more complex modeling of time-dependent variables are developed, simulations could often be used to systematically assess the performance of these models. Yet, generating event times conditional on TDC requires well-designed and efficient algorithms. We compare two classes of such algorithms: permutational algorithms (PAs) and algorithms based on a binomial model. We also propose a modification of the PA to incorporate a rejection sampler. We performed a simulation study to assess the accuracy, stability, and speed of these algorithms in several scenarios. Both classes of algorithms generated data sets that, once analyzed, provided virtually unbiased estimates with comparable variances. In terms of computational efficiency, the PA with the rejection sampler reduced the time necessary to generate data by more than 50 per cent relative to alternative methods. The PAs also allowed more flexibility in the specification of the marginal distributions of event times and required less calibration.
A formally verified algorithm for interactive consistency under a hybrid fault model
NASA Technical Reports Server (NTRS)
Lincoln, Patrick; Rushby, John
1993-01-01
Consistent distribution of single-source data to replicated computing channels is a fundamental problem in fault-tolerant system design. The 'Oral Messages' (OM) algorithm solves this problem of Interactive Consistency (Byzantine Agreement) assuming that all faults are worst-cass. Thambidurai and Park introduced a 'hybrid' fault model that distinguished three fault modes: asymmetric (Byzantine), symmetric, and benign; they also exhibited, along with an informal 'proof of correctness', a modified version of OM. Unfortunately, their algorithm is flawed. The discipline of mechanically checked formal verification eventually enabled us to develop a correct algorithm for Interactive Consistency under the hybrid fault model. This algorithm withstands $a$ asymmetric, $s$ symmetric, and $b$ benign faults simultaneously, using $m+1$ rounds, provided $n is greater than 2a + 2s + b + m$, and $m\\geg a$. We present this algorithm, discuss its subtle points, and describe its formal specification and verification in PVS. We argue that formal verification systems such as PVS are now sufficiently effective that their application to fault-tolerance algorithms should be considered routine.
Mukherjee, Kaushik; Gupta, Sanjay
2017-03-01
Several mechanobiology algorithms have been employed to simulate bone ingrowth around porous coated implants. However, there is a scarcity of quantitative comparison between the efficacies of commonly used mechanoregulatory algorithms. The objectives of this study are: (1) to predict peri-acetabular bone ingrowth using cell-phenotype specific algorithm and to compare these predictions with those obtained using phenomenological algorithm and (2) to investigate the influences of cellular parameters on bone ingrowth. The variation in host bone material property and interfacial micromotion of the implanted pelvis were mapped onto the microscale model of implant-bone interface. An overall variation of 17-88 % in peri-acetabular bone ingrowth was observed. Despite differences in predicted tissue differentiation patterns during the initial period, both the algorithms predicted similar spatial distribution of neo-tissue layer, after attainment of equilibrium. Results indicated that phenomenological algorithm, being computationally faster than the cell-phenotype specific algorithm, might be used to predict peri-prosthetic bone ingrowth. The cell-phenotype specific algorithm, however, was found to be useful in numerically investigating the influence of alterations in cellular activities on bone ingrowth, owing to biologically related factors. Amongst the host of cellular activities, matrix production rate of bone tissue was found to have predominant influence on peri-acetabular bone ingrowth.
Van Hise, Christopher B; Greenslade, Jaimi H; Parsonage, William; Than, Martin; Young, Joanna; Cullen, Louise
2018-02-01
To externally validate a clinical decision rule incorporating heart fatty acid binding protein (h-FABP), high-sensitivity troponin (hs-cTn) and electrocardiogram (ECG) for the detection of acute myocardial infarction (AMI) on presentation to the Emergency Department. We also investigated whether this clinical decision rule improved identification of AMI over algorithms incorporating hs-cTn and ECG only. This study included data from 789 patients from the Brisbane ADAPT cohort and 441 patients from the Christchurch TIMI RCT cohort. The primary outcome was index AMI. Sensitivity, specificity, positive predictive value and negative predictive value were used to assess the diagnostic accuracy of the algorithms. 1230 patients were recruited, including 112 (9.1%) with AMI. The algorithm including h-FABP and hs-cTnT had 100% sensitivity and 32.4% specificity. The algorithm utilising h-FABP and hs-cTnI had similar sensitivity (99.1%) and higher specificity (43.4%). The hs-cTnI and hs-cTnT algorithms without h-FABP both had a sensitivity of 98.2%; a result that was not significantly different from either algorithm incorporating h-FABP. Specificity was higher for the hs-cTnI algorithm (68.1%) compared to the hs-cTnT algorithm (33.0%). The specificity of the algorithm incorporating hs-cTnI alone was also significantly higher than both of the algorithms incorporating h-FABP (p<0.01). For patients presenting to the Emergency Department with chest pain, an algorithm incorporating h-FABP, hs-cTn and ECG has high accuracy and can rule out up to 40% of patients. An algorithm incorporating only hs-cTn and ECG has similar sensitivity and may rule out a higher proportion of patients. Each of the algorithms can be used to safely identify patients as low risk for AMI on presentation to the Emergency Department. Copyright © 2017 The Canadian Society of Clinical Chemists. All rights reserved.
Cybernetics and Education (Special Issue)
ERIC Educational Resources Information Center
Kopstein, Felix F., Ed.
1977-01-01
This is a special issue examining the potential of cybernetics in educational technology. Articles discuss: cybernetic methods, algorithms, feedback learning theory, a structural approach to behavioral objectives and criterion-referenced testing, task specifications and diagnosis, teacher-child interaction, educational development, teaching…
NASA Technical Reports Server (NTRS)
Solloway, C. B.; Wakeland, W.
1976-01-01
First-order Markov model developed on digital computer for population with specific characteristics. System is user interactive, self-documenting, and does not require user to have complete understanding of underlying model details. Contains thorough error-checking algorithms on input and default capabilities.
The PlusCal Algorithm Language
NASA Astrophysics Data System (ADS)
Lamport, Leslie
Algorithms are different from programs and should not be described with programming languages. The only simple alternative to programming languages has been pseudo-code. PlusCal is an algorithm language that can be used right now to replace pseudo-code, for both sequential and concurrent algorithms. It is based on the TLA + specification language, and a PlusCal algorithm is automatically translated to a TLA + specification that can be checked with the TLC model checker and reasoned about formally.
On-Board Cryospheric Change Detection By The Autonomous Sciencecraft Experiment
NASA Astrophysics Data System (ADS)
Doggett, T.; Greeley, R.; Castano, R.; Cichy, B.; Chien, S.; Davies, A.; Baker, V.; Dohm, J.; Ip, F.
2004-12-01
The Autonomous Sciencecraft Experiment (ASE) is operating on-board Earth Observing - 1 (EO-1) with the Hyperion hyper-spectral visible/near-IR spectrometer. ASE science activities include autonomous monitoring of cryopsheric changes, triggering the collection of additional data when change is detected and filtering of null data such as no change or cloud cover. This would have application to the study of cryospheres on Earth, Mars and the icy moons of the outer solar system. A cryosphere classification algorithm, in combination with a previously developed cloud algorithm [1] has been tested on-board ten times from March through August 2004. The cloud algorithm correctly screened out three scenes with total cloud cover, while the cryosphere algorithm detected alpine snow cover in the Rocky Mountains, lake thaw near Madison, Wisconsin, and the presence and subsequent break-up of sea ice in the Barrow Strait of the Canadian Arctic. Hyperion has 220 bands ranging from 400 to 2400 nm, with a spatial resolution of 30 m/pixel and a spectral resolution of 10 nm. Limited on-board memory and processing speed imposed the constraint that only partially processed Level 0.5 data with dark image subtraction and gain factors applied, but not full radiometric calibration. In addition, a maximum of 12 bands could be used for any stacked sequence of algorithms run for a scene on-board. The cryosphere algorithm was developed to classify snow, water, ice and land, using six Hyperion bands at 427, 559, 661, 864, 1245 and 1649 nm. Of these, only 427 nm does overlap with the cloud algorithm. The cloud algorithm was developed with Level 1 data, which introduces complications because of the incomplete calibration of SWIR in Level 0.5 data, including a high level of noise in the 1377 nm band used by the cloud algorithm. Development of a more robust cryosphere classifier, including cloud classification specifically adapted to Level 0.5, is in progress for deployment on EO-1 as part of continued ASE operations. [1] Griffin, M.K. et al., Cloud Cover Detection Algorithm For EO-1 Hyperion Imagery, SPIE 17, 2003.
Bisele, Maria; Bencsik, Martin; Lewis, Martin G C; Barnett, Cleveland T
2017-01-01
Assessment methods in human locomotion often involve the description of normalised graphical profiles and/or the extraction of discrete variables. Whilst useful, these approaches may not represent the full complexity of gait data. Multivariate statistical methods, such as Principal Component Analysis (PCA) and Discriminant Function Analysis (DFA), have been adopted since they have the potential to overcome these data handling issues. The aim of the current study was to develop and optimise a specific machine learning algorithm for processing human locomotion data. Twenty participants ran at a self-selected speed across a 15m runway in barefoot and shod conditions. Ground reaction forces (BW) and kinematics were measured at 1000 Hz and 100 Hz, respectively from which joint angles (°), joint moments (N.m.kg-1) and joint powers (W.kg-1) for the hip, knee and ankle joints were calculated in all three anatomical planes. Using PCA and DFA, power spectra of the kinematic and kinetic variables were used as a training database for the development of a machine learning algorithm. All possible combinations of 10 out of 20 participants were explored to find the iteration of individuals that would optimise the machine learning algorithm. The results showed that the algorithm was able to successfully predict whether a participant ran shod or barefoot in 93.5% of cases. To the authors' knowledge, this is the first study to optimise the development of a machine learning algorithm.
Bisele, Maria; Bencsik, Martin; Lewis, Martin G. C.
2017-01-01
Assessment methods in human locomotion often involve the description of normalised graphical profiles and/or the extraction of discrete variables. Whilst useful, these approaches may not represent the full complexity of gait data. Multivariate statistical methods, such as Principal Component Analysis (PCA) and Discriminant Function Analysis (DFA), have been adopted since they have the potential to overcome these data handling issues. The aim of the current study was to develop and optimise a specific machine learning algorithm for processing human locomotion data. Twenty participants ran at a self-selected speed across a 15m runway in barefoot and shod conditions. Ground reaction forces (BW) and kinematics were measured at 1000 Hz and 100 Hz, respectively from which joint angles (°), joint moments (N.m.kg-1) and joint powers (W.kg-1) for the hip, knee and ankle joints were calculated in all three anatomical planes. Using PCA and DFA, power spectra of the kinematic and kinetic variables were used as a training database for the development of a machine learning algorithm. All possible combinations of 10 out of 20 participants were explored to find the iteration of individuals that would optimise the machine learning algorithm. The results showed that the algorithm was able to successfully predict whether a participant ran shod or barefoot in 93.5% of cases. To the authors’ knowledge, this is the first study to optimise the development of a machine learning algorithm. PMID:28886059
Stanley, Nick; Glide-Hurst, Carri; Kim, Jinkoo; Adams, Jeffrey; Li, Shunshan; Wen, Ning; Chetty, Indrin J.; Zhong, Hualiang
2014-01-01
The quality of adaptive treatment planning depends on the accuracy of its underlying deformable image registration (DIR). The purpose of this study is to evaluate the performance of two DIR algorithms, B-spline–based deformable multipass (DMP) and deformable demons (Demons), implemented in a commercial software package. Evaluations were conducted using both computational and physical deformable phantoms. Based on a finite element method (FEM), a total of 11 computational models were developed from a set of CT images acquired from four lung and one prostate cancer patients. FEM generated displacement vector fields (DVF) were used to construct the lung and prostate image phantoms. Based on a fast-Fourier transform technique, image noise power spectrum was incorporated into the prostate image phantoms to create simulated CBCT images. The FEM-DVF served as a gold standard for verification of the two registration algorithms performed on these phantoms. The registration algorithms were also evaluated at the homologous points quantified in the CT images of a physical lung phantom. The results indicated that the mean errors of the DMP algorithm were in the range of 1.0 ~ 3.1 mm for the computational phantoms and 1.9 mm for the physical lung phantom. For the computational prostate phantoms, the corresponding mean error was 1.0–1.9 mm in the prostate, 1.9–2.4 mm in the rectum, and 1.8–2.1 mm over the entire patient body. Sinusoidal errors induced by B-spline interpolations were observed in all the displacement profiles of the DMP registrations. Regions of large displacements were observed to have more registration errors. Patient-specific FEM models have been developed to evaluate the DIR algorithms implemented in the commercial software package. It has been found that the accuracy of these algorithms is patient-dependent and related to various factors including tissue deformation magnitudes and image intensity gradients across the regions of interest. This may suggest that DIR algorithms need to be verified for each registration instance when implementing adaptive radiation therapy. PMID:24257278
Stanley, Nick; Glide‐Hurst, Carri; Kim, Jinkoo; Adams, Jeffrey; Li, Shunshan; Wen, Ning; Chetty, Indrin J
2013-01-01
The quality of adaptive treatment planning depends on the accuracy of its underlying deformable image registration (DIR). The purpose of this study is to evaluate the performance of two DIR algorithms, B‐spline‐based deformable multipass (DMP) and deformable demons (Demons), implemented in a commercial software package. Evaluations were conducted using both computational and physical deformable phantoms. Based on a finite element method (FEM), a total of 11 computational models were developed from a set of CT images acquired from four lung and one prostate cancer patients. FEM generated displacement vector fields (DVF) were used to construct the lung and prostate image phantoms. Based on a fast‐Fourier transform technique, image noise power spectrum was incorporated into the prostate image phantoms to create simulated CBCT images. The FEM‐DVF served as a gold standard for verification of the two registration algorithms performed on these phantoms. The registration algorithms were also evaluated at the homologous points quantified in the CT images of a physical lung phantom. The results indicated that the mean errors of the DMP algorithm were in the range of 1.0~3.1mm for the computational phantoms and 1.9 mm for the physical lung phantom. For the computational prostate phantoms, the corresponding mean error was 1.0–1.9 mm in the prostate, 1.9–2.4 mm in the rectum, and 1.8–2.1 mm over the entire patient body. Sinusoidal errors induced by B‐spline interpolations were observed in all the displacement profiles of the DMP registrations. Regions of large displacements were observed to have more registration errors. Patient‐specific FEM models have been developed to evaluate the DIR algorithms implemented in the commercial software package. It has been found that the accuracy of these algorithms is patient‐dependent and related to various factors including tissue deformation magnitudes and image intensity gradients across the regions of interest. This may suggest that DIR algorithms need to be verified for each registration instance when implementing adaptive radiation therapy. PACS numbers: 87.10.Kn, 87.55.km, 87.55.Qr, 87.57.nj
Kitahata, Mari M; Drozd, Daniel R; Crane, Heidi M; Van Rompaey, Stephen E; Althoff, Keri N; Gange, Stephen J; Klein, Marina B; Lucas, Gregory M; Abraham, Alison G; Lo Re, Vincent; McReynolds, Justin; Lober, William B; Mendes, Adell; Modur, Sharada P; Jing, Yuezhou; Morton, Elizabeth J; Griffith, Margaret A; Freeman, Aimee M; Moore, Richard D
2015-01-01
The burden of HIV disease has shifted from traditional AIDS-defining illnesses to serious non-AIDS-defining comorbid conditions. Research aimed at improving HIV-related comorbid disease outcomes requires well-defined, verified clinical endpoints. We developed methods to ascertain and verify end-stage renal disease (ESRD) and end-stage liver disease (ESLD) and validated screening algorithms within the largest HIV cohort collaboration in North America (NA-ACCORD). Individuals who screened positive among all participants in twelve cohorts enrolled between January 1996 and December 2009 underwent medical record review to verify incident ESRD or ESLD using standardized protocols. We randomly sampled 6% of contributing cohorts to determine the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of ESLD and ESRD screening algorithms in a validation subcohort. Among 43,433 patients screened for ESRD, 822 screened positive of which 620 met clinical criteria for ESRD. The algorithm had 100% sensitivity, 99% specificity, 82% PPV, and 100% NPV for ESRD. Among 41,463 patients screened for ESLD, 2,024 screened positive of which 645 met diagnostic criteria for ESLD. The algorithm had 100% sensitivity, 95% specificity, 27% PPV, and 100% NPV for ESLD. Our methods proved robust for ascertainment of ESRD and ESLD in persons infected with HIV.
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Mcclain, Charles R.; Comiso, Josefino C.; Fraser, Robert S.; Firestone, James K.; Schieber, Brian D.; Yeh, Eueng-Nan; Arrigo, Kevin R.; Sullivan, Cornelius W.
1994-01-01
Although the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Calibration and Validation Program relies on the scientific community for the collection of bio-optical and atmospheric correction data as well as for algorithm development, it does have the responsibility for evaluating and comparing the algorithms and for ensuring that the algorithms are properly implemented within the SeaWiFS Data Processing System. This report consists of a series of sensitivity and algorithm (bio-optical, atmospheric correction, and quality control) studies based on Coastal Zone Color Scanner (CZCS) and historical ancillary data undertaken to assist in the development of SeaWiFS specific applications needed for the proper execution of that responsibility. The topics presented are as follows: (1) CZCS bio-optical algorithm comparison, (2) SeaWiFS ozone data analysis study, (3) SeaWiFS pressure and oxygen absorption study, (4) pixel-by-pixel pressure and ozone correction study for ocean color imagery, (5) CZCS overlapping scenes study, (6) a comparison of CZCS and in situ pigment concentrations in the Southern Ocean, (7) the generation of ancillary data climatologies, (8) CZCS sensor ringing mask comparison, and (9) sun glint flag sensitivity study.
Sevy, Alexander M.; Jacobs, Tim M.; Crowe, James E.; Meiler, Jens
2015-01-01
Computational protein design has found great success in engineering proteins for thermodynamic stability, binding specificity, or enzymatic activity in a ‘single state’ design (SSD) paradigm. Multi-specificity design (MSD), on the other hand, involves considering the stability of multiple protein states simultaneously. We have developed a novel MSD algorithm, which we refer to as REstrained CONvergence in multi-specificity design (RECON). The algorithm allows each state to adopt its own sequence throughout the design process rather than enforcing a single sequence on all states. Convergence to a single sequence is encouraged through an incrementally increasing convergence restraint for corresponding positions. Compared to MSD algorithms that enforce (constrain) an identical sequence on all states the energy landscape is simplified, which accelerates the search drastically. As a result, RECON can readily be used in simulations with a flexible protein backbone. We have benchmarked RECON on two design tasks. First, we designed antibodies derived from a common germline gene against their diverse targets to assess recovery of the germline, polyspecific sequence. Second, we design “promiscuous”, polyspecific proteins against all binding partners and measure recovery of the native sequence. We show that RECON is able to efficiently recover native-like, biologically relevant sequences in this diverse set of protein complexes. PMID:26147100
Probabilistic estimation of residential air exchange rates for ...
Residential air exchange rates (AERs) are a key determinant in the infiltration of ambient air pollution indoors. Population-based human exposure models using probabilistic approaches to estimate personal exposure to air pollutants have relied on input distributions from AER measurements. An algorithm for probabilistically estimating AER was developed based on the Lawrence Berkley National Laboratory Infiltration model utilizing housing characteristics and meteorological data with adjustment for window opening behavior. The algorithm was evaluated by comparing modeled and measured AERs in four US cities (Los Angeles, CA; Detroit, MI; Elizabeth, NJ; and Houston, TX) inputting study-specific data. The impact on the modeled AER of using publically available housing data representative of the region for each city was also assessed. Finally, modeled AER based on region-specific inputs was compared with those estimated using literature-based distributions. While modeled AERs were similar in magnitude to the measured AER they were consistently lower for all cities except Houston. AERs estimated using region-specific inputs were lower than those using study-specific inputs due to differences in window opening probabilities. The algorithm produced more spatially and temporally variable AERs compared with literature-based distributions reflecting within- and between-city differences, helping reduce error in estimates of air pollutant exposure. Published in the Journal of
Learning Instance-Specific Predictive Models
Visweswaran, Shyam; Cooper, Gregory F.
2013-01-01
This paper introduces a Bayesian algorithm for constructing predictive models from data that are optimized to predict a target variable well for a particular instance. This algorithm learns Markov blanket models, carries out Bayesian model averaging over a set of models to predict a target variable of the instance at hand, and employs an instance-specific heuristic to locate a set of suitable models to average over. We call this method the instance-specific Markov blanket (ISMB) algorithm. The ISMB algorithm was evaluated on 21 UCI data sets using five different performance measures and its performance was compared to that of several commonly used predictive algorithms, including nave Bayes, C4.5 decision tree, logistic regression, neural networks, k-Nearest Neighbor, Lazy Bayesian Rules, and AdaBoost. Over all the data sets, the ISMB algorithm performed better on average on all performance measures against all the comparison algorithms. PMID:25045325
West, Caroline; Ploth, David; Fonner, Virginia; Mbwambo, Jessie; Fredrick, Francis; Sweat, Michael
2016-04-01
Noncommunicable diseases are on pace to outnumber infectious disease as the leading cause of death in sub-Saharan Africa, yet many questions remain unanswered with concern toward effective methods of screening for type II diabetes mellitus (DM) in this resource-limited setting. We aim to design a screening algorithm for type II DM that optimizes sensitivity and specificity of identifying individuals with undiagnosed DM, as well as affordability to health systems and individuals. Baseline demographic and clinical data, including hemoglobin A1c (HbA1c), were collected from 713 participants using probability sampling of the general population. We used these data, along with model parameters obtained from the literature, to mathematically model 8 purposed DM screening algorithms, while optimizing the sensitivity and specificity using Monte Carlo and Latin Hypercube simulation. An algorithm that combines risk assessment and measurement of fasting blood glucose was found to be superior for the most resource-limited settings (sensitivity 68%, sensitivity 99% and cost per patient having DM identified as $2.94). Incorporating HbA1c testing improves the sensitivity to 75.62%, but raises the cost per DM case identified to $6.04. The preferred algorithms are heavily biased to diagnose those with more severe cases of DM. Using basic risk assessment tools and fasting blood sugar testing in lieu of HbA1c testing in resource-limited settings could allow for significantly more feasible DM screening programs with reasonable sensitivity and specificity. Copyright © 2016 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.
Limitations and potentials of current motif discovery algorithms
Hu, Jianjun; Li, Bin; Kihara, Daisuke
2005-01-01
Computational methods for de novo identification of gene regulation elements, such as transcription factor binding sites, have proved to be useful for deciphering genetic regulatory networks. However, despite the availability of a large number of algorithms, their strengths and weaknesses are not sufficiently understood. Here, we designed a comprehensive set of performance measures and benchmarked five modern sequence-based motif discovery algorithms using large datasets generated from Escherichia coli RegulonDB. Factors that affect the prediction accuracy, scalability and reliability are characterized. It is revealed that the nucleotide and the binding site level accuracy are very low, while the motif level accuracy is relatively high, which indicates that the algorithms can usually capture at least one correct motif in an input sequence. To exploit diverse predictions from multiple runs of one or more algorithms, a consensus ensemble algorithm has been developed, which achieved 6–45% improvement over the base algorithms by increasing both the sensitivity and specificity. Our study illustrates limitations and potentials of existing sequence-based motif discovery algorithms. Taking advantage of the revealed potentials, several promising directions for further improvements are discussed. Since the sequence-based algorithms are the baseline of most of the modern motif discovery algorithms, this paper suggests substantial improvements would be possible for them. PMID:16284194
Intelligent Medical Systems for Aerospace Emergency Medical Services
NASA Technical Reports Server (NTRS)
Epler, John; Zimmer, Gary
2004-01-01
The purpose of this project is to develop a portable, hands free device for emergency medical decision support to be used in remote or confined settings by non-physician providers. Phase I of the project will entail the development of a voice-activated device that will utilize an intelligent algorithm to provide guidance in establishing an airway in an emergency situation. The interactive, hands free software will process requests for assistance based on verbal prompts and algorithmic decision-making. The device will allow the CMO to attend to the patient while receiving verbal instruction. The software will also feature graphic representations where it is felt helpful in aiding in procedures. We will also develop a training program to orient users to the algorithmic approach, the use of the hardware and specific procedural considerations. We will validate the efficacy of this mode of technology application by testing in the Johns Hopkins Department of Emergency Medicine. Phase I of the project will focus on the validation of the proposed algorithm, testing and validation of the decision making tool and modifications of medical equipment. In Phase 11, we will produce the first generation software for hands-free, interactive medical decision making for use in acute care environments.
Road detection and buried object detection in elevated EO/IR imagery
NASA Astrophysics Data System (ADS)
Kennedy, Levi; Kolba, Mark P.; Walters, Joshua R.
2012-06-01
To assist the warfighter in visually identifying potentially dangerous roadside objects, the U.S. Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate (NVESD) has developed an elevated video sensor system testbed for data collection. This system provides color and mid-wave infrared (MWIR) imagery. Signal Innovations Group (SIG) has developed an automated processing capability that detects the road within the sensor field of view and identifies potentially threatening buried objects within the detected road. The road detection algorithm leverages system metadata to project the collected imagery onto a flat ground plane, allowing for more accurate detection of the road as well as the direct specification of realistic physical constraints in the shape of the detected road. Once the road has been detected in an image frame, a buried object detection algorithm is applied to search for threatening objects within the detected road space. The buried object detection algorithm leverages textural and pixel intensity-based features to detect potential anomalies and then classifies them as threatening or non-threatening objects. Both the road detection and the buried object detection algorithms have been developed to facilitate their implementation in real-time in the NVESD system.
Behets, F. M.; Miller, W. C.; Cohen, M. S.
2001-01-01
The syndromic treatment of gonococcal and chlamydial infections in women seeking primary care in clinics where resources are scarce, as recommended by WHO and implemented in many developing countries, necessitates a balance to be struck between overtreatment and undertreatment. The present paper identifies factors that are relevant to the selection of specific strategies for syndromic treatment in the above circumstances. Among them are the general aspects of decision-making and caveats concerning the rational decision-making approach. The positive and negative implications are outlined of providing or withholding treatment following a specific algorithm with a given accuracy to detect infection, i.e. sensitivity, specificity and predictive values. Other decision-making considerations that are identified are related to implementation and include the stability of risk factors with regard to time, space and the implementer, acceptability by stakeholders, and environmental constraints. There is a need to consider empirically developed treatment algorithms as a basis for policy discourse, to be evaluated together with the evidence, alternatives and arguments by the stakeholders. PMID:11731816
Multisensor benchmark data for riot control
NASA Astrophysics Data System (ADS)
Jäger, Uwe; Höpken, Marc; Dürr, Bernhard; Metzler, Jürgen; Willersinn, Dieter
2008-10-01
Quick and precise response is essential for riot squads when coping with escalating violence in crowds. Often it is just a single person, known as the leader of the gang, who instigates other people and thus is responsible of excesses. Putting this single person out of action in most cases leads to a de-escalating situation. Fostering de-escalations is one of the main tasks of crowd and riot control. To do so, extensive situation awareness is mandatory for the squads and can be promoted by technical means such as video surveillance using sensor networks. To develop software tools for situation awareness appropriate input data with well-known quality is needed. Furthermore, the developer must be able to measure algorithm performance and ongoing improvements. Last but not least, after algorithm development has finished and marketing aspects emerge, meeting of specifications must be proved. This paper describes a multisensor benchmark which exactly serves this purpose. We first define the underlying algorithm task. Then we explain details about data acquisition and sensor setup and finally we give some insight into quality measures of multisensor data. Currently, the multisensor benchmark described in this paper is applied to the development of basic algorithms for situational awareness, e.g. tracking of individuals in a crowd.
Sensor Network Middleware for Cyber-Physical Systems: Opportunities and Challenges
NASA Astrophysics Data System (ADS)
Singh, G.
2015-12-01
Wireless Sensor Network middleware typically provides abstractions for common tasks such as atomicity, synchronization and communication with the intention of isolating the developers of distributed applications from lower-level details of the underlying platforms. Developing middleware to meet the performance constraints of applications is an important challenge. Although one would like to develop generic middleware services which can be used in a variety of different applications, efficiency considerations often force developers to design middleware and algorithms customized to specific operational contexts. This presentation will discuss techniques to design middleware that is customizable to suit the performance needs of specific applications. We also discuss the challenges poised in designing middleware for pervasive sensor networks and cyber-physical systems with specific focus on environmental monitoring.
