Science.gov

Sample records for algorithm enables accurate

  1. iCut: an Integrative Cut Algorithm Enables Accurate Segmentation of Touching Cells.

    PubMed

    He, Yong; Gong, Hui; Xiong, Benyi; Xu, Xiaofeng; Li, Anan; Jiang, Tao; Sun, Qingtao; Wang, Simin; Luo, Qingming; Chen, Shangbin

    2015-07-14

    Individual cells play essential roles in the biological processes of the brain. The number of neurons changes during both normal development and disease progression. High-resolution imaging has made it possible to directly count cells. However, the automatic and precise segmentation of touching cells continues to be a major challenge for massive and highly complex datasets. Thus, an integrative cut (iCut) algorithm, which combines information regarding spatial location and intervening and concave contours with the established normalized cut, has been developed. iCut involves two key steps: (1) a weighting matrix is first constructed with the abovementioned information regarding the touching cells and (2) a normalized cut algorithm that uses the weighting matrix is implemented to separate the touching cells into isolated cells. This novel algorithm was evaluated using two types of data: the open SIMCEP benchmark dataset and our micro-optical imaging dataset from a Nissl-stained mouse brain. It has achieved a promising recall/precision of 91.2 ± 2.1%/94.1 ± 1.8% and 86.8 ± 4.1%/87.5 ± 5.7%, respectively, for the two datasets. As quantified using the harmonic mean of recall and precision, the accuracy of iCut is higher than that of some state-of-the-art algorithms. The better performance of this fully automated algorithm can benefit studies of brain cytoarchitecture.

  2. iCut: an Integrative Cut Algorithm Enables Accurate Segmentation of Touching Cells

    PubMed Central

    He, Yong; Gong, Hui; Xiong, Benyi; Xu, Xiaofeng; Li, Anan; Jiang, Tao; Sun, Qingtao; Wang, Simin; Luo, Qingming; Chen, Shangbin

    2015-01-01

    Individual cells play essential roles in the biological processes of the brain. The number of neurons changes during both normal development and disease progression. High-resolution imaging has made it possible to directly count cells. However, the automatic and precise segmentation of touching cells continues to be a major challenge for massive and highly complex datasets. Thus, an integrative cut (iCut) algorithm, which combines information regarding spatial location and intervening and concave contours with the established normalized cut, has been developed. iCut involves two key steps: (1) a weighting matrix is first constructed with the abovementioned information regarding the touching cells and (2) a normalized cut algorithm that uses the weighting matrix is implemented to separate the touching cells into isolated cells. This novel algorithm was evaluated using two types of data: the open SIMCEP benchmark dataset and our micro-optical imaging dataset from a Nissl-stained mouse brain. It has achieved a promising recall/precision of 91.2 ± 2.1%/94.1 ± 1.8% and 86.8 ± 4.1%/87.5 ± 5.7%, respectively, for the two datasets. As quantified using the harmonic mean of recall and precision, the accuracy of iCut is higher than that of some state-of-the-art algorithms. The better performance of this fully automated algorithm can benefit studies of brain cytoarchitecture. PMID:26168908

  3. Accurate Finite Difference Algorithms

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1996-01-01

    Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.

  4. Enabling quantum communications through accurate photons polarization control

    NASA Astrophysics Data System (ADS)

    Almeida, Álvaro J.; Muga, Nelson J.; Silva, Nuno A.; Stojanovic, Aleksandar D.; André, Paulo S.; Pinto, Armando N.; Mora, José; Capmany, José

    2013-11-01

    The rapid increase on the information sharing around the world, leads to an utmost requirement for capacity and bandwidth. However, the need for security in the transmission and storage of information is also of major importance. The use of quantum technologies provides a practical solution for secure communications systems. Quantum key distribution (QKD) was the first practical application of quantum mechanics, and nowadays it is the most developed one. In order to share secret keys between two parties can be used several methods of encoding. Due to its simplicity, the encoding into polarization is one of the most used. However, when we use optical fibers as transmission channels, the polarization suffers random rotations that may change the state of polarization (SOP) of the light initially sent to the fiber to a new one at the output. Thus, in order to enable real-time communication using this encoding method it is required the use of a dynamic control system. We describe a scheme of transmission of quantum information, which is based in the polarization encoding, and that allows to share secret keys through optical fibers without interruption. The dynamic polarization control system used in such scheme is described, both theoretically and experimentally. Their advantages and limitations for the use in quantum communications are presented and discussed.

  5. Genomic-enabled prediction with classification algorithms

    PubMed Central

    Ornella, L; Pérez, P; Tapia, E; González-Camacho, J M; Burgueño, J; Zhang, X; Singh, S; Vicente, F S; Bonnett, D; Dreisigacker, S; Singh, R; Long, N; Crossa, J

    2014-01-01

    Pearson's correlation coefficient (ρ) is the most commonly reported metric of the success of prediction in genomic selection (GS). However, in real breeding ρ may not be very useful for assessing the quality of the regression in the tails of the distribution, where individuals are chosen for selection. This research used 14 maize and 16 wheat data sets with different trait–environment combinations. Six different models were evaluated by means of a cross-validation scheme (50 random partitions each, with 90% of the individuals in the training set and 10% in the testing set). The predictive accuracy of these algorithms for selecting individuals belonging to the best α=10, 15, 20, 25, 30, 35, 40% of the distribution was estimated using Cohen's kappa coefficient (κ) and an ad hoc measure, which we call relative efficiency (RE), which indicates the expected genetic gain due to selection when individuals are selected based on GS exclusively. We put special emphasis on the analysis for α=15%, because it is a percentile commonly used in plant breeding programmes (for example, at CIMMYT). We also used ρ as a criterion for overall success. The algorithms used were: Bayesian LASSO (BL), Ridge Regression (RR), Reproducing Kernel Hilbert Spaces (RHKS), Random Forest Regression (RFR), and Support Vector Regression (SVR) with linear (lin) and Gaussian kernels (rbf). The performance of regression methods for selecting the best individuals was compared with that of three supervised classification algorithms: Random Forest Classification (RFC) and Support Vector Classification (SVC) with linear (lin) and Gaussian (rbf) kernels. Classification methods were evaluated using the same cross-validation scheme but with the response vector of the original training sets dichotomised using a given threshold. For α=15%, SVC-lin presented the highest κ coefficients in 13 of the 14 maize data sets, with best values ranging from 0.131 to 0.722 (statistically significant in 9 data sets

  6. Genomic-enabled prediction with classification algorithms.

    PubMed

    Ornella, L; Pérez, P; Tapia, E; González-Camacho, J M; Burgueño, J; Zhang, X; Singh, S; Vicente, F S; Bonnett, D; Dreisigacker, S; Singh, R; Long, N; Crossa, J

    2014-06-01

    Pearson's correlation coefficient (ρ) is the most commonly reported metric of the success of prediction in genomic selection (GS). However, in real breeding ρ may not be very useful for assessing the quality of the regression in the tails of the distribution, where individuals are chosen for selection. This research used 14 maize and 16 wheat data sets with different trait-environment combinations. Six different models were evaluated by means of a cross-validation scheme (50 random partitions each, with 90% of the individuals in the training set and 10% in the testing set). The predictive accuracy of these algorithms for selecting individuals belonging to the best α=10, 15, 20, 25, 30, 35, 40% of the distribution was estimated using Cohen's kappa coefficient (κ) and an ad hoc measure, which we call relative efficiency (RE), which indicates the expected genetic gain due to selection when individuals are selected based on GS exclusively. We put special emphasis on the analysis for α=15%, because it is a percentile commonly used in plant breeding programmes (for example, at CIMMYT). We also used ρ as a criterion for overall success. The algorithms used were: Bayesian LASSO (BL), Ridge Regression (RR), Reproducing Kernel Hilbert Spaces (RHKS), Random Forest Regression (RFR), and Support Vector Regression (SVR) with linear (lin) and Gaussian kernels (rbf). The performance of regression methods for selecting the best individuals was compared with that of three supervised classification algorithms: Random Forest Classification (RFC) and Support Vector Classification (SVC) with linear (lin) and Gaussian (rbf) kernels. Classification methods were evaluated using the same cross-validation scheme but with the response vector of the original training sets dichotomised using a given threshold. For α=15%, SVC-lin presented the highest κ coefficients in 13 of the 14 maize data sets, with best values ranging from 0.131 to 0.722 (statistically significant in 9 data sets

  7. Nonexposure Accurate Location K-Anonymity Algorithm in LBS

    PubMed Central

    2014-01-01

    This paper tackles location privacy protection in current location-based services (LBS) where mobile users have to report their exact location information to an LBS provider in order to obtain their desired services. Location cloaking has been proposed and well studied to protect user privacy. It blurs the user's accurate coordinate and replaces it with a well-shaped cloaked region. However, to obtain such an anonymous spatial region (ASR), nearly all existent cloaking algorithms require knowing the accurate locations of all users. Therefore, location cloaking without exposing the user's accurate location to any party is urgently needed. In this paper, we present such two nonexposure accurate location cloaking algorithms. They are designed for K-anonymity, and cloaking is performed based on the identifications (IDs) of the grid areas which were reported by all the users, instead of directly on their accurate coordinates. Experimental results show that our algorithms are more secure than the existent cloaking algorithms, need not have all the users reporting their locations all the time, and can generate smaller ASR. PMID:24605060

  8. Nonexposure accurate location K-anonymity algorithm in LBS.

    PubMed

    Jia, Jinying; Zhang, Fengli

    2014-01-01

    This paper tackles location privacy protection in current location-based services (LBS) where mobile users have to report their exact location information to an LBS provider in order to obtain their desired services. Location cloaking has been proposed and well studied to protect user privacy. It blurs the user's accurate coordinate and replaces it with a well-shaped cloaked region. However, to obtain such an anonymous spatial region (ASR), nearly all existent cloaking algorithms require knowing the accurate locations of all users. Therefore, location cloaking without exposing the user's accurate location to any party is urgently needed. In this paper, we present such two nonexposure accurate location cloaking algorithms. They are designed for K-anonymity, and cloaking is performed based on the identifications (IDs) of the grid areas which were reported by all the users, instead of directly on their accurate coordinates. Experimental results show that our algorithms are more secure than the existent cloaking algorithms, need not have all the users reporting their locations all the time, and can generate smaller ASR.

  9. Cas9-chromatin binding information enables more accurate CRISPR off-target prediction

    PubMed Central

    Singh, Ritambhara; Kuscu, Cem; Quinlan, Aaron; Qi, Yanjun; Adli, Mazhar

    2015-01-01

    The CRISPR system has become a powerful biological tool with a wide range of applications. However, improving targeting specificity and accurately predicting potential off-targets remains a significant goal. Here, we introduce a web-based CRISPR/Cas9 Off-target Prediction and Identification Tool (CROP-IT) that performs improved off-target binding and cleavage site predictions. Unlike existing prediction programs that solely use DNA sequence information; CROP-IT integrates whole genome level biological information from existing Cas9 binding and cleavage data sets. Utilizing whole-genome chromatin state information from 125 human cell types further enhances its computational prediction power. Comparative analyses on experimentally validated datasets show that CROP-IT outperforms existing computational algorithms in predicting both Cas9 binding as well as cleavage sites. With a user-friendly web-interface, CROP-IT outputs scored and ranked list of potential off-targets that enables improved guide RNA design and more accurate prediction of Cas9 binding or cleavage sites. PMID:26032770

  10. Accurate and efficient maximal ball algorithm for pore network extraction

    NASA Astrophysics Data System (ADS)

    Arand, Frederick; Hesser, Jürgen

    2017-04-01

    The maximal ball (MB) algorithm is a well established method for the morphological analysis of porous media. It extracts a network of pores and throats from volumetric data. This paper describes structural modifications to the algorithm, while the basic concepts are preserved. Substantial improvements to accuracy and efficiency are achieved as follows: First, all calculations are performed on a subvoxel accurate distance field, and no approximations to discretize balls are made. Second, data structures are simplified to keep memory usage low and improve algorithmic speed. Third, small and reasonable adjustments increase speed significantly. In volumes with high porosity, memory usage is improved compared to classic MB algorithms. Furthermore, processing is accelerated more than three times. Finally, the modified MB algorithm is verified by extracting several network properties from reference as well as real data sets. Runtimes are measured and compared to literature.

  11. An Accurate and Efficient Gaussian Fit Centroiding Algorithm for Star Trackers

    NASA Astrophysics Data System (ADS)

    Delabie, Tjorven; Schutter, Joris De; Vandenbussche, Bart

    2015-06-01

    This paper presents a novel centroiding algorithm for star trackers. The proposed algorithm, which is referred to as the Gaussian Grid algorithm, fits an elliptical Gaussian function to the measured pixel data and derives explicit expressions to determine the centroids of the stars. In tests, the algorithm proved to yield accuracy comparable to that of the most accurate existing algorithms, while being significantly less computationally intensive. Hence, the Gaussian Grid algorithm can deliver high centroiding accuracy to spacecraft with limited computational power. Furthermore, a hybrid algorithm is proposed in which the Gaussian Grid algorithm yields an accurate initial estimate for a least squares fitting method, resulting in a reduced number of iterations and hence reduced computational cost. The low computational cost allows to improve performance by acquiring the attitude estimates at a higher rate or use more stars in the estimation algorithms. It is also a valuable contribution to the expanding field of small satellites, where it could enable low-cost platforms to have highly accurate attitude estimation.

  12. Accurate colon residue detection algorithm with partial volume segmentation

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Liang, Zhengrong; Zhang, PengPeng; Kutcher, Gerald J.

    2004-05-01

    Colon cancer is the second leading cause of cancer-related death in the United States. Earlier detection and removal of polyps can dramatically reduce the chance of developing malignant tumor. Due to some limitations of optical colonoscopy used in clinic, many researchers have developed virtual colonoscopy as an alternative technique, in which accurate colon segmentation is crucial. However, partial volume effect and existence of residue make it very challenging. The electronic colon cleaning technique proposed by Chen et al is a very attractive method, which is also kind of hard segmentation method. As mentioned in their paper, some artifacts were produced, which might affect the accurate colon reconstruction. In our paper, instead of labeling each voxel with a unique label or tissue type, the percentage of different tissues within each voxel, which we call a mixture, was considered in establishing a maximum a posterior probability (MAP) image-segmentation framework. A Markov random field (MRF) model was developed to reflect the spatial information for the tissue mixtures. The spatial information based on hard segmentation was used to determine which tissue types are in the specific voxel. Parameters of each tissue class were estimated by the expectation-maximization (EM) algorithm during the MAP tissue-mixture segmentation. Real CT experimental results demonstrated that the partial volume effects between four tissue types have been precisely detected. Meanwhile, the residue has been electronically removed and very smooth and clean interface along the colon wall has been obtained.

  13. Functional neuroimaging of visuospatial working memory tasks enables accurate detection of attention deficit and hyperactivity disorder

    PubMed Central

    Hammer, Rubi; Cooke, Gillian E.; Stein, Mark A.; Booth, James R.

    2015-01-01

    Finding neurobiological markers for neurodevelopmental disorders, such as attention deficit and hyperactivity disorder (ADHD), is a major objective of clinicians and neuroscientists. We examined if functional Magnetic Resonance Imaging (fMRI) data from a few distinct visuospatial working memory (VSWM) tasks enables accurately detecting cases with ADHD. We tested 20 boys with ADHD combined type and 20 typically developed (TD) boys in four VSWM tasks that differed in feedback availability (feedback, no-feedback) and reward size (large, small). We used a multimodal analysis based on brain activity in 16 regions of interest, significantly activated or deactivated in the four VSWM tasks (based on the entire participants' sample). Dimensionality of the data was reduced into 10 principal components that were used as the input variables to a logistic regression classifier. fMRI data from the four VSWM tasks enabled a classification accuracy of 92.5%, with high predicted ADHD probability values for most clinical cases, and low predicted ADHD probabilities for most TDs. This accuracy level was higher than those achieved by using the fMRI data of any single task, or the respective behavioral data. This indicates that task-based fMRI data acquired while participants perform a few distinct VSWM tasks enables improved detection of clinical cases. PMID:26509111

  14. A correction to a highly accurate voight function algorithm

    NASA Technical Reports Server (NTRS)

    Shippony, Z.; Read, W. G.

    2002-01-01

    An algorithm for rapidly computing the complex Voigt function was published by Shippony and Read. Its claimed accuracy was 1 part in 10^8. It was brought to our attention by Wells that Shippony and Read was not meeting its claimed accuracy for extremely small but non zero y values. Although true, the fix to the code is so trivial to warrant this note for those who use this algorithm.

  15. Robust and accurate star segmentation algorithm based on morphology

    NASA Astrophysics Data System (ADS)

    Jiang, Jie; Lei, Liu; Guangjun, Zhang

    2016-06-01

    Star tracker is an important instrument of measuring a spacecraft's attitude; it measures a spacecraft's attitude by matching the stars captured by a camera and those stored in a star database, the directions of which are known. Attitude accuracy of star tracker is mainly determined by star centroiding accuracy, which is guaranteed by complete star segmentation. Current algorithms of star segmentation cannot suppress different interferences in star images and cannot segment stars completely because of these interferences. To solve this problem, a new star target segmentation algorithm is proposed on the basis of mathematical morphology. The proposed algorithm utilizes the margin structuring element to detect small targets and the opening operation to suppress noises, and a modified top-hat transform is defined to extract stars. A combination of three different structuring elements is utilized to define a new star segmentation algorithm, and the influence of three different structural elements on the star segmentation results is analyzed. Experimental results show that the proposed algorithm can suppress different interferences and segment stars completely, thus providing high star centroiding accuracy.

  16. Enabling accurate gate profile control with inline 3D-AFM

    NASA Astrophysics Data System (ADS)

    Bao, Tianming; Lopez, Andrew; Dawson, Dean

    2009-05-01

    The logic and memory semiconductor device technology strives to follow the aggressive ITRS roadmap. The ITRS calls for increased 3D metrology to meet the demand for tighter process control at 45nm and 32nm nodes. In particular, gate engineering has advanced to a level where conventional metrology by CD-SEM and optical scatterometry (OCD) faces fundamental limitations without involvement of 3D atomic force microscope (3D-AFM or CD-AFM). This paper reports recent progress in 3D-AFM to address the metrology need to control gate dimension in MOSFET transistor formation. 3D-AFM metrology measures the gate electrode at post-etch with the lowest measurement uncertainty for critical gate geometry, including linewidth, sidewall profile, sidewall angle (SWA), line width roughness (LWR), and line edge roughness (LER). 3D-AFM enables accurate gate profile control in three types of metrology applications: reference metrology to validate CD-SEM and OCD, inline depth or 3D monitoring, or replacing TEM for 3D characterization for engineering analysis.

  17. Consistent Multigroup Theory Enabling Accurate Course-Group Simulation of Gen IV Reactors

    SciTech Connect

    Rahnema, Farzad; Haghighat, Alireza; Ougouag, Abderrafi

    2013-11-29

    The objective of this proposal is the development of a consistent multi-group theory that accurately accounts for the energy-angle coupling associated with collapsed-group cross sections. This will allow for coarse-group transport and diffusion theory calculations that exhibit continuous energy accuracy and implicitly treat cross- section resonances. This is of particular importance when considering the highly heterogeneous and optically thin reactor designs within the Next Generation Nuclear Plant (NGNP) framework. In such reactors, ignoring the influence of anisotropy in the angular flux on the collapsed cross section, especially at the interface between core and reflector near which control rods are located, results in inaccurate estimates of the rod worth, a serious safety concern. The scope of this project will include the development and verification of a new multi-group theory enabling high-fidelity transport and diffusion calculations in coarse groups, as well as a methodology for the implementation of this method in existing codes. This will allow for a higher accuracy solution of reactor problems while using fewer groups and will reduce the computational expense. The proposed research represents a fundamental advancement in the understanding and improvement of multi- group theory for reactor analysis.

  18. A Simple and Practical Algorithm for Accurate Gravitational Magnification Maps

    NASA Astrophysics Data System (ADS)

    Walters, S. J.; Forbes, L. K.

    2017-01-01

    In this brief communication, a new method is outlined for modelling magnification patterns on an observer's plane using a first-order approximation to the null geodesic path equations for a point mass lens. For each ray emitted from a source, an explicit calculation is made for the change in position on the observer's plane due to each lens mass. By counting the number of points in each small area of the observer's plane, the magnification at that point can be determined. This allows for a very simple and transparent algorithm. A short Matlab code sample for creating simple magnification maps due to multiple point lenses is included in an appendix.

  19. PATHOME: an algorithm for accurately detecting differentially expressed subpathways

    PubMed Central

    Nam, S; Chang, H R; Kim, K-T; Kook, M-C; Hong, D; Kwon, C H; Jung, H R; Park, H S; Powis, G; Liang, H; Park, T; Kim, Y H

    2014-01-01

    The translation of high-throughput gene expression data into biologically meaningful information remains a bottleneck. We developed a novel computational algorithm, PATHOME, for detecting differentially expressed biological pathways. This algorithm employs straightforward statistical tests to evaluate the significance of differential expression patterns along subpathways. Applying it to gene expression data sets of gastric cancer (GC), we compared its performance with those of other leading programs. Based on a literature-driven reference set, PATHOME showed greater consistency in identifying known cancer-related pathways. For the WNT pathway uniquely identified by PATHOME, we validated its involvement in gastric carcinogenesis through experimental perturbation of both cell lines and animal models. We identified HNF4α-WNT5A regulation in the cross-talk between the AMPK metabolic pathway and the WNT signaling pathway, and further identified WNT5A as a potential therapeutic target for GC. We have demonstrated PATHOME to be a powerful tool, with improved sensitivity for identifying disease-related dysregulated pathways. PMID:24681952

  20. Enabling high grayscale resolution displays and accurate response time measurements on conventional computers.

    PubMed

    Li, Xiangrui; Lu, Zhong-Lin

    2012-02-29

    Display systems based on conventional computer graphics cards are capable of generating images with 8-bit gray level resolution. However, most experiments in vision research require displays with more than 12 bits of luminance resolution. Several solutions are available. Bit++ (1) and DataPixx (2) use the Digital Visual Interface (DVI) output from graphics cards and high resolution (14 or 16-bit) digital-to-analog converters to drive analog display devices. The VideoSwitcher (3) described here combines analog video signals from the red and blue channels of graphics cards with different weights using a passive resister network (4) and an active circuit to deliver identical video signals to the three channels of color monitors. The method provides an inexpensive way to enable high-resolution monochromatic displays using conventional graphics cards and analog monitors. It can also provide trigger signals that can be used to mark stimulus onsets, making it easy to synchronize visual displays with physiological recordings or response time measurements. Although computer keyboards and mice are frequently used in measuring response times (RT), the accuracy of these measurements is quite low. The RTbox is a specialized hardware and software solution for accurate RT measurements. Connected to the host computer through a USB connection, the driver of the RTbox is compatible with all conventional operating systems. It uses a microprocessor and high-resolution clock to record the identities and timing of button events, which are buffered until the host computer retrieves them. The recorded button events are not affected by potential timing uncertainties or biases associated with data transmission and processing in the host computer. The asynchronous storage greatly simplifies the design of user programs. Several methods are available to synchronize the clocks of the RTbox and the host computer. The RTbox can also receive external triggers and be used to measure RT with respect

  1. An algorithm for selecting the most accurate protocol for contact angle measurement by drop shape analysis.

    PubMed

    Xu, Z N

    2014-12-01

    In this study, an error analysis is performed to study real water drop images and the corresponding numerically generated water drop profiles for three widely used static contact angle algorithms: the circle- and ellipse-fitting algorithms and the axisymmetric drop shape analysis-profile (ADSA-P) algorithm. The results demonstrate the accuracy of the numerically generated drop profiles based on the Laplace equation. A significant number of water drop profiles with different volumes, contact angles, and noise levels are generated, and the influences of the three factors on the accuracies of the three algorithms are systematically investigated. The results reveal that the above-mentioned three algorithms are complementary. In fact, the circle- and ellipse-fitting algorithms show low errors and are highly resistant to noise for water drops with small/medium volumes and contact angles, while for water drop with large volumes and contact angles just the ADSA-P algorithm can meet accuracy requirement. However, this algorithm introduces significant errors in the case of small volumes and contact angles because of its high sensitivity to noise. The critical water drop volumes of the circle- and ellipse-fitting algorithms corresponding to a certain contact angle error are obtained through a significant amount of computation. To improve the precision of the static contact angle measurement, a more accurate algorithm based on a combination of the three algorithms is proposed. Following a systematic investigation, the algorithm selection rule is described in detail, while maintaining the advantages of the three algorithms and overcoming their deficiencies. In general, static contact angles over the entire hydrophobicity range can be accurately evaluated using the proposed algorithm. The ease of erroneous judgment in static contact angle measurements is avoided. The proposed algorithm is validated by a static contact angle evaluation of real and numerically generated water drop

  2. An algorithm for selecting the most accurate protocol for contact angle measurement by drop shape analysis

    NASA Astrophysics Data System (ADS)

    Xu, Z. N.

    2014-12-01

    In this study, an error analysis is performed to study real water drop images and the corresponding numerically generated water drop profiles for three widely used static contact angle algorithms: the circle- and ellipse-fitting algorithms and the axisymmetric drop shape analysis-profile (ADSA-P) algorithm. The results demonstrate the accuracy of the numerically generated drop profiles based on the Laplace equation. A significant number of water drop profiles with different volumes, contact angles, and noise levels are generated, and the influences of the three factors on the accuracies of the three algorithms are systematically investigated. The results reveal that the above-mentioned three algorithms are complementary. In fact, the circle- and ellipse-fitting algorithms show low errors and are highly resistant to noise for water drops with small/medium volumes and contact angles, while for water drop with large volumes and contact angles just the ADSA-P algorithm can meet accuracy requirement. However, this algorithm introduces significant errors in the case of small volumes and contact angles because of its high sensitivity to noise. The critical water drop volumes of the circle- and ellipse-fitting algorithms corresponding to a certain contact angle error are obtained through a significant amount of computation. To improve the precision of the static contact angle measurement, a more accurate algorithm based on a combination of the three algorithms is proposed. Following a systematic investigation, the algorithm selection rule is described in detail, while maintaining the advantages of the three algorithms and overcoming their deficiencies. In general, static contact angles over the entire hydrophobicity range can be accurately evaluated using the proposed algorithm. The ease of erroneous judgment in static contact angle measurements is avoided. The proposed algorithm is validated by a static contact angle evaluation of real and numerically generated water drop

  3. A cooperative positioning algorithm for DSRC enabled vehicular networks

    NASA Astrophysics Data System (ADS)

    Efatmaneshnik, M.; Kealy, A.; Alam, N.; Dempster, A. G.

    2011-12-01

    Many of the safety related applications that can be facilitated by Dedicated Short Range Communications (DSRC), such as vehicle proximity warnings, automated braking (e.g. at level crossings), speed advisories, pedestrian alerts etc., rely on a robust vehicle positioning capability such as that provided by a Global Navigation Satellite System (GNSS). Vehicles in remote areas, entering tunnels, high rise areas or any high multipath/ weak signal environment will challenge the integrity of GNSS position solutions, and ultimately the safety application it underpins. To address this challenge, this paper presents an innovative application of Cooperative Positioning techniques within vehicular networks. CP refers to any method of integrating measurements from different positioning systems and sensors in order to improve the overall quality (accuracy and reliability) of the final position solution. This paper investigates the potential of the DSRC infrastructure itself to provide an inter-vehicular ranging signal that can be used as a measurement within the CP algorithm. In this paper, time-based techniques of ranging are introduced and bandwidth requirements are investigated and presented. The robustness of the CP algorithm to inter-vehicle connection failure as well as GNSS dropouts is also demonstrated using simulation studies. Finally, the performance of the Constrained Kalman Filter used to integrate GNSS measurements with DSRC derived range estimates within a typical VANET is described and evaluated.

