Science.gov

Sample records for algorithm development activities

  1. Algorithm-development activities

    NASA Technical Reports Server (NTRS)

    Carder, Kendall L.

    1994-01-01

    The task of algorithm-development activities at USF continues. The algorithm for determining chlorophyll alpha concentration, (Chl alpha) and gelbstoff absorption coefficient for SeaWiFS and MODIS-N radiance data is our current priority.

  2. Algorithm development

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.; Lomax, Harvard

    1987-01-01

    The past decade has seen considerable activity in algorithm development for the Navier-Stokes equations. This has resulted in a wide variety of useful new techniques. Some examples for the numerical solution of the Navier-Stokes equations are presented, divided into two parts. One is devoted to the incompressible Navier-Stokes equations, and the other to the compressible form.

  3. Scheduling language and algorithm development study. Appendix: Study approach and activity summary

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The approach and organization of the study to develop a high level computer programming language and a program library are presented. The algorithm and problem modeling analyses are summarized. The approach used to identify and specify the capabilities required in the basic language is described. Results of the analyses used to define specifications for the scheduling module library are presented.

  4. Parallel algorithm development

    SciTech Connect

    Adams, T.F.

    1996-06-01

    Rapid changes in parallel computing technology are causing significant changes in the strategies being used for parallel algorithm development. One approach is simply to write computer code in a standard language like FORTRAN 77 or with the expectation that the compiler will produce executable code that will run in parallel. The alternatives are: (1) to build explicit message passing directly into the source code; or (2) to write source code without explicit reference to message passing or parallelism, but use a general communications library to provide efficient parallel execution. Application of these strategies is illustrated with examples of codes currently under development.

  5. STAR Algorithm Integration Team - Facilitating operational algorithm development

    NASA Astrophysics Data System (ADS)

    Mikles, V. J.

    2015-12-01

    The NOAA/NESDIS Center for Satellite Research and Applications (STAR) provides technical support of the Joint Polar Satellite System (JPSS) algorithm development and integration tasks. Utilizing data from the S-NPP satellite, JPSS generates over thirty Environmental Data Records (EDRs) and Intermediate Products (IPs) spanning atmospheric, ocean, cryosphere, and land weather disciplines. The Algorithm Integration Team (AIT) brings technical expertise and support to product algorithms, specifically in testing and validating science algorithms in a pre-operational environment. The AIT verifies that new and updated algorithms function in the development environment, enforces established software development standards, and ensures that delivered packages are functional and complete. AIT facilitates the development of new JPSS-1 algorithms by implementing a review approach based on the Enterprise Product Lifecycle (EPL) process. Building on relationships established during the S-NPP algorithm development process and coordinating directly with science algorithm developers, the AIT has implemented structured reviews with self-contained document suites. The process has supported algorithm improvements for products such as ozone, active fire, vegetation index, and temperature and moisture profiles.

  6. A multi-channel feedback algorithm for the development of active liners to reduce noise in flow duct applications

    NASA Astrophysics Data System (ADS)

    Mazeaud, B.; Galland, M.-A.

    2007-10-01

    The present paper deals with the design and development of the active part of a hybrid acoustic treatment combining porous material properties and active control techniques. Such an acoustic system was developed to reduce evolutionary tones in flow duct applications. Attention was particularly focused on the optimization process of the controller part of the hybrid cell. A piezo-electric transducer combining efficiency and compactness was selected as a secondary source. A digital adaptive feedback control algorithm was specially developed in order to operate independently cell by cell, and to facilitate a subsequent increase in the liner surface. An adaptive bandpass filter was used to prevent the development of instabilities due to the coupling occurring between cells. Special care was taken in the development of such systems for time-varying primary signals. An automatic frequency detection loop was therefore introduced in the control algorithm, enabling the continuous adaptation of the bandpass filtering. The multi-cell structure was experimentally validated for a four-cell system located on a duct wall in the presence of flow. Substantial noise reduction was obtained throughout the 0.7-2.5 kHz frequency range, with flow velocities up to 50 m/s.

  7. Messy genetic algorithms: Recent developments

    SciTech Connect

    Kargupta, H.

    1996-09-01

    Messy genetic algorithms define a rare class of algorithms that realize the need for detecting appropriate relations among members of the search domain in optimization. This paper reviews earlier works in messy genetic algorithms and describes some recent developments. It also describes the gene expression messy GA (GEMGA)--an {Omicron}({Lambda}{sup {kappa}}({ell}{sup 2} + {kappa})) sample complexity algorithm for the class of order-{kappa} delineable problems (problems that can be solved by considering no higher than order-{kappa} relations) of size {ell} and alphabet size {Lambda}. Experimental results are presented to demonstrate the scalability of the GEMGA.

  8. Multisensor data fusion algorithm development

    SciTech Connect

    Yocky, D.A.; Chadwick, M.D.; Goudy, S.P.; Johnson, D.K.

    1995-12-01

    This report presents a two-year LDRD research effort into multisensor data fusion. We approached the problem by addressing the available types of data, preprocessing that data, and developing fusion algorithms using that data. The report reflects these three distinct areas. First, the possible data sets for fusion are identified. Second, automated registration techniques for imagery data are analyzed. Third, two fusion techniques are presented. The first fusion algorithm is based on the two-dimensional discrete wavelet transform. Using test images, the wavelet algorithm is compared against intensity modulation and intensity-hue-saturation image fusion algorithms that are available in commercial software. The wavelet approach outperforms the other two fusion techniques by preserving spectral/spatial information more precisely. The wavelet fusion algorithm was also applied to Landsat Thematic Mapper and SPOT panchromatic imagery data. The second algorithm is based on a linear-regression technique. We analyzed the technique using the same Landsat and SPOT data.

  9. HEAVY DUTY DIESEL VEHICLE LOAD ESTIMATION: DEVELOPMENT OF VEHICLE ACTIVITY OPTIMIZATION ALGORITHM

    EPA Science Inventory

    The Heavy-Duty Vehicle Modal Emission Model (HDDV-MEM) developed by the Georgia Institute of Technology(Georgia Tech) has a capability to model link-specific second-by-second emissions using speed/accleration matrices. To estimate emissions, engine power demand calculated usin...

  10. Developing Scoring Algorithms

    Cancer.gov

    We developed scoring procedures to convert screener responses to estimates of individual dietary intake for fruits and vegetables, dairy, added sugars, whole grains, fiber, and calcium using the What We Eat in America 24-hour dietary recall data from the 2003-2006 NHANES.

  11. Algorithms for Software Development

    NASA Technical Reports Server (NTRS)

    Tausworthe, R. C.

    1985-01-01

    Management aid makes changes obvious. One key element in scheme for software development control is check summing. If check sum for given line in source file is different from previous version, it is evident change has been made. Subsequent editing of file creates new lines, deletes old ones, modifies characters, moves lines, or copies (reuse) existing lines. Combination of three elements of line code permits all transactions to be detected.

  12. ALGORITHM DEVELOPMENT FOR SPATIAL OPERATORS.

    USGS Publications Warehouse

    Claire, Robert W.

    1984-01-01

    An approach is given that develops spatial operators about the basic geometric elements common to spatial data structures. In this fashion, a single set of spatial operators may be accessed by any system that reduces its operands to such basic generic representations. Algorithms based on this premise have been formulated to perform operations such as separation, overlap, and intersection. Moreover, this generic approach is well suited for algorithms that exploit concurrent properties of spatial operators. The results may provide a framework for a geometry engine to support fundamental manipulations within a geographic information system.

  13. Infrared algorithm development for ocean observations

    NASA Technical Reports Server (NTRS)

    Brown, Otis B.

    1995-01-01

    Efforts continue under this contract to develop algorithms for the computation of sea surface temperature (SST) from MODIS infrared retrievals. This effort includes radiative transfer modeling, comparison of in situ and satellite observations, development and evaluation of processing and networking methodologies for algorithm computation and data accession, evaluation of surface validation approaches for IR radiances, and participation in MODIS (project) related activities. Efforts in this contract period have focused on radiative transfer modeling, evaluation of atmospheric correction methodologies, involvement in field studies, production and evaluation of new computer networking strategies, and objective analysis approaches.

  14. Active Processor Scheduling Using Evolutionary Algorithms

    DTIC Science & Technology

    2002-12-01

    xiii Active Processor Scheduling Using Evolutionary Algorithms I. Introduction A distributed system offers the ability to run applications across...calculations are made. This model is sometimes referred to as a form of the island model of evolutionary computation because each population is evolved... Evolutionary Algorithms for Solving Multi-Objective Problems. Genetic Algorithms and Evolutionary Computation , New York: Kluwer Academic Publishers, 2002

  15. Principles for Developing Algorithmic Instruction.

    DTIC Science & Technology

    1978-12-01

    information-processing theories to test their applicability with instruction directed by learning algorithms. A version of a logical, or familiar, and a...intent of our research was to borrow~ from information-processing theory factors which are known to affect learning in a predictable manner and to apply... learning studies where processing theories are tested by minute performance or latency differences. -~ It is not surprising that differences are seldom found

  16. Algorithm Development Library for Environmental Satellite Missions

    NASA Astrophysics Data System (ADS)

    Smith, D. C.; Grant, K. D.; Miller, S. W.; Jamilkowski, M. L.

    2012-12-01

    science will need to migrate into the operational system. In addition, as new techniques are found to improve, supplement, or replace existing products, these changes will also require implementation into the operational system. In the past, operationalizing science algorithms and integrating them into active systems often required months of work. In order to significantly shorten the time and effort required for this activity, Raytheon has developed the Algorithm Development Library (ADL). The ADL enables scientist and researchers to develop algorithms on their own platforms, and provide these to Raytheon in a form that can be rapidly integrated directly into the operational baseline. As the JPSS CGS is a multi-mission ground system, algorithms are not restricted to Suomi NPP or JPSS missions. The ADL provides a development environment that any environmental remote sensing mission scientist can use to create algorithms that will plug into a JPSS CGS instantiation. This paper describes the ADL and how scientists and researchers can use it in their own environments.

  17. Motion Cueing Algorithm Development: Piloted Performance Testing of the Cueing Algorithms

    NASA Technical Reports Server (NTRS)

    Houck, Jacob A. (Technical Monitor); Telban, Robert J.; Cardullo, Frank M.; Kelly, Lon C.

    2005-01-01

    The relative effectiveness in simulating aircraft maneuvers with both current and newly developed motion cueing algorithms was assessed with an eleven-subject piloted performance evaluation conducted on the NASA Langley Visual Motion Simulator (VMS). In addition to the current NASA adaptive algorithm, two new cueing algorithms were evaluated: the optimal algorithm and the nonlinear algorithm. The test maneuvers included a straight-in approach with a rotating wind vector, an offset approach with severe turbulence and an on/off lateral gust that occurs as the aircraft approaches the runway threshold, and a takeoff both with and without engine failure after liftoff. The maneuvers were executed with each cueing algorithm with added visual display delay conditions ranging from zero to 200 msec. Two methods, the quasi-objective NASA Task Load Index (TLX), and power spectral density analysis of pilot control, were used to assess pilot workload. Piloted performance parameters for the approach maneuvers, the vertical velocity upon touchdown and the runway touchdown position, were also analyzed but did not show any noticeable difference among the cueing algorithms. TLX analysis reveals, in most cases, less workload and variation among pilots with the nonlinear algorithm. Control input analysis shows pilot-induced oscillations on a straight-in approach were less prevalent compared to the optimal algorithm. The augmented turbulence cues increased workload on an offset approach that the pilots deemed more realistic compared to the NASA adaptive algorithm. The takeoff with engine failure showed the least roll activity for the nonlinear algorithm, with the least rudder pedal activity for the optimal algorithm.

  18. Passive microwave algorithm development and evaluation

    NASA Technical Reports Server (NTRS)

    Petty, Grant W.

    1995-01-01

    The scientific objectives of this grant are: (1) thoroughly evaluate, both theoretically and empirically, all available Special Sensor Microwave Imager (SSM/I) retrieval algorithms for column water vapor, column liquid water, and surface wind speed; (2) where both appropriate and feasible, develop, validate, and document satellite passive microwave retrieval algorithms that offer significantly improved performance compared with currently available algorithms; and (3) refine and validate a novel physical inversion scheme for retrieving rain rate over the ocean. This report summarizes work accomplished or in progress during the first year of a three year grant. The emphasis during the first year has been on the validation and refinement of the rain rate algorithm published by Petty and on the analysis of independent data sets that can be used to help evaluate the performance of rain rate algorithms over remote areas of the ocean. Two articles in the area of global oceanic precipitation are attached.

  19. Developing Scoring Algorithms (Earlier Methods)

    Cancer.gov

    We developed scoring procedures to convert screener responses to estimates of individual dietary intake for fruits and vegetables, dairy, added sugars, whole grains, fiber, and calcium using the What We Eat in America 24-hour dietary recall data from the 2003-2006 NHANES.

  20. Infrared Algorithm Development for Ocean Observations with EOS/MODIS

    NASA Technical Reports Server (NTRS)

    Brown, Otis B.

    1997-01-01

    Efforts continue under this contract to develop algorithms for the computation of sea surface temperature (SST) from MODIS infrared measurements. This effort includes radiative transfer modeling, comparison of in situ and satellite observations, development and evaluation of processing and networking methodologies for algorithm computation and data accession, evaluation of surface validation approaches for IR radiances, development of experimental instrumentation, and participation in MODIS (project) related activities. Activities in this contract period have focused on radiative transfer modeling, evaluation of atmospheric correction methodologies, undertake field campaigns, analysis of field data, and participation in MODIS meetings.

  1. System development of the Screwworm Eradication Data System (SEDS) algorithm

    NASA Technical Reports Server (NTRS)

    Arp, G.; Forsberg, F.; Giddings, L.; Phinney, D.

    1976-01-01

    The use of remotely sensed data is reported in the eradication of the screwworm and in the study of the role of the weather in the activity and development of the screwworm fly. As a result, the Screwworm Eradication Data System (SEDS) algorithm was developed.

  2. An active set algorithm for treatment planning optimization.

    PubMed

    Hristov, D H; Fallone, B G

    1997-09-01

    An active set algorithm for optimization of radiation therapy dose planning by intensity modulated beams has been developed. The algorithm employs a conjugate-gradient routine for subspace minimization in order to achieve a higher rate of convergence than the widely used constrained steepest-descent method at the expense of a negligible amount of overhead calculations. The performance of the new algorithm has been compared to that of the constrained steepest-descent method for various treatment geometries and two different objectives. The active set algorithm is found to be superior to the constrained steepest descent, both in terms of its convergence properties and the residual value of the cost functions at termination. Its use can significantly accelerate the design of conformal plans with intensity modulated beams by decreasing the number of time-consuming dose calculations.

  3. Infrared algorithm development for ocean observations with EOS/MODIS

    NASA Technical Reports Server (NTRS)

    Brown, Otis B.

    1994-01-01

    Efforts continue under this contract to develop algorithms for the computation of sea surface temperature (SST) from MODIS infrared retrievals. This effort includes radiative transfer modeling, comparison of in situ and satellite observations, development and evaluation of processing and networking methodologies for algorithm computation and data accession, evaluation of surface validation approaches for IR radiances, and participation in MODIS (project) related activities. Efforts in this contract period have focused on radiative transfer modeling and evaluation of atmospheric path radiance efforts on SST estimation, exploration of involvement in ongoing field studies, evaluation of new computer networking strategies, and objective analysis approaches.

  4. Development of activity pencil beam algorithm using measured distribution data of positron emitter nuclei generated by proton irradiation of targets containing {sup 12}C, {sup 16}O, and {sup 40}Ca nuclei in preparation of clinical application

    SciTech Connect

    Miyatake, Aya; Nishio, Teiji; Ogino, Takashi

    2011-10-15

    Purpose: The purpose of this study is to develop a new calculation algorithm that is satisfactory in terms of the requirements for both accuracy and calculation time for a simulation of imaging of the proton-irradiated volume in a patient body in clinical proton therapy. Methods: The activity pencil beam algorithm (APB algorithm), which is a new technique to apply the pencil beam algorithm generally used for proton dose calculations in proton therapy to the calculation of activity distributions, was developed as a calculation algorithm of the activity distributions formed by positron emitter nuclei generated from target nuclear fragment reactions. In the APB algorithm, activity distributions are calculated using an activity pencil beam kernel. In addition, the activity pencil beam kernel is constructed using measured activity distributions in the depth direction and calculations in the lateral direction. {sup 12}C, {sup 16}O, and {sup 40}Ca nuclei were determined as the major target nuclei that constitute a human body that are of relevance for calculation of activity distributions. In this study, ''virtual positron emitter nuclei'' was defined as the integral yield of various positron emitter nuclei generated from each target nucleus by target nuclear fragment reactions with irradiated proton beam. Compounds, namely, polyethylene, water (including some gelatin) and calcium oxide, which contain plenty of the target nuclei, were irradiated using a proton beam. In addition, depth activity distributions of virtual positron emitter nuclei generated in each compound from target nuclear fragment reactions were measured using a beam ON-LINE PET system mounted a rotating gantry port (BOLPs-RGp). The measured activity distributions depend on depth or, in other words, energy. The irradiated proton beam energies were 138, 179, and 223 MeV, and measurement time was about 5 h until the measured activity reached the background level. Furthermore, the activity pencil beam data

  5. Algorithm development for hyperspectral anomaly detection

    NASA Astrophysics Data System (ADS)

    Rosario, Dalton S.

    2008-10-01

    This dissertation proposes and evaluates a novel anomaly detection algorithm suite for ground-to-ground, or air-to-ground, applications requiring automatic target detection using hyperspectral (HS) data. Targets are manmade objects in natural background clutter under unknown illumination and atmospheric conditions. The use of statistical models herein is purely for motivation of particular formulas for calculating anomaly output surfaces. In particular, formulas from semiparametrics are utilized to obtain novel forms for output surfaces, and alternative scoring algorithms are proposed to calculate output surfaces that are comparable to those of semiparametrics. Evaluation uses both simulated data and real HS data from a joint data collection effort between the Army Research Laboratory and the Army Armament Research Development & Engineering Center. A data transformation method is presented for use by the two-sample data structure univariate semiparametric and nonparametric scoring algorithms, such that, the two-sample data are mapped from their original multivariate space to an univariate domain, where the statistical power of the univariate scoring algorithms is shown to be improved relative to existing multivariate scoring algorithms testing the same two-sample data. An exhaustive simulation experimental study is conducted to assess the performance of different HS anomaly detection techniques, where the null and alternative hypotheses are completely specified, including all parameters, using multivariate normal and mixtures of multivariate normal distributions. Finally, for ground-to-ground anomaly detection applications, where the unknown scales of targets add to the problem complexity, a novel global anomaly detection algorithm suite is introduced, featuring autonomous partial random sampling (PRS) of the data cube. The PRS method is proposed to automatically sample the unknown background clutter in the test HS imagery, and by repeating multiple times this

  6. JPSS Cryosphere Algorithms: Integration and Testing in Algorithm Development Library (ADL)

    NASA Astrophysics Data System (ADS)

    Tsidulko, M.; Mahoney, R. L.; Meade, P.; Baldwin, D.; Tschudi, M. A.; Das, B.; Mikles, V. J.; Chen, W.; Tang, Y.; Sprietzer, K.; Zhao, Y.; Wolf, W.; Key, J.

    2014-12-01

    JPSS is a next generation satellite system that is planned to be launched in 2017. The satellites will carry a suite of sensors that are already on board the Suomi National Polar-orbiting Partnership (S-NPP) satellite. The NOAA/NESDIS/STAR Algorithm Integration Team (AIT) works within the Algorithm Development Library (ADL) framework which mimics the operational JPSS Interface Data Processing Segment (IDPS). The AIT contributes in development, integration and testing of scientific algorithms employed in the IDPS. This presentation discusses cryosphere related activities performed in ADL. The addition of a new ancillary data set - NOAA Global Multisensor Automated Snow/Ice data (GMASI) - with ADL code modifications is described. Preliminary GMASI impact on the gridded Snow/Ice product is estimated. Several modifications to the Ice Age algorithm that demonstrates mis-classification of ice type for certain areas/time periods are tested in the ADL. Sensitivity runs for day time, night time and terminator zone are performed and presented. Comparisons between the original and modified versions of the Ice Age algorithm are also presented.

  7. Computational Fluid Dynamics. [numerical methods and algorithm development

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This collection of papers was presented at the Computational Fluid Dynamics (CFD) Conference held at Ames Research Center in California on March 12 through 14, 1991. It is an overview of CFD activities at NASA Lewis Research Center. The main thrust of computational work at Lewis is aimed at propulsion systems. Specific issues related to propulsion CFD and associated modeling will also be presented. Examples of results obtained with the most recent algorithm development will also be presented.

  8. An Experimental Method for the Active Learning of Greedy Algorithms

    ERIC Educational Resources Information Center

    Velazquez-Iturbide, J. Angel

    2013-01-01

    Greedy algorithms constitute an apparently simple algorithm design technique, but its learning goals are not simple to achieve.We present a didacticmethod aimed at promoting active learning of greedy algorithms. The method is focused on the concept of selection function, and is based on explicit learning goals. It mainly consists of an…

  9. Development of Improved Algorithms and Multiscale Modeling Capability with SUNTANS

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Development of Improved Algorithms and Multiscale...a wide range of scales through use of accurate numerical methods and high- performance computational algorithms . The tool will be applied to study...dissipation. OBJECTIVES The primary objective is to enhance the capabilities of the SUNTANS model through development of algorithms to study

  10. Global Precipitation Measurement: GPM Microwave Imager (GMI) Algorithm Development Approach

    NASA Technical Reports Server (NTRS)

    Stocker, Erich Franz

    2009-01-01

    This slide presentation reviews the approach to the development of the Global Precipitation Measurement algorithm. This presentation includes information about the responsibilities for the development of the algorithm, and the calibration. Also included is information about the orbit, and the sun angle. The test of the algorithm code will be done with synthetic data generated from the Precipitation Processing System (PPS).

  11. Motion Cueing Algorithm Development: Initial Investigation and Redesign of the Algorithms

    NASA Technical Reports Server (NTRS)

    Telban, Robert J.; Wu, Weimin; Cardullo, Frank M.; Houck, Jacob A. (Technical Monitor)

    2000-01-01

    In this project four motion cueing algorithms were initially investigated. The classical algorithm generated results with large distortion and delay and low magnitude. The NASA adaptive algorithm proved to be well tuned with satisfactory performance, while the UTIAS adaptive algorithm produced less desirable results. Modifications were made to the adaptive algorithms to reduce the magnitude of undesirable spikes. The optimal algorithm was found to have the potential for improved performance with further redesign. The center of simulator rotation was redefined. More terms were added to the cost function to enable more tuning flexibility. A new design approach using a Fortran/Matlab/Simulink setup was employed. A new semicircular canals model was incorporated in the algorithm. With these changes results show the optimal algorithm has some advantages over the NASA adaptive algorithm. Two general problems observed in the initial investigation required solutions. A nonlinear gain algorithm was developed that scales the aircraft inputs by a third-order polynomial, maximizing the motion cues while remaining within the operational limits of the motion system. A braking algorithm was developed to bring the simulator to a full stop at its motion limit and later release the brake to follow the cueing algorithm output.

  12. Statistical algorithms for target detection in coherent active polarimetric images.

    PubMed

    Goudail, F; Réfrégier, P

    2001-12-01

    We address the problem of small-target detection with a polarimetric imager that provides orthogonal state contrast images. Such active systems allow one to measure the degree of polarization of the light backscattered by purely depolarizing isotropic materials. To be independent of the spatial nonuniformities of the illumination beam, small-target detection on the orthogonal state contrast image must be performed without using the image of backscattered intensity. We thus propose and develop a simple and efficient target detection algorithm based on a nonlinear pointwise transformation of the orthogonal state contrast image followed by a maximum-likelihood algorithm optimal for additive Gaussian perturbations. We demonstrate the efficiency of this suboptimal technique in comparison with the optimal one, which, however, assumes a priori knowledge about the scene that is not available in practice. We illustrate the performance of this approach on both simulated and real polarimetric images.

  13. Predicting mining activity with parallel genetic algorithms

    USGS Publications Warehouse

    Talaie, S.; Leigh, R.; Louis, S.J.; Raines, G.L.; Beyer, H.G.; O'Reilly, U.M.; Banzhaf, Arnold D.; Blum, W.; Bonabeau, C.; Cantu-Paz, E.W.; ,; ,

    2005-01-01

    We explore several different techniques in our quest to improve the overall model performance of a genetic algorithm calibrated probabilistic cellular automata. We use the Kappa statistic to measure correlation between ground truth data and data predicted by the model. Within the genetic algorithm, we introduce a new evaluation function sensitive to spatial correctness and we explore the idea of evolving different rule parameters for different subregions of the land. We reduce the time required to run a simulation from 6 hours to 10 minutes by parallelizing the code and employing a 10-node cluster. Our empirical results suggest that using the spatially sensitive evaluation function does indeed improve the performance of the model and our preliminary results also show that evolving different rule parameters for different regions tends to improve overall model performance. Copyright 2005 ACM.

  14. SSME structural computer program development: BOPACE theoretical manual, addendum. [algorithms

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An algorithm developed and incorporated into BOPACE for improving the convergence and accuracy of the inelastic stress-strain calculations is discussed. The implementation of separation of strains in the residual-force iterative procedure is defined. The elastic-plastic quantities used in the strain-space algorithm are defined and compared with previous quantities.

  15. Development and application of multispectral algorithms for defect apple inspection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This research developed and evaluated the multispectral algorithm derived from hyperspectral line-scan imaging system which equipped with an electron-multiplying-charge-coupled-device camera and an imaging spectrograph for the detection of defect Red Delicious apples. The algorithm utilized the fluo...

  16. Development of a validation algorithm for 'present on admission' flagging

    PubMed Central

    2009-01-01

    Background The use of routine hospital data for understanding patterns of adverse outcomes has been limited in the past by the fact that pre-existing and post-admission conditions have been indistinguishable. The use of a 'Present on Admission' (or POA) indicator to distinguish pre-existing or co-morbid conditions from those arising during the episode of care has been advocated in the US for many years as a tool to support quality assurance activities and improve the accuracy of risk adjustment methodologies. The USA, Australia and Canada now all assign a flag to indicate the timing of onset of diagnoses. For quality improvement purposes, it is the 'not-POA' diagnoses (that is, those acquired in hospital) that are of interest. Methods Our objective was to develop an algorithm for assessing the validity of assignment of 'not-POA' flags. We undertook expert review of the International Classification of Diseases, 10th Revision, Australian Modification (ICD-10-AM) to identify conditions that could not be plausibly hospital-acquired. The resulting computer algorithm was tested against all diagnoses flagged as complications in the Victorian (Australia) Admitted Episodes Dataset, 2005/06. Measures reported include rates of appropriate assignment of the new Australian 'Condition Onset' flag by ICD chapter, and patterns of invalid flagging. Results Of 18,418 diagnosis codes reviewed, 93.4% (n = 17,195) reflected agreement on status for flagging by at least 2 of 3 reviewers (including 64.4% unanimous agreement; Fleiss' Kappa: 0.61). In tests of the new algorithm, 96.14% of all hospital-acquired diagnosis codes flagged were found to be valid in the Victorian records analysed. A lower proportion of individual codes was judged to be acceptably flagged (76.2%), but this reflected a high proportion of codes used <5 times in the data set (789/1035 invalid codes). Conclusion An indicator variable about the timing of occurrence of diagnoses can greatly expand the use of routinely

  17. An Improved Force Feedback Control Algorithm for Active Tendons

    PubMed Central

    Guo, Tieneng; Liu, Zhifeng; Cai, Ligang

    2012-01-01

    An active tendon, consisting of a displacement actuator and a co-located force sensor, has been adopted by many studies to suppress the vibration of large space flexible structures. The damping, provided by the force feedback control algorithm in these studies, is small and can increase, especially for tendons with low axial stiffness. This study introduces an improved force feedback algorithm, which is based on the idea of velocity feedback. The algorithm provides a large damping ratio for space flexible structures and does not require a structure model. The effectiveness of the algorithm is demonstrated on a structure similar to JPL-MPI. The results show that large damping can be achieved for the vibration control of large space structures. PMID:23112660

  18. Developer Tools for Evaluating Multi-Objective Algorithms

    NASA Technical Reports Server (NTRS)

    Giuliano, Mark E.; Johnston, Mark D.

    2011-01-01

    Multi-objective algorithms for scheduling offer many advantages over the more conventional single objective approach. By keeping user objectives separate instead of combined, more information is available to the end user to make trade-offs between competing objectives. Unlike single objective algorithms, which produce a single solution, multi-objective algorithms produce a set of solutions, called a Pareto surface, where no solution is strictly dominated by another solution for all objectives. From the end-user perspective a Pareto-surface provides a tool for reasoning about trade-offs between competing objectives. From the perspective of a software developer multi-objective algorithms provide an additional challenge. How can you tell if one multi-objective algorithm is better than another? This paper presents formal and visual tools for evaluating multi-objective algorithms and shows how the developer process of selecting an algorithm parallels the end-user process of selecting a solution for execution out of the Pareto-Surface.

  19. Algorithm development for Maxwell's equations for computational electromagnetism

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.

    1990-01-01

    A new algorithm has been developed for solving Maxwell's equations for the electromagnetic field. It solves the equations in the time domain with central, finite differences. The time advancement is performed implicitly, using an alternating direction implicit procedure. The space discretization is performed with finite volumes, using curvilinear coordinates with electromagnetic components along those directions. Sample calculations are presented of scattering from a metal pin, a square and a circle to demonstrate the capabilities of the new algorithm.

  20. Development of multigrid algorithms for problems from fluid dynamics

    NASA Astrophysics Data System (ADS)

    Becker, K.; Trottenberg, U.

    Multigrid algorithms are developed to demonstrate multigrid technique efficiency for complicated fluid dynamics problems regarding error reduction and discretization accuracy. Subsonic potential 2-D flow around a profile is studied as well as rotation-symmetric flow in a slot between two rotating spheres and the flow in the combustion chamber of Otto engines. The study of the 2-D subsonic potential flow around a profile with the multigrid algorithm is discussed.

  1. Algorithmic Basics of Search Engine Development

    NASA Astrophysics Data System (ADS)

    Tregubov, A. A.; Kononova, T. S.

    The basics of search engines development are reviewed in this report. A structure of search engine as a part of an electronic library is offered. Methods of smart search of relevant information based on multi-agent systems and document processing methods are reviewed in the report. Analysis of major problems of processing, indexing and relevance evaluation is carried out. Statistical indexing, algebraic relevance evaluation and linguistic automaton construction for effective document processing and understanding are considered.

  2. An active set algorithm for tracing parametrized optima

    NASA Technical Reports Server (NTRS)

    Rakowska, J.; Haftka, R. T.; Watson, L. T.

    1991-01-01

    Optimization problems often depend on parameters that define constraints or objective functions. It is often necessary to know the effect of a change in a parameter on the optimum solution. An algorithm is presented here for tracking paths of optimal solutions of inequality constrained nonlinear programming problems as a function of a parameter. The proposed algorithm employs homotopy zero-curve tracing techniques to track segments where the set of active constraints is unchanged. The transition between segments is handled by considering all possible sets of active constraints and eliminating nonoptimal ones based on the signs of the Lagrange multipliers and the derivatives of the optimal solutions with respect to the parameter. A spring-mass problem is used to illustrate all possible kinds of transition events, and the algorithm is applied to a well-known ten-bar truss structural optimization problem.

  3. Active vibration control of smart composite plates using LQR algorithm

    NASA Astrophysics Data System (ADS)

    Suresh, R.; Venkateshwara Rao, G.

    2003-10-01

    The concept of using the actuators and sensors to form a self controlling and self monitoring smart system in advanced structural design has drawn considerable interest among the research community. The smart system has large number of active, light weight, distributed sensors and actuators either bonded or embedded in the structure for the purpose of vibration suppression, shape and acoustic controls as well as fault detection and mitigation. The present study addresses the issues related to the active vibration control schemes for the smart composite panels, with substrate as the fiber reinforced composite laminate and the piezo ceramic layers as the actuators and sensors, using LQR algorithm. The study involves the structural modelling, controller design, open and closed loop system response analysis. For this purpose, an eight noded isoparametric finite element with seven degrees of freedom, viz., three translations, two section rotations and two potential differences corresponding to the actuators and sensors is developed. The piezo-ceramic actuator and sensor layers are also considered as the load bearing components in the panel. The finite element equations are first transformed into the modal state space form and then are used to obtain the constant controller gains. These are used to obtain the closed loop responses.

  4. Development and Testing of Data Mining Algorithms for Earth Observation

    NASA Technical Reports Server (NTRS)

    Glymour, Clark

    2005-01-01

    The new algorithms developed under this project included a principled procedure for classification of objects, events or circumstances according to a target variable when a very large number of potential predictor variables is available but the number of cases that can be used for training a classifier is relatively small. These "high dimensional" problems require finding a minimal set of variables -called the Markov Blanket-- sufficient for predicting the value of the target variable. An algorithm, the Markov Blanket Fan Search, was developed, implemented and tested on both simulated and real data in conjunction with a graphical model classifier, which was also implemented. Another algorithm developed and implemented in TETRAD IV for time series elaborated on work by C. Granger and N. Swanson, which in turn exploited some of our earlier work. The algorithms in question learn a linear time series model from data. Given such a time series, the simultaneous residual covariances, after factoring out time dependencies, may provide information about causal processes that occur more rapidly than the time series representation allow, so called simultaneous or contemporaneous causal processes. Working with A. Monetta, a graduate student from Italy, we produced the correct statistics for estimating the contemporaneous causal structure from time series data using the TETRAD IV suite of algorithms. Two economists, David Bessler and Kevin Hoover, have independently published applications using TETRAD style algorithms to the same purpose. These implementations and algorithmic developments were separately used in two kinds of studies of climate data: Short time series of geographically proximate climate variables predicting agricultural effects in California, and longer duration climate measurements of temperature teleconnections.

  5. Tactical weapons algorithm development for unitary and fused systems

    NASA Astrophysics Data System (ADS)

    Talele, Sunjay E.; Watson, John S.; Williams, Bradford D.; Amphay, Sengvieng A.

    1996-06-01

    A much needed capability in today's tactical Air Force is weapons systems capable of precision guidance in all weather conditions against targets in high clutter backgrounds. To achieve this capability, the Armament Directorate of Wright Laboratory, WL/MN, has been exploring various seeker technologies, including multi-sensor fusion, that may yield cost effective systems capable of operating under these conditions. A critical component of these seeker systems is their autonomous acquisition and tracking algorithms. It is these algorithms which will enable the autonomous operation of the weapons systems in the battlefield. In the past, a majority of the tactical weapon algorithms were developed in a manner which resulted in codes that were not releasable to the community, either because they were considered company proprietary or competition sensitive. As a result, the knowledge gained from these efforts was not transitioning through the technical community, thereby inhibiting the evolution of their development. In order to overcome this limitation, WL/MN has embarked upon a program to develop non-proprietary multi-sensor acquisition and tracking algorithms. To facilitate this development, a testbed has been constructed consisting of the Irma signature prediction model, data analysis workstations, and the modular algorithm concept evaluation tool (MACET) algorithm. All three of these components have been enhanced to accommodate both multi-spectral sensor fusion systems and the there dimensional signal processing techniques characteristic of ladar. MACET is a graphical interface driven system for rapid prototyping and evaluation of both unitary and fused sensor algorithms. This paper describes the MACET system and specifically elaborates on the three-dimensional capabilities recently incorporated into it.

  6. On the development of protein pKa calculation algorithms

    SciTech Connect

    Carstensen, Tommy; Farrell, Damien; Huang, Yong; Baker, Nathan A.; Nielsen, Jens E.

    2011-12-01

    Protein pKa calculation algorithms are typically developed to reproduce experimental pKa values and provide us with a better understanding of the fundamental importance of electrostatics for protein structure and function. However, the approximations and adjustable parameters employed in almost all pKa calculation methods means that there is the risk that pKa calculation algorithms are 'over-fitted' to the available datasets, and that these methods therefore do not model protein physics realistically. We employ simulations of the protein pKa calculation algorithm development process to show that careful optimization procedures and non-biased experimental datasets must be applied to ensure a realistic description of the underlying physical terms. We furthermore investigate the effect of experimental noise and find a significant effect on the pKa calculation algorithm optimization landscape. Finally, we comment on strategies for ensuring the physical realism of protein pKa calculation algorithms and we assess the overall state of the field with a view to predicting future directions of development.

  7. Active-passive correlation spectroscopy - A new technique for identifying ocean color algorithm spectral regions

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1986-01-01

    A new active-passive airborne data correlation technique has been developed which allows the validation of existing in-water oceoan color algorithms and the rapid search, identification, and evaluation of new sensor band locations and algorithm wavelength intervals. Thus far, applied only in conjunction with the spectral curvature algorithm (SCA), the active-passive correlation spectroscopy (APCS) technique shows that (1) the usual 490-nm (center-band) chlorophyll SCA could satisfactorily be placed anywhere within the nominal 460-510-nm interval, and (2) two other spectral regions, 645-660 and 680-695 nm, show considerable promise for chlorophyll pigment measurement. Additionally, the APCS method reveals potentially useful wavelength regions (at 600 and about 670 nm) of very low chlorophyll-in-water spectral curvature into which accessory pigment algorithms for phycoerythrin might be carefully positioned. In combination, the APCS and SCA methods strongly suggest that significant information content resides within the seemingly featureless ocean color spectrum.

  8. The development and evaluation of numerical algorithms for MIMD computers

    NASA Technical Reports Server (NTRS)

    Voigt, Robert G.

    1990-01-01

    Two activities were pursued under this grant. The first was a visitor program to conduct research on numerical algorithms for MIMD computers. The program is summarized in the following attachments. Attachment A - List of Researchers Supported; Attachment B - List of Reports Completed; and Attachment C - Reports. The second activity was a workshop on the Control of fluid Dynamic Systems held on March 28 to 29, 1989. The workshop is summarized in attachments. Attachment D - Workshop Summary; and Attachment E - List of Workshop Participants.

  9. Development and Application of a Portable Health Algorithms Test System

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.; Fulton, Christopher E.; Maul, William A.; Sowers, T. Shane

    2007-01-01

    This paper describes the development and initial demonstration of a Portable Health Algorithms Test (PHALT) System that is being developed by researchers at the NASA Glenn Research Center (GRC). The PHALT System was conceived as a means of evolving the maturity and credibility of algorithms developed to assess the health of aerospace systems. Comprising an integrated hardware-software environment, the PHALT System allows systems health management algorithms to be developed in a graphical programming environment; to be tested and refined using system simulation or test data playback; and finally, to be evaluated in a real-time hardware-in-the-loop mode with a live test article. In this paper, PHALT System development is described through the presentation of a functional architecture, followed by the selection and integration of hardware and software. Also described is an initial real-time hardware-in-the-loop demonstration that used sensor data qualification algorithms to diagnose and isolate simulated sensor failures in a prototype Power Distribution Unit test-bed. Success of the initial demonstration is highlighted by the correct detection of all sensor failures and the absence of any real-time constraint violations.

  10. Using Hypertext To Develop an Algorithmic Approach to Teaching Statistics.

    ERIC Educational Resources Information Center

    Halavin, James; Sommer, Charles

    Hypertext and its more advanced form Hypermedia represent a powerful authoring tool with great potential for allowing statistics teachers to develop documents to assist students in an algorithmic fashion. An introduction to the use of Hypertext is presented, with an example of its use. Hypertext is an approach to information management in which…

  11. Development, Comparisons and Evaluation of Aerosol Retrieval Algorithms

    NASA Astrophysics Data System (ADS)

    de Leeuw, G.; Holzer-Popp, T.; Aerosol-cci Team

    2011-12-01

    The Climate Change Initiative (cci) of the European Space Agency (ESA) has brought together a team of European Aerosol retrieval groups working on the development and improvement of aerosol retrieval algorithms. The goal of this cooperation is the development of methods to provide the best possible information on climate and climate change based on satellite observations. To achieve this, algorithms are characterized in detail as regards the retrieval approaches, the aerosol models used in each algorithm, cloud detection and surface treatment. A round-robin intercomparison of results from the various participating algorithms serves to identify the best modules or combinations of modules for each sensor. Annual global datasets including their uncertainties will then be produced and validated. The project builds on 9 existing algorithms to produce spectral aerosol optical depth (AOD and Ångström exponent) as well as other aerosol information; two instruments are included to provide the absorbing aerosol index (AAI) and stratospheric aerosol information. The algorithms included are: - 3 for ATSR (ORAC developed by RAL / Oxford university, ADV developed by FMI and the SU algorithm developed by Swansea University ) - 2 for MERIS (BAER by Bremen university and the ESA standard handled by HYGEOS) - 1 for POLDER over ocean (LOA) - 1 for synergetic retrieval (SYNAER by DLR ) - 1 for OMI retreival of the absorbing aerosol index with averaging kernel information (KNMI) - 1 for GOMOS stratospheric extinction profile retrieval (BIRA) The first seven algorithms aim at the retrieval of the AOD. However, each of the algorithms used differ in their approach, even for algorithms working with the same instrument such as ATSR or MERIS. To analyse the strengths and weaknesses of each algorithm several tests are made. The starting point for comparison and measurement of improvements is a retrieval run for 1 month, September 2008. The data from the same month are subsequently used for

  12. Algorithm integration using ADL (Algorithm Development Library) for improving CrIMSS EDR science product quality

    NASA Astrophysics Data System (ADS)

    Das, B.; Wilson, M.; Divakarla, M. G.; Chen, W.; Barnet, C.; Wolf, W.

    2013-05-01

    Algorithm Development Library (ADL) is a framework that mimics the operational system IDPS (Interface Data Processing Segment) that is currently being used to process data from instruments aboard Suomi National Polar-orbiting Partnership (S-NPP) satellite. The satellite was launched successfully in October 2011. The Cross-track Infrared and Microwave Sounder Suite (CrIMSS) consists of the Advanced Technology Microwave Sounder (ATMS) and Cross-track Infrared Sounder (CrIS) instruments that are on-board of S-NPP. These instruments will also be on-board of JPSS (Joint Polar Satellite System) that will be launched in early 2017. The primary products of the CrIMSS Environmental Data Record (EDR) include global atmospheric vertical temperature, moisture, and pressure profiles (AVTP, AVMP and AVPP) and Ozone IP (Intermediate Product from CrIS radiances). Several algorithm updates have recently been proposed by CrIMSS scientists that include fixes to the handling of forward modeling errors, a more conservative identification of clear scenes, indexing corrections for daytime products, and relaxed constraints between surface temperature and air temperature for daytime land scenes. We have integrated these improvements into the ADL framework. This work compares the results from ADL emulation of future IDPS system incorporating all the suggested algorithm updates with the current official processing results by qualitative and quantitative evaluations. The results prove these algorithm updates improve science product quality.

  13. Multiplatform GPGPU implementation of the active contours without edges algorithm

    NASA Astrophysics Data System (ADS)

    Zavala-Romero, Olmo; Meyer-Baese, Anke; Meyer-Baese, Uwe

    2012-05-01

    An OpenCL implementation of the Active Contours Without Edges algorithm is presented. The proposed algorithm uses the General Purpose Computing on Graphics Processing Units (GPGPU) to accelerate the original model by parallelizing the two main steps of the segmentation process, the computation of the Signed Distance Function (SDF) and the evolution of the segmented curve. The proposed scheme for the computation of the SDF is based on the iterative construction of partial Voronoi diagrams of a reduced dimension and obtains the exact Euclidean distance in a time of order O(N/p), where N is the number of pixels and p the number of processors. With high resolution images the segmentation algorithm runs 10 times faster than its equivalent sequential implementation. This work is being done as an open source software that, being programmed in OpenCL, can be used in dierent platforms allowing a broad number of nal users and can be applied in dierent areas of computer vision, like medical imaging, tracking, robotics, etc. This work uses OpenGL to visualize the algorithm results in real time.

  14. Datasets for radiation network algorithm development and testing

    SciTech Connect

    Rao, Nageswara S; Sen, Satyabrata; Berry, M. L..; Wu, Qishi; Grieme, M.; Brooks, Richard R; Cordone, G.

    2016-01-01

    Domestic Nuclear Detection Office s (DNDO) Intelligence Radiation Sensors Systems (IRSS) program supported the development of networks of commercial-off-the-shelf (COTS) radiation counters for detecting, localizing, and identifying low-level radiation sources. Under this program, a series of indoor and outdoor tests were conducted with multiple source strengths and types, different background profiles, and various types of source and detector movements. Following the tests, network algorithms were replayed in various re-constructed scenarios using sub-networks. These measurements and algorithm traces together provide a rich collection of highly valuable datasets for testing the current and next generation radiation network algorithms, including the ones (to be) developed by broader R&D communities such as distributed detection, information fusion, and sensor networks. From this multiple TeraByte IRSS database, we distilled out and packaged the first batch of canonical datasets for public release. They include measurements from ten indoor and two outdoor tests which represent increasingly challenging baseline scenarios for robustly testing radiation network algorithms.

  15. Developing and Implementing the Data Mining Algorithms in RAVEN

    SciTech Connect

    Sen, Ramazan Sonat; Maljovec, Daniel Patrick; Alfonsi, Andrea; Rabiti, Cristian

    2015-09-01

    The RAVEN code is becoming a comprehensive tool to perform probabilistic risk assessment, uncertainty quantification, and verification and validation. The RAVEN code is being developed to support many programs and to provide a set of methodologies and algorithms for advanced analysis. Scientific computer codes can generate enormous amounts of data. To post-process and analyze such data might, in some cases, take longer than the initial software runtime. Data mining algorithms/methods help in recognizing and understanding patterns in the data, and thus discover knowledge in databases. The methodologies used in the dynamic probabilistic risk assessment or in uncertainty and error quantification analysis couple system/physics codes with simulation controller codes, such as RAVEN. RAVEN introduces both deterministic and stochastic elements into the simulation while the system/physics code model the dynamics deterministically. A typical analysis is performed by sampling values of a set of parameter values. A major challenge in using dynamic probabilistic risk assessment or uncertainty and error quantification analysis for a complex system is to analyze the large number of scenarios generated. Data mining techniques are typically used to better organize and understand data, i.e. recognizing patterns in the data. This report focuses on development and implementation of Application Programming Interfaces (APIs) for different data mining algorithms, and the application of these algorithms to different databases.

  16. Utilization of Ancillary Data Sets for SMAP Algorithm Development and Product Generation

    NASA Technical Reports Server (NTRS)

    ONeill, P.; Podest, E.; Njoku, E.

    2011-01-01

    Algorithms being developed for the Soil Moisture Active Passive (SMAP) mission require a variety of both static and ancillary data. The selection of the most appropriate source for each ancillary data parameter is driven by a number of considerations, including accuracy, latency, availability, and consistency across all SMAP products and with SMOS (Soil Moisture Ocean Salinity). It is anticipated that initial selection of all ancillary datasets, which are needed for ongoing algorithm development activities on the SMAP algorithm testbed at JPL, will be completed within the year. These datasets will be updated as new or improved sources become available, and all selections and changes will be documented for the benefit of the user community. Wise choices in ancillary data will help to enable SMAP to provide new global measurements of soil moisture and freeze/thaw state at the targeted accuracy necessary to tackle hydrologically-relevant societal issues.

  17. Development of microwave rainfall retrieval algorithm for climate applications

    NASA Astrophysics Data System (ADS)

    KIM, J. H.; Shin, D. B.

    2014-12-01

    With the accumulated satellite datasets for decades, it is possible that satellite-based data could contribute to sustained climate applications. Level-3 products from microwave sensors for climate applications can be obtained from several algorithms. For examples, the Microwave Emission brightness Temperature Histogram (METH) algorithm produces level-3 rainfalls directly, whereas the Goddard profiling (GPROF) algorithm first generates instantaneous rainfalls and then temporal and spatial averaging process leads to level-3 products. The rainfall algorithm developed in this study follows a similar approach to averaging instantaneous rainfalls. However, the algorithm is designed to produce instantaneous rainfalls at an optimal resolution showing reduced non-linearity in brightness temperature (TB)-rain rate(R) relations. It is found that the resolution tends to effectively utilize emission channels whose footprints are relatively larger than those of scattering channels. This algorithm is mainly composed of a-priori databases (DBs) and a Bayesian inversion module. The DB contains massive pairs of simulated microwave TBs and rain rates, obtained by WRF (version 3.4) and RTTOV (version 11.1) simulations. To improve the accuracy and efficiency of retrieval process, data mining technique is additionally considered. The entire DB is classified into eight types based on Köppen climate classification criteria using reanalysis data. Among these sub-DBs, only one sub-DB which presents the most similar physical characteristics is selected by considering the thermodynamics of input data. When the Bayesian inversion is applied to the selected DB, instantaneous rain rate with 6 hours interval is retrieved. The retrieved monthly mean rainfalls are statistically compared with CMAP and GPCP, respectively.

  18. Long term analysis of PALS soil moisture campaign measurements for global soil moisture algorithm development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An important component of satellite-based soil moisture algorithm development and validation is the comparison of coincident remote sensing and in situ observations that are typically provided by intensive field campaigns. The planned NASA Soil Moisture Active Passive (SMAP) mission has unique requi...

  19. Development and Evaluation of Model Algorithms to Account for Chemical Transformation in the Nearroad Environment

    EPA Science Inventory

    We describe the development and evaluation of two new model algorithms for NOx chemistry in the R-LINE near-road dispersion model for traffic sources. With increased urbanization, there is increased mobility leading to higher amount of traffic related activity on a global scale. ...

  20. Comparative study on semi-active control algorithms for piezoelectric friction dampers

    NASA Astrophysics Data System (ADS)

    Chen, Chaoqiang; Chen, Genda

    2004-07-01

    A semi-active Tri-D algorithm combining Coulomb, Reid and viscous damping mechanisms has recently been developed by the authors to drive piezoelectric friction dampers. The objective of this study is to analytically compare its performance with those of bang-bang control, clipped-optimal control, modulated homogeneous control, and a modified clipped-optimal control. Two far-field and two near-field historical earthquake records with various intensities and dominant frequencies were used in this study. All algorithms were evaluated with a ¼ scale 3-story frame structure in terms of reductions in peak inter-story drift ratio and peak floor acceleration. A piezoelectric friction damper was considered to be installed between a bracing support and the first floor of the frame structure. Both advantages and disadvantages of each control algorithm were discussed with numerical simulations. At near resonance, both bang-bang and clipped-optimal algorithms are more effective in drift reduction, and the modified clipped-optimal algorithm is more effective in acceleration reduction than both Tri-D and modulated homogeneous algorithms. But the latter requires less control force on the average. For a non-resonant case, the Tri-D and modulated homogeneous algorithms are more effective in acceleration reduction than others even with less control force required. Overall, the Tri-D and modulated homogeneous controls are effective in response reduction, adaptive, and robust to earthquake characteristics.

  1. Oscillation Detection Algorithm Development Summary Report and Test Plan

    SciTech Connect

    Zhou, Ning; Huang, Zhenyu; Tuffner, Francis K.; Jin, Shuangshuang

    2009-10-03

    Small signal stability problems are one of the major threats to grid stability and reliability in California and the western U.S. power grid. An unstable oscillatory mode can cause large-amplitude oscillations and may result in system breakup and large-scale blackouts. There have been several incidents of system-wide oscillations. Of them, the most notable is the August 10, 1996 western system breakup produced as a result of undamped system-wide oscillations. There is a great need for real-time monitoring of small-signal oscillations in the system. In power systems, a small-signal oscillation is the result of poor electromechanical damping. Considerable understanding and literature have been developed on the small-signal stability problem over the past 50+ years. These studies have been mainly based on a linearized system model and eigenvalue analysis of its characteristic matrix. However, its practical feasibility is greatly limited as power system models have been found inadequate in describing real-time operating conditions. Significant efforts have been devoted to monitoring system oscillatory behaviors from real-time measurements in the past 20 years. The deployment of phasor measurement units (PMU) provides high-precision time-synchronized data needed for estimating oscillation modes. Measurement-based modal analysis, also known as ModeMeter, uses real-time phasor measure-ments to estimate system oscillation modes and their damping. Low damping indicates potential system stability issues. Oscillation alarms can be issued when the power system is lightly damped. A good oscillation alarm tool can provide time for operators to take remedial reaction and reduce the probability of a system breakup as a result of a light damping condition. Real-time oscillation monitoring requires ModeMeter algorithms to have the capability to work with various kinds of measurements: disturbance data (ringdown signals), noise probing data, and ambient data. Several measurement

  2. Data inversion algorithm development for the hologen occultation experiment

    NASA Technical Reports Server (NTRS)

    Gordley, Larry L.; Mlynczak, Martin G.

    1986-01-01

    The successful retrieval of atmospheric parameters from radiometric measurement requires not only the ability to do ideal radiometric calculations, but also a detailed understanding of instrument characteristics. Therefore a considerable amount of time was spent in instrument characterization in the form of test data analysis and mathematical formulation. Analyses of solar-to-reference interference (electrical cross-talk), detector nonuniformity, instrument balance error, electronic filter time-constants and noise character were conducted. A second area of effort was the development of techniques for the ideal radiometric calculations required for the Halogen Occultation Experiment (HALOE) data reduction. The computer code for these calculations must be extremely complex and fast. A scheme for meeting these requirements was defined and the algorithms needed form implementation are currently under development. A third area of work included consulting on the implementation of the Emissivity Growth Approximation (EGA) method of absorption calculation into a HALOE broadband radiometer channel retrieval algorithm.

  3. Development of antibiotic regimens using graph based evolutionary algorithms.

    PubMed

    Corns, Steven M; Ashlock, Daniel A; Bryden, Kenneth M

    2013-12-01

    This paper examines the use of evolutionary algorithms in the development of antibiotic regimens given to production animals. A model is constructed that combines the lifespan of the animal and the bacteria living in the animal's gastro-intestinal tract from the early finishing stage until the animal reaches market weight. This model is used as the fitness evaluation for a set of graph based evolutionary algorithms to assess the impact of diversity control on the evolving antibiotic regimens. The graph based evolutionary algorithms have two objectives: to find an antibiotic treatment regimen that maintains the weight gain and health benefits of antibiotic use and to reduce the risk of spreading antibiotic resistant bacteria. This study examines different regimens of tylosin phosphate use on bacteria populations divided into Gram positive and Gram negative types, with a focus on Campylobacter spp. Treatment regimens were found that provided decreased antibiotic resistance relative to conventional methods while providing nearly the same benefits as conventional antibiotic regimes. By using a graph to control the information flow in the evolutionary algorithm, a variety of solutions along the Pareto front can be found automatically for this and other multi-objective problems.

  4. Development of a biomimetic robotic fish and its control algorithm.

    PubMed

    Yu, Junzhi; Tan, Min; Wang, Shuo; Chen, Erkui

    2004-08-01

    This paper is concerned with the design of a robotic fish and its motion control algorithms. A radio-controlled, four-link biomimetic robotic fish is developed using a flexible posterior body and an oscillating foil as a propeller. The swimming speed of the robotic fish is adjusted by modulating joint's oscillating frequency, and its orientation is tuned by different joint's deflections. Since the motion control of a robotic fish involves both hydrodynamics of the fluid environment and dynamics of the robot, it is very difficult to establish a precise mathematical model employing purely analytical methods. Therefore, the fish's motion control task is decomposed into two control systems. The online speed control implements a hybrid control strategy and a proportional-integral-derivative (PID) control algorithm. The orientation control system is based on a fuzzy logic controller. In our experiments, a point-to-point (PTP) control algorithm is implemented and an overhead vision system is adopted to provide real-time visual feedback. The experimental results confirm the effectiveness of the proposed algorithms.

  5. SMMR Simulator radiative transfer calibration model. 2: Algorithm development

    NASA Technical Reports Server (NTRS)

    Link, S.; Calhoon, C.; Krupp, B.

    1980-01-01

    Passive microwave measurements performed from Earth orbit can be used to provide global data on a wide range of geophysical and meteorological phenomena. A Scanning Multichannel Microwave Radiometer (SMMR) is being flown on the Nimbus-G satellite. The SMMR Simulator duplicates the frequency bands utilized in the spacecraft instruments through an amalgamate of radiometer systems. The algorithm developed utilizes data from the fall 1978 NASA CV-990 Nimbus-G underflight test series and subsequent laboratory testing.

  6. CNES gondola development activities

    NASA Astrophysics Data System (ADS)

    Vargas, André; Verdier, Nicolas; Escarnot, Jean-Pierre; Vargas, André

    Recent safety rules and gondola obsolescence oblige CNES to initiate new developments to improve performances according scientific needs. A large project called NOSYCA will able to offer versatile housekeeping and science telemetry system for Zero Pressure Balloons. This concept is modular, use IP protocol for scientific high data rate and mix telemetry systems to perform long duration flight. To respect safety duties, the long duration flight ISBA gondola is modified. New functions are implemented to increase reliability for stratospheric super and zero Pressure balloons flights. "Pointed gondola activity" is also concerned by improvements. After the First Fireball flight, new equipment designs are in progress for future missions. At least, boundary layer balloons performances of science payload and housekeeping system increase with new instrumentation and network telemetry concepts.

  7. Development of an Inverse Algorithm for Resonance Inspection

    SciTech Connect

    Lai, Canhai; Xu, Wei; Sun, Xin

    2012-10-01

    Resonance inspection (RI), which employs the natural frequency spectra shift between the good and the anomalous part populations to detect defects, is a non-destructive evaluation (NDE) technique with many advantages such as low inspection cost, high testing speed, and broad applicability to structures with complex geometry compared to other contemporary NDE methods. It has already been widely used in the automobile industry for quality inspections of safety critical parts. Unlike some conventionally used NDE methods, the current RI technology is unable to provide details, i.e. location, dimension, or types, of the flaws for the discrepant parts. Such limitation severely hinders its wide spread applications and further development. In this study, an inverse RI algorithm based on maximum correlation function is proposed to quantify the location and size of flaws for a discrepant part. A dog-bone shaped stainless steel sample with and without controlled flaws are used for algorithm development and validation. The results show that multiple flaws can be accurately pinpointed back using the algorithms developed, and the prediction accuracy decreases with increasing flaw numbers and decreasing distance between flaws.

  8. Development of a two wheeled self balancing robot with speech recognition and navigation algorithm

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Muhaimin; Ashik-E-Rasul, Haq, Nowab. Md. Aminul; Hassan, Mehedi; Hasib, Irfan Mohammad Al; Hassan, K. M. Rafidh

    2016-07-01

    This paper is aimed to discuss modeling, construction and development of navigation algorithm of a two wheeled self balancing mobile robot in an enclosure. In this paper, we have discussed the design of two of the main controller algorithms, namely PID algorithms, on the robot model. Simulation is performed in the SIMULINK environment. The controller is developed primarily for self-balancing of the robot and also it's positioning. As for the navigation in an enclosure, template matching algorithm is proposed for precise measurement of the robot position. The navigation system needs to be calibrated before navigation process starts. Almost all of the earlier template matching algorithms that can be found in the open literature can only trace the robot. But the proposed algorithm here can also locate the position of other objects in an enclosure, like furniture, tables etc. This will enable the robot to know the exact location of every stationary object in the enclosure. Moreover, some additional features, such as Speech Recognition and Object Detection, are added. For Object Detection, the single board Computer Raspberry Pi is used. The system is programmed to analyze images captured via the camera, which are then processed through background subtraction, followed by active noise reduction.

  9. Ocean Observations with EOS/MODIS: Algorithm Development and Post Launch Studies

    NASA Technical Reports Server (NTRS)

    Gordon, Howard R.; Conboy, Barbara (Technical Monitor)

    1999-01-01

    This separation has been logical thus far; however, as launch of AM-1 approaches, it must be recognized that many of these activities will shift emphasis from algorithm development to validation. For example, the second, third, and fifth bullets will become almost totally validation-focussed activities in the post-launch era, providing the core of our experimental validation effort. Work under the first bullet will continue into the post-launch time frame, driven in part by algorithm deficiencies revealed as a result of validation activities. Prior to the start of the 1999 fiscal year (FY99) we were requested to prepare a brief plan for our FY99 activities. This plan is included as Appendix 1. The present report describes the progress made on our planned activities.

  10. Development of clustering algorithms for Compressed Baryonic Matter experiment

    NASA Astrophysics Data System (ADS)

    Kozlov, G. E.; Ivanov, V. V.; Lebedev, A. A.; Vassiliev, Yu. O.

    2015-05-01

    A clustering problem for the coordinate detectors in the Compressed Baryonic Matter (CBM) experiment is discussed. Because of the high interaction rate and huge datasets to be dealt with, clustering algorithms are required to be fast and efficient and capable of processing events with high track multiplicity. At present there are two different approaches to the problem. In the first one each fired pad bears information about its charge, while in the second one a pad can or cannot be fired, thus rendering the separation of overlapping clusters a difficult task. To deal with the latter, two different clustering algorithms were developed, integrated into the CBMROOT software environment, and tested with various types of simulated events. Both of them are found to be highly efficient and accurate.

  11. Developing Information Power Grid Based Algorithms and Software

    NASA Technical Reports Server (NTRS)

    Dongarra, Jack

    1998-01-01

    This exploratory study initiated our effort to understand performance modeling on parallel systems. The basic goal of performance modeling is to understand and predict the performance of a computer program or set of programs on a computer system. Performance modeling has numerous applications, including evaluation of algorithms, optimization of code implementations, parallel library development, comparison of system architectures, parallel system design, and procurement of new systems. Our work lays the basis for the construction of parallel libraries that allow for the reconstruction of application codes on several distinct architectures so as to assure performance portability. Following our strategy, once the requirements of applications are well understood, one can then construct a library in a layered fashion. The top level of this library will consist of architecture-independent geometric, numerical, and symbolic algorithms that are needed by the sample of applications. These routines should be written in a language that is portable across the targeted architectures.

  12. Development of algorithm for single axis sun tracking system

    NASA Astrophysics Data System (ADS)

    Yi, Lim Zi; Singh, Balbir Singh Mahinder; Ching, Dennis Ling Chuan; Jin, Calvin Low Eu

    2016-11-01

    The output power from a solar panel depends on the amount of sunlight that is intercepted by the photovoltaic (PV) solar panel. The value of solar irradiance varies due to the change of position of sun and the local meteorological conditions. This causes the output power of a PV based solar electricity generating system (SEGS) to fluctuate as well. In this paper, the focus is on the integration of solar tracking system with performance analyzer system through the development of an algorithm for optimizing the performance of SEGS. The proposed algorithm displays real-time processed data that would enable users to understand the trend of the SEGS output for maintenance prediction and optimization purposes.

  13. The development of a whole-body algorithm

    NASA Technical Reports Server (NTRS)

    Kay, F. J.

    1973-01-01

    The whole-body algorithm is envisioned as a mathematical model that utilizes human physiology to simulate the behavior of vital body systems. The objective of this model is to determine the response of selected body parameters within these systems to various input perturbations, or stresses. Perturbations of interest are exercise, chemical unbalances, gravitational changes and other abnormal environmental conditions. This model provides for a study of man's physiological response in various space applications, underwater applications, normal and abnormal workloads and environments, and the functioning of the system with physical impairments or decay of functioning components. Many methods or approaches to the development of a whole-body algorithm are considered. Of foremost concern is the determination of the subsystems to be included, the detail of the subsystems and the interaction between the subsystems.

  14. Aquarius geophysical model function and combined active passive algorithm for ocean surface salinity and wind retrieval

    NASA Astrophysics Data System (ADS)

    Yueh, Simon; Tang, Wenqing; Fore, Alexander; Hayashi, Akiko; Song, Yuhe T.; Lagerloef, Gary

    2014-08-01

    This paper describes the updated Combined Active-Passive (CAP) retrieval algorithm for simultaneous retrieval of surface salinity and wind from Aquarius' brightness temperature and radar backscatter. Unlike the algorithm developed by Remote Sensing Systems (RSS), implemented in the Aquarius Data Processing System (ADPS) to produce Aquarius standard products, the Jet Propulsion Laboratory's CAP algorithm does not require monthly climatology SSS maps for the salinity retrieval. Furthermore, the ADPS-RSS algorithm fully uses the National Center for Environmental Predictions (NCEP) wind for data correction, while the CAP algorithm uses the NCEP wind only as a constraint. The major updates to the CAP algorithm include the galactic reflection correction, Faraday rotation, Antenna Pattern Correction, and geophysical model functions of wind or wave impacts. Recognizing the limitation of geometric optics scattering, we improve the modeling of the reflection of galactic radiation; the results are better salinity accuracy and significantly reduced ascending-descending bias. We assess the accuracy of CAP's salinity by comparison with ARGO monthly gridded salinity products provided by the Asia-Pacific Data-Research Center (APDRC) and Japan Agency for Marine-Earth Science and Technology (JAMSTEC). The RMS differences between Aquarius CAP and APDRC's or JAMSTEC's ARGO salinities are less than 0.2 psu for most parts of the ocean, except for the regions in the Intertropical Convergence Zone, near the outflow of major rivers and at high latitudes.

  15. Two-stage neural algorithm for defect detection and characterization uses an active thermography

    NASA Astrophysics Data System (ADS)

    Dudzik, Sebastian

    2015-07-01

    In the paper a two-stage neural algorithm for defect detection and characterization is presented. In order to estimate the defect depth two neural networks trained on data obtained using an active thermography were employed. The first stage of the algorithm is developed to detect the defect by a classification neural network. Then the defects depth is estimated using a regressive neural network. In this work the results of experimental investigations and simulations are shown. Further, the sensitivity analysis of the presented algorithm was conducted and the impacts of emissivity error and the ambient temperature error on the depth estimation errors were studied. The results were obtained using a test sample made of material with a low thermal diffusivity.

  16. Comparison of a new rapid convergent adaptive control algorithm to least mean square on an active noise control system

    NASA Astrophysics Data System (ADS)

    Koshigoe, Shozo; Gordon, Alan; Teagle, Allen; Tsay, Ching-Hsu

    1995-04-01

    In this paper, an efficient rapid convergent control algorithm will be developed and will be compared with other adaptive control algorithms using an experimental active noise control system. Other control algorithms are Widrow's finite impulse response adaptive control algorithm, and a modified Godard's algorithm. Comparisons of the random noise attenuation capability, transient and convergence performance, and computational requirements of each algorithm will be made as the order of the controller and relevant convergence parameters are varied. The system used for these experiments is a test bed of noise suppression technology for expendable launch vehicles. It consists of a flexible plate backed by a rigid cavity. Piezoelectric actuators are mounted on the plate and polyvinylidene fluoride is used both for microphones and pressure sensors within the cavity. The plate is bombarded with an amplified random noise signal, and the control system is used to suppress the noise inside the cavity generated by the outside sound source.

  17. Communication: Active space decomposition with multiple sites: Density matrix renormalization group algorithm

    SciTech Connect

    Parker, Shane M.; Shiozaki, Toru

    2014-12-07

    We extend the active space decomposition method, recently developed by us, to more than two active sites using the density matrix renormalization group algorithm. The fragment wave functions are described by complete or restricted active-space wave functions. Numerical results are shown on a benzene pentamer and a perylene diimide trimer. It is found that the truncation errors in our method decrease almost exponentially with respect to the number of renormalization states M, allowing for numerically exact calculations (to a few μE{sub h} or less) with M = 128 in both cases. This rapid convergence is because the renormalization steps are used only for the interfragment electron correlation.

  18. Comparison of Performance Effectiveness of Linear Control Algorithms Developed for a Simplified Ground Vehicle Suspension System

    DTIC Science & Technology

    2011-04-01

    Comparison of Performance Effectiveness of Linear Control Algorithms Developed for a Simplified Ground Vehicle Suspension System by Ross... Linear Control Algorithms Developed for a Simplified Ground Vehicle Suspension System Ross Brown Motile Robotics, Inc, research contractor at U.S... Linear Control Algorithms Developed for a Simplified Ground Vehicle Suspension System 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  19. Active and passive computed tomography algorithm with a constrained conjugate gradient solution

    SciTech Connect

    Goodman, D.; Jackson, J. A.; Martz, H. E.; Roberson, G. P.

    1998-10-01

    An active and passive computed tomographic technique (A&PCT) has been developed at the Lawrence Livermore National Laboratory (LLNL). The technique uses an external radioactive source and active tomography to map the attenuation within a waste drum as a function of mono-energetic gamma-ray energy. Passive tomography is used to localize and identify specific radioactive waste within the same container. The passive data is corrected for attenuation using the active data and this yields a quantitative assay of drum activity. A&PCT involves the development of a detailed system model that combines the data from the active scans with the geometry of the imaging system. Using the system model, iterative optimization techniques are used to reconstruct the image from the passive data. Requirements for high throughput yield measured emission levels in waste barrels that are too low to apply optimization techniques involving the usual Gaussian statistics. In this situation a Poisson distribution, typically used for cases with low counting statistics, is used to create an effective maximum likelihood estimation function. An optimization algorithm, Constrained Conjugate Gradient (CCG), is used to determine a solution for A&PCT quantitative assay. CCG, which was developed at LLNL, has proven to be an efficient and effective optimization method to solve limited-data problems. A detailed explanation of the algorithms used in developing the model and optimization codes is given.