Video-rate nanoscopy enabled by sCMOS camera-specific single-molecule localization algorithms
Huang, Fang; Hartwich, Tobias M. P.; Rivera-Molina, Felix E.; Lin, Yu; Duim, Whitney C.; Long, Jane J.; Uchil, Pradeep D.; Myers, Jordan R.; Baird, Michelle A.; Mothes, Walther; Davidson, Michael W.; Toomre, Derek; Bewersdorf, Joerg
2013-01-01
Newly developed scientific complementary metal–oxide–semiconductor (sCMOS) cameras have the potential to dramatically accelerate data acquisition in single-molecule switching nanoscopy (SMSN) while simultaneously increasing the effective quantum efficiency. However, sCMOS-intrinsic pixel-dependent readout noise substantially reduces the localization precision and introduces localization artifacts. Here we present algorithms that overcome these limitations and provide unbiased, precise localization of single molecules at the theoretical limit. In combination with a multi-emitter fitting algorithm, we demonstrate single-molecule localization super-resolution imaging at up to 32 reconstructed images/second (recorded at 1,600–3,200 camera frames/second) in both fixed and living cells. PMID:23708387
Optimizing the Attitude Control of Small Satellite Constellations for Rapid Response Imaging
NASA Astrophysics Data System (ADS)
Nag, S.; Li, A.
2016-12-01
Distributed Space Missions (DSMs) such as formation flight and constellations, are being recognized as important solutions to increase measurement samples over space and time. Given the increasingly accurate attitude control systems emerging in the commercial market, small spacecraft now have the ability to slew and point within few minutes of notice. In spite of hardware development in CubeSats at the payload (e.g. NASA InVEST) and subsystems (e.g. Blue Canyon Technologies), software development for tradespace analysis in constellation design (e.g. Goddard's TAT-C), planning and scheduling development in single spacecraft (e.g. GEO-CAPE) and aerial flight path optimizations for UAVs (e.g. NASA Sensor Web), there is a gap in open-source, open-access software tools for planning and scheduling distributed satellite operations in terms of pointing and observing targets. This paper will demonstrate results from a tool being developed for scheduling pointing operations of narrow field-of-view (FOV) sensors over mission lifetime to maximize metrics such as global coverage and revisit statistics. Past research has shown the need for at least fourteen satellites to cover the Earth globally everyday using a LandSat-like sensor. Increasing the FOV three times reduces the need to four satellites, however adds image distortion and BRDF complexities to the observed reflectance. If narrow FOV sensors on a small satellite constellation were commanded using robust algorithms to slew their sensor dynamically, they would be able to coordinately cover the global landmass much faster without compensating for spatial resolution or BRDF effects. Our algorithm to optimize constellation satellite pointing is based on a dynamic programming approach under the constraints of orbital mechanics and existing attitude control systems for small satellites. As a case study for our algorithm, we minimize the time required to cover the 17000 Landsat images with maximum signal to noise ratio fall-off and minimum image distortion among the satellites, using Landsat's specifications. Attitude-specific constraints such as power consumption, response time, and stability were factored into the optimality computations. The algorithm can integrate cloud cover predictions, specific ground and air assets and angular constraints.
Improvement of the cost-benefit analysis algorithm for high-rise construction projects
NASA Astrophysics Data System (ADS)
Gafurov, Andrey; Skotarenko, Oksana; Plotnikov, Vladimir
2018-03-01
The specific nature of high-rise investment projects entailing long-term construction, high risks, etc. implies a need to improve the standard algorithm of cost-benefit analysis. An improved algorithm is described in the article. For development of the improved algorithm of cost-benefit analysis for high-rise construction projects, the following methods were used: weighted average cost of capital, dynamic cost-benefit analysis of investment projects, risk mapping, scenario analysis, sensitivity analysis of critical ratios, etc. This comprehensive approach helped to adapt the original algorithm to feasibility objectives in high-rise construction. The authors put together the algorithm of cost-benefit analysis for high-rise construction projects on the basis of risk mapping and sensitivity analysis of critical ratios. The suggested project risk management algorithms greatly expand the standard algorithm of cost-benefit analysis in investment projects, namely: the "Project analysis scenario" flowchart, improving quality and reliability of forecasting reports in investment projects; the main stages of cash flow adjustment based on risk mapping for better cost-benefit project analysis provided the broad range of risks in high-rise construction; analysis of dynamic cost-benefit values considering project sensitivity to crucial variables, improving flexibility in implementation of high-rise projects.
Shrestha, Swastina; Dave, Amish J; Losina, Elena; Katz, Jeffrey N
2016-07-07
Administrative health care data are frequently used to study disease burden and treatment outcomes in many conditions including osteoarthritis (OA). OA is a chronic condition with significant disease burden affecting over 27 million adults in the US. There are few studies examining the performance of administrative data algorithms to diagnose OA. The purpose of this study is to perform a systematic review of administrative data algorithms for OA diagnosis; and, to evaluate the diagnostic characteristics of algorithms based on restrictiveness and reference standards. Two reviewers independently screened English-language articles published in Medline, Embase, PubMed, and Cochrane databases that used administrative data to identify OA cases. Each algorithm was classified as restrictive or less restrictive based on number and type of administrative codes required to satisfy the case definition. We recorded sensitivity and specificity of algorithms and calculated positive likelihood ratio (LR+) and positive predictive value (PPV) based on assumed OA prevalence of 0.1, 0.25, and 0.50. The search identified 7 studies that used 13 algorithms. Of these 13 algorithms, 5 were classified as restrictive and 8 as less restrictive. Restrictive algorithms had lower median sensitivity and higher median specificity compared to less restrictive algorithms when reference standards were self-report and American college of Rheumatology (ACR) criteria. The algorithms compared to reference standard of physician diagnosis had higher sensitivity and specificity than those compared to self-reported diagnosis or ACR criteria. Restrictive algorithms are more specific for OA diagnosis and can be used to identify cases when false positives have higher costs e.g. interventional studies. Less restrictive algorithms are more sensitive and suited for studies that attempt to identify all cases e.g. screening programs.
Data Analysis with Graphical Models: Software Tools
NASA Technical Reports Server (NTRS)
Buntine, Wray L.
1994-01-01
Probabilistic graphical models (directed and undirected Markov fields, and combined in chain graphs) are used widely in expert systems, image processing and other areas as a framework for representing and reasoning with probabilities. They come with corresponding algorithms for performing probabilistic inference. This paper discusses an extension to these models by Spiegelhalter and Gilks, plates, used to graphically model the notion of a sample. This offers a graphical specification language for representing data analysis problems. When combined with general methods for statistical inference, this also offers a unifying framework for prototyping and/or generating data analysis algorithms from graphical specifications. This paper outlines the framework and then presents some basic tools for the task: a graphical version of the Pitman-Koopman Theorem for the exponential family, problem decomposition, and the calculation of exact Bayes factors. Other tools already developed, such as automatic differentiation, Gibbs sampling, and use of the EM algorithm, make this a broad basis for the generation of data analysis software.
Hypersonic Vehicle Propulsion System Control Model Development Roadmap and Activities
NASA Technical Reports Server (NTRS)
Stueber, Thomas J.; Le, Dzu K.; Vrnak, Daniel R.
2009-01-01
The NASA Fundamental Aeronautics Program Hypersonic project is directed towards fundamental research for two classes of hypersonic vehicles: highly reliable reusable launch systems (HRRLS) and high-mass Mars entry systems (HMMES). The objective of the hypersonic guidance, navigation, and control (GN&C) discipline team is to develop advanced guidance and control algorithms to enable efficient and effective operation of these challenging vehicles. The ongoing work at the NASA Glenn Research Center supports the hypersonic GN&C effort in developing tools to aid the design of advanced control algorithms that specifically address the propulsion system of the HRRLSclass vehicles. These tools are being developed in conjunction with complementary research and development activities in hypersonic propulsion at Glenn and elsewhere. This report is focused on obtaining control-relevant dynamic models of an HRRLS-type hypersonic vehicle propulsion system.
A study of interactive control scheduling and economic assessment for robotic systems
NASA Technical Reports Server (NTRS)
1982-01-01
A class of interactive control systems is derived by generalizing interactive manipulator control systems. Tasks of interactive control systems can be represented as a network of a finite set of actions which have specific operational characteristics and specific resource requirements, and which are of limited duration. This has enabled the decomposition of the overall control algorithm simultaneously and asynchronously. The performance benefits of sensor referenced and computer-aided control of manipulators in a complex environment is evaluated. The first phase of the CURV arm control system software development and the basic features of the control algorithms and their software implementation are presented. An optimal solution for a production scheduling problem that will be easy to implement in practical situations is investigated.
Advani, Aneel; Goldstein, Mary; Shahar, Yuval; Musen, Mark A
2003-01-01
Automated quality assessment of clinician actions and patient outcomes is a central problem in guideline- or standards-based medical care. In this paper we describe a model representation and algorithm for deriving structured quality indicators and auditing protocols from formalized specifications of guidelines used in decision support systems. We apply the model and algorithm to the assessment of physician concordance with a guideline knowledge model for hypertension used in a decision-support system. The properties of our solution include the ability to derive automatically context-specific and case-mix-adjusted quality indicators that can model global or local levels of detail about the guideline parameterized by defining the reliability of each indicator or element of the guideline.
Parallel digital forensics infrastructure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liebrock, Lorie M.; Duggan, David Patrick
2009-10-01
This report documents the architecture and implementation of a Parallel Digital Forensics infrastructure. This infrastructure is necessary for supporting the design, implementation, and testing of new classes of parallel digital forensics tools. Digital Forensics has become extremely difficult with data sets of one terabyte and larger. The only way to overcome the processing time of these large sets is to identify and develop new parallel algorithms for performing the analysis. To support algorithm research, a flexible base infrastructure is required. A candidate architecture for this base infrastructure was designed, instantiated, and tested by this project, in collaboration with New Mexicomore » Tech. Previous infrastructures were not designed and built specifically for the development and testing of parallel algorithms. With the size of forensics data sets only expected to increase significantly, this type of infrastructure support is necessary for continued research in parallel digital forensics. This report documents the implementation of the parallel digital forensics (PDF) infrastructure architecture and implementation.« less
Rodrigues, Anabela; Gomes, Manuela; Carrilho, Alexandre; Nunes, António Robalo; Orfão, Rosário; Alves, Ângela; Aguiar, José; Campos, Manuel
2014-01-01
Several clinical settings are associated with specific coagulopathies that predispose to uncontrolled bleeding. With the growing concern about the need for optimizing transfusion practices and improving treatment of the bleeding patient, a group of 9 Portuguese specialists (Share Network Group) was created to discuss and develop algorithms for the clinical evaluation and control of coagulopathic bleeding in the following perioperative clinical settings: surgery, trauma, and postpartum hemorrhage. The 3 algorithms developed by the group were presented at the VIII National Congress of the Associação Portuguesa de Imuno-hemoterapia in October 2013. They aim to provide a structured approach for clinicians to rapidly diagnose the status of coagulopathy in order to achieve an earlier and more effective bleeding control, reduce transfusion requirements, and improve patient outcomes. The group highlights the importance of communication between different specialties involved in the care of bleeding patients in order to achieve better results. PMID:25424528
NASA Technical Reports Server (NTRS)
Kobayashi, Takahisa; Simon, Donald L.
2002-01-01
As part of the NASA Aviation Safety Program, a unique model-based diagnostics method that employs neural networks and genetic algorithms for aircraft engine performance diagnostics has been developed and demonstrated at the NASA Glenn Research Center against a nonlinear gas turbine engine model. Neural networks are applied to estimate the internal health condition of the engine, and genetic algorithms are used for sensor fault detection, isolation, and quantification. This hybrid architecture combines the excellent nonlinear estimation capabilities of neural networks with the capability to rank the likelihood of various faults given a specific sensor suite signature. The method requires a significantly smaller data training set than a neural network approach alone does, and it performs the combined engine health monitoring objectives of performance diagnostics and sensor fault detection and isolation in the presence of nominal and degraded engine health conditions.
Mehrabi, Saeed; Krishnan, Anand; Roch, Alexandra M; Schmidt, Heidi; Li, DingCheng; Kesterson, Joe; Beesley, Chris; Dexter, Paul; Schmidt, Max; Palakal, Mathew; Liu, Hongfang
2015-01-01
In this study we have developed a rule-based natural language processing (NLP) system to identify patients with family history of pancreatic cancer. The algorithm was developed in a Unstructured Information Management Architecture (UIMA) framework and consisted of section segmentation, relation discovery, and negation detection. The system was evaluated on data from two institutions. The family history identification precision was consistent across the institutions shifting from 88.9% on Indiana University (IU) dataset to 87.8% on Mayo Clinic dataset. Customizing the algorithm on the the Mayo Clinic data, increased its precision to 88.1%. The family member relation discovery achieved precision, recall, and F-measure of 75.3%, 91.6% and 82.6% respectively. Negation detection resulted in precision of 99.1%. The results show that rule-based NLP approaches for specific information extraction tasks are portable across institutions; however customization of the algorithm on the new dataset improves its performance.
Connecting a cognitive architecture to robotic perception
NASA Astrophysics Data System (ADS)
Kurup, Unmesh; Lebiere, Christian; Stentz, Anthony; Hebert, Martial
2012-06-01
We present an integrated architecture in which perception and cognition interact and provide information to each other leading to improved performance in real-world situations. Our system integrates the Felzenswalb et. al. object-detection algorithm with the ACT-R cognitive architecture. The targeted task is to predict and classify pedestrian behavior in a checkpoint scenario, most specifically to discriminate between normal versus checkpoint-avoiding behavior. The Felzenswalb algorithm is a learning-based algorithm for detecting and localizing objects in images. ACT-R is a cognitive architecture that has been successfully used to model human cognition with a high degree of fidelity on tasks ranging from basic decision-making to the control of complex systems such as driving or air traffic control. The Felzenswalb algorithm detects pedestrians in the image and provides ACT-R a set of features based primarily on their locations. ACT-R uses its pattern-matching capabilities, specifically its partial-matching and blending mechanisms, to track objects across multiple images and classify their behavior based on the sequence of observed features. ACT-R also provides feedback to the Felzenswalb algorithm in the form of expected object locations that allow the algorithm to eliminate false-positives and improve its overall performance. This capability is an instance of the benefits pursued in developing a richer interaction between bottom-up perceptual processes and top-down goal-directed cognition. We trained the system on individual behaviors (only one person in the scene) and evaluated its performance across single and multiple behavior sets.
The Development of Mobile Application to Introduce Historical Monuments in Manado
NASA Astrophysics Data System (ADS)
Rupilu, Moshe Markhasi; Suyoto; Santoso, Albertus Joko
2018-02-01
Learning the historical value of a monument is important because it preserves cultural and historical values, as well as expanding our personal insight. In Indonesia, particularly in Manado, North Sulawesi, there are many monuments. The monuments are erected for history, religion, culture and past war, however these aren't written in detail in the monuments. To get information on specific monument, manual search was required, i.e. asking related people or sources. Based on the problem, the development of an application which can utilize LBS (Location Based Service) method and some algorithmic methods specifically designed for mobile devices such as Smartphone, was required so that information on every monument in Manado can be displayed in detail using GPS coordinate. The application was developed by KNN method with K-means algorithm and collaborative filtering to recommend monument information to tourist. Tourists will get recommended options filtered by distance. Then, this method was also used to look for the closest monument from user. KNN algorithm determines the closest location by making comparisons according to calculation of longitude and latitude of several monuments tourist wants to visit. With this application, tourists who want to know and find information on monuments in Manado can do them easily and quickly because monument information is recommended directly to user without having to make selection. Moreover, tourist can see recommended monument information and search several monuments in Manado in real time.
Modeling Group Interactions via Open Data Sources
2011-08-30
data. The state-of-art search engines are designed to help general query-specific search and not suitable for finding disconnected online groups. The...groups, (2) developing innovative mathematical and statistical models and efficient algorithms that leverage existing search engines and employ
CellAnimation: an open source MATLAB framework for microscopy assays.
Georgescu, Walter; Wikswo, John P; Quaranta, Vito
2012-01-01
Advances in microscopy technology have led to the creation of high-throughput microscopes that are capable of generating several hundred gigabytes of images in a few days. Analyzing such wealth of data manually is nearly impossible and requires an automated approach. There are at present a number of open-source and commercial software packages that allow the user to apply algorithms of different degrees of sophistication to the images and extract desired metrics. However, the types of metrics that can be extracted are severely limited by the specific image processing algorithms that the application implements, and by the expertise of the user. In most commercial software, code unavailability prevents implementation by the end user of newly developed algorithms better suited for a particular type of imaging assay. While it is possible to implement new algorithms in open-source software, rewiring an image processing application requires a high degree of expertise. To obviate these limitations, we have developed an open-source high-throughput application that allows implementation of different biological assays such as cell tracking or ancestry recording, through the use of small, relatively simple image processing modules connected into sophisticated imaging pipelines. By connecting modules, non-expert users can apply the particular combination of well-established and novel algorithms developed by us and others that are best suited for each individual assay type. In addition, our data exploration and visualization modules make it easy to discover or select specific cell phenotypes from a heterogeneous population. CellAnimation is distributed under the Creative Commons Attribution-NonCommercial 3.0 Unported license (http://creativecommons.org/licenses/by-nc/3.0/). CellAnimationsource code and documentation may be downloaded from www.vanderbilt.edu/viibre/software/documents/CellAnimation.zip. Sample data are available at www.vanderbilt.edu/viibre/software/documents/movies.zip. walter.georgescu@vanderbilt.edu Supplementary data available at Bioinformatics online.
An iterative algorithm for calculating stylus radius unambiguously
NASA Astrophysics Data System (ADS)
Vorburger, T. V.; Zheng, A.; Renegar, T. B.; Song, J.-F.; Ma, L.
2011-08-01
The stylus radius is an important specification for stylus instruments and is commonly provided by instrument manufacturers. However, it is difficult to measure the stylus radius unambiguously. Accurate profiles of the stylus tip may be obtained by profiling over an object sharper than itself, such as a razor blade. However, the stylus profile thus obtained is a partial arc, and unless the shape of the stylus tip is a perfect sphere or circle, the effective value of the radius depends on the length of the tip profile over which the radius is determined. We have developed an iterative, least squares algorithm aimed to determine the effective least squares stylus radius unambiguously. So far, the algorithm converges to reasonable results for the least squares stylus radius. We suggest that the algorithm be considered for adoption in documentary standards describing the properties of stylus instruments.
Detection of algorithmic trading
NASA Astrophysics Data System (ADS)
Bogoev, Dimitar; Karam, Arzé
2017-10-01
We develop a new approach to reflect the behavior of algorithmic traders. Specifically, we provide an analytical and tractable way to infer patterns of quote volatility and price momentum consistent with different types of strategies employed by algorithmic traders, and we propose two ratios to quantify these patterns. Quote volatility ratio is based on the rate of oscillation of the best ask and best bid quotes over an extremely short period of time; whereas price momentum ratio is based on identifying patterns of rapid upward or downward movement in prices. The two ratios are evaluated across several asset classes. We further run a two-stage Artificial Neural Network experiment on the quote volatility ratio; the first stage is used to detect the quote volatility patterns resulting from algorithmic activity, while the second is used to validate the quality of signal detection provided by our measure.
Merging Sounder and Imager Data for Improved Cloud Depiction on SNPP and JPSS.
NASA Astrophysics Data System (ADS)
Heidinger, A. K.; Holz, R.; Li, Y.; Platnick, S. E.; Wanzong, S.
2017-12-01
Under the NOAA GOES-R Algorithm Working Group (AWG) Program, NOAA supports the development of an Infrared (IR) Optimal Estimation (OE) Cloud Height Algorithm (ACHA). ACHA is an enterprise solution that supports many geostationary and polar orbiting imager sensors. ACHA is operational at NOAA on SNPP VIIRS and has been adopted as the cloud height algorithm for the NASA NPP Atmospheric Suite of products. Being an OE algorithm, ACHA is flexible and capable of using additional observations and constraints. We have modified ACHA to use sounder (CriS) observations to improve the cloud detection, typing and height estimation. Specifically, these improvements include retrievals in multi-layer scenarios and improved performance in polar regions. This presentation will describe the process for merging VIIRS and CrIS and a demonstration of the improvements.
Data compression using adaptive transform coding. Appendix 1: Item 1. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Rost, Martin Christopher
1988-01-01
Adaptive low-rate source coders are described in this dissertation. These coders adapt by adjusting the complexity of the coder to match the local coding difficulty of the image. This is accomplished by using a threshold driven maximum distortion criterion to select the specific coder used. The different coders are built using variable blocksized transform techniques, and the threshold criterion selects small transform blocks to code the more difficult regions and larger blocks to code the less complex regions. A theoretical framework is constructed from which the study of these coders can be explored. An algorithm for selecting the optimal bit allocation for the quantization of transform coefficients is developed. The bit allocation algorithm is more fully developed, and can be used to achieve more accurate bit assignments than the algorithms currently used in the literature. Some upper and lower bounds for the bit-allocation distortion-rate function are developed. An obtainable distortion-rate function is developed for a particular scalar quantizer mixing method that can be used to code transform coefficients at any rate.
2010-01-01
Background Epistasis is recognized as a fundamental part of the genetic architecture of individuals. Several computational approaches have been developed to model gene-gene interactions in case-control studies, however, none of them is suitable for time-dependent analysis. Herein we introduce the Survival Dimensionality Reduction (SDR) algorithm, a non-parametric method specifically designed to detect epistasis in lifetime datasets. Results The algorithm requires neither specification about the underlying survival distribution nor about the underlying interaction model and proved satisfactorily powerful to detect a set of causative genes in synthetic epistatic lifetime datasets with a limited number of samples and high degree of right-censorship (up to 70%). The SDR method was then applied to a series of 386 Dutch patients with active rheumatoid arthritis that were treated with anti-TNF biological agents. Among a set of 39 candidate genes, none of which showed a detectable marginal effect on anti-TNF responses, the SDR algorithm did find that the rs1801274 SNP in the FcγRIIa gene and the rs10954213 SNP in the IRF5 gene non-linearly interact to predict clinical remission after anti-TNF biologicals. Conclusions Simulation studies and application in a real-world setting support the capability of the SDR algorithm to model epistatic interactions in candidate-genes studies in presence of right-censored data. Availability: http://sourceforge.net/projects/sdrproject/ PMID:20691091
Bellón, Juan Ángel; de Dios Luna, Juan; King, Michael; Nazareth, Irwin; Motrico, Emma; GildeGómez-Barragán, María Josefa; Torres-González, Francisco; Montón-Franco, Carmen; Sánchez-Celaya, Marta; Díaz-Barreiros, Miguel Ángel; Vicens, Catalina; Moreno-Peral, Patricia
2017-04-01
Little is known about the risk of progressing to hazardous alcohol use in abstinent or low-risk drinkers. To develop and validate a simple brief risk algorithm for the onset of hazardous alcohol drinking (HAD) over 12 months for use in primary care. Prospective cohort study in 32 health centres from six Spanish provinces, with evaluations at baseline, 6 months, and 12 months. Forty-one risk factors were measured and multilevel logistic regression and inverse probability weighting were used to build the risk algorithm. The outcome was new occurrence of HAD during the study, as measured by the AUDIT. From the lists of 174 GPs, 3954 adult abstinent or low-risk drinkers were recruited. The 'predictAL-10' risk algorithm included just nine variables (10 questions): province, sex, age, cigarette consumption, perception of financial strain, having ever received treatment for an alcohol problem, childhood sexual abuse, AUDIT-C, and interaction AUDIT-C*Age. The c-index was 0.886 (95% CI = 0.854 to 0.918). The optimal cutoff had a sensitivity of 0.83 and specificity of 0.80. Excluding childhood sexual abuse from the model (the 'predictAL-9'), the c-index was 0.880 (95% CI = 0.847 to 0.913), sensitivity 0.79, and specificity 0.81. There was no statistically significant difference between the c-indexes of predictAL-10 and predictAL-9. The predictAL-10/9 is a simple and internally valid risk algorithm to predict the onset of hazardous alcohol drinking over 12 months in primary care attendees; it is a brief tool that is potentially useful for primary prevention of hazardous alcohol drinking. © British Journal of General Practice 2017.
Bellón, Juan Ángel; de Dios Luna, Juan; King, Michael; Nazareth, Irwin; Motrico, Emma; GildeGómez-Barragán, María Josefa; Torres-González, Francisco; Montón-Franco, Carmen; Sánchez-Celaya, Marta; Díaz-Barreiros, Miguel Ángel; Vicens, Catalina; Moreno-Peral, Patricia
2017-01-01
Background Little is known about the risk of progressing to hazardous alcohol use in abstinent or low-risk drinkers. Aim To develop and validate a simple brief risk algorithm for the onset of hazardous alcohol drinking (HAD) over 12 months for use in primary care. Design and setting Prospective cohort study in 32 health centres from six Spanish provinces, with evaluations at baseline, 6 months, and 12 months. Method Forty-one risk factors were measured and multilevel logistic regression and inverse probability weighting were used to build the risk algorithm. The outcome was new occurrence of HAD during the study, as measured by the AUDIT. Results From the lists of 174 GPs, 3954 adult abstinent or low-risk drinkers were recruited. The ‘predictAL-10’ risk algorithm included just nine variables (10 questions): province, sex, age, cigarette consumption, perception of financial strain, having ever received treatment for an alcohol problem, childhood sexual abuse, AUDIT-C, and interaction AUDIT-C*Age. The c-index was 0.886 (95% CI = 0.854 to 0.918). The optimal cutoff had a sensitivity of 0.83 and specificity of 0.80. Excluding childhood sexual abuse from the model (the ‘predictAL-9’), the c-index was 0.880 (95% CI = 0.847 to 0.913), sensitivity 0.79, and specificity 0.81. There was no statistically significant difference between the c-indexes of predictAL-10 and predictAL-9. Conclusion The predictAL-10/9 is a simple and internally valid risk algorithm to predict the onset of hazardous alcohol drinking over 12 months in primary care attendees; it is a brief tool that is potentially useful for primary prevention of hazardous alcohol drinking. PMID:28360074
al3c: high-performance software for parameter inference using Approximate Bayesian Computation.