  4. SPECT-OPT multimodal imaging enables accurate evaluation of radiotracers for β-cell mass assessments

    PubMed Central

    Eter, Wael A.; Parween, Saba; Joosten, Lieke; Frielink, Cathelijne; Eriksson, Maria; Brom, Maarten; Ahlgren, Ulf; Gotthardt, Martin

    2016-01-01

    Single Photon Emission Computed Tomography (SPECT) has become a promising experimental approach to monitor changes in β-cell mass (BCM) during diabetes progression. SPECT imaging of pancreatic islets is most commonly cross-validated by stereological analysis of histological pancreatic sections after insulin staining. Typically, stereological methods do not accurately determine the total β-cell volume, which is inconvenient when correlating total pancreatic tracer uptake with BCM. Alternative methods are therefore warranted to cross-validate β-cell imaging using radiotracers. In this study, we introduce multimodal SPECT - optical projection tomography (OPT) imaging as an accurate approach to cross-validate radionuclide-based imaging of β-cells. Uptake of a promising radiotracer for β-cell imaging by SPECT, 111In-exendin-3, was measured by ex vivo-SPECT and cross evaluated by 3D quantitative OPT imaging as well as with histology within healthy and alloxan-treated Brown Norway rat pancreata. SPECT signal was in excellent linear correlation with OPT data as compared to histology. While histological determination of islet spatial distribution was challenging, SPECT and OPT revealed similar distribution patterns of 111In-exendin-3 and insulin positive β-cell volumes between different pancreatic lobes, both visually and quantitatively. We propose ex vivo SPECT-OPT multimodal imaging as a highly accurate strategy for validating the performance of β-cell radiotracers. PMID:27080529

  5. SPECT-OPT multimodal imaging enables accurate evaluation of radiotracers for β-cell mass assessments.

    PubMed

    Eter, Wael A; Parween, Saba; Joosten, Lieke; Frielink, Cathelijne; Eriksson, Maria; Brom, Maarten; Ahlgren, Ulf; Gotthardt, Martin

    2016-04-15

    Single Photon Emission Computed Tomography (SPECT) has become a promising experimental approach to monitor changes in β-cell mass (BCM) during diabetes progression. SPECT imaging of pancreatic islets is most commonly cross-validated by stereological analysis of histological pancreatic sections after insulin staining. Typically, stereological methods do not accurately determine the total β-cell volume, which is inconvenient when correlating total pancreatic tracer uptake with BCM. Alternative methods are therefore warranted to cross-validate β-cell imaging using radiotracers. In this study, we introduce multimodal SPECT - optical projection tomography (OPT) imaging as an accurate approach to cross-validate radionuclide-based imaging of β-cells. Uptake of a promising radiotracer for β-cell imaging by SPECT, (111)In-exendin-3, was measured by ex vivo-SPECT and cross evaluated by 3D quantitative OPT imaging as well as with histology within healthy and alloxan-treated Brown Norway rat pancreata. SPECT signal was in excellent linear correlation with OPT data as compared to histology. While histological determination of islet spatial distribution was challenging, SPECT and OPT revealed similar distribution patterns of (111)In-exendin-3 and insulin positive β-cell volumes between different pancreatic lobes, both visually and quantitatively. We propose ex vivo SPECT-OPT multimodal imaging as a highly accurate strategy for validating the performance of β-cell radiotracers.

  6. A fast and accurate algorithm for ℓ 1 minimization problems in compressive sampling

    NASA Astrophysics Data System (ADS)

    Chen, Feishe; Shen, Lixin; Suter, Bruce W.; Xu, Yuesheng

    2015-12-01

    An accurate and efficient algorithm for solving the constrained ℓ 1-norm minimization problem is highly needed and is crucial for the success of sparse signal recovery in compressive sampling. We tackle the constrained ℓ 1-norm minimization problem by reformulating it via an indicator function which describes the constraints. The resulting model is solved efficiently and accurately by using an elegant proximity operator-based algorithm. Numerical experiments show that the proposed algorithm performs well for sparse signals with magnitudes over a high dynamic range. Furthermore, it performs significantly better than the well-known algorithm NESTA (a shorthand for Nesterov's algorithm) and DADM (dual alternating direction method) in terms of the quality of restored signals and the computational complexity measured in the CPU-time consumed.

  7. A fast and accurate algorithm for high-frequency trans-ionospheric path length determination

    NASA Astrophysics Data System (ADS)

    Wijaya, Dudy D.

    2015-12-01

    This paper presents a fast and accurate algorithm for high-frequency trans-ionospheric path length determination. The algorithm is merely based on the solution of the Eikonal equation that is solved using the conformal theory of refraction. The main advantages of the algorithm are summarized as follows. First, the algorithm can determine the optical path length without iteratively adjusting both elevation and azimuth angles and, hence, the computational time can be reduced. Second, for the same elevation and azimuth angles, the algorithm can simultaneously determine the phase and group of both ordinary and extra-ordinary optical path lengths for different frequencies. Results from numerical simulations show that the computational time required by the proposed algorithm to accurately determine 8 different optical path lengths is almost 17 times faster than that required by a 3D ionospheric ray-tracing algorithm. It is found that the computational time to determine multiple optical path lengths is the same with that for determining a single optical path length. It is also found that the proposed algorithm is capable of determining the optical path lengths with millimeter level of accuracies, if the magnitude of the squared ratio of the plasma frequency to the transmitted frequency is less than 1.33× 10^{-3}, and hence the proposed algorithm is applicable for geodetic applications.

  8. Enabling fast, stable and accurate peridynamic computations using multi-time-step integration

    SciTech Connect

    Lindsay, P.; Parks, M. L.; Prakash, A.

    2016-04-13

    Peridynamics is a nonlocal extension of classical continuum mechanics that is well-suited for solving problems with discontinuities such as cracks. This paper extends the peridynamic formulation to decompose a problem domain into a number of smaller overlapping subdomains and to enable the use of different time steps in different subdomains. This approach allows regions of interest to be isolated and solved at a small time step for increased accuracy while the rest of the problem domain can be solved at a larger time step for greater computational efficiency. Lastly, performance of the proposed method in terms of stability, accuracy, and computational cost is examined and several numerical examples are presented to corroborate the findings.

  9. Enabling fast, stable and accurate peridynamic computations using multi-time-step integration

    DOE PAGES

    Lindsay, P.; Parks, M. L.; Prakash, A.

    2016-04-13

    Peridynamics is a nonlocal extension of classical continuum mechanics that is well-suited for solving problems with discontinuities such as cracks. This paper extends the peridynamic formulation to decompose a problem domain into a number of smaller overlapping subdomains and to enable the use of different time steps in different subdomains. This approach allows regions of interest to be isolated and solved at a small time step for increased accuracy while the rest of the problem domain can be solved at a larger time step for greater computational efficiency. Lastly, performance of the proposed method in terms of stability, accuracy, andmore » computational cost is examined and several numerical examples are presented to corroborate the findings.« less

  10. Petascale self-consistent electromagnetic computations using scalable and accurate algorithms for complex structures

    NASA Astrophysics Data System (ADS)

    Cary, John R.; Abell, D.; Amundson, J.; Bruhwiler, D. L.; Busby, R.; Carlsson, J. A.; Dimitrov, D. A.; Kashdan, E.; Messmer, P.; Nieter, C.; Smithe, D. N.; Spentzouris, P.; Stoltz, P.; Trines, R. M.; Wang, H.; Werner, G. R.

    2006-09-01

    As the size and cost of particle accelerators escalate, high-performance computing plays an increasingly important role; optimization through accurate, detailed computermodeling increases performance and reduces costs. But consequently, computer simulations face enormous challenges. Early approximation methods, such as expansions in distance from the design orbit, were unable to supply detailed accurate results, such as in the computation of wake fields in complex cavities. Since the advent of message-passing supercomputers with thousands of processors, earlier approximations are no longer necessary, and it is now possible to compute wake fields, the effects of dampers, and self-consistent dynamics in cavities accurately. In this environment, the focus has shifted towards the development and implementation of algorithms that scale to large numbers of processors. So-called charge-conserving algorithms evolve the electromagnetic fields without the need for any global solves (which are difficult to scale up to many processors). Using cut-cell (or embedded) boundaries, these algorithms can simulate the fields in complex accelerator cavities with curved walls. New implicit algorithms, which are stable for any time-step, conserve charge as well, allowing faster simulation of structures with details small compared to the characteristic wavelength. These algorithmic and computational advances have been implemented in the VORPAL7 Framework, a flexible, object-oriented, massively parallel computational application that allows run-time assembly of algorithms and objects, thus composing an application on the fly.

  11. Consistency of VDJ Rearrangement and Substitution Parameters Enables Accurate B Cell Receptor Sequence Annotation.

    PubMed

    Ralph, Duncan K; Matsen, Frederick A

    2016-01-01

    VDJ rearrangement and somatic hypermutation work together to produce antibody-coding B cell receptor (BCR) sequences for a remarkable diversity of antigens. It is now possible to sequence these BCRs in high throughput; analysis of these sequences is bringing new insight into how antibodies develop, in particular for broadly-neutralizing antibodies against HIV and influenza. A fundamental step in such sequence analysis is to annotate each base as coming from a specific one of the V, D, or J genes, or from an N-addition (a.k.a. non-templated insertion). Previous work has used simple parametric distributions to model transitions from state to state in a hidden Markov model (HMM) of VDJ recombination, and assumed that mutations occur via the same process across sites. However, codon frame and other effects have been observed to violate these parametric assumptions for such coding sequences, suggesting that a non-parametric approach to modeling the recombination process could be useful. In our paper, we find that indeed large modern data sets suggest a model using parameter-rich per-allele categorical distributions for HMM transition probabilities and per-allele-per-position mutation probabilities, and that using such a model for inference leads to significantly improved results. We present an accurate and efficient BCR sequence annotation software package using a novel HMM "factorization" strategy. This package, called partis (https://github.com/psathyrella/partis/), is built on a new general-purpose HMM compiler that can perform efficient inference given a simple text description of an HMM.

  12. Automated Development of Accurate Algorithms and Efficient Codes for Computational Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.; Dyson, Rodger W.

    1999-01-01

    The simulation of sound generation and propagation in three space dimensions with realistic aircraft components is a very large time dependent computation with fine details. Simulations in open domains with embedded objects require accurate and robust algorithms for propagation, for artificial inflow and outflow boundaries, and for the definition of geometrically complex objects. The development, implementation, and validation of methods for solving these demanding problems is being done to support the NASA pillar goals for reducing aircraft noise levels. Our goal is to provide algorithms which are sufficiently accurate and efficient to produce usable results rapidly enough to allow design engineers to study the effects on sound levels of design changes in propulsion systems, and in the integration of propulsion systems with airframes. There is a lack of design tools for these purposes at this time. Our technical approach to this problem combines the development of new, algorithms with the use of Mathematica and Unix utilities to automate the algorithm development, code implementation, and validation. We use explicit methods to ensure effective implementation by domain decomposition for SPMD parallel computing. There are several orders of magnitude difference in the computational efficiencies of the algorithms which we have considered. We currently have new artificial inflow and outflow boundary conditions that are stable, accurate, and unobtrusive, with implementations that match the accuracy and efficiency of the propagation methods. The artificial numerical boundary treatments have been proven to have solutions which converge to the full open domain problems, so that the error from the boundary treatments can be driven as low as is required. The purpose of this paper is to briefly present a method for developing highly accurate algorithms for computational aeroacoustics, the use of computer automation in this process, and a brief survey of the algorithms that

  13. ASYMPTOTICALLY OPTIMAL HIGH-ORDER ACCURATE ALGORITHMS FOR THE SOLUTION OF CERTAIN ELLIPTIC PDEs

    SciTech Connect

    Leonid Kunyansky, PhD

    2008-11-26

    The main goal of the project, "Asymptotically Optimal, High-Order Accurate Algorithms for the Solution of Certain Elliptic PDE's" (DE-FG02-03ER25577) was to develop fast, high-order algorithms for the solution of scattering problems and spectral problems of photonic crystals theory. The results we obtained lie in three areas: (1) asymptotically fast, high-order algorithms for the solution of eigenvalue problems of photonics, (2) fast, high-order algorithms for the solution of acoustic and electromagnetic scattering problems in the inhomogeneous media, and (3) inversion formulas and fast algorithms for the inverse source problem for the acoustic wave equation, with applications to thermo- and opto- acoustic tomography.

  14. A more accurate, stable, FDTD algorithm for electromagnetics in anisotropic dielectrics

    NASA Astrophysics Data System (ADS)

    Werner, Gregory R.; Bauer, Carl A.; Cary, John R.

    2013-12-01

    A more accurate, stable, finite-difference time-domain (FDTD) algorithm is developed for simulating Maxwell's equations with isotropic or anisotropic dielectric materials. This algorithm is in many cases more accurate than previous algorithms (G.R. Werner et al., 2007 [5]; A.F. Oskooi et al., 2009 [7]), and it remedies a defect that causes instability with high dielectric contrast (usually for ɛ≫10) with either isotropic or anisotropic dielectrics. Ultimately this algorithm has first-order error (in the grid cell size) when the dielectric boundaries are sharp, due to field discontinuities at the dielectric interface. Accurate treatment of the discontinuities, in the limit of infinite wavelength, leads to an asymmetric, unstable update (C.A. Bauer et. al., 2011 [6]), but the symmetrized version of the latter is stable and more accurate than other FDTD methods. The convergence of field values supports the hypothesis that global first-order error can be achieved by second-order error in bulk material with zero-order error on the surface. This latter point is extremely important for any applications measuring surface fields.

  15. A fast and accurate frequency estimation algorithm for sinusoidal signal with harmonic components

    NASA Astrophysics Data System (ADS)

    Hu, Jinghua; Pan, Mengchun; Zeng, Zhidun; Hu, Jiafei; Chen, Dixiang; Tian, Wugang; Zhao, Jianqiang; Du, Qingfa

    2016-10-01

    Frequency estimation is a fundamental problem in many applications, such as traditional vibration measurement, power system supervision, and microelectromechanical system sensors control. In this paper, a fast and accurate frequency estimation algorithm is proposed to deal with low efficiency problem in traditional methods. The proposed algorithm consists of coarse and fine frequency estimation steps, and we demonstrate that it is more efficient than conventional searching methods to achieve coarse frequency estimation (location peak of FFT amplitude) by applying modified zero-crossing technique. Thus, the proposed estimation algorithm requires less hardware and software sources and can achieve even higher efficiency when the experimental data increase. Experimental results with modulated magnetic signal show that the root mean square error of frequency estimation is below 0.032 Hz with the proposed algorithm, which has lower computational complexity and better global performance than conventional frequency estimation methods.

  16. FANSe: an accurate algorithm for quantitative mapping of large scale sequencing reads

    PubMed Central

    Zhang, Gong; Fedyunin, Ivan; Kirchner, Sebastian; Xiao, Chuanle; Valleriani, Angelo; Ignatova, Zoya

    2012-01-01

    The most crucial step in data processing from high-throughput sequencing applications is the accurate and sensitive alignment of the sequencing reads to reference genomes or transcriptomes. The accurate detection of insertions and deletions (indels) and errors introduced by the sequencing platform or by misreading of modified nucleotides is essential for the quantitative processing of the RNA-based sequencing (RNA-Seq) datasets and for the identification of genetic variations and modification patterns. We developed a new, fast and accurate algorithm for nucleic acid sequence analysis, FANSe, with adjustable mismatch allowance settings and ability to handle indels to accurately and quantitatively map millions of reads to small or large reference genomes. It is a seed-based algorithm which uses the whole read information for mapping and high sensitivity and low ambiguity are achieved by using short and non-overlapping reads. Furthermore, FANSe uses hotspot score to prioritize the processing of highly possible matches and implements modified Smith–Watermann refinement with reduced scoring matrix to accelerate the calculation without compromising its sensitivity. The FANSe algorithm stably processes datasets from various sequencing platforms, masked or unmasked and small or large genomes. It shows a remarkable coverage of low-abundance mRNAs which is important for quantitative processing of RNA-Seq datasets. PMID:22379138

  17. FANSe: an accurate algorithm for quantitative mapping of large scale sequencing reads.

    PubMed

    Zhang, Gong; Fedyunin, Ivan; Kirchner, Sebastian; Xiao, Chuanle; Valleriani, Angelo; Ignatova, Zoya

    2012-06-01

    The most crucial step in data processing from high-throughput sequencing applications is the accurate and sensitive alignment of the sequencing reads to reference genomes or transcriptomes. The accurate detection of insertions and deletions (indels) and errors introduced by the sequencing platform or by misreading of modified nucleotides is essential for the quantitative processing of the RNA-based sequencing (RNA-Seq) datasets and for the identification of genetic variations and modification patterns. We developed a new, fast and accurate algorithm for nucleic acid sequence analysis, FANSe, with adjustable mismatch allowance settings and ability to handle indels to accurately and quantitatively map millions of reads to small or large reference genomes. It is a seed-based algorithm which uses the whole read information for mapping and high sensitivity and low ambiguity are achieved by using short and non-overlapping reads. Furthermore, FANSe uses hotspot score to prioritize the processing of highly possible matches and implements modified Smith-Watermann refinement with reduced scoring matrix to accelerate the calculation without compromising its sensitivity. The FANSe algorithm stably processes datasets from various sequencing platforms, masked or unmasked and small or large genomes. It shows a remarkable coverage of low-abundance mRNAs which is important for quantitative processing of RNA-Seq datasets.

  18. Myoelectric neural interface enables accurate control of a virtual multiple degree-of-freedom foot-ankle prosthesis.

    PubMed

    Tkach, D C; Lipschutz, R D; Finucane, S B; Hargrove, L J

    2013-06-01

    Technological advances have enabled clinical use of powered foot-ankle prostheses. Although the fundamental purposes of such devices are to restore natural gait and reduce energy expenditure by amputees during walking, these powered prostheses enable further restoration of ankle function through possible voluntary control of the powered joints. Such control would greatly assist amputees in daily tasks such as reaching, dressing, or simple limb repositioning for comfort. A myoelectric interface between an amputee and the powered foot-ankle prostheses may provide the required control signals for accurate control of multiple degrees of freedom of the ankle joint. Using a pattern recognition classifier we compared the error rates of predicting up to 7 different ankle-joint movements using electromyographic (EMG) signals collected from below-knee, as well as below-knee combined with above-knee muscles of 12 trans-tibial amputee and 5 control subjects. Our findings suggest very accurate (5.3 ± 0.5%SE mean error) real-time control of a 1 degree of freedom (DOF) of ankle joint can be achieved by amputees using EMG from as few as 4 below-knee muscles. Reliable control (9.8 ± 0.7%SE mean error) of 3 DOFs can be achieved using EMG from 8 below-knee and above-knee muscles.

  19. Efficient and Accurate Explicit Integration Algorithms with Application to Viscoplastic Models

    NASA Technical Reports Server (NTRS)

    Arya, Vinod K.

    1994-01-01

    Several explicit integration algorithms with self-adative time integration strategies are developed and investigated for efficiency and accuracy. These algorithms involve the Runge-Kutta second order, the lower Runge-Kutta method of orders one and two, and the exponential integration method. The algorithms are applied to viscoplastic models put forth by Freed and Verrilli and Bodner and Partom for thermal/mechanical loadings (including tensile, relaxation, and cyclic loadings). The large amount of computations performed showed that, for comparable accuracy, the efficiency of an integration algorithm depends significantly on the type of application (loading). However, in general, for the aforementioned loadings and viscoplastic models, the exponential integration algorithm with the proposed self-adaptive time integration strategy worked more (or comparably) efficiently and accurately than the other integration algorithms. Using this strategy for integrating viscoplastic models may lead to considerable savings in computer time (better efficiency) without adversely affecting the accuracy of the results. This conclusion should encourage the utilization of viscoplastic models in the stress analysis and design of structural components.

  20. A block-wise approximate parallel implementation for ART algorithm on CUDA-enabled GPU.

    PubMed

    Fan, Zhongyin; Xie, Yaoqin

    2015-01-01

    Computed tomography (CT) has been widely used to acquire volumetric anatomical information in the diagnosis and treatment of illnesses in many clinics. However, the ART algorithm for reconstruction from under-sampled and noisy projection is still time-consuming. It is the goal of our work to improve a block-wise approximate parallel implementation for the ART algorithm on CUDA-enabled GPU to make the ART algorithm applicable to the clinical environment. The resulting method has several compelling features: (1) the rays are allotted into blocks, making the rays in the same block parallel; (2) GPU implementation caters to the actual industrial and medical application demand. We test the algorithm on a digital shepp-logan phantom, and the results indicate that our method is more efficient than the existing CPU implementation. The high computation efficiency achieved in our algorithm makes it possible for clinicians to obtain real-time 3D images.

  1. The MATPHOT Algorithm for Accurate and Precise Stellar Photometry and Astrometry Using Discrete Point Spread Functions

    NASA Astrophysics Data System (ADS)

    Mighell, K. J.

    2004-12-01

    I describe the key features of my MATPHOT algorithm for accurate and precise stellar photometry and astrometry using discrete Point Spread Functions. A discrete Point Spread Function (PSF) is a sampled version of a continuous two-dimensional PSF. The shape information about the photon scattering pattern of a discrete PSF is typically encoded using a numerical table (matrix) or a FITS image file. The MATPHOT algorithm shifts discrete PSFs within an observational model using a 21-pixel-wide damped sinc function and position partial derivatives are computed using a five-point numerical differentiation formula. The MATPHOT algorithm achieves accurate and precise stellar photometry and astrometry of undersampled CCD observations by using supersampled discrete PSFs that are sampled 2, 3, or more times more finely than the observational data. I have written a C-language computer program called MPD which is based on the current implementation of the MATPHOT algorithm; all source code and documentation for MPD and support software is freely available at the following website: http://www.noao.edu/staff/mighell/matphot . I demonstrate the use of MPD and present a detailed MATPHOT analysis of simulated James Webb Space Telescope observations which demonstrates that millipixel relative astrometry and millimag photometric accuracy is achievable with very complicated space-based discrete PSFs. This work was supported by a grant from the National Aeronautics and Space Administration (NASA), Interagency Order No. S-13811-G, which was awarded by the Applied Information Systems Research (AISR) Program of NASA's Science Mission Directorate.

  2. Improved Algorithms for Accurate Retrieval of UV - Visible Diffuse Attenuation Coefficients in Optically Complex, Inshore Waters

    NASA Technical Reports Server (NTRS)

    Cao, Fang; Fichot, Cedric G.; Hooker, Stanford B.; Miller, William L.

    2014-01-01

    Photochemical processes driven by high-energy ultraviolet radiation (UVR) in inshore, estuarine, and coastal waters play an important role in global bio geochemical cycles and biological systems. A key to modeling photochemical processes in these optically complex waters is an accurate description of the vertical distribution of UVR in the water column which can be obtained using the diffuse attenuation coefficients of down welling irradiance (Kd()). The Sea UV Sea UVc algorithms (Fichot et al., 2008) can accurately retrieve Kd ( 320, 340, 380,412, 443 and 490 nm) in oceanic and coastal waters using multispectral remote sensing reflectances (Rrs(), Sea WiFS bands). However, SeaUVSeaUVc algorithms are currently not optimized for use in optically complex, inshore waters, where they tend to severely underestimate Kd(). Here, a new training data set of optical properties collected in optically complex, inshore waters was used to re-parameterize the published SeaUVSeaUVc algorithms, resulting in improved Kd() retrievals for turbid, estuarine waters. Although the updated SeaUVSeaUVc algorithms perform best in optically complex waters, the published SeaUVSeaUVc models still perform well in most coastal and oceanic waters. Therefore, we propose a composite set of SeaUVSeaUVc algorithms, optimized for Kd() retrieval in almost all marine systems, ranging from oceanic to inshore waters. The composite algorithm set can retrieve Kd from ocean color with good accuracy across this wide range of water types (e.g., within 13 mean relative error for Kd(340)). A validation step using three independent, in situ data sets indicates that the composite SeaUVSeaUVc can generate accurate Kd values from 320 490 nm using satellite imagery on a global scale. Taking advantage of the inherent benefits of our statistical methods, we pooled the validation data with the training set, obtaining an optimized composite model for estimating Kd() in UV wavelengths for almost all marine waters. This

  3. PolyPole-1: An accurate numerical algorithm for intra-granular fission gas release

    NASA Astrophysics Data System (ADS)

    Pizzocri, D.; Rabiti, C.; Luzzi, L.; Barani, T.; Van Uffelen, P.; Pastore, G.

    2016-09-01

    The transport of fission gas from within the fuel grains to the grain boundaries (intra-granular fission gas release) is a fundamental controlling mechanism of fission gas release and gaseous swelling in nuclear fuel. Hence, accurate numerical solution of the corresponding mathematical problem needs to be included in fission gas behaviour models used in fuel performance codes. Under the assumption of equilibrium between trapping and resolution, the process can be described mathematically by a single diffusion equation for the gas atom concentration in a grain. In this paper, we propose a new numerical algorithm (PolyPole-1) to efficiently solve the fission gas diffusion equation in time-varying conditions. The PolyPole-1 algorithm is based on the analytic modal solution of the diffusion equation for constant conditions, combined with polynomial corrective terms that embody the information on the deviation from constant conditions. The new algorithm is verified by comparing the results to a finite difference solution over a large number of randomly generated operation histories. Furthermore, comparison to state-of-the-art algorithms used in fuel performance codes demonstrates that the accuracy of PolyPole-1 is superior to other algorithms, with similar computational effort. Finally, the concept of PolyPole-1 may be extended to the solution of the general problem of intra-granular fission gas diffusion during non-equilibrium trapping and resolution, which will be the subject of future work.

  4. Accurate 3D reconstruction by a new PDS-OSEM algorithm for HRRT

    NASA Astrophysics Data System (ADS)

    Chen, Tai-Been; Horng-Shing Lu, Henry; Kim, Hang-Keun; Son, Young-Don; Cho, Zang-Hee

    2014-03-01

    State-of-the-art high resolution research tomography (HRRT) provides high resolution PET images with full 3D human brain scanning. But, a short time frame in dynamic study causes many problems related to the low counts in the acquired data. The PDS-OSEM algorithm was proposed to reconstruct the HRRT image with a high signal-to-noise ratio that provides accurate information for dynamic data. The new algorithm was evaluated by simulated image, empirical phantoms, and real human brain data. Meanwhile, the time activity curve was adopted to validate a reconstructed performance of dynamic data between PDS-OSEM and OP-OSEM algorithms. According to simulated and empirical studies, the PDS-OSEM algorithm reconstructs images with higher quality, higher accuracy, less noise, and less average sum of square error than those of OP-OSEM. The presented algorithm is useful to provide quality images under the condition of low count rates in dynamic studies with a short scan time.

  5. Digitalized accurate modeling of SPCB with multi-spiral surface based on CPC algorithm

    NASA Astrophysics Data System (ADS)

    Huang, Yanhua; Gu, Lizhi

    2015-09-01

    The main methods of the existing multi-spiral surface geometry modeling include spatial analytic geometry algorithms, graphical method, interpolation and approximation algorithms. However, there are some shortcomings in these modeling methods, such as large amount of calculation, complex process, visible errors, and so on. The above methods have, to some extent, restricted the design and manufacture of the premium and high-precision products with spiral surface considerably. This paper introduces the concepts of the spatially parallel coupling with multi-spiral surface and spatially parallel coupling body. The typical geometry and topological features of each spiral surface forming the multi-spiral surface body are determined, by using the extraction principle of datum point cluster, the algorithm of coupling point cluster by removing singular point, and the "spatially parallel coupling" principle based on the non-uniform B-spline for each spiral surface. The orientation and quantitative relationships of datum point cluster and coupling point cluster in Euclidean space are determined accurately and in digital description and expression, coupling coalescence of the surfaces with multi-coupling point clusters under the Pro/E environment. The digitally accurate modeling of spatially parallel coupling body with multi-spiral surface is realized. The smooth and fairing processing is done to the three-blade end-milling cutter's end section area by applying the principle of spatially parallel coupling with multi-spiral surface, and the alternative entity model is processed in the four axis machining center after the end mill is disposed. And the algorithm is verified and then applied effectively to the transition area among the multi-spiral surface. The proposed model and algorithms may be used in design and manufacture of the multi-spiral surface body products, as well as in solving essentially the problems of considerable modeling errors in computer graphics and

  6. A High-Performance Neural Prosthesis Enabled by Control Algorithm Design

    PubMed Central

    Gilja, Vikash; Nuyujukian, Paul; Chestek, Cindy A.; Cunningham, John P.; Yu, Byron M.; Fan, Joline M.; Churchland, Mark M.; Kaufman, Matthew T.; Kao, Jonathan C.; Ryu, Stephen I.; Shenoy, Krishna V.