  20. Development of Topological Correction Algorithms for ADCP Multibeam Bathymetry Measurements

    NASA Astrophysics Data System (ADS)

    Yang, Sung-Kee; Kim, Dong-Su; Kim, Soo-Jeong; Jung, Woo-Yul

    2013-04-01

    Acoustic Doppler Current Profilers (ADCPs) are increasingly popular in the river research and management communities being primarily used for estimation of stream flows. ADCPs capabilities, however, entail additional features that are not fully explored, such as morphologic representation of river or reservoir bed based upon multi-beam depth measurements. In addition to flow velocity, ADCP measurements include river bathymetry information through the depth measurements acquired in individual 4 or 5 beams with a given oblique angle. Such sounding capability indicates that multi-beam ADCPs can be utilized as an efficient depth-sounder to be more capable than the conventional single-beam eco-sounders. The paper introduces the post-processing algorithms required to deal with raw ADCP bathymetry measurements including the following aspects: a) correcting the individual beam depths for tilt (pitch and roll); b) filtering outliers using SMART filters; d) transforming the corrected depths into geographical coordinates by UTM conversion; and, e) tag the beam detecting locations with the concurrent GPS information; f) spatial representation in a GIS package. The developed algorithms are applied for the ADCP bathymetric dataset acquired from Han-Cheon in Juju Island to validate their applicability.

  1. Development of a New De Novo Design Algorithm for Exploring Chemical Space.

    PubMed

    Mishima, Kazuaki; Kaneko, Hiromasa; Funatsu, Kimito

    2014-12-01

    In the first stage of development of new drugs, various lead compounds with high activity are required. To design such compounds, we focus on chemical space defined by structural descriptors. New compounds close to areas where highly active compounds exist will show the same degree of activity. We have developed a new de novo design system to search a target area in chemical space. First, highly active compounds are manually selected as initial seeds. Then, the seeds are entered into our system, and structures slightly different from the seeds are generated and pooled. Next, seeds are selected from the new structure pool based on the distance from target coordinates on the map. To test the algorithm, we used two datasets of ligand binding affinity and showed that the proposed generator could produce diverse virtual compounds that had high activity in docking simulations.

  2. Further development of an improved altimeter wind speed algorithm

    NASA Technical Reports Server (NTRS)

    Chelton, Dudley B.; Wentz, Frank J.

    1986-01-01

    A previous altimeter wind speed retrieval algorithm was developed on the basis of wind speeds in the limited range from about 4 to 14 m/s. In this paper, a new approach which gives a wind speed model function applicable over the range 0 to 21 m/s is used. The method is based on comparing 50 km along-track averages of the altimeter normalized radar cross section measurements with neighboring off-nadir scatterometer wind speed measurements. The scatterometer winds are constructed from 100 km binned measurements of radar cross section and are located approximately 200 km from the satellite subtrack. The new model function agrees very well with earlier versions up to wind speeds of 14 m/s, but differs significantly at higher wind speeds. The relevance of these results to the Geosat altimeter launched in March 1985 is discussed.

  3. Development of computer algorithms for radiation treatment planning.

    PubMed

    Cunningham, J R

    1989-06-01

    As a result of an analysis of data relating tissue response to radiation absorbed dose the ICRU has recommended a target for accuracy of +/- 5 for dose delivery in radiation therapy. This is a difficult overall objective to achieve because of the many steps that make up a course of radiotherapy. The calculation of absorbed dose is only one of the steps and so to achieve an overall accuracy of better than +/- 5% the accuracy in dose calculation must be better yet. The physics behind the problem is sufficiently complicated so that no exact method of calculation has been found and consequently approximate solutions must be used. The development of computer algorithms for this task involves the search for better and better approximate solutions. To achieve the desired target of accuracy a fairly sophisticated calculation procedure must be used. Only when this is done can we hope to further improve our knowledge of the way in which tissues respond to radiation treatments.

  4. QAP collaborates in development of the sick child algorithm.

    PubMed

    1994-01-01

    Algorithms which specify procedures for proper diagnosis and treatment of common diseases have been available to primary health care services in less developed countries for the past decade. Whereas each algorithm has usually been limited to a single ailment, children often present with the need for more comprehensive assessment and treatment. Treating just one illness in these children leads to incomplete treatment or missed opportunities for preventive services. To address this problem, the World Health Organization has recently developed a Sick Child Algorithm (SCA) for children aged 2 months-5 years. In addition to specifying case management procedures for acute respiratory illness, diarrhea/dehydration, fever, otitis, and malnutrition, the SCA prompts a check of the child's immunization status. The specificity and sensitivity of this SCA were field-tested in Kenya and the Gambia. In Kenya, the Malaria Branch of the US Centers for Disease Control and Prevention tested the SCA under typical conditions in Siaya District. The Quality Assurance Project of the Center for Human Services carried out a parallel facility-based systems analysis at the request of the Malaria Branch. The assessment which took place in September-October 1993, took the form of observations of provider/patient interactions, provider interviews, and verification of supplies and equipment in 19 rural health facilities to determine how current practices compare to actions prescribed by the SCA. This will reveal the type and amount of technical support needed to achieve conformity to the SCA's clinical practice recommendations. The data will allow officials to devise the proper training programs and will predict quality improvements likely to be achieved through adoption of the SCA in terms of effective case treatment and fewer missed immunization opportunities. Preliminary analysis indicates that the primary health care delivery in Siya deviates in several significant respects from performance

  5. Feasibility of the MUSIC Algorithm for the Active Protection System

    DTIC Science & Technology

    2001-03-01

    methods of computing the doppler frequency the multiple signal classification ( MUSIC ) algorithm and power spectral density (PSD) with the use of fast...Fourier transform (1024-point FFT). Normally, MUSIC has been used to improve the resolution of multiple closely spaced targets. In this application, MUSIC ...assumed head-on projectile using FSD and the MUSIC algorithm; I wanted to determine whether the MUSIC algorithm performs better than PSD in terms of accuracy and processing time.

  6. Aerospace Activities and Language Development

    ERIC Educational Resources Information Center

    Jones, Robert M.; Piper, Martha

    1975-01-01

    Describes how science activities can be used to stimulate language development in the elementary grades. Two aerospace activities are described involving liquid nitrogen and the launching of a weather balloon which integrate aerospace interests into the development of language skills. (BR)

  7. Developments of a force image algorithm for micromachined optical bend loss sensor

    NASA Astrophysics Data System (ADS)

    Huang, Chu-Yu; Liu, Chao-Shih; Panergo, Reynold; Huang, Cheng-Sheng; Wang, Wei-Chih

    2005-05-01

    A flexible high-resolution sensor capable of measuring the distribution of both shear and pressure at the plantar interface are needed to study the actual distribution of this force during daily activities, and the role that shear plays in causing plantar ulceration. We have previously developed a novel means of transducing plantar shear and pressure stress via a new microfabricated optical system. However, a force image algorithm is needed to handle the complexity of construction of two-dimensional planar pressure and shear images. Here we have developed a force image algorithm for a micromachined optical bend loss sensor. A neural network is introduced to help identify different load shapes. According to the experimental result, we can conclude that once the neural network has been well trained, it can correctly identify the loading shape. With the neural network, our micromachined optical bend loss Sensor is able to construction the two-dimensional planar force images.

  8. Developing Information Power Grid Based Algorithms and Software

    NASA Technical Reports Server (NTRS)

    Dongarra, Jack

    1998-01-01

    This was an exploratory study to enhance our understanding of problems involved in developing large scale applications in a heterogeneous distributed environment. It is likely that the large scale applications of the future will be built by coupling specialized computational modules together. For example, efforts now exist to couple ocean and atmospheric prediction codes to simulate a more complete climate system. These two applications differ in many respects. They have different grids, the data is in different unit systems and the algorithms for inte,-rating in time are different. In addition the code for each application is likely to have been developed on different architectures and tend to have poor performance when run on an architecture for which the code was not designed, if it runs at all. Architectural differences may also induce differences in data representation which effect precision and convergence criteria as well as data transfer issues. In order to couple such dissimilar codes some form of translation must be present. This translation should be able to handle interpolation from one grid to another as well as construction of the correct data field in the correct units from available data. Even if a code is to be developed from scratch, a modular approach will likely be followed in that standard scientific packages will be used to do the more mundane tasks such as linear algebra or Fourier transform operations. This approach allows the developers to concentrate on their science rather than becoming experts in linear algebra or signal processing. Problems associated with this development approach include difficulties associated with data extraction and translation from one module to another, module performance on different nodal architectures, and others. In addition to these data and software issues there exists operational issues such as platform stability and resource management.

  9. Understanding disordered systems through numerical simulation and algorithm development

    NASA Astrophysics Data System (ADS)

    Sweeney, Sean Michael

    Disordered systems arise in many physical contexts. Not all matter is uniform, and impurities or heterogeneities can be modeled by fixed random disorder. Numerous complex networks also possess fixed disorder, leading to applications in transportation systems, telecommunications, social networks, and epidemic modeling, to name a few. Due to their random nature and power law critical behavior, disordered systems are difficult to study analytically. Numerical simulation can help overcome this hurdle by allowing for the rapid computation of system states. In order to get precise statistics and extrapolate to the thermodynamic limit, large systems must be studied over many realizations. Thus, innovative algorithm development is essential in order reduce memory or running time requirements of simulations. This thesis presents a review of disordered systems, as well as a thorough study of two particular systems through numerical simulation, algorithm development and optimization, and careful statistical analysis of scaling properties. Chapter 1 provides a thorough overview of disordered systems, the history of their study in the physics community, and the development of techniques used to study them. Topics of quenched disorder, phase transitions, the renormalization group, criticality, and scale invariance are discussed. Several prominent models of disordered systems are also explained. Lastly, analysis techniques used in studying disordered systems are covered. In Chapter 2, minimal spanning trees on critical percolation clusters are studied, motivated in part by an analytic perturbation expansion by Jackson and Read that I check against numerical calculations. This system has a direct mapping to the ground state of the strongly disordered spin glass. We compute the path length fractal dimension of these trees in dimensions d = {2, 3, 4, 5} and find our results to be compatible with the analytic results suggested by Jackson and Read. In Chapter 3, the random bond Ising

  10. Mars Entry Atmospheric Data System Modelling and Algorithm Development

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; Beck, Roger E.; OKeefe, Stephen A.; Siemers, Paul; White, Brady; Engelund, Walter C.; Munk, Michelle M.

    2009-01-01

    The Mars Entry Atmospheric Data System (MEADS) is being developed as part of the Mars Science Laboratory (MSL), Entry, Descent, and Landing Instrumentation (MEDLI) project. The MEADS project involves installing an array of seven pressure transducers linked to ports on the MSL forebody to record the surface pressure distribution during atmospheric entry. These measured surface pressures are used to generate estimates of atmospheric quantities based on modeled surface pressure distributions. In particular, the quantities to be estimated from the MEADS pressure measurements include the total pressure, dynamic pressure, Mach number, angle of attack, and angle of sideslip. Secondary objectives are to estimate atmospheric winds by coupling the pressure measurements with the on-board Inertial Measurement Unit (IMU) data. This paper provides details of the algorithm development, MEADS system performance based on calibration, and uncertainty analysis for the aerodynamic and atmospheric quantities of interest. The work presented here is part of the MEDLI performance pre-flight validation and will culminate with processing flight data after Mars entry in 2012.

  11. Algorithm development for Prognostics and Health Management (PHM).

    SciTech Connect

    Swiler, Laura Painton; Campbell, James E.; Doser, Adele Beatrice; Lowder, Kelly S.

    2003-10-01

    This report summarizes the results of a three-year LDRD project on prognostics and health management. System failure over some future time interval (an alternative definition is the capability to predict the remaining useful life of a system). Prognostics are integrated with health monitoring (through inspections, sensors, etc.) to provide an overall PHM capability that optimizes maintenance actions and results in higher availability at a lower cost. Our goal in this research was to develop PHM tools that could be applied to a wide variety of equipment (repairable, non-repairable, manufacturing, weapons, battlefield equipment, etc.) and require minimal customization to move from one system to the next. Thus, our approach was to develop a toolkit of reusable software objects/components and architecture for their use. We have developed two software tools: an Evidence Engine and a Consequence Engine. The Evidence Engine integrates information from a variety of sources in order to take into account all the evidence that impacts a prognosis for system health. The Evidence Engine has the capability for feature extraction, trend detection, information fusion through Bayesian Belief Networks (BBN), and estimation of remaining useful life. The Consequence Engine involves algorithms to analyze the consequences of various maintenance actions. The Consequence Engine takes as input a maintenance and use schedule, spares information, and time-to-failure data on components, then generates maintenance and failure events, and evaluates performance measures such as equipment availability, mission capable rate, time to failure, and cost. This report summarizes the capabilities we have developed, describes the approach and architecture of the two engines, and provides examples of their use. 'Prognostics' refers to the capability to predict the probability of

  12. Quantification of distention in CT colonography: development and validation of three computer algorithms.

    PubMed

    Hung, Peter W; Paik, David S; Napel, Sandy; Yee, Judy; Jeffrey, R Brooke; Steinauer-Gebauer, Andreas; Min, Juno; Jathavedam, Ashwin; Beaulieu, Christopher F

    2002-02-01

    Three bowel distention-measuring algorithms for use at computed tomographic (CT) colonography were developed, validated in phantoms, and applied to a human CT colonographic data set. The three algorithms are the cross-sectional area method, the moving spheres method, and the segmental volume method. Each algorithm effectively quantified distention, but accuracy varied between methods. Clinical feasibility was demonstrated. Depending on the desired spatial resolution and accuracy, each algorithm can quantitatively depict colonic diameter in CT colonography.

  13. Two kinds of active impulsive noise control algorithms based on sigmoid transformation

    NASA Astrophysics Data System (ADS)

    Li, Pei; Bai, Xuefeng; Ma, Yongjian

    2017-01-01

    In this thesis, active noise control of symmetric α stable (SαS) distribution impulsive noise has been studied. Two kinds of algorithm based on Sigmoid transformation of error signal have been proposed. The convergence condition of algorithms also has been analyzed. It does not need the parameter selection and thresholds estimation. Computer simulations were carried out to validate algorithm. Simulation results have proven the effectiveness of the algorithm and achieved the expected control effect. Compared to the previous algorithm, the convergence speed is improved.

  14. Seasonal variations of global lightning activity extracted from Schumann resonances using a genetic algorithm method

    NASA Astrophysics Data System (ADS)

    Yang, Heng; Pasko, Victor P.; SáTori, Gabriella

    2009-01-01

    A three-dimensional Finite Difference Time Domain (FDTD) model of the Earth-ionosphere cavity with a realistic conductivity profile is employed to study the global lightning activity using the observed intensity variations of Schumann resonances (SR). Comparison of the results derived from our FDTD model and the previous studies by other authors on related subjects shows that Schumann resonance is a good probe to indicate the seasonal variations of lightning activity in three main thunderstorm regions (Africa, southeast Asia, and South America). An inverse method based on genetic algorithms is developed to extract information on lightning intensity in these three regions from observed SR intensity data. Seasonal variations of the lightning activity in three thunderstorm centers are clearly observed in our results. Different SR frequency variations associated with seasonal variations of global lighting activity are also discussed.

  15. Toward Developing Genetic Algorithms to Aid in Critical Infrastructure Modeling

    SciTech Connect

    Not Available

    2007-05-01

    Today’s society relies upon an array of complex national and international infrastructure networks such as transportation, telecommunication, financial and energy. Understanding these interdependencies is necessary in order to protect our critical infrastructure. The Critical Infrastructure Modeling System, CIMS©, examines the interrelationships between infrastructure networks. CIMS© development is sponsored by the National Security Division at the Idaho National Laboratory (INL) in its ongoing mission for providing critical infrastructure protection and preparedness. A genetic algorithm (GA) is an optimization technique based on Darwin’s theory of evolution. A GA can be coupled with CIMS© to search for optimum ways to protect infrastructure assets. This includes identifying optimum assets to enforce or protect, testing the addition of or change to infrastructure before implementation, or finding the optimum response to an emergency for response planning. This paper describes the addition of a GA to infrastructure modeling for infrastructure planning. It first introduces the CIMS© infrastructure modeling software used as the modeling engine to support the GA. Next, the GA techniques and parameters are defined. Then a test scenario illustrates the integration with CIMS© and the preliminary results.

  16. Phase 2 development of Great Lakes algorithms for Nimbus-7 coastal zone color scanner

    NASA Technical Reports Server (NTRS)

    Tanis, Fred J.

    1984-01-01

    A series of experiments have been conducted in the Great Lakes designed to evaluate the application of the NIMBUS-7 Coastal Zone Color Scanner (CZCS). Atmospheric and water optical models were used to relate surface and subsurface measurements to satellite measured radiances. Absorption and scattering measurements were reduced to obtain a preliminary optical model for the Great Lakes. Algorithms were developed for geometric correction, correction for Rayleigh and aerosol path radiance, and prediction of chlorophyll-a pigment and suspended mineral concentrations. The atmospheric algorithm developed compared favorably with existing algorithms and was the only algorithm found to adequately predict the radiance variations in the 670 nm band. The atmospheric correction algorithm developed was designed to extract needed algorithm parameters from the CZCS radiance values. The Gordon/NOAA ocean algorithms could not be demonstrated to work for Great Lakes waters. Predicted values of chlorophyll-a concentration compared favorably with expected and measured data for several areas of the Great Lakes.

  17. New developments in astrodynamics algorithms for autonomous rendezvous

    NASA Technical Reports Server (NTRS)

    Klumpp, Allan R.

    1991-01-01

    A the core of any autonomous rendezvous guidance system must be two algorithms for solving Lambert's and Kepler's problems, the two fundamental problems in classical astrodynamics. Lambert's problem is to determine the trajectory connecting specified initial and terminal position vectors in a specified transfer time. The solution is the initial and terminal velocity vectors. Kepler's problem is to determine the trajectory that stems from a given initial state (position and velocity). The solution is the state of an earlier or later specified time. To be suitable for flight software, astrodynamics algorithms must be totally reliable, compact, and fast. Although solving Lambert's and Kepler's problems has challenged some of the world's finest minds for over two centuries, only in the last year have algorithms appeared that satisfy all three requirements just stated. This paper presents an evaluation of the most highly regarded Lambert and Kepler algorithms.

  18. An active noise control algorithm for controlling multiple sinusoids.

    PubMed

    Lee, S M; Lee, H J; Yoo, C H; Youn, D H; Cha, I W

    1998-07-01

    The filtered-x LMS algorithm and its modified versions have been successfully applied in suppressing acoustic noise such as single and multiple tones and broadband random noise. This paper presents an adaptive algorithm based on the filtered-x LMS algorithm which may be applied in attenuating tonal acoustic noise. In the proposed method, the weights of the adaptive filter and estimation of the phase shift due to the acoustic path from a loudspeaker to a microphone are computed simultaneously for optimal control. The algorithm possesses advantages over other filtered-x LMS approaches in three aspects: (1) each frequency component is processed separately using an adaptive filter with two coefficients, (2) the convergence parameter for each sinusoid can be selected independently, and (3) the computational load can be reduced by eliminating the convolution process required to obtain the filtered reference signal. Simulation results for a single-input/single-output (SISO) environment demonstrate that the proposed method is robust to the changes of the acoustic path between the actuator and the microphone and outperforms the filtered-x LMS algorithm in simplicity and convergence speed.

  19. Implementation of FFT Algorithm using DSP TMS320F28335 for Shunt Active Power Filter

    NASA Astrophysics Data System (ADS)

    Patel, Pinkal Jashvantbhai; Patel, Rajesh M.; Patel, Vinod

    2016-07-01

    This work presents simulation, analysis and experimental verification of Fast Fourier Transform (FFT) algorithm for shunt active power filter based on three-level inverter. Different types of filters can be used for elimination of harmonics in the power system. In this work, FFT algorithm for reference current generation is discussed. FFT control algorithm is verified using PSIM simulation results with DLL block and C-code. Simulation results are compared with experimental results for FFT algorithm using DSP TMS320F28335 for shunt active power filter application.

  20. Research and Development. Laboratory Activities.

    ERIC Educational Resources Information Center

    Gallaway, Ann, Ed.

    Research and Development is a laboratory-oriented course that includes the appropriate common essential elements for industrial technology education plus concepts and skills related to research and development. This guide provides teachers of the course with learning activities for secondary students. Introductory materials include an…

  1. MODIS algorithm development and data visualization using ACTS

    NASA Technical Reports Server (NTRS)

    Abbott, Mark R.

    1992-01-01

    The study of the Earth as a system will require the merger of scientific and data resources on a much larger scale than has been done in the past. New methods of scientific research, particularly in the development of geographically dispersed, interdisciplinary teams, are necessary if we are to understand the complexity of the Earth system. Even the planned satellite missions themselves, such as the Earth Observing System, will require much more interaction between researchers and engineers if they are to produce scientifically useful data products. A key component in these activities is the development of flexible, high bandwidth data networks that can be used to move large amounts of data as well as allow researchers to communicate in new ways, such as through video. The capabilities of the Advanced Communications Technology Satellite (ACTS) will allow the development of such networks. The Pathfinder global AVHRR data set and the upcoming SeaWiFS Earthprobe mission would serve as a testbed in which to develop the tools to share data and information among geographically distributed researchers. Our goal is to develop a 'Distributed Research Environment' that can be used as a model for scientific collaboration in the EOS era. The challenge is to unite the advances in telecommunications with the parallel advances in computing and networking.

  2. Algorithm development for predicting biodiversity based on phytoplankton absorption

    NASA Astrophysics Data System (ADS)

    Moisan, Tiffany A. H.; Moisan, John R.; Linkswiler, Matthew A.; Steinhardt, Rachel A.

    2013-03-01

    Ocean color remote sensing has provided the scientific community with unprecedented global coverage of chlorophyll a, an indicator of phytoplankton biomass. Together, satellite-derived chlorophyll a and knowledge of Phytoplankton Functional Types (PFTs) will improve our limited understanding of marine ecosystem responses to physiochemical climate drivers involved in carbon cycle dynamics and linkages. Using cruise data from the Gulf of Maine and the Middle Atlantic Bight (N=269 pairs of HPLC and phytoplankton absorption samples), two modeling approaches were utilized to predict phytoplankton absorption and pigments. Algorithm I predicts the chlorophyll-specific absorption coefficient (aph* (m2 mg chl a-1)) using inputs of temperature, light, and chlorophyll a. Modeled r2 values (400-700 nm) ranged from 0.79 to 0.99 when compared to in situ observations with ˜25% lower r2 values in the UV region. Algorithm II-a utilizes matrix inversion analysis to predict a(m-1, 400-700 nm) and r2 values ranged from 0.89 to 0.99. The prediction of phytoplankton pigments with Algorithm II-b produced r2 values that ranged from 0.40 to 0.93. When used in combination, Algorithm I, and Algorithm II-a are able to use satellite products of SST, PAR, and chlorophyll a (Algorithm I) to predict pigment concentrations and ratios to describe the phytoplankton community. The results of this study demonstrate that the spatial variation in modeled pigment ratios differ significantly from the 10-year SeaWiFS average chlorophyll a data set. Contiguous observations of chlorophyll a and phytoplankton biodiversity will elucidate ecosystem responses with unprecedented complexity.

  3. Developing a Learning Algorithm-Generated Empirical Relaxer

    SciTech Connect

    Mitchell, Wayne; Kallman, Josh; Toreja, Allen; Gallagher, Brian; Jiang, Ming; Laney, Dan

    2016-03-30

    One of the main difficulties when running Arbitrary Lagrangian-Eulerian (ALE) simulations is determining how much to relax the mesh during the Eulerian step. This determination is currently made by the user on a simulation-by-simulation basis. We present a Learning Algorithm-Generated Empirical Relaxer (LAGER) which uses a regressive random forest algorithm to automate this decision process. We also demonstrate that LAGER successfully relaxes a variety of test problems, maintains simulation accuracy, and has the potential to significantly decrease both the person-hours and computational hours needed to run a successful ALE simulation.

  4. A Wolf Pack Algorithm for Active and Reactive Power Coordinated Optimization in Active Distribution Network

    NASA Astrophysics Data System (ADS)

    Zhuang, H. M.; Jiang, X. J.

    2016-08-01

    This paper presents an active and reactive power dynamic optimization model for active distribution network (ADN), whose control variables include the output of distributed generations (DGs), charge or discharge power of energy storage system (ESS) and reactive power from capacitor banks. To solve the high-dimension nonlinear optimization model, a new heuristic swarm intelligent method, namely wolf pack algorithm (WPA) with better global convergence and computational robustness, is adapted so that the network loss minimization can be achieved. In this paper, the IEEE33-bus system is used to show the effectiveness of WPA technique compared with other techniques. Numerical tests on the modified IEEE 33-bus system show that WPA for active and reactive multi-period optimization of ADN is exact and effective.

  5. Evolutionary Processes in the Development of Errors in Subtraction Algorithms

    ERIC Educational Resources Information Center

    Fernandez, Ricardo Lopez; Garcia, Ana B. Sanchez

    2008-01-01

    The study of errors made in subtraction is a research subject approached from different theoretical premises that affect different components of the algorithmic process as triggers of their generation. In the following research an attempt has been made to investigate the typology and nature of errors which occur in subtractions and their evolution…

  6. A novel algorithm for detecting active propulsion in wheelchair users following spinal cord injury.

    PubMed

    Popp, Werner L; Brogioli, Michael; Leuenberger, Kaspar; Albisser, Urs; Frotzler, Angela; Curt, Armin; Gassert, Roger; Starkey, Michelle L

    2016-03-01

    Physical activity in wheelchair-bound individuals can be assessed by monitoring their mobility as this is one of the most intense upper extremity activities they perform. Current accelerometer-based approaches for describing wheelchair mobility do not distinguish between self- and attendant-propulsion and hence may overestimate total physical activity. The aim of this study was to develop and validate an inertial measurement unit based algorithm to monitor wheel kinematics and the type of wheelchair propulsion (self- or attendant-) within a "real-world" situation. Different sensor set-ups were investigated, ranging from a high precision set-up including four sensor modules with a relatively short measurement duration of 24 h, to a less precise set-up with only one module attached at the wheel exceeding one week of measurement because the gyroscope of the sensor was turned off. The "high-precision" algorithm distinguished self- and attendant-propulsion with accuracy greater than 93% whilst the long-term measurement set-up showed an accuracy of 82%. The estimation accuracy of kinematic parameters was greater than 97% for both set-ups. The possibility of having different sensor set-ups allows the use of the inertial measurement units as high precision tools for researchers as well as unobtrusive and simple tools for manual wheelchair users.

  7. Item Selection for the Development of Short Forms of Scales Using an Ant Colony Optimization Algorithm

    ERIC Educational Resources Information Center

    Leite, Walter L.; Huang, I-Chan; Marcoulides, George A.

    2008-01-01

    This article presents the use of an ant colony optimization (ACO) algorithm for the development of short forms of scales. An example 22-item short form is developed for the Diabetes-39 scale, a quality-of-life scale for diabetes patients, using a sample of 265 diabetes patients. A simulation study comparing the performance of the ACO algorithm and…

  8. Human activity recognition based on feature selection in smart home using back-propagation algorithm.

    PubMed

    Fang, Hongqing; He, Lei; Si, Hao; Liu, Peng; Xie, Xiaolei

    2014-09-01

    In this paper, Back-propagation(BP) algorithm has been used to train the feed forward neural network for human activity recognition in smart home environments, and inter-class distance method for feature selection of observed motion sensor events is discussed and tested. And then, the human activity recognition performances of neural network using BP algorithm have been evaluated and compared with other probabilistic algorithms: Naïve Bayes(NB) classifier and Hidden Markov Model(HMM). The results show that different feature datasets yield different activity recognition accuracy. The selection of unsuitable feature datasets increases the computational complexity and degrades the activity recognition accuracy. Furthermore, neural network using BP algorithm has relatively better human activity recognition performances than NB classifier and HMM.

  9. Active structured learning for cell tracking: algorithm, framework, and usability.

    PubMed

    Lou, Xinghua; Schiegg, Martin; Hamprecht, Fred A

    2014-04-01

    One distinguishing property of life is its temporal dynamics, and it is hence only natural that time lapse experiments play a crucial role in modern biomedical research areas such as signaling pathways, drug discovery or developmental biology. Such experiments yield a very large number of images that encode complex cellular activities, and reliable automated cell tracking emerges naturally as a prerequisite for further quantitative analysis. However, many existing cell tracking methods are restricted to using only a small number of features to allow for manual tweaking. In this paper, we propose a novel cell tracking approach that embraces a powerful machine learning technique to optimize the tracking parameters based on user annotated tracks. Our approach replaces the tedious parameter tuning with parameter learning and allows for the use of a much richer set of complex tracking features, which in turn affords superior prediction accuracy. Furthermore, we developed an active learning approach for efficient training data retrieval, which reduces the annotation effort to only 17%. In practical terms, our approach allows life science researchers to inject their expertise in a more intuitive and direct manner. This process is further facilitated by using a glyph visualization technique for ground truth annotation and validation. Evaluation and comparison on several publicly available benchmark sequences show significant performance improvement over recently reported approaches. Code and software tools are provided to the public.

  10. An Active Learning Algorithm for Control of Epidural Electrostimulation.

    PubMed

    Desautels, Thomas A; Choe, Jaehoon; Gad, Parag; Nandra, Mandheerej S; Roy, Roland R; Zhong, Hui; Tai, Yu-Chong; Edgerton, V Reggie; Burdick, Joel W

    2015-10-01

    Epidural electrostimulation has shown promise for spinal cord injury therapy. However, finding effective stimuli on the multi-electrode stimulating arrays employed requires a laborious manual search of a vast space for each patient. Widespread clinical application of these techniques would be greatly facilitated by an autonomous, algorithmic system which choses stimuli to simultaneously deliver effective therapy and explore this space. We propose a method based on GP-BUCB, a Gaussian process bandit algorithm. In n = 4 spinally transected rats, we implant epidural electrode arrays and examine the algorithm's performance in selecting bipolar stimuli to elicit specified muscle responses. These responses are compared with temporally interleaved intra-animal stimulus selections by a human expert. GP-BUCB successfully controlled the spinal electrostimulation preparation in 37 testing sessions, selecting 670 stimuli. These sessions included sustained autonomous operations (ten-session duration). Delivered performance with respect to the specified metric was as good as or better than that of the human expert. Despite receiving no information as to anatomically likely locations of effective stimuli, GP-BUCB also consistently discovered such a pattern. Further, GP-BUCB was able to extrapolate from previous sessions' results to make predictions about performance in new testing sessions, while remaining sufficiently flexible to capture temporal variability. These results provide validation for applying automated stimulus selection methods to the problem of spinal cord injury therapy.

  11. An Active Learning Algorithm for Control of Epidural Electrostimulation

    PubMed Central

    Desautels, Thomas A.; Nandra, Mandheerej S.; Roy, Roland R.; Zhong, Hui; Tai, Yu-Chong; Edgerton, V. Reggie; Burdick, Joel W.

    2015-01-01

    Epidural electrostimulation has shown promise for spinal cord injury therapy. However, finding effective stimuli on the multi-electrode stimulating arrays employed requires a laborious manual search of a vast space for each patient. Widespread clinical application of these techniques would be greatly facilitated by an autonomous, algorithmic system which choses stimuli to simultaneously deliver effective therapy and explore this space. We propose a method based on GP-BUCB, a Gaussian process bandit algorithm. In n = 4 spinally transected rats, we implant epidural electrode arrays and examine the algorithm's performance in selecting bipolar stimuli to elicit specified muscle responses. These responses are compared with temporally interleaved, intra-animal stimulus selections by a human expert. GP-BUCB successfully controlled the spinal electrostimulation preparation in 37 testing sessions, selecting 670 stimuli. These sessions included sustained, autonomous operations (10 session duration). Delivered performance with respect to the specified metric was as good as or better than that of the human expert. Despite receiving no information as to anatomically likely locations of effective stimuli, GP-BUCB also consistently discovered such a pattern. Further, GP-BUCB was able to extrapolate from previous sessions’ results to make predictions about performance in new testing sessions, while remaining sufficiently flexible to capture temporal variability. These results provide validation for applying automated stimulus selection methods to the problem of spinal cord injury therapy. PMID:25974925

  12. Environmental Monitoring Networks Optimization Using Advanced Active Learning Algorithms

    NASA Astrophysics Data System (ADS)

    Kanevski, Mikhail; Volpi, Michele; Copa, Loris

    2010-05-01

    The problem of environmental monitoring networks optimization (MNO) belongs to one of the basic and fundamental tasks in spatio-temporal data collection, analysis, and modeling. There are several approaches to this problem, which can be considered as a design or redesign of monitoring network by applying some optimization criteria. The most developed and widespread methods are based on geostatistics (family of kriging models, conditional stochastic simulations). In geostatistics the variance is mainly used as an optimization criterion which has some advantages and drawbacks. In the present research we study an application of advanced techniques following from the statistical learning theory (SLT) - support vector machines (SVM) and the optimization of monitoring networks when dealing with a classification problem (data are discrete values/classes: hydrogeological units, soil types, pollution decision levels, etc.) is considered. SVM is a universal nonlinear modeling tool for classification problems in high dimensional spaces. The SVM solution is maximizing the decision boundary between classes and has a good generalization property for noisy data. The sparse solution of SVM is based on support vectors - data which contribute to the solution with nonzero weights. Fundamentally the MNO for classification problems can be considered as a task of selecting new measurement points which increase the quality of spatial classification and reduce the testing error (error on new independent measurements). In SLT this is a typical problem of active learning - a selection of the new unlabelled points which efficiently reduce the testing error. A classical approach (margin sampling) to active learning is to sample the points closest to the classification boundary. This solution is suboptimal when points (or generally the dataset) are redundant for the same class. In the present research we propose and study two new advanced methods of active learning adapted to the solution of

  13. Status report: Data management program algorithm evaluation activity at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Jayroe, R. R., Jr.

    1977-01-01

    An algorithm evaluation activity was initiated to study the problems associated with image processing by assessing the independent and interdependent effects of registration, compression, and classification techniques on LANDSAT data for several discipline applications. The objective of the activity was to make recommendations on selected applicable image processing algorithms in terms of accuracy, cost, and timeliness or to propose alternative ways of processing the data. As a means of accomplishing this objective, an Image Coding Panel was established. The conduct of the algorithm evaluation is described.

  14. Multi-objective decoupling algorithm for active distance control of intelligent hybrid electric vehicle

    NASA Astrophysics Data System (ADS)

    Luo, Yugong; Chen, Tao; Li, Keqiang

    2015-12-01

    The paper presents a novel active distance control strategy for intelligent hybrid electric vehicles (IHEV) with the purpose of guaranteeing an optimal performance in view of the driving functions, optimum safety, fuel economy and ride comfort. Considering the complexity of driving situations, the objects of safety and ride comfort are decoupled from that of fuel economy, and a hierarchical control architecture is adopted to improve the real-time performance and the adaptability. The hierarchical control structure consists of four layers: active distance control object determination, comprehensive driving and braking torque calculation, comprehensive torque distribution and torque coordination. The safety distance control and the emergency stop algorithms are designed to achieve the safety and ride comfort goals. The optimal rule-based energy management algorithm of the hybrid electric system is developed to improve the fuel economy. The torque coordination control strategy is proposed to regulate engine torque, motor torque and hydraulic braking torque to improve the ride comfort. This strategy is verified by simulation and experiment using a forward simulation platform and a prototype vehicle. The results show that the novel control strategy can achieve the integrated and coordinated control of its multiple subsystems, which guarantees top performance of the driving functions and optimum safety, fuel economy and ride comfort.

  15. Development of a Smart Release Algorithm for Mid-Air Separation of Parachute Test Articles

    NASA Technical Reports Server (NTRS)

    Moore, James W.

    2011-01-01

    The Crew Exploration Vehicle Parachute Assembly System (CPAS) project is currently developing an autonomous method to separate a capsule-shaped parachute test vehicle from an air-drop platform for use in the test program to develop and validate the parachute system for the Orion spacecraft. The CPAS project seeks to perform air-drop tests of an Orion-like boilerplate capsule. Delivery of the boilerplate capsule to the test condition has proven to be a critical and complicated task. In the current concept, the boilerplate vehicle is extracted from an aircraft on top of a Type V pallet and then separated from the pallet in mid-air. The attitude of the vehicles at separation is critical to avoiding re-contact and successfully deploying the boilerplate into a heatshield-down orientation. Neither the pallet nor the boilerplate has an active control system. However, the attitude of the mated vehicle as a function of time is somewhat predictable. CPAS engineers have designed an avionics system to monitor the attitude of the mated vehicle as it is extracted from the aircraft and command a release when the desired conditions are met. The algorithm includes contingency capabilities designed to release the test vehicle before undesirable orientations occur. The algorithm was verified with simulation and ground testing. The pre-flight development and testing is discussed and limitations of ground testing are noted. The CPAS project performed a series of three drop tests as a proof-of-concept of the release technique. These tests helped to refine the attitude instrumentation and software algorithm to be used on future tests. The drop tests are described in detail and the evolution of the release system with each test is described.

  16. Motion Cueing Algorithm Development: Human-Centered Linear and Nonlinear Approaches

    NASA Technical Reports Server (NTRS)

    Houck, Jacob A. (Technical Monitor); Telban, Robert J.; Cardullo, Frank M.

    2005-01-01

    While the performance of flight simulator motion system hardware has advanced substantially, the development of the motion cueing algorithm, the software that transforms simulated aircraft dynamics into realizable motion commands, has not kept pace. Prior research identified viable features from two algorithms: the nonlinear "adaptive algorithm", and the "optimal algorithm" that incorporates human vestibular models. A novel approach to motion cueing, the "nonlinear algorithm" is introduced that combines features from both approaches. This algorithm is formulated by optimal control, and incorporates a new integrated perception model that includes both visual and vestibular sensation and the interaction between the stimuli. Using a time-varying control law, the matrix Riccati equation is updated in real time by a neurocomputing approach. Preliminary pilot testing resulted in the optimal algorithm incorporating a new otolith model, producing improved motion cues. The nonlinear algorithm vertical mode produced a motion cue with a time-varying washout, sustaining small cues for longer durations and washing out large cues more quickly compared to the optimal algorithm. The inclusion of the integrated perception model improved the responses to longitudinal and lateral cues. False cues observed with the NASA adaptive algorithm were absent. The neurocomputing approach was crucial in that the number of presentations of an input vector could be reduced to meet the real time requirement without degrading the quality of the motion cues.

  17. Motion Cueing Algorithm Development: New Motion Cueing Program Implementation and Tuning

    NASA Technical Reports Server (NTRS)

    Houck, Jacob A. (Technical Monitor); Telban, Robert J.; Cardullo, Frank M.; Kelly, Lon C.

    2005-01-01

    A computer program has been developed for the purpose of driving the NASA Langley Research Center Visual Motion Simulator (VMS). This program includes two new motion cueing algorithms, the optimal algorithm and the nonlinear algorithm. A general description of the program is given along with a description and flowcharts for each cueing algorithm, and also descriptions and flowcharts for subroutines used with the algorithms. Common block variable listings and a program listing are also provided. The new cueing algorithms have a nonlinear gain algorithm implemented that scales each aircraft degree-of-freedom input with a third-order polynomial. A description of the nonlinear gain algorithm is given along with past tuning experience and procedures for tuning the gain coefficient sets for each degree-of-freedom to produce the desired piloted performance. This algorithm tuning will be needed when the nonlinear motion cueing algorithm is implemented on a new motion system in the Cockpit Motion Facility (CMF) at the NASA Langley Research Center.

  18. Design requirements and development of an airborne descent path definition algorithm for time navigation

    NASA Technical Reports Server (NTRS)

    Izumi, K. H.; Thompson, J. L.; Groce, J. L.; Schwab, R. W.

    1986-01-01

    The design requirements for a 4D path definition algorithm are described. These requirements were developed for the NASA ATOPS as an extension of the Local Flow Management/Profile Descent algorithm. They specify the processing flow, functional and data architectures, and system input requirements, and recommended the addition of a broad path revision (reinitialization) function capability. The document also summarizes algorithm design enhancements and the implementation status of the algorithm on an in-house PDP-11/70 computer. Finally, the requirements for the pilot-computer interfaces, the lateral path processor, and guidance and steering function are described.

  19. Update on Development of Mesh Generation Algorithms in MeshKit

    SciTech Connect

    Jain, Rajeev; Vanderzee, Evan; Mahadevan, Vijay

    2015-09-30

    MeshKit uses a graph-based design for coding all its meshing algorithms, which includes the Reactor Geometry (and mesh) Generation (RGG) algorithms. This report highlights the developmental updates of all the algorithms, results and future work. Parallel versions of algorithms, documentation and performance results are reported. RGG GUI design was updated to incorporate new features requested by the users; boundary layer generation and parallel RGG support were added to the GUI. Key contributions to the release, upgrade and maintenance of other SIGMA1 libraries (CGM and MOAB) were made. Several fundamental meshing algorithms for creating a robust parallel meshing pipeline in MeshKit are under development. Results and current status of automated, open-source and high quality nuclear reactor assembly mesh generation algorithms such as trimesher, quadmesher, interval matching and multi-sweeper are reported.

  20. Developments in Human Centered Cueing Algorithms for Control of Flight Simulator Motion Systems

    NASA Technical Reports Server (NTRS)

    Houck, Jacob A.; Telban, Robert J.; Cardullo, Frank M.

    1997-01-01

    The authors conducted further research with cueing algorithms for control of flight simulator motion systems. A variation of the so-called optimal algorithm was formulated using simulated aircraft angular velocity input as a basis. Models of the human vestibular sensation system, i.e. the semicircular canals and otoliths, are incorporated within the algorithm. Comparisons of angular velocity cueing responses showed a significant improvement over a formulation using angular acceleration input. Results also compared favorably with the coordinated adaptive washout algorithm, yielding similar results for angular velocity cues while eliminating false cues and reducing the tilt rate for longitudinal cues. These results were confirmed in piloted tests on the current motion system at NASA-Langley, the Visual Motion Simulator (VMS). Proposed future developments by the authors in cueing algorithms are revealed. The new motion system, the Cockpit Motion Facility (CMF), where the final evaluation of the cueing algorithms will be conducted, is also described.

  1. Development of Online Cognitive and Algorithm Tests as Assessment Tools in Introductory Computer Science Courses

    ERIC Educational Resources Information Center

    Avancena, Aimee Theresa; Nishihara, Akinori; Vergara, John Paul

    2012-01-01

    This paper presents the online cognitive and algorithm tests, which were developed in order to determine if certain cognitive factors and fundamental algorithms correlate with the performance of students in their introductory computer science course. The tests were implemented among Management Information Systems majors from the Philippines and…

  2. Collaborative Research Developing, Testing and Validating Brain Alignment Algorithm using Geometric Analysis

    DTIC Science & Technology

    2013-11-13

    This is the final report by the University of Southern California on a AFSOR grant, part of a joint program with Harvard University (PI, Shing-Tung...the algorithm was the task assigned to Harvard University ). Finally, we were to test and validate the algorithm once it had been developed.

  3. Algorithm Development and Application of High Order Numerical Methods for Shocked and Rapid Changing Solutions

    DTIC Science & Technology

    2007-12-06

    problems studied in this project involve numerically solving partial differential equations with either discontinuous or rapidly changing solutions ...REPORT Algorithm Development and Application of High Order Numerical Methods for Shocked and Rapid Changing Solutions 14. ABSTRACT 16. SECURITY...discontinuous Galerkin finite element methods, for solving partial differential equations with discontinuous or rapidly changing solutions . Algorithm

  4. Clustering algorithm evaluation and the development of a replacement for procedure 1. [for crop inventories

    NASA Technical Reports Server (NTRS)

    Lennington, R. K.; Johnson, J. K.

    1979-01-01

    An efficient procedure which clusters data using a completely unsupervised clustering algorithm and then uses labeled pixels to label the resulting clusters or perform a stratified estimate using the clusters as strata is developed. Three clustering algorithms, CLASSY, AMOEBA, and ISOCLS, are compared for efficiency. Three stratified estimation schemes and three labeling schemes are also considered and compared.

  5. Evaluating Knowledge Structure-Based Adaptive Testing Algorithms and System Development

    ERIC Educational Resources Information Center

    Wu, Huey-Min; Kuo, Bor-Chen; Yang, Jinn-Min

    2012-01-01

    In recent years, many computerized test systems have been developed for diagnosing students' learning profiles. Nevertheless, it remains a challenging issue to find an adaptive testing algorithm to both shorten testing time and precisely diagnose the knowledge status of students. In order to find a suitable algorithm, four adaptive testing…

  6. Effects of activity and energy budget balancing algorithm on laboratory performance of a fish bioenergetics model

    USGS Publications Warehouse

    Madenjian, Charles P.; David, Solomon R.; Pothoven, Steven A.

    2012-01-01

    We evaluated the performance of the Wisconsin bioenergetics model for lake trout Salvelinus namaycush that were fed ad libitum in laboratory tanks under regimes of low activity and high activity. In addition, we compared model performance under two different model algorithms: (1) balancing the lake trout energy budget on day t based on lake trout energy density on day t and (2) balancing the lake trout energy budget on day t based on lake trout energy density on day t + 1. Results indicated that the model significantly underestimated consumption for both inactive and active lake trout when algorithm 1 was used and that the degree of underestimation was similar for the two activity levels. In contrast, model performance substantially improved when using algorithm 2, as no detectable bias was found in model predictions of consumption for inactive fish and only a slight degree of overestimation was detected for active fish. The energy budget was accurately balanced by using algorithm 2 but not by using algorithm 1. Based on the results of this study, we recommend the use of algorithm 2 to estimate food consumption by fish in the field. Our study results highlight the importance of accurately accounting for changes in fish energy density when balancing the energy budget; furthermore, these results have implications for the science of evaluating fish bioenergetics model performance and for more accurate estimation of food consumption by fish in the field when fish energy density undergoes relatively rapid changes.

  7. Detecting activity locations from raw GPS data: a novel kernel-based algorithm

    PubMed Central

    2013-01-01

    Background Health studies and mHealth applications are increasingly resorting to tracking technologies such as Global Positioning Systems (GPS) to study the relation between mobility, exposures, and health. GPS tracking generates large sets of geographic data that need to be transformed to be useful for health research. This paper proposes a method to test the performance of activity place detection algorithms, and compares the performance of a novel kernel-based algorithm with a more traditional time-distance cluster detection method. Methods A set of 750 artificial GPS tracks containing three stops each were generated, with various levels of noise.. A total of 9,000 tracks were processed to measure the algorithms’ capacity to detect stop locations and estimate stop durations, with varying GPS noise and algorithm parameters. Results The proposed kernel-based algorithm outperformed the traditional algorithm on most criteria associated to activity place detection, and offered a stronger resilience to GPS noise, managing to detect up to 92.3% of actual stops, and estimating stop duration within 5% error margins at all tested noise levels. Conclusions Capacity to detect activity locations is an important feature in a context of increasing use of GPS devices in health and place research. While further testing with real-life tracks is recommended, testing algorithms’ performance with artificial track sets for which characteristics are controlled is useful. The proposed novel algorithm outperformed the traditional algorithm under these conditions. PMID:23497213

  8. Development of a Behavioural Algorithm for Autonomous Spacecraft

    NASA Astrophysics Data System (ADS)

    Radice, G.

    manner with the environment through the use of sensors and actuators. As such, there is little computational effort required to implement such an approach, which is clearly of great benefit for limited micro-satellites. Rather than using complex world models, which have to be updated, the agent is allowed to exploit the dynamics of its environment for cues as to appropriate actions to take to achieve mission goals. The particular artificial agent implementation used here has been borrowed from studies of biological systems, where it has been used successfully to provide models of motivation and opportunistic behaviour. The so called "cue-deficit" action selection algorithm considers the micro-spacecraft to be a non linear dynamical system with a number of observable states. Using optimal control theory rules are derived which determine which of a finite repertoire of behaviours the satellite should select and perform. It will also be shown that in the event of hardware failures the algorithm will resequence the spacecraft actions to ensure survival while still meeting the mission goals, albeit in a degraded manner.

  9. Remote Sensing of Ocean Color in the Arctic: Algorithm Development and Comparative Validation. Chapter 9

    NASA Technical Reports Server (NTRS)

    Cota, Glenn F.

    2001-01-01

    The overall goal of this effort is to acquire a large bio-optical database, encompassing most environmental variability in the Arctic, to develop algorithms for phytoplankton biomass and production and other optically active constituents. A large suite of bio-optical and biogeochemical observations have been collected in a variety of high latitude ecosystems at different seasons. The Ocean Research Consortium of the Arctic (ORCA) is a collaborative effort between G.F. Cota of Old Dominion University (ODU), W.G. Harrison and T. Platt of the Bedford Institute of Oceanography (BIO), S. Sathyendranath of Dalhousie University and S. Saitoh of Hokkaido University. ORCA has now conducted 12 cruises and collected over 500 in-water optical profiles plus a variety of ancillary data. Observational suites typically include apparent optical properties (AOPs), inherent optical property (IOPs), and a variety of ancillary observations including sun photometry, biogeochemical profiles, and productivity measurements. All quality-assured data have been submitted to NASA's SeaWIFS Bio-Optical Archive and Storage System (SeaBASS) data archive. Our algorithm development efforts address most of the potential bio-optical data products for the Sea-Viewing Wide Field-of-view Sensor (SeaWiFS), Moderate Resolution Imaging Spectroradiometer (MODIS), and GLI, and provides validation for a specific areas of concern, i.e., high latitudes and coastal waters.

  10. Developing Photo Activated Localization Microscopy

    NASA Astrophysics Data System (ADS)

    Hess, Harald

    2015-03-01

    Photo Activated Localization Microscopy, PALM, acquires super-resolution images by activating a subset of activatable fluorescent labels and estimating the center of the each molecular label to sub-diffractive accuracy. When this process is repeated thousands of times for different subsets of molecules, then an image can be rendered from all the center coordinates of the molecules. I will describe the circuitous story of its development that began with another super-resolution technique, NSOM, developed by my colleague Eric Betzig, who imaged single molecules at room temperature, and later we spectrally resolved individual luminescent centers of quantum wells. These two observations inspired a generalized path to localization microscopy, but that path was abandoned because no really useful fluorescent labels were available. After a decade of nonacademic industrial pursuits and the subsequent freedom of unemployment, we came across a class of genetically expressible fluorescent proteins that were switchable or convertible that enabled the concept to be implemented and be biologically promising. The past ten years have been very active with many groups exploring applications and enhancements of this concept. Demonstrating significant biological relevance will be the metric if its success.

  11. Developing a paradigm of drug innovation: an evaluation algorithm.

    PubMed

    Caprino, Luciano; Russo, Pierluigi

    2006-11-01

    Assessment of drug innovation is a burning issue because it involves so many different perspectives, mainly those of patients, decision- and policy-makers, regulatory authorities and pharmaceutical companies. Moreover, the innovative value of a new medicine is usually an intrinsic property of the compound, but it also depends on the specific context in which the medicine is introduced and the availability of other medicines for treating the same clinical condition. Thus, a model designed to assess drug innovation should be able to capture the intrinsic properties of a compound (which usually emerge during R&D) and/or modification of its innovative value with time. Here we describe the innovation assessment algorithm (IAA), a simulation model for assessing drug innovation. IAA provides a score of drug innovation by assessing information generated during both the pre-marketing and the post-marketing authorization phase.

  12. Optimal placement of active material actuators using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Johnson, Terrence; Frecker, Mary I.

    2004-07-01

    Actuators based on smart materials generally exhibit a tradeoff between force and stroke. Researchers have surrounded piezoelectric materials (PZT"s) with complaint structures to magnify either their geometric or mechanical advantage. Most of these designs are literally built around a particular piezoelectric device, so the design space consists of only the compliant mechanism. Materials scientists researchers have demonstrated the ability to pole a PZT in an arbitrary direction, and some engineers have taken advantage of this to build "shear mode" actuators. The goal of this work is to determine if the performance of compliant mechanisms improves by the inclusion of the piezoelectric polarization as a design variable. The polarization vector is varied via transformation matrixes, and the compliant actuator is modeled using the SIMP (Solid Isotropic Material with Penalization) or "power-law method." The concept of mutual potential energy is used to form an objective function to measure the piezoelectric actuator"s performance. The optimal topology of the compliant mechanism and orientation of the polarization method are determined using a sequential linear programming algorithm. This paper presents a demonstration problem that shows small changes in the polarization vector have a marginal effect on the optimum topology of the mechanism, but improves actuation.

  13. An algorithm to detect fire activity using Meteosat: fine tuning and quality assesment

    NASA Astrophysics Data System (ADS)

    Amraoui, M.; DaCamara, C. C.; Ermida, S. L.

    2012-04-01

    Hot spot detection by means of sensors on-board geostationary satellites allows studying wildfire activity at hourly and even sub-hourly intervals, an advantage that cannot be met by polar orbiters. Since 1997, the Satellite Application Facility for Land Surface Analysis has been running an operational procedure that allows detecting active fires based on information from Meteosat-8/SEVIRI. This is the so-called Fire Detection and Monitoring (FD&M) product and the procedure takes advantage of the temporal resolution of SEVIRI (one image every 15 min), and relies on information from SEVIRI channels (namely 0.6, 0.8, 3.9, 10.8 and 12.0 μm) together with information on illumination angles. The method is based on heritage from contextual algorithms designed for polar, sun-synchronous instruments, namely NOAA/AVHRR and MODIS/TERRAAQUA. A potential fire pixel is compared with the neighboring ones and the decision is made based on relative thresholds as derived from the pixels in the neighborhood. Generally speaking, the observed fire incidence compares well against hot spots extracted from the global daily active fire product developed by the MODIS Fire Team. However, values of probability of detection (POD) tend to be quite low, a result that may be partially expected by the finer resolution of MODIS. The aim of the present study is to make a systematic assessment of the impacts on POD and False Alarm Ratio (FAR) of the several parameters that are set in the algorithms. Such parameters range from the threshold values of brightness temperature in the IR3.9 and 10.8 channels that are used to select potential fire pixels up to the extent of the background grid and thresholds used to statistically characterize the radiometric departures of a potential pixel from the respective background. The impact of different criteria to identify pixels contaminated by clouds, smoke and sun glint is also evaluated. Finally, the advantages that may be brought to the algorithm by adding

  14. Genetic Algorithm Calibration of Probabilistic Cellular Automata for Modeling Mining Permit Activity

    USGS Publications Warehouse

    Louis, S.J.; Raines, G.L.

    2003-01-01

    We use a genetic algorithm to calibrate a spatially and temporally resolved cellular automata to model mining activity on public land in Idaho and western Montana. The genetic algorithm searches through a space of transition rule parameters of a two dimensional cellular automata model to find rule parameters that fit observed mining activity data. Previous work by one of the authors in calibrating the cellular automaton took weeks - the genetic algorithm takes a day and produces rules leading to about the same (or better) fit to observed data. These preliminary results indicate that genetic algorithms are a viable tool in calibrating cellular automata for this application. Experience gained during the calibration of this cellular automata suggests that mineral resource information is a critical factor in the quality of the results. With automated calibration, further refinements of how the mineral-resource information is provided to the cellular automaton will probably improve our model.

  15. An Optimal CDS Construction Algorithm with Activity Scheduling in Ad Hoc Networks.

    PubMed

    Penumalli, Chakradhar; Palanichamy, Yogesh

    2015-01-01

    A new energy efficient optimal Connected Dominating Set (CDS) algorithm with activity scheduling for mobile ad hoc networks (MANETs) is proposed. This algorithm achieves energy efficiency by minimizing the Broadcast Storm Problem [BSP] and at the same time considering the node's remaining energy. The Connected Dominating Set is widely used as a virtual backbone or spine in mobile ad hoc networks [MANETs] or Wireless Sensor Networks [WSN]. The CDS of a graph representing a network has a significant impact on an efficient design of routing protocol in wireless networks. Here the CDS is a distributed algorithm with activity scheduling based on unit disk graph [UDG]. The node's mobility and residual energy (RE) are considered as parameters in the construction of stable optimal energy efficient CDS. The performance is evaluated at various node densities, various transmission ranges, and mobility rates. The theoretical analysis and simulation results of this algorithm are also presented which yield better results.

  16. Unfolding neutron energy spectra from foil activation detector measurements with the Gold algorithm

    NASA Astrophysics Data System (ADS)

    Seghour, A.; Seghour, F. Z.

    2001-01-01

    In this work, the Gold algorithm is applied to the unfolding of neutron reactor energy spectra from reaction rates data of multiple foil activation detectors. Such a method, which forms the basis of a developed unfolding computer program called SAYD, has the advantage of not requiring a priori knowledge on the spectrum in the unfolding process. The program SAYD is first illustrated by synthesized reaction rates data calculated using a semi-empirical formulation of a typical intermediate and fast neutron reactor spectrum. The demonstration of the unfolding program SAYD is next achieved using measured reaction rates of the Arkansas Nuclear One power plant (ANO) benchmark spectrum by comparing results of SAYD program with those obtained by STAYNL and MSANDB unfolding codes.

  17. Refinement and evaluation of helicopter real-time self-adaptive active vibration controller algorithms

    NASA Technical Reports Server (NTRS)

    Davis, M. W.

    1984-01-01

    A Real-Time Self-Adaptive (RTSA) active vibration controller was used as the framework in developing a computer program for a generic controller that can be used to alleviate helicopter vibration. Based upon on-line identification of system parameters, the generic controller minimizes vibration in the fuselage by closed-loop implementation of higher harmonic control in the main rotor system. The new generic controller incorporates a set of improved algorithms that gives the capability to readily define many different configurations by selecting one of three different controller types (deterministic, cautious, and dual), one of two linear system models (local and global), and one or more of several methods of applying limits on control inputs (external and/or internal limits on higher harmonic pitch amplitude and rate). A helicopter rotor simulation analysis was used to evaluate the algorithms associated with the alternative controller types as applied to the four-bladed H-34 rotor mounted on the NASA Ames Rotor Test Apparatus (RTA) which represents the fuselage. After proper tuning all three controllers provide more effective vibration reduction and converge more quickly and smoothly with smaller control inputs than the initial RTSA controller (deterministic with external pitch-rate limiting). It is demonstrated that internal limiting of the control inputs a significantly improves the overall performance of the deterministic controller.

  18. Preliminary Development and Evaluation of Lightning Jump Algorithms for the Real-Time Detection of Severe Weather

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Petersen, Walter A.; Carey, Lawrence D.

    2009-01-01

    Previous studies have demonstrated that rapid increases in total lightning activity (intracloud + cloud-to-ground) are often observed tens of minutes in advance of the occurrence of severe weather at the ground. These rapid increases in lightning activity have been termed "lightning jumps." Herein, we document a positive correlation between lightning jumps and the manifestation of severe weather in thunderstorms occurring across the Tennessee Valley and Washington D.C. A total of 107 thunderstorms were examined in this study, with 69 of the 107 thunderstorms falling into the category of non-severe, and 38 into the category of severe. From the dataset of 69 isolated non-severe thunderstorms, an average peak 1 minute flash rate of 10 flashes/min was determined. A variety of severe thunderstorm types were examined for this study including an MCS, MCV, tornadic outer rainbands of tropical remnants, supercells, and pulse severe thunderstorms. Of the 107 thunderstorms, 85 thunderstorms (47 non-severe, 38 severe) from the Tennessee Valley and Washington D.C tested 6 lightning jump algorithm configurations (Gatlin, Gatlin 45, 2(sigma), 3(sigma), Threshold 10, and Threshold 8). Performance metrics for each algorithm were then calculated, yielding encouraging results from the limited sample of 85 thunderstorms. The 2(sigma) lightning jump algorithm had a high probability of detection (POD; 87%), a modest false alarm rate (FAR; 33%), and a solid Heidke Skill Score (HSS; 0.75). A second and more simplistic lightning jump algorithm named the Threshold 8 lightning jump algorithm also shows promise, with a POD of 81% and a FAR of 41%. Average lead times to severe weather occurrence for these two algorithms were 23 minutes and 20 minutes, respectively. The overall goal of this study is to advance the development of an operationally-applicable jump algorithm that can be used with either total lightning observations made from the ground, or in the near future from space using the

  19. Ice classification algorithm development and verification for the Alaska SAR Facility using aircraft imagery

    NASA Technical Reports Server (NTRS)

    Holt, Benjamin; Kwok, Ronald; Rignot, Eric

    1989-01-01

    The Alaska SAR Facility (ASF) at the University of Alaska, Fairbanks is a NASA program designed to receive, process, and archive SAR data from ERS-1 and to support investigations that will use this regional data. As part of ASF, specialized subsystems and algorithms to produce certain geophysical products from the SAR data are under development. Of particular interest are ice motion, ice classification, and ice concentration. This work focuses on the algorithm under development for ice classification, and the verification of the algorithm using C-band aircraft SAR imagery recently acquired over the Alaskan arctic.

  20. Algorithm development for intensity modulated continuous wave laser absorption spectrometry in atmospheric CO2 measurements

    NASA Astrophysics Data System (ADS)

    Lin, B.; Harrison, F. W.; Browell, E. V.; Dobler, J. T.; Bryant, R. B.

    2011-12-01

    Currently, NASA Langley Research Center (LaRC) and ITT are jointly developing algorithms for demonstration of range discrimination using ITT's laser absorption spectrometer (LAS), which is being evaluated for the future NASA Active Sensing of CO2 Emissions during Nights, Days, and Seasons (ASCENDS) mission. The objective of this Decadal Survey mission is to measure atmospheric column CO2 mixing ratios (XCO2) for improved determination of atmospheric carbon sources and sinks. Intensity Modulated Continuous Wave (IM-CW) techniques are used in this LAS approach. The LAS is designed to simultaneously measure CO2 and O2 columns, and these measurements are used to determine the required XCO2 column. The LAS measurements are enabled by the multi-channel operation of the instrument at 1.57 and 1.26-um for CO2 and O2, respectively. The algorithm development for the IM-CW techniques of the multi-channel LAS is focused on addressing key retrieval issues such as surface signal detection, thin cloud and/or aerosol layer rejection, vertical atmospheric range resolution, and optimizing the size of the measurement footprint. With these considerations, the modulation algorithm needs to maintain high enough signal-to-noise ratio (SNR) so that the mission scientific goals can be reached. A basic selection of the modulation algorithms that make XCO2 measurement and thin cloud rejection possible is the stepped frequency modulation scheme and a similar scheme of swept sine modulation. The differences between these two schemes for thin cloud rejection are small, assuming the proper selection of parameters is made. The stepped frequency approach is only a quantified version of swept sine method for the frequencies used. Swept sine scheme is a very common modulation technique for range discrimination, while the consideration of the stepped frequency scheme is based on the history of the rolling-tone modulation used in the instrument in previous successful column CO2 measurements. The

  1. AeroADL: applying the integration of the Suomi-NPP science algorithms with the Algorithm Development Library to the calibration and validation task

    NASA Astrophysics Data System (ADS)

    Houchin, J. S.

    2014-09-01

    A common problem for the off-line validation of the calibration algorithms and algorithm coefficients is being able to run science data through the exact same software used for on-line calibration of that data. The Joint Polar Satellite System (JPSS) program solved part of this problem by making the Algorithm Development Library (ADL) available, which allows the operational algorithm code to be compiled and run on a desktop Linux workstation using flat file input and output. However, this solved only part of the problem, as the toolkit and methods to initiate the processing of data through the algorithms were geared specifically toward the algorithm developer, not the calibration analyst. In algorithm development mode, a limited number of sets of test data are staged for the algorithm once, and then run through the algorithm over and over as the software is developed and debugged. In calibration analyst mode, we are continually running new data sets through the algorithm, which requires significant effort to stage each of those data sets for the algorithm without additional tools. AeroADL solves this second problem by providing a set of scripts that wrap the ADL tools, providing both efficient means to stage and process an input data set, to override static calibration coefficient look-up-tables (LUT) with experimental versions of those tables, and to manage a library containing multiple versions of each of the static LUT files in such a way that the correct set of LUTs required for each algorithm are automatically provided to the algorithm without analyst effort. Using AeroADL, The Aerospace Corporation's analyst team has demonstrated the ability to quickly and efficiently perform analysis tasks for both the VIIRS and OMPS sensors with minimal training on the software tools.

  2. New Combined L-band Active/Passive Soil Moisture Retrieval Algorithm Optimized for Argentine Plains

    NASA Astrophysics Data System (ADS)

    Bruscantini, C. A.; Grings, F. M.; Salvia, M.; Ferrazzoli, P.; Karszenbaum, H.

    2015-12-01

    The ability of L-band passive microwave satellite observations to provide soil moisture (mv) measurements is well known. Despite its high sensitivity to near-surface mv, radiometric technology suffers from having a relatively low spatial resolution. Conversely active microwave observations, although their finer resolution, are difficult to be interpreted for mv content due to the confounding effects of vegetation and roughness. There have been and there are strong motivations for the realization of satellite missions that carry passive and active microwave instruments on board. This has also led to important contributions in algorithm development. In this line of work, NASA-CONAE SAC-D/Aquarius mission had on board an L band radiometer and scatterometer. This was followed by the launch of NASA SMAP mission (Soil Moisture Active Passive), as well as several airborne campaigns that provide active and passive measurements. Within this frame, a new combined active/passive mv retrieval algorithm is proposed by deriving an analytical expression of brightness temperature and radar backscattering relation using explicit semi-empirical models. Simple models (i.e. that can be easily inverted and have relatively low amount of ancillary parameters) were selected: ω-τ model (Jackson et al., 1982, Water Resources Research) and radar-only model (Narvekar et al., 2015, IEEE Transactions on Geoscience and Remote Sensing). A major challenge involves coupling the active and passive models to be consistent with observations. Coupling equations can be derived using theoretical active/passive high-order radiative transfer models, such as 3D Numerical Method of Maxwell equations (Zhou et al., 2004, IEEE Transactions on Geoscience and Remote Sensing) and Tor Vergata (Ferrazzoli et al., 1995,Remote Sensing of Environment) models. In this context, different coupling equations can be optimized for different land covers using theoretical forward models with specific parametrization for each

  3. Development of an automatic identification algorithm for antibiogram analysis.

    PubMed

    Costa, Luan F R; da Silva, Eduardo S; Noronha, Victor T; Vaz-Moreira, Ivone; Nunes, Olga C; Andrade, Marcelino M de

    2015-12-01

    Routinely, diagnostic and microbiology laboratories perform antibiogram analysis which can present some difficulties leading to misreadings and intra and inter-reader deviations. An Automatic Identification Algorithm (AIA) has been proposed as a solution to overcome some issues associated with the disc diffusion method, which is the main goal of this work. AIA allows automatic scanning of inhibition zones obtained by antibiograms. More than 60 environmental isolates were tested using susceptibility tests which were performed for 12 different antibiotics for a total of 756 readings. Plate images were acquired and classified as standard or oddity. The inhibition zones were measured using the AIA and results were compared with reference method (human reading), using weighted kappa index and statistical analysis to evaluate, respectively, inter-reader agreement and correlation between AIA-based and human-based reading. Agreements were observed in 88% cases and 89% of the tests showed no difference or a <4mm difference between AIA and human analysis, exhibiting a correlation index of 0.85 for all images, 0.90 for standards and 0.80 for oddities with no significant difference between automatic and manual method. AIA resolved some reading problems such as overlapping inhibition zones, imperfect microorganism seeding, non-homogeneity of the circumference, partial action of the antimicrobial, and formation of a second halo of inhibition. Furthermore, AIA proved to overcome some of the limitations observed in other automatic methods. Therefore, AIA may be a practical tool for automated reading of antibiograms in diagnostic and microbiology laboratories.

  4. Developing a computer algorithm to identify epilepsy cases in managed care organizations.

    PubMed

    Holden, E Wayne; Grossman, Elizabeth; Nguyen, Hoang Thanh; Gunter, Margaret J; Grebosky, Becky; Von Worley, Ann; Nelson, Leila; Robinson, Scott; Thurman, David J

    2005-02-01

    The goal of this study was to develop an algorithm for detecting epilepsy cases in managed care organizations (MCOs). A data set of potential epilepsy cases was constructed from an MCO's administrative data system for all health plan members continuously enrolled in the MCO for at least 1 year within the study period of July 1, 1996 through June 30, 1998. Epilepsy status was determined using medical record review for a sample of 617 cases. The best algorithm for detecting epilepsy cases was developed by examining combinations of diagnosis, diagnostic procedures, and medication use. The best algorithm derived in the exploratory phase was then applied to a new set of data from the same MCO covering the period of July 1, 1998 through June 30, 2000. A stratified sample based on ethnicity and age was drawn from the preliminary algorithm-identified epilepsy cases and non-cases. Medical record review was completed for 644 cases to determine the accuracy of the algorithm. Data from both phases were combined to permit refinement of logistic regression models and to provide more stable estimates of the parameters. The best model used diagnoses and antiepileptic drugs as predictors and had a positive predictive value of 84% (sensitivity 82%, specificity 94%). The best model correctly classified 90% of the cases. A stable algorithm that can be used to identify epilepsy patients within MCOs was developed. Implications for use of the algorithm in other health care settings are discussed.