Stram, Alexander H; Marjoram, Paul; Chen, Gary K
2015-11-01
The development of Approximate Bayesian Computation (ABC) algorithms for parameter inference which are both computationally efficient and scalable in parallel computing environments is an important area of research. Monte Carlo rejection sampling, a fundamental component of ABC algorithms, is trivial to distribute over multiple processors but is inherently inefficient. While development of algorithms such as ABC Sequential Monte Carlo (ABC-SMC) help address the inherent inefficiencies of rejection sampling, such approaches are not as easily scaled on multiple processors. As a result, current Bayesian inference software offerings that use ABC-SMC lack the ability to scale in parallel computing environments. We present al3c, a C++ framework for implementing ABC-SMC in parallel. By requiring only that users define essential functions such as the simulation model and prior distribution function, al3c abstracts the user from both the complexities of parallel programming and the details of the ABC-SMC algorithm. By using the al3c framework, the user is able to scale the ABC-SMC algorithm in parallel computing environments for his or her specific application, with minimal programming overhead. al3c is offered as a static binary for Linux and OS-X computing environments. The user completes an XML configuration file and C++ plug-in template for the specific application, which are used by al3c to obtain the desired results. Users can download the static binaries, source code, reference documentation and examples (including those in this article) by visiting https://github.com/ahstram/al3c. astram@usc.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Neale, Christopher M. U.; Mcdonnell, Jeffrey J.; Ramsey, Douglas; Hipps, Lawrence; Tarboton, David
1993-01-01
Since the launch of the DMSP Special Sensor Microwave/Imager (SSM/I), several algorithms have been developed to retrieve overland parameters. These include the present operational algorithms resulting from the Navy calibration/validation effort such as land surface type (Neale et al. 1990), land surface temperature (McFarland et al. 1990), surface moisture (McFarland and Neale, 1991) and snow parameters (McFarland and Neale, 1991). In addition, other work has been done including the classification of snow cover and precipitation using the SSM/I (Grody, 1991). Due to the empirical nature of most of the above mentioned algorithms, further research is warranted and improvements can probably be obtained through a combination of radiative transfer modelling to study the physical processes governing the microwave emissions at the SSM/I frequencies, and the incorporation of additional ground truth data and special cases into the regression data sets. We have proposed specifically to improve the retrieval of surface moisture and snow parameters using the WetNet SSM/I data sets along with ground truth information namely climatic variables from the NOAA cooperative network of weather stations as well as imagery from other satellite sensors such as the AVHRR and Thematic Mapper. In the case of surface moisture retrievals the characterization of vegetation density is of primary concern. The higher spatial resolution satellite imagery collected at concurrent periods will be used to characterize vegetation types and amounts which, along with radiative transfer modelling should lead to more physically based retrievals. Snow parameter retrieval algorithm improvement will initially concentrate on the classification of snowpacks (dry snow, wet snow, refrozen snow) and later on specific products such as snow water equivalent. Significant accomplishments in the past year are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chin, George; Marquez, Andres; Choudhury, Sutanay
2012-09-01
Triadic analysis encompasses a useful set of graph mining methods that is centered on the concept of a triad, which is a subgraph of three nodes and the configuration of directed edges across the nodes. Such methods are often applied in the social sciences as well as many other diverse fields. Triadic methods commonly operate on a triad census that counts the number of triads of every possible edge configuration in a graph. Like other graph algorithms, triadic census algorithms do not scale well when graphs reach tens of millions to billions of nodes. To enable the triadic analysis ofmore » large-scale graphs, we developed and optimized a triad census algorithm to efficiently execute on shared memory architectures. We will retrace the development and evolution of a parallel triad census algorithm. Over the course of several versions, we continually adapted the code’s data structures and program logic to expose more opportunities to exploit parallelism on shared memory that would translate into improved computational performance. We will recall the critical steps and modifications that occurred during code development and optimization. Furthermore, we will compare the performances of triad census algorithm versions on three specific systems: Cray XMT, HP Superdome, and AMD multi-core NUMA machine. These three systems have shared memory architectures but with markedly different hardware capabilities to manage parallelism.« less
Bach, Peter M; McCarthy, David T; Urich, Christian; Sitzenfrei, Robert; Kleidorfer, Manfred; Rauch, Wolfgang; Deletic, Ana
2013-01-01
With global change bringing about greater challenges for the resilient planning and management of urban water infrastructure, research has been invested in the development of a strategic planning tool, DAnCE4Water. The tool models how urban and societal changes impact the development of centralised and decentralised (distributed) water infrastructure. An algorithm for rigorous assessment of suitable decentralised stormwater management options in the model is presented and tested on a local Melbourne catchment. Following detailed spatial representation algorithms (defined by planning rules), the model assesses numerous stormwater options to meet water quality targets at a variety of spatial scales. A multi-criteria assessment algorithm is used to find top-ranking solutions (which meet a specific treatment performance for a user-defined percentage of catchment imperviousness). A toolbox of five stormwater technologies (infiltration systems, surface wetlands, bioretention systems, ponds and swales) is featured. Parameters that set the algorithm's flexibility to develop possible management options are assessed and evaluated. Results are expressed in terms of 'utilisation', which characterises the frequency of use of different technologies across the top-ranking options (bioretention being the most versatile). Initial results highlight the importance of selecting a suitable spatial resolution and providing the model with enough flexibility for coming up with different technology combinations. The generic nature of the model enables its application to other urban areas (e.g. different catchments, local municipal regions or entire cities).
PROCESS SIMULATION OF COLD PRESSING OF ARMSTRONG CP-Ti POWDERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabau, Adrian S; Gorti, Sarma B; Peter, William H
A computational methodology is presented for the process simulation of cold pressing of Armstrong CP-Ti Powders. The computational model was implemented in the commercial finite element program ABAQUSTM. Since the powder deformation and consolidation is governed by specific pressure-dependent constitutive equations, several solution algorithms were developed for the ABAQUS user material subroutine, UMAT. The solution algorithms were developed for computing the plastic strain increments based on an implicit integration of the nonlinear yield function, flow rule, and hardening equations that describe the evolution of the state variables. Since ABAQUS requires the use of a full Newton-Raphson algorithm for the stress-strainmore » equations, an algorithm for obtaining the tangent/linearization moduli, which is consistent with the return-mapping algorithm, also was developed. Numerical simulation results are presented for the cold compaction of the Ti powders. Several simulations were conducted for cylindrical samples with different aspect ratios. The numerical simulation results showed that for the disk samples, the minimum von Mises stress was approximately half than its maximum value. The hydrostatic stress distribution exhibits a variation smaller than that of the von Mises stress. It was found that for the disk and cylinder samples the minimum hydrostatic stresses were approximately 23 and 50% less than its maximum value, respectively. It was also found that the minimum density was noticeably affected by the sample height.« less
Dórea, Fernanda C.; McEwen, Beverly J.; McNab, W. Bruce; Sanchez, Javier; Revie, Crawford W.
2013-01-01
Background Syndromic surveillance research has focused on two main themes: the search for data sources that can provide early disease detection; and the development of efficient algorithms that can detect potential outbreak signals. Methods This work combines three algorithms that have demonstrated solid performance in detecting simulated outbreak signals of varying shapes in time series of laboratory submissions counts. These are: the Shewhart control charts designed to detect sudden spikes in counts; the EWMA control charts developed to detect slow increasing outbreaks; and the Holt-Winters exponential smoothing, which can explicitly account for temporal effects in the data stream monitored. A scoring system to detect and report alarms using these algorithms in a complementary way is proposed. Results The use of multiple algorithms in parallel resulted in increased system sensitivity. Specificity was decreased in simulated data, but the number of false alarms per year when the approach was applied to real data was considered manageable (between 1 and 3 per year for each of ten syndromic groups monitored). The automated implementation of this approach, including a method for on-line filtering of potential outbreak signals is described. Conclusion The developed system provides high sensitivity for detection of potential outbreak signals while also providing robustness and flexibility in establishing what signals constitute an alarm. This flexibility allows an analyst to customize the system for different syndromes. PMID:24349216
Dórea, Fernanda C; McEwen, Beverly J; McNab, W Bruce; Sanchez, Javier; Revie, Crawford W
2013-01-01
Syndromic surveillance research has focused on two main themes: the search for data sources that can provide early disease detection; and the development of efficient algorithms that can detect potential outbreak signals. This work combines three algorithms that have demonstrated solid performance in detecting simulated outbreak signals of varying shapes in time series of laboratory submissions counts. These are: the Shewhart control charts designed to detect sudden spikes in counts; the EWMA control charts developed to detect slow increasing outbreaks; and the Holt-Winters exponential smoothing, which can explicitly account for temporal effects in the data stream monitored. A scoring system to detect and report alarms using these algorithms in a complementary way is proposed. The use of multiple algorithms in parallel resulted in increased system sensitivity. Specificity was decreased in simulated data, but the number of false alarms per year when the approach was applied to real data was considered manageable (between 1 and 3 per year for each of ten syndromic groups monitored). The automated implementation of this approach, including a method for on-line filtering of potential outbreak signals is described. The developed system provides high sensitivity for detection of potential outbreak signals while also providing robustness and flexibility in establishing what signals constitute an alarm. This flexibility allows an analyst to customize the system for different syndromes.
Developing fire management mixes for fire program planning
Armando González-Cabán; Patricia B. Shinkle; Thomas J. Mills
1986-01-01
Evaluating economic efficiency of fire management program options requires information on the firefighting inputs, such as vehicles and crews, that would be needed to execute the program option selected. An algorithm was developed to translate automatically dollars allocated to type of firefighting inputs to numbers of units, using a set of weights for a specific fire...
Particle Swarm Optimization Toolbox
NASA Technical Reports Server (NTRS)
Grant, Michael J.
2010-01-01
The Particle Swarm Optimization Toolbox is a library of evolutionary optimization tools developed in the MATLAB environment. The algorithms contained in the library include a genetic algorithm (GA), a single-objective particle swarm optimizer (SOPSO), and a multi-objective particle swarm optimizer (MOPSO). Development focused on both the SOPSO and MOPSO. A GA was included mainly for comparison purposes, and the particle swarm optimizers appeared to perform better for a wide variety of optimization problems. All algorithms are capable of performing unconstrained and constrained optimization. The particle swarm optimizers are capable of performing single and multi-objective optimization. The SOPSO and MOPSO algorithms are based on swarming theory and bird-flocking patterns to search the trade space for the optimal solution or optimal trade in competing objectives. The MOPSO generates Pareto fronts for objectives that are in competition. A GA, based on Darwin evolutionary theory, is also included in the library. The GA consists of individuals that form a population in the design space. The population mates to form offspring at new locations in the design space. These offspring contain traits from both of the parents. The algorithm is based on this combination of traits from parents to hopefully provide an improved solution than either of the original parents. As the algorithm progresses, individuals that hold these optimal traits will emerge as the optimal solutions. Due to the generic design of all optimization algorithms, each algorithm interfaces with a user-supplied objective function. This function serves as a "black-box" to the optimizers in which the only purpose of this function is to evaluate solutions provided by the optimizers. Hence, the user-supplied function can be numerical simulations, analytical functions, etc., since the specific detail of this function is of no concern to the optimizer. These algorithms were originally developed to support entry trajectory and guidance design for the Mars Science Laboratory mission but may be applied to any optimization problem.
Kim, Mary S.; Tsutsui, Kenta; Stern, Michael D.; Lakatta, Edward G.; Maltsev, Victor A.
2017-01-01
Local Ca2+ Releases (LCRs) are crucial events involved in cardiac pacemaker cell function. However, specific algorithms for automatic LCR detection and analysis have not been developed in live, spontaneously beating pacemaker cells. In the present study we measured LCRs using a high-speed 2D-camera in spontaneously contracting sinoatrial (SA) node cells isolated from rabbit and guinea pig and developed a new algorithm capable of detecting and analyzing the LCRs spatially in two-dimensions, and in time. Our algorithm tracks points along the midline of the contracting cell. It uses these points as a coordinate system for affine transform, producing a transformed image series where the cell does not contract. Action potential-induced Ca2+ transients and LCRs were thereafter isolated from recording noise by applying a series of spatial filters. The LCR birth and death events were detected by a differential (frame-to-frame) sensitivity algorithm applied to each pixel (cell location). An LCR was detected when its signal changes sufficiently quickly within a sufficiently large area. The LCR is considered to have died when its amplitude decays substantially, or when it merges into the rising whole cell Ca2+ transient. Ultimately, our algorithm provides major LCR parameters such as period, signal mass, duration, and propagation path area. As the LCRs propagate within live cells, the algorithm identifies splitting and merging behaviors, indicating the importance of locally propagating Ca2+-induced-Ca2+-release for the fate of LCRs and for generating a powerful ensemble Ca2+ signal. Thus, our new computer algorithms eliminate motion artifacts and detect 2D local spatiotemporal events from recording noise and global signals. While the algorithms were developed to detect LCRs in sinoatrial nodal cells, they have the potential to be used in other applications in biophysics and cell physiology, for example, to detect Ca2+ wavelets (abortive waves), sparks and embers in muscle cells and Ca2+ puffs and syntillas in neurons. PMID:28683095
Nemoto, Mitsutaka; Hayashi, Naoto; Hanaoka, Shouhei; Nomura, Yukihiro; Miki, Soichiro; Yoshikawa, Takeharu
2017-10-01
We propose a generalized framework for developing computer-aided detection (CADe) systems whose characteristics depend only on those of the training dataset. The purpose of this study is to show the feasibility of the framework. Two different CADe systems were experimentally developed by a prototype of the framework, but with different training datasets. The CADe systems include four components; preprocessing, candidate area extraction, candidate detection, and candidate classification. Four pretrained algorithms with dedicated optimization/setting methods corresponding to the respective components were prepared in advance. The pretrained algorithms were sequentially trained in the order of processing of the components. In this study, two different datasets, brain MRA with cerebral aneurysms and chest CT with lung nodules, were collected to develop two different types of CADe systems in the framework. The performances of the developed CADe systems were evaluated by threefold cross-validation. The CADe systems for detecting cerebral aneurysms in brain MRAs and for detecting lung nodules in chest CTs were successfully developed using the respective datasets. The framework was shown to be feasible by the successful development of the two different types of CADe systems. The feasibility of this framework shows promise for a new paradigm in the development of CADe systems: development of CADe systems without any lesion specific algorithm designing.
NASA Astrophysics Data System (ADS)
Bogusz, Michael
1993-01-01
The need for a systematic methodology for the analysis of aircraft electromagnetic compatibility (EMC) problems is examined. The available computer aids used in aircraft EMC analysis are assessed and a theoretical basis is established for the complex algorithms which identify and quantify electromagnetic interactions. An overview is presented of one particularly well established aircraft antenna to antenna EMC analysis code, the Aircraft Inter-Antenna Propagation with Graphics (AAPG) Version 07 software. The specific new algorithms created to compute cone geodesics and their associated path losses and to graph the physical coupling path are discussed. These algorithms are validated against basic principles. Loss computations apply the uniform geometrical theory of diffraction and are subsequently compared to measurement data. The increased modelling and analysis capabilities of the newly developed AAPG Version 09 are compared to those of Version 07. Several models of real aircraft, namely the Electronic Systems Trainer Challenger, are generated and provided as a basis for this preliminary comparative assessment. Issues such as software reliability, algorithm stability, and quality of hardcopy output are also discussed.
NASA Astrophysics Data System (ADS)
Chandra, Malavika; Scheiman, James; Simeone, Diane; McKenna, Barbara; Purdy, Julianne; Mycek, Mary-Ann
2010-01-01
Pancreatic adenocarcinoma is one of the leading causes of cancer death, in part because of the inability of current diagnostic methods to reliably detect early-stage disease. We present the first assessment of the diagnostic accuracy of algorithms developed for pancreatic tissue classification using data from fiber optic probe-based bimodal optical spectroscopy, a real-time approach that would be compatible with minimally invasive diagnostic procedures for early cancer detection in the pancreas. A total of 96 fluorescence and 96 reflectance spectra are considered from 50 freshly excised tissue sites-including human pancreatic adenocarcinoma, chronic pancreatitis (inflammation), and normal tissues-on nine patients. Classification algorithms using linear discriminant analysis are developed to distinguish among tissues, and leave-one-out cross-validation is employed to assess the classifiers' performance. The spectral areas and ratios classifier (SpARC) algorithm employs a combination of reflectance and fluorescence data and has the best performance, with sensitivity, specificity, negative predictive value, and positive predictive value for correctly identifying adenocarcinoma being 85, 89, 92, and 80%, respectively.
Computerized scoring algorithms for the Autobiographical Memory Test.
Takano, Keisuke; Gutenbrunner, Charlotte; Martens, Kris; Salmon, Karen; Raes, Filip
2018-02-01
Reduced specificity of autobiographical memories is a hallmark of depressive cognition. Autobiographical memory (AM) specificity is typically measured by the Autobiographical Memory Test (AMT), in which respondents are asked to describe personal memories in response to emotional cue words. Due to this free descriptive responding format, the AMT relies on experts' hand scoring for subsequent statistical analyses. This manual coding potentially impedes research activities in big data analytics such as large epidemiological studies. Here, we propose computerized algorithms to automatically score AM specificity for the Dutch (adult participants) and English (youth participants) versions of the AMT by using natural language processing and machine learning techniques. The algorithms showed reliable performances in discriminating specific and nonspecific (e.g., overgeneralized) autobiographical memories in independent testing data sets (area under the receiver operating characteristic curve > .90). Furthermore, outcome values of the algorithms (i.e., decision values of support vector machines) showed a gradient across similar (e.g., specific and extended memories) and different (e.g., specific memory and semantic associates) categories of AMT responses, suggesting that, for both adults and youth, the algorithms well capture the extent to which a memory has features of specific memories. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Raschke, R A; Gallo, T; Curry, S C; Whiting, T; Padilla-Jones, A; Warkentin, T E; Puri, A
2017-08-01
Essentials We previously published a diagnostic algorithm for heparin-induced thrombocytopenia (HIT). In this study, we validated the algorithm in an independent large healthcare system. The accuracy was 98%, sensitivity 82% and specificity 99%. The algorithm has potential to improve accuracy and efficiency in the diagnosis of HIT. Background Heparin-induced thrombocytopenia (HIT) is a life-threatening drug reaction caused by antiplatelet factor 4/heparin (anti-PF4/H) antibodies. Commercial tests to detect these antibodies have suboptimal operating characteristics. We previously developed a diagnostic algorithm for HIT that incorporated 'four Ts' (4Ts) scoring and a stratified interpretation of an anti-PF4/H enzyme-linked immunosorbent assay (ELISA) and yielded a discriminant accuracy of 0.97 (95% confidence interval [CI], 0.93-1.00). Objectives The purpose of this study was to validate the algorithm in an independent patient population and quantitate effects that algorithm adherence could have on clinical care. Methods A retrospective cohort comprised patients who had undergone anti-PF4/H ELISA and serotonin release assay (SRA) testing in our healthcare system from 2010 to 2014. We determined the algorithm recommendation for each patient, compared recommendations with the clinical care received, and enumerated consequences of discrepancies. Operating characteristics were calculated for algorithm recommendations using SRA as the reference standard. Results Analysis was performed on 181 patients, 10 of whom were ruled in for HIT. The algorithm accurately stratified 98% of patients (95% CI, 95-99%), ruling out HIT in 158, ruling in HIT in 10 and recommending an SRA in 13 patients. Algorithm adherence would have obviated 165 SRAs and prevented 30 courses of unnecessary antithrombotic therapy for HIT. Diagnostic sensitivity was 0.82 (95% CI, 0.48-0.98), specificity 0.99 (95% CI, 0.97-1.00), PPV 0.90 (95% CI, 0.56-0.99) and NPV 0.99 (95% CI, 0.96-1.00). Conclusions An algorithm incorporating 4Ts scoring and a stratified interpretation of the anti-PF4/H ELISA has good operating characteristics and the potential to improve management of suspected HIT patients. © 2017 International Society on Thrombosis and Haemostasis.
Performance of mid infrared spectroscopy in skin cancer cell type identification
NASA Astrophysics Data System (ADS)
Kastl, Lena; Kemper, Björn; Lloyd, Gavin R.; Nallala, Jayakrupakar; Stone, Nick; Naranjo, Valery; Penaranda, Francisco; Schnekenburger, Jürgen
2017-02-01
Marker free optical spectroscopy is a powerful tool for the rapid inspection of pathologically suspicious skin lesions and the non-invasive detection of early skin tumors. This goal can be reached by the combination of signal localization and the spectroscopical detection of chemical cell signatures. We here present the development and application of mid infrared spectroscopy (midIR) for the analysis of skin tumor cell types and three dimensional tissue phantoms towards the application of midIR spectroscopy for fast and reliable skin diagnostics. We developed standardized in vitro skin systems with increasing complexity, from single skin cell types as fibroblasts, keratinocytes and melanoma cells, to mixtures of these and finally three dimensional skin cancer phantoms. The cell systems were characterized with different systems in the midIR range up to 12 μm. The analysis of the spectra by novel data processing algorithms demonstrated the clear separation of all cell types, especially melanoma cells. Special attention and algorithm training was required for closely related mesenchymal cell types as dedifferentiated melanoma cells and fibroblasts. Proof of concept experiments with mixtures of in vivo fluorescence labelled skin cell types allowed the test of the new algorithms performance for the identification of specific cell types. The intense training of the software systems with various samples resulted in a increased sensitivity and specificity of the combined midIR and software system. These data highlight the potential of midIR spectroscopy as sensitive and specific future optical biopsy technology.
Comans, Tracy A; Nguyen, Kim-Huong; Mulhern, Brendan; Corlis, Megan; Li, Li; Welch, Alyssa; Kurrle, Susan E; Rowen, Donna; Moyle, Wendy; Kularatna, Sanjeewa; Ratcliffe, Julie
2018-01-01
Introduction Generic instruments for assessing health-related quality of life may lack the sensitivity to detect changes in health specific to certain conditions, such as dementia. The Quality of Life in Alzheimer’s Disease (QOL-AD) is a widely used and well-validated condition-specific instrument for assessing health-related quality of life for people living with dementia, but it does not enable the calculation of quality-adjusted life years, the basis of cost utility analysis. This study will generate a preference-based scoring algorithm for a health state classification system -the Alzheimer’s Disease Five Dimensions (AD-5D) derived from the QOL-AD. Methods and analysis Discrete choice experiments with duration (DCETTO) and best–worst scaling health state valuation tasks will be administered to a representative sample of 2000 members of the Australian general population via an online survey and to 250 dementia dyads (250 people with dementia and their carers) via face-to-face interview. A multinomial (conditional) logistic framework will be used to analyse responses and produce the utility algorithm for the AD-5D. Ethics and dissemination The algorithms developed will enable prospective and retrospective economic evaluation of any treatment or intervention targeting people with dementia where the QOL-AD has been administered and will be available online. Results will be disseminated through journals that publish health economics articles and through professional conferences. This study has ethical approval. PMID:29358437
Hypoglycemia-Associated EEG Changes in Prepubertal Children With Type 1 Diabetes.
Hansen, Grith Lærkholm; Foli-Andersen, Pia; Fredheim, Siri; Juhl, Claus; Remvig, Line Sofie; Rose, Martin H; Rosenzweig, Ivana; Beniczky, Sándor; Olsen, Birthe; Pilgaard, Kasper; Johannesen, Jesper
2016-11-01
The purpose of this study was to explore the possible difference in the electroencephalogram (EEG) pattern between euglycemia and hypoglycemia in children with type 1 diabetes (T1D) during daytime and during sleep. The aim is to develop a hypoglycemia alarm based on continuous EEG measurement and real-time signal processing. Eight T1D patients aged 6-12 years were included. A hyperinsulinemic hypoglycemic clamp was performed to induce hypoglycemia both during daytime and during sleep. Continuous EEG monitoring was performed. For each patient, quantitative EEG (qEEG) measures were calculated. A within-patient analysis was conducted comparing hypoglycemia versus euglycemia changes in the qEEG. The nonparametric Wilcoxon signed rank test was performed. A real-time analyzing algorithm developed for adults was applied. The qEEG showed significant differences in specific bands comparing hypoglycemia to euglycemia both during daytime and during sleep. In daytime the EEG-based algorithm identified hypoglycemia in all children on average at a blood glucose (BG) level of 2.5 ± 0.5 mmol/l and 18.4 (ranging from 0 to 55) minutes prior to blood glucose nadir. During sleep the nighttime algorithm did not perform. We found significant differences in the qEEG in euglycemia and hypoglycemia both during daytime and during sleep. The algorithm developed for adults detected hypoglycemia in all children during daytime. The algorithm had too many false alarms during the night because it was more sensitive to deep sleep EEG patterns than hypoglycemia-related EEG changes. An algorithm for nighttime EEG is needed for accurate detection of nocturnal hypoglycemic episodes in children. This study indicates that a hypoglycemia alarm may be developed using real-time continuous EEG monitoring. © 2016 Diabetes Technology Society.
[Standard algorithm of molecular typing of Yersinia pestis strains].
Eroshenko, G A; Odinokov, G N; Kukleva, L M; Pavlova, A I; Krasnov, Ia M; Shavina, N Iu; Guseva, N P; Vinogradova, N A; Kutyrev, V V
2012-01-01
Development of the standard algorithm of molecular typing of Yersinia pestis that ensures establishing of subspecies, biovar and focus membership of the studied isolate. Determination of the characteristic strain genotypes of plague infectious agent of main and nonmain subspecies from various natural foci of plague of the Russian Federation and the near abroad. Genotyping of 192 natural Y. pestis strains of main and nonmain subspecies was performed by using PCR methods, multilocus sequencing and multilocus analysis of variable tandem repeat number. A standard algorithm of molecular typing of plague infectious agent including several stages of Yersinia pestis differentiation by membership: in main and nonmain subspecies, various biovars of the main subspecies, specific subspecies; natural foci and geographic territories was developed. The algorithm is based on 3 typing methods--PCR, multilocus sequence typing and multilocus analysis of variable tandem repeat number using standard DNA targets--life support genes (terC, ilvN, inv, glpD, napA, rhaS and araC) and 7 loci of variable tandem repeats (ms01, ms04, ms06, ms07, ms46, ms62, ms70). The effectiveness of the developed algorithm is shown on the large number of natural Y. pestis strains. Characteristic sequence types of Y. pestis strains of various subspecies and biovars as well as MLVA7 genotypes of strains from natural foci of plague of the Russian Federation and the near abroad were established. The application of the developed algorithm will increase the effectiveness of epidemiologic monitoring of plague infectious agent, and analysis of epidemics and outbreaks of plague with establishing the source of origin of the strain and routes of introduction of the infection.
Algorithms Bridging Quantum Computation and Chemistry
NASA Astrophysics Data System (ADS)
McClean, Jarrod Ryan
The design of new materials and chemicals derived entirely from computation has long been a goal of computational chemistry, and the governing equation whose solution would permit this dream is known. Unfortunately, the exact solution to this equation has been far too expensive and clever approximations fail in critical situations. Quantum computers offer a novel solution to this problem. In this work, we develop not only new algorithms to use quantum computers to study hard problems in chemistry, but also explore how such algorithms can help us to better understand and improve our traditional approaches. In particular, we first introduce a new method, the variational quantum eigensolver, which is designed to maximally utilize the quantum resources available in a device to solve chemical problems. We apply this method in a real quantum photonic device in the lab to study the dissociation of the helium hydride (HeH+) molecule. We also enhance this methodology with architecture specific optimizations on ion trap computers and show how linear-scaling techniques from traditional quantum chemistry can be used to improve the outlook of similar algorithms on quantum computers. We then show how studying quantum algorithms such as these can be used to understand and enhance the development of classical algorithms. In particular we use a tool from adiabatic quantum computation, Feynman's Clock, to develop a new discrete time variational principle and further establish a connection between real-time quantum dynamics and ground state eigenvalue problems. We use these tools to develop two novel parallel-in-time quantum algorithms that outperform competitive algorithms as well as offer new insights into the connection between the fermion sign problem of ground states and the dynamical sign problem of quantum dynamics. Finally we use insights gained in the study of quantum circuits to explore a general notion of sparsity in many-body quantum systems. In particular we use developments from the field of compressed sensing to find compact representations of ground states. As an application we study electronic systems and find solutions dramatically more compact than traditional configuration interaction expansions, offering hope to extend this methodology to challenging systems in chemical and material design.
Princic, Nicole; Gregory, Chris; Willson, Tina; Mahue, Maya; Felici, Diana; Werther, Winifred; Lenhart, Gregory; Foley, Kathleen A
2016-01-01
The objective was to expand on prior work by developing and validating a new algorithm to identify multiple myeloma (MM) patients in administrative claims. Two files were constructed to select MM cases from MarketScan Oncology Electronic Medical Records (EMR) and controls from the MarketScan Primary Care EMR during January 1, 2000-March 31, 2014. Patients were linked to MarketScan claims databases, and files were merged. Eligible cases were age ≥18, had a diagnosis and visit for MM in the Oncology EMR, and were continuously enrolled in claims for ≥90 days preceding and ≥30 days after diagnosis. Controls were age ≥18, had ≥12 months of overlap in claims enrollment (observation period) in the Primary Care EMR and ≥1 claim with an ICD-9-CM diagnosis code of MM (203.0×) during that time. Controls were excluded if they had chemotherapy; stem cell transplant; or text documentation of MM in the EMR during the observation period. A split sample was used to develop and validate algorithms. A maximum of 180 days prior to and following each MM diagnosis was used to identify events in the diagnostic process. Of 20 algorithms explored, the baseline algorithm of 2 MM diagnoses and the 3 best performing were validated. Values for sensitivity, specificity, and positive predictive value (PPV) were calculated. Three claims-based algorithms were validated with ~10% improvement in PPV (87-94%) over prior work (81%) and the baseline algorithm (76%) and can be considered for future research. Consistent with prior work, it was found that MM diagnoses before and after tests were needed.
Husain, N; Blais, P; Kramer, J; Kowalkowski, M; Richardson, P; El-Serag, H B; Kanwal, F
2014-10-01
In practice, nonalcoholic fatty liver disease (NAFLD) is diagnosed based on elevated liver enzymes and confirmatory liver biopsy or abdominal imaging. Neither method is feasible in identifying individuals with NAFLD in a large-scale healthcare system. To develop and validate an algorithm to identify patients with NAFLD using automated data. Using the Veterans Administration Corporate Data Warehouse, we identified patients who had persistent ALT elevation (≥2 values ≥40 IU/mL ≥6 months apart) and did not have evidence of hepatitis B, hepatitis C or excessive alcohol use. We conducted a structured chart review of 450 patients classified as NAFLD and 150 patients who were classified as non-NAFLD by the database algorithm, and subsequently refined the database algorithm. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) for the initial database definition of NAFLD were 78.4% (95% CI: 70.0-86.8%), 74.5% (95% CI: 68.1-80.9%), 64.1% (95% CI: 56.4-71.7%) and 85.6% (95% CI: 79.4-91.8%), respectively. Reclassifying patients as having NAFLD if they had two elevated ALTs that were at least 6 months apart but within 2 years of each other, increased the specificity and PPV of the algorithm to 92.4% (95% CI: 88.8-96.0%) and 80.8% (95% CI: 72.5-89.0%), respectively. However, the sensitivity and NPV decreased to 55.0% (95% CI: 46.1-63.9%) and 78.0% (95% CI: 72.1-83.8%), respectively. Predictive algorithms using automated data can be used to identify patients with NAFLD, determine prevalence of NAFLD at the system-wide level, and may help select a target population for future clinical studies in veterans with NAFLD. © 2014 John Wiley & Sons Ltd.