    2012-01-01

    Neural prostheses translate neural activity from the brain into control signals for guiding prosthetic devices, such as computer cursors and robotic limbs, and thus offer disabled patients greater interaction with the world. However, relatively low performance remains a critical barrier to successful clinical translation; current neural prostheses are considerably slower with less accurate control than the native arm. Here we present a new control algorithm, the recalibrated feedback intention-trained Kalman filter (ReFIT-KF), that incorporates assumptions about the nature of closed loop neural prosthetic control. When tested with rhesus monkeys implanted with motor cortical electrode arrays, the ReFIT-KF algorithm outperforms existing neural prostheses in all measured domains and halves acquisition time. This control algorithm permits sustained uninterrupted use for hours and generalizes to more challenging tasks without retraining. Using this algorithm, we demonstrate repeatable high performance for years after implantation across two monkeys, thereby increasing the clinical viability of neural prostheses. PMID:23160043

  7. Time-accurate unstructured grid algorithms for the compressible Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Okong'o, Nora Anyango

    Unstructured grid algorithms for the solution of the finite volume form of the unsteady compressible Navier-Stokes equations have been developed. The algorithms employ triangular cells in two-dimensions and tetrahedral cells in three-dimensions. Cell-averaged values are stored at the centroid of each cell, in a cell-centered storage scheme. Inviscid flux computations are performed by applying a Riemann solver across each face, the values at the points on the faces being obtained by function reconstruction from the cell-averaged values. The viscous fluxes and heat transfer are obtained by application of Gauss' theorem. The first unstructured grid algorithm is a two-dimensional implicit algorithm for laminar flows. Tests using flow into a supersonic compression comer showed that preconditioning in the iterative linear solver dramatically reduced the CPU time. Computations were then performed for a NACA0012 airfoil pitching about the quarter-chord at a freestream Mach number Minfinity=0.2 and Reynolds numbers Rec=104 and 2 x 104 at a dimensionless pitching rate W+o=0.2 . The results for Rec=104 are in excellent agreement with previous computations using an explicit unstructured Navier-Stokes algorithm. New results for Rec=2x104 indicate that the principal effect of increasing Reynolds number is to reduce the angle at which the primary recirculation region appears, and to cause it to form closer to the leading edge. This trend, confirmed by a grid refinement study, is consistent with previous results obtained at Minfinity=0.5 . The second unstructured grid algorithm is a three-dimensional explicit algorithm for turbulent flows. Function reconstruction via a least squares method capable of second- or third-order accuracy was implemented. Tests on the nonlinear propagation of an acoustic wave showed improved accuracy using third-order schemes but a substantial CPU-time cost. However, the second-order least squares is more accurate than the previous second-order scheme

  8. Combinatorial Algorithms to Enable Computational Science and Engineering: Work from the CSCAPES Institute

    SciTech Connect

    Boman, Erik G.; Catalyurek, Umit V.; Chevalier, Cedric; Devine, Karen D.; Gebremedhin, Assefaw H.; Hovland, Paul D.; Pothen, Alex; Rajamanickam, Sivasankaran; Safro, Ilya; Wolf, Michael M.; Zhou, Min

    2015-01-16

    This final progress report summarizes the work accomplished at the Combinatorial Scientific Computing and Petascale Simulations Institute. We developed Zoltan, a parallel mesh partitioning library that made use of accurate hypergraph models to provide load balancing in mesh-based computations. We developed several graph coloring algorithms for computing Jacobian and Hessian matrices and organized them into a software package called ColPack. We developed parallel algorithms for graph coloring and graph matching problems, and also designed multi-scale graph algorithms. Three PhD students graduated, six more are continuing their PhD studies, and four postdoctoral scholars were advised. Six of these students and Fellows have joined DOE Labs (Sandia, Berkeley), as staff scientists or as postdoctoral scientists. We also organized the SIAM Workshop on Combinatorial Scientific Computing (CSC) in 2007, 2009, and 2011 to continue to foster the CSC community.

  9. A time-accurate algorithm for chemical non-equilibrium viscous flows at all speeds

    NASA Technical Reports Server (NTRS)

    Shuen, J.-S.; Chen, K.-H.; Choi, Y.

    1992-01-01

    A time-accurate, coupled solution procedure is described for the chemical nonequilibrium Navier-Stokes equations over a wide range of Mach numbers. This method employs the strong conservation form of the governing equations, but uses primitive variables as unknowns. Real gas properties and equilibrium chemistry are considered. Numerical tests include steady convergent-divergent nozzle flows with air dissociation/recombination chemistry, dump combustor flows with n-pentane-air chemistry, nonreacting flow in a model double annular combustor, and nonreacting unsteady driven cavity flows. Numerical results for both the steady and unsteady flows demonstrate the efficiency and robustness of the present algorithm for Mach numbers ranging from the incompressible limit to supersonic speeds.

  10. An Accurate de novo Algorithm for Glycan Topology Determination from Mass Spectra.

    PubMed

    Dong, Liang; Shi, Bing; Tian, Guangdong; Li, YanBo; Wang, Bing; Zhou, MengChu

    2015-01-01

    Determining the glycan topology automatically from mass spectra represents a great challenge. Existing methods fall into approximate and exact ones. The former including greedy and heuristic ones can reduce the computational complexity, but suffer from information lost in the procedure of glycan interpretation. The latter including dynamic programming and exhaustive enumeration are much slower than the former. In the past years, nearly all emerging methods adopted a tree structure to represent a glycan. They share such problems as repetitive peak counting in reconstructing a candidate structure. Besides, tree-based glycan representation methods often have to give different computational formulas for binary and ternary glycans. We propose a new directed acyclic graph structure for glycan representation. Based on it, this work develops a de novo algorithm to accurately reconstruct the tree structure iteratively from mass spectra with logical constraints and some known biosynthesis rules, by a single computational formula. The experiments on multiple complex glycans extracted from human serum show that the proposed algorithm can achieve higher accuracy to determine a glycan topology than prior methods without increasing computational burden.

  11. A high order accurate finite element algorithm for high Reynolds number flow prediction

    NASA Technical Reports Server (NTRS)

    Baker, A. J.

    1978-01-01

    A Galerkin-weighted residuals formulation is employed to establish an implicit finite element solution algorithm for generally nonlinear initial-boundary value problems. Solution accuracy, and convergence rate with discretization refinement, are quantized in several error norms, by a systematic study of numerical solutions to several nonlinear parabolic and a hyperbolic partial differential equation characteristic of the equations governing fluid flows. Solutions are generated using selective linear, quadratic and cubic basis functions. Richardson extrapolation is employed to generate a higher-order accurate solution to facilitate isolation of truncation error in all norms. Extension of the mathematical theory underlying accuracy and convergence concepts for linear elliptic equations is predicted for equations characteristic of laminar and turbulent fluid flows at nonmodest Reynolds number. The nondiagonal initial-value matrix structure introduced by the finite element theory is determined intrinsic to improved solution accuracy and convergence. A factored Jacobian iteration algorithm is derived and evaluated to yield a consequential reduction in both computer storage and execution CPU requirements while retaining solution accuracy.

  12. Final Progress Report: Isotope Identification Algorithm for Rapid and Accurate Determination of Radioisotopes Feasibility Study

    SciTech Connect

    Rawool-Sullivan, Mohini; Bounds, John Alan; Brumby, Steven P.; Prasad, Lakshman; Sullivan, John P.

    2012-04-30

    This is the final report of the project titled, 'Isotope Identification Algorithm for Rapid and Accurate Determination of Radioisotopes,' PMIS project number LA10-HUMANID-PD03. The goal of the work was to demonstrate principles of emulating a human analysis approach towards the data collected using radiation isotope identification devices (RIIDs). It summarizes work performed over the FY10 time period. The goal of the work was to demonstrate principles of emulating a human analysis approach towards the data collected using radiation isotope identification devices (RIIDs). Human analysts begin analyzing a spectrum based on features in the spectrum - lines and shapes that are present in a given spectrum. The proposed work was to carry out a feasibility study that will pick out all gamma ray peaks and other features such as Compton edges, bremsstrahlung, presence/absence of shielding and presence of neutrons and escape peaks. Ultimately success of this feasibility study will allow us to collectively explain identified features and form a realistic scenario that produced a given spectrum in the future. We wanted to develop and demonstrate machine learning algorithms that will qualitatively enhance the automated identification capabilities of portable radiological sensors that are currently being used in the field.

  13. MOSAIK: a hash-based algorithm for accurate next-generation sequencing short-read mapping.

    PubMed

    Lee, Wan-Ping; Stromberg, Michael P; Ward, Alistair; Stewart, Chip; Garrison, Erik P; Marth, Gabor T

    2014-01-01

    MOSAIK is a stable, sensitive and open-source program for mapping second and third-generation sequencing reads to a reference genome. Uniquely among current mapping tools, MOSAIK can align reads generated by all the major sequencing technologies, including Illumina, Applied Biosystems SOLiD, Roche 454, Ion Torrent and Pacific BioSciences SMRT. Indeed, MOSAIK was the only aligner to provide consistent mappings for all the generated data (sequencing technologies, low-coverage and exome) in the 1000 Genomes Project. To provide highly accurate alignments, MOSAIK employs a hash clustering strategy coupled with the Smith-Waterman algorithm. This method is well-suited to capture mismatches as well as short insertions and deletions. To support the growing interest in larger structural variant (SV) discovery, MOSAIK provides explicit support for handling known-sequence SVs, e.g. mobile element insertions (MEIs) as well as generating outputs tailored to aid in SV discovery. All variant discovery benefits from an accurate description of the read placement confidence. To this end, MOSAIK uses a neural-network based training scheme to provide well-calibrated mapping quality scores, demonstrated by a correlation coefficient between MOSAIK assigned and actual mapping qualities greater than 0.98. In order to ensure that studies of any genome are supported, a training pipeline is provided to ensure optimal mapping quality scores for the genome under investigation. MOSAIK is multi-threaded, open source, and incorporated into our command and pipeline launcher system GKNO (http://gkno.me).

  14. A physics-enabled flow restoration algorithm for sparse PIV and PTV measurements

    NASA Astrophysics Data System (ADS)

    Vlasenko, Andrey; Steele, Edward C. C.; Nimmo-Smith, W. Alex M.

    2015-06-01

    The gaps and noise present in particle image velocimetry (PIV) and particle tracking velocimetry (PTV) measurements affect the accuracy of the data collected. Existing algorithms developed for the restoration of such data are only applicable to experimental measurements collected under well-prepared laboratory conditions (i.e. where the pattern of the velocity flow field is known), and the distribution, size and type of gaps and noise may be controlled by the laboratory set-up. However, in many cases, such as PIV and PTV measurements of arbitrarily turbid coastal waters, the arrangement of such conditions is not possible. When the size of gaps or the level of noise in these experimental measurements become too large, their successful restoration with existing algorithms becomes questionable. Here, we outline a new physics-enabled flow restoration algorithm (PEFRA), specially designed for the restoration of such velocity data. Implemented as a ‘black box’ algorithm, where no user-background in fluid dynamics is necessary, the physical structure of the flow in gappy or noisy data is able to be restored in accordance with its hydrodynamical basis. The use of this is not dependent on types of flow, types of gaps or noise in measurements. The algorithm will operate on any data time-series containing a sequence of velocity flow fields recorded by PIV or PTV. Tests with numerical flow fields established that this method is able to successfully restore corrupted PIV and PTV measurements with different levels of sparsity and noise. This assessment of the algorithm performance is extended with an example application to in situ submersible 3D-PTV measurements collected in the bottom boundary layer of the coastal ocean, where the naturally-occurring plankton and suspended sediments used as tracers causes an increase in the noise level that, without such denoising, will contaminate the measurements.

  15. Enabling the extended compact genetic algorithm for real-parameter optimization by using adaptive discretization.

    PubMed

    Chen, Ying-ping; Chen, Chao-Hong

    2010-01-01

    An adaptive discretization method, called split-on-demand (SoD), enables estimation of distribution algorithms (EDAs) for discrete variables to solve continuous optimization problems. SoD randomly splits a continuous interval if the number of search points within the interval exceeds a threshold, which is decreased at every iteration. After the split operation, the nonempty intervals are assigned integer codes, and the search points are discretized accordingly. As an example of using SoD with EDAs, the integration of SoD and the extended compact genetic algorithm (ECGA) is presented and numerically examined. In this integration, we adopt a local search mechanism as an optional component of our back end optimization engine. As a result, the proposed framework can be considered as a memetic algorithm, and SoD can potentially be applied to other memetic algorithms. The numerical experiments consist of two parts: (1) a set of benchmark functions on which ECGA with SoD and ECGA with two well-known discretization methods: the fixed-height histogram (FHH) and the fixed-width histogram (FWH) are compared; (2) a real-world application, the economic dispatch problem, on which ECGA with SoD is compared to other methods. The experimental results indicate that SoD is a better discretization method to work with ECGA. Moreover, ECGA with SoD works quite well on the economic dispatch problem and delivers solutions better than the best known results obtained by other methods in existence.

  16. Improved nucleosome-positioning algorithm iNPS for accurate nucleosome positioning from sequencing data.

    PubMed

    Chen, Weizhong; Liu, Yi; Zhu, Shanshan; Green, Christopher D; Wei, Gang; Han, Jing-Dong Jackie

    2014-09-18

    Accurate determination of genome-wide nucleosome positioning can provide important insights into global gene regulation. Here, we describe the development of an improved nucleosome-positioning algorithm-iNPS-which achieves significantly better performance than the widely used NPS package. By determining nucleosome boundaries more precisely and merging or separating shoulder peaks based on local MNase-seq signals, iNPS can unambiguously detect 60% more nucleosomes. The detected nucleosomes display better nucleosome 'widths' and neighbouring centre-centre distance distributions, giving rise to sharper patterns and better phasing of average nucleosome profiles and higher consistency between independent data subsets. In addition to its unique advantage in classifying nucleosomes by shape to reveal their different biological properties, iNPS also achieves higher significance and lower false positive rates than previously published methods. The application of iNPS to T-cell activation data demonstrates a greater ability to facilitate detection of nucleosome repositioning, uncovering additional biological features underlying the activation process.

  17. Fast and accurate auto focusing algorithm based on two defocused images using discrete cosine transform

    NASA Astrophysics Data System (ADS)

    Park, Byung-Kwan; Kim, Sung-Su; Chung, Dae-Su; Lee, Seong-Deok; Kim, Chang-Yeong

    2008-02-01

    This paper describes the new method for fast auto focusing in image capturing devices. This is achieved by using two defocused images. At two prefixed lens positions, two defocused images are taken and defocused blur levels in each image are estimated using Discrete Cosine Transform (DCT). These DCT values can be classified into distance from the image capturing device to main object, so we can make distance vs. defocused blur level classifier. With this classifier, relation between two defocused blur levels can give the device the best focused lens step. In the case of ordinary auto focusing like Depth from Focus (DFF), it needs several defocused images and compares high frequency components in each image. Also known as hill-climbing method, the process requires about half number of images in all focus lens steps for focusing in general. Since this new method requires only two defocused images, it can save lots of time for focusing or reduce shutter lag time. Compared to existing Depth from Defocus (DFD) which uses two defocused images, this new algorithm is simple and accurate as DFF method. Because of this simplicity and accuracy, this method can also be applied to fast 3D depth map construction.

  18. Fast and accurate image recognition algorithms for fresh produce food safety sensing

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chieh; Kim, Moon S.; Chao, Kuanglin; Kang, Sukwon; Lefcourt, Alan M.

    2011-06-01

    This research developed and evaluated the multispectral algorithms derived from hyperspectral line-scan fluorescence imaging under violet LED excitation for detection of fecal contamination on Golden Delicious apples. The algorithms utilized the fluorescence intensities at four wavebands, 680 nm, 684 nm, 720 nm, and 780 nm, for computation of simple functions for effective detection of contamination spots created on the apple surfaces using four concentrations of aqueous fecal dilutions. The algorithms detected more than 99% of the fecal spots. The effective detection of feces showed that a simple multispectral fluorescence imaging algorithm based on violet LED excitation may be appropriate to detect fecal contamination on fast-speed apple processing lines.

  19. An evaluation, comparison, and accurate benchmarking of several publicly available MS/MS search algorithms: Sensitivity and Specificity analysis.

    SciTech Connect

    Kapp, Eugene; Schutz, Frederick; Connolly, Lisa M.; Chakel, John A.; Meza, Jose E.; Miller, Christine A.; Fenyo, David; Eng, Jimmy K.; Adkins, Joshua N.; Omenn, Gilbert; Simpson, Richard

    2005-08-01

    MS/MS and associated database search algorithms are essential proteomic tools for identifying peptides. Due to their widespread use, it is now time to perform a systematic analysis of the various algorithms currently in use. Using blood specimens used in the HUPO Plasma Proteome Project, we have evaluated five search algorithms with respect to their sensitivity and specificity, and have also accurately benchmarked them based on specified false-positive (FP) rates. Spectrum Mill and SEQUEST performed well in terms of sensitivity, but were inferior to MASCOT, X-Tandem, and Sonar in terms of specificity. Overall, MASCOT, a probabilistic search algorithm, correctly identified most peptides based on a specified FP rate. The rescoring algorithm, Peptide Prophet, enhanced the overall performance of the SEQUEST algorithm, as well as provided predictable FP error rates. Ideally, score thresholds should be calculated for each peptide spectrum or minimally, derived from a reversed-sequence search as demonstrated in this study based on a validated data set. The availability of open-source search algorithms, such as X-Tandem, makes it feasible to further improve the validation process (manual or automatic) on the basis of ''consensus scoring'', i.e., the use of multiple (at least two) search algorithms to reduce the number of FPs. complement.

  20. Direct-Space Corrections Enable Fast and Accurate Lorentz-Berthelot Combination Rule Lennard-Jones Lattice Summation.

    PubMed

    Wennberg, Christian L; Murtola, Teemu; Páll, Szilárd; Abraham, Mark J; Hess, Berk; Lindahl, Erik

    2015-12-08

    Long-range lattice summation techniques such as the particle-mesh Ewald (PME) algorithm for electrostatics have been revolutionary to the precision and accuracy of molecular simulations in general. Despite the performance penalty associated with lattice summation electrostatics, few biomolecular simulations today are performed without it. There are increasingly strong arguments for moving in the same direction for Lennard-Jones (LJ) interactions, and by using geometric approximations of the combination rules in reciprocal space, we have been able to make a very high-performance implementation available in GROMACS. Here, we present a new way to correct for these approximations to achieve exact treatment of Lorentz-Berthelot combination rules within the cutoff, and only a very small approximation error remains outside the cutoff (a part that would be completely ignored without LJ-PME). This not only improves accuracy by almost an order of magnitude but also achieves absolute biomolecular simulation performance that is an order of magnitude faster than any other available lattice summation technique for LJ interactions. The implementation includes both CPU and GPU acceleration, and its combination with improved scaling LJ-PME simulations now provides performance close to the truncated potential methods in GROMACS but with much higher accuracy.

  1. Accuracy of the Morphology Enabled Dipole Inversion (MEDI) Algorithm for Quantitative Susceptibility Mapping in MRI

    PubMed Central

    Liu, Tian; Xu, Weiyu; Spincemaille, Pascal; Avestimehr, A. Salman

    2013-01-01

    Determining the susceptibility distribution from the magnetic field measured in a magnetic resonance (MR) scanner is an ill-posed inverse problem, because of the presence of zeroes in the convolution kernel in the forward problem. An algorithm called morphology enabled dipole inversion (MEDI), which incorporates spatial prior information, has been proposed to generate a quantitative susceptibility map (QSM). The accuracy of QSM can be validated experimentally. However, there is not yet a rigorous mathematical demonstration of accuracy for a general regularized approach or for MEDI specifically. The error in the susceptibility map reconstructed by MEDI is expressed in terms of the acquisition noise and the error in the spatial prior information. A detailed analysis demonstrates that the error in the susceptibility map reconstructed by MEDI is bounded by a linear function of these two error sources. Numerical analysis confirms that the error of the susceptibility map reconstructed by MEDI is on the same order of the noise in the original MRI data, and comprehensive edge detection will lead to reduced model error in MEDI. Additional phantom validation and human brain imaging demonstrated the practicality of the MEDI method. PMID:22231170

  2. A simple and accurate algorithm for path integral molecular dynamics with the Langevin thermostat.

    PubMed

    Liu, Jian; Li, Dezhang; Liu, Xinzijian

    2016-07-14

    We introduce a novel simple algorithm for thermostatting path integral molecular dynamics (PIMD) with the Langevin equation. The staging transformation of path integral beads is employed for demonstration. The optimum friction coefficients for the staging modes in the free particle limit are used for all systems. In comparison to the path integral Langevin equation thermostat, the new algorithm exploits a different order of splitting for the phase space propagator associated to the Langevin equation. While the error analysis is made for both algorithms, they are also employed in the PIMD simulations of three realistic systems (the H2O molecule, liquid para-hydrogen, and liquid water) for comparison. It is shown that the new thermostat increases the time interval of PIMD by a factor of 4-6 or more for achieving the same accuracy. In addition, the supplementary material shows the error analysis made for the algorithms when the normal-mode transformation of path integral beads is used.

  3. A simple and accurate algorithm for path integral molecular dynamics with the Langevin thermostat

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Li, Dezhang; Liu, Xinzijian

    2016-07-01

    We introduce a novel simple algorithm for thermostatting path integral molecular dynamics (PIMD) with the Langevin equation. The staging transformation of path integral beads is employed for demonstration. The optimum friction coefficients for the staging modes in the free particle limit are used for all systems. In comparison to the path integral Langevin equation thermostat, the new algorithm exploits a different order of splitting for the phase space propagator associated to the Langevin equation. While the error analysis is made for both algorithms, they are also employed in the PIMD simulations of three realistic systems (the H2O molecule, liquid para-hydrogen, and liquid water) for comparison. It is shown that the new thermostat increases the time interval of PIMD by a factor of 4-6 or more for achieving the same accuracy. In addition, the supplementary material shows the error analysis made for the algorithms when the normal-mode transformation of path integral beads is used.

  4. A Fast and Accurate Algorithm for l1 Minimization Problems in Compressive Sampling (Preprint)

    DTIC Science & Technology

    2013-01-22

    performance of algorithms in terms of various error metrics, speed, and robustness to noise. All the experiments are performed in Matlab 7.11 on...online version available, (2011). [17] J.-J. Moreau, Fonctions convexes duales et points proximaux dans un espace hilbertien, C.R. Acad. Sci. Paris Sér

  5. Fast, accurate evaluation of exact exchange: The occ-RI-K algorithm

    PubMed Central

    Manzer, Samuel; Horn, Paul R.; Mardirossian, Narbe; Head-Gordon, Martin

    2015-01-01

    Construction of the exact exchange matrix, K, is typically the rate-determining step in hybrid density functional theory, and therefore, new approaches with increased efficiency are highly desirable. We present a framework with potential for greatly improved efficiency by computing a compressed exchange matrix that yields the exact exchange energy, gradient, and direct inversion of the iterative subspace (DIIS) error vector. The compressed exchange matrix is constructed with one index in the compact molecular orbital basis and the other index in the full atomic orbital basis. To illustrate the advantages, we present a practical algorithm that uses this framework in conjunction with the resolution of the identity (RI) approximation. We demonstrate that convergence using this method, referred to hereafter as occupied orbital RI-K (occ-RI-K), in combination with the DIIS algorithm is well-behaved, that the accuracy of computed energetics is excellent (identical to conventional RI-K), and that significant speedups can be obtained over existing integral-direct and RI-K methods. For a 4400 basis function C68H22 hydrogen-terminated graphene fragment, our algorithm yields a 14 × speedup over the conventional algorithm and a speedup of 3.3 × over RI-K. PMID:26178096

  6. Fast, accurate evaluation of exact exchange: The occ-RI-K algorithm

    SciTech Connect

    Manzer, Samuel; Horn, Paul R.; Mardirossian, Narbe; Head-Gordon, Martin

    2015-07-14

    Construction of the exact exchange matrix, K, is typically the rate-determining step in hybrid density functional theory, and therefore, new approaches with increased efficiency are highly desirable. We present a framework with potential for greatly improved efficiency by computing a compressed exchange matrix that yields the exact exchange energy, gradient, and direct inversion of the iterative subspace (DIIS) error vector. The compressed exchange matrix is constructed with one index in the compact molecular orbital basis and the other index in the full atomic orbital basis. To illustrate the advantages, we present a practical algorithm that uses this framework in conjunction with the resolution of the identity (RI) approximation. We demonstrate that convergence using this method, referred to hereafter as occupied orbital RI-K (occ-RI-K), in combination with the DIIS algorithm is well-behaved, that the accuracy of computed energetics is excellent (identical to conventional RI-K), and that significant speedups can be obtained over existing integral-direct and RI-K methods. For a 4400 basis function C{sub 68}H{sub 22} hydrogen-terminated graphene fragment, our algorithm yields a 14 × speedup over the conventional algorithm and a speedup of 3.3 × over RI-K.

  7. Novel Algorithms Enabling Rapid, Real-Time Earthquake Monitoring and Tsunami Early Warning Worldwide

    NASA Astrophysics Data System (ADS)

    Lomax, A.; Michelini, A.

    2012-12-01

    We have introduced recently new methods to determine rapidly the tsunami potential and magnitude of large earthquakes (e.g., Lomax and Michelini, 2009ab, 2011, 2012). To validate these methods we have implemented them along with other new algorithms within the Early-est earthquake monitor at INGV-Rome (http://early-est.rm.ingv.it, http://early-est.alomax.net). Early-est is a lightweight software package for real-time earthquake monitoring (including phase picking, phase association and event detection, location, magnitude determination, first-motion mechanism determination, ...), and for tsunami early warning based on discriminants for earthquake tsunami potential. In a simulation using archived broadband seismograms for the devastating M9, 2011 Tohoku earthquake and tsunami, Early-est determines: the epicenter within 3 min after the event origin time, discriminants showing very high tsunami potential within 5-7 min, and magnitude Mwpd(RT) 9.0-9.2 and a correct shallow-thrusting mechanism within 8 min. Real-time monitoring with Early-est givess similar results for most large earthquakes using currently available, real-time seismogram data. Here we summarize some of the key algorithms within Early-est that enable rapid, real-time earthquake monitoring and tsunami early warning worldwide: >>> FilterPicker - a general purpose, broad-band, phase detector and picker (http://alomax.net/FilterPicker); >>> Robust, simultaneous association and location using a probabilistic, global-search; >>> Period-duration discriminants TdT0 and TdT50Ex for tsunami potential available within 5 min; >>> Mwpd(RT) magnitude for very large earthquakes available within 10 min; >>> Waveform P polarities determined on broad-band displacement traces, focal mechanisms obtained with the HASH program (Hardebeck and Shearer, 2002); >>> SeisGramWeb - a portable-device ready seismogram viewer using web-services in a browser (http://alomax.net/webtools/sgweb/info.html). References (see also: http

  8. Efficient and accurate optimal linear phase FIR filter design using opposition-based harmony search algorithm.

    PubMed

    Saha, S K; Dutta, R; Choudhury, R; Kar, R; Mandal, D; Ghoshal, S P

    2013-01-01

    In this paper, opposition-based harmony search has been applied for the optimal design of linear phase FIR filters. RGA, PSO, and DE have also been adopted for the sake of comparison. The original harmony search algorithm is chosen as the parent one, and opposition-based approach is applied. During the initialization, randomly generated population of solutions is chosen, opposite solutions are also considered, and the fitter one is selected as a priori guess. In harmony memory, each such solution passes through memory consideration rule, pitch adjustment rule, and then opposition-based reinitialization generation jumping, which gives the optimum result corresponding to the least error fitness in multidimensional search space of FIR filter design. Incorporation of different control parameters in the basic HS algorithm results in the balancing of exploration and exploitation of search space. Low pass, high pass, band pass, and band stop FIR filters are designed with the proposed OHS and other aforementioned algorithms individually for comparative optimization performance. A comparison of simulation results reveals the optimization efficacy of the OHS over the other optimization techniques for the solution of the multimodal, nondifferentiable, nonlinear, and constrained FIR filter design problems.