  5. Generic architecture for real-time multisensor fusion tracking algorithm development and evaluation

    NASA Astrophysics Data System (ADS)

    Queeney, Tom; Woods, Edward

    1994-10-01

    Westinghouse has developed and demonstrated a system for the rapid prototyping of Sensor Fusion Tracking (SFT) algorithms. The system provides an object-oriented envelope with three sets of generic software objects to aid in the development and evaluation of SFT algorithms. The first is a generic tracker model that encapsulates the idea of a tracker being a series of SFT algorithms along with the data manipulated by those algorithms and is capable of simultaneously supporting multiple, independent trackers. The second is a set of flexible, easily extensible sensor and target models which allows many types of sensors and targets to be used. Live, recorded and simulated sensors and combinations thereof can be utilized as sources for the trackers. The sensor models also provide an easily extensible interface to the generic tracker model so that all sensors provide input to the SFT algorithms in the same fashion. The third is a highly versatile display and user interface that allows easy access to many of the performance measures for sensors and trackers for easy evaluation and debugging of the SFT algorithms. The system is an object-oriented design programmed in C++. This system with several of the SFT algorithms developed for it has been used with live sensors as a real-time tracking system. This paper outlines the salient features of the sensor fusion architecture and programming environment.

  6. Path optimization by a variational reaction coordinate method. I. Development of formalism and algorithms

    SciTech Connect

    Birkholz, Adam B.; Schlegel, H. Bernhard

    2015-12-28

    The development of algorithms to optimize reaction pathways between reactants and products is an active area of study. Existing algorithms typically describe the path as a discrete series of images (chain of states) which are moved downhill toward the path, using various reparameterization schemes, constraints, or fictitious forces to maintain a uniform description of the reaction path. The Variational Reaction Coordinate (VRC) method is a novel approach that finds the reaction path by minimizing the variational reaction energy (VRE) of Quapp and Bofill. The VRE is the line integral of the gradient norm along a path between reactants and products and minimization of VRE has been shown to yield the steepest descent reaction path. In the VRC method, we represent the reaction path by a linear expansion in a set of continuous basis functions and find the optimized path by minimizing the VRE with respect to the linear expansion coefficients. Improved convergence is obtained by applying constraints to the spacing of the basis functions and coupling the minimization of the VRE to the minimization of one or more points along the path that correspond to intermediates and transition states. The VRC method is demonstrated by optimizing the reaction path for the Müller-Brown surface and by finding a reaction path passing through 5 transition states and 4 intermediates for a 10 atom Lennard-Jones cluster.

  7. A wearable sensor module with a neural-network-based activity classification algorithm for daily energy expenditure estimation.

    PubMed

    Lin, Che-Wei; Yang, Ya-Ting C; Wang, Jeen-Shing; Yang, Yi-Ching

    2012-09-01

    This paper presents a wearable module and neural-network-based activity classification algorithm for energy expenditure estimation. The purpose of our design is first to categorize physical activities with similar intensity levels, and then to construct energy expenditure regression (EER) models using neural networks in order to optimize the estimation performance. The classification of physical activities for EER model construction is based on the acceleration and ECG signal data collected by wearable sensor modules developed by our research lab. The proposed algorithm consists of procedures for data collection, data preprocessing, activity classification, feature selection, and construction of EER models using neural networks. In order to reduce the computational load and achieve satisfactory estimation performance, we employed sequential forward and backward search strategies for feature selection. Two representative neural networks, a radial basis function network (RBFN) and a generalized regression neural network (GRNN), were employed as EER models for performance comparisons. Our experimental results have successfully validated the effectiveness of our wearable sensor module and its neural-network-based activity classification algorithm for energy expenditure estimation. In addition, our results demonstrate the superior performance of GRNN as compared to RBFN.

  8. The development of an algebraic multigrid algorithm for symmetric positive definite linear systems

    SciTech Connect

    Vanek, P.; Mandel, J.; Brezina, M.

    1996-12-31

    An algebraic multigrid algorithm for symmetric, positive definite linear systems is developed based on the concept of prolongation by smoothed aggregation. Coarse levels are generated automatically. We present a set of requirements motivated heuristically by a convergence theory. The algorithm then attempts to satisfy the requirements. Input to the method are the coefficient matrix and zero energy modes, which are determined from nodal coordinates and knowledge of the differential equation. Efficiency of the resulting algorithm is demonstrated by computational results on real world problems from solid elasticity, plate blending, and shells.

  9. Development of a Bayesian recursive algorithm to find free-spaces for an intelligent wheelchair.

    PubMed

    Nguyen, Anh V; Su, Steven; Nguyen, Hung T

    2011-01-01

    This paper introduces a new shared control strategy for an intelligent wheelchair using a Bayesian recursive algorithm. Using the local environment information gathered by a laser range finder sensor and commands acquired through a user interface, a Bayesian recursive algorithm has been developed to find the most appropriate free-space, which corresponds to the highest posterior probability value. Then, an autonomous navigation algorithm will assist to manoeuvre the wheelchair in the chosen free-space. Experiment results demonstrate that the new method provides excellent performance with great flexibility and fast response.

  10. Hypersonic Vehicle Propulsion System Control Model Development Roadmap and Activities

    NASA Technical Reports Server (NTRS)

    Stueber, Thomas J.; Le, Dzu K.; Vrnak, Daniel R.

    2009-01-01

    The NASA Fundamental Aeronautics Program Hypersonic project is directed towards fundamental research for two classes of hypersonic vehicles: highly reliable reusable launch systems (HRRLS) and high-mass Mars entry systems (HMMES). The objective of the hypersonic guidance, navigation, and control (GN&C) discipline team is to develop advanced guidance and control algorithms to enable efficient and effective operation of these challenging vehicles. The ongoing work at the NASA Glenn Research Center supports the hypersonic GN&C effort in developing tools to aid the design of advanced control algorithms that specifically address the propulsion system of the HRRLSclass vehicles. These tools are being developed in conjunction with complementary research and development activities in hypersonic propulsion at Glenn and elsewhere. This report is focused on obtaining control-relevant dynamic models of an HRRLS-type hypersonic vehicle propulsion system.

  11. Deciphering the Minimal Algorithm for Development and Information-genesis

    NASA Astrophysics Data System (ADS)

    Li, Zhiyuan; Tang, Chao; Li, Hao

    During development, cells with identical genomes acquires different fates in a highly organized manner. In order to decipher the principles underlining development, we used C.elegans as the model organism. Based on a large set of microscopy imaging, we first constructed a ``standard worm'' in silico: from the single zygotic cell to about 500 cell stage, the lineage, position, cell-cell contact and gene expression dynamics are quantified for each cell in order to investigate principles underlining these intensive data. Next, we reverse-engineered the possible gene-gene/cell-cell interaction rules that are capable of running a dynamic model recapitulating the early fate decisions during C.elegans development. we further formulized the C.elegans embryogenesis in the language of information genesis. Analysis towards data and model uncovered the global landscape of development in the cell fate space, suggested possible gene regulatory architectures and cell signaling processes, revealed diversity and robustness as the essential trade-offs in development, and demonstrated general strategies in building multicellular organisms.

  12. The Development of FPGA-Based Pseudo-Iterative Clustering Algorithms

    NASA Astrophysics Data System (ADS)

    Drueke, Elizabeth; Fisher, Wade; Plucinski, Pawel

    2016-03-01

    The Large Hadron Collider (LHC) in Geneva, Switzerland, is set to undergo major upgrades in 2025 in the form of the High-Luminosity Large Hadron Collider (HL-LHC). In particular, several hardware upgrades are proposed to the ATLAS detector, one of the two general purpose detectors. These hardware upgrades include, but are not limited to, a new hardware-level clustering algorithm, to be performed by a field programmable gate array, or FPGA. In this study, we develop that clustering algorithm and compare the output to a Python-implemented topoclustering algorithm developed at the University of Oregon. Here, we present the agreement between the FPGA output and expected output, with particular attention to the time required by the FPGA to complete the algorithm and other limitations set by the FPGA itself.

  13. The development of a bearing spectral analyzer and algorithms to detect turbopump bearing wear from deflectometer and strain gage data

    NASA Astrophysics Data System (ADS)

    Martinez, Carol L.

    1992-07-01

    Over the last several years, Rocketdyne has actively developed condition and health monitoring techniques and their elements for rocket engine components, specifically high pressure turbopumps. Of key interest is the development of bearing signature analysis systems for real-time monitoring of the cryogen-cooled turbopump shaft bearings, which spin at speeds up to 36,000 RPM. These system elements include advanced bearing vibration sensors, signal processing techniques, wear mode algorithms, and integrated control software. Results of development efforts in the areas of signal processing and wear mode identification and quantification algorithms based on strain gage and deflectometer data are presented. Wear modes investigated include: inner race wear, cage pocket wear, outer race wear, differential ball wear, cracked inner race, and nominal wear.

  14. CT liver volumetry using geodesic active contour segmentation with a level-set algorithm

    NASA Astrophysics Data System (ADS)

    Suzuki, Kenji; Epstein, Mark L.; Kohlbrenner, Ryan; Obajuluwa, Ademola; Xu, Jianwu; Hori, Masatoshi; Baron, Richard

    2010-03-01

    Automatic liver segmentation on CT images is challenging because the liver often abuts other organs of a similar density. Our purpose was to develop an accurate automated liver segmentation scheme for measuring liver volumes. We developed an automated volumetry scheme for the liver in CT based on a 5 step schema. First, an anisotropic smoothing filter was applied to portal-venous phase CT images to remove noise while preserving the liver structure, followed by an edge enhancer to enhance the liver boundary. By using the boundary-enhanced image as a speed function, a fastmarching algorithm generated an initial surface that roughly estimated the liver shape. A geodesic-active-contour segmentation algorithm coupled with level-set contour-evolution refined the initial surface so as to more precisely fit the liver boundary. The liver volume was calculated based on the refined liver surface. Hepatic CT scans of eighteen prospective liver donors were obtained under a liver transplant protocol with a multi-detector CT system. Automated liver volumes obtained were compared with those manually traced by a radiologist, used as "gold standard." The mean liver volume obtained with our scheme was 1,520 cc, whereas the mean manual volume was 1,486 cc, with the mean absolute difference of 104 cc (7.0%). CT liver volumetrics based on an automated scheme agreed excellently with "goldstandard" manual volumetrics (intra-class correlation coefficient was 0.95) with no statistically significant difference (p(F<=f)=0.32), and required substantially less completion time. Our automated scheme provides an efficient and accurate way of measuring liver volumes.

  15. Development of Algorithms for Nonlinear Physics on Type-II Quantum Computers

    DTIC Science & Technology

    2007-07-01

    Jan. 31, 2007 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Quantumn Lattice Algorithms for Nonlinear Physics: Optical Solutions and Bose-Eitistein...macroscopic nonlinear derivatives by local moments. Chapman-Enskog asymptotics will then, on projecting back into physical space, yield these nonlinear ...Entropic Lattice Boltzmaim Model will be being strongly pursued in future proposals. AFOSR FINAL REPORT "DEVELOPMENT OF ALGORITHMS For NONLINEAR

  16. Spectral-Based Volume Sensor Prototype, Post-VS4 Test Series Algorithm Development

    DTIC Science & Technology

    2009-04-30

    Å (NIR), solar - blind UV ( UV ), and 4.3 μm (IR)) and five EVENT algorithms (EVENT, PDSMOKE, FIRE, FIRE_FOV, and WELDING) generating alarm events for... detector are not currently used by any algorithm and, where present, are recorded only for future research and development. The UV units (upper unit...in Figure 2-1) are designed around a standard UV -only OFD (Vibrometer, Inc.). The OmniGuard 860 Optical Flame Detector (Vibrometer, Inc.) used in

  17. Applications of feature selection. [development of classification algorithms for LANDSAT data

    NASA Technical Reports Server (NTRS)

    Guseman, L. F., Jr.

    1976-01-01

    The use of satellite-acquired (LANDSAT) multispectral scanner (MSS) data to conduct an inventory of some crop of economic interest such as wheat over a large geographical area is considered in relation to the development of accurate and efficient algorithms for data classification. The dimension of the measurement space and the computational load for a classification algorithm is increased by the use of multitemporal measurements. Feature selection/combination techniques used to reduce the dimensionality of the problem are described.

  18. Millimeter-wave imaging radiometer data processing and development of water vapor retrieval algorithms

    NASA Technical Reports Server (NTRS)

    Chang, L. Aron

    1995-01-01

    This document describes the current status of Millimeter-wave Imaging Radiometer (MIR) data processing and the technical development of the first version of a water vapor retrieval algorithm. The algorithm is being used by NASA/GSFC Microwave Sensors Branch, Laboratory for Hydrospheric Processes. It is capable of a three dimensional mapping of moisture fields using microwave data from airborne sensor of MIR and spaceborne instrument of Special Sensor Microwave/T-2 (SSM/T-2).

  19. Efficient localization of synchronous EEG source activities using a modified RAP-MUSIC algorithm.

    PubMed

    Liu, Hesheng; Schimpf, Paul H

    2006-04-01

    Synchronization across different brain regions is suggested to be a possible mechanism for functional integration. Noninvasive analysis of the synchronization among cortical areas is possible if the electrical sources can be estimated by solving the electroencephalography inverse problem. Among various inverse algorithms, spatio-temporal dipole fitting methods such as RAP-MUSIC and R-MUSIC have demonstrated superior ability in the localization of a restricted number of independent sources, and also have the ability to reliably reproduce temporal waveforms. However, these algorithms experience difficulty in reconstructing multiple correlated sources. Accurate reconstruction of correlated brain activities is critical in synchronization analysis. In this study, we modified the well-known inverse algorithm RAP-MUSIC to a multistage process which analyzes the correlation of candidate sources and searches for independent topographies (ITs) among precorrelated groups. Comparative studies were carried out on both simulated data and clinical seizure data. The results demonstrated superior performance with the modified algorithm compared to the original RAP-MUSIC in recovering synchronous sources and localizing the epileptiform activity. The modified RAP-MUSIC algorithm, thus, has potential in neurological applications involving significant synchronous brain activities.

  20. Real-time estimation of daily physical activity intensity by a triaxial accelerometer and a gravity-removal classification algorithm.

    PubMed

    Ohkawara, Kazunori; Oshima, Yoshitake; Hikihara, Yuki; Ishikawa-Takata, Kazuko; Tabata, Izumi; Tanaka, Shigeho

    2011-06-01

    We have recently developed a simple algorithm for the classification of household and locomotive activities using the ratio of unfiltered to filtered synthetic acceleration (gravity-removal physical activity classification algorithm, GRPACA) measured by a triaxial accelerometer. The purpose of the present study was to develop a new model for the immediate estimation of daily physical activity intensities using a triaxial accelerometer. A total of sixty-six subjects were randomly assigned into validation (n 44) and cross-validation (n 22) groups. All subjects performed fourteen activities while wearing a triaxial accelerometer in a controlled laboratory setting. During each activity, energy expenditure was measured by indirect calorimetry, and physical activity intensities were expressed as metabolic equivalents (MET). The validation group displayed strong relationships between measured MET and filtered synthetic accelerations for household (r 0·907, P < 0·001) and locomotive (r 0·961, P < 0·001) activities. In the cross-validation group, two GRPACA-based linear regression models provided highly accurate MET estimation for household and locomotive activities. Results were similar when equations were developed by non-linear regression or sex-specific linear or non-linear regressions. Sedentary activities were also accurately estimated by the specific linear regression classified from other activity counts. Therefore, the use of a triaxial accelerometer in combination with a GRPACA permits more accurate and immediate estimation of daily physical activity intensities, compared with previously reported cut-off classification models. This method may be useful for field investigations as well as for self-monitoring by general users.

  1. A statistical algorithm showing coenzyme Q10 and citrate synthase as biomarkers for mitochondrial respiratory chain enzyme activities.

    PubMed

    Yubero, D; Adin, A; Montero, R; Jou, C; Jiménez-Mallebrera, C; García-Cazorla, A; Nascimento, A; O'Callaghan, M M; Montoya, J; Gort, L; Navas, P; Ribes, A; Ugarte, M D; Artuch, R

    2016-12-01

    Laboratory data interpretation for the assessment of complex biological systems remains a great challenge, as occurs in mitochondrial function research studies. The classical biochemical data interpretation of patients versus reference values may be insufficient, and in fact the current classifications of mitochondrial patients are still done on basis of probability criteria. We have developed and applied a mathematic agglomerative algorithm to search for correlations among the different biochemical variables of the mitochondrial respiratory chain in order to identify populations displaying correlation coefficients >0.95. We demonstrated that coenzyme Q10 may be a better biomarker of mitochondrial respiratory chain enzyme activities than the citrate synthase activity. Furthermore, the application of this algorithm may be useful to re-classify mitochondrial patients or to explore associations among other biochemical variables from different biological systems.

  2. Unified Framework for Development, Deployment and Robust Testing of Neuroimaging Algorithms

    PubMed Central

    Joshi, Alark; Scheinost, Dustin; Okuda, Hirohito; Belhachemi, Dominique; Murphy, Isabella; Staib, Lawrence H.; Papademetris, Xenophon

    2011-01-01

    Developing both graphical and command-line user interfaces for neuroimaging algorithms requires considerable effort. Neuroimaging algorithms can meet their potential only if they can be easily and frequently used by their intended users. Deployment of a large suite of such algorithms on multiple platforms requires consistency of user interface controls, consistent results across various platforms and thorough testing. We present the design and implementation of a novel object-oriented framework that allows for rapid development of complex image analysis algorithms with many reusable components and the ability to easily add graphical user interface controls. Our framework also allows for simplified yet robust nightly testing of the algorithms to ensure stability and cross platform interoperability. All of the functionality is encapsulated into a software object requiring no separate source code for user interfaces, testing or deployment. This formulation makes our framework ideal for developing novel, stable and easy-to-use algorithms for medical image analysis and computer assisted interventions. The framework has been both deployed at Yale and released for public use in the open source multi-platform image analysis software—BioImage Suite (bioimagesuite.org). PMID:21249532

  3. Development and application of unified algorithms for problems in computational science

    NASA Technical Reports Server (NTRS)

    Shankar, Vijaya; Chakravarthy, Sukumar

    1987-01-01

    A framework is presented for developing computationally unified numerical algorithms for solving nonlinear equations that arise in modeling various problems in mathematical physics. The concept of computational unification is an attempt to encompass efficient solution procedures for computing various nonlinear phenomena that may occur in a given problem. For example, in Computational Fluid Dynamics (CFD), a unified algorithm will be one that allows for solutions to subsonic (elliptic), transonic (mixed elliptic-hyperbolic), and supersonic (hyperbolic) flows for both steady and unsteady problems. The objectives are: development of superior unified algorithms emphasizing accuracy and efficiency aspects; development of codes based on selected algorithms leading to validation; application of mature codes to realistic problems; and extension/application of CFD-based algorithms to problems in other areas of mathematical physics. The ultimate objective is to achieve integration of multidisciplinary technologies to enhance synergism in the design process through computational simulation. Specific unified algorithms for a hierarchy of gas dynamics equations and their applications to two other areas: electromagnetic scattering, and laser-materials interaction accounting for melting.

  4. Unified framework for development, deployment and robust testing of neuroimaging algorithms.

    PubMed

    Joshi, Alark; Scheinost, Dustin; Okuda, Hirohito; Belhachemi, Dominique; Murphy, Isabella; Staib, Lawrence H; Papademetris, Xenophon

    2011-03-01

    Developing both graphical and command-line user interfaces for neuroimaging algorithms requires considerable effort. Neuroimaging algorithms can meet their potential only if they can be easily and frequently used by their intended users. Deployment of a large suite of such algorithms on multiple platforms requires consistency of user interface controls, consistent results across various platforms and thorough testing. We present the design and implementation of a novel object-oriented framework that allows for rapid development of complex image analysis algorithms with many reusable components and the ability to easily add graphical user interface controls. Our framework also allows for simplified yet robust nightly testing of the algorithms to ensure stability and cross platform interoperability. All of the functionality is encapsulated into a software object requiring no separate source code for user interfaces, testing or deployment. This formulation makes our framework ideal for developing novel, stable and easy-to-use algorithms for medical image analysis and computer assisted interventions. The framework has been both deployed at Yale and released for public use in the open source multi-platform image analysis software--BioImage Suite (bioimagesuite.org).

  5. Ocean observations with EOS/MODIS: Algorithm development and post launch studies

    NASA Technical Reports Server (NTRS)

    Gordon, Howard R.

    1995-01-01

    An investigation of the influence of stratospheric aerosol on the performance of the atmospheric correction algorithm was carried out. The results indicate how the performance of the algorithm is degraded if the stratospheric aerosol is ignored. Use of the MODIS 1380 nm band to effect a correction for stratospheric aerosols was also studied. The development of a multi-layer Monte Carlo radiative transfer code that includes polarization by molecular and aerosol scattering and wind-induced sea surface roughness has been completed. Comparison tests with an existing two-layer successive order of scattering code suggests that both codes are capable of producing top-of-atmosphere radiances with errors usually less than 0.1 percent. An initial set of simulations to study the effects of ignoring the polarization of the the ocean-atmosphere light field, in both the development of the atmospheric correction algorithm and the generation of the lookup tables used for operation of the algorithm, have been completed. An algorithm was developed that can be used to invert the radiance exiting the top and bottom of the atmosphere to yield the columnar optical properties of the atmospheric aerosol under clear sky conditions over the ocean, for aerosol optical thicknesses as large as 2. The algorithm is capable of retrievals with such large optical thicknesses because all significant orders of multiple scattering are included.

  6. Investigation of trunk muscle activities during lifting using a multi-objective optimization-based model and intelligent optimization algorithms.

    PubMed

    Ghiasi, Mohammad Sadegh; Arjmand, Navid; Boroushaki, Mehrdad; Farahmand, Farzam

    2016-03-01

    A six-degree-of-freedom musculoskeletal model of the lumbar spine was developed to predict the activity of trunk muscles during light, moderate and heavy lifting tasks in standing posture. The model was formulated into a multi-objective optimization problem, minimizing the sum of the cubed muscle stresses and maximizing the spinal stability index. Two intelligent optimization algorithms, i.e., the vector evaluated particle swarm optimization (VEPSO) and nondominated sorting genetic algorithm (NSGA), were employed to solve the optimization problem. The optimal solution for each task was then found in the way that the corresponding in vivo intradiscal pressure could be reproduced. Results indicated that both algorithms predicted co-activity in the antagonistic abdominal muscles, as well as an increase in the stability index when going from the light to the heavy task. For all of the light, moderate and heavy tasks, the muscles' activities predictions of the VEPSO and the NSGA were generally consistent and in the same order of the in vivo electromyography data. The proposed methodology is thought to provide improved estimations for muscle activities by considering the spinal stability and incorporating the in vivo intradiscal pressure data.

  7. Development of Fast Algorithms Using Recursion, Nesting and Iterations for Computational Electromagnetics

    NASA Technical Reports Server (NTRS)

    Chew, W. C.; Song, J. M.; Lu, C. C.; Weedon, W. H.

    1995-01-01

    In the first phase of our work, we have concentrated on laying the foundation to develop fast algorithms, including the use of recursive structure like the recursive aggregate interaction matrix algorithm (RAIMA), the nested equivalence principle algorithm (NEPAL), the ray-propagation fast multipole algorithm (RPFMA), and the multi-level fast multipole algorithm (MLFMA). We have also investigated the use of curvilinear patches to build a basic method of moments code where these acceleration techniques can be used later. In the second phase, which is mainly reported on here, we have concentrated on implementing three-dimensional NEPAL on a massively parallel machine, the Connection Machine CM-5, and have been able to obtain some 3D scattering results. In order to understand the parallelization of codes on the Connection Machine, we have also studied the parallelization of 3D finite-difference time-domain (FDTD) code with PML material absorbing boundary condition (ABC). We found that simple algorithms like the FDTD with material ABC can be parallelized very well allowing us to solve within a minute a problem of over a million nodes. In addition, we have studied the use of the fast multipole method and the ray-propagation fast multipole algorithm to expedite matrix-vector multiplication in a conjugate-gradient solution to integral equations of scattering. We find that these methods are faster than LU decomposition for one incident angle, but are slower than LU decomposition when many incident angles are needed as in the monostatic RCS calculations.

  8. User Activity Recognition in Smart Homes Using Pattern Clustering Applied to Temporal ANN Algorithm

    PubMed Central

    Bourobou, Serge Thomas Mickala; Yoo, Younghwan

    2015-01-01

    This paper discusses the possibility of recognizing and predicting user activities in the IoT (Internet of Things) based smart environment. The activity recognition is usually done through two steps: activity pattern clustering and activity type decision. Although many related works have been suggested, they had some limited performance because they focused only on one part between the two steps. This paper tries to find the best combination of a pattern clustering method and an activity decision algorithm among various existing works. For the first step, in order to classify so varied and complex user activities, we use a relevant and efficient unsupervised learning method called the K-pattern clustering algorithm. In the second step, the training of smart environment for recognizing and predicting user activities inside his/her personal space is done by utilizing the artificial neural network based on the Allen’s temporal relations. The experimental results show that our combined method provides the higher recognition accuracy for various activities, as compared with other data mining classification algorithms. Furthermore, it is more appropriate for a dynamic environment like an IoT based smart home. PMID:26007738

  9. User Activity Recognition in Smart Homes Using Pattern Clustering Applied to Temporal ANN Algorithm.

    PubMed

    Bourobou, Serge Thomas Mickala; Yoo, Younghwan

    2015-05-21

    This paper discusses the possibility of recognizing and predicting user activities in the IoT (Internet of Things) based smart environment. The activity recognition is usually done through two steps: activity pattern clustering and activity type decision. Although many related works have been suggested, they had some limited performance because they focused only on one part between the two steps. This paper tries to find the best combination of a pattern clustering method and an activity decision algorithm among various existing works. For the first step, in order to classify so varied and complex user activities, we use a relevant and efficient unsupervised learning method called the K-pattern clustering algorithm. In the second step, the training of smart environment for recognizing and predicting user activities inside his/her personal space is done by utilizing the artificial neural network based on the Allen's temporal relations. The experimental results show that our combined method provides the higher recognition accuracy for various activities, as compared with other data mining classification algorithms. Furthermore, it is more appropriate for a dynamic environment like an IoT based smart home.

  10. North Sea development activity surges

    SciTech Connect

    Not Available

    1992-08-10

    This paper reports that operators in the North Sea have reported a burst of upstream activity. Off the U.K.: Amoco (U.K.) Exploration Co. installed three jackets in its North Everest and Lomond fields. It also completed laying the Central Area Transmission System (CATS) pipeline, which will carry the fields' gas to shore. BP Exploration Operating Co. Ltd. installed the jacket for it Unity riser platform 5 {1/2} km from its Forties Charlie platform. Conoco (U.K.) Ltd. tested a successful appraisal well in Britannia field in Block 15/30, about 130 miles northeast of Aberdeen. In the Norwegian North Sea, Saga Petroleum AS placed Snorre oil and gas field on production 6 weeks ahead of schedule and 1.5 billion kroner under budget at a cost of 16.6 billion kroner; and downstream off the U.K., Phillips Petroleum Co. (U.K.) Ltd. awarded Allseas Marine Contractors SA, Essen, Belgium, a pipelay and trenching contract for its Ann field development project in Block 49/6a.

  11. Development of a stereo analysis algorithm for generating topographic maps using interactive techniques of the MPP

    NASA Technical Reports Server (NTRS)

    Strong, James P.

    1987-01-01

    A local area matching algorithm was developed on the Massively Parallel Processor (MPP). It is an iterative technique that first matches coarse or low resolution areas and at each iteration performs matches of higher resolution. Results so far show that when good matches are possible in the two images, the MPP algorithm matches corresponding areas as well as a human observer. To aid in developing this algorithm, a control or shell program was developed for the MPP that allows interactive experimentation with various parameters and procedures to be used in the matching process. (This would not be possible without the high speed of the MPP). With the system, optimal techniques can be developed for different types of matching problems.

  12. The development of a scalable parallel 3-D CFD algorithm for turbomachinery. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Luke, Edward Allen

    1993-01-01

    Two algorithms capable of computing a transonic 3-D inviscid flow field about rotating machines are considered for parallel implementation. During the study of these algorithms, a significant new method of measuring the performance of parallel algorithms is developed. The theory that supports this new method creates an empirical definition of scalable parallel algorithms that is used to produce quantifiable evidence that a scalable parallel application was developed. The implementation of the parallel application and an automated domain decomposition tool are also discussed.

  13. Advancements in the Development of an Operational Lightning Jump Algorithm for GOES-R GLM

    NASA Technical Reports Server (NTRS)

    Shultz, Chris; Petersen, Walter; Carey, Lawrence

    2011-01-01

    Rapid increases in total lightning have been shown to precede the manifestation of severe weather at the surface. These rapid increases have been termed lightning jumps, and are the current focus of algorithm development for the GOES-R Geostationary Lightning Mapper (GLM). Recent lightning jump algorithm work has focused on evaluation of algorithms in three additional regions of the country, as well as, markedly increasing the number of thunderstorms in order to evaluate the each algorithm s performance on a larger population of storms. Lightning characteristics of just over 600 thunderstorms have been studied over the past four years. The 2 lightning jump algorithm continues to show the most promise for an operational lightning jump algorithm, with a probability of detection of 82%, a false alarm rate of 35%, a critical success index of 57%, and a Heidke Skill Score of 0.73 on the entire population of thunderstorms. Average lead time for the 2 algorithm on all severe weather is 21.15 minutes, with a standard deviation of +/- 14.68 minutes. Looking at tornadoes alone, the average lead time is 18.71 minutes, with a standard deviation of +/-14.88 minutes. Moreover, removing the 2 lightning jumps that occur after a jump has been detected, and before severe weather is detected at the ground, the 2 lightning jump algorithm s false alarm rate drops from 35% to 21%. Cold season, low topped, and tropical environments cause problems for the 2 lightning jump algorithm, due to their relative dearth in lightning as compared to a supercellular or summertime airmass thunderstorm environment.

  14. Development of a fire detection algorithm for the COMS (Communication Ocean and Meteorological Satellite)

    NASA Astrophysics Data System (ADS)

    Kim, Goo; Kim, Dae Sun; Lee, Yang-Won

    2013-10-01

    The forest fires do much damage to our life in ecological and economic aspects. South Korea is probably more liable to suffer from the forest fire because mountain area occupies more than half of land in South Korea. They have recently launched the COMS(Communication Ocean and Meteorological Satellite) which is a geostationary satellite. In this paper, we developed forest fire detection algorithm using COMS data. Generally, forest fire detection algorithm uses characteristics of 4 and 11 micrometer brightness temperature. Our algorithm additionally uses LST(Land Surface Temperature). We confirmed the result of our fire detection algorithm using statistical data of Korea Forest Service and ASTER(Advanced Spaceborne Thermal Emission and Reflection Radiometer) images. We used the data in South Korea On April 1 and 2, 2011 because there are small and big forest fires at that time. The detection rate was 80% in terms of the frequency of the forest fires and was 99% in terms of the damaged area. Considering the number of COMS's channels and its low resolution, this result is a remarkable outcome. To provide users with the result of our algorithm, we developed a smartphone application for users JSP(Java Server Page). This application can work regardless of the smartphone's operating system. This study can be unsuitable for other areas and days because we used just two days data. To improve the accuracy of our algorithm, we need analysis using long-term data as future work.

  15. A comparison of three self-tuning control algorithms developed for the Bristol-Babcock controller

    SciTech Connect

    Tapp, P.A.

    1992-04-01

    A brief overview of adaptive control methods relating to the design of self-tuning proportional-integral-derivative (PID) controllers is given. The methods discussed include gain scheduling, self-tuning, auto-tuning, and model-reference adaptive control systems. Several process identification and parameter adjustment methods are discussed. Characteristics of the two most common types of self-tuning controllers implemented by industry (i.e., pattern recognition and process identification) are summarized. The substance of the work is a comparison of three self-tuning proportional-plus-integral (STPI) control algorithms developed to work in conjunction with the Bristol-Babcock PID control module. The STPI control algorithms are based on closed-loop cycling theory, pattern recognition theory, and model-based theory. A brief theory of operation of these three STPI control algorithms is given. Details of the process simulations developed to test the STPI algorithms are given, including an integrating process, a first-order system, a second-order system, a system with initial inverse response, and a system with variable time constant and delay. The STPI algorithms` performance with regard to both setpoint changes and load disturbances is evaluated, and their robustness is compared. The dynamic effects of process deadtime and noise are also considered. Finally, the limitations of each of the STPI algorithms is discussed, some conclusions are drawn from the performance comparisons, and a few recommendations are made. 6 refs.

  16. A comparison of three self-tuning control algorithms developed for the Bristol-Babcock controller

    SciTech Connect

    Tapp, P.A.

    1992-04-01

    A brief overview of adaptive control methods relating to the design of self-tuning proportional-integral-derivative (PID) controllers is given. The methods discussed include gain scheduling, self-tuning, auto-tuning, and model-reference adaptive control systems. Several process identification and parameter adjustment methods are discussed. Characteristics of the two most common types of self-tuning controllers implemented by industry (i.e., pattern recognition and process identification) are summarized. The substance of the work is a comparison of three self-tuning proportional-plus-integral (STPI) control algorithms developed to work in conjunction with the Bristol-Babcock PID control module. The STPI control algorithms are based on closed-loop cycling theory, pattern recognition theory, and model-based theory. A brief theory of operation of these three STPI control algorithms is given. Details of the process simulations developed to test the STPI algorithms are given, including an integrating process, a first-order system, a second-order system, a system with initial inverse response, and a system with variable time constant and delay. The STPI algorithms' performance with regard to both setpoint changes and load disturbances is evaluated, and their robustness is compared. The dynamic effects of process deadtime and noise are also considered. Finally, the limitations of each of the STPI algorithms is discussed, some conclusions are drawn from the performance comparisons, and a few recommendations are made. 6 refs.

  17. Implementation on Landsat Data of a Simple Cloud Mask Algorithm Developed for MODIS Land Bands

    NASA Technical Reports Server (NTRS)

    Oreopoulos, Lazaros; Wilson, Michael J.; Varnai, Tamas

    2010-01-01

    This letter assesses the performance on Landsat-7 images of a modified version of a cloud masking algorithm originally developed for clear-sky compositing of Moderate Resolution Imaging Spectroradiometer (MODIS) images at northern mid-latitudes. While data from recent Landsat missions include measurements at thermal wavelengths, and such measurements are also planned for the next mission, thermal tests are not included in the suggested algorithm in its present form to maintain greater versatility and ease of use. To evaluate the masking algorithm we take advantage of the availability of manual (visual) cloud masks developed at USGS for the collection of Landsat scenes used here. As part of our evaluation we also include the Automated Cloud Cover Assesment (ACCA) algorithm that includes thermal tests and is used operationally by the Landsat-7 mission to provide scene cloud fractions, but no cloud masks. We show that the suggested algorithm can perform about as well as ACCA both in terms of scene cloud fraction and pixel-level cloud identification. Specifically, we find that the algorithm gives an error of 1.3% for the scene cloud fraction of 156 scenes, and a root mean square error of 7.2%, while it agrees with the manual mask for 93% of the pixels, figures very similar to those from ACCA (1.2%, 7.1%, 93.7%).

  18. Bobcat 2013: a hyperspectral data collection supporting the development and evaluation of spatial-spectral algorithms

    NASA Astrophysics Data System (ADS)

    Kaufman, Jason; Celenk, Mehmet; White, A. K.; Stocker, Alan D.

    2014-06-01

    The amount of hyperspectral imagery (HSI) data currently available is relatively small compared to other imaging modalities, and what is suitable for developing, testing, and evaluating spatial-spectral algorithms is virtually nonexistent. In this work, a significant amount of coincident airborne hyperspectral and high spatial resolution panchromatic imagery that supports the advancement of spatial-spectral feature extraction algorithms was collected to address this need. The imagery was collected in April 2013 for Ohio University by the Civil Air Patrol, with their Airborne Real-time Cueing Hyperspectral Enhanced Reconnaissance (ARCHER) sensor. The target materials, shapes, and movements throughout the collection area were chosen such that evaluation of change detection algorithms, atmospheric compensation techniques, image fusion methods, and material detection and identification algorithms is possible. This paper describes the collection plan, data acquisition, and initial analysis of the collected imagery.

  19. Accuracy of Optimized Branched Algorithms to Assess Activity-Specific PAEE

    PubMed Central

    Edwards, Andy G.; Hill, James O.; Byrnes, William C.; Browning, Raymond C.

    2009-01-01

    PURPOSE To assess the activity-specific accuracy achievable by branched algorithm (BA) analysis of simulated daily-living physical activity energy expenditure (PAEE) within a sedentary population. METHODS Sedentary men (n=8) and women (n=8) first performed a treadmill calibration protocol, during which heart rate (HR), accelerometry (ACC), and PAEE were measured in 1-minute epochs. From these data, HR-PAEE, and ACC-PAEE regressions were constructed and used in each of six analytic models to predict PAEE from ACC and HR data collected during a subsequent simulated daily-living protocol. Criterion PAEE was measured during both protocols via indirect calorimetry. The accuracy achieved by each model was assessed by the root mean square of the difference between model-predicted daily–living PAEE and the criterion daily-living PAEE (expressed here as % of mean daily living PAEE). RESULTS Across the range of activities an unconstrained post hoc optimized branched algorithm best predicted criterion PAEE. Estimates using individual calibration were generally more accurate than those using group calibration (14 vs. 16 % error, respectively). These analyses also performed well within each of the six daily-living activities, but systematic errors appeared for several of those activities, which may be explained by an inability of the algorithm to simultaneously accommodate a heterogeneous range of activities. Analyses of between mean square error by subject and activity suggest that optimization involving minimization of RMS for total daily-living PAEE is associated with decreased error between subjects but increased error between activities. CONCLUSION The performance of post hoc optimized branched algorithms may be limited by heterogeneity in the daily-living activities being performed. PMID:19952842

  20. TIGER: Development of Thermal Gradient Compensation Algorithms and Techniques

    NASA Technical Reports Server (NTRS)

    Hereford, James; Parker, Peter A.; Rhew, Ray D.

    2004-01-01

    In a wind tunnel facility, the direct measurement of forces and moments induced on the model are performed by a force measurement balance. The measurement balance is a precision-machined device that has strain gages at strategic locations to measure the strain (i.e., deformations) due to applied forces and moments. The strain gages convert the strain (and hence the applied force) to an electrical voltage that is measured by external instruments. To address the problem of thermal gradients on the force measurement balance NASA-LaRC has initiated a research program called TIGER - Thermally-Induced Gradients Effects Research. The ultimate goals of the TIGER program are to: (a) understand the physics of the thermally-induced strain and its subsequent impact on load measurements and (b) develop a robust thermal gradient compensation technique. This paper will discuss the impact of thermal gradients on force measurement balances, specific aspects of the TIGER program (the design of a special-purpose balance, data acquisition and data analysis challenges), and give an overall summary.

  1. Automated Development of Accurate Algorithms and Efficient Codes for Computational Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.; Dyson, Rodger W.

    1999-01-01

    The simulation of sound generation and propagation in three space dimensions with realistic aircraft components is a very large time dependent computation with fine details. Simulations in open domains with embedded objects require accurate and robust algorithms for propagation, for artificial inflow and outflow boundaries, and for the definition of geometrically complex objects. The development, implementation, and validation of methods for solving these demanding problems is being done to support the NASA pillar goals for reducing aircraft noise levels. Our goal is to provide algorithms which are sufficiently accurate and efficient to produce usable results rapidly enough to allow design engineers to study the effects on sound levels of design changes in propulsion systems, and in the integration of propulsion systems with airframes. There is a lack of design tools for these purposes at this time. Our technical approach to this problem combines the development of new, algorithms with the use of Mathematica and Unix utilities to automate the algorithm development, code implementation, and validation. We use explicit methods to ensure effective implementation by domain decomposition for SPMD parallel computing. There are several orders of magnitude difference in the computational efficiencies of the algorithms which we have considered. We currently have new artificial inflow and outflow boundary conditions that are stable, accurate, and unobtrusive, with implementations that match the accuracy and efficiency of the propagation methods. The artificial numerical boundary treatments have been proven to have solutions which converge to the full open domain problems, so that the error from the boundary treatments can be driven as low as is required. The purpose of this paper is to briefly present a method for developing highly accurate algorithms for computational aeroacoustics, the use of computer automation in this process, and a brief survey of the algorithms that

  2. Developing Fire Detection Algorithms by Geostationary Orbiting Platforms and Machine Learning Techniques

    NASA Astrophysics Data System (ADS)

    Salvador, Pablo; Sanz, Julia; Garcia, Miguel; Casanova, Jose Luis

    2016-08-01

    Fires in general and forest fires specific are a major concern in terms of economical and biological loses. Remote sensing technologies have been focusing on developing several algorithms, adapted to a large kind of sensors, platforms and regions in order to obtain hotspots as faster as possible. The aim of this study is to establish an automatic methodology to develop hotspots detection algorithms with Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensor on board Meteosat Second Generation platform (MSG) based on machine learning techniques that can be exportable to others geostationary platforms and sensors and to any area of the Earth. The sensitivity (SE), specificity (SP) and accuracy (AC) parameters have been analyzed in order to develop the final machine learning algorithm taking into account the preferences and final use of the predicted data.

  3. Innovative testbed for developing and assessing air-to-air noncooperative target identification algorithms

    NASA Astrophysics Data System (ADS)

    Knopow, Jeffrey P.

    1992-07-01

    The development and evaluation of multi-source, multi-spectral, all-aspect airborne target identification algorithms has been proven to be cumbersome as well as disjointed. The algorithm development capability under this testbed concept encompasses model-based reasoning, information fusion, airborne target identification, and target/sensor phenomenology analysis. The evaluation capability assembles multiple sensor and target types coupled with all aspect viewing in an operationally representative air-to-air environment. The importance of developing better techniques for establishing positive target identification for beyond visual ranges has increased in tactical importance, as a result of the Persian Gulf War. In addition to supporting the evaluation of algorithms and associated sensors, this testbed will support on- going R&D in the Air-To-Air Non-Cooperative Target Recognition (NCTR) arena.

  4. Developing Internal Controls through Activities

    ERIC Educational Resources Information Center

    Barnes, F. Herbert

    2009-01-01

    Life events can include the Tuesday afternoon cooking class with the group worker or the Saturday afternoon football game, but in the sense that Fritz Redl thought of them, these activities are only threads in a fabric of living that includes all the elements of daily life: playing, working, school-based learning, learning through activities,…

  5. Identifying Active Travel Behaviors in Challenging Environments Using GPS, Accelerometers, and Machine Learning Algorithms

    PubMed Central

    Ellis, Katherine; Godbole, Suneeta; Marshall, Simon; Lanckriet, Gert; Staudenmayer, John; Kerr, Jacqueline

    2014-01-01

    Background: Active travel is an important area in physical activity research, but objective measurement of active travel is still difficult. Automated methods to measure travel behaviors will improve research in this area. In this paper, we present a supervised machine learning method for transportation mode prediction from global positioning system (GPS) and accelerometer data. Methods: We collected a dataset of about 150 h of GPS and accelerometer data from two research assistants following a protocol of prescribed trips consisting of five activities: bicycling, riding in a vehicle, walking, sitting, and standing. We extracted 49 features from 1-min windows of this data. We compared the performance of several machine learning algorithms and chose a random forest algorithm to classify the transportation mode. We used a moving average output filter to smooth the output predictions over time. Results: The random forest algorithm achieved 89.8% cross-validated accuracy on this dataset. Adding the moving average filter to smooth output predictions increased the cross-validated accuracy to 91.9%. Conclusion: Machine learning methods are a viable approach for automating measurement of active travel, particularly for measuring travel activities that traditional accelerometer data processing methods misclassify, such as bicycling and vehicle travel. PMID:24795875

  6. Optimal Parameter Exploration for Online Change-Point Detection in Activity Monitoring Using Genetic Algorithms

    PubMed Central

    Khan, Naveed; McClean, Sally; Zhang, Shuai; Nugent, Chris

    2016-01-01

    In recent years, smart phones with inbuilt sensors have become popular devices to facilitate activity recognition. The sensors capture a large amount of data, containing meaningful events, in a short period of time. The change points in this data are used to specify transitions to distinct events and can be used in various scenarios such as identifying change in a patient’s vital signs in the medical domain or requesting activity labels for generating real-world labeled activity datasets. Our work focuses on change-point detection to identify a transition from one activity to another. Within this paper, we extend our previous work on multivariate exponentially weighted moving average (MEWMA) algorithm by using a genetic algorithm (GA) to identify the optimal set of parameters for online change-point detection. The proposed technique finds the maximum accuracy and F_measure by optimizing the different parameters of the MEWMA, which subsequently identifies the exact location of the change point from an existing activity to a new one. Optimal parameter selection facilitates an algorithm to detect accurate change points and minimize false alarms. Results have been evaluated based on two real datasets of accelerometer data collected from a set of different activities from two users, with a high degree of accuracy from 99.4% to 99.8% and F_measure of up to 66.7%. PMID:27792177

  7. Correlation signatures of wet soils and snows. [algorithm development and computer programming

    NASA Technical Reports Server (NTRS)

    Phillips, M. R.

    1972-01-01

    Interpretation, analysis, and development of algorithms have provided the necessary computational programming tools for soil data processing, data handling and analysis. Algorithms that have been developed thus far, are adequate and have been proven successful for several preliminary and fundamental applications such as software interfacing capabilities, probability distributions, grey level print plotting, contour plotting, isometric data displays, joint probability distributions, boundary mapping, channel registration and ground scene classification. A description of an Earth Resources Flight Data Processor, (ERFDP), which handles and processes earth resources data under a users control is provided.

  8. Unified development of multiplicative algorithms for linear and quadratic nonnegative matrix factorization.

    PubMed

    Yang, Zhirong; Oja, Erkki

    2011-12-01

    Multiplicative updates have been widely used in approximative nonnegative matrix factorization (NMF) optimization because they are convenient to deploy. Their convergence proof is usually based on the minimization of an auxiliary upper-bounding function, the construction of which however remains specific and only available for limited types of dissimilarity measures. Here we make significant progress in developing convergent multiplicative algorithms for NMF. First, we propose a general approach to derive the auxiliary function for a wide variety of NMF problems, as long as the approximation objective can be expressed as a finite sum of monomials with real exponents. Multiplicative algorithms with theoretical guarantee of monotonically decreasing objective function sequence can thus be obtained. The solutions of NMF based on most commonly used dissimilarity measures such as α- and β-divergence as well as many other more comprehensive divergences can be derived by the new unified principle. Second, our method is extended to a nonseparable case that includes e.g., γ-divergence and Rényi divergence. Third, we develop multiplicative algorithms for NMF using second-order approximative factorizations, in which each factorizing matrix may appear twice. Preliminary numerical experiments demonstrate that the multiplicative algorithms developed using the proposed procedure can achieve satisfactory Karush-Kuhn-Tucker optimality. We also demonstrate NMF problems where algorithms by the conventional method fail to guarantee descent at each iteration but those by our principle are immune to such violation.

  9. Design and development of guidance navigation and control algorithms for spacecraft rendezvous and docking experimentation

    NASA Astrophysics Data System (ADS)

    Guglieri, Giorgio; Maroglio, Franco; Pellegrino, Pasquale; Torre, Liliana

    2014-01-01

    This paper presents the design of the GNC system of a ground test-bed for spacecraft rendezvous and docking experiments. The test-bed is developed within the STEPS project (Systems and Technologies for Space Exploration). The facility consists of a flat floor and two scaled vehicles, one active chaser and one “semi-active” target. Rendezvous and docking maneuvers are performed floating on the plane with pierced plates as lifting systems. The system is designed to work both with inertial and non-inertial reference frame, receiving signals from navigation sensors as: accelerometers, gyroscopes, laser meter, radio finder and video camera, and combining them with a digital filter. A Proportional-Integrative-Derivative control law and Pulse Width Modulators are used to command the cold gas thrusters of the chaser, and to follow an assigned trajectory with its specified velocity profile. The design and development of the guidance, navigation and control system and its architecture-including the software algorithms-are detailed in the paper, presenting a performance analysis based on a simulated environment. A complete description of the integrated subsystems is also presented.

  10. Developing Subdomain Allocation Algorithms Based on Spatial and Communicational Constraints to Accelerate Dust Storm Simulation

    PubMed Central

    Gui, Zhipeng; Yu, Manzhu; Yang, Chaowei; Jiang, Yunfeng; Chen, Songqing; Xia, Jizhe; Huang, Qunying; Liu, Kai; Li, Zhenlong; Hassan, Mohammed Anowarul; Jin, Baoxuan

    2016-01-01

    Dust storm has serious disastrous impacts on environment, human health, and assets. The developments and applications of dust storm models have contributed significantly to better understand and predict the distribution, intensity and structure of dust storms. However, dust storm simulation is a data and computing intensive process. To improve the computing performance, high performance computing has been widely adopted by dividing the entire study area into multiple subdomains and allocating each subdomain on different computing nodes in a parallel fashion. Inappropriate allocation may introduce imbalanced task loads and unnecessary communications among computing nodes. Therefore, allocation is a key factor that may impact the efficiency of parallel process. An allocation algorithm is expected to consider the computing cost and communication cost for each computing node to minimize total execution time and reduce overall communication cost for the entire simulation. This research introduces three algorithms to optimize the allocation by considering the spatial and communicational constraints: 1) an Integer Linear Programming (ILP) based algorithm from combinational optimization perspective; 2) a K-Means and Kernighan-Lin combined heuristic algorithm (K&K) integrating geometric and coordinate-free methods by merging local and global partitioning; 3) an automatic seeded region growing based geometric and local partitioning algorithm (ASRG). The performance and effectiveness of the three algorithms are compared based on different factors. Further, we adopt the K&K algorithm as the demonstrated algorithm for the experiment of dust model simulation with the non-hydrostatic mesoscale model (NMM-dust) and compared the performance with the MPI default sequential allocation. The results demonstrate that K&K method significantly improves the simulation performance with better subdomain allocation. This method can also be adopted for other relevant atmospheric and numerical

  11. Developing Subdomain Allocation Algorithms Based on Spatial and Communicational Constraints to Accelerate Dust Storm Simulation.

    PubMed

    Gui, Zhipeng; Yu, Manzhu; Yang, Chaowei; Jiang, Yunfeng; Chen, Songqing; Xia, Jizhe; Huang, Qunying; Liu, Kai; Li, Zhenlong; Hassan, Mohammed Anowarul; Jin, Baoxuan

    2016-01-01

    Dust storm has serious disastrous impacts on environment, human health, and assets. The developments and applications of dust storm models have contributed significantly to better understand and predict the distribution, intensity and structure of dust storms. However, dust storm simulation is a data and computing intensive process. To improve the computing performance, high performance computing has been widely adopted by dividing the entire study area into multiple subdomains and allocating each subdomain on different computing nodes in a parallel fashion. Inappropriate allocation may introduce imbalanced task loads and unnecessary communications among computing nodes. Therefore, allocation is a key factor that may impact the efficiency of parallel process. An allocation algorithm is expected to consider the computing cost and communication cost for each computing node to minimize total execution time and reduce overall communication cost for the entire simulation. This research introduces three algorithms to optimize the allocation by considering the spatial and communicational constraints: 1) an Integer Linear Programming (ILP) based algorithm from combinational optimization perspective; 2) a K-Means and Kernighan-Lin combined heuristic algorithm (K&K) integrating geometric and coordinate-free methods by merging local and global partitioning; 3) an automatic seeded region growing based geometric and local partitioning algorithm (ASRG). The performance and effectiveness of the three algorithms are compared based on different factors. Further, we adopt the K&K algorithm as the demonstrated algorithm for the experiment of dust model simulation with the non-hydrostatic mesoscale model (NMM-dust) and compared the performance with the MPI default sequential allocation. The results demonstrate that K&K method significantly improves the simulation performance with better subdomain allocation. This method can also be adopted for other relevant atmospheric and numerical

  12. Efficient parallel implementation of active appearance model fitting algorithm on GPU.

    PubMed

    Wang, Jinwei; Ma, Xirong; Zhu, Yuanping; Sun, Jizhou

    2014-01-01

    The active appearance model (AAM) is one of the most powerful model-based object detecting and tracking methods which has been widely used in various situations. However, the high-dimensional texture representation causes very time-consuming computations, which makes the AAM difficult to apply to real-time systems. The emergence of modern graphics processing units (GPUs) that feature a many-core, fine-grained parallel architecture provides new and promising solutions to overcome the computational challenge. In this paper, we propose an efficient parallel implementation of the AAM fitting algorithm on GPUs. Our design idea is fine grain parallelism in which we distribute the texture data of the AAM, in pixels, to thousands of parallel GPU threads for processing, which makes the algorithm fit better into the GPU architecture. We implement our algorithm using the compute unified device architecture (CUDA) on the Nvidia's GTX 650 GPU, which has the latest Kepler architecture. To compare the performance of our algorithm with different data sizes, we built sixteen face AAM models of different dimensional textures. The experiment results show that our parallel AAM fitting algorithm can achieve real-time performance for videos even on very high-dimensional textures.

  13. Genetic algorithms

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Bayer, Steven E.

    1991-01-01

    Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology.

  14. Development of a Comprehensive Human Immunodeficiency Virus Type 1 Screening Algorithm for Discovery and Preclinical Testing of Topical Microbicides▿

    PubMed Central

    Lackman-Smith, Carol; Osterling, Clay; Luckenbaugh, Katherine; Mankowski, Marie; Snyder, Beth; Lewis, Gareth; Paull, Jeremy; Profy, Albert; Ptak, Roger G.; Buckheit, Robert W.; Watson, Karen M.; Cummins, James E.; Sanders-Beer, Brigitte E.

    2008-01-01

    Topical microbicides are self-administered, prophylactic products for protection against sexually transmitted pathogens. A large number of compounds with known anti-human immunodeficiency virus type 1 (HIV-1) inhibitory activity have been proposed as candidate topical microbicides. To identify potential leads, an in vitro screening algorithm was developed to evaluate candidate microbicides in assays that assess inhibition of cell-associated and cell-free HIV-1 transmission, entry, and fusion. The algorithm advances compounds by evaluation in a series of defined assays that generate measurements of relative antiviral potency to determine advancement or failure. Initial testing consists of a dual determination of inhibitory activity in the CD4-dependent CCR5-tropic cell-associated transmission inhibition assay and in the CD4/CCR5-mediated HIV-1 entry assay. The activity is confirmed by repeat testing, and identified actives are advanced to secondary screens to determine their effect on transmission of CXCR4-tropic viruses in the presence or absence of CD4 and their ability to inhibit CXCR4- and CCR5-tropic envelope-mediated cell-to-cell fusion. In addition, confirmed active compounds are also evaluated in the presence of human seminal plasma, in assays incorporating a pH 4 to 7 transition, and for growth inhibition of relevant strains of lactobacilli. Leads may then be advanced for specialized testing, including determinations in human cervical explants and in peripheral blood mononuclear cells against primary HIV subtypes, combination testing with other inhibitors, and additional cytotoxicity assays. PRO 2000 and SPL7013 (the active component of VivaGel), two microbicide products currently being evaluated in human clinical trials, were tested in this in vitro algorithm and were shown to be highly active against CCR5- and CXCR4-tropic HIV-1 infection. PMID:18316528

  15. Applications and development of new algorithms for displacement analysis using InSAR time series

    NASA Astrophysics Data System (ADS)

    Osmanoglu, Batuhan

    -dimensional (3-D) phase unwrapping. Chapter 4 focuses on the unwrapping path. Unwrapping algorithms can be divided into two groups, path-dependent and path-independent algorithms. Path-dependent algorithms use local unwrapping functions applied pixel-by-pixel to the dataset. In contrast, path-independent algorithms use global optimization methods such as least squares, and return a unique solution. However, when aliasing and noise are present, path-independent algorithms can underestimate the signal in some areas due to global fitting criteria. Path-dependent algorithms do not underestimate the signal, but, as the name implies, the unwrapping path can affect the result. Comparison between existing path algorithms and a newly developed algorithm based on Fisher information theory was conducted. Results indicate that Fisher information theory does indeed produce lower misfit results for most tested cases. Chapter 5 presents a new time series analysis method based on 3-D unwrapping of SAR data using extended Kalman filters. Existing methods for time series generation using InSAR data employ special filters to combine two-dimensional (2-D) spatial unwrapping with one-dimensional (1-D) temporal unwrapping results. The new method, however, combines observations in azimuth, range and time for repeat pass interferometry. Due to the pixel-by-pixel characteristic of the filter, the unwrapping path is selected based on a quality map. This unwrapping algorithm is the first application of extended Kalman filters to the 3-D unwrapping problem. Time series analyses of InSAR data are used in a variety of applications with different characteristics. Consequently, it is difficult to develop a single algorithm that can provide optimal results in all cases, given that different algorithms possess a unique set of strengths and weaknesses. Nonetheless, filter-based unwrapping algorithms such as the one presented in this dissertation have the capability of joining multiple observations into a uniform

  16. Development of a multi-objective optimization algorithm using surrogate models for coastal aquifer management

    NASA Astrophysics Data System (ADS)

    Kourakos, George; Mantoglou, Aristotelis

    2013-02-01

    SummaryThe demand for fresh water in coastal areas and islands can be very high due to increased local needs and tourism. A multi-objective optimization methodology is developed, involving minimization of economic and environmental costs while satisfying water demand. The methodology considers desalinization of pumped water and injection of treated water into the aquifer. Variable density aquifer models are computationally intractable when integrated in optimization algorithms. In order to alleviate this problem, a multi-objective optimization algorithm is developed combining surrogate models based on Modular Neural Networks [MOSA(MNNs)]. The surrogate models are trained adaptively during optimization based on a genetic algorithm. In the crossover step, each pair of parents generates a pool of offspring which are evaluated using the fast surrogate model. Then, the most promising offspring are evaluated using the exact numerical model. This procedure eliminates errors in Pareto solution due to imprecise predictions of the surrogate model. The method has important advancements compared to previous methods such as precise evaluation of the Pareto set and alleviation of propagation of errors due to surrogate model approximations. The method is applied to an aquifer in the Greek island of Santorini. The results show that the new MOSA(MNN) algorithm offers significant reduction in computational time compared to previous methods (in the case study it requires only 5% of the time required by other methods). Further, the Pareto solution is better than the solution obtained by alternative algorithms.

  17. Development of administrative data algorithms to identify patients with critical limb ischemia.

    PubMed

    Bekwelem, Wobo; Bengtson, Lindsay G S; Oldenburg, Niki C; Winden, Tamara J; Keo, Hong H; Hirsch, Alan T; Duval, Sue

    2014-12-01

    Administrative data have been used to identify patients with various diseases, yet no prior study has determined the utility of International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM)-based codes to identify CLI patients. CLI cases (n=126), adjudicated by a vascular specialist, were carefully defined and enrolled in a hospital registry. Controls were frequency matched to cases on age, sex and admission date in a 2:1 ratio. ICD-9-CM codes for all patients were extracted. Algorithms were developed using frequency distributions of these codes, risk factors and procedures prevalent in CLI. The sensitivity for each algorithm was calculated and applied within the hospital system to identify CLI patients not included in the registry. Sensitivity ranged from 0.29 to 0.92. An algorithm based on diagnosis and procedure codes exhibited the best overall performance (sensitivity of 0.92). Each algorithm had differing CLI identification characteristics based on patient location. Administrative data can be used to identify CLI patients within a health system. The algorithms, developed from these data, can serve as a tool to facilitate clinical care, research, quality improvement, and population surveillance.

  18. Soil Moisture Active Passive (SMAP) Project Algorithm Theoretical Basis Document SMAP L1B Radiometer Data Product: L1B_TB

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey; Mohammed, Priscilla; De Amici, Giovanni; Kim, Edward; Peng, Jinzheng; Ruf, Christopher; Hanna, Maher; Yueh, Simon; Entekhabi, Dara

    2016-01-01

    The purpose of the Soil Moisture Active Passive (SMAP) radiometer calibration algorithm is to convert Level 0 (L0) radiometer digital counts data into calibrated estimates of brightness temperatures referenced to the Earth's surface within the main beam. The algorithm theory in most respects is similar to what has been developed and implemented for decades for other satellite radiometers; however, SMAP includes two key features heretofore absent from most satellite borne radiometers: radio frequency interference (RFI) detection and mitigation, and measurement of the third and fourth Stokes parameters using digital correlation. The purpose of this document is to describe the SMAP radiometer and forward model, explain the SMAP calibration algorithm, including approximations, errors, and biases, provide all necessary equations for implementing the calibration algorithm and detail the RFI detection and mitigation process. Section 2 provides a summary of algorithm objectives and driving requirements. Section 3 is a description of the instrument and Section 4 covers the forward models, upon which the algorithm is based. Section 5 gives the retrieval algorithm and theory. Section 6 describes the orbit simulator, which implements the forward model and is the key for deriving antenna pattern correction coefficients and testing the overall algorithm.

  19. Event based neutron activation spectroscopy and analysis algorithm using MLE and metaheuristics

    NASA Astrophysics Data System (ADS)

    Wallace, Barton

    2014-03-01

    Techniques used in neutron activation analysis are often dependent on the experimental setup. In the context of developing a portable and high efficiency detection array, good energy resolution and half-life discrimination are difficult to obtain with traditional methods [1] given the logistic and financial constraints. An approach different from that of spectrum addition and standard spectroscopy analysis [2] was needed. The use of multiple detectors prompts the need for a flexible storage of acquisition data to enable sophisticated post processing of information. Analogously to what is done in heavy ion physics, gamma detection counts are stored as two-dimensional events. This enables post-selection of energies and time frames without the need to modify the experimental setup. This method of storage also permits the use of more complex analysis tools. Given the nature of the problem at hand, a light and efficient analysis code had to be devised. A thorough understanding of the physical and statistical processes [3] involved was used to create a statistical model. Maximum likelihood estimation was combined with metaheuristics to produce a sophisticated curve-fitting algorithm. Simulated and experimental data were fed into the analysis code prompting positive results in terms of half-life discrimination, peak identification and noise reduction. The code was also adapted to other fields of research such as heavy ion identification of the quasi-target (QT) and quasi-particle (QP). The approach used seems to be able to translate well into other fields of research.

  20. The design and development of signal-processing algorithms for an airborne x-band Doppler weather radar

    NASA Technical Reports Server (NTRS)

    Nicholson, Shaun R.

    1994-01-01

    Improved measurements of precipitation will aid our understanding of the role of latent heating on global circulations. Spaceborne meteorological sensors such as the planned precipitation radar and microwave radiometers on the Tropical Rainfall Measurement Mission (TRMM) provide for the first time a comprehensive means of making these global measurements. Pre-TRMM activities include development of precipitation algorithms using existing satellite data, computer simulations, and measurements from limited aircraft campaigns. Since the TRMM radar will be the first spaceborne precipitation radar, there is limited experience with such measurements, and only recently have airborne radars become available that can attempt to address the issue of the limitations of a spaceborne radar. There are many questions regarding how much attenuation occurs in various cloud types and the effect of cloud vertical motions on the estimation of precipitation rates. The EDOP program being developed by NASA GSFC will provide data useful for testing both rain-retrieval algorithms and the importance of vertical motions on the rain measurements. The purpose of this report is to describe the design and development of real-time embedded parallel algorithms used by EDOP to extract reflectivity and Doppler products (velocity, spectrum width, and signal-to-noise ratio) as the first step in the aforementioned goals.

  1. Developments in the Aerosol Layer Height Retrieval Algorithm for the Copernicus Sentinel-4/UVN Instrument

    NASA Astrophysics Data System (ADS)

    Nanda, Swadhin; Sanders, Abram; Veefkind, Pepijn

    2016-04-01

    The Sentinel-4 mission is a part of the European Commission's Copernicus programme, the goal of which is to provide geo-information to manage environmental assets, and to observe, understand and mitigate the effects of the changing climate. The Sentinel-4/UVN instrument design is motivated by the need to monitor trace gas concentrations and aerosols in the atmosphere from a geostationary orbit. The on-board instrument is a high resolution UV-VIS-NIR (UVN) spectrometer system that provides hourly radiance measurements over Europe and northern Africa with a spatial sampling of 8 km. The main application area of Sentinel-4/UVN is air quality. One of the data products that is being developed for Sentinel-4/UVN is the Aerosol Layer Height (ALH). The goal is to determine the height of aerosol plumes with a resolution of better than 0.5 - 1 km. The ALH product thus targets aerosol layers in the free troposphere, such as desert dust, volcanic ash and biomass during plumes. KNMI is assigned with the development of the Aerosol Layer Height (ALH) algorithm. Its heritage is the ALH algorithm developed by Sanders and De Haan (ATBD, 2016) for the TROPOMI instrument on board the Sentinel-5 Precursor mission that is to be launched in June or July 2016 (tentative date). The retrieval algorithm designed so far for the aerosol height product is based on the absorption characteristics of the oxygen-A band (759-770 nm). The algorithm has heritage to the ALH algorithm developed for TROPOMI on the Sentinel 5 precursor satellite. New aspects for Sentinel-4/UVN include the higher resolution (0.116 nm compared to 0.4 for TROPOMI) and hourly observation from the geostationary orbit. The algorithm uses optimal estimation to obtain a spectral fit of the reflectance across absorption band, while assuming a single uniform layer with fixed width to represent the aerosol vertical distribution. The state vector includes amongst other elements the height of this layer and its aerosol optical

  2. Algorithms for Developing Test Questions from Sentences in Instructional Materials: an Extension of an Earlier Study

    DTIC Science & Technology

    1980-01-01

    8217.> age were developed using the following procedure; 1. The selected mat -rial was computer-analyzed to identify high information words—those that an...frequencies (keyword and rare singletons), (4) the two foil types (writer’s choice and algorithmic), and (5) the two test occasions (pi etest and

  3. Ocean observations with EOS/MODIS: Algorithm Development and Post Launch Studies

    NASA Technical Reports Server (NTRS)

    Gordon, Howard R.

    1998-01-01

    Significant accomplishments made during the present reporting period: (1) We expanded our "spectral-matching" algorithm (SMA), for identifying the presence of absorbing aerosols and simultaneously performing atmospheric correction and derivation of the ocean's bio-optical parameters, to the point where it could be added as a subroutine to the MODIS water-leaving radiance algorithm; (2) A modification to the SMA that does not require detailed aerosol models has been developed. This is important as the requirement for realistic aerosol models has been a weakness of the SMA; and (3) We successfully acquired micro pulse lidar data in a Saharan dust outbreak during ACE-2 in the Canary Islands.

  4. Experiences on developing digital down conversion algorithms using Xilinx system generator

    NASA Astrophysics Data System (ADS)

    Xu, Chengfa; Yuan, Yuan; Zhao, Lizhi

    2013-07-01

    The Digital Down Conversion (DDC) algorithm is a classical signal processing method which is widely used in radar and communication systems. In this paper, the DDC function is implemented by Xilinx System Generator tool on FPGA. System Generator is an FPGA design tool provided by Xilinx Inc and MathWorks Inc. It is very convenient for programmers to manipulate the design and debug the function, especially for the complex algorithm. Through the developing process of DDC function based on System Generator, the results show that System Generator is a very fast and efficient tool for FPGA design.

  5. Ocean Observations with EOS/MODIS: Algorithm Development and Post Launch Studies

    NASA Technical Reports Server (NTRS)

    Gordon, Howard R.

    1997-01-01

    The following accomplishments were made during the present reporting period: (1) We expanded our new method, for identifying the presence of absorbing aerosols and simultaneously performing atmospheric correction, to the point where it could be added as a subroutine to the MODIS water-leaving radiance algorithm; (2) We successfully acquired micro pulse lidar (MPL) data at sea during a cruise in February; (3) We developed a water-leaving radiance algorithm module for an approximate correction of the MODIS instrument polarization sensitivity; and (4) We participated in one cruise to the Gulf of Maine, a well known region for mesoscale coccolithophore blooms. We measured coccolithophore abundance, production and optical properties.