Role of passive remote sensors. Sensor System Panel report
NASA Astrophysics Data System (ADS)
1982-06-01
Capabilities of present passive systems are described and the development of passive remote sensing systems for the more abundant tropospheric trace species is recommended. The combination of nadir-viewing spectrometers and solar occultation for tropospheric measurement of those gases having large stratospheric burdens is discussed. Development of a nadir-viewing instrument capable of obtaining continuous spectra in narrower bands is recommended. Gas filter radiometers for species specific measurements and development of a spectral survey instrument are discussed. Further development of aerosol retrieval algorithms, including polarization techniques, for obtaining aerosol thickness and size distributions is advised. Recommendations of specific investigations to be pursued are presented.
Role of passive remote sensors. Sensor System Panel report
NASA Technical Reports Server (NTRS)
1982-01-01
Capabilities of present passive systems are described and the development of passive remote sensing systems for the more abundant tropospheric trace species is recommended. The combination of nadir-viewing spectrometers and solar occultation for tropospheric measurement of those gases having large stratospheric burdens is discussed. Development of a nadir-viewing instrument capable of obtaining continuous spectra in narrower bands is recommended. Gas filter radiometers for species specific measurements and development of a spectral survey instrument are discussed. Further development of aerosol retrieval algorithms, including polarization techniques, for obtaining aerosol thickness and size distributions is advised. Recommendations of specific investigations to be pursued are presented.
Xyce parallel electronic simulator : users' guide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mei, Ting; Rankin, Eric Lamont; Thornquist, Heidi K.
2011-05-01
This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: (1) Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). Note that this includes support for most popular parallel and serial computers; (2) Improved performance for all numerical kernels (e.g., time integrator, nonlinear and linear solvers) through state-of-the-artmore » algorithms and novel techniques. (3) Device models which are specifically tailored to meet Sandia's needs, including some radiation-aware devices (for Sandia users only); and (4) Object-oriented code design and implementation using modern coding practices that ensure that the Xyce Parallel Electronic Simulator will be maintainable and extensible far into the future. Xyce is a parallel code in the most general sense of the phrase - a message passing parallel implementation - which allows it to run efficiently on the widest possible number of computing platforms. These include serial, shared-memory and distributed-memory parallel as well as heterogeneous platforms. Careful attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. The development of Xyce provides a platform for computational research and development aimed specifically at the needs of the Laboratory. With Xyce, Sandia has an 'in-house' capability with which both new electrical (e.g., device model development) and algorithmic (e.g., faster time-integration methods, parallel solver algorithms) research and development can be performed. As a result, Xyce is a unique electrical simulation capability, designed to meet the unique needs of the laboratory.« less
Tear fluid proteomics multimarkers for diabetic retinopathy screening
2013-01-01
Background The aim of the project was to develop a novel method for diabetic retinopathy screening based on the examination of tear fluid biomarker changes. In order to evaluate the usability of protein biomarkers for pre-screening purposes several different approaches were used, including machine learning algorithms. Methods All persons involved in the study had diabetes. Diabetic retinopathy (DR) was diagnosed by capturing 7-field fundus images, evaluated by two independent ophthalmologists. 165 eyes were examined (from 119 patients), 55 were diagnosed healthy and 110 images showed signs of DR. Tear samples were taken from all eyes and state-of-the-art nano-HPLC coupled ESI-MS/MS mass spectrometry protein identification was performed on all samples. Applicability of protein biomarkers was evaluated by six different optimally parameterized machine learning algorithms: Support Vector Machine, Recursive Partitioning, Random Forest, Naive Bayes, Logistic Regression, K-Nearest Neighbor. Results Out of the six investigated machine learning algorithms the result of Recursive Partitioning proved to be the most accurate. The performance of the system realizing the above algorithm reached 74% sensitivity and 48% specificity. Conclusions Protein biomarkers selected and classified with machine learning algorithms alone are at present not recommended for screening purposes because of low specificity and sensitivity values. This tool can be potentially used to improve the results of image processing methods as a complementary tool in automatic or semiautomatic systems. PMID:23919537
architectures. Crowlely's group has designed and implemented new methods and algorithms specifically for biomass , Crowley developed highly parallel methods for simulations of bio-macromolecules. Affiliated Research advanced sampling methods, Crowley and his team determine free energies such as binding of substrates
Niv, Masha Y.; Skrabanek, Lucy; Roberts, Richard J.; Scheraga, Harold A.; Weinstein, Harel
2008-01-01
Restriction endonucleases (REases) are DNA-cleaving enzymes that have become indispensable tools in molecular biology. Type II REases are highly divergent in sequence despite their common structural core, function and, in some cases, common specificities towards DNA sequences. This makes it difficult to identify and classify them functionally based on sequence, and has hampered the efforts of specificity-engineering. Here, we define novel REase sequence motifs, which extend beyond the PD-(D/E)XK hallmark, and incorporate secondary structure information. The automated search using these motifs is carried out with a newly developed fast regular expression matching algorithm that accommodates long patterns with optional secondary structure constraints. Using this new tool, named Scan2S, motifs derived from REases with specificity towards GATC- and CGGG-containing DNA sequences successfully identify REases of the same specificity. Notably, some of these sequences are not identified by standard sequence detection tools. The new motifs highlight potential specificity-determining positions that do not fully overlap for the GATC- and the CCGG-recognizing REases and are candidates for specificity re-engineering. PMID:17972284
Niv, Masha Y; Skrabanek, Lucy; Roberts, Richard J; Scheraga, Harold A; Weinstein, Harel
2008-05-01
Restriction endonucleases (REases) are DNA-cleaving enzymes that have become indispensable tools in molecular biology. Type II REases are highly divergent in sequence despite their common structural core, function and, in some cases, common specificities towards DNA sequences. This makes it difficult to identify and classify them functionally based on sequence, and has hampered the efforts of specificity-engineering. Here, we define novel REase sequence motifs, which extend beyond the PD-(D/E)XK hallmark, and incorporate secondary structure information. The automated search using these motifs is carried out with a newly developed fast regular expression matching algorithm that accommodates long patterns with optional secondary structure constraints. Using this new tool, named Scan2S, motifs derived from REases with specificity towards GATC- and CGGG-containing DNA sequences successfully identify REases of the same specificity. Notably, some of these sequences are not identified by standard sequence detection tools. The new motifs highlight potential specificity-determining positions that do not fully overlap for the GATC- and the CCGG-recognizing REases and are candidates for specificity re-engineering.
Genome assembly reborn: recent computational challenges
2009-01-01
Research into genome assembly algorithms has experienced a resurgence due to new challenges created by the development of next generation sequencing technologies. Several genome assemblers have been published in recent years specifically targeted at the new sequence data; however, the ever-changing technological landscape leads to the need for continued research. In addition, the low cost of next generation sequencing data has led to an increased use of sequencing in new settings. For example, the new field of metagenomics relies on large-scale sequencing of entire microbial communities instead of isolate genomes, leading to new computational challenges. In this article, we outline the major algorithmic approaches for genome assembly and describe recent developments in this domain. PMID:19482960
Han, Guangjie; Li, Shanshan; Zhu, Chunsheng; Jiang, Jinfang; Zhang, Wenbo
2017-02-08
Marine environmental monitoring provides crucial information and support for the exploitation, utilization, and protection of marine resources. With the rapid development of information technology, the development of three-dimensional underwater acoustic sensor networks (3D UASNs) provides a novel strategy to acquire marine environment information conveniently, efficiently and accurately. However, the specific propagation effects of acoustic communication channel lead to decreased successful information delivery probability with increased distance. Therefore, we investigate two probabilistic neighborhood-based data collection algorithms for 3D UASNs which are based on a probabilistic acoustic communication model instead of the traditional deterministic acoustic communication model. An autonomous underwater vehicle (AUV) is employed to traverse along the designed path to collect data from neighborhoods. For 3D UASNs without prior deployment knowledge, partitioning the network into grids can allow the AUV to visit the central location of each grid for data collection. For 3D UASNs in which the deployment knowledge is known in advance, the AUV only needs to visit several selected locations by constructing a minimum probabilistic neighborhood covering set to reduce data latency. Otherwise, by increasing the transmission rounds, our proposed algorithms can provide a tradeoff between data collection latency and information gain. These algorithms are compared with basic Nearest-neighbor Heuristic algorithm via simulations. Simulation analyses show that our proposed algorithms can efficiently reduce the average data collection completion time, corresponding to a decrease of data latency.
Algorithm-Based Motion Magnification for Video Processing in Urological Laparoscopy.
Adams, Fabian; Schoelly, Reto; Schlager, Daniel; Schoenthaler, Martin; Schoeb, Dominik S; Wilhelm, Konrad; Hein, Simon; Wetterauer, Ulrich; Miernik, Arkadiusz
2017-06-01
Minimally invasive surgery is in constant further development and has replaced many conventional operative procedures. If vascular structure movement could be detected during these procedures, it could reduce the risk of vascular injury and conversion to open surgery. The recently proposed motion-amplifying algorithm, Eulerian Video Magnification (EVM), has been shown to substantially enhance minimal object changes in digitally recorded video that is barely perceptible to the human eye. We adapted and examined this technology for use in urological laparoscopy. Video sequences of routine urological laparoscopic interventions were recorded and further processed using spatial decomposition and filtering algorithms. The freely available EVM algorithm was investigated for its usability in real-time processing. In addition, a new image processing technology, the CRS iimotion Motion Magnification (CRSMM) algorithm, was specifically adjusted for endoscopic requirements, applied, and validated by our working group. Using EVM, no significant motion enhancement could be detected without severe impairment of the image resolution, motion, and color presentation. The CRSMM algorithm significantly improved image quality in terms of motion enhancement. In particular, the pulsation of vascular structures could be displayed more accurately than in EVM. Motion magnification image processing technology has the potential for clinical importance as a video optimizing modality in endoscopic and laparoscopic surgery. Barely detectable (micro)movements can be visualized using this noninvasive marker-free method. Despite these optimistic results, the technology requires considerable further technical development and clinical tests.
The New CCSDS Image Compression Recommendation
NASA Technical Reports Server (NTRS)
Yeh, Pen-Shu; Armbruster, Philippe; Kiely, Aaron; Masschelein, Bart; Moury, Gilles; Schaefer, Christoph
2005-01-01
The Consultative Committee for Space Data Systems (CCSDS) data compression working group has recently adopted a recommendation for image data compression, with a final release expected in 2005. The algorithm adopted in the recommendation consists of a two-dimensional discrete wavelet transform of the image, followed by progressive bit-plane coding of the transformed data. The algorithm can provide both lossless and lossy compression, and allows a user to directly control the compressed data volume or the fidelity with which the wavelet-transformed data can be reconstructed. The algorithm is suitable for both frame-based image data and scan-based sensor data, and has applications for near-Earth and deep-space missions. The standard will be accompanied by free software sources on a future web site. An Application-Specific Integrated Circuit (ASIC) implementation of the compressor is currently under development. This paper describes the compression algorithm along with the requirements that drove the selection of the algorithm. Performance results and comparisons with other compressors are given for a test set of space images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khachatryan, Vardan
The performance of missing transverse energy reconstruction algorithms is presented by our team using√s=8 TeV proton-proton (pp) data collected with the CMS detector. Events with anomalous missing transverse energy are studied, and the performance of algorithms used to identify and remove these events is presented. The scale and resolution for missing transverse energy, including the effects of multiple pp interactions (pileup), are measured using events with an identified Z boson or isolated photon, and are found to be well described by the simulation. Novel missing transverse energy reconstruction algorithms developed specifically to mitigate the effects of large numbers of pileupmore » interactions on the missing transverse energy resolution are presented. These algorithms significantly reduce the dependence of the missing transverse energy resolution on pileup interactions. Furthermore, an algorithm that provides an estimate of the significance of the missing transverse energy is presented, which is used to estimate the compatibility of the reconstructed missing transverse energy with a zero nominal value.« less
Parallelization of Nullspace Algorithm for the computation of metabolic pathways
Jevremović, Dimitrije; Trinh, Cong T.; Srienc, Friedrich; Sosa, Carlos P.; Boley, Daniel
2011-01-01
Elementary mode analysis is a useful metabolic pathway analysis tool in understanding and analyzing cellular metabolism, since elementary modes can represent metabolic pathways with unique and minimal sets of enzyme-catalyzed reactions of a metabolic network under steady state conditions. However, computation of the elementary modes of a genome- scale metabolic network with 100–1000 reactions is very expensive and sometimes not feasible with the commonly used serial Nullspace Algorithm. In this work, we develop a distributed memory parallelization of the Nullspace Algorithm to handle efficiently the computation of the elementary modes of a large metabolic network. We give an implementation in C++ language with the support of MPI library functions for the parallel communication. Our proposed algorithm is accompanied with an analysis of the complexity and identification of major bottlenecks during computation of all possible pathways of a large metabolic network. The algorithm includes methods to achieve load balancing among the compute-nodes and specific communication patterns to reduce the communication overhead and improve efficiency. PMID:22058581
Comparison of subpixel image registration algorithms
NASA Astrophysics Data System (ADS)
Boye, R. R.; Nelson, C. L.
2009-02-01
Research into the use of multiframe superresolution has led to the development of algorithms for providing images with enhanced resolution using several lower resolution copies. An integral component of these algorithms is the determination of the registration of each of the low resolution images to a reference image. Without this information, no resolution enhancement can be attained. We have endeavored to find a suitable method for registering severely undersampled images by comparing several approaches. To test the algorithms, an ideal image is input to a simulated image formation program, creating several undersampled images with known geometric transformations. The registration algorithms are then applied to the set of low resolution images and the estimated registration parameters compared to the actual values. This investigation is limited to monochromatic images (extension to color images is not difficult) and only considers global geometric transformations. Each registration approach will be reviewed and evaluated with respect to the accuracy of the estimated registration parameters as well as the computational complexity required. In addition, the effects of image content, specifically spatial frequency content, as well as the immunity of the registration algorithms to noise will be discussed.
Stochastic characterization of phase detection algorithms in phase-shifting interferometry
Munteanu, Florin
2016-11-01
Phase-shifting interferometry (PSI) is the preferred non-contact method for profiling sub-nanometer surfaces. Based on monochromatic light interference, the method computes the surface profile from a set of interferograms collected at separate stepping positions. Errors in the estimated profile are introduced when these positions are not located correctly. In order to cope with this problem, various algorithms that minimize the effects of certain types of stepping errors (linear, sinusoidal, etc.) have been developed. Despite the relatively large number of algorithms suggested in the literature, there is no unified way of characterizing their performance when additional unaccounted random errors are present. Here,more » we suggest a procedure for quantifying the expected behavior of each algorithm in the presence of independent and identically distributed (i.i.d.) random stepping errors, which can occur in addition to the systematic errors for which the algorithm has been designed. As a result, the usefulness of this method derives from the fact that it can guide the selection of the best algorithm for specific measurement situations.« less
NASA Astrophysics Data System (ADS)
Chen, Guangye; Luis, Chacon; Bird, Robert; Stark, David; Yin, Lin; Albright, Brian
2017-10-01
Leap-frog based explicit algorithms, either ``energy-conserving'' or ``momentum-conserving'', do not conserve energy discretely. Time-centered fully implicit algorithms can conserve discrete energy exactly, but introduce large dispersion errors in the light-wave modes, regardless of timestep sizes. This can lead to intolerable simulation errors where highly accurate light propagation is needed (e.g. laser-plasma interactions, LPI). In this study, we selectively combine the leap-frog and Crank-Nicolson methods to produce a low-dispersion, exactly energy-and-charge-conserving PIC algorithm. Specifically, we employ the leap-frog method for Maxwell equations, and the Crank-Nicolson method for particle equations. Such an algorithm admits exact global energy conservation, exact local charge conservation, and preserves the dispersion properties of the leap-frog method for the light wave. The algorithm has been implemented in a code named iVPIC, based on the VPIC code developed at LANL. We will present numerical results that demonstrate the properties of the scheme with sample test problems (e.g. Weibel instability run for 107 timesteps, and LPI applications.
Azimipour, Mehdi; Sheikhzadeh, Mahya; Baumgartner, Ryan; Cullen, Patrick K; Helmstetter, Fred J; Chang, Woo-Jin; Pashaie, Ramin
2017-01-01
We present our effort in implementing a fluorescence laminar optical tomography scanner which is specifically designed for noninvasive three-dimensional imaging of fluorescence proteins in the brains of small rodents. A laser beam, after passing through a cylindrical lens, scans the brain tissue from the surface while the emission signal is captured by the epi-fluorescence optics and is recorded using an electron multiplication CCD sensor. Image reconstruction algorithms are developed based on Monte Carlo simulation to model light–tissue interaction and generate the sensitivity matrices. To solve the inverse problem, we used the iterative simultaneous algebraic reconstruction technique. The performance of the developed system was evaluated by imaging microfabricated silicon microchannels embedded inside a substrate with optical properties close to the brain as a tissue phantom and ultimately by scanning brain tissue in vivo. Details of the hardware design and reconstruction algorithms are discussed and several experimental results are presented. The developed system can specifically facilitate neuroscience experiments where fluorescence imaging and molecular genetic methods are used to study the dynamics of the brain circuitries.
A Library of Optimization Algorithms for Organizational Design
2005-01-01
N00014-98-1-0465 and #N00014-00-1-0101 A Library of Optimization Algorithms for Organizational Design Georgiy M. Levchuk Yuri N. Levchuk Jie Luo...E-mail: Krishna@engr.uconn.edu Abstract This paper presents a library of algorithms to solve a broad range of optimization problems arising in the...normative design of organizations to execute a specific mission. The use of specific optimization algorithms for different phases of the design process
Transcultural Diabetes Nutrition Algorithm (tDNA): Venezuelan Application
Nieto-Martínez, Ramfis; Hamdy, Osama; Marante, Daniel; Inés Marulanda, María; Marchetti, Albert; Hegazi, Refaat A.; Mechanick, Jeffrey I.
2014-01-01
Medical nutrition therapy (MNT) is a necessary component of comprehensive type 2 diabetes (T2D) management, but optimal outcomes require culturally-sensitive implementation. Accordingly, international experts created an evidence-based transcultural diabetes nutrition algorithm (tDNA) to improve understanding of MNT and to foster portability of current guidelines to various dysglycemic populations worldwide. This report details the development of tDNA-Venezuelan via analysis of region-specific cardiovascular disease (CVD) risk factors, lifestyles, anthropometrics, and resultant tDNA algorithmic modifications. Specific recommendations include: screening for prediabetes (for biochemical monitoring and lifestyle counseling); detecting obesity using Latin American cutoffs for waist circumference and Venezuelan cutoffs for BMI; prescribing MNT to people with prediabetes, T2D, or high CVD risk; specifying control goals in prediabetes and T2D; and describing regional differences in prevalence of CVD risk and lifestyle. Venezuelan deliberations involved evaluating typical food-based eating patterns, correcting improper dietary habits through adaptation of the Mediterranean diet with local foods, developing local recommendations for physical activity, avoiding stigmatizing obesity as a cosmetic problem, avoiding misuse of insulin and metformin, circumscribing bariatric surgery to appropriate indications, and using integrated health service networks to implement tDNA. Finally, further research, national surveys, and validation protocols focusing on CVD risk reduction in Venezuelan populations are necessary. PMID:24699193
McIlvane, William J; Kledaras, Joanne B; Gerard, Christophe J; Wilde, Lorin; Smelson, David
2018-07-01
A few noteworthy exceptions notwithstanding, quantitative analyses of relational learning are most often simple descriptive measures of study outcomes. For example, studies of stimulus equivalence have made much progress using measures such as percentage consistent with equivalence relations, discrimination ratio, and response latency. Although procedures may have ad hoc variations, they remain fairly similar across studies. Comparison studies of training variables that lead to different outcomes are few. Yet to be developed are tools designed specifically for dynamic and/or parametric analyses of relational learning processes. This paper will focus on recent studies to develop (1) quality computer-based programmed instruction for supporting relational learning in children with autism spectrum disorders and intellectual disabilities and (2) formal algorithms that permit ongoing, dynamic assessment of learner performance and procedure changes to optimize instructional efficacy and efficiency. Because these algorithms have a strong basis in evidence and in theories of stimulus control, they may have utility also for basic and translational research. We present an overview of the research program, details of algorithm features, and summary results that illustrate their possible benefits. It also presents arguments that such algorithm development may encourage parametric research, help in integrating new research findings, and support in-depth quantitative analyses of stimulus control processes in relational learning. Such algorithms may also serve to model control of basic behavioral processes that is important to the design of effective programmed instruction for human learners with and without functional disabilities. Copyright © 2018 Elsevier B.V. All rights reserved.
Mechanick, Jeffrey I; Pessah-Pollack, Rachel; Camacho, Pauline; Correa, Ricardo; Figaro, M Kathleen; Garber, Jeffrey R; Jasim, Sina; Pantalone, Kevin M; Trence, Dace; Upala, Sikarin
2017-08-01
Clinical practice guideline (CPG), clinical practice algorithm (CPA), and clinical checklist (CC, collectively CPGAC) development is a high priority of the American Association of Clinical Endocrinologists (AACE) and American College of Endocrinology (ACE). This 2017 update in CPG development consists of (1) a paradigm change wherein first, environmental scans identify important clinical issues and needs, second, CPA construction focuses on these clinical issues and needs, and third, CPG provide CPA node/edge-specific scientific substantiation and appended CC; (2) inclusion of new technical semantic and numerical descriptors for evidence types, subjective factors, and qualifiers; and (3) incorporation of patient-centered care components such as economics and transcultural adaptations, as well as implementation, validation, and evaluation strategies. This third point highlights the dominating factors of personal finances, governmental influences, and third-party payer dictates on CPGAC implementation, which ultimately impact CPGAC development. The AACE/ACE guidelines for the CPGAC program is a successful and ongoing iterative exercise to optimize endocrine care in a changing and challenging healthcare environment. AACE = American Association of Clinical Endocrinologists ACC = American College of Cardiology ACE = American College of Endocrinology ASeRT = ACE Scientific Referencing Team BEL = best evidence level CC = clinical checklist CPA = clinical practice algorithm CPG = clinical practice guideline CPGAC = clinical practice guideline, algorithm, and checklist EBM = evidence-based medicine EHR = electronic health record EL = evidence level G4GAC = Guidelines for Guidelines, Algorithms, and Checklists GAC = guidelines, algorithms, and checklists HCP = healthcare professional(s) POEMS = patient-oriented evidence that matters PRCT = prospective randomized controlled trial.
Borghese, Michael M; Janssen, Ian
2018-03-22
Children participate in four main types of physical activity: organized sport, active travel, outdoor active play, and curriculum-based physical activity. The objective of this study was to develop a valid approach that can be used to concurrently measure time spent in each of these types of physical activity. Two samples (sample 1: n = 50; sample 2: n = 83) of children aged 10-13 wore an accelerometer and a GPS watch continuously over 7 days. They also completed a log where they recorded the start and end times of organized sport sessions. Sample 1 also completed an outdoor time log where they recorded the times they went outdoors and a description of the outdoor activity. Sample 2 also completed a curriculum log where they recorded times they participated in physical activity (e.g., physical education) during class time. We describe the development of a measurement approach that can be used to concurrently assess the time children spend participating in specific types of physical activity. The approach uses a combination of data from accelerometers, GPS, and activity logs and relies on merging and then processing these data using several manual (e.g., data checks and cleaning) and automated (e.g., algorithms) procedures. In the new measurement approach time spent in organized sport is estimated using the activity log. Time spent in active travel is estimated using an existing algorithm that uses GPS data. Time spent in outdoor active play is estimated using an algorithm (with a sensitivity and specificity of 85%) that was developed using data collected in sample 1 and which uses all of the data sources. Time spent in curriculum-based physical activity is estimated using an algorithm (with a sensitivity of 78% and specificity of 92%) that was developed using data collected in sample 2 and which uses accelerometer data collected during class time. There was evidence of excellent intra- and inter-rater reliability of the estimates for all of these types of physical activity when the manual steps were duplicated. This novel measurement approach can be used to estimate the time that children participate in different types of physical activity.
Intelligent Systems for Power Management and Distribution
NASA Technical Reports Server (NTRS)
Button, Robert M.
2002-01-01
The motivation behind an advanced technology program to develop intelligent power management and distribution (PMAD) systems is described. The program concentrates on developing digital control and distributed processing algorithms for PMAD components and systems to improve their size, weight, efficiency, and reliability. Specific areas of research in developing intelligent DC-DC converters and distributed switchgear are described. Results from recent development efforts are presented along with expected future benefits to the overall PMAD system performance.
Ventricular repolarization variability for hypoglycemia detection.
Ling, Steve; Nguyen, H T
2011-01-01
Hypoglycemia is the most acute and common complication of Type 1 diabetes and is a limiting factor in a glycemic management of diabetes. In this paper, two main contributions are presented; firstly, ventricular repolarization variabilities are introduced for hypoglycemia detection, and secondly, a swarm-based support vector machine (SVM) algorithm with the inputs of the repolarization variabilities is developed to detect hypoglycemia. By using the algorithm and including several repolarization variabilities as inputs, the best hypoglycemia detection performance is found with sensitivity and specificity of 82.14% and 60.19%, respectively.
Design of a clinical notification system.
Wagner, M M; Tsui, F C; Pike, J; Pike, L
1999-01-01
We describe the requirements and design of an enterprise-wide notification system. From published descriptions of notification schemes, our own experience, and use cases provided by diverse users in our institution, we developed a set of functional requirements. The resulting design supports multiple communication channels, third party mappings (algorithms) from message to recipient and/or channel of delivery, and escalation algorithms. A requirement for multiple message formats is addressed by a document specification. We implemented this system in Java as a CORBA object. This paper describes the design and current implementation of our notification system.
Sequenza: allele-specific copy number and mutation profiles from tumor sequencing data.
Favero, F; Joshi, T; Marquard, A M; Birkbak, N J; Krzystanek, M; Li, Q; Szallasi, Z; Eklund, A C
2015-01-01
Exome or whole-genome deep sequencing of tumor DNA along with paired normal DNA can potentially provide a detailed picture of the somatic mutations that characterize the tumor. However, analysis of such sequence data can be complicated by the presence of normal cells in the tumor specimen, by intratumor heterogeneity, and by the sheer size of the raw data. In particular, determination of copy number variations from exome sequencing data alone has proven difficult; thus, single nucleotide polymorphism (SNP) arrays have often been used for this task. Recently, algorithms to estimate absolute, but not allele-specific, copy number profiles from tumor sequencing data have been described. We developed Sequenza, a software package that uses paired tumor-normal DNA sequencing data to estimate tumor cellularity and ploidy, and to calculate allele-specific copy number profiles and mutation profiles. We applied Sequenza, as well as two previously published algorithms, to exome sequence data from 30 tumors from The Cancer Genome Atlas. We assessed the performance of these algorithms by comparing their results with those generated using matched SNP arrays and processed by the allele-specific copy number analysis of tumors (ASCAT) algorithm. Comparison between Sequenza/exome and SNP/ASCAT revealed strong correlation in cellularity (Pearson's r = 0.90) and ploidy estimates (r = 0.42, or r = 0.94 after manual inspecting alternative solutions). This performance was noticeably superior to previously published algorithms. In addition, in artificial data simulating normal-tumor admixtures, Sequenza detected the correct ploidy in samples with tumor content as low as 30%. The agreement between Sequenza and SNP array-based copy number profiles suggests that exome sequencing alone is sufficient not only for identifying small scale mutations but also for estimating cellularity and inferring DNA copy number aberrations. © The Author 2014. Published by Oxford University Press on behalf of the European Society for Medical Oncology.
Screening for prenatal substance use: development of the Substance Use Risk Profile-Pregnancy scale.