  9. A hybrid reconstruction algorithm for fast and accurate 4D cone-beam CT imaging

    SciTech Connect

    Yan, Hao; Folkerts, Michael; Jiang, Steve B. E-mail: steve.jiang@UTSouthwestern.edu; Jia, Xun E-mail: steve.jiang@UTSouthwestern.edu; Zhen, Xin; Li, Yongbao; Pan, Tinsu; Cervino, Laura

    2014-07-15

    Purpose: 4D cone beam CT (4D-CBCT) has been utilized in radiation therapy to provide 4D image guidance in lung and upper abdomen area. However, clinical application of 4D-CBCT is currently limited due to the long scan time and low image quality. The purpose of this paper is to develop a new 4D-CBCT reconstruction method that restores volumetric images based on the 1-min scan data acquired with a standard 3D-CBCT protocol. Methods: The model optimizes a deformation vector field that deforms a patient-specific planning CT (p-CT), so that the calculated 4D-CBCT projections match measurements. A forward-backward splitting (FBS) method is invented to solve the optimization problem. It splits the original problem into two well-studied subproblems, i.e., image reconstruction and deformable image registration. By iteratively solving the two subproblems, FBS gradually yields correct deformation information, while maintaining high image quality. The whole workflow is implemented on a graphic-processing-unit to improve efficiency. Comprehensive evaluations have been conducted on a moving phantom and three real patient cases regarding the accuracy and quality of the reconstructed images, as well as the algorithm robustness and efficiency. Results: The proposed algorithm reconstructs 4D-CBCT images from highly under-sampled projection data acquired with 1-min scans. Regarding the anatomical structure location accuracy, 0.204 mm average differences and 0.484 mm maximum difference are found for the phantom case, and the maximum differences of 0.3–0.5 mm for patients 1–3 are observed. As for the image quality, intensity errors below 5 and 20 HU compared to the planning CT are achieved for the phantom and the patient cases, respectively. Signal-noise-ratio values are improved by 12.74 and 5.12 times compared to results from FDK algorithm using the 1-min data and 4-min data, respectively. The computation time of the algorithm on a NVIDIA GTX590 card is 1–1.5 min per phase

  10. An innovative algorithm to accurately solve the Euler equations for rotary wing flow

    NASA Astrophysics Data System (ADS)

    Wagner, S.; Kraemer, E.

    Due to the ability of Euler methods to treat rotational, nonisentropic flows and also to correctly transport on the rotation embedded in the flow field it is possible to correctly represent the inflow conditions on the blade in the stationary hovering flight of a helicopter, which are significantly influenced by the tip vortices (blade-vortex interaction) of all blades. It is shown that also the very complex starting procedure of a helicopter rotor can be very well described by a simple Euler method that is to say without a wake model. The algorithm based on the procedure is part of category upwind schemes, in which the difference formation orientates to the actual, local flow state that is to say to the typical distrubance expansion direction. Hence, the artificial dissipation required for the numerical stability is included in a natural way adapted to the real flow state over the break-up error of the difference equation and has not to be included from outside. This makes the procedure robust. An implicit solution algorithm is used, where the invertation of the coefficient matrix is carried out by means of a Point-Gauss-Seidel relaxation.

  11. A hybrid genetic algorithm-extreme learning machine approach for accurate significant wave height reconstruction

    NASA Astrophysics Data System (ADS)

    Alexandre, E.; Cuadra, L.; Nieto-Borge, J. C.; Candil-García, G.; del Pino, M.; Salcedo-Sanz, S.

    2015-08-01

    Wave parameters computed from time series measured by buoys (significant wave height Hs, mean wave period, etc.) play a key role in coastal engineering and in the design and operation of wave energy converters. Storms or navigation accidents can make measuring buoys break down, leading to missing data gaps. In this paper we tackle the problem of locally reconstructing Hs at out-of-operation buoys by using wave parameters from nearby buoys, based on the spatial correlation among values at neighboring buoy locations. The novelty of our approach for its potential application to problems in coastal engineering is twofold. On one hand, we propose a genetic algorithm hybridized with an extreme learning machine that selects, among the available wave parameters from the nearby buoys, a subset FnSP with nSP parameters that minimizes the Hs reconstruction error. On the other hand, we evaluate to what extent the selected parameters in subset FnSP are good enough in assisting other machine learning (ML) regressors (extreme learning machines, support vector machines and gaussian process regression) to reconstruct Hs. The results show that all the ML method explored achieve a good Hs reconstruction in the two different locations studied (Caribbean Sea and West Atlantic).

  12. Blended control, predictor-corrector guidance algorithm: an enabling technology for Mars aerocapture.

    PubMed

    Jits, Roman Y; Walberg, Gerald D

    2004-03-01

    A guidance scheme designed for coping with significant dispersion in the vehicle's state and atmospheric conditions is presented. In order to expand the flyable aerocapture envelope, control of the vehicle is realized through bank angle and angle-of-attack modulation. Thus, blended control of the vehicle is achieved, where the lateral and vertical motions of the vehicle are decoupled. The overall implementation approach is described, together with the guidance algorithm macrologic and structure. Results of guidance algorithm tests in the presence of various single and multiple off-nominal conditions are presented and discussed.

  13. A highly accurate dynamic contact angle algorithm for drops on inclined surface based on ellipse-fitting.

    PubMed

    Xu, Z N; Wang, S Y

    2015-02-01

    To improve the accuracy in the calculation of dynamic contact angle for drops on the inclined surface, a significant number of numerical drop profiles on the inclined surface with different inclination angles, drop volumes, and contact angles are generated based on the finite difference method, a least-squares ellipse-fitting algorithm is used to calculate the dynamic contact angle. The influences of the above three factors are systematically investigated. The results reveal that the dynamic contact angle errors, including the errors of the left and right contact angles, evaluated by the ellipse-fitting algorithm tend to increase with inclination angle/drop volume/contact angle. If the drop volume and the solid substrate are fixed, the errors of the left and right contact angles increase with inclination angle. After performing a tremendous amount of computation, the critical dimensionless drop volumes corresponding to the critical contact angle error are obtained. Based on the values of the critical volumes, a highly accurate dynamic contact angle algorithm is proposed and fully validated. Within nearly the whole hydrophobicity range, it can decrease the dynamic contact angle error in the inclined plane method to less than a certain value even for different types of liquids.

  14. Accurate Learning with Few Atlases (ALFA): an algorithm for MRI neonatal brain extraction and comparison with 11 publicly available methods

    NASA Astrophysics Data System (ADS)

    Serag, Ahmed; Blesa, Manuel; Moore, Emma J.; Pataky, Rozalia; Sparrow, Sarah A.; Wilkinson, A. G.; MacNaught, Gillian; Semple, Scott I.; Boardman, James P.

    2016-03-01

    Accurate whole-brain segmentation, or brain extraction, of magnetic resonance imaging (MRI) is a critical first step in most neuroimage analysis pipelines. The majority of brain extraction algorithms have been developed and evaluated for adult data and their validity for neonatal brain extraction, which presents age-specific challenges for this task, has not been established. We developed a novel method for brain extraction of multi-modal neonatal brain MR images, named ALFA (Accurate Learning with Few Atlases). The method uses a new sparsity-based atlas selection strategy that requires a very limited number of atlases ‘uniformly’ distributed in the low-dimensional data space, combined with a machine learning based label fusion technique. The performance of the method for brain extraction from multi-modal data of 50 newborns is evaluated and compared with results obtained using eleven publicly available brain extraction methods. ALFA outperformed the eleven compared methods providing robust and accurate brain extraction results across different modalities. As ALFA can learn from partially labelled datasets, it can be used to segment large-scale datasets efficiently. ALFA could also be applied to other imaging modalities and other stages across the life course.

  15. Accurate Learning with Few Atlases (ALFA): an algorithm for MRI neonatal brain extraction and comparison with 11 publicly available methods.

    PubMed

    Serag, Ahmed; Blesa, Manuel; Moore, Emma J; Pataky, Rozalia; Sparrow, Sarah A; Wilkinson, A G; Macnaught, Gillian; Semple, Scott I; Boardman, James P

    2016-03-24

    Accurate whole-brain segmentation, or brain extraction, of magnetic resonance imaging (MRI) is a critical first step in most neuroimage analysis pipelines. The majority of brain extraction algorithms have been developed and evaluated for adult data and their validity for neonatal brain extraction, which presents age-specific challenges for this task, has not been established. We developed a novel method for brain extraction of multi-modal neonatal brain MR images, named ALFA (Accurate Learning with Few Atlases). The method uses a new sparsity-based atlas selection strategy that requires a very limited number of atlases 'uniformly' distributed in the low-dimensional data space, combined with a machine learning based label fusion technique. The performance of the method for brain extraction from multi-modal data of 50 newborns is evaluated and compared with results obtained using eleven publicly available brain extraction methods. ALFA outperformed the eleven compared methods providing robust and accurate brain extraction results across different modalities. As ALFA can learn from partially labelled datasets, it can be used to segment large-scale datasets efficiently. ALFA could also be applied to other imaging modalities and other stages across the life course.

  16. A highly accurate and efficient algorithm for electrostatic interactions of charged particles confined by parallel metallic plates

    NASA Astrophysics Data System (ADS)

    Rostami, Samare; Ghasemi, S. Alireza; Nedaaee Oskoee, Ehsan

    2016-09-01

    We present an accurate and efficient algorithm to calculate the electrostatic interaction of charged point particles with partially periodic boundary conditions that are confined along the non-periodic direction by two parallel metallic plates. The method preserves the original boundary conditions, leading to an exact solution of the problem. In addition, the scaling complexity is quasilinear O ( N ln ( N ) ) , where N is the number of particles in the simulation box. Based on the superposition principle in electrostatics, the problem is split into two electrostatic problems where each can be calculated by the appropriate Poisson solver. The method is applied to NaCl ultra-thin films where its dielectric response with respect to an external bias voltage is investigated. Furthermore, the total charge induced on the metallic boundaries can be calculated to an arbitrary precision.

  17. Note: Fast imaging of DNA in atomic force microscopy enabled by a local raster scan algorithm

    SciTech Connect

    Huang, Peng; Andersson, Sean B.

    2014-06-15

    Approaches to high-speed atomic force microscopy typically involve some combination of novel mechanical design to increase the physical bandwidth and advanced controllers to take maximum advantage of the physical capabilities. For certain classes of samples, however, imaging time can be reduced on standard instruments by reducing the amount of measurement that is performed to image the sample. One such technique is the local raster scan algorithm, developed for imaging of string-like samples. Here we provide experimental results on the use of this technique to image DNA samples, demonstrating the efficacy of the scheme and illustrating the order-of-magnitude improvement in imaging time that it provides.

  18. Extensive Peptide Fractionation and y1 Ion-Based Interference Detection Method for Enabling Accurate Quantification by Isobaric Labeling and Mass Spectrometry.

    PubMed

    Niu, Mingming; Cho, Ji-Hoon; Kodali, Kiran; Pagala, Vishwajeeth; High, Anthony A; Wang, Hong; Wu, Zhiping; Li, Yuxin; Bi, Wenjian; Zhang, Hui; Wang, Xusheng; Zou, Wei; Peng, Junmin

    2017-02-22

    Isobaric labeling quantification by mass spectrometry (MS) has emerged as a powerful technology for multiplexed large-scale protein profiling, but measurement accuracy in complex mixtures is confounded by the interference from coisolated ions, resulting in ratio compression. Here we report that the ratio compression can be essentially resolved by the combination of pre-MS peptide fractionation, MS2-based interference detection, and post-MS computational interference correction. To recapitulate the complexity of biological samples, we pooled tandem mass tag (TMT)-labeled Escherichia coli peptides at 1:3:10 ratios and added in ∼20-fold more rat peptides as background, followed by the analysis of two-dimensional liquid chromatography (LC)-MS/MS. Systematic investigation shows that quantitative interference was impacted by LC fractionation depth, MS isolation window, and peptide loading amount. Exhaustive fractionation (320 × 4 h) can nearly eliminate the interference and achieve results comparable to the MS3-based method. Importantly, the interference in MS2 scans can be estimated by the intensity of contaminated y1 product ions, and we thus developed an algorithm to correct reporter ion ratios of tryptic peptides. Our data indicate that intermediate fractionation (40 × 2 h) and y1 ion-based correction allow accurate and deep TMT profiling of more than 10 000 proteins, which represents a straightforward and affordable strategy in isobaric labeling proteomics.

  19. C-A5-04: A Simple, Accurate SAS Algorithm for Electronic Abstraction of Race from Digitized Progress Notes

    PubMed Central

    Roblin, Douglas; Joski, Peter; Ren, Junling; Farmer, Robert; Baldwin, David; Carrell, David; Hart, Gene; Pardee, Roy; Bachman, Donald

    2010-01-01

    .006 (N=518 matches with Medicare surveys). McNemar’s tests were marginally significant for several datasets; and, misclassification was not systematically biased toward white or African American race. Conclusions: The SAS algorithm was highly accurate in electronically abstracting white and African American race from digitized progress notes of provider visits at KPG and GHC. We are expanding the evaluation to include additional sites and additional race/ ethnic categories (e.g. Asian, Hispanic).

  20. Unprecedently Large-Scale Kinase Inhibitor Set Enabling the Accurate Prediction of Compound–Kinase Activities: A Way toward Selective Promiscuity by Design?

    PubMed Central

    2016-01-01

    Drug discovery programs frequently target members of the human kinome and try to identify small molecule protein kinase inhibitors, primarily for cancer treatment, additional indications being increasingly investigated. One of the challenges is controlling the inhibitors degree of selectivity, assessed by in vitro profiling against panels of protein kinases. We manually extracted, compiled, and standardized such profiles published in the literature: we collected 356 908 data points corresponding to 482 protein kinases, 2106 inhibitors, and 661 patents. We then analyzed this data set in terms of kinome coverage, results reproducibility, popularity, and degree of selectivity of both kinases and inhibitors. We used the data set to create robust proteochemometric models capable of predicting kinase activity (the ligand–target space was modeled with an externally validated RMSE of 0.41 ± 0.02 log units and R02 0.74 ± 0.03), in order to account for missing or unreliable measurements. The influence on the prediction quality of parameters such as number of measurements, Murcko scaffold frequency or inhibitor type was assessed. Interpretation of the models enabled to highlight inhibitors and kinases properties correlated with higher affinities, and an analysis in the context of kinases crystal structures was performed. Overall, the models quality allows the accurate prediction of kinase-inhibitor activities and their structural interpretation, thus paving the way for the rational design of compounds with a targeted selectivity profile. PMID:27482722

  1. Fast MS/MS acquisition without dynamic exclusion enables precise and accurate quantification of proteome by MS/MS fragment intensity

    PubMed Central

    Zhang, Shen; Wu, Qi; Shan, Yichu; Zhao, Qun; Zhao, Baofeng; Weng, Yejing; Sui, Zhigang; Zhang, Lihua; Zhang, Yukui

    2016-01-01

    Most currently proteomic studies use data-dependent acquisition with dynamic exclusion to identify and quantify the peptides generated by the digestion of biological sample. Although dynamic exclusion permits more identifications and higher possibility to find low abundant proteins, stochastic and irreproducible precursor ion selection caused by dynamic exclusion limit the quantification capabilities, especially for MS/MS based quantification. This is because a peptide is usually triggered for fragmentation only once due to dynamic exclusion. Therefore the fragment ions used for quantification only reflect the peptide abundances at that given time point. Here, we propose a strategy of fast MS/MS acquisition without dynamic exclusion to enable precise and accurate quantification of proteome by MS/MS fragment intensity. The results showed comparable proteome identification efficiency compared to the traditional data-dependent acquisition with dynamic exclusion, better quantitative accuracy and reproducibility regardless of label-free based quantification or isobaric labeling based quantification. It provides us with new insights to fully explore the potential of modern mass spectrometers. This strategy was applied to the relative quantification of two human disease cell lines, showing great promises for quantitative proteomic applications. PMID:27198003

  2. Mathematical analysis and algorithms for efficiently and accurately implementing stochastic simulations of short-term synaptic depression and facilitation.

    PubMed

    McDonnell, Mark D; Mohan, Ashutosh; Stricker, Christian

    2013-01-01

    The release of neurotransmitter vesicles after arrival of a pre-synaptic action potential (AP) at cortical synapses is known to be a stochastic process, as is the availability of vesicles for release. These processes are known to also depend on the recent history of AP arrivals, and this can be described in terms of time-varying probabilities of vesicle release. Mathematical models of such synaptic dynamics frequently are based only on the mean number of vesicles released by each pre-synaptic AP, since if it is assumed there are sufficiently many vesicle sites, then variance is small. However, it has been shown recently that variance across sites can be significant for neuron and network dynamics, and this suggests the potential importance of studying short-term plasticity using simulations that do generate trial-to-trial variability. Therefore, in this paper we study several well-known conceptual models for stochastic availability and release. We state explicitly the random variables that these models describe and propose efficient algorithms for accurately implementing stochastic simulations of these random variables in software or hardware. Our results are complemented by mathematical analysis and statement of pseudo-code algorithms.

  3. A parallel algorithm for error correction in high-throughput short-read data on CUDA-enabled graphics hardware.

    PubMed

    Shi, Haixiang; Schmidt, Bertil; Liu, Weiguo; Müller-Wittig, Wolfgang

    2010-04-01

    Emerging DNA sequencing technologies open up exciting new opportunities for genome sequencing by generating read data with a massive throughput. However, produced reads are significantly shorter and more error-prone compared to the traditional Sanger shotgun sequencing method. This poses challenges for de novo DNA fragment assembly algorithms in terms of both accuracy (to deal with short, error-prone reads) and scalability (to deal with very large input data sets). In this article, we present a scalable parallel algorithm for correcting sequencing errors in high-throughput short-read data so that error-free reads can be available before DNA fragment assembly, which is of high importance to many graph-based short-read assembly tools. The algorithm is based on spectral alignment and uses the Compute Unified Device Architecture (CUDA) programming model. To gain efficiency we are taking advantage of the CUDA texture memory using a space-efficient Bloom filter data structure for spectrum membership queries. We have tested the runtime and accuracy of our algorithm using real and simulated Illumina data for different read lengths, error rates, input sizes, and algorithmic parameters. Using a CUDA-enabled mass-produced GPU (available for less than US$400 at any local computer outlet), this results in speedups of 12-84 times for the parallelized error correction, and speedups of 3-63 times for both sequential preprocessing and parallelized error correction compared to the publicly available Euler-SR program. Our implementation is freely available for download from http://cuda-ec.sourceforge.net .

  4. BlueDetect: An iBeacon-Enabled Scheme for Accurate and Energy-Efficient Indoor-Outdoor Detection and Seamless Location-Based Service.

    PubMed

    Zou, Han; Jiang, Hao; Luo, Yiwen; Zhu, Jianjie; Lu, Xiaoxuan; Xie, Lihua

    2016-02-22

    The location and contextual status (indoor or outdoor) is fundamental and critical information for upper-layer applications, such as activity recognition and location-based services (LBS) for individuals. In addition, optimizations of building management systems (BMS), such as the pre-cooling or heating process of the air-conditioning system according to the human traffic entering or exiting a building, can utilize the information, as well. The emerging mobile devices, which are equipped with various sensors, become a feasible and flexible platform to perform indoor-outdoor (IO) detection. However, power-hungry sensors, such as GPS and WiFi, should be used with caution due to the constrained battery storage on mobile device. We propose BlueDetect: an accurate, fast response and energy-efficient scheme for IO detection and seamless LBS running on the mobile device based on the emerging low-power iBeacon technology. By leveraging the on-broad Bluetooth module and our proposed algorithms, BlueDetect provides a precise IO detection service that can turn on/off on-board power-hungry sensors smartly and automatically, optimize their performances and reduce the power consumption of mobile devices simultaneously. Moreover, seamless positioning and navigation services can be realized by it, especially in a semi-outdoor environment, which cannot be achieved by GPS or an indoor positioning system (IPS) easily. We prototype BlueDetect on Android mobile devices and evaluate its performance comprehensively. The experimental results have validated the superiority of BlueDetect in terms of IO detection accuracy, localization accuracy and energy consumption.

  5. BlueDetect: An iBeacon-Enabled Scheme for Accurate and Energy-Efficient Indoor-Outdoor Detection and Seamless Location-Based Service

    PubMed Central

    Zou, Han; Jiang, Hao; Luo, Yiwen; Zhu, Jianjie; Lu, Xiaoxuan; Xie, Lihua

    2016-01-01

    The location and contextual status (indoor or outdoor) is fundamental and critical information for upper-layer applications, such as activity recognition and location-based services (LBS) for individuals. In addition, optimizations of building management systems (BMS), such as the pre-cooling or heating process of the air-conditioning system according to the human traffic entering or exiting a building, can utilize the information, as well. The emerging mobile devices, which are equipped with various sensors, become a feasible and flexible platform to perform indoor-outdoor (IO) detection. However, power-hungry sensors, such as GPS and WiFi, should be used with caution due to the constrained battery storage on mobile device. We propose BlueDetect: an accurate, fast response and energy-efficient scheme for IO detection and seamless LBS running on the mobile device based on the emerging low-power iBeacon technology. By leveraging the on-broad Bluetooth module and our proposed algorithms, BlueDetect provides a precise IO detection service that can turn on/off on-board power-hungry sensors smartly and automatically, optimize their performances and reduce the power consumption of mobile devices simultaneously. Moreover, seamless positioning and navigation services can be realized by it, especially in a semi-outdoor environment, which cannot be achieved by GPS or an indoor positioning system (IPS) easily. We prototype BlueDetect on Android mobile devices and evaluate its performance comprehensively. The experimental results have validated the superiority of BlueDetect in terms of IO detection accuracy, localization accuracy and energy consumption. PMID:26907295

  6. SU-E-J-23: An Accurate Algorithm to Match Imperfectly Matched Images for Lung Tumor Detection Without Markers

    SciTech Connect

    Rozario, T; Bereg, S; Chiu, T; Liu, H; Kearney, V; Jiang, L; Mao, W

    2014-06-01

    Purpose: In order to locate lung tumors on projection images without internal markers, digitally reconstructed radiograph (DRR) is created and compared with projection images. Since lung tumors always move and their locations change on projection images while they are static on DRRs, a special DRR (background DRR) is generated based on modified anatomy from which lung tumors are removed. In addition, global discrepancies exist between DRRs and projections due to their different image originations, scattering, and noises. This adversely affects comparison accuracy. A simple but efficient comparison algorithm is reported. Methods: This method divides global images into a matrix of small tiles and similarities will be evaluated by calculating normalized cross correlation (NCC) between corresponding tiles on projections and DRRs. The tile configuration (tile locations) will be automatically optimized to keep the tumor within a single tile which has bad matching with the corresponding DRR tile. A pixel based linear transformation will be determined by linear interpolations of tile transformation results obtained during tile matching. The DRR will be transformed to the projection image level and subtracted from it. The resulting subtracted image now contains only the tumor. A DRR of the tumor is registered to the subtracted image to locate the tumor. Results: This method has been successfully applied to kV fluoro images (about 1000 images) acquired on a Vero (Brainlab) for dynamic tumor tracking on phantom studies. Radiation opaque markers are implanted and used as ground truth for tumor positions. Although, other organs and bony structures introduce strong signals superimposed on tumors at some angles, this method accurately locates tumors on every projection over 12 gantry angles. The maximum error is less than 2.6 mm while the total average error is 1.0 mm. Conclusion: This algorithm is capable of detecting tumor without markers despite strong background signals.

  7. A finite rate of innovation algorithm for fast and accurate spike detection from two-photon calcium imaging

    NASA Astrophysics Data System (ADS)

    Oñativia, Jon; Schultz, Simon R.; Dragotti, Pier Luigi

    2013-08-01

    Objective. Inferring the times of sequences of action potentials (APs) (spike trains) from neurophysiological data is a key problem in computational neuroscience. The detection of APs from two-photon imaging of calcium signals offers certain advantages over traditional electrophysiological approaches, as up to thousands of spatially and immunohistochemically defined neurons can be recorded simultaneously. However, due to noise, dye buffering and the limited sampling rates in common microscopy configurations, accurate detection of APs from calcium time series has proved to be a difficult problem. Approach. Here we introduce a novel approach to the problem making use of finite rate of innovation (FRI) theory (Vetterli et al 2002 IEEE Trans. Signal Process. 50 1417-28). For calcium transients well fit by a single exponential, the problem is reduced to reconstructing a stream of decaying exponentials. Signals made of a combination of exponentially decaying functions with different onset times are a subclass of FRI signals, for which much theory has recently been developed by the signal processing community. Main results. We demonstrate for the first time the use of FRI theory to retrieve the timing of APs from calcium transient time series. The final algorithm is fast, non-iterative and parallelizable. Spike inference can be performed in real-time for a population of neurons and does not require any training phase or learning to initialize parameters. Significance. The algorithm has been tested with both real data (obtained by simultaneous electrophysiology and multiphoton imaging of calcium signals in cerebellar Purkinje cell dendrites), and surrogate data, and outperforms several recently proposed methods for spike train inference from calcium imaging data.

  8. Fast, Simple and Accurate Handwritten Digit Classification by Training Shallow Neural Network Classifiers with the 'Extreme Learning Machine' Algorithm.

    PubMed

    McDonnell, Mark D; Tissera, Migel D; Vladusich, Tony; van Schaik, André; Tapson, Jonathan

    2015-01-01

    Recent advances in training deep (multi-layer) architectures have inspired a renaissance in neural network use. For example, deep convolutional networks are becoming the default option for difficult tasks on large datasets, such as image and speech recognition. However, here we show that error rates below 1% on the MNIST handwritten digit benchmark can be replicated with shallow non-convolutional neural networks. This is achieved by training such networks using the 'Extreme Learning Machine' (ELM) approach, which also enables a very rapid training time (∼ 10 minutes). Adding distortions, as is common practise for MNIST, reduces error rates even further. Our methods are also shown to be capable of achieving less than 5.5% error rates on the NORB image database. To achieve these results, we introduce several enhancements to the standard ELM algorithm, which individually and in combination can significantly improve performance. The main innovation is to ensure each hidden-unit operates only on a randomly sized and positioned patch of each image. This form of random 'receptive field' sampling of the input ensures the input weight matrix is sparse, with about 90% of weights equal to zero. Furthermore, combining our methods with a small number of iterations of a single-batch backpropagation method can significantly reduce the number of hidden-units required to achieve a particular performance. Our close to state-of-the-art results for MNIST and NORB suggest that the ease of use and accuracy of the ELM algorithm for designing a single-hidden-layer neural network classifier should cause it to be given greater consideration either as a standalone method for simpler problems, or as the final classification stage in deep neural networks applied to more difficult problems.

  9. FILMPAR: A parallel algorithm designed for the efficient and accurate computation of thin film flow on functional surfaces containing micro-structure

    NASA Astrophysics Data System (ADS)

    Lee, Y. C.; Thompson, H. M.; Gaskell, P. H.

    2009-12-01

    FILMPAR is a highly efficient and portable parallel multigrid algorithm for solving a discretised form of the lubrication approximation to three-dimensional, gravity-driven, continuous thin film free-surface flow over substrates containing micro-scale topography. While generally applicable to problems involving heterogeneous and distributed features, for illustrative purposes the algorithm is benchmarked on a distributed memory IBM BlueGene/P computing platform for the case of flow over a single trench topography, enabling direct comparison with complementary experimental data and existing serial multigrid solutions. Parallel performance is assessed as a function of the number of processors employed and shown to lead to super-linear behaviour for the production of mesh-independent solutions. In addition, the approach is used to solve for the case of flow over a complex inter-connected topographical feature and a description provided of how FILMPAR could be adapted relatively simply to solve for a wider class of related thin film flow problems. Program summaryProgram title: FILMPAR Catalogue identifier: AEEL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEL_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 530 421 No. of bytes in distributed program, including test data, etc.: 1 960 313 Distribution format: tar.gz Programming language: C++ and MPI Computer: Desktop, server Operating system: Unix/Linux Mac OS X Has the code been vectorised or parallelised?: Yes. Tested with up to 128 processors RAM: 512 MBytes Classification: 12 External routines: GNU C/C++, MPI Nature of problem: Thin film flows over functional substrates containing well-defined single and complex topographical features are of enormous significance, having a wide variety of engineering

  10. A non-contact method based on multiple signal classification algorithm to reduce the measurement time for accurately heart rate detection.

    PubMed

    Bechet, P; Mitran, R; Munteanu, M

    2013-08-01

    Non-contact methods for the assessment of vital signs are of great interest for specialists due to the benefits obtained in both medical and special applications, such as those for surveillance, monitoring, and search and rescue. This paper investigates the possibility of implementing a digital processing algorithm based on the MUSIC (Multiple Signal Classification) parametric spectral estimation in order to reduce the observation time needed to accurately measure the heart rate. It demonstrates that, by proper dimensioning the signal subspace, the MUSIC algorithm can be optimized in order to accurately assess the heart rate during an 8-28 s time interval. The validation of the processing algorithm performance was achieved by minimizing the mean error of the heart rate after performing simultaneous comparative measurements on several subjects. In order to calculate the error the reference value of heart rate was measured using a classic measurement system through direct contact.