  6. Development and benefit analysis of a sector design algorithm for terminal dynamic airspace configuration

    NASA Astrophysics Data System (ADS)

    Sciandra, Vincent

    The National Airspace System (NAS) is the vast network of systems enabling safe and efficient air travel in the United States. It consists of a set of static sectors, each controlled by one or more air traffic controllers. Air traffic control is tasked with ensuring that all flights can depart and arrive on time and in a safe and efficient matter. However, skyrocketing demand will only increase the stress on an already inefficient system, causing massive delays. The current, static configuration of the NAS cannot possibly handle the future demand on the system safely and efficiently, especially since it is projected to triple by 2025. To overcome these issues, the Next Generation of Air Transportation System (NextGen) is being enacted to increase the flexibility of the NAS. A major objective of NextGen is to implement Adaptable Dynamic Airspace Configuration (ADAC) which will dynamically allocate the sectors to best fit the traffic in the area. Dynamically allocating sectors will allow resources such as controllers to be better distributed to meet traffic demands. Currently, most DAC research has involved the en route airspace. This leaves the terminal airspace, which accounts for a large amount of the overall NAS complexity, in need of work. Using a combination of methods used in en route sectorization, this thesis has developed an algorithm for the dynamic allocation of sectors in the terminal airspace. This algorithm will be evaluated using metrics common in the evaluation of dynamic density, which is adapted for the unique challenges of the terminal airspace, and used to measure workload on air traffic controllers. These metrics give a better view of the controller workload than the number of aircraft alone. By comparing the test results with sectors currently used in the NAS using real traffic data, the algorithm xv generated sectors can be quantitatively evaluated for improvement of the current sectorizations. This will be accomplished by testing the

  7. Multi-damage detection with embedded ultrasonic structural radar algorithm using piezoelectric wafer active sensors through advanced signal processing

    NASA Astrophysics Data System (ADS)

    Yu, Lingyu; Giurgiutiu, Victor

    2005-05-01

    The embedded ultrasonic structural radar (EUSR) algorithm was developed by using piezoelectric wafer active sensor (PWAS) array to detect defects within a large area of a thin-plate specimen. EUSR has been verified to be effective for detecting a single crack either at a broadside or at an offside position. In this research, advanced signal processing techniques were included to enhance inspection image quality and detect multiple damage. The signal processing methods include discrete wavelet transform for signal denoising, short-time Fourier transform and continuous wavelet transform for time-frequency analysis, continuous wavelet transform for frequency filtering, and Hilbert transform for envelope extraction. All these signal processing modules were implemented by developing a graphical user-friendly interface program in LabVIEW. The paper starts with an introduction of embedded ultrasonic structural radar algorithm, followed with the theoretical aspect of the phased array signal processing method. Then, the mathematical algorithms for advanced signal processing are introduced. In the end, laboratory experimental results are presented to show how efficiently the improved EUSR works. The results are analyzed and EUSR is concluded to have been improved by using the advanced signal processing techniques. The improvements include: 1) EUSR is able to provide better image of the specimen under monitoring; 2) it is able to detect multi-damage such as several cracks; 3) it is able to identify different damage types.

  8. Human Development Program: Level V Activity Guide.

    ERIC Educational Resources Information Center

    Ball, Geraldine

    The curriculum guide presents the activities component of the Human Development Program for grade 5. The Human Development Program (HDP) is an affective curricular approach developed by psychologists to help teachers instill responsibility and self-confidence in children. The activity guide presents topics and directions for 180 sequential Human…

  9. Activity recognition in planetary navigation field tests using classification algorithms applied to accelerometer data.

    PubMed

    Song, Wen; Ade, Carl; Broxterman, Ryan; Barstow, Thomas; Nelson, Thomas; Warren, Steve

    2012-01-01

    Accelerometer data provide useful information about subject activity in many different application scenarios. For this study, single-accelerometer data were acquired from subjects participating in field tests that mimic tasks that astronauts might encounter in reduced gravity environments. The primary goal of this effort was to apply classification algorithms that could identify these tasks based on features present in their corresponding accelerometer data, where the end goal is to establish methods to unobtrusively gauge subject well-being based on sensors that reside in their local environment. In this initial analysis, six different activities that involve leg movement are classified. The k-Nearest Neighbors (kNN) algorithm was found to be the most effective, with an overall classification success rate of 90.8%.

  10. Activity level classification algorithm using SHIMMER™ wearable sensors for individuals with rheumatoid arthritis.

    PubMed

    Fortune, Emma; Tierney, Marie; Scanaill, Cliodhna Ni; Bourke, Ala; Kennedy, Norelee; Nelson, John

    2011-01-01

    In rheumatoid arthritis (RA) it is believed that symptoms associated with the progression of the disease result in a reduction in the physical activity level of the patient. One of the key flaws of the research surrounding this hypothesis to date is the use of non-validated physical activity outcomes measures. In this study, an algorithm to estimate physical activity levels in patients as they perform a simulated protocol of typical activities of daily living using SHIMMER kinematic sensors, incorporating tri-axial gyroscopes and accelerometers, is proposed. The results are validated against simultaneously recorded energy expenditure data and the defined activity protocol and demonstrate that SHIMMER can be used to accurately estimate physical activity levels in RA populations.

  11. Development of a doubly weighted Gerchberg-Saxton algorithm for use in multibeam imaging applications.

    PubMed

    Poland, Simon P; Krstajić, Nikola; Knight, Robert D; Henderson, Robert K; Ameer-Beg, Simon M

    2014-04-15

    We report on the development of a doubly weighted Gerchberg-Saxton algorithm (DWGS) to enable generation of uniform beamlet arrays with a spatial light modulator (SLM) for use in multiphoton multifocal imaging applications. The algorithm incorporates the WGS algorithm as well as feedback of fluorescence signals from the sample measured with a single-photon avalanche diode (SPAD) detector array. This technique compensates for issues associated with nonuniform illumination onto the SLM, the effects due to aberrations and the variability in gain between detectors within the SPAD array to generate a uniformly illuminated multiphoton fluorescence image. We demonstrate the use of the DWGS with a number of beamlet array patterns to image muscle fibers of a 5-day-old fixed zebrafish larvae.

  12. Development of the Landsat Data Continuity Mission Cloud Cover Assessment Algorithms

    USGS Publications Warehouse

    Scaramuzza, Pat; Bouchard, M.A.; Dwyer, J.L.

    2012-01-01

    The upcoming launch of the Operational Land Imager (OLI) will start the next era of the Landsat program. However, the Automated Cloud-Cover Assessment (CCA) (ACCA) algorithm used on Landsat 7 requires a thermal band and is thus not suited for OLI. There will be a thermal instrument on the Landsat Data Continuity Mission (LDCM)-the Thermal Infrared Sensor-which may not be available during all OLI collections. This illustrates a need for CCA for LDCM in the absence of thermal data. To research possibilities for full-resolution OLI cloud assessment, a global data set of 207 Landsat 7 scenes with manually generated cloud masks was created. It was used to evaluate the ACCA algorithm, showing that the algorithm correctly classified 79.9% of a standard test subset of 3.95 109 pixels. The data set was also used to develop and validate two successor algorithms for use with OLI data-one derived from an off-the-shelf machine learning package and one based on ACCA but enhanced by a simple neural network. These comprehensive CCA algorithms were shown to correctly classify pixels as cloudy or clear 88.5% and 89.7% of the time, respectively.

  13. Development of a MELCOR self-initialization algorithm for boiling water reactors

    SciTech Connect

    Chien, C.S.; Wang, S.J.; Cheng, S.K.

    1996-01-01

    The MELCOR code, developed by Sandia National Laboratories, is suitable for calculating source terms and simulating severe accident phenomena of nuclear power plants. Prior to simulating a severe accident transient with MELCOR, the initial steady-state conditions must be generated in advance. The current MELCOR users` manuals do not provide a self-initialization procedure; this is the reason users have to adjust the initial conditions by themselves through a trial-and-error approach. A MELCOR self-initialization algorithm for boiling water reactor plants has been developed, which eliminates the tedious trial-and-error procedures and improves the simulation accuracy. This algorithm adjusts the important plant variable such as the dome pressure, downcomer level, and core flow rate to the desired conditions automatically. It is implemented through input with control functions provided in MELCOR. The reactor power and feedwater temperature are fed as input data. The initialization work of full-power conditions of the Kuosheng nuclear power station is cited as an example. These initial conditions are generated successfully with the developed algorithm. The generated initial conditions can be stored in a restart file and used for transient analysis. The methodology in this study improves the accuracy and consistency of transient calculations. Meanwhile, the algorithm provides all MELCOR users an easy and correct method for establishing the initial conditions.

  14. SPHERES as Formation Flight Algorithm Development and Validation Testbed: Current Progress and Beyond

    NASA Technical Reports Server (NTRS)

    Kong, Edmund M.; Saenz-Otero, Alvar; Nolet, Simon; Berkovitz, Dustin S.; Miller, David W.; Sell, Steve W.

    2004-01-01

    The MIT-SSL SPHERES testbed provides a facility for the development of algorithms necessary for the success of Distributed Satellite Systems (DSS). The initial development contemplated formation flight and docking control algorithms; SPHERES now supports the study of metrology, control, autonomy, artificial intelligence, and communications algorithms and their effects on DSS projects. To support this wide range of topics, the SPHERES design contemplated the need to support multiple researchers, as echoed from both the hardware and software designs. The SPHERES operational plan further facilitates the development of algorithms by multiple researchers, while the operational locations incrementally increase the ability of the tests to operate in a representative environment. In this paper, an overview of the SPHERES testbed is first presented. The SPHERES testbed serves as a model of the design philosophies that allow for the various researches being carried out on such a facility. The implementation of these philosophies are further highlighted in the three different programs that are currently scheduled for testing onboard the International Space Station (ISS) and three that are proposed for a re-flight mission: Mass Property Identification, Autonomous Rendezvous and Docking, TPF Multiple Spacecraft Formation Flight in the first flight and Precision Optical Pointing, Tethered Formation Flight and Mars Orbit Sample Retrieval for the re-flight mission.

  15. Ice surface temperature retrieval from AVHRR, ATSR, and passive microwave satellite data: Algorithm development and application

    NASA Technical Reports Server (NTRS)

    Key, Jeff; Maslanik, James; Steffen, Konrad

    1995-01-01

    During the second phase project year we have made progress in the development and refinement of surface temperature retrieval algorithms and in product generation. More specifically, we have accomplished the following: (1) acquired a new advanced very high resolution radiometer (AVHRR) data set for the Beaufort Sea area spanning an entire year; (2) acquired additional along-track scanning radiometer(ATSR) data for the Arctic and Antarctic now totalling over eight months; (3) refined our AVHRR Arctic and Antarctic ice surface temperature (IST) retrieval algorithm, including work specific to Greenland; (4) developed ATSR retrieval algorithms for the Arctic and Antarctic, including work specific to Greenland; (5) developed cloud masking procedures for both AVHRR and ATSR; (6) generated a two-week bi-polar global area coverage (GAC) set of composite images from which IST is being estimated; (7) investigated the effects of clouds and the atmosphere on passive microwave 'surface' temperature retrieval algorithms; and (8) generated surface temperatures for the Beaufort Sea data set, both from AVHRR and special sensor microwave imager (SSM/I).

  16. Millimeter-Wave Imaging Radiometer (MIR) Data Processing and Development of Water Vapor Retrieval Algorithms

    NASA Technical Reports Server (NTRS)

    Chang, L. Aron

    1998-01-01

    This document describes the final report of the Millimeter-wave Imaging Radiometer (MIR) Data Processing and Development of Water Vapor Retrieval Algorithms. Volumes of radiometric data have been collected using airborne MIR measurements during a series of field experiments since May 1992. Calibrated brightness temperature data in MIR channels are now available for studies of various hydrological parameters of the atmosphere and Earth's surface. Water vapor retrieval algorithms using multichannel MIR data input are developed for the profiling of atmospheric humidity. The retrieval algorithms are also extended to do three-dimensional mapping of moisture field using continuous observation provided by airborne sensor MIR or spaceborne sensor SSM/T-2. Validation studies for water vapor retrieval are carried out through the intercomparison of collocated and concurrent measurements using different instruments including lidars and radiosondes. The developed MIR water vapor retrieval algorithm is capable of humidity profiling under meteorological conditions ranging from clear column to moderately cloudy sky. Simulative water vapor retrieval studies using extended microwave channels near 183 and 557 GHz strong absorption lines indicate feasibility of humidity profiling to layers in the upper troposphere and improve the overall vertical resolution through the atmosphere.

  17. Utilization of Ancillary Data Sets for Conceptual SMAP Mission Algorithm Development and Product Generation

    NASA Technical Reports Server (NTRS)

    O'Neill, P.; Podest, E.

    2011-01-01

    The planned Soil Moisture Active Passive (SMAP) mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council's Decadal Survey, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond [1]. Scheduled to launch late in 2014, the proposed SMAP mission would provide high resolution and frequent revisit global mapping of soil moisture and freeze/thaw state, utilizing enhanced Radio Frequency Interference (RFI) mitigation approaches to collect new measurements of the hydrological condition of the Earth's surface. The SMAP instrument design incorporates an L-band radar (3 km) and an L band radiometer (40 km) sharing a single 6-meter rotating mesh antenna to provide measurements of soil moisture and landscape freeze/thaw state [2]. These observations would (1) improve our understanding of linkages between the Earth's water, energy, and carbon cycles, (2) benefit many application areas including numerical weather and climate prediction, flood and drought monitoring, agricultural productivity, human health, and national security, (3) help to address priority questions on climate change, and (4) potentially provide continuity with brightness temperature and soil moisture measurements from ESA's SMOS (Soil Moisture Ocean Salinity) and NASA's Aquarius missions. In the planned SMAP mission prelaunch time frame, baseline algorithms are being developed for generating (1) soil moisture products both from radiometer measurements on a 36 km grid and from combined radar/radiometer measurements on a 9 km grid, and (2) freeze/thaw products from radar measurements on a 3 km grid. These retrieval algorithms need a variety of global ancillary data, both static and dynamic, to run the retrieval models, constrain the retrievals, and provide flags for indicating retrieval quality. The choice of which ancillary dataset to use for a particular SMAP product would be based on a number of factors

  18. Integrated Graphics Operations and Analysis Lab Development of Advanced Computer Graphics Algorithms

    NASA Technical Reports Server (NTRS)

    Wheaton, Ira M.

    2011-01-01

    The focus of this project is to aid the IGOAL in researching and implementing algorithms for advanced computer graphics. First, this project focused on porting the current International Space Station (ISS) Xbox experience to the web. Previously, the ISS interior fly-around education and outreach experience only ran on an Xbox 360. One of the desires was to take this experience and make it into something that can be put on NASA s educational site for anyone to be able to access. The current code works in the Unity game engine which does have cross platform capability but is not 100% compatible. The tasks for an intern to complete this portion consisted of gaining familiarity with Unity and the current ISS Xbox code, porting the Xbox code to the web as is, and modifying the code to work well as a web application. In addition, a procedurally generated cloud algorithm will be developed. Currently, the clouds used in AGEA animations and the Xbox experiences are a texture map. The desire is to create a procedurally generated cloud algorithm to provide dynamically generated clouds for both AGEA animations and the Xbox experiences. This task consists of gaining familiarity with AGEA and the plug-in interface, developing the algorithm, creating an AGEA plug-in to implement the algorithm inside AGEA, and creating a Unity script to implement the algorithm for the Xbox. This portion of the project was unable to be completed in the time frame of the internship; however, the IGOAL will continue to work on it in the future.

  19. Development of potential methods for testing congestion control algorithm implemented in vehicle to vehicle communications.

    PubMed

    Hsu, Chung-Jen; Fikentscher, Joshua; Kreeb, Robert

    2017-03-21

    Objective A channel congestion problem might occur when the traffic density increases since the number of basic safety messages carried on the communication channel also increases in vehicle-to-vehicle communications. A remedy algorithm proposed in SAE J2945/1 is designed to address the channel congestion issue by decreasing transmission frequency and radiated power. This study is to develop potential test procedures for evaluating or validating the congestion control algorithm. Methods Simulations of a reference unit transmitting at a higher frequency are implemented to emulate a number of Onboard Equipment (OBE) transmitting at the normal interval of 100 milliseconds (10 Hz). When the transmitting interval is reduced to 1.25 milliseconds (800 Hz), the reference unit emulates 80 vehicles transmitting at 10 Hz. By increasing the number of reference units transmitting at 800 Hz in the simulations, the corresponding channel busy percentages are obtained. An algorithm for GPS data generation of virtual vehicles is developed for facilitating the validation of transmission intervals in the congestion control algorithm. Results Channel busy percentage is the channel busy time over a specified period of time. Three or four reference units are needed to generate channel busy percentages between 50% and 80%, and five reference units can generate channel busy percentages above 80%. The proposed test procedures can verify the operation of congestion control algorithm when channel busy percentages are between 50% and 80%, and above 80%. By using GPS data generation algorithm, the test procedures can also verify the transmission intervals when traffic densities are 80 and 200 vehicles in the radius of 100 m. A suite of test tools with functional requirements is also proposed for facilitating the implementation of test procedures. Conclusions The potential test procedures for congestion control algorithm are developed based on the simulation results of channel busy

  20. Navy GTE seal development activity

    NASA Technical Reports Server (NTRS)

    Grala, Carl P.

    1993-01-01

    Under the auspices of the Integrated High Performance Turbine Engine Technology Initiative, the Naval Air Warfare Center conducts advanced development programs for demonstration in the next generation of air-breathing propulsion systems. Among the target technologies are gas path and lube oil seals. Two development efforts currently being managed by NAWCAD are the High Performance Compressor Discharge Film-Riding Face Seal and the Subsonic Core High Speed Air/Oil Seal. The High Performance Compressor Discharge Film-Riding Face Seal Program aims at reducing parasitic leakage through application of a film-riding face sea concept to the compressor discharge location of a Phase 2 IHPTET engine. An order-of-magnitude leakage reduction relative to current labyrinth seal configurations is expected. Performance goals for these seals are (1) 1200 F air temperature, (2) 800 feet-per-second surface velocity, and (3) 600 SPI differential pressure. The two designs chosen for fabrication and rig test are a spiral groove and a Rayleigh step seal. Rig testing is currently underway. The Subsonic Core High Speed Air/Oil Seal Program is developing shaft-to-ground seals for next-generation propulsion systems that will minimize leakage and provide full life. Significantly higher rotor speeds and temperatures will be experienced. Technologies being exploited include, hydrodynamic lift assist features, ultra light weight designs, and improved cooling schemes. Parametric testing has been completed; a final seal design is entering the endurance test phase.

  1. Navy GTE seal development activity

    NASA Astrophysics Data System (ADS)

    Grala, Carl P.

    1993-10-01

    Under the auspices of the Integrated High Performance Turbine Engine Technology Initiative, the Naval Air Warfare Center conducts advanced development programs for demonstration in the next generation of air-breathing propulsion systems. Among the target technologies are gas path and lube oil seals. Two development efforts currently being managed by NAWCAD are the High Performance Compressor Discharge Film-Riding Face Seal and the Subsonic Core High Speed Air/Oil Seal. The High Performance Compressor Discharge Film-Riding Face Seal Program aims at reducing parasitic leakage through application of a film-riding face sea concept to the compressor discharge location of a Phase 2 IHPTET engine. An order-of-magnitude leakage reduction relative to current labyrinth seal configurations is expected. Performance goals for these seals are (1) 1200 F air temperature, (2) 800 feet-per-second surface velocity, and (3) 600 SPI differential pressure. The two designs chosen for fabrication and rig test are a spiral groove and a Rayleigh step seal. Rig testing is currently underway. The Subsonic Core High Speed Air/Oil Seal Program is developing shaft-to-ground seals for next-generation propulsion systems that will minimize leakage and provide full life. Significantly higher rotor speeds and temperatures will be experienced. Technologies being exploited include, hydrodynamic lift assist features, ultra light weight designs, and improved cooling schemes. Parametric testing has been completed; a final seal design is entering the endurance test phase.

  2. Developing active noise control systems for noise attenuation in ducts

    NASA Astrophysics Data System (ADS)

    Campos, Rosely V.; Ivo, Rodrigo C.; Medeiros, Eduardo B.

    2002-11-01

    The present work describes some of the research effort on Active Noise Control (ANC) being jointly developed by the Catholic University of Minas Gerais (PUC-MINAS) and the Federal University of Minas Gerais (UFMG). Considerations about the implementation of Digital Signal Processing for noise control in ducts has been presented. The objective is to establish a study on Active Noise Control in ducts combining geometry and acoustic parameters modification together with adaptive digital filtering implementation. Both algorithm and digital signal processing details are also discussed. The main results for a typical application where real attenuation has been obtained are presented and considered according to their use in developing real applications. The authors also believe that the present text should provide an interesting overview for both designers and students concerned about Active Noise Control in ducts. (To be presented in Portuguese.)

  3. Developing a synergy algorithm for land surface temperature: the SEN4LST project

    NASA Astrophysics Data System (ADS)

    Sobrino, Jose A.; Jimenez, Juan C.; Ghent, Darren J.

    2013-04-01

    Land surface Temperature (LST) is one of the key parameters in the physics of land-surface processes on regional and global scales, combining the results of all surface-atmosphere interactions and energy fluxes between the surface and the atmosphere. An adequate characterization of LST distribution and its temporal evolution requires measurements with detailed spatial and temporal frequencies. With the advent of the Sentinel 2 (S2) and 3 (S3) series of satellites a unique opportunity exists to go beyond the current state of the art of single instrument algorithms. The Synergistic Use of The Sentinel Missions For Estimating And Monitoring Land Surface Temperature (SEN4LST) project aims at developing techniques to fully utilize synergy between S2 and S3 instruments in order to improve LST retrievals. In the framework of the SEN4LST project, three LST retrieval algorithms were proposed using the thermal infrared bands of the Sea and Land Surface Temperature Retrieval (SLSTR) instrument on board the S3 platform: split-window (SW), dual-angle (DA) and a combined algorithm using both split-window and dual-angle techniques (SW-DA). One of the objectives of the project is to select the best algorithm to generate LST products from the synergy between S2/S3 instruments. In this sense, validation is a critical step in the selection process for the best performing candidate algorithm. A unique match-up database constructed at University of Leicester (UoL) of in situ observations from over twenty ground stations and corresponding brightness temperature (BT) and LST match-ups from multi-sensor overpasses is utilised for validating the candidate algorithms. Furthermore, their performance is also evaluated against the standard ESA LST product and the enhanced offline UoL LST product. In addition, a simulation dataset is constructed using 17 synthetic images of LST and the radiative transfer model MODTRAN carried under 66 different atmospheric conditions. Each candidate LST

  4. Reconstruction of an object from its Fourier modulus: development of the combination algorithm composed of the hybrid input-output algorithm and its converging part

    NASA Astrophysics Data System (ADS)

    Takajo, Hiroaki; Takahashi, Tohru; Itoh, Katsuhiko; Fujisaki, Toshiro

    2002-10-01

    The hybrid input-output algorithm (HIO) used for phase retrieval is in many cases combined with the error-reduction algorithm (ER) to attempt to stabilize the HIO. However, in our previous paper [J. Opt. Soc. Am. A 16, 2163 (1999)], it was demonstrated that this combination makes it more likely that the resultant algorithm will fall into a periodic state before reaching a solution because the values of the input object outside the support, which is imposed as the object-domain constraint, are set to be zero in the intervals in which the ER is implemented. This paper deals with this problem inherent in the combination algorithm. The converging part of the HIO (CPHIO), which is an algorithm we previously developed [J. Opt. Soc. Am. A 15, 2849 (1998)], can be thought of as an extension of the ER for the case in which the input object can have nonzero values outside the support. Keeping this in mind, the algorithm is then constructed by combining the HIO with the CPHIO instead of with the ER. The computer simulation results that demonstrate the effectiveness of the proposed algorithm are given.

  5. Reconstruction of an object from its Fourier modulus: development of the combination algorithm composed of the hybrid input-output algorithm and its converging part.

    PubMed

    Takajo, Hiroaki; Takahashi, Tohru; Itoh, Katsuhiko; Fujisaki, Toshiro

    2002-10-10

    The hybrid input-output algorithm (HIO) used for phase retrieval is in many cases combined with the error-reduction algorithm (ER) to attempt to stabilize the HIO. However, in our previous paper [J. Opt. Soc. Am. A 16, 2163 (1999)], it was demonstrated that this combination makes it more likely that the resultant algorithm will fall into a periodic state before reaching a solution because the values of the input object outside the support, which is imposed as the object-domain constraint, are set to be zero in the intervals in which the ER is implemented. This paper deals with this problem inherent in the combination algorithm. The converging part of the HIO (CPHIO), which is an algorithm we previously developed [J. Opt. Soc. Am. A 15, 2849 (1998)], can be thought of as an extension of the ER for the case in which the input object can have nonzero values outside the support. Keeping this in mind, the algorithm is then constructed by combining the HIO with the CPHIO instead of with the ER. The computer simulation results that demonstrate the effectiveness of the proposed algorithm are given.

  6. Spontaneous network activity and synaptic development

    PubMed Central

    Kerschensteiner, Daniel

    2014-01-01

    Throughout development, the nervous system produces patterned spontaneous activity. Research over the last two decades has revealed a core group of mechanisms that mediate spontaneous activity in diverse circuits. Many circuits engage several of these mechanisms sequentially to accommodate developmental changes in connectivity. In addition to shared mechanisms, activity propagates through developing circuits and neuronal pathways (i.e. linked circuits in different brain areas) in stereotypic patterns. Increasing evidence suggests that spontaneous network activity shapes synaptic development in vivo. Variations in activity-dependent plasticity may explain how similar mechanisms and patterns of activity can be employed to establish diverse circuits. Here, I will review common mechanisms and patterns of spontaneous activity in emerging neural networks and discuss recent insights into their contribution to synaptic development. PMID:24280071

  7. Atmospheric Correction, Vicarious Calibration and Development of Algorithms for Quantifying Cyanobacteria Blooms from Oceansat-1 OCM Satellite Data

    NASA Astrophysics Data System (ADS)

    Dash, P.; Walker, N. D.; Mishra, D. R.; Hu, C.; D'Sa, E. J.; Pinckney, J. L.

    2011-12-01

    Cyanobacteria represent a major harmful algal group in fresh to brackish water environments. Lac des Allemands, a freshwater lake located southwest of New Orleans, Louisiana on the upper end of the Barataria Estuary, provides a natural laboratory for remote characterization of cyanobacteria blooms because of their seasonal occurrence. The Ocean Colour Monitor (OCM) sensor provides radiance measurements similar to SeaWiFS but with higher spatial resolution. However, OCM does not have a standard atmospheric correction procedure, and it is difficult to find a detailed description of the entire atmospheric correction procedure for ocean (or lake) in one place. Atmospheric correction of satellite data over small lakes and estuaries (Case 2 waters) is also challenging due to difficulties in estimation of aerosol scattering accurately in these areas. Therefore, an atmospheric correction procedure was written for processing OCM data, based on the extensive work done for SeaWiFS. Since OCM-retrieved radiances were abnormally low in the blue wavelength region, a vicarious calibration procedure was also developed. Empirical inversion algorithms were developed to convert the OCM remote sensing reflectance (Rrs) at bands centered at 510.6 and 556.4 nm to concentrations of phycocyanin (PC), the primary cyanobacterial pigment. A holistic approach was followed to minimize the influence of other optically active constituents on the PC algorithm. Similarly, empirical algorithms to estimate chlorophyll a (Chl a) concentrations were developed using OCM bands centered at 556.4 and 669 nm. The best PC algorithm (R2=0.7450, p<0.0001, n=72) yielded a root mean square error (RMSE) of 36.92 μg/L with a relative RMSE of 10.27% (PC from 2.75-363.50 μg/L, n=48). The best algorithm for Chl a (R2=0.7510, p<0.0001, n=72) produced an RMSE of 31.19 μg/L with a relative RMSE of 16.56% (Chl a from 9.46-212.76 μg/L, n=48). While more field data are required to further validate the long

  8. Development of sensor-based nitrogen recommendation algorithms for cereal crops

    NASA Astrophysics Data System (ADS)

    Asebedo, Antonio Ray

    Nitrogen (N) management is one of the most recognizable components of farming both within and outside the world of agriculture. Interest over the past decade has greatly increased in improving N management systems in corn (Zea mays) and winter wheat (Triticum aestivum ) to have high NUE, high yield, and be environmentally sustainable. Nine winter wheat experiments were conducted across seven locations from 2011 through 2013. The objectives of this study were to evaluate the impacts of fall-winter, Feekes 4, Feekes 7, and Feekes 9 N applications on winter wheat grain yield, grain protein, and total grain N uptake. Nitrogen treatments were applied as single or split applications in the fall-winter, and top-dressed in the spring at Feekes 4, Feekes 7, and Feekes 9 with applied N rates ranging from 0 to 134 kg ha-1. Results indicate that Feekes 7 and 9 N applications provide more optimal combinations of grain yield, grain protein levels, and fertilizer N recovered in the grain when compared to comparable rates of N applied in the fall-winter or at Feekes 4. Winter wheat N management studies from 2006 through 2013 were utilized to develop sensor-based N recommendation algorithms for winter wheat in Kansas. Algorithm RosieKat v.2.6 was designed for multiple N application strategies and utilized N reference strips for establishing N response potential. Algorithm NRS v1.5 addressed single top-dress N applications and does not require a N reference strip. In 2013, field validations of both algorithms were conducted at eight locations across Kansas. Results show algorithm RK v2.6 consistently provided highly efficient N recommendations for improving NUE, while achieving high grain yield and grain protein. Without the use of the N reference strip, NRS v1.5 performed statistically equal to the KSU soil test N recommendation in regards to grain yield but with lower applied N rates. Six corn N fertigation experiments were conducted at KSU irrigated experiment fields from 2012

  9. Development of an IMU-based foot-ground contact detection (FGCD) algorithm.

    PubMed

    Kim, Myeongkyu; Lee, Donghun

    2017-03-01

    It is well known that, to locate humans in GPS-denied environments, a lower limb kinematic solution based on Inertial Measurement Unit (IMU), force plate, and pressure insoles is essential. The force plate and pressure insole are used to detect foot-ground contacts. However, the use of multiple sensors is not desirable in most cases. This paper documents the development of an IMU-based FGCD (foot-ground contact detection) algorithm considering the variations of both walking terrain and speed. All IMU outputs showing significant changes on the moments of foot-ground contact phases are fully identified through experiments in five walking terrains. For the experiment on each walking terrain, variations of walking speeds are also examined to confirm the correlations between walking speed and the main parameters in the FGCD algorithm. As experimental results, FGCD algorithm successfully detecting four contact phases is developed, and validation of performance of the FGCD algorithm is also implemented. Practitioner Summary: In this research, it was demonstrated that the four contact phases of Heel strike (or Toe strike), Full contact, Heel off and Toe off can be independently detected regardless of the walking speed and walking terrain based on the detection criteria composed of the ranges and the rates of change of the main parameters measured from the Inertial Measurement Unit sensors.

  10. jClustering, an Open Framework for the Development of 4D Clustering Algorithms

    PubMed Central

    Mateos-Pérez, José María; García-Villalba, Carmen; Pascau, Javier; Desco, Manuel; Vaquero, Juan J.

    2013-01-01

    We present jClustering, an open framework for the design of clustering algorithms in dynamic medical imaging. We developed this tool because of the difficulty involved in manually segmenting dynamic PET images and the lack of availability of source code for published segmentation algorithms. Providing an easily extensible open tool encourages publication of source code to facilitate the process of comparing algorithms and provide interested third parties with the opportunity to review code. The internal structure of the framework allows an external developer to implement new algorithms easily and quickly, focusing only on the particulars of the method being implemented and not on image data handling and preprocessing. This tool has been coded in Java and is presented as an ImageJ plugin in order to take advantage of all the functionalities offered by this imaging analysis platform. Both binary packages and source code have been published, the latter under a free software license (GNU General Public License) to allow modification if necessary. PMID:23990913

  11. jClustering, an open framework for the development of 4D clustering algorithms.

    PubMed

    Mateos-Pérez, José María; García-Villalba, Carmen; Pascau, Javier; Desco, Manuel; Vaquero, Juan J

    2013-01-01

    We present jClustering, an open framework for the design of clustering algorithms in dynamic medical imaging. We developed this tool because of the difficulty involved in manually segmenting dynamic PET images and the lack of availability of source code for published segmentation algorithms. Providing an easily extensible open tool encourages publication of source code to facilitate the process of comparing algorithms and provide interested third parties with the opportunity to review code. The internal structure of the framework allows an external developer to implement new algorithms easily and quickly, focusing only on the particulars of the method being implemented and not on image data handling and preprocessing. This tool has been coded in Java and is presented as an ImageJ plugin in order to take advantage of all the functionalities offered by this imaging analysis platform. Both binary packages and source code have been published, the latter under a free software license (GNU General Public License) to allow modification if necessary.

  12. Review and Analysis of Algorithmic Approaches Developed for Prognostics on CMAPSS Dataset

    NASA Technical Reports Server (NTRS)

    Ramasso, Emannuel; Saxena, Abhinav

    2014-01-01

    Benchmarking of prognostic algorithms has been challenging due to limited availability of common datasets suitable for prognostics. In an attempt to alleviate this problem several benchmarking datasets have been collected by NASA's prognostic center of excellence and made available to the Prognostics and Health Management (PHM) community to allow evaluation and comparison of prognostics algorithms. Among those datasets are five C-MAPSS datasets that have been extremely popular due to their unique characteristics making them suitable for prognostics. The C-MAPSS datasets pose several challenges that have been tackled by different methods in the PHM literature. In particular, management of high variability due to sensor noise, effects of operating conditions, and presence of multiple simultaneous fault modes are some factors that have great impact on the generalization capabilities of prognostics algorithms. More than 70 publications have used the C-MAPSS datasets for developing data-driven prognostic algorithms. The C-MAPSS datasets are also shown to be well-suited for development of new machine learning and pattern recognition tools for several key preprocessing steps such as feature extraction and selection, failure mode assessment, operating conditions assessment, health status estimation, uncertainty management, and prognostics performance evaluation. This paper summarizes a comprehensive literature review of publications using C-MAPSS datasets and provides guidelines and references to further usage of these datasets in a manner that allows clear and consistent comparison between different approaches.

  13. DEVELOPMENT OF PROCESSING ALGORITHMS FOR OUTLIERS AND MISSING VALUES IN CONSTANT OBSERVATION DATA OF TRAFFIC VOLUMES

    NASA Astrophysics Data System (ADS)

    Hashimoto, Hiroyoshi; Kawano, Tomohiko; Momma, Toshiyuki; Uesaka, Katsumi

    Ministry of Land, Infrastructure, Transport and Tourism of Japan is going to make maximum use of vehicle detectors installed at national roads around the country and efficiently gather traffic volume data from wide areas by estimating traffic volumes within adjacent road sections based on the constant observation data obtained from the vehicle detectors. Efficient processing of outliers and missing values in constant observation data are needed in this process. Focusing on the processing of singular and missing values, the authors have developed a series of algorithms to calculate hourly traffic volumes in which a required accuracy is secured based on measurement data obtained from vehicle detectors. The algorithms have been put to practical uses. The main characteristic of these algorithms is that they use data accumulated in the past as well as data from constant observation devices in adjacent road sections. This paper describes the contents of the developed algorithms and clarifies their accuracy using actual observation data and by making comparis on with other methods.

  14. Space-based Doppler lidar sampling strategies: Algorithm development and simulated observation experiments

    NASA Technical Reports Server (NTRS)

    Emmitt, G. D.; Wood, S. A.; Morris, M.

    1990-01-01

    Lidar Atmospheric Wind Sounder (LAWS) Simulation Models (LSM) were developed to evaluate the potential impact of global wind observations on the basic understanding of the Earth's atmosphere and on the predictive skills of current forecast models (GCM and regional scale). Fully integrated top to bottom LAWS Simulation Models for global and regional scale simulations were developed. The algorithm development incorporated the effects of aerosols, water vapor, clouds, terrain, and atmospheric turbulence into the models. Other additions include a new satellite orbiter, signal processor, line of sight uncertainty model, new Multi-Paired Algorithm and wind error analysis code. An atmospheric wind field library containing control fields, meteorological fields, phenomena fields, and new European Center for Medium Range Weather Forecasting (ECMWF) data was also added. The LSM was used to address some key LAWS issues and trades such as accuracy and interpretation of LAWS information, data density, signal strength, cloud obscuration, and temporal data resolution.

  15. Application of custom tools and algorithms to the development of terrain and target models

    NASA Astrophysics Data System (ADS)

    Wilkosz, Aaron; Williams, Bryan L.; Motz, Steve

    2003-09-01

    In this paper we give a high level discussion outlining methodologies and techniques employed in generating high fidelity terrain and target models. We present the current state of our IR signature development efforts, cover custom tools and algorithms, and discuss future plans. We outline the steps required to derive an IR terrain and target signature models, and provide some details about algorithms developed to classify aerial imagery. In addition, we discuss our tool used to apply IR signature data to tactical vehicle models. We discuss how we process the empirical IR data of target vehicles, apply it to target models, and generate target signature models that correlate with the measured calibrated IR data. The developed characterization databases and target models are used in digital simulations by various customers within the US Army Aviation and Missile Command (AMCOM).

  16. Infrared active polarimetric imaging system controlled by image segmentation algorithms: application to decamouflage

    NASA Astrophysics Data System (ADS)

    Vannier, Nicolas; Goudail, François; Plassart, Corentin; Boffety, Matthieu; Feneyrou, Patrick; Leviandier, Luc; Galland, Frédéric; Bertaux, Nicolas

    2016-05-01

    We describe an active polarimetric imager with laser illumination at 1.5 µm that can generate any illumination and analysis polarization state on the Poincar sphere. Thanks to its full polarization agility and to image analysis of the scene with an ultrafast active-contour based segmentation algorithm, it can perform adaptive polarimetric contrast optimization. We demonstrate the capacity of this imager to detect manufactured objects in different types of environments for such applications as decamouflage and hazardous object detection. We compare two imaging modes having different number of polarimetric degrees of freedom and underline the characteristics that a polarimetric imager aimed at this type of applications should possess.

  17. Informing radar retrieval algorithm development using an alternative soil moisture validation technique

    NASA Astrophysics Data System (ADS)

    Crow, W. T.; Wagner, W.

    2009-12-01

    incidence angle on retrieval skill. Results imply the need for a significant interaction term in vegetation backscatter models in order to match the observed relationship between incidence angle and retrieval skill. Implications for the development of radar retrieval algorithms for the NASA Soil Moisture Active/Passive (SMAP) mission will be discussed.

  18. A novel fair active queue management algorithm based on traffic delay jitter

    NASA Astrophysics Data System (ADS)

    Wang, Xue-Shun; Yu, Shao-Hua; Dai, Jin-You; Luo, Ting

    2009-11-01

    In order to guarantee the quantity of data traffic delivered in the network, congestion control strategy is adopted. According to the study of many active queue management (AQM) algorithms, this paper proposes a novel active queue management algorithm named JFED. JFED can stabilize queue length at a desirable level by adjusting output traffic rate and adopting a reasonable calculation of packet drop probability based on buffer queue length and traffic jitter; and it support burst packet traffic through the packet delay jitter, so that it can traffic flow medium data. JFED impose effective punishment upon non-responsible flow with a full stateless method. To verify the performance of JFED, it is implemented in NS2 and is compared with RED and CHOKe with respect to different performance metrics. Simulation results show that the proposed JFED algorithm outperforms RED and CHOKe in stabilizing instantaneous queue length and in fairness. It is also shown that JFED enables the link capacity to be fully utilized by stabilizing the queue length at a desirable level, while not incurring excessive packet loss ratio.

  19. Development of Outlier detection Algorithm Applicable to a Korean Surge-Gauge

    NASA Astrophysics Data System (ADS)

    Lee, Jun-Whan; Park, Sun-Cheon; Lee, Won-Jin; Lee, Duk Kee

    2016-04-01

    The Korea Meteorological Administration (KMA) is operating a surge-gauge (aerial ultrasonic type) at Ulleung-do to monitor tsunamis. And the National Institute of Meteorological Sciences (NIMS), KMA is developing a tsunami detection and observation system using this surge-gauge. Outliers resulting from a problem with the transmission and extreme events, which change the water level temporarily, are one of the most common discouraging problems in tsunami detection. Unlike a spike, multipoint outliers are difficult to detect clearly. Most of the previous studies used statistic values or signal processing methods such as wavelet transform and filter to detect the multipoint outliers, and used a continuous dataset. However, as the focus moved to a near real-time operation with a dataset that contains gaps, these methods are no longer tenable. In this study, we developed an outlier detection algorithm applicable to the Ulleung-do surge gauge where both multipoint outliers and missing data exist. Although only 9-point data and two arithmetic operations (plus and minus) are used, because of the newly developed keeping method, the algorithm is not only simple and fast but also effective in a non-continuous dataset. We calibrated 17 thresholds and conducted performance tests using the three month data from the Ulleung-do surge gauge. The results show that the newly developed despiking algorithm performs reliably in alleviating the outlier detecting problem.

  20. Development of a novel algorithm to determine adherence to chronic pain treatment guidelines using administrative claims

    PubMed Central

    Margolis, Jay M; Princic, Nicole; Smith, David M; Abraham, Lucy; Cappelleri, Joseph C; Shah, Sonali N; Park, Peter W

    2017-01-01

    Objective To develop a claims-based algorithm for identifying patients who are adherent versus nonadherent to published guidelines for chronic pain management. Methods Using medical and pharmacy health care claims from the MarketScan® Commercial and Medicare Supplemental Databases, patients were selected during July 1, 2010, to June 30, 2012, with the following chronic pain conditions: osteoarthritis (OA), gout (GT), painful diabetic peripheral neuropathy (pDPN), post-herpetic neuralgia (PHN), and fibromyalgia (FM). Patients newly diagnosed with 12 months of continuous medical and pharmacy benefits both before and after initial diagnosis (index date) were categorized as adherent, nonadherent, or unsure according to the guidelines-based algorithm using disease-specific pain medication classes grouped as first-line, later-line, or not recommended. Descriptive and multivariate analyses compared patient outcomes with algorithm-derived categorization endpoints. Results A total of 441,465 OA patients, 76,361 GT patients, 10,645 pDPN, 4,010 PHN patients, and 150,321 FM patients were included in the development of the algorithm. Patients found adherent to guidelines included 51.1% for OA, 25% for GT, 59.5% for pDPN, 54.9% for PHN, and 33.5% for FM. The majority (~90%) of patients adherent to the guidelines initiated therapy with prescriptions for first-line pain medications written for a minimum of 30 days. Patients found nonadherent to guidelines included 30.7% for OA, 6.8% for GT, 34.9% for pDPN, 23.1% for PHN, and 34.7% for FM. Conclusion This novel algorithm used real-world pharmacotherapy treatment patterns to evaluate adherence to pain management guidelines in five chronic pain conditions. Findings suggest that one-third to one-half of patients are managed according to guidelines. This method may have valuable applications for health care payers and providers analyzing treatment guideline adherence. PMID:28223842

  1. Data and software tools for gamma radiation spectral threat detection and nuclide identification algorithm development and evaluation

    NASA Astrophysics Data System (ADS)

    Portnoy, David; Fisher, Brian; Phifer, Daniel

    2015-06-01

    The detection of radiological and nuclear threats is extremely important to national security. The federal government is spending significant resources developing new detection systems and attempting to increase the performance of existing ones. The detection of illicit radionuclides that may pose a radiological or nuclear threat is a challenging problem complicated by benign radiation sources (e.g., cat litter and medical treatments), shielding, and large variations in background radiation. Although there is a growing acceptance within the community that concentrating efforts on algorithm development (independent of the specifics of fully assembled systems) has the potential for significant overall system performance gains, there are two major hindrances to advancements in gamma spectral analysis algorithms under the current paradigm: access to data and common performance metrics along with baseline performance measures. Because many of the signatures collected during performance measurement campaigns are classified, dissemination to algorithm developers is extremely limited. This leaves developers no choice but to collect their own data if they are lucky enough to have access to material and sensors. This is often combined with their own definition of metrics for measuring performance. These two conditions make it all but impossible for developers and external reviewers to make meaningful comparisons between algorithms. Without meaningful comparisons, performance advancements become very hard to achieve and (more importantly) recognize. The objective of this work is to overcome these obstacles by developing and freely distributing real and synthetically generated gamma-spectra data sets as well as software tools for performance evaluation with associated performance baselines to national labs, academic institutions, government agencies, and industry. At present, datasets for two tracks, or application domains, have been developed: one that includes temporal

  2. Development of an Aircraft Approach and Departure Atmospheric Profile Generation Algorithm

    NASA Technical Reports Server (NTRS)

    Buck, Bill K.; Velotas, Steven G.; Rutishauser, David K. (Technical Monitor)

    2004-01-01

    In support of NASA Virtual Airspace Modeling and Simulation (VAMS) project, an effort was initiated to develop and test techniques for extracting meteorological data from landing and departing aircraft, and for building altitude based profiles for key meteorological parameters from these data. The generated atmospheric profiles will be used as inputs to NASA s Aircraft Vortex Spacing System (AVOLSS) Prediction Algorithm (APA) for benefits and trade analysis. A Wake Vortex Advisory System (WakeVAS) is being developed to apply weather and wake prediction and sensing technologies with procedures to reduce current wake separation criteria when safe and appropriate to increase airport operational efficiency. The purpose of this report is to document the initial theory and design of the Aircraft Approach Departure Atmospheric Profile Generation Algorithm.

  3. Development of Cloud and Precipitation Property Retrieval Algorithms and Measurement Simulators from ASR Data

    SciTech Connect

    Mace, Gerald G.

    2016-02-10

    What has made the ASR program unique is the amount of information that is available. The suite of recently deployed instruments significantly expands the scope of the program (Mather and Voyles, 2013). The breadth of this information allows us to pose sophisticated process-level questions. Our ASR project, now entering its third year, has been about developing algorithms that use this information in ways that fully exploit the new capacity of the ARM data streams. Using optimal estimation (OE) and Markov Chain Monte Carlo (MCMC) inversion techniques, we have developed methodologies that allow us to use multiple radar frequency Doppler spectra along with lidar and passive constraints where data streams can be added or subtracted efficiently and algorithms can be reformulated for various combinations of hydrometeors by exchanging sets of empirical coefficients. These methodologies have been applied to boundary layer clouds, mixed phase snow cloud systems, and cirrus.

  4. Forecasting of the development of professional medical equipment engineering based on neuro-fuzzy algorithms

    NASA Astrophysics Data System (ADS)

    Vaganova, E. V.; Syryamkin, M. V.

    2015-11-01

    The purpose of the research is the development of evolutionary algorithms for assessments of promising scientific directions. The main attention of the present study is paid to the evaluation of the foresight possibilities for identification of technological peaks and emerging technologies in professional medical equipment engineering in Russia and worldwide on the basis of intellectual property items and neural network modeling. An automated information system consisting of modules implementing various classification methods for accuracy of the forecast improvement and the algorithm of construction of neuro-fuzzy decision tree have been developed. According to the study result, modern trends in this field will focus on personalized smart devices, telemedicine, bio monitoring, «e-Health» and «m-Health» technologies.

  5. Development and Evaluation of Single-Microphone Noise Reduction Algorithms for Digital Hearing Aids

    NASA Astrophysics Data System (ADS)

    Marzinzik, Mark; Kollmeier, Birger

    In this study single-microphone noise reduction procedures were investigated for use in digital hearing aids. One widely reported artifact of most noise suppression systems, the musical noise phenomenon, can partly be overcome by the Ephraim-Malah noise suppression algorithms [1,2]. Based on these algorithms, three different versions have been implemented together with a procedure for automatically updating the noise-spectrum estimate. To evaluate the algorithms, different tests have been performed with six normal-hearing and six hearing-impaired subjects. With `standard' measurement methods no increase in speech intelligibility was found compared to the unprocessed signal. However, benefits with respect to reductions in listener fatigue and in the mental effort needed to listen to speech in noise over longer periods of time were found in this study by use of a newly developed ease-of-listening test. Subsequent paired comparison tests also revealed a clear preference of the hearing-impaired subjects for the noise-reduced signals in situations with rather stationary noise. In the case of strongly fluctuating noise at low SNR, however, the subjects preferred the unprocessed signal due to speech distortions caused by the noise reduction algorithms.

  6. Development and application of efficient pathway enumeration algorithms for metabolic engineering applications.

    PubMed

    Liu, F; Vilaça, P; Rocha, I; Rocha, M

    2015-02-01

    Metabolic Engineering (ME) aims to design microbial cell factories towards the production of valuable compounds. In this endeavor, one important task relates to the search for the most suitable heterologous pathway(s) to add to the selected host. Different algorithms have been developed in the past towards this goal, following distinct approaches spanning constraint-based modeling, graph-based methods and knowledge-based systems based on chemical rules. While some of these methods search for pathways optimizing specific objective functions, here the focus will be on methods that address the enumeration of pathways that are able to convert a set of source compounds into desired targets and their posterior evaluation according to different criteria. Two pathway enumeration algorithms based on (hyper)graph-based representations are selected as the most promising ones and are analyzed in more detail: the Solution Structure Generation and the Find Path algorithms. Their capabilities and limitations are evaluated when designing novel heterologous pathways, by applying these methods on three case studies of synthetic ME related to the production of non-native compounds in E. coli and S. cerevisiae: 1-butanol, curcumin and vanillin. Some targeted improvements are implemented, extending both methods to address limitations identified that impair their scalability, improving their ability to extract potential pathways over large-scale databases. In all case-studies, the algorithms were able to find already described pathways for the production of the target compounds, but also alternative pathways that can represent novel ME solutions after further evaluation.

  7. Development of Algorithms for Control of Humidity in Plant Growth Chambers

    NASA Technical Reports Server (NTRS)

    Costello, Thomas A.

    2003-01-01

    Algorithms were developed to control humidity in plant growth chambers used for research on bioregenerative life support at Kennedy Space Center. The algorithms used the computed water vapor pressure (based on measured air temperature and relative humidity) as the process variable, with time-proportioned outputs to operate the humidifier and de-humidifier. Algorithms were based upon proportional-integral-differential (PID) and Fuzzy Logic schemes and were implemented using I/O Control software (OPTO-22) to define and download the control logic to an autonomous programmable logic controller (PLC, ultimate ethernet brain and assorted input-output modules, OPTO-22), which performed the monitoring and control logic processing, as well the physical control of the devices that effected the targeted environment in the chamber. During limited testing, the PLC's successfully implemented the intended control schemes and attained a control resolution for humidity of less than 1%. The algorithms have potential to be used not only with autonomous PLC's but could also be implemented within network-based supervisory control programs. This report documents unique control features that were implemented within the OPTO-22 framework and makes recommendations regarding future uses of the hardware and software for biological research by NASA.

  8. MEMS-based sensing and algorithm development for fall detection and gait analysis

    NASA Astrophysics Data System (ADS)

    Gupta, Piyush; Ramirez, Gabriel; Lie, Donald Y. C.; Dallas, Tim; Banister, Ron E.; Dentino, Andrew

    2010-02-01

    Falls by the elderly are highly detrimental to health, frequently resulting in injury, high medical costs, and even death. Using a MEMS-based sensing system, algorithms are being developed for detecting falls and monitoring the gait of elderly and disabled persons. In this study, wireless sensors utilize Zigbee protocols were incorporated into planar shoe insoles and a waist mounted device. The insole contains four sensors to measure pressure applied by the foot. A MEMS based tri-axial accelerometer is embedded in the insert and a second one is utilized by the waist mounted device. The primary fall detection algorithm is derived from the waist accelerometer. The differential acceleration is calculated from samples received in 1.5s time intervals. This differential acceleration provides the quantification via an energy index. From this index one may ascertain different gait and identify fall events. Once a pre-determined index threshold is exceeded, the algorithm will classify an event as a fall or a stumble. The secondary algorithm is derived from frequency analysis techniques. The analysis consists of wavelet transforms conducted on the waist accelerometer data. The insole pressure data is then used to underline discrepancies in the transforms, providing more accurate data for classifying gait and/or detecting falls. The range of the transform amplitude in the fourth iteration of a Daubechies-6 transform was found sufficient to detect and classify fall events.

  9. A Focus Group on Dental Pain Complaints with General Medical Practitioners: Developing a Treatment Algorithm.

    PubMed

    Carter, Ava Elizabeth; Carter, Geoff; Abbey, Robyn

    2016-01-01

    Objective. The differential diagnosis of pain in the mouth can be challenging for general medical practitioners (GMPs) as many different dental problems can present with similar signs and symptoms. This study aimed to create a treatment algorithm for GMPs to effectively and appropriately refer the patients and prescribe antibiotics. Design. The study design is comprised of qualitative focus group discussions. Setting and Subjects. Groups of GMPs within the Gold Coast and Brisbane urban and city regions. Outcome Measures. Content thematically analysed and treatment algorithm developed. Results. There were 5 focus groups with 8-9 participants per group. Addressing whether antibiotics should be given to patients with dental pain was considered very important to GMPs to prevent overtreatment and creating antibiotic resistance. Many practitioners were unsure of what the different forms of dental pains represent. 90% of the practitioners involved agreed that the treatment algorithm was useful to daily practice. Conclusion. Common dental complaints and infections are seldom surgical emergencies but can result in prolonged appointments for those GMPs who do not regularly deal with these issues. The treatment algorithm for referral processes and prescriptions was deemed easily downloadable and simple to interpret and detailed but succinct enough for clinical use by GMPs.

  10. Development of a validated algorithm for the diagnosis of paediatric asthma in electronic medical records

    PubMed Central

    Cave, Andrew J; Davey, Christina; Ahmadi, Elaheh; Drummond, Neil; Fuentes, Sonia; Kazemi-Bajestani, Seyyed Mohammad Reza; Sharpe, Heather; Taylor, Matt

    2016-01-01

    An accurate estimation of the prevalence of paediatric asthma in Alberta and elsewhere is hampered by uncertainty regarding disease definition and diagnosis. Electronic medical records (EMRs) provide a rich source of clinical data from primary-care practices that can be used in better understanding the occurrence of the disease. The Canadian Primary Care Sentinel Surveillance Network (CPCSSN) database includes cleaned data extracted from the EMRs of primary-care practitioners. The purpose of the study was to develop and validate a case definition of asthma in children 1–17 who consult family physicians, in order to provide primary-care estimates of childhood asthma in Alberta as accurately as possible. The validation involved the comparison of the application of a theoretical algorithm (to identify patients with asthma) to a physician review of records included in the CPCSSN database (to confirm an accurate diagnosis). The comparison yielded 87.4% sensitivity, 98.6% specificity and a positive and negative predictive value of 91.2% and 97.9%, respectively, in the age group 1–17 years. The algorithm was also run for ages 3–17 and 6–17 years, and was found to have comparable statistical values. Overall, the case definition and algorithm yielded strong sensitivity and specificity metrics and was found valid for use in research in CPCSSN primary-care practices. The use of the validated asthma algorithm may improve insight into the prevalence, diagnosis, and management of paediatric asthma in Alberta and Canada. PMID:27882997

  11. A Focus Group on Dental Pain Complaints with General Medical Practitioners: Developing a Treatment Algorithm

    PubMed Central

    Carter, Geoff; Abbey, Robyn

    2016-01-01

    Objective. The differential diagnosis of pain in the mouth can be challenging for general medical practitioners (GMPs) as many different dental problems can present with similar signs and symptoms. This study aimed to create a treatment algorithm for GMPs to effectively and appropriately refer the patients and prescribe antibiotics. Design. The study design is comprised of qualitative focus group discussions. Setting and Subjects. Groups of GMPs within the Gold Coast and Brisbane urban and city regions. Outcome Measures. Content thematically analysed and treatment algorithm developed. Results. There were 5 focus groups with 8-9 participants per group. Addressing whether antibiotics should be given to patients with dental pain was considered very important to GMPs to prevent overtreatment and creating antibiotic resistance. Many practitioners were unsure of what the different forms of dental pains represent. 90% of the practitioners involved agreed that the treatment algorithm was useful to daily practice. Conclusion. Common dental complaints and infections are seldom surgical emergencies but can result in prolonged appointments for those GMPs who do not regularly deal with these issues. The treatment algorithm for referral processes and prescriptions was deemed easily downloadable and simple to interpret and detailed but succinct enough for clinical use by GMPs. PMID:27462469

  12. Progress on the development of automated data analysis algorithms and software for ultrasonic inspection of composites

    NASA Astrophysics Data System (ADS)

    Aldrin, John C.; Coughlin, Chris; Forsyth, David S.; Welter, John T.

    2014-02-01

    Progress is presented on the development and implementation of automated data analysis (ADA) software to address the burden in interpreting ultrasonic inspection data for large composite structures. The automated data analysis algorithm is presented in detail, which follows standard procedures for analyzing signals for time-of-flight indications and backwall amplitude dropout. ADA processing results are presented for test specimens that include inserted materials and discontinuities produced under poor manufacturing conditions.

  13. Ocean Observations with EOS/MODIS: Algorithm Development and Post Launch Studies

    NASA Technical Reports Server (NTRS)

    Gordon, Howard R.

    1997-01-01

    Significant accomplishments made during the present reporting period are as follows: (1) We developed a new method for identifying the presence of absorbing aerosols and, simultaneously, performing atmospheric correction. The algorithm consists of optimizing the match between the top-of-atmosphere radiance spectrum and the result of models of both the ocean and aerosol optical properties; (2) We developed an algorithm for providing an accurate computation of the diffuse transmittance of the atmosphere given an aerosol model. A module for inclusion into the MODIS atmospheric-correction algorithm was completed; (3) We acquired reflectance data for oceanic whitecaps during a cruise on the RV Ka'imimoana in the Tropical Pacific (Manzanillo, Mexico to Honolulu, Hawaii). The reflectance spectrum of whitecaps was found to be similar to that for breaking waves in the surf zone measured by Frouin, Schwindling and Deschamps, however, the drop in augmented reflectance from 670 to 860 nm was not as great, and the magnitude of the augmented reflectance was significantly less than expected; and (4) We developed a method for the approximate correction for the effects of the MODIS polarization sensitivity. The correction, however, requires adequate characterization of the polarization sensitivity of MODIS prior to launch.

  14. Development of an algorithm for identifying rheumatoid arthritis in the Korean National Health Insurance claims database.

    PubMed

    Cho, Soo-Kyung; Sung, Yoon-Kyoung; Choi, Chan-Bum; Kwon, Jeong-Mi; Lee, Eui-Kyung; Bae, Sang-Cheol

    2013-12-01

    This study aimed to develop an identification algorithm for validating the International Classification of Diseases-Tenth diagnostic codes for rheumatoid arthritis (RA) in the Korean National Health Insurance (NHI) claims database. An individual copayment beneficiaries program for rare and intractable diseases, including seropositive RA (M05), began in South Korea in July 2009. Patients registered in this system pay only 10 % of their total medical costs, but registration requires an official report from a doctor documenting that the patient fulfills the 1987 ACR criteria. We regarded patients registered in this system as gold standard RA and examined the validity of several algorithms to define RA diagnosis using diagnostic codes and prescription data. We constructed nine algorithms using two highly specific prescriptions (positive predictive value >90 % and specificity >90 %) and one prescription with high sensitivity (>80 %) and accuracy (>75 %). A total of 59,823 RA patients were included in this validation study. Among them, 50,082 (83.7 %) were registered in the individual copayment beneficiaries program and considered true RA. We tested nine algorithms that incorporated two specific regimens [biologics and leflunomide alone, methotrexate plus leflunomide, or more than 3 disease-modifying anti-rheumatic drugs (DMARDs)] and one sensitive drug (any non-steroidal anti-inflammatory drug (NSAID), any DMARD, or any NSAID plus any DMARD). The algorithm that included biologics, more than 3 DMARDs, and any DMARD yielded the highest accuracy (91.4 %). Patients with RA diagnostic codes with prescription of biologics or any DMARD can be considered as accurate cases of RA in Korean NHI claims database.

  15. Development and evaluation of an articulated registration algorithm for human skeleton registration.

    PubMed

    Yip, Stephen; Perk, Timothy; Jeraj, Robert

    2014-03-21

    Accurate registration over multiple scans is necessary to assess treatment response of bone diseases (e.g. metastatic bone lesions). This study aimed to develop and evaluate an articulated registration algorithm for the whole-body skeleton registration in human patients. In articulated registration, whole-body skeletons are registered by auto-segmenting into individual bones using atlas-based segmentation, and then rigidly aligning them. Sixteen patients (weight = 80-117 kg, height = 168-191 cm) with advanced prostate cancer underwent the pre- and mid-treatment PET/CT scans over a course of cancer therapy. Skeletons were extracted from the CT images by thresholding (HU>150). Skeletons were registered using the articulated, rigid, and deformable registration algorithms to account for position and postural variability between scans. The inter-observers agreement in the atlas creation, the agreement between the manually and atlas-based segmented bones, and the registration performances of all three registration algorithms were all assessed using the Dice similarity index-DSIobserved, DSIatlas, and DSIregister. Hausdorff distance (dHausdorff) of the registered skeletons was also used for registration evaluation. Nearly negligible inter-observers variability was found in the bone atlases creation as the DSIobserver was 96 ± 2%. Atlas-based and manual segmented bones were in excellent agreement with DSIatlas of 90 ± 3%. Articulated (DSIregsiter = 75 ± 2%, dHausdorff = 0.37 ± 0.08 cm) and deformable registration algorithms (DSIregister = 77 ± 3%, dHausdorff = 0.34 ± 0.08 cm) considerably outperformed the rigid registration algorithm (DSIregsiter = 59 ± 9%, dHausdorff = 0.69 ± 0.20 cm) in the skeleton registration as the rigid registration algorithm failed to capture the skeleton flexibility in the joints. Despite superior skeleton registration performance, deformable registration algorithm failed to preserve the local rigidity of bones as over 60% of the skeletons

  16. Development and evaluation of an articulated registration algorithm for human skeleton registration

    NASA Astrophysics Data System (ADS)

    Yip, Stephen; Perk, Timothy; Jeraj, Robert

    2014-03-01

    Accurate registration over multiple scans is necessary to assess treatment response of bone diseases (e.g. metastatic bone lesions). This study aimed to develop and evaluate an articulated registration algorithm for the whole-body skeleton registration in human patients. In articulated registration, whole-body skeletons are registered by auto-segmenting into individual bones using atlas-based segmentation, and then rigidly aligning them. Sixteen patients (weight = 80-117 kg, height = 168-191 cm) with advanced prostate cancer underwent the pre- and mid-treatment PET/CT scans over a course of cancer therapy. Skeletons were extracted from the CT images by thresholding (HU>150). Skeletons were registered using the articulated, rigid, and deformable registration algorithms to account for position and postural variability between scans. The inter-observers agreement in the atlas creation, the agreement between the manually and atlas-based segmented bones, and the registration performances of all three registration algorithms were all assessed using the Dice similarity index—DSIobserved, DSIatlas, and DSIregister. Hausdorff distance (dHausdorff) of the registered skeletons was also used for registration evaluation. Nearly negligible inter-observers variability was found in the bone atlases creation as the DSIobserver was 96 ± 2%. Atlas-based and manual segmented bones were in excellent agreement with DSIatlas of 90 ± 3%. Articulated (DSIregsiter = 75 ± 2%, dHausdorff = 0.37 ± 0.08 cm) and deformable registration algorithms (DSIregister = 77 ± 3%, dHausdorff = 0.34 ± 0.08 cm) considerably outperformed the rigid registration algorithm (DSIregsiter = 59 ± 9%, dHausdorff = 0.69 ± 0.20 cm) in the skeleton registration as the rigid registration algorithm failed to capture the skeleton flexibility in the joints. Despite superior skeleton registration performance, deformable registration algorithm failed to preserve the local rigidity of bones as over 60% of the

  17. Advanced Technology Development for Active Acoustic Liners

    NASA Technical Reports Server (NTRS)

    Sheplak, Mark; Cattafesta, Louis N., III; Nishida, Toshikazu; Kurdila, Andrew J.

    2001-01-01

    Objectives include: (1) Develop electro-mechanical/acoustic models of a Helmholtz resonator possessing a compliant diaphragm coupled to a piezoelectric device; (2) Design and fabricate the energy reclamation module and active Helmholtz resonator; (3) Develop and build appropriate energy reclamation/storage circuit; (4) Develop and fabricate appropriate piezoelectric shunt circuit to tune the compliance of the active Helmholtz resonator via a variable capacitor; (5) Quantify energy reclamation module efficiency in a grazing-flow plane wave tube possessing known acoustic energy input; and (6) Quantify actively tuned Helmholtz resonator performance in grazing-flow plane wave tube for a white-noise input

  18. Development of algorithms for building inventory compilation through remote sensing and statistical inferencing

    NASA Astrophysics Data System (ADS)

    Sarabandi, Pooya

    Building inventories are one of the core components of disaster vulnerability and loss estimations models, and as such, play a key role in providing decision support for risk assessment, disaster management and emergency response efforts. In may parts of the world inclusive building inventories, suitable for the use in catastrophe models cannot be found. Furthermore, there are serious shortcomings in the existing building inventories that include incomplete or out-dated information on critical attributes as well as missing or erroneous values for attributes. In this dissertation a set of methodologies for updating spatial and geometric information of buildings from single and multiple high-resolution optical satellite images are presented. Basic concepts, terminologies and fundamentals of 3-D terrain modeling from satellite images are first introduced. Different sensor projection models are then presented and sources of optical noise such as lens distortions are discussed. An algorithm for extracting height and creating 3-D building models from a single high-resolution satellite image is formulated. The proposed algorithm is a semi-automated supervised method capable of extracting attributes such as longitude, latitude, height, square footage, perimeter, irregularity index and etc. The associated errors due to the interactive nature of the algorithm are quantified and solutions for minimizing the human-induced errors are proposed. The height extraction algorithm is validated against independent survey data and results are presented. The validation results show that an average height modeling accuracy of 1.5% can be achieved using this algorithm. Furthermore, concept of cross-sensor data fusion for the purpose of 3-D scene reconstruction using quasi-stereo images is developed in this dissertation. The developed algorithm utilizes two or more single satellite images acquired from different sensors and provides the means to construct 3-D building models in a more

  19. Genetic algorithm-based classifiers fusion for multisensor activity recognition of elderly people.

    PubMed

    Chernbumroong, Saisakul; Cang, Shuang; Yu, Hongnian

    2015-01-01

    Activity recognition of an elderly person can be used to provide information and intelligent services to health care professionals, carers, elderly people, and their families so that the elderly people can remain at homes independently. This study investigates the use and contribution of wrist-worn multisensors for activity recognition. We found that accelerometers are the most important sensors and heart rate data can be used to boost classification of activities with diverse heart rates. We propose a genetic algorithm-based fusion weight selection (GAFW) approach which utilizes GA to find fusion weights. For all possible classifier combinations and fusion methods, the study shows that 98% of times GAFW can achieve equal or higher accuracy than the best classifier within the group.

  20. Sunspots and Coronal Bright Points Tracking using a Hybrid Algorithm of PSO and Active Contour Model

    NASA Astrophysics Data System (ADS)

    Dorotovic, I.; Shahamatnia, E.; Lorenc, M.; Rybansky, M.; Ribeiro, R. A.; Fonseca, J. M.

    2014-02-01

    In the last decades there has been a steady increase of high-resolution data, from ground-based and space-borne solar instruments, and also of solar data volume. These huge image archives require efficient automatic image processing software tools capable of detecting and tracking various features in the solar atmosphere. Results of application of such tools are essential for studies of solar activity evolution, climate change understanding and space weather prediction. The follow up of interplanetary and near-Earth phenomena requires, among others, automatic tracking algorithms that can determine where a feature is located, on successive images taken along the period of observation. Full-disc solar images, obtained both with the ground-based solar telescopes and the instruments onboard the satellites, provide essential observational material for solar physicists and space weather researchers for better understanding the Sun, studying the evolution of various features in the solar atmosphere, and also investigating solar differential rotation by tracking such features along time. Here we demonstrate and discuss the suitability of applying a hybrid Particle Swarm Optimization (PSO) algorithm and Active Contour model for tracking and determining the differential rotation of sunspots and coronal bright points (CBPs) on a set of selected solar images. The results obtained confirm that the proposed approach constitutes a promising tool for investigating the evolution of solar activity and also for automating tracking features on massive solar image archives.

  1. Development of Deterministic Disaggregation Algorithm for Remotely Sensed Soil Moisture Products

    NASA Astrophysics Data System (ADS)

    Shin, Y.; Mohanty, B. P.

    2011-12-01

    Soil moisture near the land surface and in the subsurface profile is an important issue for hydrology, agronomy, and meteorology. Soil moisture data are limited in the spatial and temporal scales. Till now, point-scaled soil moisture measurements representing regional scales are available. Remote sensing (RS) scheme can be an alternative to direct measurement. However, the availability of RS datasets has a limitation due to the scale discrepancy between the RS resolution and local-scale. A number of studies have been conducted to develop downscaling/disaggregation algorithm for extracting fine-scaled soil moisture within a remote sensing product using the stochastic methods. The stochastic downscaling/disaggregation schemes provide us only for soil texture information and sub-area fractions contained in a RS pixel indicating that their specific locations are not recognized. Thus, we developed the deterministic disaggregation algorithm (DDA) with a genetic algorithm (GA) adapting the inverse method for extracting/searching soil textures and their specific location of sub-pixels within a RS soil moisture product under the numerical experiments and field validations. This approach performs quite well in disaggregating/recognizing the soil textures and their specific locations within a RS soil moisture footprint compared to the results of stochastic method. On the basis of these findings, we can suggest that the DDA can be useful for improving the availability of RS products.