Yonkers, Kimberly A; Gotman, Nathan; Kershaw, Trace; Forray, Ariadna; Howell, Heather B; Rounsaville, Bruce J
2010-10-01
To report on the development of a questionnaire to screen for hazardous substance use in pregnant women and to compare the performance of the questionnaire with other drug and alcohol measures. Pregnant women were administered a modified TWEAK (Tolerance, Worried, Eye-openers, Amnesia, K[C] Cut Down) questionnaire, the 4Ps Plus questionnaire, items from the Addiction Severity Index, and two questions about domestic violence (N=2,684). The sample was divided into "training" (n=1,610) and "validation" (n=1,074) subsamples. We applied recursive partitioning class analysis to the responses from individuals in the training subsample that resulted in a three-item Substance Use Risk Profile-Pregnancy scale. We examined sensitivity, specificity, and the fit of logistic regression models in the validation subsample to compare the performance of the Substance Use Risk Profile-Pregnancy scale with the modified TWEAK and various scoring algorithms of the 4Ps. The Substance Use Risk Profile-Pregnancy scale is comprised of three informative questions that can be scored for high- or low-risk populations. The Substance Use Risk Profile-Pregnancy scale algorithm for low-risk populations was mostly highly predictive of substance use in the validation subsample (Akaike's Information Criterion=579.75, Nagelkerke R=0.27) with high sensitivity (91%) and adequate specificity (67%). The high-risk algorithm had lower sensitivity (57%) but higher specificity (88%). The Substance Use Risk Profile-Pregnancy scale is simple and flexible with good sensitivity and specificity. The Substance Use Risk Profile-Pregnancy scale can potentially detect a range of substances that may be abused. Clinicians need to further assess women with a positive screen to identify those who require treatment for alcohol or illicit substance use in pregnancy. III.
The circadian profile of epilepsy improves seizure forecasting.
Karoly, Philippa J; Ung, Hoameng; Grayden, David B; Kuhlmann, Levin; Leyde, Kent; Cook, Mark J; Freestone, Dean R
2017-08-01
It is now established that epilepsy is characterized by periodic dynamics that increase seizure likelihood at certain times of day, and which are highly patient-specific. However, these dynamics are not typically incorporated into seizure prediction algorithms due to the difficulty of estimating patient-specific rhythms from relatively short-term or unreliable data sources. This work outlines a novel framework to develop and assess seizure forecasts, and demonstrates that the predictive power of forecasting models is improved by circadian information. The analyses used long-term, continuous electrocorticography from nine subjects, recorded for an average of 320 days each. We used a large amount of out-of-sample data (a total of 900 days for algorithm training, and 2879 days for testing), enabling the most extensive post hoc investigation into seizure forecasting. We compared the results of an electrocorticography-based logistic regression model, a circadian probability, and a combined electrocorticography and circadian model. For all subjects, clinically relevant seizure prediction results were significant, and the addition of circadian information (combined model) maximized performance across a range of outcome measures. These results represent a proof-of-concept for implementing a circadian forecasting framework, and provide insight into new approaches for improving seizure prediction algorithms. The circadian framework adds very little computational complexity to existing prediction algorithms, and can be implemented using current-generation implant devices, or even non-invasively via surface electrodes using a wearable application. The ability to improve seizure prediction algorithms through straightforward, patient-specific modifications provides promise for increased quality of life and improved safety for patients with epilepsy. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Witharana, Chandi; LaRue, Michelle A.; Lynch, Heather J.
2016-03-01
Remote sensing is a rapidly developing tool for mapping the abundance and distribution of Antarctic wildlife. While both panchromatic and multispectral imagery have been used in this context, image fusion techniques have received little attention. We tasked seven widely-used fusion algorithms: Ehlers fusion, hyperspherical color space fusion, high-pass fusion, principal component analysis (PCA) fusion, University of New Brunswick fusion, and wavelet-PCA fusion to resolution enhance a series of single-date QuickBird-2 and Worldview-2 image scenes comprising penguin guano, seals, and vegetation. Fused images were assessed for spectral and spatial fidelity using a variety of quantitative quality indicators and visual inspection methods. Our visual evaluation elected the high-pass fusion algorithm and the University of New Brunswick fusion algorithm as best for manual wildlife detection while the quantitative assessment suggested the Gram-Schmidt fusion algorithm and the University of New Brunswick fusion algorithm as best for automated classification. The hyperspherical color space fusion algorithm exhibited mediocre results in terms of spectral and spatial fidelities. The PCA fusion algorithm showed spatial superiority at the expense of spectral inconsistencies. The Ehlers fusion algorithm and the wavelet-PCA algorithm showed the weakest performances. As remote sensing becomes a more routine method of surveying Antarctic wildlife, these benchmarks will provide guidance for image fusion and pave the way for more standardized products for specific types of wildlife surveys.
Cardiac image modelling: Breadth and depth in heart disease.
Suinesiaputra, Avan; McCulloch, Andrew D; Nash, Martyn P; Pontre, Beau; Young, Alistair A
2016-10-01
With the advent of large-scale imaging studies and big health data, and the corresponding growth in analytics, machine learning and computational image analysis methods, there are now exciting opportunities for deepening our understanding of the mechanisms and characteristics of heart disease. Two emerging fields are computational analysis of cardiac remodelling (shape and motion changes due to disease) and computational analysis of physiology and mechanics to estimate biophysical properties from non-invasive imaging. Many large cohort studies now underway around the world have been specifically designed based on non-invasive imaging technologies in order to gain new information about the development of heart disease from asymptomatic to clinical manifestations. These give an unprecedented breadth to the quantification of population variation and disease development. Also, for the individual patient, it is now possible to determine biophysical properties of myocardial tissue in health and disease by interpreting detailed imaging data using computational modelling. For these population and patient-specific computational modelling methods to develop further, we need open benchmarks for algorithm comparison and validation, open sharing of data and algorithms, and demonstration of clinical efficacy in patient management and care. The combination of population and patient-specific modelling will give new insights into the mechanisms of cardiac disease, in particular the development of heart failure, congenital heart disease, myocardial infarction, contractile dysfunction and diastolic dysfunction. Copyright © 2016. Published by Elsevier B.V.
Morgan, R; Gallagher, M
2012-01-01
In this paper we extend a previously proposed randomized landscape generator in combination with a comparative experimental methodology to study the behavior of continuous metaheuristic optimization algorithms. In particular, we generate two-dimensional landscapes with parameterized, linear ridge structure, and perform pairwise comparisons of algorithms to gain insight into what kind of problems are easy and difficult for one algorithm instance relative to another. We apply this methodology to investigate the specific issue of explicit dependency modeling in simple continuous estimation of distribution algorithms. Experimental results reveal specific examples of landscapes (with certain identifiable features) where dependency modeling is useful, harmful, or has little impact on mean algorithm performance. Heat maps are used to compare algorithm performance over a large number of landscape instances and algorithm trials. Finally, we perform a meta-search in the landscape parameter space to find landscapes which maximize the performance between algorithms. The results are related to some previous intuition about the behavior of these algorithms, but at the same time lead to new insights into the relationship between dependency modeling in EDAs and the structure of the problem landscape. The landscape generator and overall methodology are quite general and extendable and can be used to examine specific features of other algorithms.
Color object detection using spatial-color joint probability functions.
Luo, Jiebo; Crandall, David
2006-06-01
Object detection in unconstrained images is an important image understanding problem with many potential applications. There has been little success in creating a single algorithm that can detect arbitrary objects in unconstrained images; instead, algorithms typically must be customized for each specific object. Consequently, it typically requires a large number of exemplars (for rigid objects) or a large amount of human intuition (for nonrigid objects) to develop a robust algorithm. We present a robust algorithm designed to detect a class of compound color objects given a single model image. A compound color object is defined as having a set of multiple, particular colors arranged spatially in a particular way, including flags, logos, cartoon characters, people in uniforms, etc. Our approach is based on a particular type of spatial-color joint probability function called the color edge co-occurrence histogram. In addition, our algorithm employs perceptual color naming to handle color variation, and prescreening to limit the search scope (i.e., size and location) for the object. Experimental results demonstrated that the proposed algorithm is insensitive to object rotation, scaling, partial occlusion, and folding, outperforming a closely related algorithm based on color co-occurrence histograms by a decisive margin.
Ni, Yepeng; Liu, Jianbo; Liu, Shan; Bai, Yaxin
2016-01-01
With the rapid development of smartphones and wireless networks, indoor location-based services have become more and more prevalent. Due to the sophisticated propagation of radio signals, the Received Signal Strength Indicator (RSSI) shows a significant variation during pedestrian walking, which introduces critical errors in deterministic indoor positioning. To solve this problem, we present a novel method to improve the indoor pedestrian positioning accuracy by embedding a fuzzy pattern recognition algorithm into a Hidden Markov Model. The fuzzy pattern recognition algorithm follows the rule that the RSSI fading has a positive correlation to the distance between the measuring point and the AP location even during a dynamic positioning measurement. Through this algorithm, we use the RSSI variation trend to replace the specific RSSI value to achieve a fuzzy positioning. The transition probability of the Hidden Markov Model is trained by the fuzzy pattern recognition algorithm with pedestrian trajectories. Using the Viterbi algorithm with the trained model, we can obtain a set of hidden location states. In our experiments, we demonstrate that, compared with the deterministic pattern matching algorithm, our method can greatly improve the positioning accuracy and shows robust environmental adaptability. PMID:27618053
NASA Astrophysics Data System (ADS)
Gilat-Schmidt, Taly; Wang, Adam; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh
2016-03-01
The overall goal of this work is to develop a rapid, accurate and fully automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using a deterministic Boltzmann Transport Equation solver and automated CT segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. The investigated algorithm uses a combination of feature-based and atlas-based methods. A multiatlas approach was also investigated. We hypothesize that the auto-segmentation algorithm is sufficiently accurate to provide organ dose estimates since random errors at the organ boundaries will average out when computing the total organ dose. To test this hypothesis, twenty head-neck CT scans were expertly segmented into nine regions. A leave-one-out validation study was performed, where every case was automatically segmented with each of the remaining cases used as the expert atlas, resulting in nineteen automated segmentations for each of the twenty datasets. The segmented regions were applied to gold-standard Monte Carlo dose maps to estimate mean and peak organ doses. The results demonstrated that the fully automated segmentation algorithm estimated the mean organ dose to within 10% of the expert segmentation for regions other than the spinal canal, with median error for each organ region below 2%. In the spinal canal region, the median error was 7% across all data sets and atlases, with a maximum error of 20%. The error in peak organ dose was below 10% for all regions, with a median error below 4% for all organ regions. The multiple-case atlas reduced the variation in the dose estimates and additional improvements may be possible with more robust multi-atlas approaches. Overall, the results support potential feasibility of an automated segmentation algorithm to provide accurate organ dose estimates.
Mathematical algorithm for the automatic recognition of intestinal parasites.
Alva, Alicia; Cangalaya, Carla; Quiliano, Miguel; Krebs, Casey; Gilman, Robert H; Sheen, Patricia; Zimic, Mirko
2017-01-01
Parasitic infections are generally diagnosed by professionals trained to recognize the morphological characteristics of the eggs in microscopic images of fecal smears. However, this laboratory diagnosis requires medical specialists which are lacking in many of the areas where these infections are most prevalent. In response to this public health issue, we developed a software based on pattern recognition analysis from microscopi digital images of fecal smears, capable of automatically recognizing and diagnosing common human intestinal parasites. To this end, we selected 229, 124, 217, and 229 objects from microscopic images of fecal smears positive for Taenia sp., Trichuris trichiura, Diphyllobothrium latum, and Fasciola hepatica, respectively. Representative photographs were selected by a parasitologist. We then implemented our algorithm in the open source program SCILAB. The algorithm processes the image by first converting to gray-scale, then applies a fourteen step filtering process, and produces a skeletonized and tri-colored image. The features extracted fall into two general categories: geometric characteristics and brightness descriptions. Individual characteristics were quantified and evaluated with a logistic regression to model their ability to correctly identify each parasite separately. Subsequently, all algorithms were evaluated for false positive cross reactivity with the other parasites studied, excepting Taenia sp. which shares very few morphological characteristics with the others. The principal result showed that our algorithm reached sensitivities between 99.10%-100% and specificities between 98.13%- 98.38% to detect each parasite separately. We did not find any cross-positivity in the algorithms for the three parasites evaluated. In conclusion, the results demonstrated the capacity of our computer algorithm to automatically recognize and diagnose Taenia sp., Trichuris trichiura, Diphyllobothrium latum, and Fasciola hepatica with a high sensitivity and specificity.
Hybridization of decomposition and local search for multiobjective optimization.
Ke, Liangjun; Zhang, Qingfu; Battiti, Roberto
2014-10-01
Combining ideas from evolutionary algorithms, decomposition approaches, and Pareto local search, this paper suggests a simple yet efficient memetic algorithm for combinatorial multiobjective optimization problems: memetic algorithm based on decomposition (MOMAD). It decomposes a combinatorial multiobjective problem into a number of single objective optimization problems using an aggregation method. MOMAD evolves three populations: 1) population P(L) for recording the current solution to each subproblem; 2) population P(P) for storing starting solutions for Pareto local search; and 3) an external population P(E) for maintaining all the nondominated solutions found so far during the search. A problem-specific single objective heuristic can be applied to these subproblems to initialize the three populations. At each generation, a Pareto local search method is first applied to search a neighborhood of each solution in P(P) to update P(L) and P(E). Then a single objective local search is applied to each perturbed solution in P(L) for improving P(L) and P(E), and reinitializing P(P). The procedure is repeated until a stopping condition is met. MOMAD provides a generic hybrid multiobjective algorithmic framework in which problem specific knowledge, well developed single objective local search and heuristics and Pareto local search methods can be hybridized. It is a population based iterative method and thus an anytime algorithm. Extensive experiments have been conducted in this paper to study MOMAD and compare it with some other state-of-the-art algorithms on the multiobjective traveling salesman problem and the multiobjective knapsack problem. The experimental results show that our proposed algorithm outperforms or performs similarly to the best so far heuristics on these two problems.
Mathematical algorithm for the automatic recognition of intestinal parasites
Alva, Alicia; Cangalaya, Carla; Quiliano, Miguel; Krebs, Casey; Gilman, Robert H.; Sheen, Patricia; Zimic, Mirko
2017-01-01
Parasitic infections are generally diagnosed by professionals trained to recognize the morphological characteristics of the eggs in microscopic images of fecal smears. However, this laboratory diagnosis requires medical specialists which are lacking in many of the areas where these infections are most prevalent. In response to this public health issue, we developed a software based on pattern recognition analysis from microscopi digital images of fecal smears, capable of automatically recognizing and diagnosing common human intestinal parasites. To this end, we selected 229, 124, 217, and 229 objects from microscopic images of fecal smears positive for Taenia sp., Trichuris trichiura, Diphyllobothrium latum, and Fasciola hepatica, respectively. Representative photographs were selected by a parasitologist. We then implemented our algorithm in the open source program SCILAB. The algorithm processes the image by first converting to gray-scale, then applies a fourteen step filtering process, and produces a skeletonized and tri-colored image. The features extracted fall into two general categories: geometric characteristics and brightness descriptions. Individual characteristics were quantified and evaluated with a logistic regression to model their ability to correctly identify each parasite separately. Subsequently, all algorithms were evaluated for false positive cross reactivity with the other parasites studied, excepting Taenia sp. which shares very few morphological characteristics with the others. The principal result showed that our algorithm reached sensitivities between 99.10%-100% and specificities between 98.13%- 98.38% to detect each parasite separately. We did not find any cross-positivity in the algorithms for the three parasites evaluated. In conclusion, the results demonstrated the capacity of our computer algorithm to automatically recognize and diagnose Taenia sp., Trichuris trichiura, Diphyllobothrium latum, and Fasciola hepatica with a high sensitivity and specificity. PMID:28410387
Learning material recommendation based on case-based reasoning similarity scores
NASA Astrophysics Data System (ADS)
Masood, Mona; Mokmin, Nur Azlina Mohamed
2017-10-01
A personalized learning material recommendation is important in any Intelligent Tutoring System (ITS). Case-based Reasoning (CBR) is an Artificial Intelligent Algorithm that has been widely used in the development of ITS applications. This study has developed an ITS application that applied the CBR algorithm in the development process. The application has the ability to recommend the most suitable learning material to the specific student based on information in the student profile. In order to test the ability of the application in recommending learning material, two versions of the application were created. The first version displayed the most suitable learning material and the second version displayed the least preferable learning material. The results show the application has successfully assigned the students to the most suitable learning material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parekh, V; Jacobs, MA
Purpose: Multiparametric radiological imaging is used for diagnosis in patients. Potentially extracting useful features specific to a patient’s pathology would be crucial step towards personalized medicine and assessing treatment options. In order to automatically extract features directly from multiparametric radiological imaging datasets, we developed an advanced unsupervised machine learning algorithm called the multidimensional imaging radiomics-geodesics(MIRaGe). Methods: Seventy-six breast tumor patients underwent 3T MRI breast imaging were used for this study. We tested the MIRaGe algorithm to extract features for classification of breast tumors into benign or malignant. The MRI parameters used were T1-weighted, T2-weighted, dynamic contrast enhanced MR imaging (DCE-MRI)more » and diffusion weighted imaging(DWI). The MIRaGe algorithm extracted the radiomics-geodesics features (RGFs) from multiparametric MRI datasets. This enable our method to learn the intrinsic manifold representations corresponding to the patients. To determine the informative RGF, a modified Isomap algorithm(t-Isomap) was created for a radiomics-geodesics feature space(tRGFS) to avoid overfitting. Final classification was performed using SVM. The predictive power of the RGFs was tested and validated using k-fold cross validation. Results: The RGFs extracted by the MIRaGe algorithm successfully classified malignant lesions from benign lesions with a sensitivity of 93% and a specificity of 91%. The top 50 RGFs identified as the most predictive by the t-Isomap procedure were consistent with the radiological parameters known to be associated with breast cancer diagnosis and were categorized as kinetic curve characterizing RGFs, wash-in rate characterizing RGFs, wash-out rate characterizing RGFs and morphology characterizing RGFs. Conclusion: In this paper, we developed a novel feature extraction algorithm for multiparametric radiological imaging. The results demonstrated the power of the MIRaGe algorithm at automatically discovering useful feature representations directly from the raw multiparametric MRI data. In conclusion, the MIRaGe informatics model provides a powerful tool with applicability in cancer diagnosis and a possibility of extension to other kinds of pathologies. NIH (P50CA103175, 5P30CA006973 (IRAT), R01CA190299, U01CA140204), Siemens Medical Systems (JHU-2012-MR-86-01) and Nivida Graphics Corporation.« less
Han, Lianghao; Dong, Hua; McClelland, Jamie R; Han, Liangxiu; Hawkes, David J; Barratt, Dean C
2017-07-01
This paper presents a new hybrid biomechanical model-based non-rigid image registration method for lung motion estimation. In the proposed method, a patient-specific biomechanical modelling process captures major physically realistic deformations with explicit physical modelling of sliding motion, whilst a subsequent non-rigid image registration process compensates for small residuals. The proposed algorithm was evaluated with 10 4D CT datasets of lung cancer patients. The target registration error (TRE), defined as the Euclidean distance of landmark pairs, was significantly lower with the proposed method (TRE = 1.37 mm) than with biomechanical modelling (TRE = 3.81 mm) and intensity-based image registration without specific considerations for sliding motion (TRE = 4.57 mm). The proposed method achieved a comparable accuracy as several recently developed intensity-based registration algorithms with sliding handling on the same datasets. A detailed comparison on the distributions of TREs with three non-rigid intensity-based algorithms showed that the proposed method performed especially well on estimating the displacement field of lung surface regions (mean TRE = 1.33 mm, maximum TRE = 5.3 mm). The effects of biomechanical model parameters (such as Poisson's ratio, friction and tissue heterogeneity) on displacement estimation were investigated. The potential of the algorithm in optimising biomechanical models of lungs through analysing the pattern of displacement compensation from the image registration process has also been demonstrated. Copyright © 2017 Elsevier B.V. All rights reserved.
Kalmar, Alain F; Absalom, Anthony; Rombouts, Pieter; Roets, Jelle; Dewaele, Frank; Verdonck, Pascal; Stemerdink, Arjanne; Zijlstra, Jan G; Monsieurs, Koenraad G
2016-08-01
Unrecognised endotracheal tube misplacement in emergency intubations has a reported incidence of up to 17%. Current detection methods have many limitations restricting their reliability and availability in these circumstances. There is therefore a clinical need for a device that is small enough to be practical in emergency situations and that can detect oesophageal intubation within seconds. In a first reported evaluation, we demonstrated an algorithm based on pressure waveform analysis, able to determine tube location with high reliability in healthy patients. The aim of this study was to validate the specificity of the algorithm in patients with abnormal pulmonary compliance, and to demonstrate the reliability of a newly developed small device that incorporates the technology. Intubated patients with mild to moderate lung injury, admitted to intensive care were included in the study. The device was connected to the endotracheal tube, and three test ventilations were performed in each patient. All diagnostic data were recorded on PC for subsequent specificity/sensitivity analysis. A total of 105 ventilations in 35 patients with lung injury were analysed. With the threshold D-value of 0.1, the system showed a 100% sensitivity and specificity to diagnose tube location. The algorithm retained its specificity in patients with decreased pulmonary compliance. We also demonstrated the feasibility to integrate sensors and diagnostic hardware in a small, portable hand-held device for convenient use in emergency situations. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
A Taylor weak-statement algorithm for hyperbolic conservation laws
NASA Technical Reports Server (NTRS)
Baker, A. J.; Kim, J. W.
1987-01-01
Finite element analysis, applied to computational fluid dynamics (CFD) problem classes, presents a formal procedure for establishing the ingredients of a discrete approximation numerical solution algorithm. A classical Galerkin weak-statement formulation, formed on a Taylor series extension of the conservation law system, is developed herein that embeds a set of parameters eligible for constraint according to specification of suitable norms. The derived family of Taylor weak statements is shown to contain, as special cases, over one dozen independently derived CFD algorithms published over the past several decades for the high speed flow problem class. A theoretical analysis is completed that facilitates direct qualitative comparisons. Numerical results for definitive linear and nonlinear test problems permit direct quantitative performance comparisons.
Auto-SEIA: simultaneous optimization of image processing and machine learning algorithms
NASA Astrophysics Data System (ADS)
Negro Maggio, Valentina; Iocchi, Luca
2015-02-01
Object classification from images is an important task for machine vision and it is a crucial ingredient for many computer vision applications, ranging from security and surveillance to marketing. Image based object classification techniques properly integrate image processing and machine learning (i.e., classification) procedures. In this paper we present a system for automatic simultaneous optimization of algorithms and parameters for object classification from images. More specifically, the proposed system is able to process a dataset of labelled images and to return a best configuration of image processing and classification algorithms and of their parameters with respect to the accuracy of classification. Experiments with real public datasets are used to demonstrate the effectiveness of the developed system.
A Feature-Based Approach to Modeling Protein–DNA Interactions
Segal, Eran
2008-01-01
Transcription factor (TF) binding to its DNA target site is a fundamental regulatory interaction. The most common model used to represent TF binding specificities is a position specific scoring matrix (PSSM), which assumes independence between binding positions. However, in many cases, this simplifying assumption does not hold. Here, we present feature motif models (FMMs), a novel probabilistic method for modeling TF–DNA interactions, based on log-linear models. Our approach uses sequence features to represent TF binding specificities, where each feature may span multiple positions. We develop the mathematical formulation of our model and devise an algorithm for learning its structural features from binding site data. We also developed a discriminative motif finder, which discovers de novo FMMs that are enriched in target sets of sequences compared to background sets. We evaluate our approach on synthetic data and on the widely used TF chromatin immunoprecipitation (ChIP) dataset of Harbison et al. We then apply our algorithm to high-throughput TF ChIP data from mouse and human, reveal sequence features that are present in the binding specificities of mouse and human TFs, and show that FMMs explain TF binding significantly better than PSSMs. Our FMM learning and motif finder software are available at http://genie.weizmann.ac.il/. PMID:18725950
Cost and benefits design optimization model for fault tolerant flight control systems
NASA Technical Reports Server (NTRS)
Rose, J.
1982-01-01
Requirements and specifications for a method of optimizing the design of fault-tolerant flight control systems are provided. Algorithms that could be used for developing new and modifying existing computer programs are also provided, with recommendations for follow-on work.
Actigraphy features for predicting mobility disability in older adults
USDA-ARS?s Scientific Manuscript database
Actigraphy has attracted much attention for assessing physical activity in the past decade. Many algorithms have been developed to automate the analysis process, but none has targeted a general model to discover related features for detecting or predicting mobility function, or more specifically, mo...
Pre-Launch Tasks Proposed in our Contract of December 1991
NASA Technical Reports Server (NTRS)
1998-01-01
We propose, during the pre-EOS phase to: (1) develop, with other MODIS Team Members, a means of discriminating different major biome types with NDVI and other AVHRR-based data; (2) develop a simple ecosystem process model for each of these biomes, BIOME-BGC; (3) relate the seasonal trend of weekly composite NDVI to vegetation phenology and temperature limits to develop a satellite defined growing season for vegetation; and (4) define physiologically based energy to mass conversion factors for carbon and water for each biome. Our final core at-launch product will be simplified, completely satellite driven biome specific models for net primary production. We will build these biome specific satellite driven algorithms using a family of simple ecosystem process models as calibration models, collectively called BIOME-BGC, and establish coordination with an existing network of ecological study sites in order to test and validate these products. Field datasets will then be available for both BIOME-BGC development and testing, use for algorithm developments of other MODIS Team Members, and ultimately be our first test point for MODIS land vegetation products upon launch. We will use field sites from the National Science Foundation Long-Term Ecological Research network, and develop Glacier National Park as a major site for intensive validation.
Pre-Launch Tasks Proposed in our Contract of December 1991
NASA Technical Reports Server (NTRS)
Running, Steven W.; Nemani, Ramakrishna R.; Glassy, Joseph
1997-01-01
We propose, during the pre-EOS phase to: (1) develop, with other MODIS Team Members, a means of discriminating different major biome types with NDVI and other AVHRR-based data. (2) develop a simple ecosystem process model for each of these biomes, BIOME-BGC (3) relate the seasonal trend of weekly composite NDVI to vegetation phenology and temperature limits to develop a satellite defined growing season for vegetation; and (4) define physiologically based energy to mass conversion factors for carbon and water for each biome. Our final core at-launch product will be simplified, completely satellite driven biome specific models for net primary production. We will build these biome specific satellite driven algorithms using a family of simple ecosystem process models as calibration models, collectively called BIOME-BGC, and establish coordination with an existing network of ecological study sites in order to test and validate these products. Field datasets will then be available for both BIOME-BGC development and testing, use for algorithm developments of other MODIS Team Members, and ultimately be our first test point for MODIS land vegetation products upon launch. We will use field sites from the National Science Foundation Long-Term Ecological Research network, and develop Glacier National Park as a major site for intensive validation.
Development of a Practical Methodology for Elastic-Plastic and Fully Plastic Fatigue Crack Growth
NASA Technical Reports Server (NTRS)
McClung, R. C.; Chell, G. G.; Lee, Y. -D.; Russell, D. A.; Orient, G. E.
1999-01-01
A practical engineering methodology has been developed to analyze and predict fatigue crack growth rates under elastic-plastic and fully plastic conditions. The methodology employs the closure-corrected effective range of the J-integral, delta J(sub eff) as the governing parameter. The methodology contains original and literature J and delta J solutions for specific geometries, along with general methods for estimating J for other geometries and other loading conditions, including combined mechanical loading and combined primary and secondary loading. The methodology also contains specific practical algorithms that translate a J solution into a prediction of fatigue crack growth rate or life, including methods for determining crack opening levels, crack instability conditions, and material properties. A critical core subset of the J solutions and the practical algorithms has been implemented into independent elastic-plastic NASGRO modules. All components of the entire methodology, including the NASGRO modules, have been verified through analysis and experiment, and limits of applicability have been identified.
Development of a Practical Methodology for Elastic-Plastic and Fully Plastic Fatigue Crack Growth
NASA Technical Reports Server (NTRS)
McClung, R. C.; Chell, G. G.; Lee, Y.-D.; Russell, D. A.; Orient, G. E.