  11. A non-contact method based on multiple signal classification algorithm to reduce the measurement time for accurately heart rate detection

    NASA Astrophysics Data System (ADS)

    Bechet, P.; Mitran, R.; Munteanu, M.

    2013-08-01

    Non-contact methods for the assessment of vital signs are of great interest for specialists due to the benefits obtained in both medical and special applications, such as those for surveillance, monitoring, and search and rescue. This paper investigates the possibility of implementing a digital processing algorithm based on the MUSIC (Multiple Signal Classification) parametric spectral estimation in order to reduce the observation time needed to accurately measure the heart rate. It demonstrates that, by proper dimensioning the signal subspace, the MUSIC algorithm can be optimized in order to accurately assess the heart rate during an 8-28 s time interval. The validation of the processing algorithm performance was achieved by minimizing the mean error of the heart rate after performing simultaneous comparative measurements on several subjects. In order to calculate the error the reference value of heart rate was measured using a classic measurement system through direct contact.

  12. Integrating metabolic performance, thermal tolerance, and plasticity enables for more accurate predictions on species vulnerability to acute and chronic effects of global warming.

    PubMed

    Magozzi, Sarah; Calosi, Piero

    2015-01-01

    Predicting species vulnerability to global warming requires a comprehensive, mechanistic understanding of sublethal and lethal thermal tolerances. To date, however, most studies investigating species physiological responses to increasing temperature have focused on the underlying physiological traits of either acute or chronic tolerance in isolation. Here we propose an integrative, synthetic approach including the investigation of multiple physiological traits (metabolic performance and thermal tolerance), and their plasticity, to provide more accurate and balanced predictions on species and assemblage vulnerability to both acute and chronic effects of global warming. We applied this approach to more accurately elucidate relative species vulnerability to warming within an assemblage of six caridean prawns occurring in the same geographic, hence macroclimatic, region, but living in different thermal habitats. Prawns were exposed to four incubation temperatures (10, 15, 20 and 25 °C) for 7 days, their metabolic rates and upper thermal limits were measured, and plasticity was calculated according to the concept of Reaction Norms, as well as Q10 for metabolism. Compared to species occupying narrower/more stable thermal niches, species inhabiting broader/more variable thermal environments (including the invasive Palaemon macrodactylus) are likely to be less vulnerable to extreme acute thermal events as a result of their higher upper thermal limits. Nevertheless, they may be at greater risk from chronic exposure to warming due to the greater metabolic costs they incur. Indeed, a trade-off between acute and chronic tolerance was apparent in the assemblage investigated. However, the invasive species P. macrodactylus represents an exception to this pattern, showing elevated thermal limits and plasticity of these limits, as well as a high metabolic control. In general, integrating multiple proxies for species physiological acute and chronic responses to increasing

  13. Finite Element Modelling of a Field-Sensed Magnetic Suspended System for Accurate Proximity Measurement Based on a Sensor Fusion Algorithm with Unscented Kalman Filter.

    PubMed

    Chowdhury, Amor; Sarjaš, Andrej

    2016-09-15

    The presented paper describes accurate distance measurement for a field-sensed magnetic suspension system. The proximity measurement is based on a Hall effect sensor. The proximity sensor is installed directly on the lower surface of the electro-magnet, which means that it is very sensitive to external magnetic influences and disturbances. External disturbances interfere with the information signal and reduce the usability and reliability of the proximity measurements and, consequently, the whole application operation. A sensor fusion algorithm is deployed for the aforementioned reasons. The sensor fusion algorithm is based on the Unscented Kalman Filter, where a nonlinear dynamic model was derived with the Finite Element Modelling approach. The advantage of such modelling is a more accurate dynamic model parameter estimation, especially in the case when the real structure, materials and dimensions of the real-time application are known. The novelty of the paper is the design of a compact electro-magnetic actuator with a built-in low cost proximity sensor for accurate proximity measurement of the magnetic object. The paper successively presents a modelling procedure with the finite element method, design and parameter settings of a sensor fusion algorithm with Unscented Kalman Filter and, finally, the implementation procedure and results of real-time operation.

  14. Finite Element Modelling of a Field-Sensed Magnetic Suspended System for Accurate Proximity Measurement Based on a Sensor Fusion Algorithm with Unscented Kalman Filter

    PubMed Central

    Chowdhury, Amor; Sarjaš, Andrej

    2016-01-01

    The presented paper describes accurate distance measurement for a field-sensed magnetic suspension system. The proximity measurement is based on a Hall effect sensor. The proximity sensor is installed directly on the lower surface of the electro-magnet, which means that it is very sensitive to external magnetic influences and disturbances. External disturbances interfere with the information signal and reduce the usability and reliability of the proximity measurements and, consequently, the whole application operation. A sensor fusion algorithm is deployed for the aforementioned reasons. The sensor fusion algorithm is based on the Unscented Kalman Filter, where a nonlinear dynamic model was derived with the Finite Element Modelling approach. The advantage of such modelling is a more accurate dynamic model parameter estimation, especially in the case when the real structure, materials and dimensions of the real-time application are known. The novelty of the paper is the design of a compact electro-magnetic actuator with a built-in low cost proximity sensor for accurate proximity measurement of the magnetic object. The paper successively presents a modelling procedure with the finite element method, design and parameter settings of a sensor fusion algorithm with Unscented Kalman Filter and, finally, the implementation procedure and results of real-time operation. PMID:27649197

  15. Extended Adaptive Biasing Force Algorithm. An On-the-Fly Implementation for Accurate Free-Energy Calculations.

    PubMed

    Fu, Haohao; Shao, Xueguang; Chipot, Christophe; Cai, Wensheng

    2016-08-09

    Proper use of the adaptive biasing force (ABF) algorithm in free-energy calculations needs certain prerequisites to be met, namely, that the Jacobian for the metric transformation and its first derivative be available and the coarse variables be independent and fully decoupled from any holonomic constraint or geometric restraint, thereby limiting singularly the field of application of the approach. The extended ABF (eABF) algorithm circumvents these intrinsic limitations by applying the time-dependent bias onto a fictitious particle coupled to the coarse variable of interest by means of a stiff spring. However, with the current implementation of eABF in the popular molecular dynamics engine NAMD, a trajectory-based post-treatment is necessary to derive the underlying free-energy change. Usually, such a posthoc analysis leads to a decrease in the reliability of the free-energy estimates due to the inevitable loss of information, as well as to a drop in efficiency, which stems from substantial read-write accesses to file systems. We have developed a user-friendly, on-the-fly code for performing eABF simulations within NAMD. In the present contribution, this code is probed in eight illustrative examples. The performance of the algorithm is compared with traditional ABF, on the one hand, and the original eABF implementation combined with a posthoc analysis, on the other hand. Our results indicate that the on-the-fly eABF algorithm (i) supplies the correct free-energy landscape in those critical cases where the coarse variables at play are coupled to either each other or to geometric restraints or holonomic constraints, (ii) greatly improves the reliability of the free-energy change, compared to the outcome of a posthoc analysis, and (iii) represents a negligible additional computational effort compared to regular ABF. Moreover, in the proposed implementation, guidelines for choosing two parameters of the eABF algorithm, namely the stiffness of the spring and the mass

  16. A Framework for the Comparative Assessment of Neuronal Spike Sorting Algorithms towards More Accurate Off-Line and On-Line Microelectrode Arrays Data Analysis.

    PubMed

    Regalia, Giulia; Coelli, Stefania; Biffi, Emilia; Ferrigno, Giancarlo; Pedrocchi, Alessandra

    2016-01-01

    Neuronal spike sorting algorithms are designed to retrieve neuronal network activity on a single-cell level from extracellular multiunit recordings with Microelectrode Arrays (MEAs). In typical analysis of MEA data, one spike sorting algorithm is applied indiscriminately to all electrode signals. However, this approach neglects the dependency of algorithms' performances on the neuronal signals properties at each channel, which require data-centric methods. Moreover, sorting is commonly performed off-line, which is time and memory consuming and prevents researchers from having an immediate glance at ongoing experiments. The aim of this work is to provide a versatile framework to support the evaluation and comparison of different spike classification algorithms suitable for both off-line and on-line analysis. We incorporated different spike sorting "building blocks" into a Matlab-based software, including 4 feature extraction methods, 3 feature clustering methods, and 1 template matching classifier. The framework was validated by applying different algorithms on simulated and real signals from neuronal cultures coupled to MEAs. Moreover, the system has been proven effective in running on-line analysis on a standard desktop computer, after the selection of the most suitable sorting methods. This work provides a useful and versatile instrument for a supported comparison of different options for spike sorting towards more accurate off-line and on-line MEA data analysis.

  17. Accurate and scalable O(N) algorithm for first-principles molecular-dynamics computations on large parallel computers.

    PubMed

    Osei-Kuffuor, Daniel; Fattebert, Jean-Luc

    2014-01-31

    We present the first truly scalable first-principles molecular dynamics algorithm with O(N) complexity and controllable accuracy, capable of simulating systems with finite band gaps of sizes that were previously impossible with this degree of accuracy. By avoiding global communications, we provide a practical computational scheme capable of extreme scalability. Accuracy is controlled by the mesh spacing of the finite difference discretization, the size of the localization regions in which the electronic wave functions are confined, and a cutoff beyond which the components of the overlap matrix can be omitted when computing selected elements of its inverse. We demonstrate the algorithm's excellent parallel scaling for up to 101,952 atoms on 23,328 processors, with a wall-clock time of the order of 1 min per molecular dynamics time step and numerical error on the forces of less than 7×10(-4)  Ha/Bohr.

  18. Accurate and Scalable O(N) Algorithm for First-Principles Molecular-Dynamics Computations on Large Parallel Computers

    SciTech Connect

    Osei-Kuffuor, Daniel; Fattebert, Jean-Luc

    2014-01-01

    We present the first truly scalable first-principles molecular dynamics algorithm with O(N) complexity and controllable accuracy, capable of simulating systems with finite band gaps of sizes that were previously impossible with this degree of accuracy. By avoiding global communications, we provide a practical computational scheme capable of extreme scalability. Accuracy is controlled by the mesh spacing of the finite difference discretization, the size of the localization regions in which the electronic wave functions are confined, and a cutoff beyond which the components of the overlap matrix can be omitted when computing selected elements of its inverse. We demonstrate the algorithm's excellent parallel scaling for up to 101 952 atoms on 23 328 processors, with a wall-clock time of the order of 1 min per molecular dynamics time step and numerical error on the forces of less than 7x10-4 Ha/Bohr.

  19. Combining computer algorithms with experimental approaches permits the rapid and accurate identification of T cell epitopes from defined antigens.

    PubMed

    Schirle, M; Weinschenk, T; Stevanović, S

    2001-11-01

    The identification of T cell epitopes from immunologically relevant antigens remains a critical step in the development of vaccines and methods for monitoring of T cell responses. This review presents an overview of strategies that employ computer algorithms for the selection of candidate peptides from defined proteins and subsequent verification of their in vivo relevance by experimental approaches. Several computer algorithms are currently being used for epitope prediction of various major histocompatibility complex (MHC) class I and II molecules, based either on the analysis of natural MHC ligands or on the binding properties of synthetic peptides. Moreover, the analysis of proteasomal digests of peptides and whole proteins has led to the development of algorithms for the prediction of proteasomal cleavages. In order to verify the generation of the predicted peptides during antigen processing in vivo as well as their immunogenic potential, several experimental approaches have been pursued in the recent past. Mass spectrometry-based bioanalytical approaches have been used specifically to detect predicted peptides among isolated natural ligands. Other strategies employ various methods for the stimulation of primary T cell responses against the predicted peptides and subsequent testing of the recognition pattern towards target cells that express the antigen.

  20. Development of a decision tree to classify the most accurate tissue-specific tissue to plasma partition coefficient algorithm for a given compound.

    PubMed

    Yun, Yejin Esther; Cotton, Cecilia A; Edginton, Andrea N

    2014-02-01

    Physiologically based pharmacokinetic (PBPK) modeling is a tool used in drug discovery and human health risk assessment. PBPK models are mathematical representations of the anatomy, physiology and biochemistry of an organism and are used to predict a drug's pharmacokinetics in various situations. Tissue to plasma partition coefficients (Kp), key PBPK model parameters, define the steady-state concentration differential between tissue and plasma and are used to predict the volume of distribution. The experimental determination of these parameters once limited the development of PBPK models; however, in silico prediction methods were introduced to overcome this issue. The developed algorithms vary in input parameters and prediction accuracy, and none are considered standard, warranting further research. In this study, a novel decision-tree-based Kp prediction method was developed using six previously published algorithms. The aim of the developed classifier was to identify the most accurate tissue-specific Kp prediction algorithm for a new drug. A dataset consisting of 122 drugs was used to train the classifier and identify the most accurate Kp prediction algorithm for a certain physicochemical space. Three versions of tissue-specific classifiers were developed and were dependent on the necessary inputs. The use of the classifier resulted in a better prediction accuracy than that of any single Kp prediction algorithm for all tissues, the current mode of use in PBPK model building. Because built-in estimation equations for those input parameters are not necessarily available, this Kp prediction tool will provide Kp prediction when only limited input parameters are available. The presented innovative method will improve tissue distribution prediction accuracy, thus enhancing the confidence in PBPK modeling outputs.

  1. Backbone building from quadrilaterals: a fast and accurate algorithm for protein backbone reconstruction from alpha carbon coordinates.

    PubMed

    Gront, Dominik; Kmiecik, Sebastian; Kolinski, Andrzej

    2007-07-15

    In this contribution, we present an algorithm for protein backbone reconstruction that comprises very high computational efficiency with high accuracy. Reconstruction of the main chain atomic coordinates from the alpha carbon trace is a common task in protein modeling, including de novo structure prediction, comparative modeling, and processing experimental data. The method employed in this work follows the main idea of some earlier approaches to the problem. The details and careful design of the present approach are new and lead to the algorithm that outperforms all commonly used earlier applications. BBQ (Backbone Building from Quadrilaterals) program has been extensively tested both on native structures as well as on near-native decoy models and compared with the different available existing methods. Obtained results provide a comprehensive benchmark of existing tools and evaluate their applicability to a large scale modeling using a reduced representation of protein conformational space. The BBQ package is available for downloading from our website at http://biocomp.chem.uw.edu.pl/services/BBQ/. This webpage also provides a user manual that describes BBQ functions in detail.

  2. Robust Algorithm for Alignment of Liquid Chromatography-Mass Spectrometry Analyses in an Accurate Mass and Time Tag Data Analysis Pipeline

    SciTech Connect

    Jaitly, Navdeep; Monroe, Matthew E.; Petyuk, Vladislav A.; Clauss, Therese RW; Adkins, Joshua N.; Smith, Richard D.

    2006-11-01

    Liquid chromatography coupled to mass spectrometry (LC-MS) and tandem mass spectrometry (LC-MS/MS) has become a standard technique for analyzing complex peptide mixtures to determine composition and relative quantity. Several high-throughput proteomics techniques attempt to combine complementary results from multiple LC-MS and LC-MS/MS analyses to provide more comprehensive and accurate results. To effectively collate results from these techniques, variations in mass and elution time measurements between related analyses are corrected by using algorithms designed to align the various types of results: LC-MS/MS vs. LC-MS/MS, LC-MS vs. LC-MS/MS, and LC-MS vs. LC-MS. Described herein are new algorithms referred to collectively as Liquid Chromatography based Mass Spectrometric Warping and Alignment of Retention times of Peptides (LCMSWARP) which use a dynamic elution time warping approach similar to traditional algorithms that correct variation in elution time using piecewise linear functions. LCMSWARP is compared to a linear alignment algorithm that assumes a linear transformation of elution time between analyses. LCMSWARP also corrects for drift in mass measurement accuracies that are often seen in an LC-MS analysis due to factors such as analyzer drift. We also describe the alignment of LC-MS results and provide examples of alignment of analyses from different chromatographic systems to demonstrate more complex transformation functions.

  3. Fast and accurate auto-focusing algorithm based on the combination of depth from focus and improved depth from defocus.

    PubMed

    Zhang, Xuedian; Liu, Zhaoqing; Jiang, Minshan; Chang, Min

    2014-12-15

    An auto-focus method for digital imaging systems is proposed that combines depth from focus (DFF) and improved depth from defocus (DFD). The traditional DFD method is improved to become more rapid, which achieves a fast initial focus. The defocus distance is first calculated by the improved DFD method. The result is then used as a search step in the searching stage of the DFF method. A dynamic focusing scheme is designed for the control software, which is able to eliminate environmental disturbances and other noises so that a fast and accurate focus can be achieved. An experiment is designed to verify the proposed focusing method and the results show that the method's efficiency is at least 3-5 times higher than that of the traditional DFF method.

  4. PIVET rFSH dosing algorithms for individualized controlled ovarian stimulation enables optimized pregnancy productivity rates and avoidance of ovarian hyperstimulation syndrome.

    PubMed

    Yovich, John L; Alsbjerg, Birgit; Conceicao, Jason L; Hinchliffe, Peter M; Keane, Kevin N

    2016-01-01

    The first PIVET algorithm for individualized recombinant follicle stimulating hormone (rFSH) dosing in in vitro fertilization, reported in 2012, was based on age and antral follicle count grading with adjustments for anti-Müllerian hormone level, body mass index, day-2 FSH, and smoking history. In 2007, it was enabled by the introduction of a metered rFSH pen allowing small dosage increments of ~8.3 IU per click. In 2011, a second rFSH pen was introduced allowing more precise dosages of 12.5 IU per click, and both pens with their individual algorithms have been applied continuously at our clinic. The objective of this observational study was to validate the PIVET algorithms pertaining to the two rFSH pens with the aim of collecting ≤15 oocytes and minimizing the risk of ovarian hyperstimulation syndrome. The data set included 2,822 in vitro fertilization stimulations over a 6-year period until April 2014 applying either of the two individualized dosing algorithms and corresponding pens. The main outcome measures were mean oocytes retrieved and resultant embryos designated for transfer or cryopreservation permitted calculation of oocyte and embryo utilization rates. Ensuing pregnancies were tracked until live births, and live birth productivity rates embracing fresh and frozen transfers were calculated. Overall, the results showed that mean oocyte numbers were 10.0 for all women <40 years with 24% requiring rFSH dosages <150 IU. Applying both specific algorithms in our clinic meant that the starting dose was not altered for 79.1% of patients and for 30.1% of those receiving the very lowest rFSH dosages (≤75 IU). Only 0.3% patients were diagnosed with severe ovarian hyperstimulation syndrome, all deemed avoidable due to definable breaches from the protocols. The live birth productivity rates exceeded 50% for women <35 years and was 33.2% for the group aged 35-39 years. Routine use of both algorithms led to only 11.6% of women generating >15 oocytes

  5. PIVET rFSH dosing algorithms for individualized controlled ovarian stimulation enables optimized pregnancy productivity rates and avoidance of ovarian hyperstimulation syndrome

    PubMed Central

    Yovich, John L; Alsbjerg, Birgit; Conceicao, Jason L; Hinchliffe, Peter M; Keane, Kevin N

    2016-01-01

    The first PIVET algorithm for individualized recombinant follicle stimulating hormone (rFSH) dosing in in vitro fertilization, reported in 2012, was based on age and antral follicle count grading with adjustments for anti-Müllerian hormone level, body mass index, day-2 FSH, and smoking history. In 2007, it was enabled by the introduction of a metered rFSH pen allowing small dosage increments of ~8.3 IU per click. In 2011, a second rFSH pen was introduced allowing more precise dosages of 12.5 IU per click, and both pens with their individual algorithms have been applied continuously at our clinic. The objective of this observational study was to validate the PIVET algorithms pertaining to the two rFSH pens with the aim of collecting ≤15 oocytes and minimizing the risk of ovarian hyperstimulation syndrome. The data set included 2,822 in vitro fertilization stimulations over a 6-year period until April 2014 applying either of the two individualized dosing algorithms and corresponding pens. The main outcome measures were mean oocytes retrieved and resultant embryos designated for transfer or cryopreservation permitted calculation of oocyte and embryo utilization rates. Ensuing pregnancies were tracked until live births, and live birth productivity rates embracing fresh and frozen transfers were calculated. Overall, the results showed that mean oocyte numbers were 10.0 for all women <40 years with 24% requiring rFSH dosages <150 IU. Applying both specific algorithms in our clinic meant that the starting dose was not altered for 79.1% of patients and for 30.1% of those receiving the very lowest rFSH dosages (≤75 IU). Only 0.3% patients were diagnosed with severe ovarian hyperstimulation syndrome, all deemed avoidable due to definable breaches from the protocols. The live birth productivity rates exceeded 50% for women <35 years and was 33.2% for the group aged 35–39 years. Routine use of both algorithms led to only 11.6% of women generating >15 oocytes

  6. How Novel Algorithms and Access to High Performance Computing Platforms are Enabling Scientific Progress in Atomic and Molecular Physics

    NASA Astrophysics Data System (ADS)

    Schneider, Barry I.

    2016-10-01

    Over the past 40 years there has been remarkable progress in the quantitative treatment of complex many-body problems in atomic and molecular physics (AMP). This has happened as a consequence of the development of new and powerful numerical methods, translating these algorithms into practical software and the associated evolution of powerful computing platforms ranging from desktops to high performance computational instruments capable of massively parallel computation. We are taking the opportunity afforded by this CCP2015 to review computational progress in scattering theory and the interaction of strong electromagnetic fields with atomic and molecular systems from the early 1960’s until the present time to show how these advances have revealed a remarkable array of interesting and in many cases unexpected features. The article is by no means complete and certainly reflects the views and experiences of the author.

  7. Helicopter Based Magnetic Detection Of Wells At The Teapot Dome (Naval Petroleum Reserve No. 3 Oilfield: Rapid And Accurate Geophysical Algorithms For Locating Wells

    NASA Astrophysics Data System (ADS)

    Harbert, W.; Hammack, R.; Veloski, G.; Hodge, G.

    2011-12-01

    In this study Airborne magnetic data was collected by Fugro Airborne Surveys from a helicopter platform (Figure 1) using the Midas II system over the 39 km2 NPR3 (Naval Petroleum Reserve No. 3) oilfield in east-central Wyoming. The Midas II system employs two Scintrex CS-2 cesium vapor magnetometers on opposite ends of a transversely mounted, 13.4-m long horizontal boom located amidships (Fig. 1). Each magnetic sensor had an in-flight sensitivity of 0.01 nT. Real time compensation of the magnetic data for magnetic noise induced by maneuvering of the aircraft was accomplished using two fluxgate magnetometers mounted just inboard of the cesium sensors. The total area surveyed was 40.5 km2 (NPR3) near Casper, Wyoming. The purpose of the survey was to accurately locate wells that had been drilled there during more than 90 years of continuous oilfield operation. The survey was conducted at low altitude and with closely spaced flight lines to improve the detection of wells with weak magnetic response and to increase the resolution of closely spaced wells. The survey was in preparation for a planned CO2 flood to enhance oil recovery, which requires a complete well inventory with accurate locations for all existing wells. The magnetic survey was intended to locate wells that are missing from the well database and to provide accurate locations for all wells. The well location method used combined an input dataset (for example, leveled total magnetic field reduced to the pole), combined with first and second horizontal spatial derivatives of this input dataset, which were then analyzed using focal statistics and finally combined using a fuzzy combination operation. Analytic signal and the Shi and Butt (2004) ZS attribute were also analyzed using this algorithm. A parameter could be adjusted to determine sensitivity. Depending on the input dataset 88% to 100% of the wells were located, with typical values being 95% to 99% for the NPR3 field site.

  8. Algorithm-enabled exploration of image-quality potential of cone-beam CT in image-guided radiation therapy

    NASA Astrophysics Data System (ADS)

    Han, Xiao; Pearson, Erik; Pelizzari, Charles; Al-Hallaq, Hania; Sidky, Emil Y.; Bian, Junguo; Pan, Xiaochuan

    2015-06-01

    Kilo-voltage (KV) cone-beam computed tomography (CBCT) unit mounted onto a linear accelerator treatment system, often referred to as on-board imager (OBI), plays an increasingly important role in image-guided radiation therapy. While the FDK algorithm is currently used for reconstructing images from clinical OBI data, optimization-based reconstruction has also been investigated for OBI CBCT. An optimization-based reconstruction involves numerous parameters, which can significantly impact reconstruction properties (or utility). The success of an optimization-based reconstruction for a particular class of practical applications thus relies strongly on appropriate selection of parameter values. In the work, we focus on tailoring the constrained-TV-minimization-based reconstruction, an optimization-based reconstruction previously shown of some potential for CBCT imaging conditions of practical interest, to OBI imaging through appropriate selection of parameter values. In particular, for given real data of phantoms and patient collected with OBI CBCT, we first devise utility metrics specific to OBI-quality-assurance tasks and then apply them to guiding the selection of parameter values in constrained-TV-minimization-based reconstruction. The study results show that the reconstructions are with improvement, relative to clinical FDK reconstruction, in both visualization and quantitative assessments in terms of the devised utility metrics.

  9. Scaling to 150K cores: recent algorithm and performance engineering developments enabling XGC1 to run at scale

    SciTech Connect

    Mark F. Adams; Seung-Hoe Ku; Patrick Worley; Ed D'Azevedo; Julian C. Cummings; C.S. Chang

    2009-10-01

    Particle-in-cell (PIC) methods have proven to be eft#11;ective in discretizing the Vlasov-Maxwell system of equations describing the core of toroidal burning plasmas for many decades. Recent physical understanding of the importance of edge physics for stability and transport in tokamaks has lead to development of the fi#12;rst fully toroidal edge PIC code - XGC1. The edge region poses special problems in meshing for PIC methods due to the lack of closed flux surfaces, which makes fi#12;eld-line following meshes and coordinate systems problematic. We present a solution to this problem with a semi-#12;field line following mesh method in a cylindrical coordinate system. Additionally, modern supercomputers require highly concurrent algorithms and implementations, with all levels of the memory hierarchy being effe#14;ciently utilized to realize optimal code performance. This paper presents a mesh and particle partitioning method, suitable to our meshing strategy, for use on highly concurrent cache-based computing platforms.

  10. Algorithm-enabled exploration of image-quality potential of cone-beam CT in image-guided radiation therapy

    PubMed Central

    Han, Xiao; Pearson, Erik; Pelizzari, Charles; Al-Hallaq, Hania; Sidky, Emil Y.; Bian, Junguo; Pan, Xiaochuan

    2015-01-01

    Kilo-voltage (KV) cone-beam computed tomography (CBCT) unit mounted onto a linear accelerator treatment system, often referred to as on-board imager (OBI), plays an increasingly important role in image-guide radiation therapy. While the FDK algorithm is used currently for reconstructing images from clinical OBI data, optimization-based reconstruction has also been investigated for OBI CBCT. An optimization-based reconstruction involves numerous parameters, which can significantly impact reconstruction properties (or utility). The success of an optimization-based reconstruction for a particular class of practical applications thus relies strongly on appropriate selection of parameter values. In the work, we focus on tailoring the constrained-TV-minimization-based reconstruction, an optimization-based reconstruction previously shown of some potential for CBCT imaging conditions of practical interest, to OBI imaging through appropriate selection of parameter values. In particular, for given real data of phantoms and patient collected with OBI CBCT, we first devise utility metrics specific to OBI-quality-assurance tasks and then apply them to guiding the selection of parameter values in constrained-TV-minimization-based reconstruction. The study results show that the reconstructions are with improvement, relative to clinical FDK reconstruction, in both visualization and quantitative assessments in terms of the devised utility metrics. PMID:26020490

  11. Fast, Simple and Accurate Handwritten Digit Classification by Training Shallow Neural Network Classifiers with the ‘Extreme Learning Machine’ Algorithm

    PubMed Central

    McDonnell, Mark D.; Tissera, Migel D.; Vladusich, Tony; van Schaik, André; Tapson, Jonathan

    2015-01-01

    Recent advances in training deep (multi-layer) architectures have inspired a renaissance in neural network use. For example, deep convolutional networks are becoming the default option for difficult tasks on large datasets, such as image and speech recognition. However, here we show that error rates below 1% on the MNIST handwritten digit benchmark can be replicated with shallow non-convolutional neural networks. This is achieved by training such networks using the ‘Extreme Learning Machine’ (ELM) approach, which also enables a very rapid training time (∼ 10 minutes). Adding distortions, as is common practise for MNIST, reduces error rates even further. Our methods are also shown to be capable of achieving less than 5.5% error rates on the NORB image database. To achieve these results, we introduce several enhancements to the standard ELM algorithm, which individually and in combination can significantly improve performance. The main innovation is to ensure each hidden-unit operates only on a randomly sized and positioned patch of each image. This form of random ‘receptive field’ sampling of the input ensures the input weight matrix is sparse, with about 90% of weights equal to zero. Furthermore, combining our methods with a small number of iterations of a single-batch backpropagation method can significantly reduce the number of hidden-units required to achieve a particular performance. Our close to state-of-the-art results for MNIST and NORB suggest that the ease of use and accuracy of the ELM algorithm for designing a single-hidden-layer neural network classifier should cause it to be given greater consideration either as a standalone method for simpler problems, or as the final classification stage in deep neural networks applied to more difficult problems. PMID:26262687

  12. Accurate Descriptions of Hot Flow Behaviors Across β Transus of Ti-6Al-4V Alloy by Intelligence Algorithm GA-SVR

    NASA Astrophysics Data System (ADS)

    Wang, Li-yong; Li, Le; Zhang, Zhi-hua

    2016-09-01

    Hot compression tests of Ti-6Al-4V alloy in a wide temperature range of 1023-1323 K and strain rate range of 0.01-10 s-1 were conducted by a servo-hydraulic and computer-controlled Gleeble-3500 machine. In order to accurately and effectively characterize the highly nonlinear flow behaviors, support vector regression (SVR) which is a machine learning method was combined with genetic algorithm (GA) for characterizing the flow behaviors, namely, the GA-SVR. The prominent character of GA-SVR is that it with identical training parameters will keep training accuracy and prediction accuracy at a stable level in different attempts for a certain dataset. The learning abilities, generalization abilities, and modeling efficiencies of the mathematical regression model, ANN, and GA-SVR for Ti-6Al-4V alloy were detailedly compared. Comparison results show that the learning ability of the GA-SVR is stronger than the mathematical regression model. The generalization abilities and modeling efficiencies of these models were shown as follows in ascending order: the mathematical regression model < ANN < GA-SVR. The stress-strain data outside experimental conditions were predicted by the well-trained GA-SVR, which improved simulation accuracy of the load-stroke curve and can further improve the related research fields where stress-strain data play important roles, such as speculating work hardening and dynamic recovery, characterizing dynamic recrystallization evolution, and improving processing maps.