  2. Development of an algorithm to predict comfort of wheelchair fit based on clinical measures

    PubMed Central

    Kon, Keisuke; Hayakawa, Yasuyuki; Shimizu, Shingo; Nosaka, Toshiya; Tsuruga, Takeshi; Matsubara, Hiroyuki; Nomura, Tomohiro; Murahara, Shin; Haruna, Hirokazu; Ino, Takumi; Inagaki, Jun; Kobayashi, Toshiki

    2015-01-01

    [Purpose] The purpose of this study was to develop an algorithm to predict the comfort of a subject seated in a wheelchair, based on common clinical measurements and without depending on verbal communication. [Subjects] Twenty healthy males (mean age: 21.5 ± 2 years; height: 171 ± 4.3 cm; weight: 56 ± 12.3 kg) participated in this study. [Methods] Each experimental session lasted for 60 min. The clinical measurements were obtained under 4 conditions (good posture, with and without a cushion; bad posture, with and without a cushion). Multiple regression analysis was performed to determine the relationship between a visual analogue scale and exercise physiology parameters (respiratory and metabolism), autonomic nervous parameters (heart rate, blood pressure, and salivary amylase level), and 3D-coordinate posture parameters (good or bad posture). [Results] For the equation (algorithm) to predict the visual analogue scale score, the adjusted multiple correlation coefficient was 0.72, the residual standard deviation was 1.2, and the prediction error was 12%. [Conclusion] The algorithm developed in this study could predict the comfort of healthy male seated in a wheelchair with 72% accuracy. PMID:26504299

  3. Chronic wrist pain: diagnosis and management. Development and use of a new algorithm

    PubMed Central

    van Vugt, R. M; Bijlsma, J.; van Vugt, A. C

    1999-01-01

    OBJECTIVE—Chronic wrist pain can be difficult to manage and the differential diagnosis is extensive. To provide guidelines for assessment of the painful wrist an algorithm was developed to encourage a structured approach to the diagnosis and management of these patients.
METHODS—A review of the literature on causes of chronic wrist pain was undertaken; history taking, physical examination and imaging studies were evaluated systematically to determine which of the many potential conditions was the cause of the wrist pain. Chronic wrist pain was subdivided into pain of probable intra-articular or extra-articular origin. By means of this classification a clinical algorithm was developed to establish a diagnosis and its clinical usefulness was tested in a prospective study of 84 patients presenting to our outpatient clinic.
RESULTS—A definite diagnosis could be established in 59% (49 of 84) of the cases by careful history taking, extensive physical examination, plain radiographs, ultrasound examination and bone scintigraphy. In 19% of the cases (16 of 84) a probable diagnosis was made resulting in a total figure 78% (65 of 84). Additional imaging studies (arthrography, magnetic resonance imaging and computed tomography) increased the definite diagnoses to 70% (59 of 84).
CONCLUSION—The algorithm proved easy to use and by the use of careful history taking, thorough physical examination and simple imaging techniques (ultrasonography and scintigraphy) a diagnosis was made in 78% of cases.

 PMID:10531069

  4. Algorithm and code development for unsteady three-dimensional Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Obayashi, Shigeru

    1994-01-01

    Aeroelastic tests require extensive cost and risk. An aeroelastic wind-tunnel experiment is an order of magnitude more expensive than a parallel experiment involving only aerodynamics. By complementing the wind-tunnel experiments with numerical simulations, the overall cost of the development of aircraft can be considerably reduced. In order to accurately compute aeroelastic phenomenon it is necessary to solve the unsteady Euler/Navier-Stokes equations simultaneously with the structural equations of motion. These equations accurately describe the flow phenomena for aeroelastic applications. At ARC a code, ENSAERO, is being developed for computing the unsteady aerodynamics and aeroelasticity of aircraft, and it solves the Euler/Navier-Stokes equations. The purpose of this cooperative agreement was to enhance ENSAERO in both algorithm and geometric capabilities. During the last five years, the algorithms of the code have been enhanced extensively by using high-resolution upwind algorithms and efficient implicit solvers. The zonal capability of the code has been extended from a one-to-one grid interface to a mismatching unsteady zonal interface. The geometric capability of the code has been extended from a single oscillating wing case to a full-span wing-body configuration with oscillating control surfaces. Each time a new capability was added, a proper validation case was simulated, and the capability of the code was demonstrated.

  5. Hybrid Neural-Network: Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics Developed and Demonstrated

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2002-01-01

    As part of the NASA Aviation Safety Program, a unique model-based diagnostics method that employs neural networks and genetic algorithms for aircraft engine performance diagnostics has been developed and demonstrated at the NASA Glenn Research Center against a nonlinear gas turbine engine model. Neural networks are applied to estimate the internal health condition of the engine, and genetic algorithms are used for sensor fault detection, isolation, and quantification. This hybrid architecture combines the excellent nonlinear estimation capabilities of neural networks with the capability to rank the likelihood of various faults given a specific sensor suite signature. The method requires a significantly smaller data training set than a neural network approach alone does, and it performs the combined engine health monitoring objectives of performance diagnostics and sensor fault detection and isolation in the presence of nominal and degraded engine health conditions.

  6. Developments of global greenhouse gas retrieval algorithm based on Optimal Estimation Method

    NASA Astrophysics Data System (ADS)

    Kim, W. V.; Kim, J.; Lee, H.; Jung, Y.; Boesch, H.

    2013-12-01

    After the industrial revolution, atmospheric carbon dioxide concentration increased drastically over the last 250 years. It is still increasing and over than 400ppm of carbon dioxide was measured at Mauna Loa observatory for the first time which value was considered as important milestone. Therefore, understanding the source, emission, transport and sink of global carbon dioxide is unprecedentedly important. Currently, Total Carbon Column Observing Network (TCCON) is operated to observe CO2 concentration by ground base instruments. However, the number of site is very few and concentrated to Europe and North America. Remote sensing of CO2 could supplement those limitations. Greenhouse Gases Observing SATellite (GOSAT) which was launched 2009 is measuring column density of CO2 and other satellites are planned to launch in a few years. GOSAT provide valuable measurement data but its low spatial resolution and poor success rate of retrieval due to aerosol and cloud, forced the results to cover less than half of the whole globe. To improve data availability, accurate aerosol information is necessary, especially for East Asia region where the aerosol concentration is higher than other region. For the first step, we are developing CO2 retrieval algorithm based on optimal estimation method with VLIDORT the vector discrete ordinate radiative transfer model. Proto type algorithm, developed from various combinations of state vectors to find best combination of state vectors, shows appropriate result and good agreement with TCCON measurements. To reduce calculation cost low-stream interpolation is applied for model simulation and the simulation time is drastically reduced. For the further study, GOSAT CO2 retrieval algorithm will be combined with accurate GOSAT-CAI aerosol retrieval algorithm to obtain more accurate result especially for East Asia.

  7. Development of Serum Marker Models to Increase Diagnostic Accuracy of Advanced Fibrosis in Nonalcoholic Fatty Liver Disease: The New LINKI Algorithm Compared with Established Algorithms

    PubMed Central

    Lykiardopoulos, Byron; Hagström, Hannes; Fredrikson, Mats; Ignatova, Simone; Stål, Per; Hultcrantz, Rolf; Ekstedt, Mattias

    2016-01-01

    Background and Aim Detection of advanced fibrosis (F3-F4) in nonalcoholic fatty liver disease (NAFLD) is important for ascertaining prognosis. Serum markers have been proposed as alternatives to biopsy. We attempted to develop a novel algorithm for detection of advanced fibrosis based on a more efficient combination of serological markers and to compare this with established algorithms. Methods We included 158 patients with biopsy-proven NAFLD. Of these, 38 had advanced fibrosis. The following fibrosis algorithms were calculated: NAFLD fibrosis score, BARD, NIKEI, NASH-CRN regression score, APRI, FIB-4, King´s score, GUCI, Lok index, Forns score, and ELF. Study population was randomly divided in a training and a validation group. A multiple logistic regression analysis using bootstrapping methods was applied to the training group. Among many variables analyzed age, fasting glucose, hyaluronic acid and AST were included, and a model (LINKI-1) for predicting advanced fibrosis was created. Moreover, these variables were combined with platelet count in a mathematical way exaggerating the opposing effects, and alternative models (LINKI-2) were also created. Models were compared using area under the receiver operator characteristic curves (AUROC). Results Of established algorithms FIB-4 and King´s score had the best diagnostic accuracy with AUROCs 0.84 and 0.83, respectively. Higher accuracy was achieved with the novel LINKI algorithms. AUROCs in the total cohort for LINKI-1 was 0.91 and for LINKI-2 models 0.89. Conclusion The LINKI algorithms for detection of advanced fibrosis in NAFLD showed better accuracy than established algorithms and should be validated in further studies including larger cohorts. PMID:27936091

  8. The development of line-scan image recognition algorithms for the detection of frass on mature tomatoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this research, a multispectral algorithm derived from hyperspectral line-scan fluorescence imaging under violet LED excitation was developed for the detection of frass contamination on mature tomatoes. The algorithm utilized the fluorescence intensities at two wavebands, 664 nm and 690 nm, for co...

  9. A Scalable Weight-Free Learning Algorithm for Regulatory Control of Cell Activity in Spiking Neuronal Networks.

    PubMed

    Zhang, Xu; Foderaro, Greg; Henriquez, Craig; Ferrari, Silvia

    2016-12-22

    Recent developments in neural stimulation and recording technologies are providing scientists with the ability of recording and controlling the activity of individual neurons in vitro or in vivo, with very high spatial and temporal resolution. Tools such as optogenetics, for example, are having a significant impact in the neuroscience field by delivering optical firing control with the precision and spatiotemporal resolution required for investigating information processing and plasticity in biological brains. While a number of training algorithms have been developed to date for spiking neural network (SNN) models of biological neuronal circuits, exiting methods rely on learning rules that adjust the synaptic strengths (or weights) directly, in order to obtain the desired network-level (or functional-level) performance. As such, they are not applicable to modifying plasticity in biological neuronal circuits, in which synaptic strengths only change as a result of pre- and post-synaptic neuron firings or biological mechanisms beyond our control. This paper presents a weight-free training algorithm that relies solely on adjusting the spatiotemporal delivery of neuron firings in order to optimize the network performance. The proposed weight-free algorithm does not require any knowledge of the SNN model or its plasticity mechanisms. As a result, this training approach is potentially realizable in vitro or in vivo via neural stimulation and recording technologies, such as optogenetics and multielectrode arrays, and could be utilized to control plasticity at multiple scales of biological neuronal circuits. The approach is demonstrated by training SNNs with hundreds of units to control a virtual insect navigating in an unknown environment.

  10. Genetic algorithm guided population pharmacokinetic model development for simvastatin, concurrently or non-concurrently co-administered with amlodipine.

    PubMed

    Chaturvedula, Ayyappa; Sale, Mark E; Lee, Howard

    2014-02-01

    An automated model development was performed for simvastatin, co-administered with amlodipine concurrently or non-concurrently (i.e., 4 hours later) in 17 patients with coexisting hyperlipidemia and hypertension. The single objective hybrid genetic algorithm (SOHGA) was implemented in the NONMEM software by defining the search space for structural, statistical and covariate models. Candidate models obtained from the SOHGA runs were further assessed for biological plausibility and the precision of parameter estimates, followed by traditional backward elimination process for model refinement. The final population pharmacokinetic model shows that the elimination rate constant for simvastatin acid, the active form by hydrolysis of its lactone prodrug (i.e., simvastatin), is only 44% in the concurrent amlodipine administration group compared with the non-concurrent group. The application of SOHGA for automated model selection, combined with traditional model selection strategies, appears to save time for model development, which also can generate new hypotheses that are biologically more plausible.

  11. Microphysical particle properties derived from inversion algorithms developed in the framework of EARLINET

    NASA Astrophysics Data System (ADS)

    Müller, Detlef; Böckmann, Christine; Kolgotin, Alexei; Schneidenbach, Lars; Chemyakin, Eduard; Rosemann, Julia; Znak, Pavel; Romanov, Anton

    2016-10-01

    We present a summary on the current status of two inversion algorithms that are used in EARLINET (European Aerosol Research Lidar Network) for the inversion of data collected with EARLINET multiwavelength Raman lidars. These instruments measure backscatter coefficients at 355, 532, and 1064 nm, and extinction coefficients at 355 and 532 nm. Development of these two algorithms started in 2000 when EARLINET was founded. The algorithms are based on a manually controlled inversion of optical data which allows for detailed sensitivity studies. The algorithms allow us to derive particle effective radius as well as volume and surface area concentration with comparably high confidence. The retrieval of the real and imaginary parts of the complex refractive index still is a challenge in view of the accuracy required for these parameters in climate change studies in which light absorption needs to be known with high accuracy. It is an extreme challenge to retrieve the real part with an accuracy better than 0.05 and the imaginary part with accuracy better than 0.005-0.1 or ±50 %. Single-scattering albedo can be computed from the retrieved microphysical parameters and allows us to categorize aerosols into high- and low-absorbing aerosols. On the basis of a few exemplary simulations with synthetic optical data we discuss the current status of these manually operated algorithms, the potentially achievable accuracy of data products, and the goals for future work. One algorithm was used with the purpose of testing how well microphysical parameters can be derived if the real part of the complex refractive index is known to at least 0.05 or 0.1. The other algorithm was used to find out how well microphysical parameters can be derived if this constraint for the real part is not applied. The optical data used in our study cover a range of Ångström exponents and extinction-to-backscatter (lidar) ratios that are found from lidar measurements of various aerosol types. We also tested

  12. Development and evaluation of collision warning/collision avoidance algorithms using an errable driver model

    NASA Astrophysics Data System (ADS)

    Yang, Hsin-Hsiang; Peng, Huei

    2010-12-01

    Collision warning/collision avoidance (CW/CA) systems must be designed to work seamlessly with a human driver, providing warning or control actions when the driver's response (or lack of) is deemed inappropriate. The effectiveness of CW/CA systems working with a human driver needs to be evaluated thoroughly because of legal/liability and other (e.g. traffic flow) concerns. CW/CA systems tuned only under open-loop manoeuvres were frequently found to work unsatisfactorily with human-in-the-loop. However, tuning CW/CA systems with human drivers co-existing is slow and non-repeatable. Driver models, if constructed and used properly, can capture human/control interactions and accelerate the CW/CA development process. Design and evaluation methods for CW/CA algorithms can be categorised into three approaches, scenario-based, performance-based and human-centred. The strength and weakness of these approaches were discussed in this paper and a humanised errable driver model was introduced to improve the developing process. The errable driver model used in this paper is a model that emulates human driver's functions and can generate both nominal (error-free) and devious (with error) behaviours. The car-following data used for developing and validating the model were obtained from a large-scale naturalistic driving database. Three error-inducing behaviours were introduced: human perceptual limitation, time delay and distraction. By including these error-inducing behaviours, rear-end collisions with a lead vehicle were found to occur at a probability similar to traffic accident statistics in the USA. This driver model is then used to evaluate the performance of several existing CW/CA algorithms. Finally, a new CW/CA algorithm was developed based on this errable driver model.

  13. GLASS daytime all-wave net radiation product: Algorithm development and preliminary validation

    SciTech Connect

    Jiang, Bo; Liang, Shunlin; Ma, Han; Zhang, Xiaotong; Xiao, Zhiqiang; Zhao, Xiang; Jia, Kun; Yao, Yunjun; Jia, Aolin

    2016-03-09

    Mapping surface all-wave net radiation (Rn) is critically needed for various applications. Several existing Rn products from numerical models and satellite observations have coarse spatial resolutions and their accuracies may not meet the requirements of land applications. In this study, we develop the Global LAnd Surface Satellite (GLASS) daytime Rn product at a 5 km spatial resolution. Its algorithm for converting shortwave radiation to all-wave net radiation using the Multivariate Adaptive Regression Splines (MARS) model is determined after comparison with three other algorithms. The validation of the GLASS Rn product based on high-quality in situ measurements in the United States shows a coefficient of determination value of 0.879, an average root mean square error value of 31.61 Wm-2, and an average bias of 17.59 Wm-2. Furthermore, we also compare our product/algorithm with another satellite product (CERES-SYN) and two reanalysis products (MERRA and JRA55), and find that the accuracy of the much higher spatial resolution GLASS Rn product is satisfactory. The GLASS Rn product from 2000 to the present is operational and freely available to the public.

  14. GLASS daytime all-wave net radiation product: Algorithm development and preliminary validation

    DOE PAGES

    Jiang, Bo; Liang, Shunlin; Ma, Han; ...

    2016-03-09

    Mapping surface all-wave net radiation (Rn) is critically needed for various applications. Several existing Rn products from numerical models and satellite observations have coarse spatial resolutions and their accuracies may not meet the requirements of land applications. In this study, we develop the Global LAnd Surface Satellite (GLASS) daytime Rn product at a 5 km spatial resolution. Its algorithm for converting shortwave radiation to all-wave net radiation using the Multivariate Adaptive Regression Splines (MARS) model is determined after comparison with three other algorithms. The validation of the GLASS Rn product based on high-quality in situ measurements in the United Statesmore » shows a coefficient of determination value of 0.879, an average root mean square error value of 31.61 Wm-2, and an average bias of 17.59 Wm-2. Furthermore, we also compare our product/algorithm with another satellite product (CERES-SYN) and two reanalysis products (MERRA and JRA55), and find that the accuracy of the much higher spatial resolution GLASS Rn product is satisfactory. The GLASS Rn product from 2000 to the present is operational and freely available to the public.« less

  15. Development of algorithms for understanding the temporal and spatial variability of the earth's radiation balance

    NASA Technical Reports Server (NTRS)

    Brooks, D. R.; Harrison, E. F.; Minnis, P.; Suttles, J. T.; Kandel, R. S.

    1986-01-01

    A brief description is given of how temporal and spatial variability in the earth's radiative behavior influences the goals of satellite radiation monitoring systems and how some previous systems have addressed the existing problems. Then, results of some simulations of radiation budget monitoring missions are presented. These studies led to the design of the Earth Radiation Budget Experiment (ERBE). A description is given of the temporal and spatial averaging algorithms developed for the ERBE data analysis. These algorithms are intended primarily to produce monthly averages of the net radiant exitance on regional, zonal, and global scales and to provide insight into the regional diurnal variability of radiative parameters such as albedo and long-wave radiant exitance. The algorithms are applied to scanner and nonscanner data for up to three satellites. Modeling of dialy shortwave albedo and radiant exitance with satellite samling that is insufficient to fully account for changing meteorology is discussed in detail. Studies performed during the ERBE mission and software design are reviewed. These studies provide quantitative estimates of the effects of temporally sparse and biased sampling on inferred diurnal and regional radiative parameters. Other topics covered include long-wave diurnal modeling, extraction of a regional monthly net clear-sky radiation budget, the statistical significance of observed diurnal variability, quality control of the analysis, and proposals for validating the results of ERBE time and space averaging.

  16. Ice surface temperature retrieval from AVHRR, ATSR, and passive microwave satellite data: Algorithm development and application

    NASA Technical Reports Server (NTRS)

    Key, Jeff; Maslanik, James; Steffen, Konrad

    1994-01-01

    During the first half of our second project year we have accomplished the following: (1) acquired a new AVHRR data set for the Beaufort Sea area spanning an entire year; (2) acquired additional ATSR data for the Arctic and Antarctic now totaling over seven months; (3) refined our AVHRR Arctic and Antarctic ice surface temperature (IST) retrieval algorithm, including work specific to Greenland; (4) developed ATSR retrieval algorithms for the Arctic and Antarctic, including work specific to Greenland; (5) investigated the effects of clouds and the atmosphere on passive microwave 'surface' temperature retrieval algorithms; (6) generated surface temperatures for the Beaufort Sea data set, both from AVHRR and SSM/I; and (7) continued work on compositing GAC data for coverage of the entire Arctic and Antarctic. During the second half of the year we will continue along these same lines, and will undertake a detailed validation study of the AVHRR and ATSR retrievals using LEADEX and the Beaufort Sea year-long data. Cloud masking methods used for the AVHRR will be modified for use with the ATSR. Methods of blending in situ and satellite-derived surface temperature data sets will be investigated.

  17. On developing B-spline registration algorithms for multi-core processors

    NASA Astrophysics Data System (ADS)

    Shackleford, J. A.; Kandasamy, N.; Sharp, G. C.

    2010-11-01

    Spline-based deformable registration methods are quite popular within the medical-imaging community due to their flexibility and robustness. However, they require a large amount of computing time to obtain adequate results. This paper makes two contributions towards accelerating B-spline-based registration. First, we propose a grid-alignment scheme and associated data structures that greatly reduce the complexity of the registration algorithm. Based on this grid-alignment scheme, we then develop highly data parallel designs for B-spline registration within the stream-processing model, suitable for implementation on multi-core processors such as graphics processing units (GPUs). Particular attention is focused on an optimal method for performing analytic gradient computations in a data parallel fashion. CPU and GPU versions are validated for execution time and registration quality. Performance results on large images show that our GPU algorithm achieves a speedup of 15 times over the single-threaded CPU implementation whereas our multi-core CPU algorithm achieves a speedup of 8 times over the single-threaded implementation. The CPU and GPU versions achieve near-identical registration quality in terms of RMS differences between the generated vector fields.

  18. Developing AEA system-of-systems mission plans with a multi-objective genetic algorithm

    NASA Astrophysics Data System (ADS)

    HandUber, Jason C.; Ridder, Jeffrey P.

    2007-04-01

    The role of an airborne electronic attack (AEA) system-of-systems (SoS) is to increase survivability of friendly aircraft by jamming hostile air defense radars. AEA systems are scarce, high-demand assets and have limited resources with which to engage a large number of radars. Given the limited resources, it is a significant challenge to plan their employment to achieve the desired results. Plans require specifying locations of jammers, as well as the mix of wide- and narrow-band jamming assignments delivered against particular radars. Further, the environment is uncertain as to the locations and emissions behaviors of radars. Therefore, we require plans that are not only capable, but also robust to the variability of the environment. In this paper, we use a multi-objective genetic algorithm to develop capable and robust AEA SoS mission plans. The algorithm seeks to determine the Pareto-front of three objectives - maximize the operational objectives achieved by friendly aircraft, minimize the threat to friendly aircraft, and minimize the expenditure of AEA assets. The results show that this algorithm is able to provide planners with the quantitative information necessary to intelligently construct capable and robust mission plans for an AEA SoS.

  19. Laboratory Activities for Developing Process Skills.

    ERIC Educational Resources Information Center

    Institute for Services to Education, Inc., Washington, DC.

    This workbook contains laboratory exercises designed for use in a college introductory biology course. Each exercise helps the student develop a basic science skill. The exercises are arranged in a hierarchical sequence suggesting the scientific method. Each skill facilitates the development of succeeding ones. Activities include Use of the…

  20. Synthetic Molecular Machines for Active Self-Assembly: Prototype Algorithms, Designs, and Experimental Study

    NASA Astrophysics Data System (ADS)

    Dabby, Nadine L.

    Computer science and electrical engineering have been the great success story of the twentieth century. The neat modularity and mapping of a language onto circuits has led to robots on Mars, desktop computers and smartphones. But these devices are not yet able to do some of the things that life takes for granted: repair a scratch, reproduce, regenerate, or grow exponentially fast--all while remaining functional. This thesis explores and develops algorithms, molecular implementations, and theoretical proofs in the context of "active self-assembly" of molecular systems. The long-term vision of active self-assembly is the theoretical and physical implementation of materials that are composed of reconfigurable units with the programmability and adaptability of biology's numerous molecular machines. En route to this goal, we must first find a way to overcome the memory limitations of molecular systems, and to discover the limits of complexity that can be achieved with individual molecules. One of the main thrusts in molecular programming is to use computer science as a tool for figuring out what can be achieved. While molecular systems that are Turing-complete have been demonstrated [Winfree, 1996], these systems still cannot achieve some of the feats biology has achieved. One might think that because a system is Turing-complete, capable of computing "anything," that it can do any arbitrary task. But while it can simulate any digital computational problem, there are many behaviors that are not "computations" in a classical sense, and cannot be directly implemented. Examples include exponential growth and molecular motion relative to a surface. Passive self-assembly systems cannot implement these behaviors because (a) molecular motion relative to a surface requires a source of fuel that is external to the system, and (b) passive systems are too slow to assemble exponentially-fast-growing structures. We call these behaviors "energetically incomplete" programmable

  1. Development of a new time domain-based algorithm for train detection and axle counting

    NASA Astrophysics Data System (ADS)

    Allotta, B.; D'Adamio, P.; Meli, E.; Pugi, L.

    2015-12-01

    This paper presents an innovative train detection algorithm, able to perform the train localisation and, at the same time, to estimate its speed, the crossing times on a fixed point of the track and the axle number. The proposed solution uses the same approach to evaluate all these quantities, starting from the knowledge of generic track inputs directly measured on the track (for example, the vertical forces on the sleepers, the rail deformation and the rail stress). More particularly, all the inputs are processed through cross-correlation operations to extract the required information in terms of speed, crossing time instants and axle counter. This approach has the advantage to be simple and less invasive than the standard ones (it requires less equipment) and represents a more reliable and robust solution against numerical noise because it exploits the whole shape of the input signal and not only the peak values. A suitable and accurate multibody model of railway vehicle and flexible track has also been developed by the authors to test the algorithm when experimental data are not available and in general, under any operating conditions (fundamental to verify the algorithm accuracy and robustness). The railway vehicle chosen as benchmark is the Manchester Wagon, modelled in the Adams VI-Rail environment. The physical model of the flexible track has been implemented in the Matlab and Comsol Multiphysics environments. A simulation campaign has been performed to verify the performance and the robustness of the proposed algorithm, and the results are quite promising. The research has been carried out in cooperation with Ansaldo STS and ECM Spa.

  2. Development and Validation of a Diabetic Retinopathy Referral Algorithm Based on Single-Field Fundus Photography

    PubMed Central

    Srinivasan, Sangeetha; Shetty, Sharan; Natarajan, Viswanathan; Sharma, Tarun; Raman, Rajiv

    2016-01-01

    Purpose To develop a simplified algorithm to identify and refer diabetic retinopathy (DR) from single-field retinal images specifically for sight-threatening diabetic retinopathy for appropriate care (ii) to determine the agreement and diagnostic accuracy of the algorithm as a pilot study among optometrists versus “gold standard” (retinal specialist grading). Methods The severity of DR was scored based on colour photo using a colour coded algorithm, which included the lesions of DR and number of quadrants involved. A total of 99 participants underwent training followed by evaluation. Data of the 99 participants were analyzed. Fifty posterior pole 45 degree retinal images with all stages of DR were presented. Kappa scores (κ), areas under the receiver operating characteristic curves (AUCs), sensitivity and specificity were determined, with further comparison between working optometrists and optometry students. Results Mean age of the participants was 22 years (range: 19–43 years), 87% being women. Participants correctly identified 91.5% images that required immediate referral (κ) = 0.696), 62.5% of images as requiring review after 6 months (κ = 0.462), and 51.2% of those requiring review after 1 year (κ = 0.532). The sensitivity and specificity of the optometrists were 91% and 78% for immediate referral, 62% and 84% for review after 6 months, and 51% and 95% for review after 1 year, respectively. The AUC was the highest (0.855) for immediate referral, second highest (0.824) for review after 1 year, and 0.727 for review after 6 months criteria. Optometry students performed better than the working optometrists for all grades of referral. Conclusions The diabetic retinopathy algorithm assessed in this work is a simple and a fairly accurate method for appropriate referral based on single-field 45 degree posterior pole retinal images. PMID:27661981

  3. Development of an Algorithm Suite for MODIS and VIIRS Cloud Data Record Continuity

    NASA Astrophysics Data System (ADS)

    Platnick, S. E.; Holz, R.; Heidinger, A. K.; Ackerman, S. A.; Meyer, K.; Frey, R.; Wind, G.; Amarasinghe, N.

    2014-12-01

    The launch of Suomi NPP in the fall of 2011 began the next generation of the U.S. operational polar orbiting environmental observations. Similar to MODIS, the VIIRS imager provides visible through IR observations at moderate spatial resolution with a 1330 LT equatorial crossing consistent with MODIS on the Aqua platform. However, unlike MODIS, VIIRS lacks key water vapor and CO2 absorbing channels used by the MODIS cloud algorithms for high cloud detection and cloud-top property retrievals (including emissivity), as well as multilayer cloud detection. In addition, there is a significant change in the spectral location of the 2.1 μm shortwave-infrared channel used by MODIS for cloud microphysical retrievals. The climate science community will face an interruption in the continuity of key global cloud data sets once the NASA EOS Terra and Aqua sensors cease operation. Given the instrument differences between MODIS EOS and VIIRS S-NPP/JPSS, we discuss methods for merging the 14+ year MODIS observational record with VIIRS/CrIS observations in order to generate cloud climate data record continuity across the observing systems. The main approach used by our team was to develop a cloud retrieval algorithm suite that is applied only to the common MODIS and VIIRS spectral channels. The suite uses heritage algorithms that produce the existing MODIS cloud mask (MOD35), MODIS cloud optical and microphysical properties (MOD06), and NOAA AWG/CLAVR-x cloud-top property products. Global monthly results from this hybrid algorithm suite (referred to as MODAWG) will be shown. Collocated CALIPSO comparisons will be shown that can independently evaluate inter-instrument product consistency for a subset of the MODAWG datasets.

  4. An ECG-based Algorithm for the Automatic Identification of Autonomic Activations Associated with Cortical Arousal

    PubMed Central

    Basner, Mathias; Griefahn, Barbara; Müller, Uwe; Plath, Gernot; Samel, Alexander

    2007-01-01

    Objectives: EEG arousals are associated with autonomic activations. Visual EEG arousal scoring is time consuming and suffers from low interobserver agreement. We hypothesized that information on changes in heart rate alone suffice to predict the occurrence of cortical arousal. Methods: Two visual AASM EEG arousal scorings of 56 healthy subject nights (mean age 37.0 ± 12.8 years, 26 male) were obtained. For each of 5 heartbeats following the onset of 3581 consensus EEG arousals and of an equal number of control conditions, differences to a moving median were calculated and used to estimate likelihood ratios (LRs) for 10 categories of heartbeat differences. Comparable to 5 consecutive diagnostic tests, these LRs were used to calculate the probability of heart rate responses being associated with cortical arousals. Results: EEG and ECG arousal indexes agreed well across a wide range of decision thresholds, resulting in a receiver operating characteristic (ROC) with an area under the curve of 0.91. For the decision threshold chosen for the final analyses, a sensitivity of 68.1% and a specificity of 95.2% were obtained. ECG and EEG arousal indexes were poorly correlated (r = 0.19, P <0.001, ICC = 0.186), which could in part be attributed to 3 outliers. The Bland-Altman plot showed an unbiased estimation of EEG arousal indexes by ECG arousal indexes with a standard deviation of ± 7.9 arousals per hour sleep. In about two-thirds of all cases, ECG arousal scoring was matched by at least one (22.2%) or by both (42.5%) of the visual scorings. Sensitivity of the algorithm increased with increasing duration of EEG arousals. The ECG algorithm was also successfully validated with 30 different nights of 10 subjects (mean age 35.3 ▯ 13.6 years, 5 male). Conclusions: In its current version, the ECG algorithm cannot replace visual EEG arousal scoring. Sensitivity for detecting <10-s EEG arousals needs to be improved. However, in a nonclinical population, it may be valuable to

  5. Development of Algorithms and Error Analyses for the Short Baseline Lightning Detection and Ranging System

    NASA Technical Reports Server (NTRS)

    Starr, Stanley O.

    1998-01-01

    NASA, at the John F. Kennedy Space Center (KSC), developed and operates a unique high-precision lightning location system to provide lightning-related weather warnings. These warnings are used to stop lightning- sensitive operations such as space vehicle launches and ground operations where equipment and personnel are at risk. The data is provided to the Range Weather Operations (45th Weather Squadron, U.S. Air Force) where it is used with other meteorological data to issue weather advisories and warnings for Cape Canaveral Air Station and KSC operations. This system, called Lightning Detection and Ranging (LDAR), provides users with a graphical display in three dimensions of 66 megahertz radio frequency events generated by lightning processes. The locations of these events provide a sound basis for the prediction of lightning hazards. This document provides the basis for the design approach and data analysis for a system of radio frequency receivers to provide azimuth and elevation data for lightning pulses detected simultaneously by the LDAR system. The intent is for this direction-finding system to correct and augment the data provided by LDAR and, thereby, increase the rate of valid data and to correct or discard any invalid data. This document develops the necessary equations and algorithms, identifies sources of systematic errors and means to correct them, and analyzes the algorithms for random error. This data analysis approach is not found in the existing literature and was developed to facilitate the operation of this Short Baseline LDAR (SBLDAR). These algorithms may also be useful for other direction-finding systems using radio pulses or ultrasonic pulse data.

  6. Integrative multicellular biological modeling: a case study of 3D epidermal development using GPU algorithms

    PubMed Central

    2010-01-01

    Background Simulation of sophisticated biological models requires considerable computational power. These models typically integrate together numerous biological phenomena such as spatially-explicit heterogeneous cells, cell-cell interactions, cell-environment interactions and intracellular gene networks. The recent advent of programming for graphical processing units (GPU) opens up the possibility of developing more integrative, detailed and predictive biological models while at the same time decreasing the computational cost to simulate those models. Results We construct a 3D model of epidermal development and provide a set of GPU algorithms that executes significantly faster than sequential central processing unit (CPU) code. We provide a parallel implementation of the subcellular element method for individual cells residing in a lattice-free spatial environment. Each cell in our epidermal model includes an internal gene network, which integrates cellular interaction of Notch signaling together with environmental interaction of basement membrane adhesion, to specify cellular state and behaviors such as growth and division. We take a pedagogical approach to describing how modeling methods are efficiently implemented on the GPU including memory layout of data structures and functional decomposition. We discuss various programmatic issues and provide a set of design guidelines for GPU programming that are instructive to avoid common pitfalls as well as to extract performance from the GPU architecture. Conclusions We demonstrate that GPU algorithms represent a significant technological advance for the simulation of complex biological models. We further demonstrate with our epidermal model that the integration of multiple complex modeling methods for heterogeneous multicellular biological processes is both feasible and computationally tractable using this new technology. We hope that the provided algorithms and source code will be a starting point for modelers to

  7. Performance evaluation of nonnegative matrix factorization algorithms to estimate task-related neuronal activities from fMRI data.

    PubMed

    Ding, Xiaoyu; Lee, Jong-Hwan; Lee, Seong-Whan

    2013-04-01

    Nonnegative matrix factorization (NMF) is a blind source separation (BSS) algorithm which is based on the distinct constraint of nonnegativity of the estimated parameters as well as on the measured data. In this study, according to the potential feasibility of NMF for fMRI data, the four most popular NMF algorithms, corresponding to the following two types of (1) least-squares based update [i.e., alternating least-squares NMF (ALSNMF) and projected gradient descent NMF] and (2) multiplicative update (i.e., NMF based on Euclidean distance and NMF based on divergence cost function), were investigated by using them to estimate task-related neuronal activities. These algorithms were applied firstly to individual data from a single subject and, subsequently, to group data sets from multiple subjects. On the single-subject level, although all four algorithms detected task-related activation from simulated data, the performance of multiplicative update NMFs was significantly deteriorated when evaluated using visuomotor task fMRI data, for which they failed in estimating any task-related neuronal activities. In group-level analysis on both simulated data and real fMRI data, ALSNMF outperformed the other three algorithms. The presented findings may suggest that ALSNMF appears to be the most promising option among the tested NMF algorithms to extract task-related neuronal activities from fMRI data.

  8. Development of an algorithm for automated enhancement of digital prototypes in machine engineering

    NASA Astrophysics Data System (ADS)

    Sokolova, E. A.; Dzhioev, G. A.

    2017-02-01

    The paper deals with the problem of processing digital prototypes in machine engineering with the use of modern approaches to computer vision, methods of taxonomy (a section of the decision theory), automation of manual retouching techniques. Upon further study of the problem, different taxonomic methods have been considered, among which the reference method has been chosen as the most appropriate for automated search of defective areas of the prototype. As a result, the algorithm for automated enhancement of digital prototypes of the digital image has been developed, using modern information technologies.

  9. Multidisciplinary Design, Analysis, and Optimization Tool Development Using a Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi; Li, Wesley

    2009-01-01

    Multidisciplinary design, analysis, and optimization using a genetic algorithm is being developed at the National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California) to automate analysis and design process by leveraging existing tools to enable true multidisciplinary optimization in the preliminary design stage of subsonic, transonic, supersonic, and hypersonic aircraft. This is a promising technology, but faces many challenges in large-scale, real-world application. This report describes current approaches, recent results, and challenges for multidisciplinary design, analysis, and optimization as demonstrated by experience with the Ikhana fire pod design.!

  10. Multidisciplinary Design, Analysis, and Optimization Tool Development using a Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi; Li, Wesley

    2008-01-01

    Multidisciplinary design, analysis, and optimization using a genetic algorithm is being developed at the National Aeronautics and Space A dministration Dryden Flight Research Center to automate analysis and design process by leveraging existing tools such as NASTRAN, ZAERO a nd CFD codes to enable true multidisciplinary optimization in the pr eliminary design stage of subsonic, transonic, supersonic, and hypers onic aircraft. This is a promising technology, but faces many challe nges in large-scale, real-world application. This paper describes cur rent approaches, recent results, and challenges for MDAO as demonstr ated by our experience with the Ikhana fire pod design.

  11. Estimating aquifer recharge in Mission River watershed, Texas: model development and calibration using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Uddameri, V.; Kuchanur, M.

    2007-01-01

    Soil moisture balance studies provide a convenient approach to estimate aquifer recharge when only limited site-specific data are available. A monthly mass-balance approach has been utilized in this study to estimate recharge in a small watershed in the coastal bend of South Texas. The developed lumped parameter model employs four adjustable parameters to calibrate model predicted stream runoff to observations at a gaging station. A new procedure was developed to correctly capture the intermittent nature of rainfall. The total monthly rainfall was assigned to a single-equivalent storm whose duration was obtained via calibration. A total of four calibrations were carried out using an evolutionary computing technique called genetic algorithms as well as the conventional gradient descent (GD) technique. Ordinary least squares and the heteroscedastic maximum likelihood error (HMLE) based objective functions were evaluated as part of this study as well. While the genetic algorithm based calibrations were relatively better in capturing the peak runoff events, the GD based calibration did slightly better in capturing the low flow events. Treating the Box-Cox exponent in the HMLE function as a calibration parameter did not yield better estimates and the study corroborates the suggestion made in the literature of fixing this exponent at 0.3. The model outputs were compared against available information and results indicate that the developed modeling approach provides a conservative estimate of recharge.

  12. Development and evaluation of a predictive algorithm for telerobotic task complexity

    NASA Technical Reports Server (NTRS)

    Gernhardt, M. L.; Hunter, R. C.; Hedgecock, J. C.; Stephenson, A. G.

    1993-01-01

    There is a wide range of complexity in the various telerobotic servicing tasks performed in subsea, space, and hazardous material handling environments. Experience with telerobotic servicing has evolved into a knowledge base used to design tasks to be 'telerobot friendly.' This knowledge base generally resides in a small group of people. Written documentation and requirements are limited in conveying this knowledge base to serviceable equipment designers and are subject to misinterpretation. A mathematical model of task complexity based on measurable task parameters and telerobot performance characteristics would be a valuable tool to designers and operational planners. Oceaneering Space Systems and TRW have performed an independent research and development project to develop such a tool for telerobotic orbital replacement unit (ORU) exchange. This algorithm was developed to predict an ORU exchange degree of difficulty rating (based on the Cooper-Harper rating used to assess piloted operations). It is based on measurable parameters of the ORU, attachment receptacle and quantifiable telerobotic performance characteristics (e.g., link length, joint ranges, positional accuracy, tool lengths, number of cameras, and locations). The resulting algorithm can be used to predict task complexity as the ORU parameters, receptacle parameters, and telerobotic characteristics are varied.

  13. A robust active contour edge detection algorithm based on local Gaussian statistical model for oil slick remote sensing image

    NASA Astrophysics Data System (ADS)

    Jing, Yu; Wang, Yaxuan; Liu, Jianxin; Liu, Zhaoxia

    2015-08-01

    Edge detection is a crucial method for the location and quantity estimation of oil slick when oil spills on the sea. In this paper, we present a robust active contour edge detection algorithm for oil spill remote sensing images. In the proposed algorithm, we define a local Gaussian data fitting energy term with spatially varying means and variances, and this data fitting energy term is introduced into a global minimization active contour (GMAC) framework. The energy function minimization is achieved fast by a dual formulation of the weighted total variation norm. The proposed algorithm avoids the existence of local minima, does not require the definition of initial contour, and is robust to weak boundaries, high noise and severe intensity inhomogeneity exiting in oil slick remote sensing images. Furthermore, the edge detection of oil slick and the correction of intensity inhomogeneity are simultaneously achieved via the proposed algorithm. The experiment results have shown that a superior performance of proposed algorithm over state-of-the-art edge detection algorithms. In addition, the proposed algorithm can also deal with the special images with the object and background of the same intensity means but different variances.

  14. The NASA Soil Moisture Active Passive (SMAP) Mission - Algorithm and Cal/Val Activities and Synergies with SMOS and Other L-Band Missions

    NASA Technical Reports Server (NTRS)

    Njoku, Eni; Entekhabi, Dara; O'Neill, Peggy; Jackson, Tom; Kellogg, Kent; Entin, Jared

    2011-01-01

    applicable to soil moisture measurement, such as Aquarius, SAO COM, and ALOS-2. The algorithms and data products for SMAP are being developed in the SMAP Science Data System (SDS) Testbed. The algorithms are developed and evaluated in the SDS Testbed using simulated SMAP observations as well as observational data from current airborne and spaceborne L-band sensors including SMOS. The SMAP project is developing a Calibration and Validation (Cal/Val) Plan that is designed to support algorithm development (pre-launch) and data product validation (post-launch). A key component of the Cal/Val Plan is the identification, characterization, and instrumentation of sites that can be used to calibrate and validate the sensor data (Level I) and derived geophysical products (Level 2 and higher). In this presentation we report on the development status of the SMAP data product algorithms, and the planning and implementation of the SMAP Cal/Val program. Several components of the SMAP algorithm development and Cal/Val plans have commonality with those of SMOS, and for this reason there are shared activities and resources that can be utilized between the missions, including in situ networks, ancillary data sets, and long-term monitoring sites.

  15. Development of Elevation and Relief Databases for ICESat-2/ATLAS Receiver Algorithms

    NASA Astrophysics Data System (ADS)

    Leigh, H. W.; Magruder, L. A.; Carabajal, C. C.; Saba, J. L.; Urban, T. J.; Mcgarry, J.; Schutz, B. E.

    2013-12-01

    The Advanced Topographic Laser Altimeter System (ATLAS) is planned to launch onboard NASA's ICESat-2 spacecraft in 2016. ATLAS operates at a wavelength of 532 nm with a laser repeat rate of 10 kHz and 6 individual laser footprints. The satellite will be in a 500 km, 91-day repeat ground track orbit at an inclination of 92°. A set of onboard Receiver Algorithms has been developed to reduce the data volume and data rate to acceptable levels while still transmitting the relevant ranging data. The onboard algorithms limit the data volume by distinguishing between surface returns and background noise and selecting a small vertical region around the surface return to be included in telemetry. The algorithms make use of signal processing techniques, along with three databases, the Digital Elevation Model (DEM), the Digital Relief Map (DRM), and the Surface Reference Mask (SRM), to find the signal and determine the appropriate dynamic range of vertical data surrounding the surface for downlink. The DEM provides software-based range gating for ATLAS. This approach allows the algorithm to limit the surface signal search to the vertical region between minimum and maximum elevations provided by the DEM (plus some margin to account for uncertainties). The DEM is constructed in a nested, three-tiered grid to account for a hardware constraint limiting the maximum vertical range to 6 km. The DRM is used to select the vertical width of the telemetry band around the surface return. The DRM contains global values of relief calculated along 140 m and 700 m ground track segments consistent with a 92° orbit. The DRM must contain the maximum value of relief seen in any given area, but must be as close to truth as possible as the DRM directly affects data volume. The SRM, which has been developed independently from the DEM and DRM, is used to set parameters within the algorithm and select telemetry bands for downlink. Both the DEM and DRM are constructed from publicly available digital

  16. An algorithm for hyperspectral remote sensing of aerosols: 1. Development of theoretical framework

    NASA Astrophysics Data System (ADS)

    Hou, Weizhen; Wang, Jun; Xu, Xiaoguang; Reid, Jeffrey S.; Han, Dong

    2016-07-01

    This paper describes the first part of a series of investigations to develop algorithms for simultaneous retrieval of aerosol parameters and surface reflectance from a newly developed hyperspectral instrument, the GEOstationary Trace gas and Aerosol Sensor Optimization (GEO-TASO), by taking full advantage of available hyperspectral measurement information in the visible bands. We describe the theoretical framework of an inversion algorithm for the hyperspectral remote sensing of the aerosol optical properties, in which major principal components (PCs) for surface reflectance is assumed known, and the spectrally dependent aerosol refractive indices are assumed to follow a power-law approximation with four unknown parameters (two for real and two for imaginary part of refractive index). New capabilities for computing the Jacobians of four Stokes parameters of reflected solar radiation at the top of the atmosphere with respect to these unknown aerosol parameters and the weighting coefficients for each PC of surface reflectance are added into the UNified Linearized Vector Radiative Transfer Model (UNL-VRTM), which in turn facilitates the optimization in the inversion process. Theoretical derivations of the formulas for these new capabilities are provided, and the analytical solutions of Jacobians are validated against the finite-difference calculations with relative error less than 0.2%. Finally, self-consistency check of the inversion algorithm is conducted for the idealized green-vegetation and rangeland surfaces that were spectrally characterized by the U.S. Geological Survey digital spectral library. It shows that the first six PCs can yield the reconstruction of spectral surface reflectance with errors less than 1%. Assuming that aerosol properties can be accurately characterized, the inversion yields a retrieval of hyperspectral surface reflectance with an uncertainty of 2% (and root-mean-square error of less than 0.003), which suggests self-consistency in the

  17. Development of algorithm for retrieving aerosols over land surfaces from NEMO-AM polarized measurements

    NASA Astrophysics Data System (ADS)

    Pandya, Mehul R.

    2016-04-01

    Atmospheric aerosols have a large effect on the Earth radiation budget through its direct and indirect effects. A systematic assessment of aerosol effects on Earth's climate requires global mapping of tropospheric aerosols through satellite remote sensing. However aerosol retrieval over land surface remains a challenging task due to bright background of the land surfaces. Polarized measurements can provide an improved aerosol sensing by providing a means of decoupling the surface and atmospheric contribution. The Indian Space Research Organisation has planned a Multi- Angle Dual-Polarization Instrument (MADPI) onboard a Nano satellite for Earth Monitoring & Observations for Aerosol Monitoring (NEMO-AM). MADPI has three spectral bands in blue, red and near infrared spectral regions with a nominal spatial resolution of 30 m from an altitude of 500 km polar orbit. A study has been taken up with the aim of development of an algorithm for retrieving aerosol optical thickness (AOT) over land surfaces from NEMO-AM polarized measurements. The study has three major components: (1) detailed theoretical modelling exercise for computing the atmospheric and surface polarized contributions, (2) modelling of total satellite-level polarized contribution, and (3) retrieval of aerosol optical thickness (AOT) by comparing the modelled and measured polarized signals. The algorithm has been developed for MADPI/NEMO-AM spectral bands and tested successfully on similar spectral bands of POLDER/PARASOL measurements to retrieve AOT over Indian landmass having diverse atmospheric conditions. POLDER-derived AOT fields were compared with MODIS-AOT products. Results showed a very good match (R2 0.69, RMSE 0.07). Initial results have provided encouraging results, however, comprehensive analysis and testing has to be carried out for establishing the proposed algorithm for retrieving AOT from NEMO-AM measurements.

  18. Echo mapping of active galactic nuclei broad-line regions: Fundamental algorithms

    NASA Technical Reports Server (NTRS)

    Vio, Roberto; Horne, Keith; Wamsteker, Willem

    1994-01-01

    We formulate and test a series of algorithms for echo mapping the emission-line regions near active galactic nuclei from measurements of correlated variability in their line and continuum light curves. The linear regularization method (LRM) employs a direct inversion of evenly spaced light-curve data, with a regularization parameter that can be used to control the trade-off between noise and resolution. Matrix formulas express the formal solution as well as its variance and covariance in terms of uncertainties in the measurements. Unlike the maximum-entropy method (MEM), LRM applies to kernels with both positive and negative values, but the results are somewhat limited by ringing effects. A positivity constraint proves effective in controlling the ringing. MEM combines regularization and positivity in a natural way, but similar results are also found using positivity constraints with nonentropic regularization functions. Direct inversions of unevenly sampled light curves require interpolating the noisy data. In this case better results are found by solving for both the continuum light curve and kernel function in a simultaneous fit to the data. Our conclusion is that while echo mapping currently gives ambiguous results, the algorithms are not the limiting factor. Progress depends on efforts to increase the accuracy and completeness of sampling of the observed light curves.

  19. GASAKe: forecasting landslide activations by a genetic-algorithms based hydrological model

    NASA Astrophysics Data System (ADS)

    Terranova, O. G.; Gariano, S. L.; Iaquinta, P.; Iovine, G. G. R.

    2015-02-01

    GASAKe is a new hydrological model aimed at forecasting the triggering of landslides. The model is based on genetic-algorithms and allows to obtaining thresholds of landslide activation from the set of historical occurrences and from the rainfall series. GASAKe can be applied to either single landslides or set of similar slope movements in a homogeneous environment. Calibration of the model is based on genetic-algorithms, and provides for families of optimal, discretized solutions (kernels) that maximize the fitness function. Starting from these latter, the corresponding mobility functions (i.e. the predictive tools) can be obtained through convolution with the rain series. The base time of the kernel is related to the magnitude of the considered slope movement, as well as to hydro-geological complexity of the site. Generally, smaller values are expected for shallow slope instabilities with respect to large-scale phenomena. Once validated, the model can be applied to estimate the timing of future landslide activations in the same study area, by employing recorded or forecasted rainfall series. Example of application of GASAKe to a medium-scale slope movement (the Uncino landslide at San Fili, in Calabria, Southern Italy) and to a set of shallow landslides (in the Sorrento Peninsula, Campania, Southern Italy) are discussed. In both cases, a successful calibration of the model has been achieved, despite unavoidable uncertainties concerning the dates of landslide occurrence. In particular, for the Sorrento Peninsula case, a fitness of 0.81 has been obtained by calibrating the model against 10 dates of landslide activation; in the Uncino case, a fitness of 1 (i.e. neither missing nor false alarms) has been achieved against 5 activations. As for temporal validation, the experiments performed by considering the extra dates of landslide activation have also proved satisfactory. In view of early-warning applications for civil protection purposes, the capability of the

  20. Development of optimization model for sputtering process parameter based on gravitational search algorithm

    NASA Astrophysics Data System (ADS)

    Norlina, M. S.; Diyana, M. S. Nor; Mazidah, P.; Rusop, M.

    2016-07-01

    In the RF magnetron sputtering process, the desirable layer properties are largely influenced by the process parameters and conditions. If the quality of the thin film has not reached up to its intended level, the experiments have to be repeated until the desirable quality has been met. This research is proposing Gravitational Search Algorithm (GSA) as the optimization model to reduce the time and cost to be spent in the thin film fabrication. The optimization model's engine has been developed using Java. The model is developed based on GSA concept, which is inspired by the Newtonian laws of gravity and motion. In this research, the model is expected to optimize four deposition parameters which are RF power, deposition time, oxygen flow rate and substrate temperature. The results have turned out to be promising and it could be concluded that the performance of the model is satisfying in this parameter optimization problem. Future work could compare GSA with other nature based algorithms and test them with various set of data.

  1. Developing algorithms for predicting protein-protein interactions of homology modeled proteins.

    SciTech Connect

    Martin, Shawn Bryan; Sale, Kenneth L.; Faulon, Jean-Loup Michel; Roe, Diana C.

    2006-01-01

    The goal of this project was to examine the protein-protein docking problem, especially as it relates to homology-based structures, identify the key bottlenecks in current software tools, and evaluate and prototype new algorithms that may be developed to improve these bottlenecks. This report describes the current challenges in the protein-protein docking problem: correctly predicting the binding site for the protein-protein interaction and correctly placing the sidechains. Two different and complementary approaches are taken that can help with the protein-protein docking problem. The first approach is to predict interaction sites prior to docking, and uses bioinformatics studies of protein-protein interactions to predict theses interaction site. The second approach is to improve validation of predicted complexes after docking, and uses an improved scoring function for evaluating proposed docked poses, incorporating a solvation term. This scoring function demonstrates significant improvement over current state-of-the art functions. Initial studies on both these approaches are promising, and argue for full development of these algorithms.

  2. Development of a Detection Algorithm for Use with Reflectance-Based, Real-Time Chemical Sensing

    PubMed Central

    Malanoski, Anthony P.; Johnson, Brandy J.; Erickson, Jeffrey S.; Stenger, David A.

    2016-01-01

    Here, we describe our efforts focused on development of an algorithm for identification of detection events in a real-time sensing application relying on reporting of color values using commercially available color sensing chips. The effort focuses on the identification of event occurrence, rather than target identification, and utilizes approaches suitable to onboard device incorporation to facilitate portable and autonomous use. The described algorithm first excludes electronic noise generated by the sensor system and determines response thresholds. This automatic adjustment provides the potential for use with device variations as well as accommodating differing indicator behaviors. Multiple signal channels (RGB) as well as multiple indicator array elements are combined for reporting of an event with a minimum of false responses. While the method reported was developed for use with paper-supported porphyrin and metalloporphyrin indicators, it should be equally applicable to other colorimetric indicators. Depending on device configurations, receiver operating characteristic (ROC) sensitivities of 1 could be obtained with specificities of 0.87 (threshold 160 ppb, ethanol). PMID:27854335

  3. Development of novel algorithm and real-time monitoring ambulatory system using Bluetooth module for fall detection in the elderly.

    PubMed

    Hwang, J Y; Kang, J M; Jang, Y W; Kim, H

    2004-01-01

    Novel algorithm and real-time ambulatory monitoring system for fall detection in elderly people is described. Our system is comprised of accelerometer, tilt sensor and gyroscope. For real-time monitoring, we used Bluetooth. Accelerometer measures kinetic force, tilt sensor and gyroscope estimates body posture. Also, we suggested algorithm using signals which obtained from the system attached to the chest for fall detection. To evaluate our system and algorithm, we experimented on three people aged over 26 years. The experiment of four cases such as forward fall, backward fall, side fall and sit-stand was repeated ten times and the experiment in daily life activity was performed one time to each subject. These experiments showed that our system and algorithm could distinguish between falling and daily life activity. Moreover, the accuracy of fall detection is 96.7%. Our system is especially adapted for long-time and real-time ambulatory monitoring of elderly people in emergency situation.

  4. Doppler Imaging with a Clean-Like Approach - Part One - a Newly Developed Algorithm Simulations and Tests

    NASA Astrophysics Data System (ADS)

    Kurster, M.

    1993-07-01

    A newly developed method for the Doppler imaging of star spot distributions on active late-type stars is presented. It comprises an algorithm particularly adapted to the (discrete) Doppler imaging problem (including eclipses) and is very efficient in determining the positions and shapes of star spots. A variety of tests demonstrates the capabilities as well as the limitations of the method by investigating the effects that uncertainties in various stellar parameters have on the image reconstruction. Any systematic errors within the reconstructed image are found to be a result of the ill-posed nature of the Doppler imaging problem and not a consequence of the adopted approach. The largest uncertainties are found with respect to the dynamical range of the image (brightness or temperature contrast). This kind of uncertainty is of little effect for studies of star spot migrations with the objectives of determining differential rotation and butterfly diagrams for late-type stars.

  5. Use of particle filters in an active control algorithm for noisy nonlinear structural dynamical systems

    NASA Astrophysics Data System (ADS)

    Sajeeb, R.; Manohar, C. S.; Roy, D.

    2007-09-01

    The problem of active control of nonlinear structural dynamical systems, in the presence of both process and measurement noises, is considered. The focus of the study is on the use of particle filters for state estimation in feedback control algorithms for nonlinear structures, when a limited number of noisy output measurements are available. The control design is done using the state-dependent Riccati equation (SDRE) method. The stochastic differential equations (SDEs) governing the dynamical systems are discretized using explicit forms of Ito-Taylor expansions. The Bayesian bootstrap filter and that based on sequential important sampling (SIS) are employed for state estimation. The simulation results show the feasibility of using particle filters and SDRE techniques in control of nonlinear structural dynamical systems.

  6. An intelligent active force control algorithm to control an upper extremity exoskeleton for motor recovery

    NASA Astrophysics Data System (ADS)

    Hasbullah Mohd Isa, Wan; Taha, Zahari; Mohd Khairuddin, Ismail; Majeed, Anwar P. P. Abdul; Fikri Muhammad, Khairul; Abdo Hashem, Mohammed; Mahmud, Jamaluddin; Mohamed, Zulkifli

    2016-02-01

    This paper presents the modelling and control of a two degree of freedom upper extremity exoskeleton by means of an intelligent active force control (AFC) mechanism. The Newton-Euler formulation was used in deriving the dynamic modelling of both the anthropometry based human upper extremity as well as the exoskeleton that consists of the upper arm and the forearm. A proportional-derivative (PD) architecture is employed in this study to investigate its efficacy performing joint-space control objectives. An intelligent AFC algorithm is also incorporated into the PD to investigate the effectiveness of this hybrid system in compensating disturbances. The Mamdani Fuzzy based rule is employed to approximate the estimated inertial properties of the system to ensure the AFC loop responds efficiently. It is found that the IAFC-PD performed well against the disturbances introduced into the system as compared to the conventional PD control architecture in performing the desired trajectory tracking.

  7. Simple Algorithms for Distributed Leader Election in Anonymous Synchronous Rings and Complete Networks Inspired by Neural Development in Fruit Flies.

    PubMed

    Xu, Lei; Jeavons, Peter

    2015-11-01

    Leader election in anonymous rings and complete networks is a very practical problem in distributed computing. Previous algorithms for this problem are generally designed for a classical message passing model where complex messages are exchanged. However, the need to send and receive complex messages makes such algorithms less practical for some real applications. We present some simple synchronous algorithms for distributed leader election in anonymous rings and complete networks that are inspired by the development of the neural system of the fruit fly. Our leader election algorithms all assume that only one-bit messages are broadcast by nodes in the network and processors are only able to distinguish between silence and the arrival of one or more messages. These restrictions allow implementations to use a simpler message-passing architecture. Even with these harsh restrictions our algorithms are shown to achieve good time and message complexity both analytically and experimentally.

  8. Development of Gis Tool for the Solution of Minimum Spanning Tree Problem using Prim's Algorithm

    NASA Astrophysics Data System (ADS)

    Dutta, S.; Patra, D.; Shankar, H.; Alok Verma, P.

    2014-11-01

    minimum spanning tree (MST) of a connected, undirected and weighted network is a tree of that network consisting of all its nodes and the sum of weights of all its edges is minimum among all such possible spanning trees of the same network. In this study, we have developed a new GIS tool using most commonly known rudimentary algorithm called Prim's algorithm to construct the minimum spanning tree of a connected, undirected and weighted road network. This algorithm is based on the weight (adjacency) matrix of a weighted network and helps to solve complex network MST problem easily, efficiently and effectively. The selection of the appropriate algorithm is very essential otherwise it will be very hard to get an optimal result. In case of Road Transportation Network, it is very essential to find the optimal results by considering all the necessary points based on cost factor (time or distance). This paper is based on solving the Minimum Spanning Tree (MST) problem of a road network by finding it's minimum span by considering all the important network junction point. GIS technology is usually used to solve the network related problems like the optimal path problem, travelling salesman problem, vehicle routing problems, location-allocation problems etc. Therefore, in this study we have developed a customized GIS tool using Python script in ArcGIS software for the solution of MST problem for a Road Transportation Network of Dehradun city by considering distance and time as the impedance (cost) factors. It has a number of advantages like the users do not need a greater knowledge of the subject as the tool is user-friendly and that allows to access information varied and adapted the needs of the users. This GIS tool for MST can be applied for a nationwide plan called Prime Minister Gram Sadak Yojana in India to provide optimal all weather road connectivity to unconnected villages (points). This tool is also useful for constructing highways or railways spanning several

  9. Spontaneous activity in the developing auditory system.

    PubMed

    Wang, Han Chin; Bergles, Dwight E

    2015-07-01

    Spontaneous electrical activity is a common feature of sensory systems during early development. This sensory-independent neuronal activity has been implicated in promoting their survival and maturation, as well as growth and refinement of their projections to yield circuits that can rapidly extract information about the external world. Periodic bursts of action potentials occur in auditory neurons of mammals before hearing onset. This activity is induced by inner hair cells (IHCs) within the developing cochlea, which establish functional connections with spiral ganglion neurons (SGNs) several weeks before they are capable of detecting external sounds. During this pre-hearing period, IHCs fire periodic bursts of Ca(2+) action potentials that excite SGNs, triggering brief but intense periods of activity that pass through auditory centers of the brain. Although spontaneous activity requires input from IHCs, there is ongoing debate about whether IHCs are intrinsically active and their firing periodically interrupted by external inhibitory input (IHC-inhibition model), or are intrinsically silent and their firing periodically promoted by an external excitatory stimulus (IHC-excitation model). There is accumulating evidence that inner supporting cells in Kölliker's organ spontaneously release ATP during this time, which can induce bursts of Ca(2+) spikes in IHCs that recapitulate many features of auditory neuron activity observed in vivo. Nevertheless, the role of supporting cells in this process remains to be established in vivo. A greater understanding of the molecular mechanisms responsible for generating IHC activity in the developing cochlea will help reveal how these events contribute to the maturation of nascent auditory circuits.

  10. Do You Understand Your Algorithms?

    ERIC Educational Resources Information Center

    Pickreign, Jamar; Rogers, Robert

    2006-01-01

    This article discusses relationships between the development of an understanding of algorithms and algebraic thinking. It also provides some sample activities for middle school teachers of mathematics to help promote students' algebraic thinking. (Contains 11 figures.)

  11. Development and Implementation of a Hardware In-the-Loop Test Bed for Unmanned Aerial Vehicle Control Algorithms

    NASA Technical Reports Server (NTRS)

    Nyangweso, Emmanuel; Bole, Brian

    2014-01-01

    Successful prediction and management of battery life using prognostic algorithms through ground and flight tests is important for performance evaluation of electrical systems. This paper details the design of test beds suitable for replicating loading profiles that would be encountered in deployed electrical systems. The test bed data will be used to develop and validate prognostic algorithms for predicting battery discharge time and battery failure time. Online battery prognostic algorithms will enable health management strategies. The platform used for algorithm demonstration is the EDGE 540T electric unmanned aerial vehicle (UAV). The fully designed test beds developed and detailed in this paper can be used to conduct battery life tests by controlling current and recording voltage and temperature to develop a model that makes a prediction of end-of-charge and end-of-life of the system based on rapid state of health (SOH) assessment.

  12. Collaboration on Development and Validation of the AMSR-E Snow Water Equivalent Algorithm

    NASA Technical Reports Server (NTRS)

    Armstrong, Richard L.

    2000-01-01

    The National Snow and Ice Data Center (NSIDC) has produced a global SMMR and SSM/I Level 3 Brightness Temperature data set in the Equal Area Scalable Earth (EASE) Grid for the period 1978 to 2000. Processing of current data is-ongoing. The EASE-Grid passive microwave data sets are appropriate for algorithm development and validation prior to the launch of AMSR-E. Having the lower frequency channels of SMMR (6.6 and 10.7 GHz) and the higher frequency channels of SSM/I (85.5 GHz) in the same format will facilitate the preliminary development of applications which could potentially make use of similar frequencies from AMSR-E (6.9, 10.7, 89.0 GHz).

  13. Development of a Machine Learning Algorithm for the Surveillance of Autism Spectrum Disorder

    PubMed Central

    Maenner, Matthew J.; Yeargin-Allsopp, Marshalyn; Van Naarden Braun, Kim; Christensen, Deborah L.; Schieve, Laura A.

    2016-01-01

    The Autism and Developmental Disabilities Monitoring (ADDM) Network conducts population-based surveillance of autism spectrum disorder (ASD) among 8-year old children in multiple US sites. To classify ASD, trained clinicians review developmental evaluations collected from multiple health and education sources to determine whether the child meets the ASD surveillance case criteria. The number of evaluations collected has dramatically increased since the year 2000, challenging the resources and timeliness of the surveillance system. We developed and evaluated a machine learning approach to classify case status in ADDM using words and phrases contained in children’s developmental evaluations. We trained a random forest classifier using data from the 2008 Georgia ADDM site which included 1,162 children with 5,396 evaluations (601 children met ADDM ASD criteria using standard ADDM methods). The classifier used the words and phrases from the evaluations to predict ASD case status. We evaluated its performance on the 2010 Georgia ADDM surveillance data (1,450 children with 9,811 evaluations; 754 children met ADDM ASD criteria). We also estimated ASD prevalence using predictions from the classification algorithm. Overall, the machine learning approach predicted ASD case statuses that were 86.5% concordant with the clinician-determined case statuses (84.0% sensitivity, 89.4% predictive value positive). The area under the resulting receiver-operating characteristic curve was 0.932. Algorithm-derived ASD “prevalence” was 1.46% compared to the published (clinician-determined) estimate of 1.55%. Using only the text contained in developmental evaluations, a machine learning algorithm was able to discriminate between children that do and do not meet ASD surveillance criteria at one surveillance site. PMID:28002438

  14. Artificial lightning data as proxy data for the algorithm development for the geostationary lightning imager

    NASA Astrophysics Data System (ADS)

    Finke, U.

    2009-12-01

    The geostationary Meteosat Third Generation (MTG) will carry the Lightning Imager (LI) for the detection and location of the total lightning by optical means. The Lightning Imager will continuously observe the full visible disk and provide lightning data with high uniformity over land and ocean during day and night. Its main operational applications are the nowcasting of severe storms and the warning of lightning strike threat. For the development of the data processor prototype a proxy data set is necessary as a reference data set in order to prove the function of the algorithms under the expected observation conditions. Additionally, a set of proxy data simulating the optical pulses originating from lightning can be used to optimize the performance of the detecting instrument. This contribution presents the methodology and the results of the generation of artificial lightning data. The artificial data set is created by random number generators which produces data obeying the same statistical distribution characteristics as real data. The generator bases on the empirical distribution density functions of the lightning characteristics which were derived from optical lightning observations by low orbit satellites (LIS) and ground based observations of lightning. The resulting artificial data represent optical lightning pulses as seen on the upper cloud surface. They are characterized by their distribution on three scales: the distribution of photons in a single lightning pulse, the distribution of lightning flashes in a single storm and the distribution of storms on the globe. The artificial data are used as input for the data processing and product generating algorithms. The elementary product of the lightning imager are the detected lightning pulses with their time, location and optical energy. These data are the basis for the generation of the various meteorological products such as lightning densities in geographical areas, storm cells with their motion

  15. Ocean observations with EOS/MODIS: Algorithm development and post launch studies

    NASA Technical Reports Server (NTRS)

    Gordon, Howard R.

    1995-01-01

    Several significant accomplishments were made during the present reporting period. (1) Initial simulations to understand the applicability of the MODerate Resolution Imaging Spectrometer (MODIS) 1380 nm band for removing the effects of stratospheric aerosols and thin cirrus clouds were completed using a model for an aged volcanic aerosol. The results suggest that very simple procedures requiring no a priori knowledge of the optical properties of the stratospheric aerosol may be as effective as complex procedures requiring full knowledge of the aerosol properties, except the concentration which is estimated from the reflectance at 1380 nm. The limitations of this conclusion will be examined in the next reporting period; (2) The lookup tables employed in the implementation of the atmospheric correction algorithm have been modified in several ways intended to improve the accuracy and/or speed of processing. These have been delivered to R. Evans for implementation into the MODIS prototype processing algorithm for testing; (3) A method was developed for removal of the effects of the O2 'A' absorption band from SeaWiFS band 7 (745-785 nm). This is important in that SeaWiFS imagery will be used as a test data set for the MODIS atmospheric correction algorithm over the oceans; and (4) Construction of a radiometer, and associated deployment boom, for studying the spectral reflectance of oceanic whitecaps at sea was completed. The system was successfully tested on a cruise off Hawaii on which whitecaps were plentiful during October-November. This data set is now under analysis.