1999-01-01
A practical engineering methodology has been developed to analyze and predict fatigue crack growth rates under elastic-plastic and fully plastic conditions. The methodology employs the closure-corrected effective range of the J-integral, (Delta)J(sub eff), as the governing parameter. The methodology contains original and literature J and (Delta)J solutions for specific geometries, along with general methods for estimating J for other geometries and other loading conditions, including combined mechanical loading and combined primary and secondary loading. The methodology also contains specific practical algorithms that translate a J solution into a prediction of fatigue crack growth rate or life, including methods for determining crack opening levels, crack instability conditions, and material properties. A critical core subset of the J solutions and the practical algorithms has been implemented into independent elastic-plastic NASGRO modules. All components of the entire methodology, including the NASGRO modules, have been verified through analysis and experiment, and limits of applicability have been identified.
AITSO: A Tool for Spatial Optimization Based on Artificial Immune Systems
Zhao, Xiang; Liu, Yaolin; Liu, Dianfeng; Ma, Xiaoya
2015-01-01
A great challenge facing geocomputation and spatial analysis is spatial optimization, given that it involves various high-dimensional, nonlinear, and complicated relationships. Many efforts have been made with regard to this specific issue, and the strong ability of artificial immune system algorithms has been proven in previous studies. However, user-friendly professional software is still unavailable, which is a great impediment to the popularity of artificial immune systems. This paper describes a free, universal tool, named AITSO, which is capable of solving various optimization problems. It provides a series of standard application programming interfaces (APIs) which can (1) assist researchers in the development of their own problem-specific application plugins to solve practical problems and (2) allow the implementation of some advanced immune operators into the platform to improve the performance of an algorithm. As an integrated, flexible, and convenient tool, AITSO contributes to knowledge sharing and practical problem solving. It is therefore believed that it will advance the development and popularity of spatial optimization in geocomputation and spatial analysis. PMID:25678911
NETWORK ASSISTED ANALYSIS TO REVEAL THE GENETIC BASIS OF AUTISM1
Liu, Li; Lei, Jing; Roeder, Kathryn
2016-01-01
While studies show that autism is highly heritable, the nature of the genetic basis of this disorder remains illusive. Based on the idea that highly correlated genes are functionally interrelated and more likely to affect risk, we develop a novel statistical tool to find more potentially autism risk genes by combining the genetic association scores with gene co-expression in specific brain regions and periods of development. The gene dependence network is estimated using a novel partial neighborhood selection (PNS) algorithm, where node specific properties are incorporated into network estimation for improved statistical and computational efficiency. Then we adopt a hidden Markov random field (HMRF) model to combine the estimated network and the genetic association scores in a systematic manner. The proposed modeling framework can be naturally extended to incorporate additional structural information concerning the dependence between genes. Using currently available genetic association data from whole exome sequencing studies and brain gene expression levels, the proposed algorithm successfully identified 333 genes that plausibly affect autism risk. PMID:27134692
Computational electromagnetics: the physics of smooth versus oscillatory fields.
Chew, W C
2004-03-15
This paper starts by discussing the difference in the physics between solutions to Laplace's equation (static) and Maxwell's equations for dynamic problems (Helmholtz equation). Their differing physical characters are illustrated by how the two fields convey information away from their source point. The paper elucidates the fact that their differing physical characters affect the use of Laplacian field and Helmholtz field in imaging. They also affect the design of fast computational algorithms for electromagnetic scattering problems. Specifically, a comparison is made between fast algorithms developed using wavelets, the simple fast multipole method, and the multi-level fast multipole algorithm for electrodynamics. The impact of the physical characters of the dynamic field on the parallelization of the multi-level fast multipole algorithm is also discussed. The relationship of diagonalization of translators to group theory is presented. Finally, future areas of research for computational electromagnetics are described.
An epileptic seizures detection algorithm based on the empirical mode decomposition of EEG.
Orosco, Lorena; Laciar, Eric; Correa, Agustina Garces; Torres, Abel; Graffigna, Juan P
2009-01-01
Epilepsy is a neurological disorder that affects around 50 million people worldwide. The seizure detection is an important component in the diagnosis of epilepsy. In this study, the Empirical Mode Decomposition (EMD) method was proposed on the development of an automatic epileptic seizure detection algorithm. The algorithm first computes the Intrinsic Mode Functions (IMFs) of EEG records, then calculates the energy of each IMF and performs the detection based on an energy threshold and a minimum duration decision. The algorithm was tested in 9 invasive EEG records provided and validated by the Epilepsy Center of the University Hospital of Freiburg. In 90 segments analyzed (39 with epileptic seizures) the sensitivity and specificity obtained with the method were of 56.41% and 75.86% respectively. It could be concluded that EMD is a promissory method for epileptic seizure detection in EEG records.
Design and Optimization of Low-thrust Orbit Transfers Using Q-law and Evolutionary Algorithms
NASA Technical Reports Server (NTRS)
Lee, Seungwon; vonAllmen, Paul; Fink, Wolfgang; Petropoulos, Anastassios; Terrile, Richard
2005-01-01
Future space missions will depend more on low-thrust propulsion (such as ion engines) thanks to its high specific impulse. Yet, the design of low-thrust trajectories is complex and challenging. Third-body perturbations often dominate the thrust, and a significant change to the orbit requires a long duration of thrust. In order to guide the early design phases, we have developed an efficient and efficacious method to obtain approximate propellant and flight-time requirements (i.e., the Pareto front) for orbit transfers. A search for the Pareto-optimal trajectories is done in two levels: optimal thrust angles and locations are determined by Q-law, while the Q-law is optimized with two evolutionary algorithms: a genetic algorithm and a simulated-annealing-related algorithm. The examples considered are several types of orbit transfers around the Earth and the asteroid Vesta.
The algorithm for automatic detection of the calibration object
NASA Astrophysics Data System (ADS)
Artem, Kruglov; Irina, Ugfeld
2017-06-01
The problem of the automatic image calibration is considered in this paper. The most challenging task of the automatic calibration is a proper detection of the calibration object. The solving of this problem required the appliance of the methods and algorithms of the digital image processing, such as morphology, filtering, edge detection, shape approximation. The step-by-step process of the development of the algorithm and its adopting to the specific conditions of the log cuts in the image's background is presented. Testing of the automatic calibration module was carrying out under the conditions of the production process of the logging enterprise. Through the tests the average possibility of the automatic isolating of the calibration object is 86.1% in the absence of the type 1 errors. The algorithm was implemented in the automatic calibration module within the mobile software for the log deck volume measurement.
Multisensor satellite data integration for sea surface wind speed and direction determination
NASA Technical Reports Server (NTRS)
Glackin, D. L.; Pihos, G. G.; Wheelock, S. L.
1984-01-01
Techniques to integrate meteorological data from various satellite sensors to yield a global measure of sea surface wind speed and direction for input to the Navy's operational weather forecast models were investigated. The sensors were launched or will be launched, specifically the GOES visible and infrared imaging sensor, the Nimbus-7 SMMR, and the DMSP SSM/I instrument. An algorithm for the extrapolation to the sea surface of wind directions as derived from successive GOES cloud images was developed. This wind veering algorithm is relatively simple, accounts for the major physical variables, and seems to represent the best solution that can be found with existing data. An algorithm for the interpolation of the scattered observed data to a common geographical grid was implemented. The algorithm is based on a combination of inverse distance weighting and trend surface fitting, and is suited to combing wind data from disparate sources.
Advani, Aneel; Goldstein, Mary; Shahar, Yuval; Musen, Mark A.
2003-01-01
Automated quality assessment of clinician actions and patient outcomes is a central problem in guideline- or standards-based medical care. In this paper we describe a model representation and algorithm for deriving structured quality indicators and auditing protocols from formalized specifications of guidelines used in decision support systems. We apply the model and algorithm to the assessment of physician concordance with a guideline knowledge model for hypertension used in a decision-support system. The properties of our solution include the ability to derive automatically (1) context-specific and (2) case-mix-adjusted quality indicators that (3) can model global or local levels of detail about the guideline (4) parameterized by defining the reliability of each indicator or element of the guideline. PMID:14728124
Estimating Western U.S. Reservoir Sedimentation
NASA Astrophysics Data System (ADS)
Bensching, L.; Livneh, B.; Greimann, B. P.
2017-12-01
Reservoir sedimentation is a long-term problem for water management across the Western U.S. Observations of sedimentation are limited to reservoir surveys that are costly and infrequent, with many reservoirs having only two or fewer surveys. This work aims to apply a recently developed ensemble of sediment algorithms to estimate reservoir sedimentation over several western U.S. reservoirs. The sediment algorithms include empirical, conceptual, stochastic, and processes based approaches and are coupled with a hydrologic modeling framework. Preliminary results showed that the more complex and processed based algorithms performed better in predicting high sediment flux values and in a basin transferability experiment. However, more testing and validation is required to confirm sediment model skill. This work is carried out in partnership with the Bureau of Reclamation with the goal of evaluating the viability of reservoir sediment yield prediction across the western U.S. using a multi-algorithm approach. Simulations of streamflow and sediment fluxes are validated against observed discharges, as well as a Reservoir Sedimentation Information database that is being developed by the US Army Corps of Engineers. Specific goals of this research include (i) quantifying whether inter-algorithm differences consistently capture observational variability; (ii) identifying whether certain categories of models consistently produce the best results, (iii) assessing the expected sedimentation life-span of several western U.S. reservoirs through long-term simulations.
Gandola, Emanuele; Antonioli, Manuela; Traficante, Alessio; Franceschini, Simone; Scardi, Michele; Congestri, Roberta
2016-05-01
Toxigenic cyanobacteria are one of the main health risks associated with water resources worldwide, as their toxins can affect humans and fauna exposed via drinking water, aquaculture and recreation. Microscopy monitoring of cyanobacteria in water bodies and massive growth systems is a routine operation for cell abundance and growth estimation. Here we present ACQUA (Automated Cyanobacterial Quantification Algorithm), a new fully automated image analysis method designed for filamentous genera in Bright field microscopy. A pre-processing algorithm has been developed to highlight filaments of interest from background signals due to other phytoplankton and dust. A spline-fitting algorithm has been designed to recombine interrupted and crossing filaments in order to perform accurate morphometric analysis and to extract the surface pattern information of highlighted objects. In addition, 17 specific pattern indicators have been developed and used as input data for a machine-learning algorithm dedicated to the recognition between five widespread toxic or potentially toxic filamentous genera in freshwater: Aphanizomenon, Cylindrospermopsis, Dolichospermum, Limnothrix and Planktothrix. The method was validated using freshwater samples from three Italian volcanic lakes comparing automated vs. manual results. ACQUA proved to be a fast and accurate tool to rapidly assess freshwater quality and to characterize cyanobacterial assemblages in aquatic environments. Copyright © 2016 Elsevier B.V. All rights reserved.
Spectral Diffusion: An Algorithm for Robust Material Decomposition of Spectral CT Data
Clark, Darin P.; Badea, Cristian T.
2014-01-01
Clinical successes with dual energy CT, aggressive development of energy discriminating x-ray detectors, and novel, target-specific, nanoparticle contrast agents promise to establish spectral CT as a powerful functional imaging modality. Common to all of these applications is the need for a material decomposition algorithm which is robust in the presence of noise. Here, we develop such an algorithm which uses spectrally joint, piece-wise constant kernel regression and the split Bregman method to iteratively solve for a material decomposition which is gradient sparse, quantitatively accurate, and minimally biased. We call this algorithm spectral diffusion because it integrates structural information from multiple spectral channels and their corresponding material decompositions within the framework of diffusion-like denoising algorithms (e.g. anisotropic diffusion, total variation, bilateral filtration). Using a 3D, digital bar phantom and a material sensitivity matrix calibrated for use with a polychromatic x-ray source, we quantify the limits of detectability (CNR = 5) afforded by spectral diffusion in the triple-energy material decomposition of iodine (3.1 mg/mL), gold (0.9 mg/mL), and gadolinium (2.9 mg/mL) concentrations. We then apply spectral diffusion to the in vivo separation of these three materials in the mouse kidneys, liver, and spleen. PMID:25296173
Spectral diffusion: an algorithm for robust material decomposition of spectral CT data.
Clark, Darin P; Badea, Cristian T
2014-11-07
Clinical successes with dual energy CT, aggressive development of energy discriminating x-ray detectors, and novel, target-specific, nanoparticle contrast agents promise to establish spectral CT as a powerful functional imaging modality. Common to all of these applications is the need for a material decomposition algorithm which is robust in the presence of noise. Here, we develop such an algorithm which uses spectrally joint, piecewise constant kernel regression and the split Bregman method to iteratively solve for a material decomposition which is gradient sparse, quantitatively accurate, and minimally biased. We call this algorithm spectral diffusion because it integrates structural information from multiple spectral channels and their corresponding material decompositions within the framework of diffusion-like denoising algorithms (e.g. anisotropic diffusion, total variation, bilateral filtration). Using a 3D, digital bar phantom and a material sensitivity matrix calibrated for use with a polychromatic x-ray source, we quantify the limits of detectability (CNR = 5) afforded by spectral diffusion in the triple-energy material decomposition of iodine (3.1 mg mL(-1)), gold (0.9 mg mL(-1)), and gadolinium (2.9 mg mL(-1)) concentrations. We then apply spectral diffusion to the in vivo separation of these three materials in the mouse kidneys, liver, and spleen.
Medical physics staffing for radiation oncology: a decade of experience in Ontario, Canada
Battista, Jerry J.; Patterson, Michael S.; Beaulieu, Luc; Sharpe, Michael B.; Schreiner, L. John; MacPherson, Miller S.; Van Dyk, Jacob
2012-01-01
The January 2010 articles in The New York Times generated intense focus on patient safety in radiation treatment, with physics staffing identified frequently as a critical factor for consistent quality assurance. The purpose of this work is to review our experience with medical physics staffing, and to propose a transparent and flexible staffing algorithm for general use. Guided by documented times required per routine procedure, we have developed a robust algorithm to estimate physics staffing needs according to center‐specific workload for medical physicists and associated support staff, in a manner we believe is adaptable to an evolving radiotherapy practice. We calculate requirements for each staffing type based on caseload, equipment inventory, quality assurance, educational programs, and administration. Average per‐case staffing ratios were also determined for larger‐scale human resource planning and used to model staffing needs for Ontario, Canada over the next 10 years. The workload specific algorithm was tested through a survey of Canadian cancer centers. For center‐specific human resource planning, we propose a grid of coefficients addressing specific workload factors for each staff group. For larger scale forecasting of human resource requirements, values of 260, 700, 300, 600, 1200, and 2000 treated cases per full‐time equivalent (FTE) were determined for medical physicists, physics assistants, dosimetrists, electronics technologists, mechanical technologists, and information technology specialists, respectively. PACS numbers: 87.55.N‐, 87.55.Qr PMID:22231223
Medical physics staffing for radiation oncology: a decade of experience in Ontario, Canada.
Battista, Jerry J; Clark, Brenda G; Patterson, Michael S; Beaulieu, Luc; Sharpe, Michael B; Schreiner, L John; MacPherson, Miller S; Van Dyk, Jacob
2012-01-05
The January 2010 articles in The New York Times generated intense focus on patient safety in radiation treatment, with physics staffing identified frequently as a critical factor for consistent quality assurance. The purpose of this work is to review our experience with medical physics staffing, and to propose a transparent and flexible staffing algorithm for general use. Guided by documented times required per routine procedure, we have developed a robust algorithm to estimate physics staffing needs according to center-specific workload for medical physicists and associated support staff, in a manner we believe is adaptable to an evolving radiotherapy practice. We calculate requirements for each staffing type based on caseload, equipment inventory, quality assurance, educational programs, and administration. Average per-case staffing ratios were also determined for larger-scale human resource planning and used to model staffing needs for Ontario, Canada over the next 10 years. The workload specific algorithm was tested through a survey of Canadian cancer centers. For center-specific human resource planning, we propose a grid of coefficients addressing specific workload factors for each staff group. For larger scale forecasting of human resource requirements, values of 260, 700, 300, 600, 1200, and 2000 treated cases per full-time equivalent (FTE) were determined for medical physicists, physics assistants, dosimetrists, electronics technologists, mechanical technologists, and information technology specialists, respectively.
Mapping from disease-specific measures to health-state utility values in individuals with migraine.
Gillard, Patrick J; Devine, Beth; Varon, Sepideh F; Liu, Lei; Sullivan, Sean D
2012-05-01
The objective of this study was to develop empirical algorithms that estimate health-state utility values from disease-specific quality-of-life scores in individuals with migraine. Data from a cross-sectional, multicountry study were used. Individuals with episodic and chronic migraine were randomly assigned to training or validation samples. Spearman's correlation coefficients between paired EuroQol five-dimensional (EQ-5D) questionnaire utility values and both Headache Impact Test (HIT-6) scores and Migraine-Specific Quality-of-Life Questionnaire version 2.1 (MSQ) domain scores (role restrictive, role preventive, and emotional function) were examined. Regression models were constructed to estimate EQ-5D questionnaire utility values from the HIT-6 score or the MSQ domain scores. Preferred algorithms were confirmed in the validation samples. In episodic migraine, the preferred HIT-6 and MSQ algorithms explained 22% and 25% of the variance (R(2)) in the training samples, respectively, and had similar prediction errors (root mean square errors of 0.30). In chronic migraine, the preferred HIT-6 and MSQ algorithms explained 36% and 45% of the variance in the training samples, respectively, and had similar prediction errors (root mean square errors 0.31 and 0.29). In episodic and chronic migraine, no statistically significant differences were observed between the mean observed and the mean estimated EQ-5D questionnaire utility values for the preferred HIT-6 and MSQ algorithms in the validation samples. The relationship between the EQ-5D questionnaire and the HIT-6 or the MSQ is adequate to use regression equations to estimate EQ-5D questionnaire utility values. The preferred HIT-6 and MSQ algorithms will be useful in estimating health-state utilities in migraine trials in which no preference-based measure is present. Copyright © 2012 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Algorithm Optimally Orders Forward-Chaining Inference Rules
NASA Technical Reports Server (NTRS)
James, Mark
2008-01-01
People typically develop knowledge bases in a somewhat ad hoc manner by incrementally adding rules with no specific organization. This often results in a very inefficient execution of those rules since they are so often order sensitive. This is relevant to tasks like Deep Space Network in that it allows the knowledge base to be incrementally developed and have it automatically ordered for efficiency. Although data flow analysis was first developed for use in compilers for producing optimal code sequences, its usefulness is now recognized in many software systems including knowledge-based systems. However, this approach for exhaustively computing data-flow information cannot directly be applied to inference systems because of the ubiquitous execution of the rules. An algorithm is presented that efficiently performs a complete producer/consumer analysis for each antecedent and consequence clause in a knowledge base to optimally order the rules to minimize inference cycles. An algorithm was developed that optimally orders a knowledge base composed of forwarding chaining inference rules such that independent inference cycle executions are minimized, thus, resulting in significantly faster execution. This algorithm was integrated into the JPL tool Spacecraft Health Inference Engine (SHINE) for verification and it resulted in a significant reduction in inference cycles for what was previously considered an ordered knowledge base. For a knowledge base that is completely unordered, then the improvement is much greater.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santi, Peter Angelo; Cutler, Theresa Elizabeth; Favalli, Andrea
In order to improve the accuracy and capabilities of neutron multiplicity counting, additional quantifiable information is needed in order to address the assumptions that are present in the point model. Extracting and utilizing higher order moments (Quads and Pents) from the neutron pulse train represents the most direct way of extracting additional information from the measurement data to allow for an improved determination of the physical properties of the item of interest. The extraction of higher order moments from a neutron pulse train required the development of advanced dead time correction algorithms which could correct for dead time effects inmore » all of the measurement moments in a self-consistent manner. In addition, advanced analysis algorithms have been developed to address specific assumptions that are made within the current analysis model, namely that all neutrons are created at a single point within the item of interest, and that all neutrons that are produced within an item are created with the same energy distribution. This report will discuss the current status of implementation and initial testing of the advanced dead time correction and analysis algorithms that have been developed in an attempt to utilize higher order moments to improve the capabilities of correlated neutron measurement techniques.« less
An Environmental for Hardware-in-the-Loop Formation Navigation and Control
NASA Technical Reports Server (NTRS)
Burns, Rich; Naasz, Bo; Gaylor, Dave; Higinbotham, John
2004-01-01
Recent interest in formation flying satellite systems has spurred a considerable amount of research in the relative navigation and control of satellites. Development in this area has included new estimation and control algorithms as well as sensor and actuator development specifically geared toward the relative control problem. This paper describes a simulation facility, the Formation Flying Test Bed (FFTB) at NASA Goddard Space Flight Center, which allows engineers to test new algorithms for the formation flying problem with relevant GN&C hardware in a closed loop simulation. The FFTB currently supports the inclusion of GPS receiver hardware in the simulation loop. Support for satellite crosslink ranging technology is at a prototype stage. This closed-loop, hardware inclusive simulation capability permits testing of navigation and control software in the presence of the actual hardware with which the algorithms must interact. This capability provides the navigation or control developer with a perspective on how the algorithms perform as part of the closed-loop system. In this paper, the overall design and evolution of the FFTB are presented. Each component of the FFTB is then described. Interfaces between the components of the FFTB are shown and the interfaces to and between navigation and control software are described. Finally, an example of closed-loop formation control with GPS receivers in the loop is presented.
Classifier-Guided Sampling for Complex Energy System Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backlund, Peter B.; Eddy, John P.
2015-09-01
This report documents the results of a Laboratory Directed Research and Development (LDRD) effort enti tled "Classifier - Guided Sampling for Complex Energy System Optimization" that was conducted during FY 2014 and FY 2015. The goal of this proj ect was to develop, implement, and test major improvements to the classifier - guided sampling (CGS) algorithm. CGS is type of evolutionary algorithm for perform ing search and optimization over a set of discrete design variables in the face of one or more objective functions. E xisting evolutionary algorithms, such as genetic algorithms , may require a large number of omore » bjecti ve function evaluations to identify optimal or near - optimal solutions . Reducing the number of evaluations can result in significant time savings, especially if the objective function is computationally expensive. CGS reduce s the evaluation count by us ing a Bayesian network classifier to filter out non - promising candidate designs , prior to evaluation, based on their posterior probabilit ies . In this project, b oth the single - objective and multi - objective version s of the CGS are developed and tested on a set of benchm ark problems. As a domain - specific case study, CGS is used to design a microgrid for use in islanded mode during an extended bulk power grid outage.« less
Robust linearized image reconstruction for multifrequency EIT of the breast.
Boverman, Gregory; Kao, Tzu-Jen; Kulkarni, Rujuta; Kim, Bong Seok; Isaacson, David; Saulnier, Gary J; Newell, Jonathan C
2008-10-01
Electrical impedance tomography (EIT) is a developing imaging modality that is beginning to show promise for detecting and characterizing tumors in the breast. At Rensselaer Polytechnic Institute, we have developed a combined EIT-tomosynthesis system that allows for the coregistered and simultaneous analysis of the breast using EIT and X-ray imaging. A significant challenge in EIT is the design of computationally efficient image reconstruction algorithms which are robust to various forms of model mismatch. Specifically, we have implemented a scaling procedure that is robust to the presence of a thin highly-resistive layer of skin at the boundary of the breast and we have developed an algorithm to detect and exclude from the image reconstruction electrodes that are in poor contact with the breast. In our initial clinical studies, it has been difficult to ensure that all electrodes make adequate contact with the breast, and thus procedures for the use of data sets containing poorly contacting electrodes are particularly important. We also present a novel, efficient method to compute the Jacobian matrix for our linearized image reconstruction algorithm by reducing the computation of the sensitivity for each voxel to a quadratic form. Initial clinical results are presented, showing the potential of our algorithms to detect and localize breast tumors.
Bokov, Plamen; Mahut, Bruno; Flaud, Patrice; Delclaux, Christophe
2016-03-01
Respiratory diseases in children are a common reason for physician visits. A diagnostic difficulty arises when parents hear wheezing that is no longer present during the medical consultation. Thus, an outpatient objective tool for recognition of wheezing is of clinical value. We developed a wheezing recognition algorithm from recorded respiratory sounds with a Smartphone placed near the mouth. A total of 186 recordings were obtained in a pediatric emergency department, mostly in toddlers (mean age 20 months). After exclusion of recordings with artefacts and those with a single clinical operator auscultation, 95 recordings with the agreement of two operators on auscultation diagnosis (27 with wheezing and 68 without) were subjected to a two phase algorithm (signal analysis and pattern classifier using machine learning algorithms) to classify records. The best performance (71.4% sensitivity and 88.9% specificity) was observed with a Support Vector Machine-based algorithm. We further tested the algorithm over a set of 39 recordings having a single operator and found a fair agreement (kappa=0.28, CI95% [0.12, 0.45]) between the algorithm and the operator. The main advantage of such an algorithm is its use in contact-free sound recording, thus valuable in the pediatric population. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Dean J.; Harding, Lee T.
Isotope identification algorithms that are contained in the Gamma Detector Response and Analysis Software (GADRAS) can be used for real-time stationary measurement and search applications on platforms operating under Linux or Android operating sys-tems. Since the background radiation can vary considerably due to variations in natu-rally-occurring radioactive materials (NORM), spectral algorithms can be substantial-ly more sensitive to threat materials than search algorithms based strictly on count rate. Specific isotopes or interest can be designated for the search algorithm, which permits suppression of alarms for non-threatening sources, such as such as medical radionuclides. The same isotope identification algorithms that are usedmore » for search ap-plications can also be used to process static measurements. The isotope identification algorithms follow the same protocols as those used by the Windows version of GADRAS, so files that are created under the Windows interface can be copied direct-ly to processors on fielded sensors. The analysis algorithms contain provisions for gain adjustment and energy lineariza-tion, which enables direct processing of spectra as they are recorded by multichannel analyzers. Gain compensation is performed by utilizing photopeaks in background spectra. Incorporation of this energy calibration tasks into the analysis algorithm also eliminates one of the more difficult challenges associated with development of radia-tion detection equipment.« less
Watson, Robert A
2014-08-01
To test the hypothesis that machine learning algorithms increase the predictive power to classify surgical expertise using surgeons' hand motion patterns. In 2012 at the University of North Carolina at Chapel Hill, 14 surgical attendings and 10 first- and second-year surgical residents each performed two bench model venous anastomoses. During the simulated tasks, the participants wore an inertial measurement unit on the dorsum of their dominant (right) hand to capture their hand motion patterns. The pattern from each bench model task performed was preprocessed into a symbolic time series and labeled as expert (attending) or novice (resident). The labeled hand motion patterns were processed and used to train a Support Vector Machine (SVM) classification algorithm. The trained algorithm was then tested for discriminative/predictive power against unlabeled (blinded) hand motion patterns from tasks not used in the training. The Lempel-Ziv (LZ) complexity metric was also measured from each hand motion pattern, with an optimal threshold calculated to separately classify the patterns. The LZ metric classified unlabeled (blinded) hand motion patterns into expert and novice groups with an accuracy of 70% (sensitivity 64%, specificity 80%). The SVM algorithm had an accuracy of 83% (sensitivity 86%, specificity 80%). The results confirmed the hypothesis. The SVM algorithm increased the predictive power to classify blinded surgical hand motion patterns into expert versus novice groups. With further development, the system used in this study could become a viable tool for low-cost, objective assessment of procedural proficiency in a competency-based curriculum.
Characterization of Adrenal Adenoma by Gaussian Model-Based Algorithm.
Hsu, Larson D; Wang, Carolyn L; Clark, Toshimasa J
2016-01-01
We confirmed that computed tomography (CT) attenuation values of pixels in an adrenal nodule approximate a Gaussian distribution. Building on this and the previously described histogram analysis method, we created an algorithm that uses mean and standard deviation to estimate the percentage of negative attenuation pixels in an adrenal nodule, thereby allowing differentiation of adenomas and nonadenomas. The institutional review board approved both components of this study in which we developed and then validated our criteria. In the first, we retrospectively assessed CT attenuation values of adrenal nodules for normality using a 2-sample Kolmogorov-Smirnov test. In the second, we evaluated a separate cohort of patients with adrenal nodules using both the conventional 10HU unit mean attenuation method and our Gaussian model-based algorithm. We compared the sensitivities of the 2 methods using McNemar's test. A total of 183 of 185 observations (98.9%) demonstrated a Gaussian distribution in adrenal nodule pixel attenuation values. The sensitivity and specificity of our Gaussian model-based algorithm for identifying adrenal adenoma were 86.1% and 83.3%, respectively. The sensitivity and specificity of the mean attenuation method were 53.2% and 94.4%, respectively. The sensitivities of the 2 methods were significantly different (P value < 0.001). In conclusion, the CT attenuation values within an adrenal nodule follow a Gaussian distribution. Our Gaussian model-based algorithm can characterize adrenal adenomas with higher sensitivity than the conventional mean attenuation method. The use of our algorithm, which does not require additional postprocessing, may increase workflow efficiency and reduce unnecessary workup of benign nodules. Copyright © 2016 Elsevier Inc. All rights reserved.