  13. Near-infrared reflectance spectroscopy (NIRS) enables the fast and accurate prediction of essential amino acid contents. 2. Results for wheat, barley, corn, triticale, wheat bran/middlings, rice bran, and sorghum.

    PubMed

    Fontaine, Johannes; Schirmer, Barbara; Hörr, Jutta

    2002-07-03

    Further NIRS calibrations were developed for the accurate and fast prediction of the total contents of methionine, cystine, lysine, threonine, tryptophan, and other essential amino acids, protein, and moisture in the most important cereals and brans or middlings for animal feed production. More than 1100 samples of global origin collected over five years were analyzed for amino acids following the Official Methods of the United States and European Union. Detailed data and graphics are given to characterize the obtained calibration equations. NIRS was validated with 98 independent samples for wheat and 78 samples for corn and compared to amino acid predictions using linear crude protein regression equations. With a few exceptions, validation showed that 70-98% of the amino acid variance in the samples could be explained using NIRS. Especially for lysine and methionine, the most limiting amino acids for farm animals, NIRS can predict contents in cereals much better than crude protein regressions. Through low cost and high speed of analysis NIRS enables the amino acid analysis of many samples in order to improve the accuracy of feed formulation and obtain better quality and lower production costs.

  14. An Accurate and Efficient Algorithm for Detection of Radio Bursts with an Unknown Dispersion Measure, for Single-dish Telescopes and Interferometers

    NASA Astrophysics Data System (ADS)

    Zackay, Barak; Ofek, Eran O.

    2017-01-01

    Astronomical radio signals are subjected to phase dispersion while traveling through the interstellar medium. To optimally detect a short-duration signal within a frequency band, we have to precisely compensate for the unknown pulse dispersion, which is a computationally demanding task. We present the “fast dispersion measure transform” algorithm for optimal detection of such signals. Our algorithm has a low theoretical complexity of 2{N}f{N}t+{N}t{N}{{Δ }}{{log}}2({N}f), where Nf, Nt, and NΔ are the numbers of frequency bins, time bins, and dispersion measure bins, respectively. Unlike previously suggested fast algorithms, our algorithm conserves the sensitivity of brute-force dedispersion. Our tests indicate that this algorithm, running on a standard desktop computer and implemented in a high-level programming language, is already faster than the state-of-the-art dedispersion codes running on graphical processing units (GPUs). We also present a variant of the algorithm that can be efficiently implemented on GPUs. The latter algorithm’s computation and data-transport requirements are similar to those of a two-dimensional fast Fourier transform, indicating that incoherent dedispersion can now be considered a nonissue while planning future surveys. We further present a fast algorithm for sensitive detection of pulses shorter than the dispersive smearing limits of incoherent dedispersion. In typical cases, this algorithm is orders of magnitude faster than enumerating dispersion measures and coherently dedispersing by convolution. We analyze the computational complexity of pulsed signal searches by radio interferometers. We conclude that, using our suggested algorithms, maximally sensitive blind searches for dispersed pulses are feasible using existing facilities. We provide an implementation of these algorithms in Python and MATLAB.

  15. A Robust and Accurate Two-Step Auto-Labeling Conditional Iterative Closest Points (TACICP) Algorithm for Three-Dimensional Multi-Modal Carotid Image Registration

    PubMed Central

    Guo, Hengkai; Wang, Guijin; Huang, Lingyun; Hu, Yuxin; Yuan, Chun; Li, Rui; Zhao, Xihai

    2016-01-01

    Atherosclerosis is among the leading causes of death and disability. Combining information from multi-modal vascular images is an effective and efficient way to diagnose and monitor atherosclerosis, in which image registration is a key technique. In this paper a feature-based registration algorithm, Two-step Auto-labeling Conditional Iterative Closed Points (TACICP) algorithm, is proposed to align three-dimensional carotid image datasets from ultrasound (US) and magnetic resonance (MR). Based on 2D segmented contours, a coarse-to-fine strategy is employed with two steps: rigid initialization step and non-rigid refinement step. Conditional Iterative Closest Points (CICP) algorithm is given in rigid initialization step to obtain the robust rigid transformation and label configurations. Then the labels and CICP algorithm with non-rigid thin-plate-spline (TPS) transformation model is introduced to solve non-rigid carotid deformation between different body positions. The results demonstrate that proposed TACICP algorithm has achieved an average registration error of less than 0.2mm with no failure case, which is superior to the state-of-the-art feature-based methods. PMID:26881433

  16. A Robust and Accurate Two-Step Auto-Labeling Conditional Iterative Closest Points (TACICP) Algorithm for Three-Dimensional Multi-Modal Carotid Image Registration.

    PubMed

    Guo, Hengkai; Wang, Guijin; Huang, Lingyun; Hu, Yuxin; Yuan, Chun; Li, Rui; Zhao, Xihai

    2016-01-01

    Atherosclerosis is among the leading causes of death and disability. Combining information from multi-modal vascular images is an effective and efficient way to diagnose and monitor atherosclerosis, in which image registration is a key technique. In this paper a feature-based registration algorithm, Two-step Auto-labeling Conditional Iterative Closed Points (TACICP) algorithm, is proposed to align three-dimensional carotid image datasets from ultrasound (US) and magnetic resonance (MR). Based on 2D segmented contours, a coarse-to-fine strategy is employed with two steps: rigid initialization step and non-rigid refinement step. Conditional Iterative Closest Points (CICP) algorithm is given in rigid initialization step to obtain the robust rigid transformation and label configurations. Then the labels and CICP algorithm with non-rigid thin-plate-spline (TPS) transformation model is introduced to solve non-rigid carotid deformation between different body positions. The results demonstrate that proposed TACICP algorithm has achieved an average registration error of less than 0.2mm with no failure case, which is superior to the state-of-the-art feature-based methods.

  17. Fast and accurate metrology of multi-layered ceramic materials by an automated boundary detection algorithm developed for optical coherence tomography data

    PubMed Central

    Ekberg, Peter; Su, Rong; Chang, Ernest W.; Yun, Seok Hyun; Mattsson, Lars

    2014-01-01

    Optical coherence tomography (OCT) is useful for materials defect analysis and inspection with the additional possibility of quantitative dimensional metrology. Here, we present an automated image-processing algorithm for OCT analysis of roll-to-roll multilayers in 3D manufacturing of advanced ceramics. It has the advantage of avoiding filtering and preset modeling, and will, thus, introduce a simplification. The algorithm is validated for its capability of measuring the thickness of ceramic layers, extracting the boundaries of embedded features with irregular shapes, and detecting the geometric deformations. The accuracy of the algorithm is very high, and the reliability is better than 1 µm when evaluating with the OCT images using the same gauge block step height reference. The method may be suitable for industrial applications to the rapid inspection of manufactured samples with high accuracy and robustness. PMID:24562018

  18. Fast and accurate metrology of multi-layered ceramic materials by an automated boundary detection algorithm developed for optical coherence tomography data.

    PubMed

    Ekberg, Peter; Su, Rong; Chang, Ernest W; Yun, Seok Hyun; Mattsson, Lars

    2014-02-01

    Optical coherence tomography (OCT) is useful for materials defect analysis and inspection with the additional possibility of quantitative dimensional metrology. Here, we present an automated image-processing algorithm for OCT analysis of roll-to-roll multilayers in 3D manufacturing of advanced ceramics. It has the advantage of avoiding filtering and preset modeling, and will, thus, introduce a simplification. The algorithm is validated for its capability of measuring the thickness of ceramic layers, extracting the boundaries of embedded features with irregular shapes, and detecting the geometric deformations. The accuracy of the algorithm is very high, and the reliability is better than 1 μm when evaluating with the OCT images using the same gauge block step height reference. The method may be suitable for industrial applications to the rapid inspection of manufactured samples with high accuracy and robustness.

  19. Accurate monotone cubic interpolation

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1991-01-01

    Monotone piecewise cubic interpolants are simple and effective. They are generally third-order accurate, except near strict local extrema where accuracy degenerates to second-order due to the monotonicity constraint. Algorithms for piecewise cubic interpolants, which preserve monotonicity as well as uniform third and fourth-order accuracy are presented. The gain of accuracy is obtained by relaxing the monotonicity constraint in a geometric framework in which the median function plays a crucial role.

  20. Genetic algorithms

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Bayer, Steven E.

    1991-01-01

    Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology.

  1. The CUPIC algorithm: an accurate model for the prediction of sustained viral response under telaprevir or boceprevir triple therapy in cirrhotic patients.

    PubMed

    Boursier, J; Ducancelle, A; Vergniol, J; Veillon, P; Moal, V; Dufour, C; Bronowicki, J-P; Larrey, D; Hézode, C; Zoulim, F; Fontaine, H; Canva, V; Poynard, T; Allam, S; De Lédinghen, V

    2015-12-01

    Triple therapy using boceprevir or telaprevir remains the reference treatment for genotype 1 chronic hepatitis C in countries where new interferon-free regimens have not yet become available. Antiviral treatment is highly required in cirrhotic patients, but they represent a difficult-to-treat population. We aimed to develop a simple algorithm for the prediction of sustained viral response (SVR) in cirrhotic patients treated with triple therapy. A total of 484 cirrhotic patients from the ANRS CO20 CUPIC cohort treated with triple therapy were randomly distributed into derivation and validation sets. A total of 52.1% of patients achieved SVR. In the derivation set, a D0 score for the prediction of SVR before treatment initiation included the following independent predictors collected at day 0: prior treatment response, gamma-GT, platelets, telaprevir treatment, viral load. To refine the prediction at the early phase of the treatment, a W4 score included as additional parameter the viral load collected at week 4. The D0 and W4 scores were combined in the CUPIC algorithm defining three subgroups: 'no treatment initiation or early stop at week 4', 'undetermined' and 'SVR highly probable'. In the validation set, the rates of SVR in these three subgroups were, respectively, 11.1%, 50.0% and 82.2% (P < 0.001). By replacing the variable 'prior treatment response' with 'IL28B genotype', another algorithm was derived for treatment-naïve patients with similar results. The CUPIC algorithm is an easy-to-use tool that helps physicians weigh their decision between immediately treating cirrhotic patients using boceprevir/telaprevir triple therapy or waiting for new drugs to become available in their country.

  2. An efficient and accurate solution methodology for bilevel multi-objective programming problems using a hybrid evolutionary-local-search algorithm.

    PubMed

    Deb, Kalyanmoy; Sinha, Ankur

    2010-01-01

    Bilevel optimization problems involve two optimization tasks (upper and lower level), in which every feasible upper level solution must correspond to an optimal solution to a lower level optimization problem. These problems commonly appear in many practical problem solving tasks including optimal control, process optimization, game-playing strategy developments, transportation problems, and others. However, they are commonly converted into a single level optimization problem by using an approximate solution procedure to replace the lower level optimization task. Although there exist a number of theoretical, numerical, and evolutionary optimization studies involving single-objective bilevel programming problems, not many studies look at the context of multiple conflicting objectives in each level of a bilevel programming problem. In this paper, we address certain intricate issues related to solving multi-objective bilevel programming problems, present challenging test problems, and propose a viable and hybrid evolutionary-cum-local-search based algorithm as a solution methodology. The hybrid approach performs better than a number of existing methodologies and scales well up to 40-variable difficult test problems used in this study. The population sizing and termination criteria are made self-adaptive, so that no additional parameters need to be supplied by the user. The study indicates a clear niche of evolutionary algorithms in solving such difficult problems of practical importance compared to their usual solution by a computationally expensive nested procedure. The study opens up many issues related to multi-objective bilevel programming and hopefully this study will motivate EMO and other researchers to pay more attention to this important and difficult problem solving activity.

  3. An auxiliary graph based dynamic traffic grooming algorithm in spatial division multiplexing enabled elastic optical networks with multi-core fibers

    NASA Astrophysics Data System (ADS)

    Zhao, Yongli; Tian, Rui; Yu, Xiaosong; Zhang, Jiawei; Zhang, Jie

    2017-03-01

    A proper traffic grooming strategy in dynamic optical networks can improve the utilization of bandwidth resources. An auxiliary graph (AG) is designed to solve the traffic grooming problem under a dynamic traffic scenario in spatial division multiplexing enabled elastic optical networks (SDM-EON) with multi-core fibers. Five traffic grooming policies achieved by adjusting the edge weights of an AG are proposed and evaluated through simulation: maximal electrical grooming (MEG), maximal optical grooming (MOG), maximal SDM grooming (MSG), minimize virtual hops (MVH), and minimize physical hops (MPH). Numeric results show that each traffic grooming policy has its own features. Among different traffic grooming policies, an MPH policy can achieve the lowest bandwidth blocking ratio, MEG can save the most transponders, and MSG can obtain the fewest cores for each request.

  4. Apparatus enables accurate determination of alkali oxides in alkali metals

    NASA Technical Reports Server (NTRS)

    Dupraw, W. A.; Gahn, R. F.; Graab, J. W.; Maple, W. E.; Rosenblum, L.

    1966-01-01

    Evacuated apparatus determines the alkali oxide content of an alkali metal by separating the metal from the oxide by amalgamation with mercury. The apparatus prevents oxygen and moisture from inadvertently entering the system during the sampling and analytical procedure.

  5. Comparison of dose distributions calculated by the cyberknife Monte Carlo and ray tracing algorithms for lung tumors: a phantom study

    NASA Astrophysics Data System (ADS)

    Koksal, Canan; Akbas, Ugur; Okutan, Murat; Demir, Bayram; Hakki Sarpun, Ismail

    2015-07-01

    Commercial treatment planning systems with have different dose calculation algorithms have been developed for radiotherapy plans. The Ray Tracing and the Monte Carlo dose calculation algorithms are available for MultiPlan treatment planning system. Many studies indicated that the Monte Carlo algorithm enables the more accurate dose distributions in heterogeneous regions such a lung than the Ray Tracing algorithm. The purpose of this study was to compare the Ray Tracing algorithm with the Monte Carlo algorithm for lung tumors in CyberKnife System. An Alderson Rando anthropomorphic phantom was used for creating CyberKnife treatment plans. The treatment plan was developed using the Ray Tracing algorithm. Then, this plan was recalculated with the Monte Carlo algorithm. EBT3 radiochromic films were put in the phantom to obtain measured dose distributions. The calculated doses were compared with the measured doses. The Monte Carlo algorithm is the more accurate dose calculation method than the Ray Tracing algorithm in nonhomogeneous structures.

  6. D-BRAIN: Anatomically Accurate Simulated Diffusion MRI Brain Data.

    PubMed

    Perrone, Daniele; Jeurissen, Ben; Aelterman, Jan; Roine, Timo; Sijbers, Jan; Pizurica, Aleksandra; Leemans, Alexander; Philips, Wilfried

    2016-01-01

    Diffusion Weighted (DW) MRI allows for the non-invasive study of water diffusion inside living tissues. As such, it is useful for the investigation of human brain white matter (WM) connectivity in vivo through fiber tractography (FT) algorithms. Many DW-MRI tailored restoration techniques and FT algorithms have been developed. However, it is not clear how accurately these methods reproduce the WM bundle characteristics in real-world conditions, such as in the presence of noise, partial volume effect, and a limited spatial and angular resolution. The difficulty lies in the lack of a realistic brain phantom on the one hand, and a sufficiently accurate way of modeling the acquisition-related degradation on the other. This paper proposes a software phantom that approximates a human brain to a high degree of realism and that can incorporate complex brain-like structural features. We refer to it as a Diffusion BRAIN (D-BRAIN) phantom. Also, we propose an accurate model of a (DW) MRI acquisition protocol to allow for validation of methods in realistic conditions with data imperfections. The phantom model simulates anatomical and diffusion properties for multiple brain tissue components, and can serve as a ground-truth to evaluate FT algorithms, among others. The simulation of the acquisition process allows one to include noise, partial volume effects, and limited spatial and angular resolution in the images. In this way, the effect of image artifacts on, for instance, fiber tractography can be investigated with great detail. The proposed framework enables reliable and quantitative evaluation of DW-MR image processing and FT algorithms at the level of large-scale WM structures. The effect of noise levels and other data characteristics on cortico-cortical connectivity and tractography-based grey matter parcellation can be investigated as well.

  7. Tools for Accurate and Efficient Analysis of Complex Evolutionary Mechanisms in Microbial Genomes. Final Report

    SciTech Connect

    Nakhleh, Luay

    2014-03-12

    I proposed to develop computationally efficient tools for accurate detection and reconstruction of microbes' complex evolutionary mechanisms, thus enabling rapid and accurate annotation, analysis and understanding of their genomes. To achieve this goal, I proposed to address three aspects. (1) Mathematical modeling. A major challenge facing the accurate detection of HGT is that of distinguishing between these two events on the one hand and other events that have similar "effects." I proposed to develop a novel mathematical approach for distinguishing among these events. Further, I proposed to develop a set of novel optimization criteria for the evolutionary analysis of microbial genomes in the presence of these complex evolutionary events. (2) Algorithm design. In this aspect of the project, I proposed to develop an array of e cient and accurate algorithms for analyzing microbial genomes based on the formulated optimization criteria. Further, I proposed to test the viability of the criteria and the accuracy of the algorithms in an experimental setting using both synthetic as well as biological data. (3) Software development. I proposed the nal outcome to be a suite of software tools which implements the mathematical models as well as the algorithms developed.

  8. Scheduling algorithms

    NASA Astrophysics Data System (ADS)

    Wolfe, William J.; Wood, David; Sorensen, Stephen E.

    1996-12-01

    This paper discusses automated scheduling as it applies to complex domains such as factories, transportation, and communications systems. The window-constrained-packing problem is introduced as an ideal model of the scheduling trade offs. Specific algorithms are compared in terms of simplicity, speed, and accuracy. In particular, dispatch, look-ahead, and genetic algorithms are statistically compared on randomly generated job sets. The conclusion is that dispatch methods are fast and fairly accurate; while modern algorithms, such as genetic and simulate annealing, have excessive run times, and are too complex to be practical.

  9. Advancements to the planogram frequency–distance rebinning algorithm

    PubMed Central

    Champley, Kyle M; Raylman, Raymond R; Kinahan, Paul E

    2010-01-01

    In this paper we consider the task of image reconstruction in positron emission tomography (PET) with the planogram frequency–distance rebinning (PFDR) algorithm. The PFDR algorithm is a rebinning algorithm for PET systems with panel detectors. The algorithm is derived in the planogram coordinate system which is a native data format for PET systems with panel detectors. A rebinning algorithm averages over the redundant four-dimensional set of PET data to produce a three-dimensional set of data. Images can be reconstructed from this rebinned three-dimensional set of data. This process enables one to reconstruct PET images more quickly than reconstructing directly from the four-dimensional PET data. The PFDR algorithm is an approximate rebinning algorithm. We show that implementing the PFDR algorithm followed by the (ramp) filtered backprojection (FBP) algorithm in linogram coordinates from multiple views reconstructs a filtered version of our image. We develop an explicit formula for this filter which can be used to achieve exact reconstruction by means of a modified FBP algorithm applied to the stack of rebinned linograms and can also be used to quantify the errors introduced by the PFDR algorithm. This filter is similar to the filter in the planogram filtered backprojection algorithm derived by Brasse et al. The planogram filtered backprojection and exact reconstruction with the PFDR algorithm require complete projections which can be completed with a reprojection algorithm. The PFDR algorithm is similar to the rebinning algorithm developed by Kao et al. By expressing the PFDR algorithm in detector coordinates, we provide a comparative analysis between the two algorithms. Numerical experiments using both simulated data and measured data from a positron emission mammography/tomography (PEM/PET) system are performed. Images are reconstructed by PFDR+FBP (PFDR followed by 2D FBP reconstruction), PFDRX (PFDR followed by the modified FBP algorithm for exact

  10. Two-wavelength interferometry: extended range and accurate optical path difference analytical estimator.

    PubMed

    Houairi, Kamel; Cassaing, Frédéric

    2009-12-01

    Two-wavelength interferometry combines measurement at two wavelengths lambda(1) and lambda(2) in order to increase the unambiguous range (UR) for the measurement of an optical path difference. With the usual algorithm, the UR is equal to the synthetic wavelength Lambda=lambda(1)lambda(2)/|lambda(1)-lambda(2)|, and the accuracy is a fraction of Lambda. We propose here a new analytical algorithm based on arithmetic properties, allowing estimation of the absolute fringe order of interference in a noniterative way. This algorithm has nice properties compared with the usual algorithm: it is at least as accurate as the most accurate measurement at one wavelength, whereas the UR is extended to several times the synthetic wavelength. The analysis presented shows how the actual UR depends on the wavelengths and different sources of error. The simulations presented are confirmed by experimental results, showing that the new algorithm has enabled us to reach an UR of 17.3 microm, much larger than the synthetic wavelength, which is only Lambda=2.2 microm. Applications to metrology and fringe tracking are discussed.

  11. Simple, flexible, and accurate phase retrieval method for generalized phase-shifting interferometry.

    PubMed

    Yatabe, Kohei; Ishikawa, Kenji; Oikawa, Yasuhiro

    2017-01-01

    This paper presents a non-iterative phase retrieval method from randomly phase-shifted fringe images. By combining the hyperaccurate least squares ellipse fitting method with the subspace method (usually called the principal component analysis), a fast and accurate phase retrieval algorithm is realized. The proposed method is simple, flexible, and accurate. It can be easily coded without iteration, initial guess, or tuning parameter. Its flexibility comes from the fact that totally random phase-shifting steps and any number of fringe images greater than two are acceptable without any specific treatment. Finally, it is accurate because the hyperaccurate least squares method and the modified subspace method enable phase retrieval with a small error as shown by the simulations. A MATLAB code, which is used in the experimental section, is provided within the paper to demonstrate its simplicity and easiness.

  12. A fast and efficient algorithm for Slater determinant updates in quantum Monte Carlo simulations.

    PubMed

    Nukala, Phani K V V; Kent, P R C

    2009-05-28

    We present an efficient low-rank updating algorithm for updating the trial wave functions used in quantum Monte Carlo (QMC) simulations. The algorithm is based on low-rank updating of the Slater determinants. In particular, the computational complexity of the algorithm is O(kN) during the kth step compared to traditional algorithms that require O(N(2)) computations, where N is the system size. For single determinant trial wave functions the new algorithm is faster than the traditional O(N(2)) Sherman-Morrison algorithm for up to O(N) updates. For multideterminant configuration-interaction-type trial wave functions of M+1 determinants, the new algorithm is significantly more efficient, saving both O(MN(2)) work and O(MN(2)) storage. The algorithm enables more accurate and significantly more efficient QMC calculations using configuration-interaction-type wave functions.

  13. Noncontact accurate measurement of cardiopulmonary activity using a compact quadrature Doppler radar sensor.

    PubMed

    Hu, Wei; Zhao, Zhangyan; Wang, Yunfeng; Zhang, Haiying; Lin, Fujiang

    2014-03-01

    The designed sensor enables accurate reconstruction of chest-wall movement caused by cardiopulmonary activities, and the algorithm enables estimation of respiration, heartbeat rate, and some indicators of heart rate variability (HRV). In particular, quadrature receiver and arctangent demodulation with calibration are introduced for high linearity representation of chest displacement; 24-bit ADCs with oversampling are adopted for radar baseband acquisition to achieve a high signal resolution; continuous-wavelet filter and ensemble empirical mode decomposition (EEMD) based algorithm are applied for cardio/pulmonary signal recovery and separation so that accurate beat-to-beat interval can be acquired in time domain for HRV analysis. In addition, the wireless sensor is realized and integrated on a printed circuit board compactly. The developed sensor system is successfully tested on both simulated target and human subjects. In simulated target experiments, the baseband signal-to-noise ratio (SNR) is 73.27 dB, high enough for heartbeat detection. The demodulated signal has 0.35% mean squared error, indicating high demodulation linearity. In human subject experiments, the relative error of extracted beat-to-beat intervals ranges from 2.53% to 4.83% compared with electrocardiography (ECG) R-R peak intervals. The sensor provides an accurate analysis for heart rate with the accuracy of 100% for p = 2% and higher than 97% for p = 1%.

  14. Accurate ab Initio Spin Densities.

    PubMed

    Boguslawski, Katharina; Marti, Konrad H; Legeza, Ors; Reiher, Markus

    2012-06-12

    We present an approach for the calculation of spin density distributions for molecules that require very large active spaces for a qualitatively correct description of their electronic structure. Our approach is based on the density-matrix renormalization group (DMRG) algorithm to calculate the spin density matrix elements as a basic quantity for the spatially resolved spin density distribution. The spin density matrix elements are directly determined from the second-quantized elementary operators optimized by the DMRG algorithm. As an analytic convergence criterion for the spin density distribution, we employ our recently developed sampling-reconstruction scheme [J. Chem. Phys.2011, 134, 224101] to build an accurate complete-active-space configuration-interaction (CASCI) wave function from the optimized matrix product states. The spin density matrix elements can then also be determined as an expectation value employing the reconstructed wave function expansion. Furthermore, the explicit reconstruction of a CASCI-type wave function provides insight into chemically interesting features of the molecule under study such as the distribution of α and β electrons in terms of Slater determinants, CI coefficients, and natural orbitals. The methodology is applied to an iron nitrosyl complex which we have identified as a challenging system for standard approaches [J. Chem. Theory Comput.2011, 7, 2740].

  15. Algorithms and Algorithmic Languages.

    ERIC Educational Resources Information Center

    Veselov, V. M.; Koprov, V. M.

    This paper is intended as an introduction to a number of problems connected with the description of algorithms and algorithmic languages, particularly the syntaxes and semantics of algorithmic languages. The terms "letter, word, alphabet" are defined and described. The concept of the algorithm is defined and the relation between the algorithm and…

  16. Clinical application of a novel automatic algorithm for actigraphy-based activity and rest period identification to accurately determine awake and asleep ambulatory blood pressure parameters and cardiovascular risk.

    PubMed

    Crespo, Cristina; Fernández, José R; Aboy, Mateo; Mojón, Artemio

    2013-03-01

    This paper reports the results of a study designed to determine whether there are statistically significant differences between the values of ambulatory blood pressure monitoring (ABPM) parameters obtained using different methods-fixed schedule, diary, and automatic algorithm based on actigraphy-of defining the main activity and rest periods, and to determine the clinical relevance of such differences. We studied 233 patients (98 men/135 women), 61.29 ± .83 yrs of age (mean ± SD). Statistical methods were used to measure agreement in the diagnosis and classification of subjects within the context of ABPM and cardiovascular disease risk assessment. The results show that there are statistically significant differences both at the group and individual levels. Those at the individual level have clinically significant implications, as they can result in a different classification, and, therefore, different diagnosis and treatment for individual subjects. The use of an automatic algorithm based on actigraphy can lead to better individual treatment by correcting the accuracy problems associated with the fixed schedule on patients whose actual activity/rest routine differs from the fixed schedule assumed, and it also overcomes the limitations and reliability issues associated with the use of diaries.