  16. Child Development: An Active Learning Approach

    ERIC Educational Resources Information Center

    Levine, Laura E.; Munsch, Joyce

    2010-01-01

    Within each chapter of this innovative topical text, the authors engage students by demonstrating the wide range of real-world applications of psychological research connected to child development. In particular, the distinctive Active Learning features incorporated throughout the book foster a dynamic and personal learning process for students.…

  17. Developing Web Literacy in Collaborative Inquiry Activities

    ERIC Educational Resources Information Center

    Kuiper, Els; Volman, Monique; Terwel, Jan

    2009-01-01

    Although many children are technically skilled in using the Web, their competences to use it in a critical and meaningful way are usually less well developed. In this article, we report on a multiple case study focusing on the possibilities and limitations of collaborative inquiry activities as an appropriate context to acquire Web literacy skills…

  18. Moving toward Teamwork through Professional Development Activities

    ERIC Educational Resources Information Center

    Fitzgerald, Meghan M.; Theilheimer, Rachel

    2013-01-01

    This qualitative study of three Head Start Centers analyzed surveys, interviews, and focus group data to determine how education coordinators, teachers, and teacher assistants believed professional development activities could support teamwork at their centers. The researchers sorted data related to teamwork into four categories: knowledge and…

  19. Development of a space activity suit

    NASA Technical Reports Server (NTRS)

    Annis, J. F.; Webb, P.

    1971-01-01

    The development of a series of prototype space activity suit (SAS) assemblies is discussed. The SAS is a new type of pressure suit designed especially for extravehicular activity. It consists of a set of carefully tailored elastic fabric garments which have been engineered to supply sufficient counterpressure to the body to permit subjects to breath O2 at pressures up to 200 mm Hg without circulatory difficulty. A closed, positive pressure breathing system (PPBS) and a full bubble helmet were also developed to complete the system. The ultimate goal of the SAS is to improve the range of activity and decrease the energy cost of work associated with wearing conventional gas filled pressure suits. Results are presented from both laboratory (1 atmosphere) and altitude chamber tests with subjects wearing various SAS assemblies. In laboratory tests lasting up to three hours, the SAS was worn while subjects breathed O2 at pressures up to 170 mm Hg without developing physiological problems. The only physiological symptoms apparent were a moderate tachycardia related to breathing pressures above 130 mm Hg, and a small collection of edema fluid in the hands. Both problems were considered to be related to areas of under-pressurization by the garments. These problems, it is suggested, can ultimately be corrected by the development of new elastic fabrics and tailoring techniques. Energy cost of activity, and mobility and dexterity of subjects in the SAS, were found to be superior to those in comparable tests on subjects in full pressure suits.

  20. Developing a New Activity: STUDENT APPROVED

    ERIC Educational Resources Information Center

    Smit, Julie; Cavallo-Medved, Dora; Poling, Kirsten

    2011-01-01

    Do you have an idea for a new activity or laboratory exercise that you would like to incorporate into your course but feel unsure as to how it will be received by your students? This was our concern when developing first-year biology labs for a biology majors' course at University of Windsor. Through a Centred on Learning Innovation Fund (CLIF)…

  1. Active Learning through Toy Design and Development

    ERIC Educational Resources Information Center

    Sirinterlikci, Arif; Zane, Linda; Sirinterlikci, Aleea L.

    2009-01-01

    This article presents an initiative that is based on active learning pedagogy by engaging elementary and middle school students in the toy design and development field. The case study presented in this article is about student learning experiences during their participation in the TOYchallenge National Toy Design Competition. Students followed the…

  2. Identification of mild cognitive impairment in ACTIVE: algorithmic classification and stability.

    PubMed

    Cook, Sarah E; Marsiske, Michael; Thomas, Kelsey R; Unverzagt, Frederick W; Wadley, Virginia G; Langbaum, Jessica B S; Crowe, Michael

    2013-01-01

    Rates of mild cognitive impairment (MCI) have varied substantially, depending on the criteria used and the samples surveyed. The present investigation used a psychometric algorithm for identifying MCI and its stability to determine if low cognitive functioning was related to poorer longitudinal outcomes. The Advanced Cognitive Training of Independent and Vital Elders (ACTIVE) study is a multi-site longitudinal investigation of long-term effects of cognitive training with older adults. ACTIVE exclusion criteria eliminated participants at highest risk for dementia (i.e., Mini-Mental State Examination < 23). Using composite normative for sample- and training-corrected psychometric data, 8.07% of the sample had amnestic impairment, while 25.09% had a non-amnestic impairment at baseline. Poorer baseline functional scores were observed in those with impairment at the first visit, including a higher rate of attrition, depressive symptoms, and self-reported physical functioning. Participants were then classified based upon the stability of their classification. Those who were stably impaired over the 5-year interval had the worst functional outcomes (e.g., Instrumental Activities of Daily Living performance), and inconsistency in classification over time also appeared to be associated increased risk. These findings suggest that there is prognostic value in assessing and tracking cognition to assist in identifying the critical baseline features associated with poorer outcomes.

  3. A prototype hail detection algorithm and hail climatology developed with the advanced microwave sounding unit (AMSU)

    NASA Astrophysics Data System (ADS)

    Ferraro, Ralph; Beauchamp, James; Cecil, Daniel; Heymsfield, Gerald

    2015-09-01

    In previous studies published in the open literature, a strong relationship between the occurrence of hail and the microwave brightness temperatures (primarily at 37 and 85 GHz) was documented. These studies were performed with the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR), the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and most recently, the Aqua Advanced Microwave Scanning Radiometer (AMSR-E) sensor. This led to climatologies of hail frequency from TMI and AMSR-E, however, limitations included geographical domain of the TMI sensor (35 S to 35 N) and the overpass time of the Aqua satellite (130 am/pm local time), both of which reduce an accurate mapping of hail events over the global domain and the full diurnal cycle. Nonetheless, these studies presented exciting, new applications for passive microwave sensors. NOAA and EUMETSAT have been operating the Advanced Microwave Sounding Unit (AMSU-A and -B) and the Microwave Humidity Sounder (MHS) on several operational satellites since 1998: NOAA-15 through NOAA-19; MetOp-A and -B. With multiple satellites in operation since 2000, the AMSU/MHS sensors provide near global coverage every 4 h, thus, offering a much larger time and temporal sampling than TRMM or AMSR-E. With similar observation frequencies near 30 and 85 GHz, one at 157 GHz, and additionally three at the 183 GHz water vapor band, the potential to detect strong convection associated with severe storms on a more comprehensive time and space scale exists. In this study, we develop a prototype AMSU-based hail detection algorithm through the use of collocated satellite and surface hail reports over the continental US for a 10-year period (2000-2009). Compared with the surface observations, the algorithm detects approximately 40% of hail occurrences. The simple threshold algorithm is then used to generate a hail climatology based on all available AMSU observations during 2000-2011 that is stratified in several ways

  4. A Prototype Hail Detection Algorithm and Hail Climatology Developed with the Advanced Microwave Sounding Unit (AMSU)

    NASA Technical Reports Server (NTRS)

    Ferraro, Ralph; Beauchamp, James; Cecil, Dan; Heymsfeld, Gerald

    2015-01-01

    In previous studies published in the open literature, a strong relationship between the occurrence of hail and the microwave brightness temperatures (primarily at 37 and 85 GHz) was documented. These studies were performed with the Nimbus-7 SMMR, the TRMM Microwave Imager (TMI) and most recently, the Aqua AMSR-E sensor. This lead to climatologies of hail frequency from TMI and AMSR-E, however, limitations include geographical domain of the TMI sensor (35 S to 35 N) and the overpass time of the Aqua satellite (130 am/pm local time), both of which reduce an accurate mapping of hail events over the global domain and the full diurnal cycle. Nonetheless, these studies presented exciting, new applications for passive microwave sensors. Since 1998, NOAA and EUMETSAT have been operating the AMSU-A/B and the MHS on several operational satellites: NOAA-15 through NOAA-19; MetOp-A and -B. With multiple satellites in operation since 2000, the AMSU/MHS sensors provide near global coverage every 4 hours, thus, offering a much larger time and temporal sampling than TRMM or AMSR-E. With similar observation frequencies near 30 and 85 GHz and additionally three at the 183 GHz water vapor band, the potential to detect strong convection associated with severe storms on a more comprehensive time and space scale exists. In this study, we develop a prototype AMSU-based hail detection algorithm through the use of collocated satellite and surface hail reports over the continental U.S. for a 12-year period (2000-2011). Compared with the surface observations, the algorithm detects approximately 40 percent of hail occurrences. The simple threshold algorithm is then used to generate a hail climatology that is based on all available AMSU observations during 2000-11 that is stratified in several ways, including total hail occurrence by month (March through September), total annual, and over the diurnal cycle. Independent comparisons are made compared to similar data sets derived from other

  5. DEVELOPMENT AND TESTING OF FAULT-DIAGNOSIS ALGORITHMS FOR REACTOR PLANT SYSTEMS

    SciTech Connect

    Grelle, Austin L.; Park, Young S.; Vilim, Richard B.

    2016-06-26

    Argonne National Laboratory is further developing fault diagnosis algorithms for use by the operator of a nuclear plant to aid in improved monitoring of overall plant condition and performance. The objective is better management of plant upsets through more timely, informed decisions on control actions with the ultimate goal of improved plant safety, production, and cost management. Integration of these algorithms with visual aids for operators is taking place through a collaboration under the concept of an operator advisory system. This is a software entity whose purpose is to manage and distill the enormous amount of information an operator must process to understand the plant state, particularly in off-normal situations, and how the state trajectory will unfold in time. The fault diagnosis algorithms were exhaustively tested using computer simulations of twenty different faults introduced into the chemical and volume control system (CVCS) of a pressurized water reactor (PWR). The algorithms are unique in that each new application to a facility requires providing only the piping and instrumentation diagram (PID) and no other plant-specific information; a subject-matter expert is not needed to install and maintain each instance of an application. The testing approach followed accepted procedures for verifying and validating software. It was shown that the code satisfies its functional requirement which is to accept sensor information, identify process variable trends based on this sensor information, and then to return an accurate diagnosis based on chains of rules related to these trends. The validation and verification exercise made use of GPASS, a one-dimensional systems code, for simulating CVCS operation. Plant components were failed and the code generated the resulting plant response. Parametric studies with respect to the severity of the fault, the richness of the plant sensor set, and the accuracy of sensors were performed as part of the validation

  6. Description of ALARMA: the alarm algorithm developed for the Nuclear Car Wash

    SciTech Connect

    Luu, T; Biltoft, P; Church, J; Descalle, M; Hall, J; Manatt, D; Mauger, J; Norman, E; Petersen, D; Pruet, J; Prussin, S; Slaughter, D

    2006-11-28

    The goal of any alarm algorithm should be that it provide the necessary tools to derive confidence limits on whether the existence of fissile materials is present in cargo containers. It should be able to extract these limits from (usually) noisy and/or weak data while maintaining a false alarm rate (FAR) that is economically suitable for port operations. It should also be able to perform its analysis within a reasonably short amount of time (i.e. {approx} seconds). To achieve this, it is essential that the algorithm be able to identify and subtract any interference signature that might otherwise be confused with a fissile signature. Lastly, the algorithm itself should be user-intuitive and user-friendly so that port operators with little or no experience with detection algorithms may use it with relative ease. In support of the Nuclear Car Wash project at Lawrence Livermore Laboratory, we have developed an alarm algorithm that satisfies the above requirements. The description of the this alarm algorithm, dubbed ALARMA, is the purpose of this technical report. The experimental setup of the nuclear car wash has been well documented [1, 2, 3]. The presence of fissile materials is inferred by examining the {beta}-delayed gamma spectrum induced after a brief neutron irradiation of cargo, particularly in the high-energy region above approximately 2.5 MeV. In this region naturally occurring gamma rays are virtually non-existent. Thermal-neutron induced fission of {sup 235}U and {sup 239}P, on the other hand, leaves a unique {beta}-delayed spectrum [4]. This spectrum comes from decays of fission products having half-lives as large as 30 seconds, many of which have high Q-values. Since high-energy photons penetrate matter more freely, it is natural to look for unique fissile signatures in this energy region after neutron irradiation. The goal of this interrogation procedure is a 95% success rate of detection of as little as 5 kilograms of fissile material while retaining

  7. Development of a pharmacogenetic-guided warfarin dosing algorithm for Puerto Rican patients

    PubMed Central

    Ramos, Alga S; Seip, Richard L; Rivera-Miranda, Giselle; Felici-Giovanini, Marcos E; Garcia-Berdecia, Rafael; Alejandro-Cowan, Yirelia; Kocherla, Mohan; Cruz, Iadelisse; Feliu, Juan F; Cadilla, Carmen L; Renta, Jessica Y; Gorowski, Krystyna; Vergara, Cunegundo; Ruaño, Gualberto; Duconge, Jorge

    2012-01-01

    Aim This study was aimed at developing a pharmacogenetic-driven warfarin-dosing algorithm in 163 admixed Puerto Rican patients on stable warfarin therapy. Patients & methods A multiple linear-regression analysis was performed using log-transformed effective warfarin dose as the dependent variable, and combining CYP2C9 and VKORC1 genotyping with other relevant nongenetic clinical and demographic factors as independent predictors. Results The model explained more than two-thirds of the observed variance in the warfarin dose among Puerto Ricans, and also produced significantly better ‘ideal dose’ estimates than two pharmacogenetic models and clinical algorithms published previously, with the greatest benefit seen in patients ultimately requiring <7 mg/day. We also assessed the clinical validity of the model using an independent validation cohort of 55 Puerto Rican patients from Hartford, CT, USA (R2 = 51%). Conclusion Our findings provide the basis for planning prospective pharmacogenetic studies to demonstrate the clinical utility of genotyping warfarin-treated Puerto Rican patients. PMID:23215886

  8. White Light Modeling, Algorithm Development, and Validation on the Micro-arcsecond Metrology Testbed

    NASA Technical Reports Server (NTRS)

    Milman, Mark H.; Regher, Martin; Shen, Tsae Pyng

    2004-01-01

    The Space Interferometry Mission (SIM) scheduled for launch in early 2010, is an optical interferometer that will perform narrow angle and global wide angle astrometry with unprecedented accuracy, providing differential position accuracies of 1uas, and 4uas global accuracies in position, proper motion and parallax. The astrometric observations of the SIM instrument are performed via delay measurements provided by three Michelson-type, white light interferometers. Two 'guide' interferometers acquire fringes on bright guide stars in order to make highly precise measurements of variations in spacecraft attitude, while the third interferometer performs the science measurement. SIM derives its performance from a combination of precise fringe measurements of the interfered starlight (a few ten-thousandths of a wave) and very precise (tens of picometers) relative distance measurements made between a set of fiducials. The focus of the present paper is on the development and analysis of algorithms for accurate white light estimation, and on validating some of these algorithms on the MicroArcsecond Testbed.

  9. Development of a computer algorithm for feedback controlled electrical nerve fiber stimulation.

    PubMed

    Doruk, R Özgür

    2011-09-01

    The purpose of this research is to develop an algorithm for a feedback controlled local electrical nerve fiber stimulation system which has the purpose to stop the repetitive firing in a particular region of the nervous system. The electrophysiological behavior of the neurons (under electrical currents) is modeled by Hodgkin-Huxley (HH) type nonlinear nerve fiber dynamics. The repetitive firing of in the modeled fiber is due to the deviations in the channel parameters, which is also called as bifurcation in the nonlinear systems theory. A washout filter is augmented to the HH dynamics and then the output of the filter is fed to the external current generator through a linear gain. This gain is computed by linear projective control theory. That is a linear output feedback control technique where the closed loop spectrum of the full state feedback closed loop is partially maintained. By obtaining a spectrum of eigenvalues with completely negative real parts the nerve fibers can be relaxed to the equilibrium point with or without a damped oscillation. The MATLAB script applying the theory of this work is provided at the end of this paper. A MATLAB-Simulink computer simulation is performed in order to verify the algorithm.

  10. Development of an algorithm for production of inactivated arbovirus antigens in cell culture

    PubMed Central

    Goodman, C.H.; Russell, B.J.; Velez, J.O.; Laven, J.J.; Nicholson, W.L; Bagarozzi, D.A.; Moon, J.L.; Bedi, K.; Johnson, B.W.

    2015-01-01

    Arboviruses are medically important pathogens that cause human disease ranging from a mild fever to encephalitis. Laboratory diagnosis is essential to differentiate arbovirus infections from other pathogens with similar clinical manifestations. The Arboviral Diseases Branch (ADB) reference laboratory at the CDC Division of Vector-Borne Diseases (DVBD) produces reference antigens used in serological assays such as the virus-specific immunoglobulin M antibody-capture enzyme-linked immunosorbent assay (MAC-ELISA). Antigen production in cell culture has largely replaced the use of suckling mice; however, the methods are not directly transferable. The development of a cell culture antigen production algorithm for nine arboviruses from the three main arbovirus families, Flaviviridae, Togaviridae, and Bunyaviridae, is described here. Virus cell culture growth and harvest conditions were optimized, inactivation methods were evaluated, and concentration procedures were compared for each virus. Antigen performance was evaluated by the MAC-ELISA at each step of the procedure. The antigen production algorithm is a framework for standardization of methodology and quality control; however, a single antigen production protocol was not applicable to all arboviruses and needed to be optimized for each virus. PMID:25102428

  11. Further development of image processing algorithms to improve detectability of defects in Sonic IR NDE

    NASA Astrophysics Data System (ADS)

    Obeidat, Omar; Yu, Qiuye; Han, Xiaoyan

    2017-02-01

    Sonic Infrared imaging (SIR) technology is a relatively new NDE technique that has received significant acceptance in the NDE community. SIR NDE is a super-fast, wide range NDE method. The technology uses short pulses of ultrasonic excitation together with infrared imaging to detect defects in the structures under inspection. Defects become visible to the IR camera when the temperature in the crack vicinity increases due to various heating mechanisms in the specimen. Defect detection is highly affected by noise levels as well as mode patterns in the image. Mode patterns result from the superposition of sonic waves interfering within the specimen during the application of sound pulse. Mode patterns can be a serious concern, especially in composite structures. Mode patterns can either mimic real defects in the specimen, or alternatively, hide defects if they overlap. In last year's QNDE, we have presented algorithms to improve defects detectability in severe noise. In this paper, we will present our development of algorithms on defect extraction targeting specifically to mode patterns in SIR images.

  12. Development of an algorithm for production of inactivated arbovirus antigens in cell culture.

    PubMed

    Goodman, C H; Russell, B J; Velez, J O; Laven, J J; Nicholson, W L; Bagarozzi, D A; Moon, J L; Bedi, K; Johnson, B W

    2014-11-01

    Arboviruses are medically important pathogens that cause human disease ranging from a mild fever to encephalitis. Laboratory diagnosis is essential to differentiate arbovirus infections from other pathogens with similar clinical manifestations. The Arboviral Diseases Branch (ADB) reference laboratory at the CDC Division of Vector-Borne Diseases (DVBD) produces reference antigens used in serological assays such as the virus-specific immunoglobulin M antibody-capture enzyme-linked immunosorbent assay (MAC-ELISA). Antigen production in cell culture has largely replaced the use of suckling mice; however, the methods are not directly transferable. The development of a cell culture antigen production algorithm for nine arboviruses from the three main arbovirus families, Flaviviridae, Togaviridae, and Bunyaviridae, is described here. Virus cell culture growth and harvest conditions were optimized, inactivation methods were evaluated, and concentration procedures were compared for each virus. Antigen performance was evaluated by the MAC-ELISA at each step of the procedure. The antigen production algorithm is a framework for standardization of methodology and quality control; however, a single antigen production protocol was not applicable to all arboviruses and needed to be optimized for each virus.

  13. Development of a neonate lung reconstruction algorithm using a wavelet AMG and estimated boundary form.

    PubMed

    Bayford, R; Kantartzis, P; Tizzard, A; Yerworth, R; Liatsis, P; Demosthenous, A

    2008-06-01

    Objective, non-invasive measures of lung maturity and development, oxygen requirements and lung function, suitable for use in small, unsedated infants, are urgently required to define the nature and severity of persisting lung disease, and to identify risk factors for developing chronic lung problems. Disorders of lung growth, maturation and control of breathing are among the most important problems faced by the neonatologists. At present, no system for continuous monitoring of neonate lung function to reduce the risk of chronic lung disease in infancy in intensive care units exists. We are in the process of developing a new integrated electrical impedance tomography (EIT) system based on wearable technology to integrate measures of the boundary diameter from the boundary form for neonates into the reconstruction algorithm. In principle, this approach could provide a reduction of image artefacts in the reconstructed image associated with incorrect boundary form assumptions. In this paper, we investigate the required accuracy of the boundary form that would be suitable to minimize artefacts in the reconstruction for neonate lung function. The number of data points needed to create the required boundary form is automatically determined using genetic algorithms. The approach presented in this paper is to assist quality of the reconstruction using different approximations to the ideal boundary form. We also investigate the use of a wavelet algebraic multi-grid (WAMG) preconditioner to reduce the reconstruction computation requirements. Results are presented that demonstrate a full 3D model is required to minimize artefact in the reconstructed image and the implementation of a WAMG for EIT.

  14. Time-domain filtered-x-Newton narrowband algorithms for active isolation of frequency-fluctuating vibration

    NASA Astrophysics Data System (ADS)

    Li, Yan; He, Lin; Shuai, Chang-geng; Wang, Fei

    2016-04-01

    A time-domain filtered-x Newton narrowband algorithm (the Fx-Newton algorithm) is proposed to address three major problems in active isolation of machinery vibration: multiple narrowband components, MIMO coupling, and amplitude and frequency fluctuations. In this algorithm, narrowband components are extracted by narrowband-pass filters (NBPF) and independently controlled by multi-controllers, and fast convergence of the control algorithm is achieved by inverse secondary-path filtering of the extracted sinusoidal reference signal and its orthogonal component using L×L numbers of 2nd-order filters in the time domain. Controller adapting and control signal generation are also implemented in the time domain, to ensure good real-time performance. The phase shift caused by narrowband filter is compensated online to improve the robustness of control system to frequency fluctuations. A double-reference Fx-Newton algorithm is also proposed to control double sinusoids in the same frequency band, under the precondition of acquiring two independent reference signals. Experiments are conducted with an MIMO single-deck vibration isolation system on which a 200 kW ship diesel generator is mounted, and the algorithms are tested under the vibration alternately excited by the diesel generator and inertial shakers. The results of control over sinusoidal vibration excited by inertial shakers suggest that the Fx-Newton algorithm with NBPF have much faster convergence rate and better attenuation effect than the Fx-LMS algorithm. For swept, frequency-jumping, double, double frequency-swept and double frequency-jumping sinusoidal vibration, and multiple high-level harmonics in broadband vibration excited by the diesel generator, the proposed algorithms also demonstrate large vibration suppression at fast convergence rate, and good robustness to vibration with frequency fluctuations.

  15. Development of novel active transport membrande devices

    SciTech Connect

    Laciak, D.V.

    1994-11-01

    Air Products has undertaken a research program to fabricate and evaluate gas separation membranes based upon promising ``active-transport`` (AT) materials recently developed in our laboratories. Active Transport materials are ionic polymers and molten salts which undergo reversible interaction or reaction with ammonia and carbon dioxide. The materials are useful for separating these gases from mixtures with hydrogen. Moreover, AT membranes have the unique property of possessing high permeability towards ammnonia and carbon dioxide but low permeability towards hydrogen and can thus be used to permeate these components from a gas stream while retaining hydrogen at high pressure.

  16. Development of a generally applicable morphokinetic algorithm capable of predicting the implantation potential of embryos transferred on Day 3

    PubMed Central

    Petersen, Bjørn Molt; Boel, Mikkel; Montag, Markus; Gardner, David K.

    2016-01-01

    STUDY QUESTION Can a generally applicable morphokinetic algorithm suitable for Day 3 transfers of time-lapse monitored embryos originating from different culture conditions and fertilization methods be developed for the purpose of supporting the embryologist's decision on which embryo to transfer back to the patient in assisted reproduction? SUMMARY ANSWER The algorithm presented here can be used independently of culture conditions and fertilization method and provides predictive power not surpassed by other published algorithms for ranking embryos according to their blastocyst formation potential. WHAT IS KNOWN ALREADY Generally applicable algorithms have so far been developed only for predicting blastocyst formation. A number of clinics have reported validated implantation prediction algorithms, which have been developed based on clinic-specific culture conditions and clinical environment. However, a generally applicable embryo evaluation algorithm based on actual implantation outcome has not yet been reported. STUDY DESIGN, SIZE, DURATION Retrospective evaluation of data extracted from a database of known implantation data (KID) originating from 3275 embryos transferred on Day 3 conducted in 24 clinics between 2009 and 2014. The data represented different culture conditions (reduced and ambient oxygen with various culture medium strategies) and fertilization methods (IVF, ICSI). The capability to predict blastocyst formation was evaluated on an independent set of morphokinetic data from 11 218 embryos which had been cultured to Day 5. PARTICIPANTS/MATERIALS, SETTING, METHODS The algorithm was developed by applying automated recursive partitioning to a large number of annotation types and derived equations, progressing to a five-fold cross-validation test of the complete data set and a validation test of different incubation conditions and fertilization methods. The results were expressed as receiver operating characteristics curves using the area under the

  17. Development of a new metal artifact reduction algorithm by using an edge preserving method for CBCT imaging

    NASA Astrophysics Data System (ADS)

    Kim, Juhye; Nam, Haewon; Lee, Rena

    2015-07-01

    CT (computed tomography) images, metal materials such as tooth supplements or surgical clips can cause metal artifact and degrade image quality. In severe cases, this may lead to misdiagnosis. In this research, we developed a new MAR (metal artifact reduction) algorithm by using an edge preserving filter and the MATLAB program (Mathworks, version R2012a). The proposed algorithm consists of 6 steps: image reconstruction from projection data, metal segmentation, forward projection, interpolation, applied edge preserving smoothing filter, and new image reconstruction. For an evaluation of the proposed algorithm, we obtained both numerical simulation data and data for a Rando phantom. In the numerical simulation data, four metal regions were added into the Shepp Logan phantom for metal artifacts. The projection data of the metal-inserted Rando phantom were obtained by using a prototype CBCT scanner manufactured by medical engineering and medical physics (MEMP) laboratory research group in medical science at Ewha Womans University. After these had been adopted the proposed algorithm was performed, and the result were compared with the original image (with metal artifact without correction) and with a corrected image based on linear interpolation. Both visual and quantitative evaluations were done. Compared with the original image with metal artifacts and with the image corrected by using linear interpolation, both the numerical and the experimental phantom data demonstrated that the proposed algorithm reduced the metal artifact. In conclusion, the evaluation in this research showed that the proposed algorithm outperformed the interpolation based MAR algorithm. If an optimization and a stability evaluation of the proposed algorithm can be performed, the developed algorithm is expected to be an effective tool for eliminating metal artifacts even in commercial CT systems.

  18. Active vibration control of structure by Active Mass Damper and Multi-Modal Negative Acceleration Feedback control algorithm

    NASA Astrophysics Data System (ADS)

    Yang, Don-Ho; Shin, Ji-Hwan; Lee, HyunWook; Kim, Seoug-Ki; Kwak, Moon K.

    2017-03-01

    In this study, an Active Mass Damper (AMD) consisting of an AC servo motor, a movable mass connected to the AC servo motor by a ball-screw mechanism, and an accelerometer as a sensor for vibration measurement were considered. Considering the capability of the AC servo motor which can follow the desired displacement accurately, the Negative Acceleration Feedback (NAF) control algorithm which uses the acceleration signal directly and produces the desired displacement for the active mass was proposed. The effectiveness of the NAF control was proved theoretically using a single-degree-of-freedom (SDOF) system. It was found that the stability condition for the NAF control is static and it can effectively increase the damping of the target natural mode without causing instability in the low frequency region. Based on the theoretical results of the SDOF system, the Multi-Modal NAF (MMNAF) control is proposed to suppress the many natural modes of multi-degree-of-freedom (MDOF) systems using a single AMD. It was proved both theoretically and experimentally that the MMNAF control can suppress vibrations of the MDOF system.

  19. Development of algorithms for detection of mechanical injury on white mushrooms (Agaricus bisporus) using hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Gowen, A. A.; O'Donnell, C. P.

    2009-05-01

    White mushrooms were subjected to mechanical injury by controlled shaking in a plastic box at 400 rpm for different times (0, 60, 120, 300 and 600 s). Immediately after shaking, hyperspectral images were obtained using two pushbroom line-scanning hyperspectral imaging instruments, one operating in the wavelength range of 400 - 1000 nm with spectroscopic resolution of 5 nm, the other operating in the wavelength range of 950 - 1700 nm with spectroscopic resolution of 7 nm. Different spectral and spatial pretreatments were investigated to reduce the effect of sample curvature on hyperspectral data. Algorithms based on Chemometric techniques (Principal Component Analysis and Partial Least Squares Discriminant Analysis) and image processing methods (masking, thresholding, morphological operations) were developed for pixel classification in hyperspectral images. In addition, correlation analysis, spectral angle mapping and scaled difference of sample spectra were investigated and compared with the chemometric approaches.

  20. Development of Great Lakes algorithms for the Nimbus-G coastal zone color scanner

    NASA Technical Reports Server (NTRS)

    Tanis, F. J.; Lyzenga, D. R.

    1981-01-01

    A series of experiments in the Great Lakes designed to evaluate the application of the Nimbus G satellite Coastal Zone Color Scanner (CZCS) were conducted. Absorption and scattering measurement data were reduced to obtain a preliminary optical model for the Great Lakes. Available optical models were used in turn to calculate subsurface reflectances for expected concentrations of chlorophyll-a pigment and suspended minerals. Multiple nonlinear regression techniques were used to derive CZCS water quality prediction equations from Great Lakes simulation data. An existing atmospheric model was combined with a water model to provide the necessary simulation data for evaluation of the preliminary CZCS algorithms. A CZCS scanner model was developed which accounts for image distorting scanner and satellite motions. This model was used in turn to generate mapping polynomials that define the transformation from the original image to one configured in a polyconic projection. Four computer programs (FORTRAN IV) for image transformation are presented.

  1. Soft sensor development for Mooney viscosity prediction in rubber mixing process based on GMMDJITGPR algorithm

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Chen, Xiangguang; Wang, Li; Jin, Huaiping

    2017-01-01

    In rubber mixing process, the key parameter (Mooney viscosity), which is used to evaluate the property of the product, can only be obtained with 4-6h delay offline. It is quite helpful for the industry, if the parameter can be estimate on line. Various data driven soft sensors have been used to prediction in the rubber mixing. However, it always not functions well due to the phase and nonlinear property in the process. The purpose of this paper is to develop an efficient soft sensing algorithm to solve the problem. Based on the proposed GMMD local sample selecting criterion, the phase information is extracted in the local modeling. Using the Gaussian local modeling method within Just-in-time (JIT) learning framework, nonlinearity of the process is well handled. Efficiency of the new method is verified by comparing the performance with various mainstream soft sensors, using the samples from real industrial rubber mixing process.

  2. Development of a Low-Lift Chiller Controller and Simplified Precooling Control Algorithm - Final Report

    SciTech Connect

    Gayeski, N.; Armstrong, Peter; Alvira, M.; Gagne, J.; Katipamula, Srinivas

    2011-11-30

    KGS Buildings LLC (KGS) and Pacific Northwest National Laboratory (PNNL) have developed a simplified control algorithm and prototype low-lift chiller controller suitable for model-predictive control in a demonstration project of low-lift cooling. Low-lift cooling is a highly efficient cooling strategy conceived to enable low or net-zero energy buildings. A low-lift cooling system consists of a high efficiency low-lift chiller, radiant cooling, thermal storage, and model-predictive control to pre-cool thermal storage overnight on an optimal cooling rate trajectory. We call the properly integrated and controlled combination of these elements a low-lift cooling system (LLCS). This document is the final report for that project.

  3. Development of Web-Based Menu Planning Support System and its Solution Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Kashima, Tomoko; Matsumoto, Shimpei; Ishii, Hiroaki

    2009-10-01

    Recently lifestyle-related diseases have become an object of public concern, while at the same time people are being more health conscious. As an essential factor for causing the lifestyle-related diseases, we assume that the knowledge circulation on dietary habits is still insufficient. This paper focuses on everyday meals close to our life and proposes a well-balanced menu planning system as a preventive measure of lifestyle-related diseases. The system is developed by using a Web-based frontend and it provides multi-user services and menu information sharing capabilities like social networking services (SNS). The system is implemented on a Web server running Apache (HTTP server software), MySQL (database management system), and PHP (scripting language for dynamic Web pages). For the menu planning, a genetic algorithm is applied by understanding this problem as multidimensional 0-1 integer programming.

  4. Developing image processing meta-algorithms with data mining of multiple metrics.

    PubMed

    Leung, Kelvin; Cunha, Alexandre; Toga, A W; Parker, D Stott

    2014-01-01

    People often use multiple metrics in image processing, but here we take a novel approach of mining the values of batteries of metrics on image processing results. We present a case for extending image processing methods to incorporate automated mining of multiple image metric values. Here by a metric we mean any image similarity or distance measure, and in this paper we consider intensity-based and statistical image measures and focus on registration as an image processing problem. We show how it is possible to develop meta-algorithms that evaluate different image processing results with a number of different metrics and mine the results in an automated fashion so as to select the best results. We show that the mining of multiple metrics offers a variety of potential benefits for many image processing problems, including improved robustness and validation.

  5. Develop algorithms to improve detectability of defects in Sonic IR imaging NDE

    NASA Astrophysics Data System (ADS)

    Obeidat, Omar; Yu, Qiuye; Han, Xiaoyan

    2016-02-01

    Sonic Infrared (IR) technology is relative new in the NDE family. It is a fast, wide area imaging method. It combines ultrasound excitation and infrared imaging while the former to apply ultrasound energy thus induce friction heating in defects and the latter to capture the IR emission from the target. This technology can detect both surface and subsurface defects such as cracks and disbands/delaminations in various materials, metal/metal alloy or composites. However, certain defects may results in only very small IR signature be buried in noise or heating patterns. In such cases, to effectively extract the defect signals becomes critical in identifying the defects. In this paper, we will present algorithms which are developed to improve the detectability of defects in Sonic IR.

  6. Developing Image Processing Meta-Algorithms with Data Mining of Multiple Metrics

    PubMed Central

    Cunha, Alexandre; Toga, A. W.; Parker, D. Stott

    2014-01-01

    People often use multiple metrics in image processing, but here we take a novel approach of mining the values of batteries of metrics on image processing results. We present a case for extending image processing methods to incorporate automated mining of multiple image metric values. Here by a metric we mean any image similarity or distance measure, and in this paper we consider intensity-based and statistical image measures and focus on registration as an image processing problem. We show how it is possible to develop meta-algorithms that evaluate different image processing results with a number of different metrics and mine the results in an automated fashion so as to select the best results. We show that the mining of multiple metrics offers a variety of potential benefits for many image processing problems, including improved robustness and validation. PMID:24653748

  7. A basis for the development of operational algorithms for simplified GPS integrity checking

    NASA Astrophysics Data System (ADS)

    Parkinson, Bradford W.; Axelrad, Penina

    Error models are developed for a least squares approach to GPS satellite failure detection, and a statistical analysis is presented. The algorithm assumes that the GPS user forms a navigation solution by performing a least squares fit to pseudorange measurements made to five or more satellites in view. Results for a C/A code receiver show that a nominal pseudorange measurement error can be realistically modelled as a normally distributed random variable with a mean ranging from -5 to +5 and a standard deviation of 0.4 m for Doppler aided, and 4.0 m for code only, measurements. Theoretical success rates are presented for specific user geometries and measurement errors.

  8. Algorithm and code development for unsteady three-dimensional Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Obayashi, Shigeru

    1993-01-01

    In the last two decades, there have been extensive developments in computational aerodynamics, which constitutes a major part of the general area of computational fluid dynamics. Such developments are essential to advance the understanding of the physics of complex flows, to complement expensive wind-tunnel tests, and to reduce the overall design cost of an aircraft, particularly in the area of aeroelasticity. Aeroelasticity plays an important role in the design and development of aircraft, particularly modern aircraft, which tend to be more flexible. Several phenomena that can be dangerous and limit the performance of an aircraft occur because of the interaction of the flow with flexible components. For example, an aircraft with highly swept wings may experience vortex-induced aeroelastic oscillations. Also, undesirable aeroelastic phenomena due to the presence and movement of shock waves occur in the transonic range. Aeroelastically critical phenomena, such as a low transonic flutter speed, have been known to occur through limited wind-tunnel tests and flight tests. Aeroelastic tests require extensive cost and risk. An aeroelastic wind-tunnel experiment is an order of magnitude more expensive than a parallel experiment involving only aerodynamics. By complementing the wind-tunnel experiments with numerical simulations the overall cost of the development of aircraft can be considerably reduced. In order to accurately compute aeroelastic phenomenon it is necessary to solve the unsteady Euler/Navier-Stokes equations simultaneously with the structural equations of motion. These equations accurately describe the flow phenomena for aeroelastic applications. At Ames a code, ENSAERO, is being developed for computing the unsteady aerodynamics and aeroelasticity of aircraft and it solves the Euler/Navier-Stokes equations. The purpose of this contract is to continue the algorithm enhancements of ENSAERO and to apply the code to complicated geometries. During the last year

  9. Developing Multiple Diverse Potential Designs for Heat Transfer Utilizing Graph Based Evolutionary Algorithms

    SciTech Connect

    David J. Muth Jr.

    2006-09-01

    This paper examines the use of graph based evolutionary algorithms (GBEAs) to find multiple acceptable solutions for heat transfer in engineering systems during the optimization process. GBEAs are a type of evolutionary algorithm (EA) in which a topology, or geography, is imposed on an evolving population of solutions. The rates at which solutions can spread within the population are controlled by the choice of topology. As in nature geography can be used to develop and sustain diversity within the solution population. Altering the choice of graph can create a more or less diverse population of potential solutions. The choice of graph can also affect the convergence rate for the EA and the number of mating events required for convergence. The engineering system examined in this paper is a biomass fueled cookstove used in developing nations for household cooking. In this cookstove wood is combusted in a small combustion chamber and the resulting hot gases are utilized to heat the stove’s cooking surface. The spatial temperature profile of the cooking surface is determined by a series of baffles that direct the flow of hot gases. The optimization goal is to find baffle configurations that provide an even temperature distribution on the cooking surface. Often in engineering, the goal of optimization is not to find the single optimum solution but rather to identify a number of good solutions that can be used as a starting point for detailed engineering design. Because of this a key aspect of evolutionary optimization is the diversity of the solutions found. The key conclusion in this paper is that GBEA’s can be used to create multiple good solutions needed to support engineering design.

  10. Development of a new genetic algorithm to solve the feedstock scheduling problem in an anaerobic digester

    NASA Astrophysics Data System (ADS)

    Cram, Ana Catalina

    As worldwide environmental awareness grow, alternative sources of energy have become important to mitigate climate change. Biogas in particular reduces greenhouse gas emissions that contribute to global warming and has the potential of providing 25% of the annual demand for natural gas in the U.S. In 2011, 55,000 metric tons of methane emissions were reduced and 301 metric tons of carbon dioxide emissions were avoided through the use of biogas alone. Biogas is produced by anaerobic digestion through the fermentation of organic material. It is mainly composed of methane with a rage of 50 to 80% in its concentration. Carbon dioxide covers 20 to 50% and small amounts of hydrogen, carbon monoxide and nitrogen. The biogas production systems are anaerobic digestion facilities and the optimal operation of an anaerobic digester requires the scheduling of all batches from multiple feedstocks during a specific time horizon. The availability times, biomass quantities, biogas production rates and storage decay rates must all be taken into account for maximal biogas production to be achieved during the planning horizon. Little work has been done to optimize the scheduling of different types of feedstock in anaerobic digestion facilities to maximize the total biogas produced by these systems. Therefore, in the present thesis, a new genetic algorithm is developed with the main objective of obtaining the optimal sequence in which different feedstocks will be processed and the optimal time to allocate to each feedstock in the digester with the main objective of maximizing the production of biogas considering different types of feedstocks, arrival times and decay rates. Moreover, all batches need to be processed in the digester in a specified time with the restriction that only one batch can be processed at a time. The developed algorithm is applied to 3 different examples and a comparison with results obtained in previous studies is presented.

  11. The development and concurrent validity of a real-time algorithm for temporal gait analysis using inertial measurement units.

    PubMed

    Allseits, E; Lučarević, J; Gailey, R; Agrawal, V; Gaunaurd, I; Bennett, C

    2017-04-11

    The use of inertial measurement units (IMUs) for gait analysis has emerged as a tool for clinical applications. Shank gyroscope signals have been utilized to identify heel-strike and toe-off, which serve as the foundation for calculating temporal parameters of gait such as single and double limb support time. Recent publications have shown that toe-off occurs later than predicted by the dual minima method (DMM), which has been adopted as an IMU-based gait event detection algorithm.In this study, a real-time algorithm, Noise-Zero Crossing (NZC), was developed to accurately compute temporal gait parameters. Our objective was to determine the concurrent validity of temporal gait parameters derived from the NZC algorithm against parameters measured by an instrumented walkway. The accuracy and precision of temporal gait parameters derived using NZC were compared to those derived using the DMM. The results from Bland-Altman Analysis showed that the NZC algorithm had excellent agreement with the instrumented walkway for identifying the temporal gait parameters of Gait Cycle Time (GCT), Single Limb Support (SLS) time, and Double Limb Support (DLS) time. By utilizing the moment of zero shank angular velocity to identify toe-off, the NZC algorithm performed better than the DMM algorithm in measuring SLS and DLS times. Utilizing the NZC algorithm's gait event detection preserves DLS time, which has significant clinical implications for pathologic gait assessment.

  12. Detection of surface algal blooms using the newly developed algorithm surface algal bloom index (SABI)

    NASA Astrophysics Data System (ADS)

    Alawadi, Fahad

    2010-10-01

    Quantifying ocean colour properties has evolved over the past two decades from being able to merely detect their biological activity to the ability to estimate chlorophyll concentration using optical satellite sensors like MODIS and MERIS. The production of chlorophyll spatial distribution maps is a good indicator of plankton biomass (primary production) and is useful for the tracing of oceanographic currents, jets and blooms, including harmful algal blooms (HABs). Depending on the type of HABs involved and the environmental conditions, if their concentration rises above a critical threshold, it can impact the flora and fauna of the aquatic habitat through the introduction of the so called "red tide" phenomenon. The estimation of chlorophyll concentration is derived from quantifying the spectral relationship between the blue and the green bands reflected from the water column. This spectral relationship is employed in the standard ocean colour chlorophyll-a (Chlor-a) product, but is incapable of detecting certain macro-algal species that float near to or at the water surface in the form of dense filaments or mats. The ability to accurately identify algal formations that sometimes appear as oil spill look-alikes in satellite imagery, contributes towards the reduction of false-positive incidents arising from oil spill monitoring operations. Such algal formations that occur in relatively high concentrations may experience, as in land vegetation, what is known as the "red-edge" effect. This phenomena occurs at the highest reflectance slope between the maximum absorption in the red due to the surrounding ocean water and the maximum reflectance in the infra-red due to the photosynthetic pigments present in the surface algae. A new algorithm termed the surface algal bloom index (SABI), has been proposed to delineate the spatial distributions of floating micro-algal species like for example cyanobacteria or exposed inter-tidal vegetation like seagrass. This algorithm was

  13. Stress and Androgen Activity During Fetal Development

    PubMed Central

    Swan, Shanna H.

    2015-01-01

    Prenatal stress is known to alter hypothalamic-pituitary-adrenal axis activity, and more recent evidence suggests that it may also affect androgen activity. In animal models, prenatal stress disrupts the normal surge of testosterone in the developing male, whereas in females, associations differ by species. In humans, studies show that (1) associations between prenatal stress and child outcomes are often sex-dependent, (2) prenatal stress predicts several disorders with notable sex differences in prevalence, and (3) prenatal exposure to stressful life events may be associated with masculinized reproductive tract development and play behavior in girls. In this minireview, we examine the existing literature on prenatal stress and androgenic activity and present new, preliminary data indicating that prenatal stress may also modify associations between prenatal exposure to diethylhexyl phthalate, (a synthetic, antiandrogenic chemical) and reproductive development in infant boys. Taken together, these data support the hypothesis that prenatal exposure to both chemical and nonchemical stressors may alter sex steroid pathways in the maternal-placental-fetal unit and ultimately alter hormone-dependent developmental endpoints. PMID:26241065

  14. Development of a lightning activity nowcasting tool

    NASA Astrophysics Data System (ADS)

    Karagiannidis, Athanassios; Lagouvardos, Kostas; Kotroni, Vassiliki

    2015-04-01

    Electrical phenomena inside thunderstorm clouds are a significant threat to numerous activities. Summertime convective activity is usually associated to local thermal instability, which is hard to predict using numerical weather prediction models. Despite their relatively small areal extend, these thunderstorms can be violent, resulting to infrastructure damage and loss of life. In the frame of TALOS project the National Observatory of Athens has developed a lightning activity nowcasting tool. This tool uses as sole inputs: (i) real time infrared Meteosat Second Generation (MSG) imagery and (ii) real time flashes provided by the VLF lightning detection system ZEUS, which is operated by the National Observatory of Athens. The MSG SEVIRI 10.8 and 6.2μm channels data are utilized to produce 3 Interest Fields (IFs). These fields are the TB10.8 brightness temperature (indicative of the cloud top glaciation), the TB6.2-TB10.8 difference (indicative of the cloud depth) and the TB10.8 15 minute trend, which will be referenced as "TB10.8trend" (indicative of the cloud growth rate). The latter is defined as the difference between two successive 15 minutes images of the TB10.8. When a predefined threshold value is surpassed, the delimited area is considered to be favorable for lightning activity. A statistical procedure is employed to identify the optimum threshold values for the three IFs, based on the performance of each one. The assessment of their efficiency showed that these three IFs can be used independently as predictors of lightning activity. However, in an effort to improve the tool's efficiency a combined estimation is performed. When all three IFs agree that lightning activity is expected over an area, then a Warning Level 3 (WL3) is issued. When 2 or 1 IFs indicate upcoming activity then a WL2 or WL1 is issued. The assessment of the efficiency of the combined IF tool showed that the combined estimation is more skillful than the individual IFs estimations. In a

  15. Developing a modified SEBAL algorithm that is responsive to advection by using limited weather data

    NASA Astrophysics Data System (ADS)

    Mkhwanazi, Mcebisi

    The use of Remote Sensing ET algorithms in water management, especially for agricultural purposes is increasing, and there are more models being introduced. The Surface Energy Balance Algorithm for Land (SEBAL) and its variant, Mapping Evapotranspiration with Internalized Calibration (METRIC) are some of the models that are being widely used. While SEBAL has several advantages over other RS models, including that it does not require prior knowledge of soil, crop and other ground details, it has the downside of underestimating evapotranspiration (ET) on days when there is advection, which may be in most cases in arid and semi-arid areas. METRIC, however has been modified to be able to account for advection, but in doing so it requires hourly weather data. In most developing countries, while accurate estimates of ET are required, the weather data necessary to use METRIC may not be available. This research therefore was meant to develop a modified version of SEBAL that would require minimal weather data that may be available in these areas, and still estimate ET accurately. The data that were used to develop this model were minimum and maximum temperatures, wind data, preferably the run of wind in the afternoon, and wet bulb temperature. These were used to quantify the advected energy that would increase ET in the field. This was a two-step process; the first was developing the model for standard conditions, which was described as a healthy cover of alfalfa, 40-60 cm tall and not short of water. Under standard conditions, when estimated ET using modified SEBAL was compared with lysimeter-measured ET, the modified SEBAL model had a Mean Bias Error (MBE) of 2.2 % compared to -17.1 % from the original SEBAL. The Root Mean Square Error (RMSE) was lower for the modified SEBAL model at 10.9 % compared to 25.1 % for the original SEBAL. The modified SEBAL model, developed on an alfalfa field in Rocky Ford, was then tested on other crops; beans and wheat. It was also tested on

  16. GASAKe: forecasting landslide activations by a genetic-algorithms-based hydrological model

    NASA Astrophysics Data System (ADS)

    Terranova, O. G.; Gariano, S. L.; Iaquinta, P.; Iovine, G. G. R.

    2015-07-01

    GASAKe is a new hydrological model aimed at forecasting the triggering of landslides. The model is based on genetic algorithms and allows one to obtain thresholds for the prediction of slope failures using dates of landslide activations and rainfall series. It can be applied to either single landslides or a set of similar slope movements in a homogeneous environment. Calibration of the model provides families of optimal, discretized solutions (kernels) that maximize the fitness function. Starting from the kernels, the corresponding mobility functions (i.e., the predictive tools) can be obtained through convolution with the rain series. The base time of the kernel is related to the magnitude of the considered slope movement, as well as to the hydro-geological complexity of the site. Generally, shorter base times are expected for shallow slope instabilities compared to larger-scale phenomena. Once validated, the model can be applied to estimate the timing of future landslide activations in the same study area, by employing measured or forecasted rainfall series. Examples of application of GASAKe to a medium-size slope movement (the Uncino landslide at San Fili, in Calabria, southern Italy) and to a set of shallow landslides (in the Sorrento Peninsula, Campania, southern Italy) are discussed. In both cases, a successful calibration of the model has been achieved, despite unavoidable uncertainties concerning the dates of occurrence of the slope movements. In particular, for the Sorrento Peninsula case, a fitness of 0.81 has been obtained by calibrating the model against 10 dates of landslide activation; in the Uncino case, a fitness of 1 (i.e., neither missing nor false alarms) has been achieved using five activations. As for temporal validation, the experiments performed by considering further dates of activation have also proved satisfactory. In view of early-warning applications for civil protection, the capability of the model to simulate the occurrences of the

  17. Prediction system of hydroponic plant growth and development using algorithm Fuzzy Mamdani method

    NASA Astrophysics Data System (ADS)

    Sudana, I. Made; Purnawirawan, Okta; Arief, Ulfa Mediaty

    2017-03-01

    Hydroponics is a method of farming without soil. One of the Hydroponic plants is Watercress (Nasturtium Officinale). The development and growth process of hydroponic Watercress was influenced by levels of nutrients, acidity and temperature. The independent variables can be used as input variable system to predict the value level of plants growth and development. The prediction system is using Fuzzy Algorithm Mamdani method. This system was built to implement the function of Fuzzy Inference System (Fuzzy Inference System/FIS) as a part of the Fuzzy Logic Toolbox (FLT) by using MATLAB R2007b. FIS is a computing system that works on the principle of fuzzy reasoning which is similar to humans' reasoning. Basically FIS consists of four units which are fuzzification unit, fuzzy logic reasoning unit, base knowledge unit and defuzzification unit. In addition to know the effect of independent variables on the plants growth and development that can be visualized with the function diagram of FIS output surface that is shaped three-dimensional, and statistical tests based on the data from the prediction system using multiple linear regression method, which includes multiple linear regression analysis, T test, F test, the coefficient of determination and donations predictor that are calculated using SPSS (Statistical Product and Service Solutions) software applications.

  18. Innovative approach in the development of computer assisted algorithm for spine pedicle screw placement.

    PubMed

    Solitro, Giovanni F; Amirouche, Farid

    2016-04-01

    Pedicle screws are typically used for fusion, percutaneous fixation, and means of gripping a spinal segment. The screws act as a rigid and stable anchor points to bridge and connect with a rod as part of a construct. The foundation of the fusion is directly related to the placement of these screws. Malposition of pedicle screws causes intraoperative complications such as pedicle fractures and dural lesions and is a contributing factor to fusion failure. Computer assisted spine surgery (CASS) and patient-specific drill templates were developed to reduce this failure rate, but the trajectory of the screws remains a decision driven by anatomical landmarks often not easily defined. Current data shows the need of a robust and reliable technique that prevents screw misplacement. Furthermore, there is a need to enhance screw insertion guides to overcome the distortion of anatomical landmarks, which is viewed as a limiting factor by current techniques. The objective of this study is to develop a method and mathematical lemmas that are fundamental to the development of computer algorithms for pedicle screw placement. Using the proposed methodology, we show how we can generate automated optimal safe screw insertion trajectories based on the identification of a set of intrinsic parameters. The results, obtained from the validation of the proposed method on two full thoracic segments, are similar to previous morphological studies. The simplicity of the method, being pedicle arch based, is applicable to vertebrae where landmarks are either not well defined, altered or distorted.

  19. Nonlinear Motion Cueing Algorithm: Filtering at Pilot Station and Development of the Nonlinear Optimal Filters for Pitch and Roll

    NASA Technical Reports Server (NTRS)

    Zaychik, Kirill B.; Cardullo, Frank M.

    2012-01-01

    Telban and Cardullo have developed and successfully implemented the non-linear optimal motion cueing algorithm at the Visual Motion Simulator (VMS) at the NASA Langley Research Center in 2005. The latest version of the non-linear algorithm performed filtering of motion cues in all degrees-of-freedom except for pitch and roll. This manuscript describes the development and implementation of the non-linear optimal motion cueing algorithm for the pitch and roll degrees of freedom. Presented results indicate improved cues in the specified channels as compared to the original design. To further advance motion cueing in general, this manuscript describes modifications to the existing algorithm, which allow for filtering at the location of the pilot's head as opposed to the centroid of the motion platform. The rational for such modification to the cueing algorithms is that the location of the pilot's vestibular system must be taken into account as opposed to the off-set of the centroid of the cockpit relative to the center of rotation alone. Results provided in this report suggest improved performance of the motion cueing algorithm.

  20. Development of a Near-Real Time Hail Damage Swath Identification Algorithm for Vegetation

    NASA Technical Reports Server (NTRS)

    Bell, Jordan R.; Molthan, Andrew L.; Schultz, Lori A.; McGrath, Kevin M.; Burks, Jason E.

    2015-01-01

    The Midwest is home to one of the world's largest agricultural growing regions. Between the time period of late May through early September, and with irrigation and seasonal rainfall these crops are able to reach their full maturity. Using moderate to high resolution remote sensors, the monitoring of the vegetation can be achieved using the red and near-infrared wavelengths. These wavelengths allow for the calculation of vegetation indices, such as Normalized Difference Vegetation Index (NDVI). The vegetation growth and greenness, in this region, grows and evolves uniformly as the growing season progresses. However one of the biggest threats to Midwest vegetation during the time period is thunderstorms that bring large hail and damaging winds. Hail and wind damage to crops can be very expensive to crop growers and, damage can be spread over long swaths associated with the tracks of the damaging storms. Damage to the vegetation can be apparent in remotely sensed imagery and is visible from space after storms slightly damage the crops, allowing for changes to occur slowly over time as the crops wilt or more readily apparent if the storms strip material from the crops or destroy them completely. Previous work on identifying these hail damage swaths used manual interpretation by the way of moderate and higher resolution satellite imagery. With the development of an automated and near-real time hail swath damage identification algorithm, detection can be improved, and more damage indicators be created in a faster and more efficient way. The automated detection of hail damage swaths will examine short-term, large changes in the vegetation by differencing near-real time eight day NDVI composites and comparing them to post storm imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Terra and Aqua and Visible Infrared Imaging Radiometer Suite (VIIRS) aboard Suomi NPP. In addition land surface temperatures from these instruments will be examined as

  1. Active vibration reduction of a flexible structure bonded with optimised piezoelectric pairs using half and quarter chromosomes in genetic algorithms

    NASA Astrophysics Data System (ADS)

    Daraji, A. H.; Hale, J. M.

    2012-08-01

    The optimal placement of sensors and actuators in active vibration control is limited by the number of candidates in the search space. The search space of a small structure discretized to one hundred elements for optimising the location of ten actuators gives 1.73 × 1013 possible solutions, one of which is the global optimum. In this work, a new quarter and half chromosome technique based on symmetry is developed, by which the search space for optimisation of sensor/actuator locations in active vibration control of flexible structures may be greatly reduced. The technique is applied to the optimisation for eight and ten actuators located on a 500×500mm square plate, in which the search space is reduced by up to 99.99%. This technique helps for updating genetic algorithm program by updating natural frequencies and mode shapes in each generation to find the global optimal solution in a greatly reduced number of generations. An isotropic plate with piezoelectric sensor/actuator pairs bonded to its surface was investigated using the finite element method and Hamilton's principle based on first order shear deformation theory. The placement and feedback gain of ten and eight sensor/actuator pairs was optimised for a cantilever and clamped-clamped plate to attenuate the first six modes of vibration, using minimization of linear quadratic index as an objective function.

  2. Development of the Tardivo Algorithm to Predict Amputation Risk of Diabetic Foot

    PubMed Central

    Tardivo, João Paulo; Baptista, Maurício S.; Correa, João Antonio; Adami, Fernando; Pinhal, Maria Aparecida Silva

    2015-01-01

    Diabetes is a chronic disease that affects almost 19% of the elderly population in Brazil and similar percentages around the world. Amputation of lower limbs in diabetic patients who present foot complications is a common occurrence with a significant reduction of life quality, and heavy costs on the health system. Unfortunately, there is no easy protocol to define the conditions that should be considered to proceed to amputation. The main objective of the present study is to create a simple prognostic score to evaluate the diabetic foot, which is called Tardivo Algorithm. Calculation of the score is based on three main factors: Wagner classification, signs of peripheral arterial disease (PAD), which is evaluated by using Peripheral Arterial Disease Classification, and the location of ulcers. The final score is obtained by multiplying the value of the individual factors. Patients with good peripheral vascularization received a value of 1, while clinical signs of ischemia received a value of 2 (PAD 2). Ulcer location was defined as forefoot, midfoot and hind foot. The conservative treatment used in patients with scores below 12 was based on a recently developed Photodynamic Therapy (PDT) protocol. 85.5% of these patients presented a good outcome and avoided amputation. The results showed that scores 12 or higher represented a significantly higher probability of amputation (Odds ratio and logistic regression-IC 95%, 12.2–1886.5). The Tardivo algorithm is a simple prognostic score for the diabetic foot, easily accessible by physicians. It helps to determine the amputation risk and the best treatment, whether it is conservative or surgical management. PMID:26281044

  3. The development of a near-real time hail damage swath identification algorithm for vegetation

    NASA Astrophysics Data System (ADS)

    Bell, Jordan R.

    The central United States is primarily covered in agricultural lands with a growing season that peaks during the same time as the region's climatological maximum for severe weather. These severe thunderstorms can bring large hail that can cause extensive areas of crop damage, which can be difficult to survey from the ground. Satellite remote sensing can help with the identification of these damaged areas. This study examined three techniques for identifying damage using satellite imagery that could be used in the development of a near-real time algorithm formulated for the detection of damage to agriculture caused by hail. The three techniques: a short term Normalized Difference Vegetation Index (NDVI) change product, a modified Vegetation Health Index (mVHI) that incorporates both NDVI and land surface temperature (LST), and a feature detection technique based on NDVI and LST anomalies were tested on a single training case and five case studies. Skill scores were computed for each of the techniques during the training case and each case study. Among the best-performing case studies, the probability of detection (POD) for the techniques ranged from 0.527 - 0.742. Greater skill was noted for environments that occurred later in the growing season over areas where the land cover was consistently one or two types of uniform vegetation. The techniques struggled in environments where the land cover was not able to provide uniform vegetation, resulting in POD of 0.067 - 0.223. The feature detection technique was selected to be used for the near-real-time algorithm, based on the consistent performance throughout the entire growing season.

  4. Development and evaluation of a micro-macro algorithm for the simulation of polymer flow

    SciTech Connect

    Feigl, Kathleen . E-mail: feigl@mtu.edu; Tanner, Franz X.

    2006-07-20

    A micro-macro algorithm for the calculation of polymer flow is developed and numerically evaluated. The system being solved consists of the momentum and mass conservation equations from continuum mechanics coupled with a microscopic-based rheological model for polymer stress. Standard finite element techniques are used to solve the conservation equations for velocity and pressure, while stochastic simulation techniques are used to compute polymer stress from the simulated polymer dynamics in the rheological model. The rheological model considered combines aspects of reptation, network and continuum models. Two types of spatial approximation are considered for the configuration fields defining the dynamics in the model: piecewise constant and piecewise linear. The micro-macro algorithm is evaluated by simulating the abrupt planar die entry flow of a polyisobutylene solution described in the literature. The computed velocity and stress fields are found to be essentially independent of mesh size and ensemble size, while there is some dependence of the results on the order of spatial approximation to the configuration fields close to the die entry. Comparison with experimental data shows that the piecewise linear approximation leads to better predictions of the centerline first normal stress difference. Finally, the computational time associated with the piecewise constant spatial approximation is found to be about 2.5 times lower than that associated with the piecewise linear approximation. This is the result of the more efficient time integration scheme that is possible with the former type of approximation due to the pointwise incompressibility guaranteed by the choice of velocity-pressure finite element.

  5. Development and validation of a simple algorithm for initiation of CPAP in neonates with respiratory distress in Malawi

    PubMed Central

    Hundalani, Shilpa G; Richards-Kortum, Rebecca; Oden, Maria; Kawaza, Kondwani; Gest, Alfred; Molyneux, Elizabeth

    2015-01-01

    Background Low-cost bubble continuous positive airway pressure (bCPAP) systems have been shown to improve survival in neonates with respiratory distress, in developing countries including Malawi. District hospitals in Malawi implementing CPAP requested simple and reliable guidelines to enable healthcare workers with basic skills and minimal training to determine when treatment with CPAP is necessary. We developed and validated TRY (T: Tone is good, R: Respiratory Distress and Y=Yes) CPAP, a simple algorithm to identify neonates with respiratory distress who would benefit from CPAP. Objective To validate the TRY CPAP algorithm for neonates with respiratory distress in a low-resource setting. Methods We constructed an algorithm using a combination of vital signs, tone and birth weight to determine the need for CPAP in neonates with respiratory distress. Neonates admitted to the neonatal ward of Queen Elizabeth Central Hospital, in Blantyre, Malawi, were assessed in a prospective, cross-sectional study. Nurses and paediatricians-in-training assessed neonates to determine whether they required CPAP using the TRY CPAP algorithm. To establish the accuracy of the TRY CPAP algorithm in evaluating the need for CPAP, their assessment was compared with the decision of a neonatologist blinded to the TRY CPAP algorithm findings. Results 325 neonates were evaluated over a 2-month period; 13% were deemed to require CPAP by the neonatologist. The inter-rater reliability with the algorithm was 0.90 for nurses and 0.97 for paediatricians-in-training using the neonatologist's assessment as the reference standard. Conclusions The TRY CPAP algorithm has the potential to be a simple and reliable tool to assist nurses and clinicians in identifying neonates who require treatment with CPAP in low-resource settings. PMID:25877290

  6. Algorithms and Algorithmic Languages.

    ERIC Educational Resources Information Center

    Veselov, V. M.; Koprov, V. M.

    This paper is intended as an introduction to a number of problems connected with the description of algorithms and algorithmic languages, particularly the syntaxes and semantics of algorithmic languages. The terms "letter, word, alphabet" are defined and described. The concept of the algorithm is defined and the relation between the algorithm and…

  7. Active Thermal Control System Development for Exploration

    NASA Technical Reports Server (NTRS)

    Westheimer, David

    2007-01-01

    All space vehicles or habitats require thermal management to maintain a safe and operational environment for both crew and hardware. Active Thermal Control Systems (ATCS) perform the functions of acquiring heat from both crew and hardware within a vehicle, transporting that heat throughout the vehicle, and finally rejecting that energy into space. Almost all of the energy used in a space vehicle eventually turns into heat, which must be rejected in order to maintain an energy balance and temperature control of the vehicle. For crewed vehicles, Active Thermal Control Systems are pumped fluid loops that are made up of components designed to perform these functions. NASA has been actively developing technologies that will enable future missions or will provide significant improvements over the state of the art technologies. These technologies have are targeted for application on the Crew Exploration Vehicle (CEV), or Orion, and a Lunar Surface Access Module (LSAM). The technologies that have been selected and are currently under development include: fluids that enable single loop ATCS architectures, a gravity insensitive vapor compression cycle heat pump, a sublimator with reduced sensitivity to feedwater contamination, an evaporative heat sink that can operate in multiple ambient pressure environments, a compact spray evaporator, and lightweight radiators that take advantage of carbon composites and advanced optical coatings.

  8. Calibration and Algorithm Development for Estimation of Nitrogen in Wheat Crop Using Tractor Mounted N-Sensor

    PubMed Central

    Singh, Manjeet; Kumar, Rajneesh; Sharma, Ankit; Singh, Bhupinder; Thind, S. K.

    2015-01-01

    The experiment was planned to investigate the tractor mounted N-sensor (Make Yara International) to predict nitrogen (N) for wheat crop under different nitrogen levels. It was observed that, for tractor mounted N-sensor, spectrometers can scan about 32% of total area of crop under consideration. An algorithm was developed using a linear relationship between sensor sufficiency index (SIsensor) and SISPAD to calculate the Napp as a function of SISPAD. There was a strong correlation among sensor attributes (sensor value, sensor biomass, and sensor NDVI) and different N-levels. It was concluded that tillering stage is most prominent stage to predict crop yield as compared to the other stages by using sensor attributes. The algorithms developed for tillering and booting stages are useful for the prediction of N-application rates for wheat crop. N-application rates predicted by algorithm developed and sensor value were almost the same for plots with different levels of N applied. PMID:25811039

  9. Ice surface temperature retrieval from AVHRR, ATSR, and passive microwave satellite data: Algorithm development and application

    NASA Technical Reports Server (NTRS)

    Key, Jeff; Maslanik, James; Steffen, Konrad

    1994-01-01

    One essential parameter used in the estimation of radiative and turbulent heat fluxes from satellite data is surface temperature. Sea and land surface temperature (SST and LST) retrieval algorithms that utilize the thermal infrared portion of the spectrum have been developed, with the degree of success dependent primarily upon the variability of the surface and atmospheric characteristics. However, little effort has been directed to the retrieval of the sea ice surface temperature (IST) in the Arctic and Antarctic pack ice or the ice sheet surface temperature over Antarctica and Greenland. The reason is not one of methodology, but rather our limited knowledge of atmospheric temperature, humidity, and aerosol vertical, spatial and temporal distributions, the microphysical properties of polar clouds, and the spectral characteristics of snow, ice, and water surfaces. Over the open ocean the surface is warm, dark, and relatively homogeneous. This makes SST retrieval, including cloud clearing, a fairly straightforward task. Over the ice, however, the surface within a single satellite pixel is likely to be highly heterogeneous, a mixture of ice of various thicknesses, open water, and snow cover in the case of sea ice. Additionally, the Arctic is cloudy - very cloudy - with typical cloud cover amounts ranging from 60-90 percent. There are few observations of cloud cover amounts over Antarctica. The goal of this research is to increase our knowledge of surface temperature patterns and magnitudes in both polar regions, by examining existing data and improving our ability to use satellite data as a monitoring tool. Four instruments are of interest in this study: the AVHRR, ATSR, SMMR, and SSM/I. Our objectives are as follows. Refine the existing AVHRR retrieval algorithm defined in Key and Haefliger (1992; hereafter KH92) and applied elsewhere. Develop a method for IST retrieval from ATSR data similar to the one used for SST. Further investigate the possibility of estimating

  10. Development of multi-objective genetic algorithm concurrent subspace optimization (MOGACSSO) method with robustness

    NASA Astrophysics Data System (ADS)

    Parashar, Sumeet

    Most engineering design problems are complex and multidisciplinary in nature, and quite often require more than one objective (cost) function to be extremized simultaneously. For multi-objective optimization problems, there is not a single optimum solution, but a set of optimum solutions called the Pareto set. The primary goal of this research is to develop a heuristic solution strategy to enable multi-objective optimization of highly coupled multidisciplinary design applications, wherein each discipline is able to retain some degree of autonomous control during the process. To achieve this goal, this research extends the capability of the Multi-Objective Pareto Concurrent Subspace Optimization (MOPCSSO) method to generate large numbers of non-dominated solutions in each cycle, with subsequent update and refinement, thereby greatly increasing efficiency. While the conventional MOPCSSO approach is easily able to generate Pareto solutions, it will only generate one Pareto solution at a time. In order to generate the complete Pareto front, MOPCSSO requires multiple runs (translating into many system convergence cycles) using different initial staring points. In this research, a Genetic Algorithm-based heuristic solution strategy is developed for multi-objective problems in coupled multidisciplinary design. The Multi-Objective Genetic Algorithm Concurrent Subspace Optimization (MOGACSSO) method allows for the generation of relatively evenly distributed Pareto solutions in a faster and more efficient manner than repeated implementation of MOPCSSO. While achieving an optimum design, it is often also desirable that the optimum design be robust to uncontrolled parameter variations. In this research, the capability of the MOGACSSO method is also extended to generate Pareto points that are robust in terms of performance and feasibility, for given uncontrolled parameter variations. The Roust-MOGACSSO method developed in this research can generate a large number of designs

  11. Development of algorithms and approximations for rapid operational air quality modelling

    NASA Astrophysics Data System (ADS)

    Barrett, Steven R. H.; Britter, Rex E.