Tenório, Josceli Maria; Hummel, Anderson Diniz; Cohrs, Frederico Molina; Sdepanian, Vera Lucia; Pisa, Ivan Torres; de Fátima Marin, Heimar
2013-01-01
Background Celiac disease (CD) is a difficult-to-diagnose condition because of its multiple clinical presentations and symptoms shared with other diseases. Gold-standard diagnostic confirmation of suspected CD is achieved by biopsying the small intestine. Objective To develop a clinical decision–support system (CDSS) integrated with an automated classifier to recognize CD cases, by selecting from experimental models developed using intelligence artificial techniques. Methods A web-based system was designed for constructing a retrospective database that included 178 clinical cases for training. Tests were run on 270 automated classifiers available in Weka 3.6.1 using five artificial intelligence techniques, namely decision trees, Bayesian inference, k-nearest neighbor algorithm, support vector machines and artificial neural networks. The parameters evaluated were accuracy, sensitivity, specificity and area under the ROC curve (AUC). AUC was used as a criterion for selecting the CDSS algorithm. A testing database was constructed including 38 clinical CD cases for CDSS evaluation. The diagnoses suggested by CDSS were compared with those made by physicians during patient consultations. Results The most accurate method during the training phase was the averaged one-dependence estimator (AODE) algorithm (a Bayesian classifier), which showed accuracy 80.0%, sensitivity 0.78, specificity 0.80 and AUC 0.84. This classifier was integrated into the web-based decision–support system. The gold-standard validation of CDSS achieved accuracy of 84.2% and k = 0.68 (p < 0.0001) with good agreement. The same accuracy was achieved in the comparison between the physician’s diagnostic impression and the gold standard k = 0. 64 (p < 0.0001). There was moderate agreement between the physician’s diagnostic impression and CDSS k = 0.46 (p = 0.0008). Conclusions The study results suggest that CDSS could be used to help in diagnosing CD, since the algorithm tested achieved excellent accuracy in differentiating possible positive from negative CD diagnoses. This study may contribute towards developing of a computer-assisted environment to support CD diagnosis. PMID:21917512
Tenório, Josceli Maria; Hummel, Anderson Diniz; Cohrs, Frederico Molina; Sdepanian, Vera Lucia; Pisa, Ivan Torres; de Fátima Marin, Heimar
2011-11-01
Celiac disease (CD) is a difficult-to-diagnose condition because of its multiple clinical presentations and symptoms shared with other diseases. Gold-standard diagnostic confirmation of suspected CD is achieved by biopsying the small intestine. To develop a clinical decision-support system (CDSS) integrated with an automated classifier to recognize CD cases, by selecting from experimental models developed using intelligence artificial techniques. A web-based system was designed for constructing a retrospective database that included 178 clinical cases for training. Tests were run on 270 automated classifiers available in Weka 3.6.1 using five artificial intelligence techniques, namely decision trees, Bayesian inference, k-nearest neighbor algorithm, support vector machines and artificial neural networks. The parameters evaluated were accuracy, sensitivity, specificity and area under the ROC curve (AUC). AUC was used as a criterion for selecting the CDSS algorithm. A testing database was constructed including 38 clinical CD cases for CDSS evaluation. The diagnoses suggested by CDSS were compared with those made by physicians during patient consultations. The most accurate method during the training phase was the averaged one-dependence estimator (AODE) algorithm (a Bayesian classifier), which showed accuracy 80.0%, sensitivity 0.78, specificity 0.80 and AUC 0.84. This classifier was integrated into the web-based decision-support system. The gold-standard validation of CDSS achieved accuracy of 84.2% and k=0.68 (p<0.0001) with good agreement. The same accuracy was achieved in the comparison between the physician's diagnostic impression and the gold standard k=0. 64 (p<0.0001). There was moderate agreement between the physician's diagnostic impression and CDSS k=0.46 (p=0.0008). The study results suggest that CDSS could be used to help in diagnosing CD, since the algorithm tested achieved excellent accuracy in differentiating possible positive from negative CD diagnoses. This study may contribute towards developing of a computer-assisted environment to support CD diagnosis. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-02-02
This report consists of three separate but related reports. They are (1) Human Resource Development, (2) Carbon-based Structural Materials Research Cluster, and (3) Data Parallel Algorithms for Scientific Computing. To meet the objectives of the Human Resource Development plan, the plan includes K--12 enrichment activities, undergraduate research opportunities for students at the state`s two Historically Black Colleges and Universities, graduate research through cluster assistantships and through a traineeship program targeted specifically to minorities, women and the disabled, and faculty development through participation in research clusters. One research cluster is the chemistry and physics of carbon-based materials. The objective of thismore » cluster is to develop a self-sustaining group of researchers in carbon-based materials research within the institutions of higher education in the state of West Virginia. The projects will involve analysis of cokes, graphites and other carbons in order to understand the properties that provide desirable structural characteristics including resistance to oxidation, levels of anisotropy and structural characteristics of the carbons themselves. In the proposed cluster on parallel algorithms, research by four WVU faculty and three state liberal arts college faculty are: (1) modeling of self-organized critical systems by cellular automata; (2) multiprefix algorithms and fat-free embeddings; (3) offline and online partitioning of data computation; and (4) manipulating and rendering three dimensional objects. This cluster furthers the state Experimental Program to Stimulate Competitive Research plan by building on existing strengths at WVU in parallel algorithms.« less
Doud, Andrea N; Weaver, Ashley A; Talton, Jennifer W; Barnard, Ryan T; Petty, John; Stitzel, Joel D
2016-01-01
Appropriate treatment at designated trauma centers (TCs) improves outcomes among injured children after motor vehicle crashes (MVCs). Advanced Automatic Crash Notification (AACN) has shown promise in improving triage to appropriate TCs. Pediatric-specific AACN algorithms have not yet been created. To create such an algorithm, it will be necessary to include some metric of development (age, height, or weight) as a covariate in the injury risk algorithm. This study sought to determine which marker of development should serve as a covariate in such an algorithm and to quantify injury risk at different levels of this metric. A retrospective review of occupants age < 19 years within the MVC data set NASS-CDS 2000-2011 was performed. R(2) values of logistic regression models using age, height, or weight to predict 18 key injury types were compared to determine which metric should be used as a covariate in a pediatric AACN algorithm. Clinical judgment, literature review, and chi-square analysis were used to create groupings of the chosen metric that would discriminate injury patterns. Adjusted odds of particular injury types at the different levels of this metric were calculated from logistic regression while controlling for gender, vehicle velocity change (delta V), belted status (optimal, suboptimal, or unrestrained), and crash mode (rollover, rear, frontal, near-side, or far-side). NASS-CDS analysis produced 11,541 occupants age < 19 years with nonmissing data. Age, height, and weight were correlated with one another and with injury patterns. Age demonstrated the best predictive power in injury patterns and was categorized into bins of 0-4 years, 5-9 years, 10-14 years, and 15-18 years. Age was a significant predictor of all 18 injury types evaluated even when controlling for all other confounders and when controlling for age- and gender-specific body mass index (BMI) classifications. Adjusted odds of key injury types with respect to these age categorizations revealed that younger children were at increased odds of sustaining Abbreviated Injury Scale (AIS) 2+ and 3+ head injuries and AIS 3+ spinal injuries, whereas older children were at increased odds of sustaining thoracic fractures, AIS 3+ abdominal injuries, and AIS 2+ upper and lower extremity injuries. The injury patterns observed across developmental metrics in this study mirror those previously described among children with blunt trauma. This study identifies age as the metric best suited for use in a pediatric AACN algorithm and utilizes 12 years of data to provide quantifiable risks of particular injuries at different levels of this metric. This risk quantification will have important predictive purposes in a pediatric-specific AACN algorithm.
Challenges in the Verification of Reinforcement Learning Algorithms
NASA Technical Reports Server (NTRS)
Van Wesel, Perry; Goodloe, Alwyn E.
2017-01-01
Machine learning (ML) is increasingly being applied to a wide array of domains from search engines to autonomous vehicles. These algorithms, however, are notoriously complex and hard to verify. This work looks at the assumptions underlying machine learning algorithms as well as some of the challenges in trying to verify ML algorithms. Furthermore, we focus on the specific challenges of verifying reinforcement learning algorithms. These are highlighted using a specific example. Ultimately, we do not offer a solution to the complex problem of ML verification, but point out possible approaches for verification and interesting research opportunities.
Jibb, Lindsay A; Stevens, Bonnie J; Nathan, Paul C; Seto, Emily; Cafazzo, Joseph A; Stinson, Jennifer N
2014-03-19
Pain that occurs both within and outside of the hospital setting is a common and distressing problem for adolescents with cancer. The use of smartphone technology may facilitate rapid, in-the-moment pain support for this population. To ensure the best possible pain management advice is given, evidence-based and expert-vetted care algorithms and system design features, which are designed using user-centered methods, are required. To develop the decision algorithm and system requirements that will inform the pain management advice provided by a real-time smartphone-based pain management app for adolescents with cancer. A systematic approach to algorithm development and system design was utilized. Initially, a comprehensive literature review was undertaken to understand the current body of knowledge pertaining to pediatric cancer pain management. A user-centered approach to development was used as the results of the review were disseminated to 15 international experts (clinicians, scientists, and a consumer) in pediatric pain, pediatric oncology and mHealth design, who participated in a 2-day consensus conference. This conference used nominal group technique to develop consensus on important pain inputs, pain management advice, and system design requirements. Using data generated at the conference, a prototype algorithm was developed. Iterative qualitative testing was conducted with adolescents with cancer, as well as pediatric oncology and pain health care providers to vet and refine the developed algorithm and system requirements for the real-time smartphone app. The systematic literature review established the current state of research related to nonpharmacological pediatric cancer pain management. The 2-day consensus conference established which clinically important pain inputs by adolescents would require action (pain management advice) from the app, the appropriate advice the app should provide to adolescents in pain, and the functional requirements of the app. These results were used to build a detailed prototype algorithm capable of providing adolescents with pain management support based on their individual pain. Analysis of qualitative interviews with 9 multidisciplinary health care professionals and 10 adolescents resulted in 4 themes that helped to adapt the algorithm and requirements to the needs of adolescents. Specifically, themes were overall endorsement of the system, the need for a clinical expert, the need to individualize the system, and changes to the algorithm to improve potential clinical effectiveness. This study used a phased and user-centered approach to develop a pain management algorithm for adolescents with cancer and the system requirements of an associated app. The smartphone software is currently being created and subsequent work will focus on the usability, feasibility, and effectiveness testing of the app for adolescents with cancer pain.
Stevens, Bonnie J; Nathan, Paul C; Seto, Emily; Cafazzo, Joseph A; Stinson, Jennifer N
2014-01-01
Background Pain that occurs both within and outside of the hospital setting is a common and distressing problem for adolescents with cancer. The use of smartphone technology may facilitate rapid, in-the-moment pain support for this population. To ensure the best possible pain management advice is given, evidence-based and expert-vetted care algorithms and system design features, which are designed using user-centered methods, are required. Objective To develop the decision algorithm and system requirements that will inform the pain management advice provided by a real-time smartphone-based pain management app for adolescents with cancer. Methods A systematic approach to algorithm development and system design was utilized. Initially, a comprehensive literature review was undertaken to understand the current body of knowledge pertaining to pediatric cancer pain management. A user-centered approach to development was used as the results of the review were disseminated to 15 international experts (clinicians, scientists, and a consumer) in pediatric pain, pediatric oncology and mHealth design, who participated in a 2-day consensus conference. This conference used nominal group technique to develop consensus on important pain inputs, pain management advice, and system design requirements. Using data generated at the conference, a prototype algorithm was developed. Iterative qualitative testing was conducted with adolescents with cancer, as well as pediatric oncology and pain health care providers to vet and refine the developed algorithm and system requirements for the real-time smartphone app. Results The systematic literature review established the current state of research related to nonpharmacological pediatric cancer pain management. The 2-day consensus conference established which clinically important pain inputs by adolescents would require action (pain management advice) from the app, the appropriate advice the app should provide to adolescents in pain, and the functional requirements of the app. These results were used to build a detailed prototype algorithm capable of providing adolescents with pain management support based on their individual pain. Analysis of qualitative interviews with 9 multidisciplinary health care professionals and 10 adolescents resulted in 4 themes that helped to adapt the algorithm and requirements to the needs of adolescents. Specifically, themes were overall endorsement of the system, the need for a clinical expert, the need to individualize the system, and changes to the algorithm to improve potential clinical effectiveness. Conclusions This study used a phased and user-centered approach to develop a pain management algorithm for adolescents with cancer and the system requirements of an associated app. The smartphone software is currently being created and subsequent work will focus on the usability, feasibility, and effectiveness testing of the app for adolescents with cancer pain. PMID:24646454
Automated real-time search and analysis algorithms for a non-contact 3D profiling system
NASA Astrophysics Data System (ADS)
Haynes, Mark; Wu, Chih-Hang John; Beck, B. Terry; Peterman, Robert J.
2013-04-01
The purpose of this research is to develop a new means of identifying and extracting geometrical feature statistics from a non-contact precision-measurement 3D profilometer. Autonomous algorithms have been developed to search through large-scale Cartesian point clouds to identify and extract geometrical features. These algorithms are developed with the intent of providing real-time production quality control of cold-rolled steel wires. The steel wires in question are prestressing steel reinforcement wires for concrete members. The geometry of the wire is critical in the performance of the overall concrete structure. For this research a custom 3D non-contact profilometry system has been developed that utilizes laser displacement sensors for submicron resolution surface profiling. Optimizations in the control and sensory system allow for data points to be collected at up to an approximate 400,000 points per second. In order to achieve geometrical feature extraction and tolerancing with this large volume of data, the algorithms employed are optimized for parsing large data quantities. The methods used provide a unique means of maintaining high resolution data of the surface profiles while keeping algorithm running times within practical bounds for industrial application. By a combination of regional sampling, iterative search, spatial filtering, frequency filtering, spatial clustering, and template matching a robust feature identification method has been developed. These algorithms provide an autonomous means of verifying tolerances in geometrical features. The key method of identifying the features is through a combination of downhill simplex and geometrical feature templates. By performing downhill simplex through several procedural programming layers of different search and filtering techniques, very specific geometrical features can be identified within the point cloud and analyzed for proper tolerancing. Being able to perform this quality control in real time provides significant opportunities in cost savings in both equipment protection and waste minimization.
Task scheduling in dataflow computer architectures
NASA Technical Reports Server (NTRS)
Katsinis, Constantine
1994-01-01
Dataflow computers provide a platform for the solution of a large class of computational problems, which includes digital signal processing and image processing. Many typical applications are represented by a set of tasks which can be repetitively executed in parallel as specified by an associated dataflow graph. Research in this area aims to model these architectures, develop scheduling procedures, and predict the transient and steady state performance. Researchers at NASA have created a model and developed associated software tools which are capable of analyzing a dataflow graph and predicting its runtime performance under various resource and timing constraints. These models and tools were extended and used in this work. Experiments using these tools revealed certain properties of such graphs that require further study. Specifically, the transient behavior at the beginning of the execution of a graph can have a significant effect on the steady state performance. Transformation and retiming of the application algorithm and its initial conditions can produce a different transient behavior and consequently different steady state performance. The effect of such transformations on the resource requirements or under resource constraints requires extensive study. Task scheduling to obtain maximum performance (based on user-defined criteria), or to satisfy a set of resource constraints, can also be significantly affected by a transformation of the application algorithm. Since task scheduling is performed by heuristic algorithms, further research is needed to determine if new scheduling heuristics can be developed that can exploit such transformations. This work has provided the initial development for further long-term research efforts. A simulation tool was completed to provide insight into the transient and steady state execution of a dataflow graph. A set of scheduling algorithms was completed which can operate in conjunction with the modeling and performance tools previously developed. Initial studies on the performance of these algorithms were done to examine the effects of application algorithm transformations as measured by such quantities as number of processors, time between outputs, time between input and output, communication time, and memory size.
Automated sequence-specific protein NMR assignment using the memetic algorithm MATCH.
Volk, Jochen; Herrmann, Torsten; Wüthrich, Kurt
2008-07-01
MATCH (Memetic Algorithm and Combinatorial Optimization Heuristics) is a new memetic algorithm for automated sequence-specific polypeptide backbone NMR assignment of proteins. MATCH employs local optimization for tracing partial sequence-specific assignments within a global, population-based search environment, where the simultaneous application of local and global optimization heuristics guarantees high efficiency and robustness. MATCH thus makes combined use of the two predominant concepts in use for automated NMR assignment of proteins. Dynamic transition and inherent mutation are new techniques that enable automatic adaptation to variable quality of the experimental input data. The concept of dynamic transition is incorporated in all major building blocks of the algorithm, where it enables switching between local and global optimization heuristics at any time during the assignment process. Inherent mutation restricts the intrinsically required randomness of the evolutionary algorithm to those regions of the conformation space that are compatible with the experimental input data. Using intact and artificially deteriorated APSY-NMR input data of proteins, MATCH performed sequence-specific resonance assignment with high efficiency and robustness.
Estimating rare events in biochemical systems using conditional sampling.
Sundar, V S
2017-01-28
The paper focuses on development of variance reduction strategies to estimate rare events in biochemical systems. Obtaining this probability using brute force Monte Carlo simulations in conjunction with the stochastic simulation algorithm (Gillespie's method) is computationally prohibitive. To circumvent this, important sampling tools such as the weighted stochastic simulation algorithm and the doubly weighted stochastic simulation algorithm have been proposed. However, these strategies require an additional step of determining the important region to sample from, which is not straightforward for most of the problems. In this paper, we apply the subset simulation method, developed as a variance reduction tool in the context of structural engineering, to the problem of rare event estimation in biochemical systems. The main idea is that the rare event probability is expressed as a product of more frequent conditional probabilities. These conditional probabilities are estimated with high accuracy using Monte Carlo simulations, specifically the Markov chain Monte Carlo method with the modified Metropolis-Hastings algorithm. Generating sample realizations of the state vector using the stochastic simulation algorithm is viewed as mapping the discrete-state continuous-time random process to the standard normal random variable vector. This viewpoint opens up the possibility of applying more sophisticated and efficient sampling schemes developed elsewhere to problems in stochastic chemical kinetics. The results obtained using the subset simulation method are compared with existing variance reduction strategies for a few benchmark problems, and a satisfactory improvement in computational time is demonstrated.
NASA Astrophysics Data System (ADS)
Srinivasan, Yeshwanth; Hernes, Dana; Tulpule, Bhakti; Yang, Shuyu; Guo, Jiangling; Mitra, Sunanda; Yagneswaran, Sriraja; Nutter, Brian; Jeronimo, Jose; Phillips, Benny; Long, Rodney; Ferris, Daron
2005-04-01
Automated segmentation and classification of diagnostic markers in medical imagery are challenging tasks. Numerous algorithms for segmentation and classification based on statistical approaches of varying complexity are found in the literature. However, the design of an efficient and automated algorithm for precise classification of desired diagnostic markers is extremely image-specific. The National Library of Medicine (NLM), in collaboration with the National Cancer Institute (NCI), is creating an archive of 60,000 digitized color images of the uterine cervix. NLM is developing tools for the analysis and dissemination of these images over the Web for the study of visual features correlated with precancerous neoplasia and cancer. To enable indexing of images of the cervix, it is essential to develop algorithms for the segmentation of regions of interest, such as acetowhitened regions, and automatic identification and classification of regions exhibiting mosaicism and punctation. Success of such algorithms depends, primarily, on the selection of relevant features representing the region of interest. We present color and geometric features based statistical classification and segmentation algorithms yielding excellent identification of the regions of interest. The distinct classification of the mosaic regions from the non-mosaic ones has been obtained by clustering multiple geometric and color features of the segmented sections using various morphological and statistical approaches. Such automated classification methodologies will facilitate content-based image retrieval from the digital archive of uterine cervix and have the potential of developing an image based screening tool for cervical cancer.
ICAROUS: Integrated Configurable Architecture for Unmanned Systems
NASA Technical Reports Server (NTRS)
Consiglio, Maria C.
2016-01-01
NASA's Unmanned Aerial System (UAS) Traffic Management (UTM) project aims at enabling near-term, safe operations of small UAS vehicles in uncontrolled airspace, i.e., Class G airspace. A far-term goal of UTM research and development is to accommodate the expected rise in small UAS traffic density throughout the National Airspace System (NAS) at low altitudes for beyond visual line-of-sight operations. This video describes a new capability referred to as ICAROUS (Integrated Configurable Algorithms for Reliable Operations of Unmanned Systems), which is being developed under the auspices of the UTM project. ICAROUS is a software architecture comprised of highly assured algorithms for building safety-centric, autonomous, unmanned aircraft applications. Central to the development of the ICAROUS algorithms is the use of well-established formal methods to guarantee higher levels of safety assurance by monitoring and bounding the behavior of autonomous systems. The core autonomy-enabling capabilities in ICAROUS include constraint conformance monitoring and autonomous detect and avoid functions. ICAROUS also provides a highly configurable user interface that enables the modular integration of mission-specific software components.
Jagła, Mateusz; Peterko, Anna; Olesińska, Katarzyna; Szymońska, Izabela; Kwinta, Przemko
2017-01-01
Retinopathy of prematurity (ROP) is one of the leading avoidable causes of blindness in childhood in developed countries. Accurate diagnosis and treatment are essential for preventing the loss of vision. WINROP (https://www.winrop.com) is an online monitoring system which predicts the risk for ROP requiring treatment based on gestational age, birth weight, and body weight gain. To validate diagnostic accuracy of the WINROP algorithm for the detection of severe ROP in a single centre cohort of Polish, high-risk preterm infant population. Medical records of neonates born before 32 weeks of gestation admitted to the third level neonatal centre in a 2-year retrospective investigation 79 patients were included in the study: their gestational age, birth weight and body weight gain were set in the WINROP system. The algorithm evaluated the risk for ROP divided into low or high-risk of disease and identified infants with high risk of developing severe ROP (type 1 ROP). Out of 79 patients 37 received a high-risk alarm, of whom 22 developed severe ROP. Low-risk alarm was triggered in 42 infants; five of them developed type 1 ROP. The sensitivity of the WINROP was found to be 81.5% (95% CI 61.9-93.7), specificity 71.2% (95% CI 56.9-82.9), negative predictive value (NPV) 88.1% (95% CI 76.7-94.3), and positive predictive value (PPV) 59.5 (95% CI 48.1-69.9), respectively. The accuracy of the test significantly increased after combined WINROP and surfactant therapy as an additional factor - sensitivity 96.3% (95% CI 81.0-99.9), specificity 63.5% (95% CI 49.0-76.4), NPV 97.1% (95% CI 82.3-99.6), and PPV 57.8 (95% CI 48.7-66.4). The WINROP algorithm sensitivity from the Polish cohort was not as high as that reported in developed countries. However, combined with additional factors (e.g. surfactant treatment) it can be useful for identifying the risk groups of sight-threatening ROP. The accuracy of the WINROP algorithm should be validated in a large multi-center prospective study in a Polish population of preterm infants.
Learning with Calculator Games
ERIC Educational Resources Information Center
Frahm, Bruce
2013-01-01
Educational games provide a fun introduction to new material and a review of mathematical algorithms. Specifically, games can be designed to assist students in developing mathematical skills as an incidental consequence of the game-playing process. The programs presented in this article are adaptations of board games or television shows that…
Institute for Defense Analysis. Annual Report 1995.
1995-01-01
staff have been involved in the community-wide development of MPI as well as in its application to specific NSA problems. 35 Parallel Groebner ...Basis Code — Symbolic Computing on Parallel Machines The Groebner basis method is a set of algorithms for reformulating very complex algebraic expres
48 CFR 252.227-7013 - Rights in technical data-Noncommercial items.
Code of Federal Regulations, 2011 CFR
2011-10-01
... causing a computer to perform a specific operation or series of operations. (3) Computer software means computer programs, source code, source code listings, object code listings, design details, algorithms... or will be developed exclusively with Government funds; (ii) Studies, analyses, test data, or similar...
48 CFR 252.227-7013 - Rights in technical data-Noncommercial items.
Code of Federal Regulations, 2012 CFR
2012-10-01
... causing a computer to perform a specific operation or series of operations. (3) Computer software means computer programs, source code, source code listings, object code listings, design details, algorithms... or will be developed exclusively with Government funds; (ii) Studies, analyses, test data, or similar...
48 CFR 252.227-7013 - Rights in technical data-Noncommercial items.
Code of Federal Regulations, 2014 CFR
2014-10-01
... causing a computer to perform a specific operation or series of operations. (3) Computer software means computer programs, source code, source code listings, object code listings, design details, algorithms... or will be developed exclusively with Government funds; (ii) Studies, analyses, test data, or similar...
48 CFR 252.227-7013 - Rights in technical data-Noncommercial items.
Code of Federal Regulations, 2010 CFR
2010-10-01
... causing a computer to perform a specific operation or series of operations. (3) Computer software means computer programs, source code, source code listings, object code listings, design details, algorithms... developed exclusively with Government funds; (ii) Studies, analyses, test data, or similar data produced for...
Shouval, Roni; Labopin, Myriam; Unger, Ron; Giebel, Sebastian; Ciceri, Fabio; Schmid, Christoph; Esteve, Jordi; Baron, Frederic; Gorin, Norbert Claude; Savani, Bipin; Shimoni, Avichai; Mohty, Mohamad; Nagler, Arnon
2016-01-01
Models for prediction of allogeneic hematopoietic stem transplantation (HSCT) related mortality partially account for transplant risk. Improving predictive accuracy requires understating of prediction limiting factors, such as the statistical methodology used, number and quality of features collected, or simply the population size. Using an in-silico approach (i.e., iterative computerized simulations), based on machine learning (ML) algorithms, we set out to analyze these factors. A cohort of 25,923 adult acute leukemia patients from the European Society for Blood and Marrow Transplantation (EBMT) registry was analyzed. Predictive objective was non-relapse mortality (NRM) 100 days following HSCT. Thousands of prediction models were developed under varying conditions: increasing sample size, specific subpopulations and an increasing number of variables, which were selected and ranked by separate feature selection algorithms. Depending on the algorithm, predictive performance plateaued on a population size of 6,611-8,814 patients, reaching a maximal area under the receiver operator characteristic curve (AUC) of 0.67. AUCs' of models developed on specific subpopulation ranged from 0.59 to 0.67 for patients in second complete remission and receiving reduced intensity conditioning, respectively. Only 3-5 variables were necessary to achieve near maximal AUCs. The top 3 ranking variables, shared by all algorithms were disease stage, donor type, and conditioning regimen. Our findings empirically demonstrate that with regards to NRM prediction, few variables "carry the weight" and that traditional HSCT data has been "worn out". "Breaking through" the predictive boundaries will likely require additional types of inputs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piao, J; PLA 302 Hospital, Beijing; Xu, S
2016-06-15
Purpose: This study will use Monte Carlo to simulate the Cyberknife system, and intend to develop the third-party tool to evaluate the dose verification of specific patient plans in TPS. Methods: By simulating the treatment head using the BEAMnrc and DOSXYZnrc software, the comparison between the calculated and measured data will be done to determine the beam parameters. The dose distribution calculated in the Raytracing, Monte Carlo algorithms of TPS (Multiplan Ver4.0.2) and in-house Monte Carlo simulation method for 30 patient plans, which included 10 head, lung and liver cases in each, were analyzed. The γ analysis with the combinedmore » 3mm/3% criteria would be introduced to quantitatively evaluate the difference of the accuracy between three algorithms. Results: More than 90% of the global error points were less than 2% for the comparison of the PDD and OAR curves after determining the mean energy and FWHM.The relative ideal Monte Carlo beam model had been established. Based on the quantitative evaluation of dose accuracy for three algorithms, the results of γ analysis shows that the passing rates (84.88±9.67% for head,98.83±1.05% for liver,98.26±1.87% for lung) of PTV in 30 plans between Monte Carlo simulation and TPS Monte Carlo algorithms were good. And the passing rates (95.93±3.12%,99.84±0.33% in each) of PTV in head and liver plans between Monte Carlo simulation and TPS Ray-tracing algorithms were also good. But the difference of DVHs in lung plans between Monte Carlo simulation and Ray-tracing algorithms was obvious, and the passing rate (51.263±38.964%) of γ criteria was not good. It is feasible that Monte Carlo simulation was used for verifying the dose distribution of patient plans. Conclusion: Monte Carlo simulation algorithm developed in the CyberKnife system of this study can be used as a reference tool for the third-party tool, which plays an important role in dose verification of patient plans. This work was supported in part by the grant from Chinese Natural Science Foundation (Grant No. 11275105). Thanks for the support from Accuray Corp.« less
Validation of two algorithms for managing children with a non-blanching rash.