  17. Analysis of TaqMan Array Cards Data by an Assumption-Free Improvement of the maxRatio Algorithm Is More Accurate than the Cycle-Threshold Method

    PubMed Central

    Shain, Eric; Drumright, Lydia; Lillestøl, Reidun; Somasunderam, Donald; Curran, Martin D.

    2016-01-01

    Quantitative PCR diagnostic platforms are moving towards increased sample throughput, with instruments capable of carrying out thousands of reactions at once already in use. The need for a computational tool to reliably assist in the validation of the results is therefore compelling. In the present study, 328 residual clinical samples provided by the Public Health England at Addenbrooke's Hospital (Cambridge, UK) were processed by TaqMan Array Card assay, generating 15 744 reactions from 54 targets. The amplification data were analysed by the conventional cycle-threshold (CT) method and an improvement of the maxRatio (MR) algorithm developed to filter out the reactions with irregular amplification profiles. The reactions were also independently validated by three raters and a consensus was generated from their classification. The inter-rater agreement by Fleiss' kappa was 0.885; the agreement between either CT or MR with the raters gave Fleiss' kappa 0.884 and 0.902, respectively. Based on the consensus classification, the CT and MR methods achieved an assay accuracy of 0.979 and 0.987, respectively. These results suggested that the assumption-free MR algorithm was more reliable than the CT method, with clear advantages for the diagnostic settings. PMID:27828987

  18. LSM: perceptually accurate line segment merging

    NASA Astrophysics Data System (ADS)

    Hamid, Naila; Khan, Nazar

    2016-11-01

    Existing line segment detectors tend to break up perceptually distinct line segments into multiple segments. We propose an algorithm for merging such broken segments to recover the original perceptually accurate line segments. The algorithm proceeds by grouping line segments on the basis of angular and spatial proximity. Then those line segment pairs within each group that satisfy unique, adaptive mergeability criteria are successively merged to form a single line segment. This process is repeated until no more line segments can be merged. We also propose a method for quantitative comparison of line segment detection algorithms. Results on the York Urban dataset show that our merged line segments are closer to human-marked ground-truth line segments compared to state-of-the-art line segment detection algorithms.

  19. Outcomes from Enabling Courses.

    ERIC Educational Resources Information Center

    Phan, Oanh; Ball, Katrina

    The outcomes of enabling courses offered in Australia's vocational education and training (VET) sector were examined. "Enabling course" was defined as lower-level preparatory and prevocational courses covering a wide range of areas, including remedial education, bridging courses, precertificate courses, and general employment preparation…

  20. Technology Enabled Learning. Symposium.

    ERIC Educational Resources Information Center

    2002

    This document contains three papers on technology-enabled learning and human resource development. Among results found in "Current State of Technology-enabled Learning Programs in Select Federal Government Organizations: a Case Study of Ten Organizations" (Letitia A. Combs) are the following: the dominant delivery method is traditional…

  1. Enabling Strain Hardening Simulations with Dislocation Dynamics

    SciTech Connect

    Arsenlis, A; Cai, W

    2006-12-20

    Numerical algorithms for discrete dislocation dynamics simulations are investigated for the purpose of enabling strain hardening simulations of single crystals on massively parallel computers. The algorithms investigated include the /(N) calculation of forces, the equations of motion, time integration, adaptive mesh refinement, the treatment of dislocation core reactions, and the dynamic distribution of work on parallel computers. A simulation integrating all of these algorithmic elements using the Parallel Dislocation Simulator (ParaDiS) code is performed to understand their behavior in concert, and evaluate the overall numerical performance of dislocation dynamics simulations and their ability to accumulate percents of plastic strain.

  2. Uses of clinical algorithms.

    PubMed

    Margolis, C Z

    1983-02-04

    The clinical algorithm (flow chart) is a text format that is specially suited for representing a sequence of clinical decisions, for teaching clinical decision making, and for guiding patient care. A representative clinical algorithm is described in detail; five steps for writing an algorithm and seven steps for writing a set of algorithms are outlined. Five clinical education and patient care uses of algorithms are then discussed, including a map for teaching clinical decision making and protocol charts for guiding step-by-step care of specific problems. Clinical algorithms are compared as to their clinical usefulness with decision analysis. Three objections to clinical algorithms are answered, including the one that they restrict thinking. It is concluded that methods should be sought for writing clinical algorithms that represent expert consensus. A clinical algorithm could then be written for any area of medical decision making that can be standardized. Medical practice could then be taught more effectively, monitored accurately, and understood better.

  3. Final Report for DOE Grant DE-FG02-03ER25579; Development of High-Order Accurate Interface Tracking Algorithms and Improved Constitutive Models for Problems in Continuum Mechanics with Applications to Jetting

    SciTech Connect

    Puckett, Elbridge Gerry; Miller, Gregory Hale

    2012-10-14

    Much of the work conducted under the auspices of DE-FG02-03ER25579 was characterized by an exceptionally close collaboration with researchers at the Lawrence Berkeley National Laboratory (LBNL). For example, Andy Nonaka, one of Professor Miller's graduate students in the Department of Applied Science at U. C. Davis (UCD) wrote his PhD thesis in an area of interest to researchers in the Applied Numerical Algorithms Group (ANAG), which is a part of the National Energy Research Supercomputer Center (NERSC) at LBNL. Dr. Nonaka collaborated closely with these researchers and subsequently published the results of this collaboration jointly with them, one article in a peer reviewed journal article and one paper in the proceedings of a conference. Dr. Nonaka is now a research scientist in the Center for Computational Sciences and Engineering (CCSE), which is also part of the National Energy Research Supercomputer Center (NERSC) at LBNL. This collaboration with researchers at LBNL also included having one of Professor Puckett's graduate students in the Graduate Group in Applied Mathematics (GGAM) at UCD, Sarah Williams, spend the summer working with Dr. Ann Almgren, who is a staff scientist in CCSE. As a result of this visit Sarah decided work on a problem suggested by the head of CCSE, Dr. John Bell, for her PhD thesis. Having finished all of the coursework and examinations required for a PhD, Sarah stayed at LBNL to work on her thesis under the guidance of Dr. Bell. Sarah finished her PhD thesis in June of 2007. Writing a PhD thesis while working at one of the University of California (UC) managed DOE laboratories is long established tradition at UC and Professor Puckett has always encouraged his students to consider doing this. Another one of Professor Puckett's graduate students in the GGAM at UCD, Christopher Algieri, was partially supported with funds from DE-FG02-03ER25579 while he wrote his MS thesis in which he analyzed and extended work originally published by Dr

  4. Using Alternative Multiplication Algorithms to "Offload" Cognition

    ERIC Educational Resources Information Center

    Jazby, Dan; Pearn, Cath

    2015-01-01

    When viewed through a lens of embedded cognition, algorithms may enable aspects of the cognitive work of multi-digit multiplication to be "offloaded" to the environmental structure created by an algorithm. This study analyses four multiplication algorithms by viewing different algorithms as enabling cognitive work to be distributed…

  5. Accurate quantum chemical calculations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1989-01-01

    An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.

  6. Accurate Detection of Dysmorphic Nuclei Using Dynamic Programming and Supervised Classification.

    PubMed

    Verschuuren, Marlies; De Vylder, Jonas; Catrysse, Hannes; Robijns, Joke; Philips, Wilfried; De Vos, Winnok H

    2017-01-01

    A vast array of pathologies is typified by the presence of nuclei with an abnormal morphology. Dysmorphic nuclear phenotypes feature dramatic size changes or foldings, but also entail much subtler deviations such as nuclear protrusions called blebs. Due to their unpredictable size, shape and intensity, dysmorphic nuclei are often not accurately detected in standard image analysis routines. To enable accurate detection of dysmorphic nuclei in confocal and widefield fluorescence microscopy images, we have developed an automated segmentation algorithm, called Blebbed Nuclei Detector (BleND), which relies on two-pass thresholding for initial nuclear contour detection, and an optimal path finding algorithm, based on dynamic programming, for refining these contours. Using a robust error metric, we show that our method matches manual segmentation in terms of precision and outperforms state-of-the-art nuclear segmentation methods. Its high performance allowed for building and integrating a robust classifier that recognizes dysmorphic nuclei with an accuracy above 95%. The combined segmentation-classification routine is bound to facilitate nucleus-based diagnostics and enable real-time recognition of dysmorphic nuclei in intelligent microscopy workflows.

  7. Accurate Detection of Dysmorphic Nuclei Using Dynamic Programming and Supervised Classification

    PubMed Central

    Verschuuren, Marlies; De Vylder, Jonas; Catrysse, Hannes; Robijns, Joke; Philips, Wilfried

    2017-01-01

    A vast array of pathologies is typified by the presence of nuclei with an abnormal morphology. Dysmorphic nuclear phenotypes feature dramatic size changes or foldings, but also entail much subtler deviations such as nuclear protrusions called blebs. Due to their unpredictable size, shape and intensity, dysmorphic nuclei are often not accurately detected in standard image analysis routines. To enable accurate detection of dysmorphic nuclei in confocal and widefield fluorescence microscopy images, we have developed an automated segmentation algorithm, called Blebbed Nuclei Detector (BleND), which relies on two-pass thresholding for initial nuclear contour detection, and an optimal path finding algorithm, based on dynamic programming, for refining these contours. Using a robust error metric, we show that our method matches manual segmentation in terms of precision and outperforms state-of-the-art nuclear segmentation methods. Its high performance allowed for building and integrating a robust classifier that recognizes dysmorphic nuclei with an accuracy above 95%. The combined segmentation-classification routine is bound to facilitate nucleus-based diagnostics and enable real-time recognition of dysmorphic nuclei in intelligent microscopy workflows. PMID:28125723

  8. ACCURATE CHEMICAL MASTER EQUATION SOLUTION USING MULTI-FINITE BUFFERS

    PubMed Central

    Cao, Youfang; Terebus, Anna; Liang, Jie

    2016-01-01

    The discrete chemical master equation (dCME) provides a fundamental framework for studying stochasticity in mesoscopic networks. Because of the multi-scale nature of many networks where reaction rates have large disparity, directly solving dCMEs is intractable due to the exploding size of the state space. It is important to truncate the state space effectively with quantified errors, so accurate solutions can be computed. It is also important to know if all major probabilistic peaks have been computed. Here we introduce the Accurate CME (ACME) algorithm for obtaining direct solutions to dCMEs. With multi-finite buffers for reducing the state space by O(n!), exact steady-state and time-evolving network probability landscapes can be computed. We further describe a theoretical framework of aggregating microstates into a smaller number of macrostates by decomposing a network into independent aggregated birth and death processes, and give an a priori method for rapidly determining steady-state truncation errors. The maximal sizes of the finite buffers for a given error tolerance can also be pre-computed without costly trial solutions of dCMEs. We show exactly computed probability landscapes of three multi-scale networks, namely, a 6-node toggle switch, 11-node phage-lambda epigenetic circuit, and 16-node MAPK cascade network, the latter two with no known solutions. We also show how probabilities of rare events can be computed from first-passage times, another class of unsolved problems challenging for simulation-based techniques due to large separations in time scales. Overall, the ACME method enables accurate and efficient solutions of the dCME for a large class of networks. PMID:27761104

  9. ACCURATE CHEMICAL MASTER EQUATION SOLUTION USING MULTI-FINITE BUFFERS.

    PubMed

    Cao, Youfang; Terebus, Anna; Liang, Jie

    2016-01-01

    The discrete chemical master equation (dCME) provides a fundamental framework for studying stochasticity in mesoscopic networks. Because of the multi-scale nature of many networks where reaction rates have large disparity, directly solving dCMEs is intractable due to the exploding size of the state space. It is important to truncate the state space effectively with quantified errors, so accurate solutions can be computed. It is also important to know if all major probabilistic peaks have been computed. Here we introduce the Accurate CME (ACME) algorithm for obtaining direct solutions to dCMEs. With multi-finite buffers for reducing the state space by O(n!), exact steady-state and time-evolving network probability landscapes can be computed. We further describe a theoretical framework of aggregating microstates into a smaller number of macrostates by decomposing a network into independent aggregated birth and death processes, and give an a priori method for rapidly determining steady-state truncation errors. The maximal sizes of the finite buffers for a given error tolerance can also be pre-computed without costly trial solutions of dCMEs. We show exactly computed probability landscapes of three multi-scale networks, namely, a 6-node toggle switch, 11-node phage-lambda epigenetic circuit, and 16-node MAPK cascade network, the latter two with no known solutions. We also show how probabilities of rare events can be computed from first-passage times, another class of unsolved problems challenging for simulation-based techniques due to large separations in time scales. Overall, the ACME method enables accurate and efficient solutions of the dCME for a large class of networks.

  10. BIOACCESSIBILITY TESTS ACCURATELY ESTIMATE ...

    EPA Pesticide Factsheets

    Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, we measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contaminated soils. Relative bioavailabilities were expressed by comparison with blood Pb concentrations in quail fed a Pb acetate reference diet. Diets containing soil from five Pb-contaminated Superfund sites had relative bioavailabilities from 33%-63%, with a mean of about 50%. Treatment of two of the soils with P significantly reduced the bioavailability of Pb. The bioaccessibility of the Pb in the test soils was then measured in six in vitro tests and regressed on bioavailability. They were: the “Relative Bioavailability Leaching Procedure” (RBALP) at pH 1.5, the same test conducted at pH 2.5, the “Ohio State University In vitro Gastrointestinal” method (OSU IVG), the “Urban Soil Bioaccessible Lead Test”, the modified “Physiologically Based Extraction Test” and the “Waterfowl Physiologically Based Extraction Test.” All regressions had positive slopes. Based on criteria of slope and coefficient of determination, the RBALP pH 2.5 and OSU IVG tests performed very well. Speciation by X-ray absorption spectroscopy demonstrated that, on average, most of the Pb in the sampled soils was sorbed to minerals (30%), bound to organic matter 24%, or present as Pb sulfate 18%. Ad

  11. Accurate spectral color measurements

    NASA Astrophysics Data System (ADS)

    Hiltunen, Jouni; Jaeaeskelaeinen, Timo; Parkkinen, Jussi P. S.

    1999-08-01

    Surface color measurement is of importance in a very wide range of industrial applications including paint, paper, printing, photography, textiles, plastics and so on. For a demanding color measurements spectral approach is often needed. One can measure a color spectrum with a spectrophotometer using calibrated standard samples as a reference. Because it is impossible to define absolute color values of a sample, we always work with approximations. The human eye can perceive color difference as small as 0.5 CIELAB units and thus distinguish millions of colors. This 0.5 unit difference should be a goal for the precise color measurements. This limit is not a problem if we only want to measure the color difference of two samples, but if we want to know in a same time exact color coordinate values accuracy problems arise. The values of two instruments can be astonishingly different. The accuracy of the instrument used in color measurement may depend on various errors such as photometric non-linearity, wavelength error, integrating sphere dark level error, integrating sphere error in both specular included and specular excluded modes. Thus the correction formulas should be used to get more accurate results. Another question is how many channels i.e. wavelengths we are using to measure a spectrum. It is obvious that the sampling interval should be short to get more precise results. Furthermore, the result we get is always compromise of measuring time, conditions and cost. Sometimes we have to use portable syste or the shape and the size of samples makes it impossible to use sensitive equipment. In this study a small set of calibrated color tiles measured with the Perkin Elmer Lamda 18 and the Minolta CM-2002 spectrophotometers are compared. In the paper we explain the typical error sources of spectral color measurements, and show which are the accuracy demands a good colorimeter should have.

  12. Physician Enabling Skills Questionnaire

    PubMed Central

    Hudon, Catherine; Lambert, Mireille; Almirall, José

    2015-01-01

    Abstract Objective To evaluate the reliability and validity of the newly developed Physician Enabling Skills Questionnaire (PESQ) by assessing its internal consistency, test-retest reliability, concurrent validity with patient-centred care, and predictive validity with patient activation and patient enablement. Design Validation study. Setting Saguenay, Que. Participants One hundred patients with at least 1 chronic disease who presented in a waiting room of a regional health centre family medicine unit. Main outcome measures Family physicians’ enabling skills, measured with the PESQ at 2 points in time (ie, while in the waiting room at the family medicine unit and 2 weeks later through a mail survey); patient-centred care, assessed with the Patient Perception of Patient-Centredness instrument; patient activation, assessed with the Patient Activation Measure; and patient enablement, assessed with the Patient Enablement Instrument. Results The internal consistency of the 6 subscales of the PESQ was adequate (Cronbach α = .69 to .92). The test-retest reliability was very good (r = 0.90; 95% CI 0.84 to 0.93). Concurrent validity with the Patient Perception of Patient-Centredness instrument was good (r = −0.67; 95% CI −0.78 to −0.53; P < .001). The PESQ accounts for 11% of the total variance with the Patient Activation Measure (r2 = 0.11; P = .002) and 19% of the variance with the Patient Enablement Instrument (r2 = 0.19; P < .001). Conclusion The newly developed PESQ presents good psychometric properties, allowing for its use in practice and research. PMID:26889507

  13. Accurate and scalable social recommendation using mixed-membership stochastic block models

    PubMed Central

    Godoy-Lorite, Antonia; Moore, Cristopher

    2016-01-01

    With increasing amounts of information available, modeling and predicting user preferences—for books or articles, for example—are becoming more important. We present a collaborative filtering model, with an associated scalable algorithm, that makes accurate predictions of users’ ratings. Like previous approaches, we assume that there are groups of users and of items and that the rating a user gives an item is determined by their respective group memberships. However, we allow each user and each item to belong simultaneously to mixtures of different groups and, unlike many popular approaches such as matrix factorization, we do not assume that users in each group prefer a single group of items. In particular, we do not assume that ratings depend linearly on a measure of similarity, but allow probability distributions of ratings to depend freely on the user’s and item’s groups. The resulting overlapping groups and predicted ratings can be inferred with an expectation-maximization algorithm whose running time scales linearly with the number of observed ratings. Our approach enables us to predict user preferences in large datasets and is considerably more accurate than the current algorithms for such large datasets. PMID:27911773

  14. Microsystems Enabled Photovoltaics

    ScienceCinema

    Gupta, Vipin; Nielson, Greg; Okandan, Murat, Granata, Jennifer; Nelson, Jeff; Haney, Mike; Cruz-Campa, Jose Luiz

    2016-07-12

    Sandia's microsystems enabled photovoltaic advances combine mature technology and tools currently used in microsystem production with groundbreaking advances in photovoltaics cell design, decreasing production and system costs while improving energy conversion efficiency. The technology has potential applications in buildings, houses, clothing, portable electronics, vehicles, and other contoured structures.

  15. Automatic design of decision-tree algorithms with evolutionary algorithms.

    PubMed

    Barros, Rodrigo C; Basgalupp, Márcio P; de Carvalho, André C P L F; Freitas, Alex A

    2013-01-01

    This study reports the empirical analysis of a hyper-heuristic evolutionary algorithm that is capable of automatically designing top-down decision-tree induction algorithms. Top-down decision-tree algorithms are of great importance, considering their ability to provide an intuitive and accurate knowledge representation for classification problems. The automatic design of these algorithms seems timely, given the large literature accumulated over more than 40 years of research in the manual design of decision-tree induction algorithms. The proposed hyper-heuristic evolutionary algorithm, HEAD-DT, is extensively tested using 20 public UCI datasets and 10 microarray gene expression datasets. The algorithms automatically designed by HEAD-DT are compared with traditional decision-tree induction algorithms, such as C4.5 and CART. Experimental results show that HEAD-DT is capable of generating algorithms which are significantly more accurate than C4.5 and CART.

  16. Liquid metal enabled pump

    PubMed Central

    Tang, Shi-Yang; Khoshmanesh, Khashayar; Sivan, Vijay; Petersen, Phred; O’Mullane, Anthony P.; Abbott, Derek; Mitchell, Arnan; Kalantar-zadeh, Kourosh

    2014-01-01

    Small-scale pumps will be the heartbeat of many future micro/nanoscale platforms. However, the integration of small-scale pumps is presently hampered by limited flow rate with respect to the input power, and their rather complicated fabrication processes. These issues arise as many conventional pumping effects require intricate moving elements. Here, we demonstrate a system that we call the liquid metal enabled pump, for driving a range of liquids without mechanical moving parts, upon the application of modest electric field. This pump incorporates a droplet of liquid metal, which induces liquid flow at high flow rates, yet with exceptionally low power consumption by electrowetting/deelectrowetting at the metal surface. We present theory explaining this pumping mechanism and show that the operation is fundamentally different from other existing pumps. The presented liquid metal enabled pump is both efficient and simple, and thus has the potential to fundamentally advance the field of microfluidics. PMID:24550485

  17. Nanotechnology - Enabled Sensing

    DTIC Science & Technology

    2009-05-07

    via subwavelength confinement of optical fields near metallic nanostructures, as shown in Figure 2.3. When a single cadmium selenide quantum dot is...optical modulator uses a coating of cadmium selenide quantum dots to convert two light beams into surface plasmon polaritons. (Reprinted by permission...helpful. Two- and three-dimensional photonic crystals can enable new sensing systems based on fluorescent molecules and/or quantum dots and

  18. Enabling Wind Power Nationwide

    SciTech Connect

    Jose, Zayas; Michael, Derby; Patrick, Gilman; Ananthan, Shreyas; Lantz, Eric; Cotrell, Jason; Beck, Fredic; Tusing, Richard

    2015-05-01

    Leveraging this experience, the U.S. Department of Energy’s (DOE’s) Wind and Water Power Technologies Office has evaluated the potential for wind power to generate electricity in all 50 states. This report analyzes and quantifies the geographic expansion that could be enabled by accessing higher above ground heights for wind turbines and considers the means by which this new potential could be responsibly developed.

  19. Smart Grid Enabled EVSE

    SciTech Connect

    None, None

    2015-01-12

    The combined team of GE Global Research, Federal Express, National Renewable Energy Laboratory, and Consolidated Edison has successfully achieved the established goals contained within the Department of Energy’s Smart Grid Capable Electric Vehicle Supply Equipment funding opportunity. The final program product, shown charging two vehicles in Figure 1, reduces by nearly 50% the total installed system cost of the electric vehicle supply equipment (EVSE) as well as enabling a host of new Smart Grid enabled features. These include bi-directional communications, load control, utility message exchange and transaction management information. Using the new charging system, Utilities or energy service providers will now be able to monitor transportation related electrical loads on their distribution networks, send load control commands or preferences to individual systems, and then see measured responses. Installation owners will be able to authorize usage of the stations, monitor operations, and optimally control their electricity consumption. These features and cost reductions have been developed through a total system design solution.

  20. Enable, mediate, advocate.

    PubMed

    Saan, Hans; Wise, Marilyn

    2011-12-01

    The authors of the Ottawa Charter selected the words enable, mediate and advocate to describe the core activities in what was, in 1986, the new Public Health. This article considers these concepts and the values and ideas upon which they were based. We discuss their relevance in the current context within which health promotion is being conducted, and discuss the implications of changes in the health agenda, media and globalization for practice. We consider developments within health promotion since 1986: its central role in policy rhetoric, the increasing understanding of complexities and the interlinkage with many other societal processes. So the three core activities are reviewed: they still fit well with the main health promotion challenges, but should be refreshed by new ideas and values. As the role of health promotion in the political arena has grown we have become part of the policy establishment and that is a mixed blessing. Making way for community advocates is now our challenge. Enabling requires greater sensitivity to power relations involved and an understanding of the role of health literacy. Mediating keeps its central role as it bridges vital interests of parties. We conclude that these core concepts in the Ottawa Charter need no serious revision. There are, however, lessons from the last 25 years that point to ways to address present and future challenges with greater sensitivity and effectiveness. We invite the next generation to avoid canonizing this text: as is true of every heritage, the heirs must decide on its use.

  1. Enabling Computational Technologies for Terascale Scientific Simulations

    SciTech Connect

    Ashby, S.F.

    2000-08-24

    We develop scalable algorithms and object-oriented code frameworks for terascale scientific simulations on massively parallel processors (MPPs). Our research in multigrid-based linear solvers and adaptive mesh refinement enables Laboratory programs to use MPPs to explore important physical phenomena. For example, our research aids stockpile stewardship by making practical detailed 3D simulations of radiation transport. The need to solve large linear systems arises in many applications, including radiation transport, structural dynamics, combustion, and flow in porous media. These systems result from discretizations of partial differential equations on computational meshes. Our first research objective is to develop multigrid preconditioned iterative methods for such problems and to demonstrate their scalability on MPPs. Scalability describes how total computational work grows with problem size; it measures how effectively additional resources can help solve increasingly larger problems. Many factors contribute to scalability: computer architecture, parallel implementation, and choice of algorithm. Scalable algorithms have been shown to decrease simulation times by several orders of magnitude.

  2. Enabling graphene nanoelectronics.

    SciTech Connect

    Pan, Wei; Ohta, Taisuke; Biedermann, Laura Butler; Gutierrez, Carlos; Nolen, C. M.; Howell, Stephen Wayne; Beechem Iii, Thomas Edwin; McCarty, Kevin F.; Ross, Anthony Joseph, III

    2011-09-01

    Recent work has shown that graphene, a 2D electronic material amenable to the planar semiconductor fabrication processing, possesses tunable electronic material properties potentially far superior to metals and other standard semiconductors. Despite its phenomenal electronic properties, focused research is still required to develop techniques for depositing and synthesizing graphene over large areas, thereby enabling the reproducible mass-fabrication of graphene-based devices. To address these issues, we combined an array of growth approaches and characterization resources to investigate several innovative and synergistic approaches for the synthesis of high quality graphene films on technologically relevant substrate (SiC and metals). Our work focused on developing the fundamental scientific understanding necessary to generate large-area graphene films that exhibit highly uniform electronic properties and record carrier mobility, as well as developing techniques to transfer graphene onto other substrates.

  3. Accurate permittivity measurements for microwave imaging via ultra-wideband removal of spurious reflectors.

    PubMed

    Pelletier, Mathew G; Viera, Joseph A; Wanjura, John; Holt, Greg

    2010-01-01

    The use of microwave imaging is becoming more prevalent for detection of interior hidden defects in manufactured and packaged materials. In applications for detection of hidden moisture, microwave tomography can be used to image the material and then perform an inverse calculation to derive an estimate of the variability of the hidden material, such internal moisture, thereby alerting personnel to damaging levels of the hidden moisture before material degradation occurs. One impediment to this type of imaging occurs with nearby objects create strong reflections that create destructive and constructive interference, at the receiver, as the material is conveyed past the imaging antenna array. In an effort to remove the influence of the reflectors, such as metal bale ties, research was conducted to develop an algorithm for removal of the influence of the local proximity reflectors from the microwave images. This research effort produced a technique, based upon the use of ultra-wideband signals, for the removal of spurious reflections created by local proximity reflectors. This improvement enables accurate microwave measurements of moisture in such products as cotton bales, as well as other physical properties such as density or material composition. The proposed algorithm was shown to reduce errors by a 4:1 ratio and is an enabling technology for imaging applications in the presence of metal bale ties.

  4. Algorithms and Sensors for Small Robot Path Following

    NASA Technical Reports Server (NTRS)

    Hogg, Robert W.; Rankin, Arturo L.; Roumeliotis, Stergios I.; McHenry, Michael C.; Helmick, Daniel M.; Bergh, Charles F.; Matthies, Larry

    2002-01-01

    Tracked mobile robots in the 20 kg size class are under development for applications in urban reconnaissance. For efficient deployment, it is desirable for teams of robots to be able to automatically execute path following behaviors, with one or more followers tracking the path taken by a leader. The key challenges to enabling such a capability are (l) to develop sensor packages for such small robots that can accurately determine the path of the leader and (2) to develop path following algorithms for the subsequent robots. To date, we have integrated gyros, accelerometers, compass/inclinometers, odometry, and differential GPS into an effective sensing package. This paper describes the sensor package, sensor processing algorithm, and path tracking algorithm we have developed for the leader/follower problem in small robots and shows the result of performance characterization of the system. We also document pragmatic lessons learned about design, construction, and electromagnetic interference issues particular to the performance of state sensors on small robots.