    In regulatory and public health contexts the long-term average pollutant concentration in the vicinity of a source is frequently of interest. Well-developed modelling tools such as AERMOD and ADMS are able to generate time-series air quality estimates of considerable accuracy, applying an up-to-date understanding of atmospheric boundary layer behaviour. However, such models incur a significant computational cost with runtimes of hours to days. These approaches are often acceptable when considering a single industrial complex, but for widespread policy analyses the computational cost rapidly becomes intractable. In this paper we present some mathematical techniques and algorithmic approaches that can make air quality estimates several orders of magnitude faster. We show that, for long-term average concentrations, lateral dispersion need not be accounted for explicitly. This is applied to a simple reference case of a ground-level point source in a neutral boundary layer. A scaling law is also developed for the area in exceedance of a regulatory limit value.

  12. Development of fast line scanning imaging algorithm for diseased chicken detection

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chieh; Chao, Kuanglin; Chen, Yud-Ren; Kim, Moon S.

    2005-11-01

    A hyperspectral line-scan imaging system for automated inspection of wholesome and diseased chickens was developed and demonstrated. The hyperspectral imaging system consisted of an electron-multiplying charge-coupled-device (EMCCD) camera and an imaging spectrograph. The system used a spectrograph to collect spectral measurements across a pixel-wide vertical linear field of view through which moving chicken carcasses passed. After a series of image calibration procedures, the hyperspectral line-scan images were collected for chickens on a laboratory simulated processing line. From spectral analysis, four key wavebands for differentiating between wholesome and systemically diseased chickens were selected: 413 nm, 472 nm, 515 nm, and 546 nm, and a reference waveband, 622 nm. The ratio of relative reflectance between each key wavelength and the reference wavelength was calculated as an image feature. A fuzzy logic-based algorithm utilizing the key wavebands was developed to identify individual pixels on the chicken surface exhibiting symptoms of systemic disease. Two differentiation methods were built to successfully differentiate 72 systemically diseased chickens from 65 wholesome chickens.

  13. Development of a Robotic Colonoscopic Manipulation System, Using Haptic Feedback Algorithm

    PubMed Central

    Woo, Jaehong; Choi, Jae Hyuk; Seo, Jong Tae

    2017-01-01

    Purpose Colonoscopy is one of the most effective diagnostic and therapeutic tools for colorectal diseases. We aim to propose a master-slave robotic colonoscopy that is controllable in remote site using conventional colonoscopy. Materials and Methods The master and slave robot were developed to use conventional flexible colonoscopy. The robotic colonoscopic procedure was performed using a colonoscope training model by one expert endoscopist and two unexperienced engineers. To provide the haptic sensation, the insertion force and the rotating torque were measured and sent to the master robot. Results A slave robot was developed to hold the colonoscopy and its knob, and perform insertion, rotation, and two tilting motions of colonoscope. A master robot was designed to teach motions of the slave robot. These measured force and torque were scaled down by one tenth to provide the operator with some reflection force and torque at the haptic device. The haptic sensation and feedback system was successful and helpful to feel the constrained force or torque in colon. The insertion time using robotic system decreased with repeated procedures. Conclusion This work proposed a robotic approach for colonoscopy using haptic feedback algorithm, and this robotic device would effectively perform colonoscopy with reduced burden and comparable safety for patients in remote site. PMID:27873506

  14. Development of entrepreneurial activity in nurse education.

    PubMed

    Roberts, Paula; Bridgwood, Bernadeta; Jester, Rebecca

    The provision of health care and healthcare education in the UK is undergoing rapid change and development, and is subject to intense market forces. A reduction in the amount of money being spent on nurses' education and training, together with changes in working practices in health care, are affecting the provision of healthcare education significantly. This article gives an overview of the changes influencing providers of pre and post-registration healthcare education, and describes how education providers are generating income through enterprise activity.

  15. Development of an Innovative Algorithm for Aerodynamics-Structure Interaction Using Lattice Boltzmann Method

    NASA Technical Reports Server (NTRS)

    Mei, Ren-Wei; Shyy, Wei; Yu, Da-Zhi; Luo, Li-Shi; Rudy, David (Technical Monitor)

    2001-01-01

    The lattice Boltzmann equation (LBE) is a kinetic formulation which offers an alternative computational method capable of solving fluid dynamics for various systems. Major advantages of the method are owing to the fact that the solution for the particle distribution functions is explicit, easy to implement, and the algorithm is natural to parallelize. In this final report, we summarize the works accomplished in the past three years. Since most works have been published, the technical details can be found in the literature. Brief summary will be provided in this report. In this project, a second-order accurate treatment of boundary condition in the LBE method is developed for a curved boundary and tested successfully in various 2-D and 3-D configurations. To evaluate the aerodynamic force on a body in the context of LBE method, several force evaluation schemes have been investigated. A simple momentum exchange method is shown to give reliable and accurate values for the force on a body in both 2-D and 3-D cases. Various 3-D LBE models have been assessed in terms of efficiency, accuracy, and robustness. In general, accurate 3-D results can be obtained using LBE methods. The 3-D 19-bit model is found to be the best one among the 15-bit, 19-bit, and 27-bit LBE models. To achieve desired grid resolution and to accommodate the far field boundary conditions in aerodynamics computations, a multi-block LBE method is developed by dividing the flow field into various blocks each having constant lattice spacing. Substantial contribution to the LBE method is also made through the development of a new, generalized lattice Boltzmann equation constructed in the moment space in order to improve the computational stability, detailed theoretical analysis on the stability, dispersion, and dissipation characteristics of the LBE method, and computational studies of high Reynolds number flows with singular gradients. Finally, a finite difference-based lattice Boltzmann method is

  16. Cyfip1 Regulates Presynaptic Activity during Development

    PubMed Central

    Hsiao, Kuangfu; Harony-Nicolas, Hala; Buxbaum, Joseph D.

    2016-01-01

    Copy number variations encompassing the gene encoding Cyfip1 have been associated with a variety of human diseases, including autism and schizophrenia. Here we show that juvenile mice hemizygous for Cyfip1 have altered presynaptic function, enhanced protein translation, and increased levels of F-actin. In developing hippocampus, reduced Cyfip1 levels serve to decrease paired pulse facilitation and increase miniature EPSC frequency without a change in amplitude. Higher-resolution examination shows these changes to be caused primarily by an increase in presynaptic terminal size and enhanced vesicle release probability. Short hairpin-mediated knockdown of Cyfip1 coupled with expression of mutant Cyfip1 proteins indicates that the presynaptic alterations are caused by dysregulation of the WAVE regulatory complex. Such dysregulation occurs downstream of Rac1 as acute exposure to Rac1 inhibitors rescues presynaptic responses in culture and in hippocampal slices. The data serve to highlight an early and essential role for Cyfip1 in the generation of normally functioning synapses and suggest a means by which changes in Cyfip1 levels could impact the generation of neural networks and contribute to abnormal and maladaptive behaviors. SIGNIFICANCE STATEMENT Several developmental brain disorders have been associated with gene duplications and deletions that serve to increase or decrease levels of encoded proteins. Cyfip1 is one such protein, but the role it plays in brain development is poorly understood. We asked whether decreased Cyfip1 levels altered the function of developing synapses. The data show that synapses with reduced Cyfip1 are larger and release neurotransmitter more rapidly. These effects are due to Cyfip1's role in actin polymerization and are reversed by expression of a Cyfip1 mutant protein retaining actin regulatory function or by inhibiting Rac1. Thus, Cyfip1 has a more prominent early role regulating presynaptic activity during a stage of development when

  17. Ocean observations with EOS/MODIS: Algorithm development and post launch studies

    NASA Technical Reports Server (NTRS)

    Gordon, Howard R.

    1994-01-01

    During CY 1994 there are five objectives under this task: (1) investigate the effects of stratospheric aerosol on the proposed correction algorithm, and investigate the use of the 1380 nm MODIS band to remove the stratospheric aerosol perturbation; (2) investigate the effect of vertical structure in aerosol concentration and type on the behavior of the proposed correction algorithm; (3) investigate the effects of polarization on the accuracy of the algorithm; (4) improve the accuracy and speed of the existing algorithm; and (5) investigate removal of the O2 'A' absorption band at 762 nm from the 765 nm SeaWiFS band so the latter can be used in atmospheric correction of SeaWiFS. The importance of this to MODIS is that SeaWiFS data will be used extensively to test and improve the MODIS algorithm. Thus it is essential that the O2 absorption be adequately dealt with for SeaWiFS.

  18. Algorithms for the analysis of ensemble neural spiking activity using simultaneous-event multivariate point-process models.

    PubMed

    Ba, Demba; Temereanca, Simona; Brown, Emery N

    2014-01-01

    Understanding how ensembles of neurons represent and transmit information in the patterns of their joint spiking activity is a fundamental question in computational neuroscience. At present, analyses of spiking activity from neuronal ensembles are limited because multivariate point process (MPP) models cannot represent simultaneous occurrences of spike events at an arbitrarily small time resolution. Solo recently reported a simultaneous-event multivariate point process (SEMPP) model to correct this key limitation. In this paper, we show how Solo's discrete-time formulation of the SEMPP model can be efficiently fit to ensemble neural spiking activity using a multinomial generalized linear model (mGLM). Unlike existing approximate procedures for fitting the discrete-time SEMPP model, the mGLM is an exact algorithm. The MPP time-rescaling theorem can be used to assess model goodness-of-fit. We also derive a new marked point-process (MkPP) representation of the SEMPP model that leads to new thinning and time-rescaling algorithms for simulating an SEMPP stochastic process. These algorithms are much simpler than multivariate extensions of algorithms for simulating a univariate point process, and could not be arrived at without the MkPP representation. We illustrate the versatility of the SEMPP model by analyzing neural spiking activity from pairs of simultaneously-recorded rat thalamic neurons stimulated by periodic whisker deflections, and by simulating SEMPP data. In the data analysis example, the SEMPP model demonstrates that whisker motion significantly modulates simultaneous spiking activity at the 1 ms time scale and that the stimulus effect is more than one order of magnitude greater for simultaneous activity compared with non-simultaneous activity. Together, the mGLM, the MPP time-rescaling theorem and the MkPP representation of the SEMPP model offer a theoretically sound, practical tool for measuring joint spiking propensity in a neuronal ensemble.

  19. Development of a deformable dosimetric phantom to verify dose accumulation algorithms for adaptive radiotherapy

    PubMed Central

    Zhong, Hualiang; Adams, Jeffrey; Glide-Hurst, Carri; Zhang, Hualin; Li, Haisen; Chetty, Indrin J.

    2016-01-01

    Adaptive radiotherapy may improve treatment outcomes for lung cancer patients. Because of the lack of an effective tool for quality assurance, this therapeutic modality is not yet accepted in clinic. The purpose of this study is to develop a deformable physical phantom for validation of dose accumulation algorithms in regions with heterogeneous mass. A three-dimensional (3D) deformable phantom was developed containing a tissue-equivalent tumor and heterogeneous sponge inserts. Thermoluminescent dosimeters (TLDs) were placed at multiple locations in the phantom each time before dose measurement. Doses were measured with the phantom in both the static and deformed cases. The deformation of the phantom was actuated by a motor driven piston. 4D computed tomography images were acquired to calculate 3D doses at each phase using Pinnacle and EGSnrc/DOSXYZnrc. These images were registered using two registration software packages: VelocityAI and Elastix. With the resultant displacement vector fields (DVFs), the calculated 3D doses were accumulated using a mass-and energy congruent mapping method and compared to those measured by the TLDs at four typical locations. In the static case, TLD measurements agreed with all the algorithms by 1.8% at the center of the tumor volume and by 4.0% in the penumbra. In the deformable case, the phantom's deformation was reproduced within 1.1 mm. For the 3D dose calculated by Pinnacle, the total dose accumulated with the Elastix DVF agreed well to the TLD measurements with their differences <2.5% at four measured locations. When the VelocityAI DVF was used, their difference increased up to 11.8%. For the 3D dose calculated by EGSnrc/DOSXYZnrc, the total doses accumulated with the two DVFs were within 5.7% of the TLD measurements which are slightly over the rate of 5% for clinical acceptance. The detector-embedded deformable phantom allows radiation dose to be measured in a dynamic environment, similar to deforming lung tissues, supporting

  20. Development of a topically active imiquimod formulation.

    PubMed

    Chollet, J L; Jozwiakowski, M J; Phares, K R; Reiter, M J; Roddy, P J; Schultz, H J; Ta, Q V; Tomai, M A

    1999-01-01

    The purpose of this work was to develop a topical formulation of imiquimod, a novel immune response modifier, to induce local cytokine production for the treatment of external genital and perianal warts. A pH-solubility profile and titration data were used to calculate a pKa of 7.3, indicative of a weak base. Solubility experiments were conducted to identify a solvent that dissolves imiquimod to achieve a 5% formulation concentration. Studies to select surfactants, preservatives, and viscosity-enhancing excipients to formulate an oil-in-water cream indicated that fatty acids were the preferred solvent for topical imiquimod formulations, and isostearic acid (ISA) was selected. A relationship existed between the fatty acid composition of four commercially available ISA sources and the solubility of imiquimod. A combination of polysorbate 60, sorbitan monostearate, and xanthan gum was used to produce a physically stable cream. The preservative system included parabens and benzyl alcohol to meet the USP criteria for preservative activity. An in vitro method was developed to demonstrate that imiquimod was released from the formulation. Topical application of the formulation induced local cytokine activity in mice.

  1. Development of Observational Activities for Introductory Astronomy

    NASA Astrophysics Data System (ADS)

    Marshall, Kevin; Wilson, J.

    2007-05-01

    During the spring of 2006 new laboratory activities were developed for introductory astronomy classes at Georgia State University. The purpose of these labs was to develop hands-on astronomy activates. We first purchased Project Star refracting telescope kits and spectrometer kits, and a Meade Deep Sky Imager CCD. The new materials were tried on a single lab section of 22 students. For comparison purposes a traditional lab section from the same large lecture class was selected as a control group. The students in the experimental group constructed the telescopes and measured their telescope’s, light gathering ability and its angular resolution and compared them to the human eye, and its magnification. The students also built spectrometers and learned how to use them identify different types of light sources such as Mercury vapor lights, high and low pressure sodium lights, fluorescent lights, and other typical light sources. Each student then performed a light pollution investigation of their neighborhood using the spectroscopes they had constructed. In addition all students used these spectroscopes to observe solar Fraunhofer lines. In lab students used a small Schmidt-Cassegrain telescope and the Meade Deep Sky Imager to take photos of objects inside the lab room. After this they took telescopic pictures of the sun and moon on several occasions. The students rally enjoyed most of these activities. Student in the experimental group had slightly higher final exam scores than the students in the control group. However, the drop rate for the control group was higher then the experimental group and so the statistical significance of the result could not be determined. The authors would like to thank the Partnership for Reform in Science and Mathematics (PRISM), funded by NSF, for providing a mini-grant to support this work.

  2. 24 CFR 1003.203 - Special economic development activities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Special economic development... Eligible Activities § 1003.203 Special economic development activities. A grantee may use ICDBG funds for special economic development activities in addition to other activities authorized in this subpart...

  3. 24 CFR 1003.203 - Special economic development activities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false Special economic development... Eligible Activities § 1003.203 Special economic development activities. A grantee may use ICDBG funds for special economic development activities in addition to other activities authorized in this subpart...

  4. 24 CFR 1003.203 - Special economic development activities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 4 2014-04-01 2014-04-01 false Special economic development... Eligible Activities § 1003.203 Special economic development activities. A grantee may use ICDBG funds for special economic development activities in addition to other activities authorized in this subpart...

  5. Development of adaptive noise reduction filter algorithm for pediatric body images in a multi-detector CT

    NASA Astrophysics Data System (ADS)

    Nishimaru, Eiji; Ichikawa, Katsuhiro; Okita, Izumi; Ninomiya, Yuuji; Tomoshige, Yukihiro; Kurokawa, Takehiro; Ono, Yutaka; Nakamura, Yuko; Suzuki, Masayuki

    2008-03-01

    Recently, several kinds of post-processing image filters which reduce the noise of computed tomography (CT) images have been proposed. However, these image filters are mostly for adults. Because these are not very effective in small (< 20 cm) display fields of view (FOV), we cannot use them for pediatric body images (e.g., premature babies and infant children). We have developed a new noise reduction filter algorithm for pediatric body CT images. This algorithm is based on a 3D post-processing in which the output pixel values are calculated by nonlinear interpolation in z-directions on original volumetric-data-sets. This algorithm does not need the in-plane (axial plane) processing, so the spatial resolution does not change. From the phantom studies, our algorithm could reduce SD up to 40% without affecting the spatial resolution of x-y plane and z-axis, and improved the CNR up to 30%. This newly developed filter algorithm will be useful for the diagnosis and radiation dose reduction of the pediatric body CT images.

  6. Development and validation of algorithms for heart failure patient care: a Delphi study

    PubMed Central

    Gopal, Cynthia Priyadarshini; Ranga, Asri; Joseph, Kevin Louis; Tangiisuran, Balamurugan

    2015-01-01

    INTRODUCTION Although heart failure (HF) management is available at primary and secondary care facilities in Malaysia, the optimisation of drug therapy is still suboptimal. Although pharmacists can help bridge the gap in optimising HF therapy, pharmacists in Malaysia currently do not manage and titrate HF pharmacotherapy. The aim of this study was to develop treatment algorithms and monitoring protocols for angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, beta-blockers and spironolactone based on extensive literature review for validation and utilisation by pharmacists involved in HF management. METHODS A Delphi survey involving 32 panellists from private and government hospitals that provide cardiac services in Malaysia was conducted to obtain a consensus of opinion on the treatment protocols. The panellists completed two rounds of self-administered questionnaires to determine their level of agreement with all the components in the protocols. RESULTS Consensus was achieved for most of the sections of the protocols for the four classes of drugs. The panellists’ opinions were taken into consideration when amending the components of the protocols that did not achieve consensus of opinion. Full consensus was achieved with the second survey conducted, enabling the finalisation of the drug titration protocols. CONCLUSION The resulting validated HF titration protocols can be used as a guide for pharmacists when recommending the initiation and titration of HF drug therapy in daily clinical practice. Recommendations should be made in collaboration with the patient’s treating physician, with concomitant monitoring of the patient’s response to the drugs. PMID:25532514

  7. Development of Pressurized Water Reactor Integrated Safety Analysis Methodology Using Multilevel Coupling Algorithm

    SciTech Connect

    Ziabletsev, Dmitri; Avramova, Maria; Ivanov, Kostadin

    2004-11-15

    The subchannel code COBRA-TF has been introduced for an evaluation of thermal margins on the local pin-by-pin level in a pressurized water reactor. The coupling of COBRA-TF with TRAC-PF1/NEM is performed by providing from TRAC to COBRA-TF axial and radial thermal-hydraulic boundary conditions and relative pin-power profiles, obtained with the pin power reconstruction model of the nodal expansion method (NEM). An efficient algorithm for coupling of the subchannel code COBRA-TF with TRAC-PF1/NEM in the parallel virtual machine environment was developed addressing the issues of time synchronization, data exchange, spatial overlays, and coupled convergence. Local feedback modeling on the pin level was implemented into COBRA-TF, which enabled updating the local form functions and the recalculation of the pin powers in TRAC-PF1/NEM after obtaining the local feedback parameters. The coupled TRAC-PF1/NEM/COBRA-TF code system was tested on the rod ejection accident and main steam line break benchmark problems. In both problems, the local results are closer than before the introduced multilevel coupling to the corresponding critical limits. This fact indicates that the assembly average results tend to underestimate the accident consequences in terms of local safety margins. The capability of local safety evaluation, performed simultaneously (online) with coupled global three-dimensional neutron kinetics/thermal-hydraulic calculations, is introduced and tested. The obtained results demonstrate the importance of the current work.

  8. [Perinatal innate immune activation and neuropsychological development].

    PubMed

    Nagai, Taku

    2013-08-01

    Development of animal models is a crucial issue in biological psychiatry for the search of novel drug targets as well as the screening of candidate compounds. Epidemiologic studies suggest that environmental insults, such as prenatal infection and perinatal complication, are involved in the development of schizophrenia. Recently, we have developed a novel mouse model of viral infection during the perinatal stage by injecting polyriboinosinic-polyribocytidilic acid (polyI:C) into neonatal mice. Neonatal treatment of mice with polyI:C, an inducer of innate immune responses via toll-like receptor 3, caused a significant increase in interferon-induced transmembrane protein 3 (IFITM3) levels in the astrocytes of the hippocampus, which resulted in long-lasting brain dysfunction, including cognitive and emotional impairments as well as a deficit in depolarization-evoked glutamate release in the hippocampus in adulthood. Neonatal polyI:C-induced neuronal impairments have not been observed in IFITM3-KO mice. These findings suggest that the induction of IFITM3 expression in astrocytes by the activation of the innate immune system during the early stages of neurodevelopment has non-cell autonomous effects that affect subsequent neurodevelopment, leading to neuropathological impairments and brain dysfunction, by impairing endocytosis in astrocytes.

  9. Development of Variational Guiding Center Algorithms for Parallel Calculations in Experimental Magnetic Equilibria

    SciTech Connect

    Ellison, C. Leland; Finn, J. M.; Qin, H.; Tang, William M.

    2014-10-01

    Structure-preserving algorithms obtained via discrete variational principles exhibit strong promise for the calculation of guiding center test particle trajectories. The non-canonical Hamiltonian structure of the guiding center equations forms a novel and challenging context for geometric integration. To demonstrate the practical relevance of these methods, a prototypical variational midpoint algorithm is applied to an experimental magnetic equilibrium. The stability characteristics, conservation properties, and implementation requirements associated with the variational algorithms are addressed. Furthermore, computational run time is reduced for large numbers of particles by parallelizing the calculation on GPU hardware.

  10. Development, analysis, and testing of robust nonlinear guidance algorithms for space applications

    NASA Astrophysics Data System (ADS)

    Wibben, Daniel R.

    This work focuses on the analysis and application of various nonlinear, autonomous guidance algorithms that utilize sliding mode control to guarantee system stability and robustness. While the basis for the algorithms has previously been proposed, past efforts barely scratched the surface of the theoretical details and implications of these algorithms. Of the three algorithms that are the subject of this research, two are directly derived from optimal control theory and augmented using sliding mode control. Analysis of the derivation of these algorithms has shown that they are two different representations of the same result, one of which uses a simple error state model (Delta r/Deltav) and the other uses definitions of the zero-effort miss and zero-effort velocity (ZEM/ZEV) values. By investigating the dynamics of the defined sliding surfaces and their impact on the overall system, many implications have been deduced regarding the behavior of these systems which are noted to feature time-varying sliding modes. A formal finite time stability analysis has also been performed to theoretically demonstrate that the algorithms globally stabilize the system in finite time in the presence of perturbations and unmodeled dynamics. The third algorithm that has been subject to analysis is derived from a direct application of higher-order sliding mode control and Lyapunov stability analysis without consideration of optimal control theory and has been named the Multiple Sliding Surface Guidance (MSSG). Via use of reinforcement learning methods an optimal set of gains has been found that make the guidance perform similarly to an open-loop optimal solution. Careful side-by-side inspection of the MSSG and Optimal Sliding Guidance (OSG) algorithms has shown some striking similarities. A detailed comparison of the algorithms has demonstrated that though they are nearly indistinguishable at first glance, there are some key differences between the two algorithms and they are indeed

  11. Development of an algorithm to improve the accuracy of dose delivery in Gamma Knife radiosurgery

    NASA Astrophysics Data System (ADS)

    Cernica, George Dumitru

    2007-12-01

    Gamma Knife stereotactic radiosurgery has demonstrated decades of successful treatments. Despite its high spatial accuracy, the Gamma Knife's planning software, GammaPlan, uses a simple exponential as the TPR curve for all four collimator sizes, and a skull scaling device to acquire ruler measurements to interpolate a threedimensional spline to model the patient's skull. The consequences of these approximations have not been previously investigated. The true TPR curves of the four collimators were measured by blocking 200 of the 201 sources with steel plugs. Additional attenuation was provided through the use of a 16 cm tungsten sphere, designed to enable beamlet measurements along one axis. TPR, PDD, and beamlet profiles were obtained using both an ion chamber and GafChromic EBT film for all collimators. Additionally, an in-house planning algorithm able to calculate the contour of the skull directly from an image set and implement the measured beamlet data in shot time calculations was developed. Clinical and theoretical Gamma Knife cases were imported into our algorithm. The TPR curves showed small deviations from a simple exponential curve, with average discrepancies under 1%, but with a maximum discrepancy of 2% found for the 18 mm collimator beamlet at shallow depths. The consequences on the PDD of the of the beamlets were slight, with a maximum of 1.6% found with the 18 mm collimator beamlet. Beamlet profiles of the 4 mm, 8 mm, and 14 mm showed some underestimates of the off-axis ratio near the shoulders (up to 10%). The toes of the profiles were underestimated for all collimators, with differences up to 7%. Shot times were affected by up to 1.6% due to TPR differences, but clinical cases showed deviations by no more than 0.5%. The beamlet profiles affected the dose calculations more significantly, with shot time calculations differing by as much as 0.8%. The skull scaling affected the shot time calculations the most significantly, with differences of up to 5

  12. Successive smoothing algorithm for constructing the semiempirical model developed at ONERA to predict unsteady aerodynamic forces. [aeroelasticity in helicopters

    NASA Technical Reports Server (NTRS)

    Petot, D.; Loiseau, H.

    1982-01-01

    Unsteady aerodynamic methods adopted for the study of aeroelasticity in helicopters are considered with focus on the development of a semiempirical model of unsteady aerodynamic forces acting on an oscillating profile at high incidence. The successive smoothing algorithm described leads to the model's coefficients in a very satisfactory manner.

  13. Detection of fruit-fly infestation in olives using X-ray imaging: Algorithm development and prospects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An algorithm using a Bayesian classifier was developed to automatically detect olive fruit fly infestations in x-ray images of olives. The data set consisted of 249 olives with various degrees of infestation and 161 non-infested olives. Each olive was x-rayed on film and digital images were acquired...

  14. Development of Turbulent Diffusion Transfer Algorithms to Estimate Lake Tahoe Water Budget

    NASA Astrophysics Data System (ADS)

    Sahoo, G. B.; Schladow, S. G.; Reuter, J. E.

    2012-12-01

    The evaporative loss is a dominant component in the Lake Tahoe hydrologic budget because watershed area (813km2) is very small compared to the lake surface area (501 km2). The 5.5 m high dam built at the lake's only outlet, the Truckee River at Tahoe City can increase the lake's capacity by approximately 0.9185 km3. The lake serves as a flood protection for downstream areas and source of water supply for downstream cities, irrigation, hydropower, and instream environmental requirements. When the lake water level falls below the natural rim, cessation of flows from the lake cause problems for water supply, irrigation, and fishing. Therefore, it is important to develop algorithms to correctly estimate the lake hydrologic budget. We developed a turbulent diffusion transfer model and coupled to the dynamic lake model (DLM-WQ). We generated the stream flows and pollutants loadings of the streams using the US Environmental Protection Agency (USEPA) supported watershed model, Loading Simulation Program in C++ (LSPC). The bulk transfer coefficients were calibrated using correlation coefficient (R2) as the objective function. Sensitivity analysis was conducted for the meteorological inputs and model parameters. The DLM-WQ estimated lake water level and water temperatures were in agreement to those of measured records with R2 equal to 0.96 and 0.99, respectively for the period 1994 to 2008. The estimated average evaporation from the lake, stream inflow, precipitation over the lake, groundwater fluxes, and outflow from the lake during 1994 to 2008 were found to be 32.0%, 25.0%, 19.0%, 0.3%, and 11.7%, respectively.

  15. How Somatic Adult Tissues Develop Organizer Activity.

    PubMed

    Vogg, Matthias C; Wenger, Yvan; Galliot, Brigitte

    2016-01-01

    The growth and patterning of anatomical structures from specific cellular fields in developing organisms relies on organizing centers that instruct surrounding cells to modify their behavior, namely migration, proliferation, and differentiation. We discuss here how organizers can form in adult organisms, a process of utmost interest for regenerative medicine. Animals like Hydra and planarians, which maintain their shape and fitness thanks to a highly dynamic homeostasis, offer a useful paradigm to study adult organizers in steady-state conditions. Beside the homeostatic context, these model systems also offer the possibility to study how organizers form de novo from somatic adult tissues. Both extracellular matrix remodeling and caspase activation play a key role in this transition, acting as promoters of organizer formation in the vicinity of the wound. Their respective roles and the crosstalk between them just start to be deciphered.

  16. A preliminary report on the development of MATLAB tensor classes for fast algorithm prototyping.

    SciTech Connect

    Bader, Brett William; Kolda, Tamara Gibson

    2004-07-01

    We describe three MATLAB classes for manipulating tensors in order to allow fast algorithm prototyping. A tensor is a multidimensional or N-way array. We present a tensor class for manipulating tensors which allows for tensor multiplication and 'matricization.' We have further added two classes for representing tensors in decomposed format: cp{_}tensor and tucker{_}tensor. We demonstrate the use of these classes by implementing several algorithms that have appeared in the literature.

  17. Developing JSequitur to Study the Hierarchical Structure of Biological Sequences in a Grammatical Inference Framework of String Compression Algorithms.

    PubMed

    Galbadrakh, Bulgan; Lee, Kyung-Eun; Park, Hyun-Seok

    2012-12-01

    Grammatical inference methods are expected to find grammatical structures hidden in biological sequences. One hopes that studies of grammar serve as an appropriate tool for theory formation. Thus, we have developed JSequitur for automatically generating the grammatical structure of biological sequences in an inference framework of string compression algorithms. Our original motivation was to find any grammatical traits of several cancer genes that can be detected by string compression algorithms. Through this research, we could not find any meaningful unique traits of the cancer genes yet, but we could observe some interesting traits in regards to the relationship among gene length, similarity of sequences, the patterns of the generated grammar, and compression rate.

  18. Characterizing the Preturbulence Environment for Sensor Development, New Hazard Algorithms and NASA Experimental Flight Planning

    NASA Technical Reports Server (NTRS)

    Kaplan, Michael L.; Lin, Yuh-Lang

    2004-01-01

    During the grant period, several tasks were performed in support of the NASA Turbulence Prediction and Warning Systems (TPAWS) program. The primary focus of the research was on characterizing the preturbulence environment by developing predictive tools and simulating atmospheric conditions that preceded severe turbulence. The goal of the research being to provide both dynamical understanding of conditions that preceded turbulence as well as providing predictive tools in support of operational NASA B-757 turbulence research flights. The advancements in characterizing the preturbulence environment will be applied by NASA to sensor development for predicting turbulence onboard commercial aircraft. Numerical simulations with atmospheric models as well as multi-scale observational analyses provided insights into the environment organizing turbulence in a total of forty-eight specific case studies of severe accident producing turbulence on commercial aircraft. These accidents exclusively affected commercial aircraft. A paradigm was developed which diagnosed specific atmospheric circulation systems from the synoptic scale down to the meso-y scale that preceded turbulence in both clear air and in proximity to convection. The emphasis was primarily on convective turbulence as that is what the TPAWS program is most focused on in terms of developing improved sensors for turbulence warning and avoidance. However, the dynamical paradigm also has applicability to clear air and mountain turbulence. This dynamical sequence of events was then employed to formulate and test new hazard prediction indices that were first tested in research simulation studies and then ultimately were further tested in support of the NASA B-757 turbulence research flights. The new hazard characterization algorithms were utilized in a Real Time Turbulence Model (RTTM) that was operationally employed to support the NASA B-757 turbulence research flights. Improvements in the RTTM were implemented in an

  19. Biologically active peptides: prospects for drug development.

    PubMed

    Hughes, J

    1980-08-11

    Biologically active peptides aree typified by their unbiquity of distribution, their high receptor affinity and an almost infinite diversity of structure. For these reasons, considerable effort is now being expended to elucidate the possible role of peptides in brain function. This effort has been stimulated by the discovery of a number of new endogenous peptides, such as the enkephalins, endorphins, vasoactive intestinal peptide and neurotensin. At present, there is no clearly defined role for these peptides, although they may form an important basis for the chemical coding of various brain functions, including pain, mood and memory. At present, the potential for drug development of peptide agonists remains in fairly circumscribed areas such as analgesia, pituitary hormone control, and gastrointestinal motor and secretory control. Peptide antagonists may provide a vast field for future development, although only one area, that of antifertility drugs based on LHRH antagonists, shows any promise of immediate success. Industrial research approaches to new peptide agonists and antagonists mainly rely at present on rational drug design through structural analogies. Other fruitful approaches to be considered are the screening of natural microbial and plant products and the possible application of genetic engineering techniques.

  20. Planning fuel-conservative descents in an airline environmental using a small programmable calculator: algorithm development and flight test results

    SciTech Connect

    Knox, C.E.; Vicroy, D.D.; Simmon, D.A.

    1985-05-01

    A simple, airborne, flight-management descent algorithm was developed and programmed into a small programmable calculator. The algorithm may be operated in either a time mode or speed mode. The time mode was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The speed model was designed for planning fuel-conservative descents when time is not a consideration. The descent path for both modes was calculated for a constant with considerations given for the descent Mach/airspeed schedule, gross weight, wind, wind gradient, and nonstandard temperature effects. Flight tests, using the algorithm on the programmable calculator, showed that the open-loop guidance could be useful to airline flight crews for planning and executing fuel-conservative descents.

  1. Planning fuel-conservative descents in an airline environmental using a small programmable calculator: Algorithm development and flight test results

    NASA Technical Reports Server (NTRS)

    Knox, C. E.; Vicroy, D. D.; Simmon, D. A.

    1985-01-01

    A simple, airborne, flight-management descent algorithm was developed and programmed into a small programmable calculator. The algorithm may be operated in either a time mode or speed mode. The time mode was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The speed model was designed for planning fuel-conservative descents when time is not a consideration. The descent path for both modes was calculated for a constant with considerations given for the descent Mach/airspeed schedule, gross weight, wind, wind gradient, and nonstandard temperature effects. Flight tests, using the algorithm on the programmable calculator, showed that the open-loop guidance could be useful to airline flight crews for planning and executing fuel-conservative descents.

  2. Development of a dose algorithm for the modified panasonic UD-802 personal dosimeter used at three mile island

    SciTech Connect

    Miklos, J. A.; Plato, P.

    1988-01-01

    During the fall of 1981, the personnel dosimetry group at GPU Nuclear Corporation at Three Mile Island (TMI) requested assistance from The University of Michigan (UM) in developing a dose algorithm for use at TMI-2. The dose algorithm had to satisfy the specific needs of TMI-2, particularly the need to distinguish beta-particle emitters of different energies, as well as having the capability of satisfying the requirements of the American National Standards Institute (ANSI) N13.11-1983 standard. A standard Panasonic UD-802 dosimeter was modified by having the plastic filter over element 2 removed. The dosimeter and hanger consists of the elements with a 14 mg/cm/sup 2/ density thickness and the filtrations shown. The hanger on this dosimeter had a double open window to facilitate monitoring for low-energy beta particles. The dose algorithm was written to satisfy the requirements of the ANSI N13.11-1983 standard, to include /sup 204/Tl with mixtures of /sup 204/Tl with /sup 90/Sr//sup 90/Y and /sup 137/Cs, and to include 81- and 200-keV average energy X-ray spectra. Stress tests were conducted to observe the algorithm performance to low doses, temperature, humidity, and the residual response following high-dose irradiations. The ability of the algorithm to determine dose from the beta particles of /sup 147/Pm was also investigated.

  3. Challenges and Recent Developments in Hearing Aids: Part I. Speech Understanding in Noise, Microphone Technologies and Noise Reduction Algorithms

    PubMed Central

    Chung, King

    2004-01-01

    This review discusses the challenges in hearing aid design and fitting and the recent developments in advanced signal processing technologies to meet these challenges. The first part of the review discusses the basic concepts and the building blocks of digital signal processing algorithms, namely, the signal detection and analysis unit, the decision rules, and the time constants involved in the execution of the decision. In addition, mechanisms and the differences in the implementation of various strategies used to reduce the negative effects of noise are discussed. These technologies include the microphone technologies that take advantage of the spatial differences between speech and noise and the noise reduction algorithms that take advantage of the spectral difference and temporal separation between speech and noise. The specific technologies discussed in this paper include first-order directional microphones, adaptive directional microphones, second-order directional microphones, microphone matching algorithms, array microphones, multichannel adaptive noise reduction algorithms, and synchrony detection noise reduction algorithms. Verification data for these technologies, if available, are also summarized. PMID:15678225

  4. Development of a blended-control, predictor-corrector guidance algorithm for a crewed Mars aerocapture vehicle

    NASA Astrophysics Data System (ADS)

    Jits, Roman Yuryevich

    A robust blended-control guidance system for a crewed Mars aerocapture vehicle is developed. The key features of its guidance algorithm are the use of the both bank-angle and angle-of-attack modulation to control the aerobraking vehicle, and the use of multiple controls (sequenced pairs of bank-angles and angles-of-attack) within its numeric predictor-corrector targeting routine. The guidance algorithm macrologic is based on extensive open loop trajectory analyses, described in the present research, which led to the selection of a blended-control scheme. A heuristic approach to recover from situations where no converged guidance solution could be found by the numeric predictor-corrector is implemented in the guidance algorithm, and has been successfully demonstrated in a large number of test runs. In this research both the outer and inner loop of the guidance and control system employ the POST (Program to Optimize Simulated Trajectories) computer code as the basic simulation module. At each guidance update, the inner loop solves the rigorous three-dimensional equations of motion and computes the control (bank-angle and angle-of-attack) sequence that is required to meet the required atmospheric exit conditions. Throughout the aerocapture trajectory, the guidance algorithm modifies this control sequence computed by the inner loop, and generates commanded controls for the vehicle, which, when implemented by the outer loop, meet an imposed g-load constraint of 5 Earth g's and compensate for unexpected off-nominal conditions. This blended-control, predictor-corrector guidance algorithm has been successfully developed, implemented and tested and has been shown to be capable of meeting the prescribed g-load constraint and guiding the vehicle to the desired exit conditions for a range of off-nominal factors much wider than those which could be accommodated by prior algorithms and bank-angle-only guidance.

  5. Adjusting for COPD severity in database research: developing and validating an algorithm

    PubMed Central

    Goossens, Lucas MA; Baker, Christine L; Monz, Brigitta U; Zou, Kelly H; Mölken, Maureen PMH Rutten-van

    2011-01-01

    Purpose When comparing chronic obstructive lung disease (COPD) interventions in database research, it is important to adjust for severity. Global Initiative for Chronic Obstructive Lung Disease (GOLD) guidelines grade severity according to lung function. Most databases lack data on lung function. Previous database research has approximated COPD severity using demographics and healthcare utilization. This study aims to derive an algorithm for COPD severity using baseline data from a large respiratory trial (UPLIFT). Methods Partial proportional odds logit models were developed for probabilities of being in GOLD stages II, III and IV. Concordance between predicted and observed stage was assessed using kappa-statistics. Models were estimated in a random selection of 2/3 of patients and validated in the remainder. The analysis was repeated in a subsample with a balanced distribution across severity stages. Univariate associations of COPD severity with the covariates were tested as well. Results More severe COPD was associated with being male and younger, having quit smoking, lower BMI, osteoporosis, hospitalizations, using certain medications, and oxygen. After adjusting for these variables, co-morbidities, previous healthcare resource use (eg, emergency room, hospitalizations) and inhaled corticosteroids, xanthines, or mucolytics were no longer independently associated with COPD severity, although they were in univariate tests. The concordance was poor (kappa = 0.151) and only slightly better in the balanced sample (kappa = 0.215). Conclusion COPD severity cannot be reliably predicted from demographics and healthcare use. This limitation should be considered when interpreting findings from database studies, and additional research should explore other methods to account for COPD severity. PMID:22259243

  6. An Efficient Correction Algorithm for Eliminating Image Misalignment Effects on Co-Phasing Measurement Accuracy for Segmented Active Optics Systems.

    PubMed

    Yue, Dan; Xu, Shuyan; Nie, Haitao; Wang, Zongyang

    2016-01-01

    The misalignment between recorded in-focus and out-of-focus images using the Phase Diversity (PD) algorithm leads to a dramatic decline in wavefront detection accuracy and image recovery quality for segmented active optics systems. This paper demonstrates the theoretical relationship between the image misalignment and tip-tilt terms in Zernike polynomials of the wavefront phase for the first time, and an efficient two-step alignment correction algorithm is proposed to eliminate these misalignment effects. This algorithm processes a spatial 2-D cross-correlation of the misaligned images, revising the offset to 1 or 2 pixels and narrowing the search range for alignment. Then, it eliminates the need for subpixel fine alignment to achieve adaptive correction by adding additional tip-tilt terms to the Optical Transfer Function (OTF) of the out-of-focus channel. The experimental results demonstrate the feasibility and validity of the proposed correction algorithm to improve the measurement accuracy during the co-phasing of segmented mirrors. With this alignment correction, the reconstructed wavefront is more accurate, and the recovered image is of higher quality.

  7. An Efficient Correction Algorithm for Eliminating Image Misalignment Effects on Co-Phasing Measurement Accuracy for Segmented Active Optics Systems

    PubMed Central

    Yue, Dan; Xu, Shuyan; Nie, Haitao; Wang, Zongyang

    2016-01-01

    The misalignment between recorded in-focus and out-of-focus images using the Phase Diversity (PD) algorithm leads to a dramatic decline in wavefront detection accuracy and image recovery quality for segmented active optics systems. This paper demonstrates the theoretical relationship between the image misalignment and tip-tilt terms in Zernike polynomials of the wavefront phase for the first time, and an efficient two-step alignment correction algorithm is proposed to eliminate these misalignment effects. This algorithm processes a spatial 2-D cross-correlation of the misaligned images, revising the offset to 1 or 2 pixels and narrowing the search range for alignment. Then, it eliminates the need for subpixel fine alignment to achieve adaptive correction by adding additional tip-tilt terms to the Optical Transfer Function (OTF) of the out-of-focus channel. The experimental results demonstrate the feasibility and validity of the proposed correction algorithm to improve the measurement accuracy during the co-phasing of segmented mirrors. With this alignment correction, the reconstructed wavefront is more accurate, and the recovered image is of higher quality. PMID:26934045

  8. Using a multi-objective genetic algorithm for developing aerial sensor team search strategies

    NASA Astrophysics Data System (ADS)

    Ridder, Jeffrey P.; Herweg, Jared A.; Sciortino, John C., Jr.

    2008-04-01

    Finding certain associated signals in the modern electromagnetic environment can prove a difficult task due to signal characteristics and associated platform tactics as well as the systems used to find these signals. One approach to finding such signal sets is to employ multiple small unmanned aerial systems (UASs) equipped with RF sensors in a team to search an area. The search environment may be partially known, but with a significant level of uncertainty as to the locations and emissions behavior of the individual signals and their associated platforms. The team is likely to benefit from a combination of using uncertain a priori information for planning and online search algorithms for dynamic tasking of the team. Two search algorithms are examined for effectiveness: Archimedean spirals, in which the UASs comprising the team do not respond to the environment, and artificial potential fields, in which they use environmental perception and interactions to dynamically guide the search. A multi-objective genetic algorithm (MOGA) is used to explore the desirable characteristics of search algorithms for this problem using two performance objectives. The results indicate that the MOGA can successfully use uncertain a priori information to set the parameters of the search algorithms. Also, we find that artificial potential fields may result in good performance, but that each of the fields has a different contribution that may be appropriate only in certain states.

  9. Development of an Algorithm for MODIS and VIIRS Cloud Optical Property Data Record Continuity

    NASA Astrophysics Data System (ADS)

    Meyer, K.; Platnick, S. E.; Ackerman, S. A.; Heidinger, A. K.; Holz, R.; Wind, G.; Amarasinghe, N.; Marchant, B.

    2015-12-01

    The launch of Suomi NPP in the fall of 2011 began the next generation of U.S. operational polar orbiting environmental observations. Similar to MODIS, the VIIRS imager provides visible through IR observations at moderate spatial resolution with a 1330 LT equatorial crossing consistent with MODIS on the Aqua platform. However, unlike MODIS, VIIRS lacks key water vapor and CO2 absorbing channels used by the MODIS cloud algorithms for high cloud detection and cloud-top property retrievals. In addition, there is a significant change in the spectral location of the 2.1μm shortwave-infrared channel used by MODIS for cloud optical/microphysical retrievals. Given the instrument differences between MODIS EOS and VIIRS S-NPP/JPSS, we discuss our adopted method for merging the 15+ year MODIS observational record with VIIRS in order to generate cloud optical property data record continuity across the observing systems. The optical property retrieval code uses heritage algorithms that produce the existing MODIS cloud optical and microphysical properties product (MOD06). As explained in other presentations submitted to this session, the NOAA AWG/CLAVR-x cloud-top property algorithm and a common MODIS-VIIRS cloud mask feed into the optical property algorithm to account for the different channel sets of the two imagers. Data granule and aggregated examples for the current version of the algorithm will be shown.

  10. Algorithm and code development for unsteady three-dimensional Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Obayashi, Shigeru

    1991-01-01

    A streamwise upwind algorithm for solving the unsteady 3-D Navier-Stokes equations was extended to handle the moving grid system. It is noted that the finite volume concept is essential to extend the algorithm. The resulting algorithm is conservative for any motion of the coordinate system. Two extensions to an implicit method were considered and the implicit extension that makes the algorithm computationally efficient is implemented into Ames's aeroelasticity code, ENSAERO. The new flow solver has been validated through the solution of test problems. Test cases include three-dimensional problems with fixed and moving grids. The first test case shown is an unsteady viscous flow over an F-5 wing, while the second test considers the motion of the leading edge vortex as well as the motion of the shock wave for a clipped delta wing. The resulting algorithm has been implemented into ENSAERO. The upwind version leads to higher accuracy in both steady and unsteady computations than the previously used central-difference method does, while the increase in the computational time is small.

  11. Recent Electric Propulsion Development Activities for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.

    2009-01-01

    (The primary source of electric propulsion development throughout NASA is managed by the In-Space Propulsion Technology Project at the NASA Glenn Research Center for the Science Mission Directorate. The objective of the Electric Propulsion project area is to develop near-term electric propulsion technology to enhance or enable science missions while minimizing risk and cost to the end user. Major hardware tasks include developing NASA s Evolutionary Xenon Thruster (NEXT), developing a long-life High Voltage Hall Accelerator (HIVHAC), developing an advanced feed system, and developing cross-platform components. The objective of the NEXT task is to advance next generation ion propulsion technology readiness. The baseline NEXT system consists of a high-performance, 7-kW ion thruster; a high-efficiency, 7-kW power processor unit (PPU); a highly flexible advanced xenon propellant management system (PMS); a lightweight engine gimbal; and key elements of a digital control interface unit (DCIU) including software algorithms. This design approach was selected to provide future NASA science missions with the greatest value in mission performance benefit at a low total development cost. The objective of the HIVHAC task is to advance the Hall thruster technology readiness for science mission applications. The task seeks to increase specific impulse, throttle-ability and lifetime to make Hall propulsion systems applicable to deep space science missions. The primary application focus for the resulting Hall propulsion system would be cost-capped missions, such as competitively selected, Discovery-class missions. The objective of the advanced xenon feed system task is to demonstrate novel manufacturing techniques that will significantly reduce mass, volume, and footprint size of xenon feed systems over conventional feed systems. This task has focused on the development of a flow control module, which consists of a three-channel flow system based on a piezo-electrically actuated

  12. Manufacturing development of low activation vanadium alloys

    SciTech Connect

    Smith, J.P.; Johnson, W.R.; Baxi, C.B.

    1996-10-01

    General Atomics is developing manufacturing methods for vanadium alloys as part of a program to encourage the development of low activation alloys for fusion use. The culmination of the program is the fabrication and installation of a vanadium alloy structure in the DIII-D tokamak as part of the Radiative Divertor modification. Water-cooled vanadium alloy components will comprise a portion of the new upper divertor structure. The first step, procuring the material for this program has been completed. The largest heat of vanadium alloy made to date, 1200 kg of V-4Cr-4Ti, has been produced and is being converted into various product forms. Results of many tests on the material during the manufacturing process are reported. Research into potential fabrication methods has been and continues to be performed along with the assessment of manufacturing processes particularly in the area of joining. Joining of vanadium alloys has been identified as the most critical fabrication issue for their use in the Radiative Divertor Program. Joining processes under evaluation include resistance seam, electrodischarge (stud), friction and electron beam welding. Results of welding tests are reported. Metallography and mechanical tests are used to evaluate the weld samples. The need for a protective atmosphere during different welding processes is also being determined. General Atomics has also designed, manufactured, and will be testing a helium-cooled, high heat flux component to assess the use of helium cooled vanadium alloy components for advanced tokamak systems. The component is made from vanadium alloy tubing, machined to enhance the heat transfer characteristics, and joined to end flanges to allow connection to the helium supply. Results are reported.

  13. Towards developing robust algorithms for solving partial differential equations on MIMD machines

    NASA Technical Reports Server (NTRS)

    Saltz, Joel H.; Naik, Vijay K.

    1988-01-01

    Methods for efficient computation of numerical algorithms on a wide variety of MIMD machines are proposed. These techniques reorganize the data dependency patterns to improve the processor utilization. The model problem finds the time-accurate solution to a parabolic partial differential equation discretized in space and implicitly marched forward in time. The algorithms are extensions of Jacobi and SOR. The extensions consist of iterating over a window of several timesteps, allowing efficient overlap of computation with communication. The methods increase the degree to which work can be performed while data are communicated between processors. The effect of the window size and of domain partitioning on the system performance is examined both by implementing the algorithm on a simulated multiprocessor system.

  14. Towards developing robust algorithms for solving partial differential equations on MIMD machines

    NASA Technical Reports Server (NTRS)

    Saltz, J. H.; Naik, V. K.

    1985-01-01

    Methods for efficient computation of numerical algorithms on a wide variety of MIMD machines are proposed. These techniques reorganize the data dependency patterns to improve the processor utilization. The model problem finds the time-accurate solution to a parabolic partial differential equation discretized in space and implicitly marched forward in time. The algorithms are extensions of Jacobi and SOR. The extensions consist of iterating over a window of several timesteps, allowing efficient overlap of computation with communication. The methods increase the degree to which work can be performed while data are communicated between processors. The effect of the window size and of domain partitioning on the system performance is examined both by implementing the algorithm on a simulated multiprocessor system.

  15. The Development of a Parameterized Scatter Removal Algorithm for Nuclear Materials Identification System Imaging

    SciTech Connect

    Grogan, Brandon Robert

    2010-03-01

    This dissertation presents a novel method for removing scattering effects from Nuclear Materials Identification System (NMIS) imaging. The NMIS uses fast neutron radiography to generate images of the internal structure of objects non-intrusively. If the correct attenuation through the object is measured, the positions and macroscopic cross-sections of features inside the object can be determined. The cross sections can then be used to identify the materials and a 3D map of the interior of the object can be reconstructed. Unfortunately, the measured attenuation values are always too low because scattered neutrons contribute to the unattenuated neutron signal. Previous efforts to remove the scatter from NMIS imaging have focused on minimizing the fraction of scattered neutrons which are misidentified as directly transmitted by electronically collimating and time tagging the source neutrons. The parameterized scatter removal algorithm (PSRA) approaches the problem from an entirely new direction by using Monte Carlo simulations to estimate the point scatter functions (PScFs) produced by neutrons scattering in the object. PScFs have been used to remove scattering successfully in other applications, but only with simple 2D detector models. This work represents the first time PScFs have ever been applied to an imaging detector geometry as complicated as the NMIS. By fitting the PScFs using a Gaussian function, they can be parameterized and the proper scatter for a given problem can be removed without the need for rerunning the simulations each time. In order to model the PScFs, an entirely new method for simulating NMIS measurements was developed for this work. The development of the new models and the codes required to simulate them are presented in detail. The PSRA was used on several simulated and experimental measurements and chi-squared goodness of fit tests were used to compare the corrected values to the ideal values that would be expected with no scattering. Using

  16. THE DEVELOPMENT OF A PARAMETERIZED SCATTER REMOVAL ALGORITHM FOR NUCLEAR MATERIALS IDENTIFICATION SYSTEM IMAGING

    SciTech Connect

    Grogan, Brandon R

    2010-05-01

    This report presents a novel method for removing scattering effects from Nuclear Materials Identification System (NMIS) imaging. The NMIS uses fast neutron radiography to generate images of the internal structure of objects nonintrusively. If the correct attenuation through the object is measured, the positions and macroscopic cross sections of features inside the object can be determined. The cross sections can then be used to identify the materials, and a 3D map of the interior of the object can be reconstructed. Unfortunately, the measured attenuation values are always too low because scattered neutrons contribute to the unattenuated neutron signal. Previous efforts to remove the scatter from NMIS imaging have focused on minimizing the fraction of scattered neutrons that are misidentified as directly transmitted by electronically collimating and time tagging the source neutrons. The parameterized scatter removal algorithm (PSRA) approaches the problem from an entirely new direction by using Monte Carlo simulations to estimate the point scatter functions (PScFs) produced by neutrons scattering in the object. PScFs have been used to remove scattering successfully in other applications, but only with simple 2D detector models. This work represents the first time PScFs have ever been applied to an imaging detector geometry as complicated as the NMIS. By fitting the PScFs using a Gaussian function, they can be parameterized, and the proper scatter for a given problem can be removed without the need for rerunning the simulations each time. In order to model the PScFs, an entirely new method for simulating NMIS measurements was developed for this work. The development of the new models and the codes required to simulate them are presented in detail. The PSRA was used on several simulated and experimental measurements, and chi-squared goodness of fit tests were used to compare the corrected values to the ideal values that would be expected with no scattering. Using the

  17. Development of a Near Real-Time Hail Damage Swath Identification Algorithm for Vegetation

    NASA Technical Reports Server (NTRS)

    Bell, Jordan R.; Molthan, Andrew L.; Schultz, Kori A.; McGrath, Kevin M.; Burks, Jason E.

    2015-01-01

    Every year in the Midwest and Great Plains, widespread greenness forms in conjunction with the latter part of the spring-summer growing season. This prevalent greenness forms as a result of the high concentration of agricultural areas having their crops reach their maturity before the fall harvest. This time of year also coincides with an enhanced hail frequency for the Great Plains (Cintineo et al. 2012). These severe thunderstorms can bring damaging winds and large hail that can result in damage to the surface vegetation. The spatial extent of the damage can relatively small concentrated area or be a vast swath of damage that is visible from space. These large areas of damage have been well documented over the years. In the late 1960s aerial photography was used to evaluate crop damage caused by hail. As satellite remote sensing technology has evolved, the identification of these hail damage streaks has increased. Satellites have made it possible to view these streaks in additional spectrums. Parker et al. (2005) documented two streaks using the Moderate Resolution Imaging Spectroradiometer (MODIS) that occurred in South Dakota. He noted the potential impact that these streaks had on the surface temperature and associated surface fluxes that are impacted by a change in temperature. Gallo et al. (2012) examined at the correlation between radar signatures and ground observations from storms that produced a hail damage swath in Central Iowa also using MODIS. Finally, Molthan et al. (2013) identified hail damage streaks through MODIS, Landsat-7, and SPOT observations of different resolutions for the development of a potential near-real time applications. The manual analysis of hail damage streaks in satellite imagery is both tedious and time consuming, and may be inconsistent from event to event. This study focuses on development of an objective and automatic algorithm to detect these areas of damage in a more efficient and timely manner. This study utilizes the

  18. Development of a short form and scoring algorithm from the validated actionable bladder symptom screening tool

    PubMed Central

    2013-01-01

    Background The majority of multiple sclerosis (MS) patients develop some form of lower urinary tract dysfunction, usually as a result of neurogenic detrusor overactivity (NDO). Patients identify urinary incontinence as one of the worst aspects of this disease. Despite the high prevalence of NDO, urological evaluation and treatment are significantly under-accessed in this population. The objectives of this study were: 1) to adapt the previously validated Actionable Bladder Symptom Screening Tool (ABSST) to a short form for ease and brevity of application in a clinical setting that is clinically meaningful; and 2) to develop a scoring algorithm that would be interpretable in terms of referring/considering precise diagnosis and treatment. Methods A US-based, non-randomized, multi-center, stand-alone observational study was conducted to assess the psychometric properties of the ABSST among patients who have MS with and without NDO. Mixed psychometric methods (e.g., classical statistics (Psychometric theory (3rd ed.). New York: McGraw-Hill; 1994) and item response methods (Applying the Rasch Model: Fundamental Measurement in the Human Sciences. New Jersey: Lawrence Earlbaum Associates; 2001)) were used to evaluate the predictive and clinical validity of the shortened form. The latter included clinicians flagging clinically meaningful items and associated response options which would indicate the need for further evaluation or treatment. Results A total of 151 patients, all with MS and with and without NDO, were recruited by 28 clinicians in various US geographical locations. Approximately 41% of patients reported a history of or currently having urinary incontinence and/or urinary urgency. The prediction model across the entire range of classification thresholds was evaluated, plotting the true positive identification rate against the false positive rate (1-Specificity) for various cut scores. In this study, the cut-point or total score of greater than or equal to 6 had

  19. Vibrational self-consistent field calculations for spectroscopy of biological molecules: new algorithmic developments and applications.

    PubMed

    Roy, Tapta Kanchan; Gerber, R Benny

    2013-06-28

    This review describes the vibrational self-consistent field (VSCF) method and its other variants for computing anharmonic vibrational spectroscopy of biological molecules. The superiority and limitations of this algorithm are discussed with examples. The spectroscopic accuracy of the VSCF method is compared with experimental results and other available state-of-the-art algorithms for various biologically important systems. For large biological molecules with many vibrational modes, the scaling of computational effort is investigated. The accuracy of the vibrational spectra of biological molecules using the VSCF approach for different electronic structure methods is also assessed. Finally, a few open problems and challenges in this field are discussed.

  20. Development of homotopy algorithms for fixed-order mixed H2/H(infinity) controller synthesis

    NASA Technical Reports Server (NTRS)

    Whorton, M.; Buschek, H.; Calise, A. J.

    1994-01-01

    A major difficulty associated with H-infinity and mu-synthesis methods is the order of the resulting compensator. Whereas model and/or controller reduction techniques are sometimes applied, performance and robustness properties are not preserved. By directly constraining compensator order during the optimization process, these properties are better preserved, albeit at the expense of computational complexity. This paper presents a novel homotopy algorithm to synthesize fixed-order mixed H2/H-infinity compensators. Numerical results are presented for a four-disk flexible structure to evaluate the efficiency of the algorithm.

  1. Utilization of Airborne and in Situ Data Obtained in SGP99, SMEX02, CLASIC and SMAPVEX08 Field Campaigns for SMAP Soil Moisture Algorithm Development and Validation

    NASA Technical Reports Server (NTRS)

    Colliander, Andreas; Chan, Steven; Yueh, Simon; Cosh, Michael; Bindlish, Rajat; Jackson, Tom; Njoku, Eni

    2010-01-01

    Field experiment data sets that include coincident remote sensing measurements and in situ sampling will be valuable in the development and validation of the soil moisture algorithms of the NASA's future SMAP (Soil Moisture Active and Passive) mission. This paper presents an overview of the field experiment data collected from SGP99, SMEX02, CLASIC and SMAPVEX08 campaigns. Common in these campaigns were observations of the airborne PALS (Passive and Active L- and S-band) instrument, which was developed to acquire radar and radiometer measurements at low frequencies. The combined set of the PALS measurements and ground truth obtained from all these campaigns was under study. The investigation shows that the data set contains a range of soil moisture values collected under a limited number of conditions. The quality of both PALS and ground truth data meets the needs of the SMAP algorithm development and validation. The data set has already made significant impact on the science behind SMAP mission. The areas where complementing of the data would be most beneficial are also discussed.

  2. Algorithms for Performance, Dependability, and Performability Evaluation using Stochastic Activity Networks

    NASA Technical Reports Server (NTRS)

    Deavours, Daniel D.; Qureshi, M. Akber; Sanders, William H.

    1997-01-01

    Modeling tools and technologies are important for aerospace development. At the University of Illinois, we have worked on advancing the state of the art in modeling by Markov reward models in two important areas: reducing the memory necessary to numerically solve systems represented as stochastic activity networks and other stochastic Petri net extensions while still obtaining solutions in a reasonable amount of time, and finding numerically stable and memory-efficient methods to solve for the reward accumulated during a finite mission time. A long standing problem when modeling with high level formalisms such as stochastic activity networks is the so-called state space explosion, where the number of states increases exponentially with size of the high level model. Thus, the corresponding Markov model becomes prohibitively large and solution is constrained by the the size of primary memory. To reduce the memory necessary to numerically solve complex systems, we propose new methods that can tolerate such large state spaces that do not require any special structure in the model (as many other techniques do). First, we develop methods that generate row and columns of the state transition-rate-matrix on-the-fly, eliminating the need to explicitly store the matrix at all. Next, we introduce a new iterative solution method, called modified adaptive Gauss-Seidel, that exhibits locality in its use of data from the state transition-rate-matrix, permitting us to cache portions of the matrix and hence reduce the solution time. Finally, we develop a new memory and computationally efficient technique for Gauss-Seidel based solvers that avoids the need for generating rows of A in order to solve Ax = b. This is a significant performance improvement for on-the-fly methods as well as other recent solution techniques based on Kronecker operators. Taken together, these new results show that one can solve very large models without any special structure.

  3. Activity concentration measurements using a conjugate gradient (Siemens xSPECT) reconstruction algorithm in SPECT/CT.

    PubMed

    Armstrong, Ian S; Hoffmann, Sandra A

    2016-11-01

    The interest in quantitative single photon emission computer tomography (SPECT) shows potential in a number of clinical applications and now several vendors are providing software and hardware solutions to allow 'SUV-SPECT' to mirror metrics used in PET imaging. This brief technical report assesses the accuracy of activity concentration measurements using a new algorithm 'xSPECT' from Siemens Healthcare. SPECT/CT data were acquired from a uniform cylinder with 5, 10, 15 and 20 s/projection and NEMA image quality phantom with 25 s/projection. The NEMA phantom had hot spheres filled with an 8 : 1 activity concentration relative to the background compartment. Reconstructions were performed using parameters defined by manufacturer presets available with the algorithm. The accuracy of activity concentration measurements was assessed. A dose calibrator-camera cross-calibration factor (CCF) was derived from the uniform phantom data. In uniform phantom images, a positive bias was observed, ranging from ∼6% in the lower count images to ∼4% in the higher-count images. On the basis of the higher-count data, a CCF of 0.96 was derived. As expected, considerable negative bias was measured in the NEMA spheres using region mean values whereas positive bias was measured in the four largest NEMA spheres. Nonmonotonically increasing recovery curves for the hot spheres suggested the presence of Gibbs edge enhancement from resolution modelling. Sufficiently accurate activity concentration measurements can easily be measured on images reconstructed with the xSPECT algorithm without a CCF. However, the use of a CCF is likely to improve accuracy further. A manual conversion of voxel values into SUV should be possible, provided that the patient weight, injected activity and time between injection and imaging are all known accurately.

  4. Structured interview for mild traumatic brain injury after military blast: inter-rater agreement and development of diagnostic algorithm.

    PubMed

    Walker, William C; Cifu, David X; Hudak, Anne M; Goldberg, Gary; Kunz, Richard D; Sima, Adam P

    2015-04-01

    The existing gold standard for diagnosing a suspected previous mild traumatic brain injury (mTBI) is clinical interview. But it is prone to bias, especially for parsing the physical versus psychological effects of traumatic combat events, and its inter-rater reliability is unknown. Several standardized TBI interview instruments have been developed for research use but have similar limitations. Therefore, we developed the Virginia Commonwealth University (VCU) retrospective concussion diagnostic interview, blast version (VCU rCDI-B), and undertook this cross-sectional study aiming to 1) measure agreement among clinicians' mTBI diagnosis ratings, 2) using clinician consensus develop a fully structured diagnostic algorithm, and 3) assess accuracy of this algorithm in a separate sample. Two samples (n = 66; n = 37) of individuals within 2 years of experiencing blast effects during military deployment underwent semistructured interview regarding their worst blast experience. Five highly trained TBI physicians independently reviewed and interpreted the interview content and gave blinded ratings of whether or not the experience was probably an mTBI. Paired inter-rater reliability was extremely variable, with kappa ranging from 0.194 to 0.825. In sample 1, the physician consensus prevalence of probable mTBI was 84%. Using these diagnosis ratings, an algorithm was developed and refined from the fully structured portion of the VCU rCDI-B. The final algorithm considered certain symptom patterns more specific for mTBI than others. For example, an isolated symptom of "saw stars" was deemed sufficient to indicate mTBI, whereas an isolated symptom of "dazed" was not. The accuracy of this algorithm, when applied against the actual physician consensus in sample 2, was almost perfect (correctly classified = 97%; Cohen's kappa = 0.91). In conclusion, we found that highly trained clinicians often disagree on historical blast-related mTBI determinations. A fully structured interview

  5. Developments of aerosol retrieval algorithm for Geostationary Environmental Monitoring Spectrometer (GEMS) and the retrieval accuracy test

    NASA Astrophysics Data System (ADS)

    KIM, M.; Kim, J.; Jeong, U.; Ahn, C.; Bhartia, P. K.; Torres, O.

    2013-12-01

    A scanning UV-Visible spectrometer, the GEMS (Geostationary Environment Monitoring Spectrometer) onboard the GEO-KOMPSAT2B (Geostationary Korea Multi-Purpose Satellite) is planned to be launched in geostationary orbit in 2018. The GEMS employs hyper-spectral imaging with 0.6 nm resolution to observe solar backscatter radiation in the UV and Visible range. In the UV range, the low surface contribution to the backscattered radiation and strong interaction between aerosol absorption and molecular scattering can be advantageous in retrieving aerosol optical properties such as aerosol optical depth (AOD) and single scattering albedo (SSA). By taking the advantage, the OMI UV aerosol algorithm has provided information on the absorbing aerosol (Torres et al., 2007; Ahn et al., 2008). This study presents a UV-VIS algorithm to retrieve AOD and SSA from GEMS. The algorithm is based on the general inversion method, which uses pre-calculated look-up table with assumed aerosol properties and measurement condition. To obtain the retrieval accuracy, the error of the look-up table method occurred by the interpolation of pre-calculated radiances is estimated by using the reference dataset, and the uncertainties about aerosol type and height are evaluated. Also, the GEMS aerosol algorithm is tested with measured normalized radiance from OMI, a provisional data set for GEMS measurement, and the results are compared with the values from AERONET measurements over Asia. Additionally, the method for simultaneous retrieve of the AOD and aerosol height is discussed.

  6. Algorithms for Developing Test Questions from Sentences in Instructional Materials. Interim Report, January-September 1977.

    ERIC Educational Resources Information Center

    Roid, Gale; Finn, Patrick

    The feasibility of generating multiple-choice test questions by transforming sentences from prose instructional materials was examined. A computer-based algorithm was used to analyze prose subject matter and to identify high-information words. Sentences containing selected words were then transformed into multiple-choice items by four writers who…

  7. Algorithms for Developing Test Questions from Sentences in Instructional Materials: An Extension of an Earlier Study.

    ERIC Educational Resources Information Center

    Roid, Gale H.; And Others

    An earlier study was extended and replicated to examine the feasibility of generating multiple-choice test questions by transforming sentences from prose instructional material. In the first study, a computer-based algorithm was used to analyze prose subject matter and to identify high-information words. Sentences containing selected words were…

  8. Algorithm and simulation development in support of response strategies for contamination events in air and water systems.

    SciTech Connect

    Waanders, Bart Van Bloemen

    2006-01-01

    Chemical/Biological/Radiological (CBR) contamination events pose a considerable threat to our nation's infrastructure, especially in large internal facilities, external flows, and water distribution systems. Because physical security can only be enforced to a limited degree, deployment of early warning systems is being considered. However to achieve reliable and efficient functionality, several complex questions must be answered: (1) where should sensors be placed, (2) how can sparse sensor information be efficiently used to determine the location of the original intrusion, (3) what are the model and data uncertainties, (4) how should these uncertainties be handled, and (5) how can our algorithms and forward simulations be sufficiently improved to achieve real time performance? This report presents the results of a three year algorithmic and application development to support the identification, mitigation, and risk assessment of CBR contamination events. The main thrust of this investigation was to develop (1) computationally efficient algorithms for strategically placing sensors, (2) identification process of contamination events by using sparse observations, (3) characterization of uncertainty through developing accurate demands forecasts and through investigating uncertain simulation model parameters, (4) risk assessment capabilities, and (5) reduced order modeling methods. The development effort was focused on water distribution systems, large internal facilities, and outdoor areas.

  9. TrackNTrace: A simple and extendable open-source framework for developing single-molecule localization and tracking algorithms.