Riordan, F Andrew I; Jones, Laura; Clark, Julia
2016-08-01
Paediatricians are concerned that children who present with a non-blanching rash (NBR) may have meningococcal disease (MCD). Two algorithms have been devised to help identify which children with an NBR have MCD. To evaluate the NBR algorithms' ability to identify children with MCD. The Newcastle-Birmingham-Liverpool (NBL) algorithm was applied retrospectively to three cohorts of children who had presented with NBRs. This algorithm was also piloted in four hospitals, and then used prospectively for 12 months in one hospital. The National Institute for Health and Care Excellence (NICE) algorithm was validated retrospectively using data from all cohorts. The cohorts included 625 children, 145 (23%) of whom had confirmed or probable MCD. Paediatricians empirically treated 324 (52%) children with antibiotics. The NBL algorithm identified all children with MCD and suggested treatment for a further 86 children (sensitivity 100%, specificity 82%). One child with MCD did not receive immediate antibiotic treatment, despite this being suggested by the algorithm. The NICE algorithm suggested 382 children (61%) who should be treated with antibiotics. This included 141 of the 145 children with MCD (sensitivity 97%, specificity 50%). These algorithms may help paediatricians identify children with MCD who present with NBRs. The NBL algorithm may be more specific than the NICE algorithm as it includes fewer features suggesting MCD. The only significant delay in treatment of MCD occurred when the algorithms were not followed. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Spectral unmixing of urban land cover using a generic library approach
NASA Astrophysics Data System (ADS)
Degerickx, Jeroen; Lordache, Marian-Daniel; Okujeni, Akpona; Hermy, Martin; van der Linden, Sebastian; Somers, Ben
2016-10-01
Remote sensing based land cover classification in urban areas generally requires the use of subpixel classification algorithms to take into account the high spatial heterogeneity. These spectral unmixing techniques often rely on spectral libraries, i.e. collections of pure material spectra (endmembers, EM), which ideally cover the large EM variability typically present in urban scenes. Despite the advent of several (semi-) automated EM detection algorithms, the collection of such image-specific libraries remains a tedious and time-consuming task. As an alternative, we suggest the use of a generic urban EM library, containing material spectra under varying conditions, acquired from different locations and sensors. This approach requires an efficient EM selection technique, capable of only selecting those spectra relevant for a specific image. In this paper, we evaluate and compare the potential of different existing library pruning algorithms (Iterative Endmember Selection and MUSIC) using simulated hyperspectral (APEX) data of the Brussels metropolitan area. In addition, we develop a new hybrid EM selection method which is shown to be highly efficient in dealing with both imagespecific and generic libraries, subsequently yielding more robust land cover classification results compared to existing methods. Future research will include further optimization of the proposed algorithm and additional tests on both simulated and real hyperspectral data.
Common-mask guided image reconstruction (c-MGIR) for enhanced 4D cone-beam computed tomography
NASA Astrophysics Data System (ADS)
Park, Justin C.; Zhang, Hao; Chen, Yunmei; Fan, Qiyong; Li, Jonathan G.; Liu, Chihray; Lu, Bo
2015-12-01
Compared to 3D cone beam computed tomography (3D CBCT), the image quality of commercially available four-dimensional (4D) CBCT is severely impaired due to the insufficient amount of projection data available for each phase. Since the traditional Feldkamp-Davis-Kress (FDK)-based algorithm is infeasible for reconstructing high quality 4D CBCT images with limited projections, investigators had developed several compress-sensing (CS) based algorithms to improve image quality. The aim of this study is to develop a novel algorithm which can provide better image quality than the FDK and other CS based algorithms with limited projections. We named this algorithm ‘the common mask guided image reconstruction’ (c-MGIR). In c-MGIR, the unknown CBCT volume is mathematically modeled as a combination of phase-specific motion vectors and phase-independent static vectors. The common-mask matrix, which is the key concept behind the c-MGIR algorithm, separates the common static part across all phase images from the possible moving part in each phase image. The moving part and the static part of the volumes were then alternatively updated by solving two sub-minimization problems iteratively. As the novel mathematical transformation allows the static volume and moving volumes to be updated (during each iteration) with global projections and ‘well’ solved static volume respectively, the algorithm was able to reduce the noise and under-sampling artifact (an issue faced by other algorithms) to the maximum extent. To evaluate the performance of our proposed c-MGIR, we utilized imaging data from both numerical phantoms and a lung cancer patient. The qualities of the images reconstructed with c-MGIR were compared with (1) standard FDK algorithm, (2) conventional total variation (CTV) based algorithm, (3) prior image constrained compressed sensing (PICCS) algorithm, and (4) motion-map constrained image reconstruction (MCIR) algorithm, respectively. To improve the efficiency of the algorithm, the code was implemented with a graphic processing unit for parallel processing purposes. Root mean square error (RMSE) between the ground truth and reconstructed volumes of the numerical phantom were in the descending order of FDK, CTV, PICCS, MCIR, and c-MGIR for all phases. Specifically, the means and the standard deviations of the RMSE of FDK, CTV, PICCS, MCIR and c-MGIR for all phases were 42.64 ± 6.5%, 3.63 ± 0.83%, 1.31% ± 0.09%, 0.86% ± 0.11% and 0.52 % ± 0.02%, respectively. The image quality of the patient case also indicated the superiority of c-MGIR compared to other algorithms. The results indicated that clinically viable 4D CBCT images can be reconstructed while requiring no more projection data than a typical clinical 3D CBCT scan. This makes c-MGIR a potential online reconstruction algorithm for 4D CBCT, which can provide much better image quality than other available algorithms, while requiring less dose and potentially less scanning time.
Common-mask guided image reconstruction (c-MGIR) for enhanced 4D cone-beam computed tomography.
Park, Justin C; Zhang, Hao; Chen, Yunmei; Fan, Qiyong; Li, Jonathan G; Liu, Chihray; Lu, Bo
2015-12-07
Compared to 3D cone beam computed tomography (3D CBCT), the image quality of commercially available four-dimensional (4D) CBCT is severely impaired due to the insufficient amount of projection data available for each phase. Since the traditional Feldkamp-Davis-Kress (FDK)-based algorithm is infeasible for reconstructing high quality 4D CBCT images with limited projections, investigators had developed several compress-sensing (CS) based algorithms to improve image quality. The aim of this study is to develop a novel algorithm which can provide better image quality than the FDK and other CS based algorithms with limited projections. We named this algorithm 'the common mask guided image reconstruction' (c-MGIR).In c-MGIR, the unknown CBCT volume is mathematically modeled as a combination of phase-specific motion vectors and phase-independent static vectors. The common-mask matrix, which is the key concept behind the c-MGIR algorithm, separates the common static part across all phase images from the possible moving part in each phase image. The moving part and the static part of the volumes were then alternatively updated by solving two sub-minimization problems iteratively. As the novel mathematical transformation allows the static volume and moving volumes to be updated (during each iteration) with global projections and 'well' solved static volume respectively, the algorithm was able to reduce the noise and under-sampling artifact (an issue faced by other algorithms) to the maximum extent. To evaluate the performance of our proposed c-MGIR, we utilized imaging data from both numerical phantoms and a lung cancer patient. The qualities of the images reconstructed with c-MGIR were compared with (1) standard FDK algorithm, (2) conventional total variation (CTV) based algorithm, (3) prior image constrained compressed sensing (PICCS) algorithm, and (4) motion-map constrained image reconstruction (MCIR) algorithm, respectively. To improve the efficiency of the algorithm, the code was implemented with a graphic processing unit for parallel processing purposes.Root mean square error (RMSE) between the ground truth and reconstructed volumes of the numerical phantom were in the descending order of FDK, CTV, PICCS, MCIR, and c-MGIR for all phases. Specifically, the means and the standard deviations of the RMSE of FDK, CTV, PICCS, MCIR and c-MGIR for all phases were 42.64 ± 6.5%, 3.63 ± 0.83%, 1.31% ± 0.09%, 0.86% ± 0.11% and 0.52 % ± 0.02%, respectively. The image quality of the patient case also indicated the superiority of c-MGIR compared to other algorithms.The results indicated that clinically viable 4D CBCT images can be reconstructed while requiring no more projection data than a typical clinical 3D CBCT scan. This makes c-MGIR a potential online reconstruction algorithm for 4D CBCT, which can provide much better image quality than other available algorithms, while requiring less dose and potentially less scanning time.
An efficient parallel termination detection algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, A. H.; Crivelli, S.; Jessup, E. R.
2004-05-27
Information local to any one processor is insufficient to monitor the overall progress of most distributed computations. Typically, a second distributed computation for detecting termination of the main computation is necessary. In order to be a useful computational tool, the termination detection routine must operate concurrently with the main computation, adding minimal overhead, and it must promptly and correctly detect termination when it occurs. In this paper, we present a new algorithm for detecting the termination of a parallel computation on distributed-memory MIMD computers that satisfies all of those criteria. A variety of termination detection algorithms have been devised. Ofmore » these, the algorithm presented by Sinha, Kale, and Ramkumar (henceforth, the SKR algorithm) is unique in its ability to adapt to the load conditions of the system on which it runs, thereby minimizing the impact of termination detection on performance. Because their algorithm also detects termination quickly, we consider it to be the most efficient practical algorithm presently available. The termination detection algorithm presented here was developed for use in the PMESC programming library for distributed-memory MIMD computers. Like the SKR algorithm, our algorithm adapts to system loads and imposes little overhead. Also like the SKR algorithm, ours is tree-based, and it does not depend on any assumptions about the physical interconnection topology of the processors or the specifics of the distributed computation. In addition, our algorithm is easier to implement and requires only half as many tree traverses as does the SKR algorithm. This paper is organized as follows. In section 2, we define our computational model. In section 3, we review the SKR algorithm. We introduce our new algorithm in section 4, and prove its correctness in section 5. We discuss its efficiency and present experimental results in section 6.« less
Algorithme intelligent d'optimisation d'un design structurel de grande envergure
NASA Astrophysics Data System (ADS)
Dominique, Stephane
The implementation of an automated decision support system in the field of design and structural optimisation can give a significant advantage to any industry working on mechanical designs. Indeed, by providing solution ideas to a designer or by upgrading existing design solutions while the designer is not at work, the system may reduce the project cycle time, or allow more time to produce a better design. This thesis presents a new approach to automate a design process based on Case-Based Reasoning (CBR), in combination with a new genetic algorithm named Genetic Algorithm with Territorial core Evolution (GATE). This approach was developed in order to reduce the operating cost of the process. However, as the system implementation cost is quite expensive, the approach is better suited for large scale design problem, and particularly for design problems that the designer plans to solve for many different specification sets. First, the CBR process uses a databank filled with every known solution to similar design problems. Then, the closest solutions to the current problem in term of specifications are selected. After this, during the adaptation phase, an artificial neural network (ANN) interpolates amongst known solutions to produce an additional solution to the current problem using the current specifications as inputs. Each solution produced and selected by the CBR is then used to initialize the population of an island of the genetic algorithm. The algorithm will optimise the solution further during the refinement phase. Using progressive refinement, the algorithm starts using only the most important variables for the problem. Then, as the optimisation progress, the remaining variables are gradually introduced, layer by layer. The genetic algorithm that is used is a new algorithm specifically created during this thesis to solve optimisation problems from the field of mechanical device structural design. The algorithm is named GATE, and is essentially a real number genetic algorithm that prevents new individuals to be born too close to previously evaluated solutions. The restricted area becomes smaller or larger during the optimisation to allow global or local search when necessary. Also, a new search operator named Substitution Operator is incorporated in GATE. This operator allows an ANN surrogate model to guide the algorithm toward the most promising areas of the design space. The suggested CBR approach and GATE were tested on several simple test problems, as well as on the industrial problem of designing a gas turbine engine rotor's disc. These results are compared to other results obtained for the same problems by many other popular optimisation algorithms, such as (depending of the problem) gradient algorithms, binary genetic algorithm, real number genetic algorithm, genetic algorithm using multiple parents crossovers, differential evolution genetic algorithm, Hookes & Jeeves generalized pattern search method and POINTER from the software I-SIGHT 3.5. Results show that GATE is quite competitive, giving the best results for 5 of the 6 constrained optimisation problem. GATE also provided the best results of all on problem produced by a Maximum Set Gaussian landscape generator. Finally, GATE provided a disc 4.3% lighter than the best other tested algorithm (POINTER) for the gas turbine engine rotor's disc problem. One drawback of GATE is a lesser efficiency for highly multimodal unconstrained problems, for which he gave quite poor results with respect to its implementation cost. To conclude, according to the preliminary results obtained during this thesis, the suggested CBR process, combined with GATE, seems to be a very good candidate to automate and accelerate the structural design of mechanical devices, potentially reducing significantly the cost of industrial preliminary design processes.
NASA Technical Reports Server (NTRS)
Ichoku, Charles; Kaufman, Y. J.; Fraser, R. H.; Jin, J.-Z.; Park, W. M.; Lau, William K. M. (Technical Monitor)
2001-01-01
Two fixed-threshold Canada Centre for Remote Sensing and European Space Agency (CCRS and ESA) and three contextual GIGLIO, International Geosphere and Biosphere Project, and Moderate Resolution Imaging Spectroradiometer (GIGLIO, IGBP, and MODIS) algorithms were used for fire detection with Advanced Very High Resolution Radiometer (AVHRR) data acquired over Canada during the 1995 fire season. The CCRS algorithm was developed for the boreal ecosystem, while the other four are for global application. The MODIS algorithm, although developed specifically for use with the MODIS sensor data, was applied to AVHRR in this study for comparative purposes. Fire detection accuracy assessment for the algorithms was based on comparisons with available 1995 burned area ground survey maps covering five Canadian provinces. Overall accuracy estimations in terms of omission (CCRS=46%, ESA=81%, GIGLIO=75%, IGBP=51%, MODIS=81%) and commission (CCRS=0.35%, ESA=0.08%, GIGLIO=0.56%, IGBP=0.75%, MODIS=0.08%) errors over forested areas revealed large differences in performance between the algorithms, with no relevance to type (fixed-threshold or contextual). CCRS performed best in detecting real forest fires, with the least omission error, while ESA and MODIS produced the highest omission error, probably because of their relatively high threshold values designed for global application. The commission error values appear small because the area of pixels falsely identified by each algorithm was expressed as a ratio of the vast unburned forest area. More detailed study shows that most commission errors in all the algorithms were incurred in nonforest agricultural areas, especially on days with very high surface temperatures. The advantage of the high thresholds in ESA and MODIS was that they incurred the least commission errors.
Evaluation of a fever-management algorithm in a pediatric cancer center in a low-resource setting.
Mukkada, Sheena; Smith, Cristel Kate; Aguilar, Delta; Sykes, April; Tang, Li; Dolendo, Mae; Caniza, Miguela A
2018-02-01
In low- and middle-income countries (LMICs), inconsistent or delayed management of fever contributes to poor outcomes among pediatric patients with cancer. We hypothesized that standardizing practice with a clinical algorithm adapted to local resources would improve outcomes. Therefore, we developed a resource-specific algorithm for fever management in Davao City, Philippines. The primary objective of this study was to evaluate adherence to the algorithm. This was a prospective cohort study of algorithm adherence to assess the types of deviation, reasons for deviation, and pathogens isolated. All pediatric oncology patients who were admitted with fever (defined as an axillary temperature >37.7°C on one occasion or ≥37.4°C on two occasions 1 hr apart) or who developed fever within 48 hr of admission were included. Univariate and multiple linear regression analyses were used to determine the relation between clinical predictors and length of hospitalization. During the study, 93 patients had 141 qualifying febrile episodes. Even though the algorithm was designed locally, deviations occurred in 70 (50%) of 141 febrile episodes on day 0, reflecting implementation barriers at the patient, provider, and institutional levels. There were 259 deviations during the first 7 days of admission in 92 (65%) of 141 patient episodes. Failure to identify high-risk patients, missed antimicrobial doses, and pathogen isolation were associated with prolonged hospitalization. Monitoring algorithm adherence helps in assessing the quality of pediatric oncology care in LMICs and identifying opportunities for improvement. Measures that decrease high-frequency/high-impact algorithm deviations may shorten hospitalizations and improve healthcare use in LMICs. © 2017 Wiley Periodicals, Inc.
Joshi, Vinayak; Agurto, Carla; Barriga, Simon; Nemeth, Sheila; Soliz, Peter; MacCormick, Ian J; Lewallen, Susan; Taylor, Terrie E; Harding, Simon P
2017-02-15
Cerebral malaria (CM), a complication of malaria infection, is the cause of the majority of malaria-associated deaths in African children. The standard clinical case definition for CM misclassifies ~25% of patients, but when malarial retinopathy (MR) is added to the clinical case definition, the specificity improves from 61% to 95%. Ocular fundoscopy requires expensive equipment and technical expertise not often available in malaria endemic settings, so we developed an automated software system to analyze retinal color images for MR lesions: retinal whitening, vessel discoloration, and white-centered hemorrhages. The individual lesion detection algorithms were combined using a partial least square classifier to determine the presence or absence of MR. We used a retrospective retinal image dataset of 86 pediatric patients with clinically defined CM (70 with MR and 16 without) to evaluate the algorithm performance. Our goal was to reduce the false positive rate of CM diagnosis, and so the algorithms were tuned at high specificity. This yielded sensitivity/specificity of 95%/100% for the detection of MR overall, and 65%/94% for retinal whitening, 62%/100% for vessel discoloration, and 73%/96% for hemorrhages. This automated system for detecting MR using retinal color images has the potential to improve the accuracy of CM diagnosis.
NASA Astrophysics Data System (ADS)
Joshi, Vinayak; Agurto, Carla; Barriga, Simon; Nemeth, Sheila; Soliz, Peter; MacCormick, Ian J.; Lewallen, Susan; Taylor, Terrie E.; Harding, Simon P.
2017-02-01
Cerebral malaria (CM), a complication of malaria infection, is the cause of the majority of malaria-associated deaths in African children. The standard clinical case definition for CM misclassifies ~25% of patients, but when malarial retinopathy (MR) is added to the clinical case definition, the specificity improves from 61% to 95%. Ocular fundoscopy requires expensive equipment and technical expertise not often available in malaria endemic settings, so we developed an automated software system to analyze retinal color images for MR lesions: retinal whitening, vessel discoloration, and white-centered hemorrhages. The individual lesion detection algorithms were combined using a partial least square classifier to determine the presence or absence of MR. We used a retrospective retinal image dataset of 86 pediatric patients with clinically defined CM (70 with MR and 16 without) to evaluate the algorithm performance. Our goal was to reduce the false positive rate of CM diagnosis, and so the algorithms were tuned at high specificity. This yielded sensitivity/specificity of 95%/100% for the detection of MR overall, and 65%/94% for retinal whitening, 62%/100% for vessel discoloration, and 73%/96% for hemorrhages. This automated system for detecting MR using retinal color images has the potential to improve the accuracy of CM diagnosis.
Fast Low-Rank Shared Dictionary Learning for Image Classification.
Tiep Huu Vu; Monga, Vishal
2017-11-01
Despite the fact that different objects possess distinct class-specific features, they also usually share common patterns. This observation has been exploited partially in a recently proposed dictionary learning framework by separating the particularity and the commonality (COPAR). Inspired by this, we propose a novel method to explicitly and simultaneously learn a set of common patterns as well as class-specific features for classification with more intuitive constraints. Our dictionary learning framework is hence characterized by both a shared dictionary and particular (class-specific) dictionaries. For the shared dictionary, we enforce a low-rank constraint, i.e., claim that its spanning subspace should have low dimension and the coefficients corresponding to this dictionary should be similar. For the particular dictionaries, we impose on them the well-known constraints stated in the Fisher discrimination dictionary learning (FDDL). Furthermore, we develop new fast and accurate algorithms to solve the subproblems in the learning step, accelerating its convergence. The said algorithms could also be applied to FDDL and its extensions. The efficiencies of these algorithms are theoretically and experimentally verified by comparing their complexities and running time with those of other well-known dictionary learning methods. Experimental results on widely used image data sets establish the advantages of our method over the state-of-the-art dictionary learning methods.
Fast Low-Rank Shared Dictionary Learning for Image Classification
NASA Astrophysics Data System (ADS)
Vu, Tiep Huu; Monga, Vishal
2017-11-01
Despite the fact that different objects possess distinct class-specific features, they also usually share common patterns. This observation has been exploited partially in a recently proposed dictionary learning framework by separating the particularity and the commonality (COPAR). Inspired by this, we propose a novel method to explicitly and simultaneously learn a set of common patterns as well as class-specific features for classification with more intuitive constraints. Our dictionary learning framework is hence characterized by both a shared dictionary and particular (class-specific) dictionaries. For the shared dictionary, we enforce a low-rank constraint, i.e. claim that its spanning subspace should have low dimension and the coefficients corresponding to this dictionary should be similar. For the particular dictionaries, we impose on them the well-known constraints stated in the Fisher discrimination dictionary learning (FDDL). Further, we develop new fast and accurate algorithms to solve the subproblems in the learning step, accelerating its convergence. The said algorithms could also be applied to FDDL and its extensions. The efficiencies of these algorithms are theoretically and experimentally verified by comparing their complexities and running time with those of other well-known dictionary learning methods. Experimental results on widely used image datasets establish the advantages of our method over state-of-the-art dictionary learning methods.
Li, Qi; Melton, Kristin; Lingren, Todd; Kirkendall, Eric S; Hall, Eric; Zhai, Haijun; Ni, Yizhao; Kaiser, Megan; Stoutenborough, Laura; Solti, Imre
2014-01-01
Although electronic health records (EHRs) have the potential to provide a foundation for quality and safety algorithms, few studies have measured their impact on automated adverse event (AE) and medical error (ME) detection within the neonatal intensive care unit (NICU) environment. This paper presents two phenotyping AE and ME detection algorithms (ie, IV infiltrations, narcotic medication oversedation and dosing errors) and describes manual annotation of airway management and medication/fluid AEs from NICU EHRs. From 753 NICU patient EHRs from 2011, we developed two automatic AE/ME detection algorithms, and manually annotated 11 classes of AEs in 3263 clinical notes. Performance of the automatic AE/ME detection algorithms was compared to trigger tool and voluntary incident reporting results. AEs in clinical notes were double annotated and consensus achieved under neonatologist supervision. Sensitivity, positive predictive value (PPV), and specificity are reported. Twelve severe IV infiltrates were detected. The algorithm identified one more infiltrate than the trigger tool and eight more than incident reporting. One narcotic oversedation was detected demonstrating 100% agreement with the trigger tool. Additionally, 17 narcotic medication MEs were detected, an increase of 16 cases over voluntary incident reporting. Automated AE/ME detection algorithms provide higher sensitivity and PPV than currently used trigger tools or voluntary incident-reporting systems, including identification of potential dosing and frequency errors that current methods are unequipped to detect. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Digital sorting of complex tissues for cell type-specific gene expression profiles.
Zhong, Yi; Wan, Ying-Wooi; Pang, Kaifang; Chow, Lionel M L; Liu, Zhandong
2013-03-07
Cellular heterogeneity is present in almost all gene expression profiles. However, transcriptome analysis of tissue specimens often ignores the cellular heterogeneity present in these samples. Standard deconvolution algorithms require prior knowledge of the cell type frequencies within a tissue or their in vitro expression profiles. Furthermore, these algorithms tend to report biased estimations. Here, we describe a Digital Sorting Algorithm (DSA) for extracting cell-type specific gene expression profiles from mixed tissue samples that is unbiased and does not require prior knowledge of cell type frequencies. The results suggest that DSA is a specific and sensitivity algorithm in gene expression profile deconvolution and will be useful in studying individual cell types of complex tissues.
Schlottmann, F; Arbulú, A L Campos; Sadava, E E; Mendez, P; Pereyra, L; Fernández Vila, J M; Mezzadri, N A
2015-10-01
Hypocalcemia is the most common complication after total thyroidectomy. The aim of this study was to determine whether postoperative parathyroid hormone (PTH) levels predict hypocalcemia in order to design an algorithm for early discharge. We present a prospective study including patients who underwent total thyroidectomy. Hypocalcemia was defined as serum ionized calcium < 1.09 mmol/L or clinical evidence of hypocalcemia. PTH measurement was performed preoperatively and at 1, 3, and 6 h postoperatively. The percent decline of preoperative values was calculated for each time point. One hundred and six patients were included. Thirty-six (33.9%) patients presented hypocalcemia. A 50% decline in PTH levels at 3 h postoperatively showed the highest sensitivity and specificity to predict hypocalcemia (91 and 73%, respectively). No patients with a decrease <35% developed hypocalcemia (100% sensitivity), and all patients with a decrease >80% had hypocalcemia (100% specificity). PTH determination at 3 h postoperatively is a reliable predictor of hypocalcemia. According to the proposed algorithm, patients with less than 80% drop in PTH levels can be safely discharged the day of the surgery.
Li, Zhixi; He, Yifan; Keel, Stuart; Meng, Wei; Chang, Robert T; He, Mingguang
2018-03-02
To assess the performance of a deep learning algorithm for detecting referable glaucomatous optic neuropathy (GON) based on color fundus photographs. A deep learning system for the classification of GON was developed for automated classification of GON on color fundus photographs. We retrospectively included 48 116 fundus photographs for the development and validation of a deep learning algorithm. This study recruited 21 trained ophthalmologists to classify the photographs. Referable GON was defined as vertical cup-to-disc ratio of 0.7 or more and other typical changes of GON. The reference standard was made until 3 graders achieved agreement. A separate validation dataset of 8000 fully gradable fundus photographs was used to assess the performance of this algorithm. The area under receiver operator characteristic curve (AUC) with sensitivity and specificity was applied to evaluate the efficacy of the deep learning algorithm detecting referable GON. In the validation dataset, this deep learning system achieved an AUC of 0.986 with sensitivity of 95.6% and specificity of 92.0%. The most common reasons for false-negative grading (n = 87) were GON with coexisting eye conditions (n = 44 [50.6%]), including pathologic or high myopia (n = 37 [42.6%]), diabetic retinopathy (n = 4 [4.6%]), and age-related macular degeneration (n = 3 [3.4%]). The leading reason for false-positive results (n = 480) was having other eye conditions (n = 458 [95.4%]), mainly including physiologic cupping (n = 267 [55.6%]). Misclassification as false-positive results amidst a normal-appearing fundus occurred in only 22 eyes (4.6%). A deep learning system can detect referable GON with high sensitivity and specificity. Coexistence of high or pathologic myopia is the most common cause resulting in false-negative results. Physiologic cupping and pathologic myopia were the most common reasons for false-positive results. Copyright © 2018 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Automatic discrimination of fine roots in minirhizotron images.
Zeng, Guang; Birchfield, Stanley T; Wells, Christina E
2008-01-01
Minirhizotrons provide detailed information on the production, life history and mortality of fine roots. However, manual processing of minirhizotron images is time-consuming, limiting the number and size of experiments that can reasonably be analysed. Previously, an algorithm was developed to automatically detect and measure individual roots in minirhizotron images. Here, species-specific root classifiers were developed to discriminate detected roots from bright background artifacts. Classifiers were developed from training images of peach (Prunus persica), freeman maple (Acer x freemanii) and sweetbay magnolia (Magnolia virginiana) using the Adaboost algorithm. True- and false-positive rates for classifiers were estimated using receiver operating characteristic curves. Classifiers gave true positive rates of 89-94% and false positive rates of 3-7% when applied to nontraining images of the species for which they were developed. The application of a classifier trained on one species to images from another species resulted in little or no reduction in accuracy. These results suggest that a single root classifier can be used to distinguish roots from background objects across multiple minirhizotron experiments. By incorporating root detection and discrimination algorithms into an open-source minirhizotron image analysis application, many analysis tasks that are currently performed by hand can be automated.