    PubMed

    Stein, Simon Christoph; Thiart, Jan

    2016-11-25

    Super-resolution localization microscopy and single particle tracking are important tools for fluorescence microscopy. Both rely on detecting, and tracking, a large number of fluorescent markers using increasingly sophisticated computer algorithms. However, this rise in complexity makes it difficult to fine-tune parameters and detect inconsistencies, improve existing routines, or develop new approaches founded on established principles. We present an open-source MATLAB framework for single molecule localization, tracking and super-resolution applications. The purpose of this software is to facilitate the development, distribution, and comparison of methods in the community by providing a unique, easily extendable plugin-based system and combining it with a novel visualization system. This graphical interface incorporates possibilities for quick inspection of localization and tracking results, giving direct feedback of the quality achieved with the chosen algorithms and parameter values, as well as possible sources for errors. This is of great importance in practical applications and even more so when developing new techniques. The plugin system greatly simplifies the development of new methods as well as adapting and tailoring routines towards any research problem's individual requirements. We demonstrate its high speed and accuracy with plugins implementing state-of-the-art algorithms and show two biological applications.

  10. TrackNTrace: A simple and extendable open-source framework for developing single-molecule localization and tracking algorithms

    PubMed Central

    Stein, Simon Christoph; Thiart, Jan

    2016-01-01

    Super-resolution localization microscopy and single particle tracking are important tools for fluorescence microscopy. Both rely on detecting, and tracking, a large number of fluorescent markers using increasingly sophisticated computer algorithms. However, this rise in complexity makes it difficult to fine-tune parameters and detect inconsistencies, improve existing routines, or develop new approaches founded on established principles. We present an open-source MATLAB framework for single molecule localization, tracking and super-resolution applications. The purpose of this software is to facilitate the development, distribution, and comparison of methods in the community by providing a unique, easily extendable plugin-based system and combining it with a novel visualization system. This graphical interface incorporates possibilities for quick inspection of localization and tracking results, giving direct feedback of the quality achieved with the chosen algorithms and parameter values, as well as possible sources for errors. This is of great importance in practical applications and even more so when developing new techniques. The plugin system greatly simplifies the development of new methods as well as adapting and tailoring routines towards any research problem’s individual requirements. We demonstrate its high speed and accuracy with plugins implementing state-of-the-art algorithms and show two biological applications. PMID:27885259

  11. Development of visible/infrared/microwave agriculture classification and biomass estimation algorithms

    NASA Technical Reports Server (NTRS)

    Rosenthal, W. D.; Blanchard, B. J.; Blanchard, A. J.

    1983-01-01

    This paper describes the results of a study to determine if crop acreage and biomass estimates could be improved by using visible IR and microwave data. The objectives were to (1) develop and test agricultural crop classification models using two or more spectral regions (visible through microwave), and (2) estimate biomass by including microwave with visible and infrared data. Aircraft multispectral data collected during the study included visible and infrared data (multiband data from 0.5 m - 12 m), and active microwave data K band (2 cm), C band (6 cm), L band (20 cm), and P band (75 cm) HH and HV polarizations. Ground truth data from each field consisted of soil moisture and biomass measurements. Results indicated that C, L, and P band active microwave data combined with visible and infrared data improved crop discrimination and biomass estimates compared to results using only visible and infrared data. The active microwave frequencies were sensitive to different biomass levels; K and C being sensitive to differences at low biomass levels, while P band was sensitive to differences at high biomass levels.

  12. Development and Evaluation of Algorithms to Improve Small- and Medium-Size Commercial Building Operations

    SciTech Connect

    Kim, Woohyun; Katipamula, Srinivas; Lutes, Robert G.; Underhill, Ronald M.

    2016-10-31

    Small- and medium-sized (<100,000 sf) commercial buildings (SMBs) represent over 95% of the U.S. commercial building stock and consume over 60% of total site energy consumption. Many of these buildings use rudimentary controls that are mostly manual, with limited scheduling capability, no monitoring or failure management. Therefore, many of these buildings are operated inefficiently and consume excess energy. SMBs typically utilize packaged rooftop units (RTUs) that are controlled by an individual thermostat. There is increased urgency to improve the operating efficiency of existing commercial building stock in the U.S. for many reasons, chief among them is to mitigate the climate change impacts. Studies have shown that managing set points and schedules of the RTUs will result in up to 20% energy and cost savings. Another problem associated with RTUs is short-cycling, where an RTU goes through ON and OFF cycles too frequently. Excessive cycling can lead to excessive wear and lead to premature failure of the compressor or its components. The short cycling can result in a significantly decreased average efficiency (up to 10%), even if there are no physical failures in the equipment. Also, SMBs use a time-of-day scheduling is to start the RTUs before the building will be occupied and shut it off when unoccupied. Ensuring correct use of the zone set points and eliminating frequent cycling of RTUs thereby leading to persistent building operations can significantly increase the operational efficiency of the SMBs. A growing trend is to use low-cost control infrastructure that can enable scalable and cost-effective intelligent building operations. The work reported in this report describes three algorithms for detecting the zone set point temperature, RTU cycling rate and occupancy schedule detection that can be deployed on the low-cost infrastructure. These algorithms only require the zone temperature data for detection. The algorithms have been tested and validated using

  13. Development of a Satellite-based evapotranspiration algorithm: A case study for Two Deciduous Forest Sites

    NASA Astrophysics Data System (ADS)

    Elmasri, B.; Rahman, A. F.

    2011-12-01

    We introduce a new methodology to estimate 8-day average daily evapotranspiration (ET) using both routinely available data and the Penman-Monteith (P-M) equation. Our algorithm considers the environmental constraints on surface resistance and ET by (1) including vapor pressure deficit (VPD), incoming solar radiation, soil moisture, and temperature constraints on stomatal conductance; (2) using leaf area index (LAI) to scale from the leaf to the canopy conductance; and (3) calculating canopy resistance as a function of environmental variables such as net radiation, precipitation index, and VPD. Remote sensing data from the Moderate Resolution Spectroradiometer (MODIS) and the Advance Microwave Scanning Radiometer-EOS (AMSR-E) were used to estimate ET by using MODIS land surface temperature (LST) to estimated VPD, AMSR-E soil moisture to estimate canopy conductance, and MODIS surface emissivity and albedo to estimate shortwave and net radiation. The algorithm was evaluated using ET observations from two AmeriFlux Eddy covariance flux towers located at the Morgan Monroe State Forest (MMSF) in Indiana and the Harvard Forest (HarvF) in Massachusetts for the periods of 2003-2008. ET estimates from our algorithm was compared to the flux observations. Results indicated a root mean square error (RMSE) of the 8-day average ET of 0.57 mm for the HarvF and 0.47 mm for the MMSF. A significant correlation was found between the estimated 8-day average ET and the observed 8-day average ET with r2 of 0.84 for the HarvF and 0.88 for the MMSF. Using tower meteorological data, the r2 slightly increased to 0.90 for the MMSF. The algorithms for VPD and radiation were tested against flux observations and found a strong correlation with r2 ranging from 0.68 to 0.82. Sensitivity analysis revealed that the modeled ET predictions are highly sensitive to changes in the canopy resistance values, so accurate estimates of canopy resistance is essential for improve ET predictions. Our algorithm

  14. A simple but efficient voice activity detection algorithm through Hilbert transform and dynamic threshold for speech pathologies

    NASA Astrophysics Data System (ADS)

    Ortiz P., D.; Villa, Luisa F.; Salazar, Carlos; Quintero, O. L.

    2016-04-01

    A simple but efficient voice activity detector based on the Hilbert transform and a dynamic threshold is presented to be used on the pre-processing of audio signals. The algorithm to define the dynamic threshold is a modification of a convex combination found in literature. This scheme allows the detection of prosodic and silence segments on a speech in presence of non-ideal conditions like a spectral overlapped noise. The present work shows preliminary results over a database built with some political speech. The tests were performed adding artificial noise to natural noises over the audio signals, and some algorithms are compared. Results will be extrapolated to the field of adaptive filtering on monophonic signals and the analysis of speech pathologies on futures works.

  15. A novel hybrid classification model of genetic algorithms, modified k-Nearest Neighbor and developed backpropagation neural network.

    PubMed

    Salari, Nader; Shohaimi, Shamarina; Najafi, Farid; Nallappan, Meenakshii; Karishnarajah, Isthrinayagy

    2014-01-01

    Among numerous artificial intelligence approaches, k-Nearest Neighbor algorithms, genetic algorithms, and artificial neural networks are considered as the most common and effective methods in classification problems in numerous studies. In the present study, the results of the implementation of a novel hybrid feature selection-classification model using the above mentioned methods are presented. The purpose is benefitting from the synergies obtained from combining these technologies for the development of classification models. Such a combination creates an opportunity to invest in the strength of each algorithm, and is an approach to make up for their deficiencies. To develop proposed model, with the aim of obtaining the best array of features, first, feature ranking techniques such as the Fisher's discriminant ratio and class separability criteria were used to prioritize features. Second, the obtained results that included arrays of the top-ranked features were used as the initial population of a genetic algorithm to produce optimum arrays of features. Third, using a modified k-Nearest Neighbor method as well as an improved method of backpropagation neural networks, the classification process was advanced based on optimum arrays of the features selected by genetic algorithms. The performance of the proposed model was compared with thirteen well-known classification models based on seven datasets. Furthermore, the statistical analysis was performed using the Friedman test followed by post-hoc tests. The experimental findings indicated that the novel proposed hybrid model resulted in significantly better classification performance compared with all 13 classification methods. Finally, the performance results of the proposed model was benchmarked against the best ones reported as the state-of-the-art classifiers in terms of classification accuracy for the same data sets. The substantial findings of the comprehensive comparative study revealed that performance of the

  16. A Novel Hybrid Classification Model of Genetic Algorithms, Modified k-Nearest Neighbor and Developed Backpropagation Neural Network

    PubMed Central

    Salari, Nader; Shohaimi, Shamarina; Najafi, Farid; Nallappan, Meenakshii; Karishnarajah, Isthrinayagy

    2014-01-01

    Among numerous artificial intelligence approaches, k-Nearest Neighbor algorithms, genetic algorithms, and artificial neural networks are considered as the most common and effective methods in classification problems in numerous studies. In the present study, the results of the implementation of a novel hybrid feature selection-classification model using the above mentioned methods are presented. The purpose is benefitting from the synergies obtained from combining these technologies for the development of classification models. Such a combination creates an opportunity to invest in the strength of each algorithm, and is an approach to make up for their deficiencies. To develop proposed model, with the aim of obtaining the best array of features, first, feature ranking techniques such as the Fisher's discriminant ratio and class separability criteria were used to prioritize features. Second, the obtained results that included arrays of the top-ranked features were used as the initial population of a genetic algorithm to produce optimum arrays of features. Third, using a modified k-Nearest Neighbor method as well as an improved method of backpropagation neural networks, the classification process was advanced based on optimum arrays of the features selected by genetic algorithms. The performance of the proposed model was compared with thirteen well-known classification models based on seven datasets. Furthermore, the statistical analysis was performed using the Friedman test followed by post-hoc tests. The experimental findings indicated that the novel proposed hybrid model resulted in significantly better classification performance compared with all 13 classification methods. Finally, the performance results of the proposed model was benchmarked against the best ones reported as the state-of-the-art classifiers in terms of classification accuracy for the same data sets. The substantial findings of the comprehensive comparative study revealed that performance of the

  17. TH-E-BRE-07: Development of Dose Calculation Error Predictors for a Widely Implemented Clinical Algorithm

    SciTech Connect

    Egan, A; Laub, W

    2014-06-15

    Purpose: Several shortcomings of the current implementation of the analytic anisotropic algorithm (AAA) may lead to dose calculation errors in highly modulated treatments delivered to highly heterogeneous geometries. Here we introduce a set of dosimetric error predictors that can be applied to a clinical treatment plan and patient geometry in order to identify high risk plans. Once a problematic plan is identified, the treatment can be recalculated with more accurate algorithm in order to better assess its viability. Methods: Here we focus on three distinct sources dosimetric error in the AAA algorithm. First, due to a combination of discrepancies in smallfield beam modeling as well as volume averaging effects, dose calculated through small MLC apertures can be underestimated, while that behind small MLC blocks can overestimated. Second, due the rectilinear scaling of the Monte Carlo generated pencil beam kernel, energy is not properly transported through heterogeneities near, but not impeding, the central axis of the beamlet. And third, AAA overestimates dose in regions very low density (< 0.2 g/cm{sup 3}). We have developed an algorithm to detect the location and magnitude of each scenario within the patient geometry, namely the field-size index (FSI), the heterogeneous scatter index (HSI), and the lowdensity index (LDI) respectively. Results: Error indices successfully identify deviations between AAA and Monte Carlo dose distributions in simple phantom geometries. Algorithms are currently implemented in the MATLAB computing environment and are able to run on a typical RapidArc head and neck geometry in less than an hour. Conclusion: Because these error indices successfully identify each type of error in contrived cases, with sufficient benchmarking, this method can be developed into a clinical tool that may be able to help estimate AAA dose calculation errors and when it might be advisable to use Monte Carlo calculations.

  18. Lightning Jump Algorithm Development for the GOES·R Geostationary Lightning Mapper

    NASA Technical Reports Server (NTRS)

    Schultz. E.; Schultz. C.; Chronis, T.; Stough, S.; Carey, L.; Calhoun, K.; Ortega, K.; Stano, G.; Cecil, D.; Bateman, M.; Goodman, S.

    2014-01-01

    Current work on the lightning jump algorithm to be used in GOES-R Geostationary Lightning Mapper (GLM)'s data stream is multifaceted due to the intricate interplay between the storm tracking, GLM proxy data, and the performance of the lightning jump itself. This work outlines the progress of the last year, where analysis and performance of the lightning jump algorithm with automated storm tracking and GLM proxy data were assessed using over 700 storms from North Alabama. The cases analyzed coincide with previous semi-objective work performed using total lightning mapping array (LMA) measurements in Schultz et al. (2011). Analysis shows that key components of the algorithm (flash rate and sigma thresholds) have the greatest influence on the performance of the algorithm when validating using severe storm reports. Automated objective analysis using the GLM proxy data has shown probability of detection (POD) values around 60% with false alarm rates (FAR) around 73% using similar methodology to Schultz et al. (2011). However, when applying verification methods similar to those employed by the National Weather Service, POD values increase slightly (69%) and FAR values decrease (63%). The relationship between storm tracking and lightning jump has also been tested in a real-time framework at NSSL. This system includes fully automated tracking by radar alone, real-time LMA and radar observations and the lightning jump. Results indicate that the POD is strong at 65%. However, the FAR is significantly higher than in Schultz et al. (2011) (50-80% depending on various tracking/lightning jump parameters) when using storm reports for verification. Given known issues with Storm Data, the performance of the real-time jump algorithm is also being tested with high density radar and surface observations from the NSSL Severe Hazards Analysis & Verification Experiment (SHAVE).

  19. Testing and Development of the Onsite Earthquake Early Warning Algorithm to Reduce Event Uncertainties

    NASA Astrophysics Data System (ADS)

    Andrews, J. R.; Cochran, E. S.; Hauksson, E.; Felizardo, C.; Liu, T.; Ross, Z.; Heaton, T. H.

    2015-12-01

    Primary metrics for measuring earthquake early warning (EEW) system and algorithm performance are the rate of false alarms and the uncertainty in earthquake parameters. The Onsite algorithm, currently one of three EEW algorithms implemented in ShakeAlert, uses the ground-motion period parameter (τc) and peak initial displacement parameter (Pd) to estimate the magnitude and expected ground shaking of an ongoing earthquake. It is the only algorithm originally designed to issue single station alerts, necessitating that results from individual stations be as reliable and accurate as possible.The ShakeAlert system has been undergoing testing on continuous real-time data in California for several years, and the latest version of the Onsite algorithm for several months. This permits analysis of the response to a range of signals, from environmental noise to hardware testing and maintenance procedures to moderate or large earthquake signals at varying distances from the networks. We find that our existing discriminator, relying only on τc and Pd, while performing well to exclude large teleseismic events, is less effective for moderate regional events and can also incorrectly exclude data from local events. Motivated by these experiences, we use a collection of waveforms from potentially problematic 'noise' events and real earthquakes to explore methods to discriminate real and false events, using the ground motion and period parameters available in Onsite's processing methodology. Once an event is correctly identified, a magnitude and location estimate is critical to determining the expected ground shaking. Scatter in the measured parameters translates to higher than desired uncertainty in Onsite's current calculations We present an overview of alternative methods, including incorporation of polarization information, to improve parameter determination for a test suite including both large (M4 to M7) events and three years of small to moderate events across California.

  20. Passive microwave remote sensing of rainfall with SSM/I: Algorithm development and implementation

    NASA Technical Reports Server (NTRS)

    Ferriday, James G.; Avery, Susan K.

    1994-01-01

    A physically based algorithm sensitive to emission and scattering is used to estimate rainfall using the Special Sensor Microwave/Imager (SSM/I). The algorithm is derived from radiative transfer calculations through an atmospheric cloud model specifying vertical distributions of ice and liquid hydrometeors as a function of rain rate. The algorithm is structured in two parts: SSM/I brightness temperatures are screened to detect rainfall and are then used in rain-rate calculation. The screening process distinguishes between nonraining background conditions and emission and scattering associated with hydrometeors. Thermometric temperature and polarization thresholds determined from the radiative transfer calculations are used to detect rain, whereas the rain-rate calculation is based on a linear function fit to a linear combination of channels. Separate calculations for ocean and land account for different background conditions. The rain-rate calculation is constructed to respond to both emission and scattering, reduce extraneous atmospheric and surface effects, and to correct for beam filling. The resulting SSM/I rain-rate estimates are compared to three precipitation radars as well as to a dynamically simulated rainfall event. Global estimates from the SSM/I algorithm are also compared to continental and shipboard measurements over a 4-month period. The algorithm is found to accurately describe both localized instantaneous rainfall events and global monthly patterns over both land and ovean. Over land the 4-month mean difference between SSM/I and the Global Precipitation Climatology Center continental rain gauge database is less than 10%. Over the ocean, the mean difference between SSM/I and the Legates and Willmott global shipboard rain gauge climatology is less than 20%.

  1. Active suppression of nonlinear composite beam vibrations by selected control algorithms

    NASA Astrophysics Data System (ADS)

    Warminski, Jerzy; Bochenski, Marcin; Jarzyna, Wojciech; Filipek, Piotr; Augustyniak, Michal

    2011-05-01

    This paper is focused on application of different control algorithms for a flexible, geometrically nonlinear beam-like structure with Macro Fiber Composite (MFC) actuator. Based on the mathematical model of a geometrically nonlinear beam, analytical solutions for Nonlinear Saturation Controller (NSC) are obtained using Multiple Scale Method. Effectiveness of different control strategies is evaluated by numerical simulations in Matlab-Simulink software. Then, the Digital Signal Processing (DSP) controller and selected control algorithms are implemented to the physical system to compare numerical and experimental results. Detailed analysis for the NSC system is carried out, especially for high level of amplitude and wide range of frequencies of excitation. Finally, the efficiency of the considered controllers is tested experimentally for a more complex autoparametric " L-shape" beam system.

  2. A Utility Accrual Scheduling Algorithm for Real-Time Activities With Mutual Exclusion Resource Constraints

    DTIC Science & Technology

    2006-01-01

    system. Our simulation studies and implementation measurements reveal that GUS performs close to, if not better than, the existing algorithms for the...satisfying application time con­ straints. The most widely studied time constraint is the deadline. A deadline time con­ straint for an application...optimality criteria, such as resource dependencies and precedence 3 constraints. Scheduling tasks with non-step TUF’s has been studied in the past

  3. Algorithm Development and Validation of CDOM Properties for Estuarine and Continental Shelf Waters Along the Northeastern U.S. Coast

    NASA Technical Reports Server (NTRS)

    Mannino, Antonio; Novak, Michael G.; Hooker, Stanford B.; Hyde, Kimberly; Aurin, Dick

    2014-01-01

    An extensive set of field measurements have been collected throughout the continental margin of the northeastern U.S. from 2004 to 2011 to develop and validate ocean color satellite algorithms for the retrieval of the absorption coefficient of chromophoric dissolved organic matter (aCDOM) and CDOM spectral slopes for the 275:295 nm and 300:600 nm spectral range (S275:295 and S300:600). Remote sensing reflectance (Rrs) measurements computed from in-water radiometry profiles along with aCDOM() data are applied to develop several types of algorithms for the SeaWiFS and MODIS-Aqua ocean color satellite sensors, which involve least squares linear regression of aCDOM() with (1) Rrs band ratios, (2) quasi-analytical algorithm-based (QAA based) products of total absorption coefficients, (3) multiple Rrs bands within a multiple linear regression (MLR) analysis, and (4) diffuse attenuation coefficient (Kd). The relative error (mean absolute percent difference; MAPD) for the MLR retrievals of aCDOM(275), aCDOM(355), aCDOM(380), aCDOM(412) and aCDOM(443) for our study region range from 20.4-23.9 for MODIS-Aqua and 27.3-30 for SeaWiFS. Because of the narrower range of CDOM spectral slope values, the MAPD for the MLR S275:295 and QAA-based S300:600 algorithms are much lower ranging from 9.9 and 8.3 for SeaWiFS, respectively, and 8.7 and 6.3 for MODIS, respectively. Seasonal and spatial MODIS-Aqua and SeaWiFS distributions of aCDOM, S275:295 and S300:600 processed with these algorithms are consistent with field measurements and the processes that impact CDOM levels along the continental shelf of the northeastern U.S. Several satellite data processing factors correlate with higher uncertainty in satellite retrievals of aCDOM, S275:295 and S300:600 within the coastal ocean, including solar zenith angle, sensor viewing angle, and atmospheric products applied for atmospheric corrections. Algorithms that include ultraviolet Rrs bands provide a better fit to field measurements than

  4. Development of a voltage-dependent current noise algorithm for conductance-based stochastic modelling of auditory nerve fibres.

    PubMed

    Badenhorst, Werner; Hanekom, Tania; Hanekom, Johan J

    2016-12-01

    This study presents the development of an alternative noise current term and novel voltage-dependent current noise algorithm for conductance-based stochastic auditory nerve fibre (ANF) models. ANFs are known to have significant variance in threshold stimulus which affects temporal characteristics such as latency. This variance is primarily caused by the stochastic behaviour or microscopic fluctuations of the node of Ranvier's voltage-dependent sodium channels of which the intensity is a function of membrane voltage. Though easy to implement and low in computational cost, existing current noise models have two deficiencies: it is independent of membrane voltage, and it is unable to inherently determine the noise intensity required to produce in vivo measured discharge probability functions. The proposed algorithm overcomes these deficiencies while maintaining its low computational cost and ease of implementation compared to other conductance and Markovian-based stochastic models. The algorithm is applied to a Hodgkin-Huxley-based compartmental cat ANF model and validated via comparison of the threshold probability and latency distributions to measured cat ANF data. Simulation results show the algorithm's adherence to in vivo stochastic fibre characteristics such as an exponential relationship between the membrane noise and transmembrane voltage, a negative linear relationship between the log of the relative spread of the discharge probability and the log of the fibre diameter and a decrease in latency with an increase in stimulus intensity.

  5. Development of a Real-Time Pulse Processing Algorithm for TES-Based X-Ray Microcalorimeters

    NASA Technical Reports Server (NTRS)

    Tan, Hui; Hennig, Wolfgang; Warburton, William K.; Doriese, W. Bertrand; Kilbourne, Caroline A.

    2011-01-01

    We report here a real-time pulse processing algorithm for superconducting transition-edge sensor (TES) based x-ray microcalorimeters. TES-based. microca1orimeters offer ultra-high energy resolutions, but the small volume of each pixel requires that large arrays of identical microcalorimeter pixe1s be built to achieve sufficient detection efficiency. That in turn requires as much pulse processing as possible must be performed at the front end of readout electronics to avoid transferring large amounts of data to a host computer for post-processing. Therefore, a real-time pulse processing algorithm that not only can be implemented in the readout electronics but also achieve satisfactory energy resolutions is desired. We have developed an algorithm that can be easily implemented. in hardware. We then tested the algorithm offline using several data sets acquired with an 8 x 8 Goddard TES x-ray calorimeter array and 2x16 NIST time-division SQUID multiplexer. We obtained an average energy resolution of close to 3.0 eV at 6 keV for the multiplexed pixels while preserving over 99% of the events in the data sets.

  6. The development of a line-scan imaging algorithm for the detection of fecal contamination on leafy geens

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chieh; Kim, Moon S.; Chuang, Yung-Kun; Lee, Hoyoung

    2013-05-01

    This paper reports the development of a multispectral algorithm, using the line-scan hyperspectral imaging system, to detect fecal contamination on leafy greens. Fresh bovine feces were applied to the surfaces of washed loose baby spinach leaves. A hyperspectral line-scan imaging system was used to acquire hyperspectral fluorescence images of the contaminated leaves. Hyperspectral image analysis resulted in the selection of the 666 nm and 688 nm wavebands for a multispectral algorithm to rapidly detect feces on leafy greens, by use of the ratio of fluorescence intensities measured at those two wavebands (666 nm over 688 nm). The algorithm successfully distinguished most of the lowly diluted fecal spots (0.05 g feces/ml water and 0.025 g feces/ml water) and some of the highly diluted spots (0.0125 g feces/ml water and 0.00625 g feces/ml water) from the clean spinach leaves. The results showed the potential of the multispectral algorithm with line-scan imaging system for application to automated food processing lines for food safety inspection of leafy green vegetables.

  7. Problem Solving Techniques for the Design of Algorithms.

    ERIC Educational Resources Information Center

    Kant, Elaine; Newell, Allen

    1984-01-01

    Presents model of algorithm design (activity in software development) based on analysis of protocols of two subjects designing three convex hull algorithms. Automation methods, methods for studying algorithm design, role of discovery in problem solving, and comparison of different designs of case study according to model are highlighted.…

  8. Small Fire Detection Algorithm Development using VIIRS 375m Imagery: Application to Agricultural Fires in Eastern China

    NASA Astrophysics Data System (ADS)

    Zhang, Tianran; Wooster, Martin

    2016-04-01

    Until recently, crop residues have been the second largest industrial waste product produced in China and field-based burning of crop residues is considered to remain extremely widespread, with impacts on air quality and potential negative effects on health, public transportation. However, due to the small size and perhaps short-lived nature of the individual burns, the extent of the activity and its spatial variability remains somewhat unclear. Satellite EO data has been used to gauge the timing and magnitude of Chinese crop burning, but current approaches very likely miss significant amounts of the activity because the individual burned areas are either too small to detect with frequently acquired moderate spatial resolution data such as MODIS. The Visible Infrared Imaging Radiometer Suite (VIIRS) on-board Suomi-NPP (National Polar-orbiting Partnership) satellite launched on October, 2011 has one set of multi-spectral channels providing full global coverage at 375 m nadir spatial resolutions. It is expected that the 375 m spatial resolution "I-band" imagery provided by VIIRS will allow active fires to be detected that are ~ 10× smaller than those that can be detected by MODIS. In this study the new small fire detection algorithm is built based on VIIRS-I band global fire detection algorithm and hot spot detection algorithm for the BIRD satellite mission. VIIRS-I band imagery data will be used to identify agricultural fire activity across Eastern China. A 30 m spatial resolution global land cover data map is used for false alarm masking. The ground-based validation is performed using images taken from UAV. The fire detection result is been compared with active fire product from the long-standing MODIS sensor onboard the TERRA and AQUA satellites, which shows small fires missed from traditional MODIS fire product may count for over 1/3 of total fire energy in Eastern China.

  9. Activities to Develop Your Students' Motor Skills.

    ERIC Educational Resources Information Center

    Eastman, Mary Kay; Safran, Joan S.

    1986-01-01

    Instructions and illustrations support this discussion of learning activities designed to remediate deficiences and build skills in balance and/or motor skills for mildly handicapped students who may not have access to physical therapy or adaptive physical education. Appropriate for both regular and special classes, activities include arm…

  10. Development and Evaluation of the GCOM-W1 AMSR2 Snow Depth and Snow Water Equivalent Algorithm

    NASA Astrophysics Data System (ADS)

    Kelly, R. E. J.; Saberi, N.; Li, Q.

    2015-12-01

    An evaluation is presented of snow depth (SD) and snow water equivalent (SWE) estimates from recent developments to the standard snow product algorithm for the Advanced Microwave Scanning Radiometer - 2 (AMSR2) aboard the Global Change Observation Mission - Water. AMSR2 is designed as a follow-on from the successful Advanced Microwave Scanning Radiometer - EOS that ceased formal operations in 2011. The standard SD product for AMSR2 has been updated in two ways. First, the detection algorithm identifies various observable geophysical targets that can confound SD / SWE estimation (water bodies [including freeze/thaw state], rainfall, high altitude plateau regions [e.g. Tibetan plateau]) before detecting moderate and shallow snow. Second, the implementation of the Dense Media Radiative Transfer model (DMRT) originally developed by Tsang et al. (2000) and more recently adapted by Picard et al. (2011) is used to estimate SWE and SD. The implementation combines snow grain size and density parameterizations originally developed by Kelly et al. (2003). Snow grain size is estimated from the tracking of estimated air temperatures that are used to drive an empirical grain growth model. Snow density is estimated from the Sturm et al. (2010) scheme. Efforts have been made to keep the approach tractable while reducing uncertainty in these input variables. Results are presented from the recent winter seasons since 2012 to illustrate the performance of the new approach in comparison with the initial AMSR2 algorithm.

  11. Early algorithm development efforts for the National Ecological Observatory Network Airborne Observation Platform imaging spectrometer and waveform lidar instruments

    NASA Astrophysics Data System (ADS)

    Krause, Keith S.; Kuester, Michele A.; Johnson, Brian R.; McCorkel, Joel; Kampe, Thomas U.

    2011-10-01

    The National Ecological Observatory Network (NEON) will be the first observatory network of its kind designed to detect and enable forecasting of ecological change at continental scales over multiple decades. NEON will collect data at sites distributed at 20 ecoclimatic domains across the United States on the impacts of climate change, land use change, and invasive species on natural resources and biodiversity. The NEON Airborne Observation Platform (AOP) is an aircraft platform carrying remote sensing instrumentation designed to achieve sub-meter to meter scale ground resolution, bridging the scales from organisms and individual stands to satellite-based remote sensing. AOP instrumentation consists of a VIS/SWIR imaging spectrometer, a scanning small-footprint waveform LiDAR, and a high resolution airborne digital camera. AOP data will provide quantitative information on land use change and changes in ecological structure and chemistry including the presence and effects of invasive species. A Pathfinder Flight Campaign was conducted over a two week period during late August to early September 2010 in order to collect representative AOP data over one NEON domain site. NASA JPL flew the AVIRIS imaging spectrometer and NCALM flew an Optech Gemini waveform LiDAR over the University of Florida Ordway-Swisher Biological Station and Donaldson tree plantation near Gainesville Florida. The pathfinder data are discussed in detail along with how the data are being used for early algorithm and product development prototyping activities. The data collected during the campaign and prototype products are openly available to scientists to become more familiar with representative NEON AOP data.

  12. Ocean Observations with EOS/MODIS: Algorithm Development and Post Launch Studies

    NASA Technical Reports Server (NTRS)

    Gordon, Howard R.; Conboy, B. (Technical Monitor)

    1999-01-01

    Significant accomplishments made during the present reporting period include: 1) Installed spectral optimization algorithm in the SeaDas image processing environment and successfully processed SeaWiFS imagery. The results were superior to the standard SeaWiFS algorithm (the MODIS prototype) in a turbid atmosphere off the US East Coast, but similar in a clear (typical) oceanic atmosphere; 2) Inverted ACE-2 LIDAR measurements coupled with sun photometer-derived aerosol optical thickness to obtain the vertical profile of aerosol optical thickness. The profile was validated with simultaneous aircraft measurements; and 3) Obtained LIDAR and CIMEL measurements of typical maritime and mineral dust-dominated marine atmosphere in the U.S. Virgin Islands. Contemporaneous SeaWiFS imagery were also acquired.

  13. Transform methods for developing parallel algorithms for cyclic-block signal processing

    NASA Astrophysics Data System (ADS)

    Marshall, T. G., Jr.

    A class of FIR and IIR single and multirate parallel filtering algorithms is introduced in which blocks of inputs and outputs are processed on-the-fly in a cyclic manner. There is no inherent latency introduced by the decomposition procedure giving the parallelism, the system latency being primarily due to the component processors. The structure is particularly well-suited for systems in which the component processors are the familiar DSP chips optimized for convolution although other component structures can be accommodated. In particular, the automatic data shifting feature of the TMS320 series processors can be utilized in these algorithms. A transform notation, introduced for digital filter banks, is recast in the desired form for this application. The resulting structure of the system, in this notation, is a circulant matrix for FIR filtering or a related matrix in other cases. The cyclic properties of the system and useful implementation flexibility result from this matrix structure.

  14. On the development and application of a continuous-discrete recursive prediction error algorithm.

    PubMed

    Stigter, J D; Beck, M B

    2004-10-01

    Recursive state and parameter reconstruction is a well-established field in control theory. In the current paper we derive a continuous-discrete version of recursive prediction error algorithm and apply the filter in an environmental and biological setting as a possible alternative to the well-known extended Kalman filter. The framework from which the derivation is started is the so-called 'innovations-format' of the (continuous time) system model, including (discrete time) measurements. After the algorithm has been motivated and derived, it is subsequently applied to hypothetical and 'real-life' case studies including reconstruction of biokinetic parameters and parameters characterizing the dynamics of a river in the United Kingdom. Advantages and characteristics of the method are discussed.

  15. Predicting pregnancy rate following multiple embryo transfers using algorithms developed through static image analysis.

    PubMed

    Tian, Yun; Wang, Wei; Yin, Yabo; Wang, Weizhou; Duan, Fuqing; Zhao, Shifeng

    2017-02-16

    Single-embryo image assessment involves a high degree of inaccuracy because of the imprecise labelling of the transferred embryo images. In this study, we considered the entire transfer cycle to predict the implantation potential of embryos, and propose a novel algorithm based on a combination of local binary pattern texture feature and Adaboost classifiers to predict pregnancy rate. The first step of the proposed method was to extract the features of the embryo images using the local binary pattern operator. After this, multiple embryo images in a transfer cycle were considered as one entity, and the pregnancy rate was predicted using three classifiers: the Real Adaboost, Gentle Adaboost, and Modest Adaboost. Finally, the pregnancy rate was determined via the majority vote rule based on classification results of the three Adaboost classifiers. The proposed algorithm was verified to have a good predictive performance and may assist the embryologist and clinician to select embryos to transfer and in turn improve pregnancy rate.

  16. Investigating Baseline, Alternative and Copula-based Algorithm for combining Airborne Active and Passive Microwave Observations in the SMAP Context

    NASA Astrophysics Data System (ADS)

    Montzka, C.; Lorenz, C.; Jagdhuber, T.; Laux, P.; Hajnsek, I.; Kunstmann, H.; Entekhabi, D.; Vereecken, H.

    2015-12-01

    The objective of the NASA Soil Moisture Active & Passive (SMAP) mission is to provide global measurements of soil moisture and freeze/thaw states. SMAP integrates L-band radar and radiometer instruments as a single observation system combining the respective strengths of active and passive remote sensing for enhanced soil moisture mapping. Airborne instruments will be a key part of the SMAP validation program. Here, we present an airborne campaign in the Rur catchment, Germany, in which the passive L-band system Polarimetric L-band Multi-beam Radiometer (PLMR2) and the active L-band system F-SAR of DLR were flown simultaneously on the same platform on six dates in 2013. The flights covered the full heterogeneity of the area under investigation, i.e. all types of land cover and experimental monitoring sites with in situ sensors. Here, we used the obtained data sets as a test-bed for the analysis of three active-passive fusion techniques: A) The SMAP baseline algorithm: Disaggregation of passive microwave brightness temperature by active microwave backscatter and subsequent inversion to soil moisture, B), the SMAP alternative algorithm: Estimation of soil moisture by passive sensor data and subsequent disaggregation by active sensor backscatter and C) Copula-based combination of active and passive microwave data. For method C empirical Copulas were generated and theoretical Copulas fitted both on the level of the raw products brightness temperature and backscatter as well as two soil moisture products. Results indicate that the regression parameters for method A and B are dependent on the radar vegetation index (RVI). Similarly, for method C the best performance was gained by generating separate Copulas for individual land use classes. For more in-depth analyses longer time series are necessary as can obtained by airborne campaigns, therefore, the methods will be applied to SMAP data.

  17. Smart respiratory monitoring: clinical development and validation of the IPI™ (Integrated Pulmonary Index) algorithm.

    PubMed

    Ronen, M; Weissbrod, R; Overdyk, F J; Ajizian, S

    2017-04-01

    Continuous electronic monitoring of patient respiratory status frequently includes PetCO2 (end tidal CO2), RR (respiration rate), SpO2 (arterial oxygen saturation), and PR (pulse rate). Interpreting and integrating these vital signs as numbers or waveforms is routinely done by anesthesiologists and intensivists but is challenging for clinicians in low acuity areas such as medical wards, where continuous electronic respiratory monitoring is becoming more common place. We describe a heuristic algorithm that simplifies the interpretation of these four parameters in assessing a patient's respiratory status, the Integrated Pulmonary Index (IPI). The IPI algorithm is a mathematical model combining SpO2, RR, PR, and PetCO2 into a single value between 1 and 10 that summarizes the adequacy of ventilation and oxygenation at that point in time. The algorithm was designed using a fuzzy logic inference model to incorporate expert clinical opinions. The algorithm was verified by comparison to experts' scoring of clinical scenarios. The validity of the index was tested in a retrospective analysis of continuous SpO2, RR, PR, and PetCO2 readings obtained from 523 patients in a variety of clinical settings. IPI correlated well with expert interpretation of the continuous respiratory data (R = 0.83, p < 0.001), with agreement of -0.5 ± 1.4. Receiver operating curves analysis resulted in high levels of sensitivity (ranging from 0.83 to 1.00), and corresponding specificity (ranging from 0.96 to 0.74), based on IPI thresholds 3-6. The IPI reliably interpreted the respiratory status of patients in multiple areas of care using off-line continuous respiratory data. Further prospective studies are required to evaluate IPI in real time in clinical settings.

  18. Intermediate Level Computer Vision Processing Algorithm Development for the Content Addressable Array Parallel Processor.

    DTIC Science & Technology

    1986-11-29

    Madison, Wiscon- sin, August 1982. [161 Fitzpatrick, D. T., Foderaro, J. K., Katevenis, M . G. H., Landman, H. A.. Patterson, D. A., Peek, J. B ., Peshkess...October 18-22, 1982. [33] Levitan , S. P., Parallel Algorithms and Architectures: A Programmer’s Per- 35 AN I%. . m ,,-1we, V .r V . , - .7...e. . . e. ** -! ~ * ~ - . . . . . 0.Wty C^11Cri m . op~ bo* pa, U FILE- copy(4 REPORT DOCUMENTATION PAGE e PQTSIC%.RSTV C6AUSIPCATION 16

  19. Ocean observations with EOS/MODIS: Algorithm development and post launch studies

    NASA Technical Reports Server (NTRS)

    Gordon, Howard R.

    1996-01-01

    An investigation of the influence of stratospheric aerosol on the performance of the atmospheric correction algorithm is nearly complete. The results indicate how the performance of the algorithm is degraded if the stratospheric aerosol is ignored. Use of the MODIS 1380 nm band to effect a correction for stratospheric aerosols was also studied. Simple algorithms such as subtracting the reflectance at 1380 nm from the visible and near infrared bands can significantly reduce the error; however, only if the diffuse transmittance of the aerosol layer is taken into account. The atmospheric correction code has been modified for use with absorbing aerosols. Tests of the code showed that, in contrast to non absorbing aerosols, the retrievals were strongly influenced by the vertical structure of the aerosol, even when the candidate aerosol set was restricted to a set appropriate to the absorbing aerosol. This will further complicate the problem of atmospheric correction in an atmosphere with strongly absorbing aerosols. Our whitecap radiometer system and solar aureole camera were both tested at sea and performed well. Investigation of a technique to remove the effects of residual instrument polarization sensitivity were initiated and applied to an instrument possessing (approx.) 3-4 times the polarization sensitivity expected for MODIS. Preliminary results suggest that for such an instrument, elimination of the polarization effect is possible at the required level of accuracy by estimating the polarization of the top-of-atmosphere radiance to be that expected for a pure Rayleigh scattering atmosphere. This may be of significance for design of a follow-on MODIS instrument. W.M. Balch participated on two month-long cruises to the Arabian sea, measuring coccolithophore abundance, production, and optical properties. A thorough understanding of the relationship between calcite abundance and light scatter, in situ, will provide the basis for a generic suspended calcite algorithm.

  20. Development and evaluation of a data-adaptive alerting algorithm for univariate temporal biosurveillance data.

    PubMed

    Elbert, Yevgeniy; Burkom, Howard S

    2009-11-20

    This paper discusses further advances in making robust predictions with the Holt-Winters forecasts for a variety of syndromic time series behaviors and introduces a control-chart detection approach based on these forecasts. Using three collections of time series data, we compare biosurveillance alerting methods with quantified measures of forecast agreement, signal sensitivity, and time-to-detect. The study presents practical rules for initialization and parameterization of biosurveillance time series. Several outbreak scenarios are used for detection comparison. We derive an alerting algorithm from forecasts using Holt-Winters-generalized smoothing for prospective application to daily syndromic time series. The derived algorithm is compared with simple control-chart adaptations and to more computationally intensive regression modeling methods. The comparisons are conducted on background data from both authentic and simulated data streams. Both types of background data include time series that vary widely by both mean value and cyclic or seasonal behavior. Plausible, simulated signals are added to the background data for detection performance testing at signal strengths calculated to be neither too easy nor too hard to separate the compared methods. Results show that both the sensitivity and the timeliness of the Holt-Winters-based algorithm proved to be comparable or superior to that of the more traditional prediction methods used for syndromic surveillance.

  1. Development and validation of an automated operational modal analysis algorithm for vibration-based monitoring and tensile load estimation

    NASA Astrophysics Data System (ADS)

    Rainieri, Carlo; Fabbrocino, Giovanni

    2015-08-01

    In the last few decades large research efforts have been devoted to the development of methods for automated detection of damage and degradation phenomena at an early stage. Modal-based damage detection techniques are well-established methods, whose effectiveness for Level 1 (existence) and Level 2 (location) damage detection is demonstrated by several studies. The indirect estimation of tensile loads in cables and tie-rods is another attractive application of vibration measurements. It provides interesting opportunities for cheap and fast quality checks in the construction phase, as well as for safety evaluations and structural maintenance over the structure lifespan. However, the lack of automated modal identification and tracking procedures has been for long a relevant drawback to the extensive application of the above-mentioned techniques in the engineering practice. An increasing number of field applications of modal-based structural health and performance assessment are appearing after the development of several automated output-only modal identification procedures in the last few years. Nevertheless, additional efforts are still needed to enhance the robustness of automated modal identification algorithms, control the computational efforts and improve the reliability of modal parameter estimates (in particular, damping). This paper deals with an original algorithm for automated output-only modal parameter estimation. Particular emphasis is given to the extensive validation of the algorithm based on simulated and real datasets in view of continuous monitoring applications. The results point out that the algorithm is fairly robust and demonstrate its ability to provide accurate and precise estimates of the modal parameters, including damping ratios. As a result, it has been used to develop systems for vibration-based estimation of tensile loads in cables and tie-rods. Promising results have been achieved for non-destructive testing as well as continuous

  2. Active diffraction gratings: Development and tests

    NASA Astrophysics Data System (ADS)

    Bonora, S.; Frassetto, F.; Zanchetta, E.; Della Giustina, G.; Brusatin, G.; Poletto, L.

    2012-12-01

    We present the realization and characterization of an active spherical diffraction grating with variable radius of curvature to be used in grazing-incidence monochromators. The device consists of a bimorph deformable mirror on the top of which a diffraction grating with laminar profile is realized by UV lithography. The experimental results show that the active grating can optimize the beam focalization of visible wavelengths through its rotation and focus accommodation.

  3. 24 CFR 570.203 - Special economic development activities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 3 2010-04-01 2010-04-01 false Special economic development... § 570.203 Special economic development activities. A recipient may use CDBG funds for special economic... part of an economic development project. Guidelines for selecting activities to assist under...

  4. 24 CFR 570.203 - Special economic development activities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 3 2013-04-01 2013-04-01 false Special economic development... § 570.203 Special economic development activities. A recipient may use CDBG funds for special economic... part of an economic development project. Guidelines for selecting activities to assist under...

  5. 24 CFR 570.203 - Special economic development activities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 3 2012-04-01 2012-04-01 false Special economic development... § 570.203 Special economic development activities. A recipient may use CDBG funds for special economic... part of an economic development project. Guidelines for selecting activities to assist under...

  6. 24 CFR 570.203 - Special economic development activities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 3 2014-04-01 2013-04-01 true Special economic development... § 570.203 Special economic development activities. A recipient may use CDBG funds for special economic... part of an economic development project. Guidelines for selecting activities to assist under...

  7. A path towards uncertainty assignment in an operational cloud-phase algorithm from ARM vertically pointing active sensors

    DOE PAGES

    Riihimaki, Laura D.; Comstock, Jennifer M.; Anderson, Kevin K.; ...

    2016-06-10

    Knowledge of cloud phase (liquid, ice, mixed, etc.) is necessary to describe the radiative impact of clouds and their lifetimes, but is a property that is difficult to simulate correctly in climate models. One step towards improving those simulations is to make observations of cloud phase with sufficient accuracy to help constrain model representations of cloud processes. In this study, we outline a methodology using a basic Bayesian classifier to estimate the probabilities of cloud-phase class from Atmospheric Radiation Measurement (ARM) vertically pointing active remote sensors. The advantage of this method over previous ones is that it provides uncertainty informationmore » on the phase classification. We also test the value of including higher moments of the cloud radar Doppler spectrum than are traditionally used operationally. Using training data of known phase from the Mixed-Phase Arctic Cloud Experiment (M-PACE) field campaign, we demonstrate a proof of concept for how the method can be used to train an algorithm that identifies ice, liquid, mixed phase, and snow. Over 95 % of data are identified correctly for pure ice and liquid cases used in this study. Mixed-phase and snow cases are more problematic to identify correctly. When lidar data are not available, including additional information from the Doppler spectrum provides substantial improvement to the algorithm. This is a first step towards an operational algorithm and can be expanded to include additional categories such as drizzle with additional training data.« less

  8. Development and validation of a segmentation-free polyenergetic algorithm for dynamic perfusion computed tomography.

    PubMed

    Lin, Yuan; Samei, Ehsan

    2016-07-01

    Dynamic perfusion imaging can provide the morphologic details of the scanned organs as well as the dynamic information of blood perfusion. However, due to the polyenergetic property of the x-ray spectra, beam hardening effect results in undesirable artifacts and inaccurate CT values. To address this problem, this study proposes a segmentation-free polyenergetic dynamic perfusion imaging algorithm (pDP) to provide superior perfusion imaging. Dynamic perfusion usually is composed of two phases, i.e., a precontrast phase and a postcontrast phase. In the precontrast phase, the attenuation properties of diverse base materials (e.g., in a thorax perfusion exam, base materials can include lung, fat, breast, soft tissue, bone, and metal implants) can be incorporated to reconstruct artifact-free precontrast images. If patient motions are negligible or can be corrected by registration, the precontrast images can then be employed as a priori information to derive linearized iodine projections from the postcontrast images. With the linearized iodine projections, iodine perfusion maps can be reconstructed directly without the influence of various influential factors, such as iodine location, patient size, x-ray spectrum, and background tissue type. A series of simulations were conducted on a dynamic iodine calibration phantom and a dynamic anthropomorphic thorax phantom to validate the proposed algorithm. The simulations with the dynamic iodine calibration phantom showed that the proposed algorithm could effectively eliminate the beam hardening effect and enable quantitative iodine map reconstruction across various influential factors. The error range of the iodine concentration factors ([Formula: see text]) was reduced from [Formula: see text] for filtered back-projection (FBP) to [Formula: see text] for pDP. The quantitative results of the simulations with the dynamic anthropomorphic thorax phantom indicated that the maximum error of iodine concentrations can be reduced from

  9. Development and evaluation of a modis vegetation index compositing algorithm for long-term climate studies

    NASA Astrophysics Data System (ADS)

    Solano Barajas, Ramon

    The acquisition of remote sensing data having an investigated quality level constitutes an important step to advance our understanding of the vegetation response to environmental factors. Spaceborne sensors introduce additional challenges that should be addressed to assure that derived findings are based on real phenomena, and not biased or misguided by instrument features or processing artifacts. As a consequence, updates to incorporate new advances and user requirements are regularly found on most cutting edge systems such as the Moderate Resolution Imaging Spectroradiometer (MODIS) system. In this dissertation, the objective was to design, characterize and assess any possible departure from current values, a MODIS vegetation index (VI) algorithm for restoring the continuity 16-day 1-km product, based on the new 8-day 500-m MODIS surface reflectance (SR) product scheduled for the forthcoming MODIS Collection 6 (C6). Additionally, the impact of increasing the time resolution (by reducing the compositing period) from 16 to 8 days for the future basic MODIS C6 VI product was also assessed. The performance of the proposed algorithm was evaluated using high quality reference data and known biophysical relationships at several spatial and temporal scales. Firstly, it was evaluated using data from the AERONET-based Surface Reflectance Validation Network (ASRVN), FLUXNET-derived ecosystem gross primary productivity (GPP) and an analysis of the seasonality parameters derived from current Collection 5 (C5) and proxy C6 VI collections. The performance of the 8-day VI version was evaluated and contrasted with current 16-day using the reported correlation of the Enhanced Vegetation Index (EVI) with the GPP derived from CO2 flux measurements. Secondly, we performed an analysis at spatial level using entire images (or "tiles") to assess the Bidirectional Reflectance Distribution Function (BRDF) effects on the VI product, as these can cause biases on the SR and VIs from scanning

  10. Development and Integration of Hardware and Software for Active-Sensors in Structural Monitoring

    SciTech Connect

    Overly, Timothy G.S.

    2007-01-01

    Structural Health Monitoring (SHM) promises to deliver great benefits to many industries. Primarily among them is a potential for large cost savings in maintenance of complex structures such as aircraft and civil infrastructure. However, several large obstacles remain before widespread use on structures can be accomplished. The development of three components would address many of these obstacles: a robust sensor validation procedure, a low-cost active-sensing hardware and an integrated software package for transition to field deployment. The research performed in this thesis directly addresses these three needs and facilitates the adoption of SHM on a larger scale, particularly in the realm of SHM based on piezoelectric (PZT) materials. The first obstacle addressed in this thesis is the validation of the SHM sensor network. PZT materials are used for sensor/actuators because of their unique properties, but their functionality also needs to be validated for meaningful measurements to be recorded. To allow for a robust sensor validation algorithm, the effect of temperature change on sensor diagnostics and the effect of sensor failure on SHM measurements were classified. This classification allowed for the development of a sensor diagnostic algorithm that is temperature invariant and can indicate the amount and type of sensor failure. Secondly, the absence of a suitable commercially-available active-sensing measurement node is addressed in this thesis. A node is a small compact measurement device used in a complete system. Many measurement nodes exist for conventional passive sensing, which does not actively excite the structure, but there are no measurement nodes available that both meet the active-sensing requirements and are useable outside the laboratory. This thesis develops hardware that is low-power, active-sensing and field-deployable. This node uses the impedance method for SHM measurements, and can run the sensor diagnostic algorithm also developed here

  11. Utilizing Student Feedback to Inform Faculty Development Activities for Online Course Development and Delivery

    ERIC Educational Resources Information Center

    Young, Andria; Hoerig, Beverley

    2013-01-01

    The purpose of the present study is to describe faculty development activities at one university and to show how these activities were reviewed for relevance to students. As a means to validate faculty development activities and make adjustments for future development activities, a survey of students was undertaken. A survey was completed by…

  12. Drowsiness/alertness algorithm development and validation using synchronized EEG and cognitive performance to individualize a generalized model

    PubMed Central

    Johnson, Robin R.; Popovic, Djordje P.; Olmstead, Richard E.; Stikic, Maja; Levendowski, Daniel J.; Berka, Chris

    2011-01-01

    A great deal of research over the last century has focused on drowsiness/alertness detection, as fatigue-related physical and cognitive impairments pose a serious risk to public health and safety. Available drowsiness/alertness detection solutions are unsatisfactory for a number of reasons: 1) lack of generalizability, 2) failure to address individual variability in generalized models, and/or 3) they lack a portable, un-tethered application. The current study aimed to address these issues, and determine if an individualized electroencephalography (EEG) based algorithm could be defined to track performance decrements associated with sleep loss, as this is the first step in developing a field deployable drowsiness/alertness detection system. The results indicated that an EEG-based algorithm, individualized using a series of brief "identification" tasks, was able to effectively track performance decrements associated with sleep deprivation. Future development will address the need for the algorithm to predict performance decrements due to sleep loss, and provide field applicability. PMID:21419826

  13. Drowsiness/alertness algorithm development and validation using synchronized EEG and cognitive performance to individualize a generalized model.

    PubMed

    Johnson, Robin R; Popovic, Djordje P; Olmstead, Richard E; Stikic, Maja; Levendowski, Daniel J; Berka, Chris

    2011-05-01

    A great deal of research over the last century has focused on drowsiness/alertness detection, as fatigue-related physical and cognitive impairments pose a serious risk to public health and safety. Available drowsiness/alertness detection solutions are unsatisfactory for a number of reasons: (1) lack of generalizability, (2) failure to address individual variability in generalized models, and/or (3) lack of a portable, un-tethered application. The current study aimed to address these issues, and determine if an individualized electroencephalography (EEG) based algorithm could be defined to track performance decrements associated with sleep loss, as this is the first step in developing a field deployable drowsiness/alertness detection system. The results indicated that an EEG-based algorithm, individualized using a series of brief "identification" tasks, was able to effectively track performance decrements associated with sleep deprivation. Future development will address the need for the algorithm to predict performance decrements due to sleep loss, and provide field applicability.

  14. Development of a remote sensing algorithm for cyanobacterial phycocyanin pigment in the Baltic Sea using neural network approach

    NASA Astrophysics Data System (ADS)

    Riha, Stefan; Krawczyk, Harald

    2011-11-01

    Water quality monitoring in the Baltic Sea is of high ecological importance for all its neighbouring countries. They are highly interested in a regular monitoring of water quality parameters of their regional zones. A special attention is paid to the occurrence and dissemination of algae blooms. Among the appearing blooms the possibly toxicological or harmful cyanobacteria cultures are a special case of investigation, due to their specific optical properties and due to the negative influence on the ecological state of the aquatic system. Satellite remote sensing, with its high temporal and spatial resolution opportunities, allows the frequent observations of large areas of the Baltic Sea with special focus on its two seasonal algae blooms. For a better monitoring of the cyanobacteria dominated summer blooms, adapted algorithms are needed which take into account the special optical properties of blue-green algae. Chlorophyll-a standard algorithms typically fail in a correct recognition of these occurrences. To significantly improve the opportunities of observation and propagation of the cyanobacteria blooms, the Marine Remote Sensing group of DLR has started the development of a model based inversion algorithm that includes a four component bio-optical water model for Case2 waters, which extends the commonly calculated parameter set chlorophyll, Suspended Matter and CDOM with an additional parameter for the estimation of phycocyanin absorption. It was necessary to carry out detailed optical laboratory measurements with different cyanobacteria cultures, occurring in the Baltic Sea, for the generation of a specific bio-optical model. The inversion of satellite remote sensing data is based on an artificial Neural Network technique. This is a model based multivariate non-linear inversion approach. The specifically designed Neural Network is trained with a comprehensive dataset of simulated reflectance values taking into account the laboratory obtained specific optical

  15. Some computational challenges of developing efficient parallel algorithms for data-dependent computations in thermal-hydraulics supercomputer applications

    SciTech Connect

    Woodruff, S.B.

    1992-01-01

    The Transient Reactor Analysis Code (TRAC), which features a two- fluid treatment of thermal-hydraulics, is designed to model transients in water reactors and related facilities. One of the major computational costs associated with TRAC and similar codes is calculating constitutive coefficients. Although the formulations for these coefficients are local the costs are flow-regime- or data-dependent; i.e., the computations needed for a given spatial node often vary widely as a function of time. Consequently, poor load balancing will degrade efficiency on either vector or data parallel architectures when the data are organized according to spatial location. Unfortunately, a general automatic solution to the load-balancing problem associated with data-dependent computations is not yet available for massively parallel architectures. This document discusses why developers algorithms, such as a neural net representation, that do not exhibit algorithms, such as a neural net representation, that do not exhibit load-balancing problems.

  16. Study report on interfacing major physiological subsystem models: An approach for developing a whole-body algorithm

    NASA Technical Reports Server (NTRS)

    Fitzjerrell, D. G.; Grounds, D. J.; Leonard, J. I.

    1975-01-01

    Using a whole body algorithm simulation model, a wide variety and large number of stresses as well as different stress levels were simulated including environmental disturbances, metabolic changes, and special experimental situations. Simulation of short term stresses resulted in simultaneous and integrated responses from the cardiovascular, respiratory, and thermoregulatory subsystems and the accuracy of a large number of responding variables was verified. The capability of simulating significantly longer responses was demonstrated by validating a four week bed rest study. In this case, the long term subsystem model was found to reproduce many experimentally observed changes in circulatory dynamics, body fluid-electrolyte regulation, and renal function. The value of systems analysis and the selected design approach for developing a whole body algorithm was demonstrated.

  17. United Nations geothermal activities in developing countries

    SciTech Connect

    Beredjick, N.

    1987-07-01

    The United Nations implements technical cooperation projects in developing countries through its Department of Technical Cooperation for Development (DTCD). The DTCD is mandated to explore for and develop natural resources (water, minerals, and relevant infrastructure) and energy - both conventional and new and renewable energy sources. To date, the United Nations has been involved in over 30 geothermal exploration projects (completed or underway) in 20 developing countries: 8 in Africa (Djibouti, Ethiopia, Kenya, Madagascar); 8 in Asia (China, India, Jordan, Philippines, Thailand); 9 in Latin America (Bolivia, Chile, El Salvador, Honduras, Mexico, Nicaragua, Panama) and 6 in Europe (Greece, Romania, Turkey, Yugoslavia). Today, the DTCD has seven UNDP geothermal projects in 6 developing countries. Four of these (Bolivia, China, Honduras, and Kenya) are major exploration projects whose formulation and execution has been possible thanks to the generous contributions under cost-sharing arrangements from the government of Italy. These four projects are summarized.

  18. Development of Aspherical Active Gratings at NSRRC

    SciTech Connect

    Tseng, T.-C.; Wang, D.-J.; Perng, S.-Y.; Chen, C.-T.; Lin, C.-J.; Kuan, C.-K.; Ho, H.-C.; Wang, J.; Fung, H.S.; Chang, S.-H.

    2007-01-19

    An active grating based on a novel optical concept with bendable polynomial surface profile to reduce the coma and defocus aberrations had been designed and proved by the prototype testing. Due to the low glass transition temperature of the glue and the difference of thermal expansion coefficient between the 17-4 steel bender and silicon, the prototype distorted from flat polished condition when thermally de-blocked the polishing pitch. To improve the thermal deformation of the active grating in the polishing process, a new invar bender and high curing temperature glue were adapted to glue a silicon substrate on the bender. After some tests and manufacturer polishing, it showed acceptable conditions. In this paper we will present the design and preliminary tests of the invar active grating. Meanwhile, the design and analysis of a new 17-4 PH steel bender to be electro-less nickel plating and mechanical ruling for a new beamline will also be discussed.

  19. Optimal placement of active braces by using PSO algorithm in near- and far-field earthquakes

    NASA Astrophysics Data System (ADS)

    Mastali, M.; Kheyroddin, A.; Samali, B.; Vahdani, R.

    2016-03-01

    One of the most important issues in tall buildings is lateral resistance of the load-bearing systems against applied loads such as earthquake, wind and blast. Dual systems comprising core wall systems (single or multi-cell core) and moment-resisting frames are used as resistance systems in tall buildings. In addition to adequate stiffness provided by the dual system, most tall buildings may have to rely on various control systems to reduce the level of unwanted motions stemming from severe dynamic loads. One of the main challenges to effectively control the motion of a structure is limitation in distributing the required control along the structure height optimally. In this paper, concrete shear walls are used as secondary resistance system at three different heights as well as actuators installed in the braces. The optimal actuator positions are found by using optimized PSO algorithm as well as arbitrarily. The control performance of buildings that are equipped and controlled using the PSO algorithm method placement is assessed and compared with arbitrary placement of controllers using both near- and far-field ground motions of Kobe and Chi-Chi earthquakes.

  20. Validation of Algorithms for Basal Insulin Rate Reductions in Type 1 Diabetic Patients Practising Physical Activity

    ClinicalTrials.gov

    2013-04-19

    Type 1 Diabetes With a Subcutaneous Insulin Pump; Adjustment of the Recommended Basal Insulin Flow Rate in the Event of Physical Activity; Adjustment of the Recommended Prandial Insulin in the Event of Physical Activity

  1. Watershed model calibration framework developed using an influence coefficient algorithm and a genetic algorithm and analysis of pollutant discharge characteristics and load reduction in a TMDL planning area.

    PubMed

    Cho, Jae Heon; Lee, Jong Ho

    2015-11-01

    Manual calibration is common in rainfall-runoff model applications. However, rainfall-runoff models include several complicated parameters; thus, significant time and effort are required to manually calibrate the parameters individually and repeatedly. Automatic calibration has relative merit regarding time efficiency and objectivity but shortcomings regarding understanding indigenous processes in the basin. In this study, a watershed model calibration framework was developed using an influence coefficient algorithm and genetic algorithm (WMCIG) to automatically calibrate the distributed models. The optimization problem used to minimize the sum of squares of the normalized residuals of the observed and predicted values was solved using a genetic algorithm (GA). The final model parameters were determined from the iteration with the smallest sum of squares of the normalized residuals of all iterations. The WMCIG was applied to a Gomakwoncheon watershed located in an area that presents a total maximum daily load (TMDL) in Korea. The proportion of urbanized area in this watershed is low, and the diffuse pollution loads of nutrients such as phosphorus are greater than the point-source pollution loads because of the concentration of rainfall that occurs during the summer. The pollution discharges from the watershed were estimated for each land-use type, and the seasonal variations of the pollution loads were analyzed. Consecutive flow measurement gauges have not been installed in this area, and it is difficult to survey the flow and water quality in this area during the frequent heavy rainfall that occurs during the wet season. The Hydrological Simulation Program-Fortran (HSPF) model was used to calculate the runoff flow and water quality in this basin. Using the water quality results, a load duration curve was constructed for the basin, the exceedance frequency of the water quality standard was calculated for each hydrologic condition class, and the percent reduction

  2. Professional Development: Identifying Effective Instructional Coaching Activities

    ERIC Educational Resources Information Center

    Mannino, Gina

    2014-01-01

    The purpose of this study was to identify the instructional coaching activities most used by instructional coaches in southeast Texas school districts and to test if there was a relationship between the use of instructional coaching and perceived improvement in the instructional practices of teachers and student achievement. The participants for…

  3. Developing Metacognition: A Basis for Active Learning

    ERIC Educational Resources Information Center

    Vos, Henk; de Graaff, E.

    2004-01-01

    The reasons to introduce formats of active learning in engineering (ALE) such as project work, problem-based learning, use of cases, etc. are mostly based on practical experience, and sometimes from applied research on teaching and learning. Such research shows that students learn more and different abilities than in traditional formats of…

  4. Using Hybrid Modeling to Develop Innovative Activities

    ERIC Educational Resources Information Center

    Lichtman, Brenda; Avans, Diana

    2005-01-01

    This article describes a hybrid activities model that physical educators can use with students in grades four and above to create virtually a limitless array of novel games. A brief introduction to the basic theory is followed by descriptions of some hybrid games. Hybrid games are typically the result of merging two traditional sports or other…

  5. SeaWiFS Technical Report Series. Volume 42; Satellite Primary Productivity Data and Algorithm Development: A Science Plan for Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Falkowski, Paul G.; Behrenfeld, Michael J.; Esaias, Wayne E.; Balch, William; Campbell, Janet W.; Iverson, Richard L.; Kiefer, Dale A.; Morel, Andre; Yoder, James A.; Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor)

    1998-01-01

    Two issues regarding primary productivity, as it pertains to the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Program and the National Aeronautics and Space Administration (NASA) Mission to Planet Earth (MTPE) are presented in this volume. Chapter 1 describes the development of a science plan for deriving primary production for the world ocean using satellite measurements, by the Ocean Primary Productivity Working Group (OPPWG). Chapter 2 presents discussions by the same group, of algorithm classification, algorithm parameterization and data availability, algorithm testing and validation, and the benefits of a consensus primary productivity algorithm.

  6. Development of active-transport membrane devices

    SciTech Connect

    Laciak, D.V.

    1994-07-01

    This report introduces the concept of Air Products` AT membranes for the separation of NH{sub 3} and CO{sub 2} from process gas streams and presents results from the first year fabrication concept development studies.

  7. Stream-reach Identification for New Run-of-River Hydropower Development through a Merit Matrix Based Geospatial Algorithm

    SciTech Connect

    Pasha, M. Fayzul K.; Yeasmin, Dilruba; Kao, Shih-Chieh; Hadjerioua, Boualem; Wei, Yaxing; Smith, Brennan T

    2014-01-01

    Even after a century of development, the total hydropower potential from undeveloped rivers is still considered to be abundant in the United States. However, unlike evaluating hydropower potential at existing hydropower plants or non-powered dams, locating a feasible new hydropower plant involves many unknowns, and hence the total undeveloped potential is harder to quantify. In light of the rapid development of multiple national geospatial datasets for topography, hydrology, and environmental characteristics, a merit matrix based geospatial algorithm is proposed to help identify possible hydropower stream-reaches for future development. These hydropower stream-reaches sections of natural streams with suitable head, flow, and slope for possible future development are identified and compared using three different scenarios. A case study was conducted in the Alabama-Coosa-Tallapoosa (ACT) and Apalachicola-Chattahoochee-Flint (ACF) hydrologic subregions. It was found that a merit matrix based algorithm, which is based on the product of hydraulic head, annual mean flow, and average channel slope, can help effectively identify stream-reaches with high power density and small surface inundation. The identified stream-reaches can then be efficiently evaluated for their potential environmental impact, land development cost, and other competing water usage in detailed feasibility studies . Given that the selected datasets are available nationally (at least within the conterminous US), the proposed methodology will have wide applicability across the country.

  8. Development of an apnea detection algorithm based on temporal analysis of thoracic respiratory effort signal

    NASA Astrophysics Data System (ADS)

    Dell'Aquila, C. R.; Cañadas, G. E.; Correa, L. S.; Laciar, E.

    2016-04-01

    This work describes the design of an algorithm for detecting apnea episodes, based on analysis of thorax respiratory effort signal. Inspiration and expiration time, and range amplitude of respiratory cycle were evaluated. For range analysis the standard deviation statistical tool was used over respiratory signal temporal windows. The validity of its performance was carried out in 8 records of Apnea-ECG database that has annotations of apnea episodes. The results are: sensitivity (Se) 73%, specificity (Sp) 83%. These values can be improving eliminating artifact of signal records.

  9. Use of an Improved Matching Algorithm to Select Scaffolds for Enzyme Design Based on a Complex Active Site Model

    PubMed Central

    Huang, Xiaoqiang; Xue, Jing; Lin, Min; Zhu, Yushan

    2016-01-01

    Active site preorganization helps native enzymes electrostatically stabilize the transition state better than the ground state for their primary substrates and achieve significant rate enhancement. In this report, we hypothesize that a complex active site model for active site preorganization modeling should help to create preorganized active site design and afford higher starting activities towards target reactions. Our matching algorithm ProdaMatch was improved by invoking effective pruning strategies and the native active sites for ten scaffolds in a benchmark test set were reproduced. The root-mean squared deviations between the matched transition states and those in the crystal structures were < 1.0 Å for the ten scaffolds, and the repacking calculation results showed that 91% of the hydrogen bonds within the active sites are recovered, indicating that the active sites can be preorganized based on the predicted positions of transition states. The application of the complex active site model for de novo enzyme design was evaluated by scaffold selection using a classic catalytic triad motif for the hydrolysis of p-nitrophenyl acetate. Eighty scaffolds were identified from a scaffold library with 1,491 proteins and four scaffolds were native esterase. Furthermore, enzyme design for complicated substrates was investigated for the hydrolysis of cephalexin using scaffold selection based on two different catalytic motifs. Only three scaffolds were identified from the scaffold library by virtue of the classic catalytic triad-based motif. In contrast, 40 scaffolds were identified using a more flexible, but still preorganized catalytic motif, where one scaffold corresponded to the α-amino acid ester hydrolase that catalyzes the hydrolysis and synthesis of cephalexin. Thus, the complex active site modeling approach for de novo enzyme design with the aid of the improved ProdaMatch program is a promising approach for the creation of active sit