  5. The accurate assessment of small-angle X-ray scattering data

    PubMed Central

    Grant, Thomas D.; Luft, Joseph R.; Carter, Lester G.; Matsui, Tsutomu; Weiss, Thomas M.; Martel, Anne; Snell, Edward H.

    2015-01-01

    Small-angle X-ray scattering (SAXS) has grown in popularity in recent times with the advent of bright synchrotron X-ray sources, powerful computational resources and algorithms enabling the calculation of increasingly complex models. However, the lack of standardized data-quality metrics presents difficulties for the growing user community in accurately assessing the quality of experimental SAXS data. Here, a series of metrics to quantitatively describe SAXS data in an objective manner using statistical evaluations are defined. These metrics are applied to identify the effects of radiation damage, concentration dependence and interparticle interactions on SAXS data from a set of 27 previously described targets for which high-resolution structures have been determined via X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. The studies show that these metrics are sufficient to characterize SAXS data quality on a small sample set with statistical rigor and sensitivity similar to or better than manual analysis. The development of data-quality analysis strategies such as these initial efforts is needed to enable the accurate and unbiased assessment of SAXS data quality. PMID:25615859

  6. The accurate assessment of small-angle X-ray scattering data

    SciTech Connect

    Grant, Thomas D.; Luft, Joseph R.; Carter, Lester G.; Matsui, Tsutomu; Weiss, Thomas M.; Martel, Anne; Snell, Edward H.

    2015-01-01

    A set of quantitative techniques is suggested for assessing SAXS data quality. These are applied in the form of a script, SAXStats, to a test set of 27 proteins, showing that these techniques are more sensitive than manual assessment of data quality. Small-angle X-ray scattering (SAXS) has grown in popularity in recent times with the advent of bright synchrotron X-ray sources, powerful computational resources and algorithms enabling the calculation of increasingly complex models. However, the lack of standardized data-quality metrics presents difficulties for the growing user community in accurately assessing the quality of experimental SAXS data. Here, a series of metrics to quantitatively describe SAXS data in an objective manner using statistical evaluations are defined. These metrics are applied to identify the effects of radiation damage, concentration dependence and interparticle interactions on SAXS data from a set of 27 previously described targets for which high-resolution structures have been determined via X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. The studies show that these metrics are sufficient to characterize SAXS data quality on a small sample set with statistical rigor and sensitivity similar to or better than manual analysis. The development of data-quality analysis strategies such as these initial efforts is needed to enable the accurate and unbiased assessment of SAXS data quality.

  7. The accurate assessment of small-angle X-ray scattering data

    DOE PAGES

    Grant, Thomas D.; Luft, Joseph R.; Carter, Lester G.; ...

    2015-01-23

    Small-angle X-ray scattering (SAXS) has grown in popularity in recent times with the advent of bright synchrotron X-ray sources, powerful computational resources and algorithms enabling the calculation of increasingly complex models. However, the lack of standardized data-quality metrics presents difficulties for the growing user community in accurately assessing the quality of experimental SAXS data. Here, a series of metrics to quantitatively describe SAXS data in an objective manner using statistical evaluations are defined. These metrics are applied to identify the effects of radiation damage, concentration dependence and interparticle interactions on SAXS data from a set of 27 previously described targetsmore » for which high-resolution structures have been determined via X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. Studies show that these metrics are sufficient to characterize SAXS data quality on a small sample set with statistical rigor and sensitivity similar to or better than manual analysis. The development of data-quality analysis strategies such as these initial efforts is needed to enable the accurate and unbiased assessment of SAXS data quality.« less

  8. The accurate assessment of small-angle X-ray scattering data

    SciTech Connect

    Grant, Thomas D.; Luft, Joseph R.; Carter, Lester G.; Matsui, Tsutomu; Weiss, Thomas M.; Martel, Anne; Snell, Edward H.

    2015-01-23

    Small-angle X-ray scattering (SAXS) has grown in popularity in recent times with the advent of bright synchrotron X-ray sources, powerful computational resources and algorithms enabling the calculation of increasingly complex models. However, the lack of standardized data-quality metrics presents difficulties for the growing user community in accurately assessing the quality of experimental SAXS data. Here, a series of metrics to quantitatively describe SAXS data in an objective manner using statistical evaluations are defined. These metrics are applied to identify the effects of radiation damage, concentration dependence and interparticle interactions on SAXS data from a set of 27 previously described targets for which high-resolution structures have been determined via X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. Studies show that these metrics are sufficient to characterize SAXS data quality on a small sample set with statistical rigor and sensitivity similar to or better than manual analysis. The development of data-quality analysis strategies such as these initial efforts is needed to enable the accurate and unbiased assessment of SAXS data quality.

  9. Enabling immersive simulation.

    SciTech Connect

    McCoy, Josh; Mateas, Michael; Hart, Derek H.; Whetzel, Jonathan; Basilico, Justin Derrick; Glickman, Matthew R.; Abbott, Robert G.

    2009-02-01

    The object of the 'Enabling Immersive Simulation for Complex Systems Analysis and Training' LDRD has been to research, design, and engineer a capability to develop simulations which (1) provide a rich, immersive interface for participation by real humans (exploiting existing high-performance game-engine technology wherever possible), and (2) can leverage Sandia's substantial investment in high-fidelity physical and cognitive models implemented in the Umbra simulation framework. We report here on these efforts. First, we describe the integration of Sandia's Umbra modular simulation framework with the open-source Delta3D game engine. Next, we report on Umbra's integration with Sandia's Cognitive Foundry, specifically to provide for learning behaviors for 'virtual teammates' directly from observed human behavior. Finally, we describe the integration of Delta3D with the ABL behavior engine, and report on research into establishing the theoretical framework that will be required to make use of tools like ABL to scale up to increasingly rich and realistic virtual characters.

  10. Liquid metal enabled microfluidics.

    PubMed

    Khoshmanesh, Khashayar; Tang, Shi-Yang; Zhu, Jiu Yang; Schaefer, Samira; Mitchell, Arnan; Kalantar-Zadeh, Kourosh; Dickey, Michael D

    2017-03-14

    Several gallium-based liquid metal alloys are liquid at room temperature. As 'liquid', such alloys have a low viscosity and a high surface tension while as 'metal', they have high thermal and electrical conductivities, similar to mercury. However, unlike mercury, these liquid metal alloys have low toxicity and a negligible vapor pressure, rendering them much safer. In comparison to mercury, the distinguishing feature of these alloys is the rapid formation of a self-limiting atomically thin layer of gallium oxide over their surface when exposed to oxygen. This oxide layer changes many physical and chemical properties of gallium alloys, including their interfacial and rheological properties, which can be employed and modulated for various applications in microfluidics. Injecting liquid metal into microfluidic structures has been extensively used to pattern and encapsulate highly deformable and reconfigurable electronic devices including electrodes, sensors, antennas, and interconnects. Likewise, the unique features of liquid metals have been employed for fabricating miniaturized microfluidic components including pumps, valves, heaters, and electrodes. In this review, we discuss liquid metal enabled microfluidic components, and highlight their desirable attributes including simple fabrication, facile integration, stretchability, reconfigurability, and low power consumption, with promising applications for highly integrated microfluidic systems.

  11. Thickness Gauging of Single-Layer Conductive Materials with Two-Point Non Linear Calibration Algorithm

    NASA Technical Reports Server (NTRS)

    Fulton, James P. (Inventor); Namkung, Min (Inventor); Simpson, John W. (Inventor); Wincheski, Russell A. (Inventor); Nath, Shridhar C. (Inventor)

    1998-01-01

    A thickness gauging instrument uses a flux focusing eddy current probe and two-point nonlinear calibration algorithm. The instrument is small and portable due to the simple interpretation and operational characteristics of the probe. A nonlinear interpolation scheme incorporated into the instrument enables a user to make highly accurate thickness measurements over a fairly wide calibration range from a single side of nonferromagnetic conductive metals. The instrument is very easy to use and can be calibrated quickly.

  12. Enabling responsible public genomics.

    PubMed

    Conley, John M; Doerr, Adam K; Vorhaus, Daniel B

    2010-01-01

    As scientific understandings of genetics advance, researchers require increasingly rich datasets that combine genomic data from large numbers of individuals with medical and other personal information. Linking individuals' genetic data and personal information precludes anonymity and produces medically significant information--a result not contemplated by the established legal and ethical conventions governing human genomic research. To pursue the next generation of human genomic research and commerce in a responsible fashion, scientists, lawyers, and regulators must address substantial new issues, including researchers' duties with respect to clinically significant data, the challenges to privacy presented by genomic data, the boundary between genomic research and commerce, and the practice of medicine. This Article presents a new model for understanding and addressing these new challenges--a "public genomics" premised on the idea that ethically, legally, and socially responsible genomics research requires openness, not privacy, as its organizing principle. Responsible public genomics combines the data contributed by informed and fully consenting information altruists and the research potential of rich datasets in a genomic commons that is freely and globally available. This Article examines the risks and benefits of this public genomics model in the context of an ambitious genetic research project currently under way--the Personal Genome Project. This Article also (i) demonstrates that large-scale genomic projects are desirable, (ii) evaluates the risks and challenges presented by public genomics research, and (iii) determines that the current legal and regulatory regimes restrict beneficial and responsible scientific inquiry while failing to adequately protect participants. The Article concludes by proposing a modified normative and legal framework that embraces and enables a future of responsible public genomics.

  13. Fast Physically Accurate Rendering of Multimodal Signatures of Distributed Fracture in Heterogeneous Materials.

    PubMed

    Visell, Yon

    2015-04-01

    This paper proposes a fast, physically accurate method for synthesizing multimodal, acoustic and haptic, signatures of distributed fracture in quasi-brittle heterogeneous materials, such as wood, granular media, or other fiber composites. Fracture processes in these materials are challenging to simulate with existing methods, due to the prevalence of large numbers of disordered, quasi-random spatial degrees of freedom, representing the complex physical state of a sample over the geometric volume of interest. Here, I develop an algorithm for simulating such processes, building on a class of statistical lattice models of fracture that have been widely investigated in the physics literature. This algorithm is enabled through a recently published mathematical construction based on the inverse transform method of random number sampling. It yields a purely time domain stochastic jump process representing stress fluctuations in the medium. The latter can be readily extended by a mean field approximation that captures the averaged constitutive (stress-strain) behavior of the material. Numerical simulations and interactive examples demonstrate the ability of these algorithms to generate physically plausible acoustic and haptic signatures of fracture in complex, natural materials interactively at audio sampling rates.

  14. Interactive algorithms for the segmentation and quantitation of 3-D MRI brain scans.

    PubMed

    Freeborough, P A; Fox, N C; Kitney, R I

    1997-05-01

    Interactive algorithms are an attractive approach to the accurate segmentation of 3D brain scans as they potentially improve the reliability of fully automated segmentation while avoiding the labour intensiveness and inaccuracies of manual segmentation. We present a 3D image analysis package (MIDAS) with a novel architecture enabling highly interactive segmentation algorithms to be implemented as add on modules. Interactive methods based on intensity thresholding, region growing and the constrained application of morphological operators are also presented. The methods involve the application of constraints and freedoms on the algorithms coupled with real time visualisation of the effect. This methodology has been applied to the segmentation, visualisation and measurement of the whole brain and a small irregular neuroanatomical structure, the hippocampus. We demonstrate reproducible and anatomically accurate segmentations of these structures. The efficacy of one method in measuring volume loss (atrophy) of the hippocampus in Alzheimer's disease is shown and is compared to conventional methods.

  15. Sparsifying transformations of photoacoustic signals enabling compressed sensing algorithms

    NASA Astrophysics Data System (ADS)

    Burgholzer, P.; Sandbichler, M.; Krahmer, F.; Berer, T.; Haltmeier, M.

    2016-03-01

    Compressed sensing allows performing much fewer measurements than advised by the Shannon sampling theory. This is surprising because it requires the solution of a system of equations with much fewer equations than unknowns. This is possible if one can assume sparsity of the solution, which means that only a few components of the solution are significantly different from zero. An important ingredient for compressed sensing is the restricted isometry property (RIP) of the sensing matrix, which is satisfied for certain types of random measurement ensembles. Then a sparse solution can be found by minimizing the ℓ1-norm. Using standard approaches, photoacoustic imaging generally neither satisfies sparsity of the data nor the RIP. Therefore, no theoretical recovery guarantees could be given. Despite ℓ1- minimization has been used for photoacoustic image reconstruction, only marginal improvements in comparison to classical photoacoustic reconstruction have been observed. We propose the application of a sparsifying temporal transformation to the detected pressure signals, which allows obtaining theoretical recovery guarantees for our compressed sensing scheme. Such a sparsifying transform can be found because spatial and temporal evolution of the pressure wave are not independent, but connected by the wave equation. We give an example of a sparsifying transform and apply our compressed sensing scheme to reconstruct images from simulated data.

  16. Accurate Evaluation of Quantum Integrals

    NASA Technical Reports Server (NTRS)

    Galant, D. C.; Goorvitch, D.; Witteborn, Fred C. (Technical Monitor)

    1995-01-01

    Combining an appropriate finite difference method with Richardson's extrapolation results in a simple, highly accurate numerical method for solving a Schrodinger's equation. Important results are that error estimates are provided, and that one can extrapolate expectation values rather than the wavefunctions to obtain highly accurate expectation values. We discuss the eigenvalues, the error growth in repeated Richardson's extrapolation, and show that the expectation values calculated on a crude mesh can be extrapolated to obtain expectation values of high accuracy.

  17. Problems in publishing accurate color in IEEE journals.

    PubMed

    Vrhel, Michael J; Trussell, H J

    2002-01-01

    To demonstrate the performance of color image processing algorithms, it is desirable to be able to accurately display color images in archival publications. In poster presentations, the authors have substantial control of the printing process, although little control of the illumination. For journal publication, the authors must rely on professional intermediaries (printers) to accurately reproduce their results. Our previous work describes requirements for accurately rendering images using your own equipment. This paper discusses the problems of dealing with intermediaries and offers suggestions for improved communication and rendering.

  18. Enabling interstellar probe

    NASA Astrophysics Data System (ADS)

    McNutt, Ralph L.; Wimmer-Schweingruber, Robert F.; International Interstellar Probe Team

    2011-04-01

    The scientific community has advocated a scientific probe to the interstellar medium for over 30 years. While the Voyager spacecraft have passed through the termination shock of the solar wind, they have limited lifetimes as their radioisotope power supplies decay. It remains unclear whether they can reach the heliopause, the boundary between shocked solar wind and interstellar plasmas, and, in any case, they will not reach the undisturbed interstellar medium. As with most exploratory space missions, their ongoing observations continue to raise even more questions about the nature of the interaction of our heliosphere and the interstellar medium. Scientific questions including: What is the nature of the nearby interstellar medium? How do the Sun and galaxy affect the dynamics of the heliosphere? What is the structure of the heliosphere? How did matter in the solar system and interstellar medium originate and evolve? can only be answered by an "interstellar precursor" probe. Such a mission is required to make in situ measurements in the interaction region and interstellar medium itself at distances far from the Sun, but in a finite mission lifetime. By launching a probe toward the incoming "interstellar wind," whose direction is known, the distance to be traveled can be minimized but is still large. The current consensus is that a scientifically compelling mission must function to at least a distance of 200 astronomical units (AU) from the Sun and return a reasonable stream of data during the voyage. The central problem is that of providing a means of propulsion to accelerate a probe from the Solar System. Even with a low-mass payload and spacecraft, achieving the high speeds needed, even with gravity assists, have remained problematic. Voyager 1, the fastest object ever to leave the system is now traveling ˜3.6 AU/yr, and a credible probe must reach at least 2-3 times this speed. The use of an Ares V is an approach for enabling a fast interstellar precursor

  19. FOILFEST :community enabled security.

    SciTech Connect

    Moore, Judy Hennessey; Johnson, Curtis Martin; Whitley, John B.; Drayer, Darryl Donald; Cummings, John C., Jr.

    2005-09-01

    The Advanced Concepts Group of Sandia National Laboratories hosted a workshop, ''FOILFest: Community Enabled Security'', on July 18-21, 2005, in Albuquerque, NM. This was a far-reaching look into the future of physical protection consisting of a series of structured brainstorming sessions focused on preventing and foiling attacks on public places and soft targets such as airports, shopping malls, hotels, and public events. These facilities are difficult to protect using traditional security devices since they could easily be pushed out of business through the addition of arduous and expensive security measures. The idea behind this Fest was to explore how the public, which is vital to the function of these institutions, can be leveraged as part of a physical protection system. The workshop considered procedures, space design, and approaches for building community through technology. The workshop explored ways to make the ''good guys'' in public places feel safe and be vigilant while making potential perpetrators of harm feel exposed and convinced that they will not succeed. Participants in the Fest included operators of public places, social scientists, technology experts, representatives of government agencies including DHS and the intelligence community, writers and media experts. Many innovative ideas were explored during the fest with most of the time spent on airports, including consideration of the local airport, the Albuquerque Sunport. Some provocative ideas included: (1) sniffers installed in passage areas like revolving door, escalators, (2) a ''jumbotron'' showing current camera shots in the public space, (3) transparent portal screeners allowing viewing of the screening, (4) a layered open/funnel/open/funnel design where open spaces are used to encourage a sense of ''communitas'' and take advantage of citizen ''sensing'' and funnels are technological tunnels of sensors (the tunnels of truth), (5) curved benches with blast proof walls or backs, (6

  20. Ultra-accurate collaborative information filtering via directed user similarity

    NASA Astrophysics Data System (ADS)

    Guo, Q.; Song, W.-J.; Liu, J.-G.

    2014-07-01

    A key challenge of the collaborative filtering (CF) information filtering is how to obtain the reliable and accurate results with the help of peers' recommendation. Since the similarities from small-degree users to large-degree users would be larger than the ones in opposite direction, the large-degree users' selections are recommended extensively by the traditional second-order CF algorithms. By considering the users' similarity direction and the second-order correlations to depress the influence of mainstream preferences, we present the directed second-order CF (HDCF) algorithm specifically to address the challenge of accuracy and diversity of the CF algorithm. The numerical results for two benchmark data sets, MovieLens and Netflix, show that the accuracy of the new algorithm outperforms the state-of-the-art CF algorithms. Comparing with the CF algorithm based on random walks proposed by Liu et al. (Int. J. Mod. Phys. C, 20 (2009) 285) the average ranking score could reach 0.0767 and 0.0402, which is enhanced by 27.3% and 19.1% for MovieLens and Netflix, respectively. In addition, the diversity, precision and recall are also enhanced greatly. Without relying on any context-specific information, tuning the similarity direction of CF algorithms could obtain accurate and diverse recommendations. This work suggests that the user similarity direction is an important factor to improve the personalized recommendation performance.

  1. Exact kinetic energy enables accurate evaluation of weak interactions by the FDE-vdW method

    SciTech Connect

    Sinha, Debalina; Pavanello, Michele

    2015-08-28

    The correlation energy of interaction is an elusive and sought-after interaction between molecular systems. By partitioning the response function of the system into subsystem contributions, the Frozen Density Embedding (FDE)-vdW method provides a computationally amenable nonlocal correlation functional based on the adiabatic connection fluctuation dissipation theorem applied to subsystem density functional theory. In reproducing potential energy surfaces of weakly interacting dimers, we show that FDE-vdW, either employing semilocal or exact nonadditive kinetic energy functionals, is in quantitative agreement with high-accuracy coupled cluster calculations (overall mean unsigned error of 0.5 kcal/mol). When employing the exact kinetic energy (which we term the Kohn-Sham (KS)-vdW method), the binding energies are generally closer to the benchmark, and the energy surfaces are also smoother.

  2. Enabling Computational Technologies for the Accurate Prediction/Description of Molecular Interactions in Condensed Phases

    DTIC Science & Technology

    2014-10-08

    Marenich, Christopher J. Cramer, Donald G. Truhlar, and Chang-Guo Zhan. Free Energies of Solvation with Surface , Volume, and Local Electrostatic...Effects and Atomic Surface Tensions to Represent the First Solvation Shell (Reprint), Journal of Chemical Theory and Computation, (01 2010): . doi...the Gibbs free energy of solvation and dissociation of HCl in water via Monte Carlo simulations and continuum solvation models, Physical Chemistry

  3. Exact kinetic energy enables accurate evaluation of weak interactions by the FDE-vdW method.

    PubMed

    Sinha, Debalina; Pavanello, Michele

    2015-08-28

    The correlation energy of interaction is an elusive and sought-after interaction between molecular systems. By partitioning the response function of the system into subsystem contributions, the Frozen Density Embedding (FDE)-vdW method provides a computationally amenable nonlocal correlation functional based on the adiabatic connection fluctuation dissipation theorem applied to subsystem density functional theory. In reproducing potential energy surfaces of weakly interacting dimers, we show that FDE-vdW, either employing semilocal or exact nonadditive kinetic energy functionals, is in quantitative agreement with high-accuracy coupled cluster calculations (overall mean unsigned error of 0.5 kcal/mol). When employing the exact kinetic energy (which we term the Kohn-Sham (KS)-vdW method), the binding energies are generally closer to the benchmark, and the energy surfaces are also smoother.

  4. Gene expression using an ultrathin needle enabling accurate displacement and low invasiveness

    SciTech Connect

    Han, SungWoong; Nakamura, Chikashi; E-mail: chikashi-nakamura@aist.go.jp; Obataya, Ikuo; Nakamura, Noriyuki; Miyake, Jun

    2005-07-08

    We have previously demonstrated a new cell manipulation technology by using an atomic force microscope (AFM) and ultrathin needles, named nanoneedles. The nanoneedle is an AFM tip etched by a focused ion beam (FIB) and is sharpened from 200 to 800 nm in diameter. In this study, we have evaluated the proper diameter of a needle required for insertion into human cells over a long period without causing cell death, and achieved highly efficient gene expression method for human cells using a nanoneedle and an AFM.

  5. Gas-phase purification enables accurate, large-scale, multiplexed proteome quantification with isobaric tagging

    PubMed Central

    Wenger, Craig D; Lee, M Violet; Hebert, Alexander S; McAlister, Graeme C; Phanstiel, Douglas H; Westphall, Michael S; Coon, Joshua J

    2011-01-01

    We describe a mass spectrometry method, QuantMode, which improves the accuracy of isobaric tag–based quantification by alleviating the pervasive problem of precursor interference—co-isolation of impurities—through gas-phase purification. QuantMode analysis of a yeast sample ‘contaminated’ with interfering human peptides showed substantially improved quantitative accuracy compared to a standard scan, with a small loss of spectral identifications. This technique will allow large-scale, multiplexed quantitative proteomics analyses using isobaric tagging. PMID:21963608

  6. Enabling R&D for accurate simulation of non-ideal explosives.

    SciTech Connect

    Aidun, John Bahram; Thompson, Aidan Patrick; Schmitt, Robert Gerard

    2010-09-01

    We implemented two numerical simulation capabilities essential to reliably predicting the effect of non-ideal explosives (NXs). To begin to be able to treat the multiple, competing, multi-step reaction paths and slower kinetics of NXs, Sandia's CTH shock physics code was extended to include the TIGER thermochemical equilibrium solver as an in-line routine. To facilitate efficient exploration of reaction pathways that need to be identified for the CTH simulations, we implemented in Sandia's LAMMPS molecular dynamics code the MSST method, which is a reactive molecular dynamics technique for simulating steady shock wave response. Our preliminary demonstrations of these two capabilities serve several purposes: (i) they demonstrate proof-of-principle for our approach; (ii) they provide illustration of the applicability of the new functionality; and (iii) they begin to characterize the use of the new functionality and identify where improvements will be needed for the ultimate capability to meet national security needs. Next steps are discussed.

  7. Volume-preserving algorithm for secular relativistic dynamics of charged particles

    SciTech Connect

    Zhang, Ruili; Liu, Jian; Wang, Yulei; He, Yang; Qin, Hong; Sun, Yajuan

    2015-04-15

    Secular dynamics of relativistic charged particles has theoretical significance and a wide range of applications. However, conventional algorithms are not applicable to this problem due to the coherent accumulation of numerical errors. To overcome this difficulty, we develop a volume-preserving algorithm (VPA) with long-term accuracy and conservativeness via a systematic splitting method. Applied to the simulation of runaway electrons with a time-span over 10 magnitudes, the VPA generates accurate results and enables the discovery of new physics for secular runaway dynamics.

  8. Camera-enabled techniques for organic synthesis

    PubMed Central

    Ingham, Richard J; O’Brien, Matthew; Browne, Duncan L

    2013-01-01

    Summary A great deal of time is spent within synthetic chemistry laboratories on non-value-adding activities such as sample preparation and work-up operations, and labour intensive activities such as extended periods of continued data collection. Using digital cameras connected to computer vision algorithms, camera-enabled apparatus can perform some of these processes in an automated fashion, allowing skilled chemists to spend their time more productively. In this review we describe recent advances in this field of chemical synthesis and discuss how they will lead to advanced synthesis laboratories of the future. PMID:23766820

  9. Fast weighted K-view-voting algorithm for image texture classification

    NASA Astrophysics Data System (ADS)

    Liu, Hong; Lan, Yihua; Wang, Qian; Jin, Renchao; Song, Enmin; Hung, Chih-Cheng

    2012-02-01

    We propose an innovative and efficient approach to improve K-view-template (K-view-T) and K-view-datagram (K-view-D) algorithms for image texture classification. The proposed approach, called the weighted K-view-voting algorithm (K-view-V), uses a novel voting method for texture classification and an accelerating method based on the efficient summed square image (SSI) scheme as well as fast Fourier transform (FFT) to enable overall faster processing. Decision making, which assigns a pixel to a texture class, occurs by using our weighted voting method among the ``promising'' members in the neighborhood of a classified pixel. In other words, this neighborhood consists of all the views, and each view has a classified pixel in its territory. Experimental results on benchmark images, which are randomly taken from Brodatz Gallery and natural and medical images, show that this new classification algorithm gives higher classification accuracy than existing K-view algorithms. In particular, it improves the accurate classification of pixels near the texture boundary. In addition, the proposed acceleration method improves the processing speed of K-view-V as it requires much less computation time than other K-view algorithms. Compared with the results of earlier developed K-view algorithms and the gray level co-occurrence matrix (GLCM), the proposed algorithm is more robust, faster, and more accurate.

  10. Robotic Follow Algorithm

    SciTech Connect

    2005-03-30

    The Robotic Follow Algorithm enables allows any robotic vehicle to follow a moving target while reactively choosing a route around nearby obstacles. The robotic follow behavior can be used with different camera systems and can be used with thermal or visual tracking as well as other tracking methods such as radio frequency tags.

  11. Practical aspects of spatially high accurate methods

    NASA Technical Reports Server (NTRS)

    Godfrey, Andrew G.; Mitchell, Curtis R.; Walters, Robert W.

    1992-01-01

    The computational qualities of high order spatially accurate methods for the finite volume solution of the Euler equations are presented. Two dimensional essentially non-oscillatory (ENO), k-exact, and 'dimension by dimension' ENO reconstruction operators are discussed and compared in terms of reconstruction and solution accuracy, computational cost and oscillatory behavior in supersonic flows with shocks. Inherent steady state convergence difficulties are demonstrated for adaptive stencil algorithms. An exact solution to the heat equation is used to determine reconstruction error, and the computational intensity is reflected in operation counts. Standard MUSCL differencing is included for comparison. Numerical experiments presented include the Ringleb flow for numerical accuracy and a shock reflection problem. A vortex-shock interaction demonstrates the ability of the ENO scheme to excel in simulating unsteady high-frequency flow physics.

  12. Algorithm Calculates Cumulative Poisson Distribution

    NASA Technical Reports Server (NTRS)

    Bowerman, Paul N.; Nolty, Robert C.; Scheuer, Ernest M.

    1992-01-01

    Algorithm calculates accurate values of cumulative Poisson distribution under conditions where other algorithms fail because numbers are so small (underflow) or so large (overflow) that computer cannot process them. Factors inserted temporarily to prevent underflow and overflow. Implemented in CUMPOIS computer program described in "Cumulative Poisson Distribution Program" (NPO-17714).

  13. Robust, accurate and fast automatic segmentation of the spinal cord.

    PubMed

    De Leener, Benjamin; Kadoury, Samuel; Cohen-Adad, Julien

    2014-09-01

    Spinal cord segmentation provides measures of atrophy and facilitates group analysis via inter-subject correspondence. Automatizing this procedure enables studies with large throughput and minimizes user bias. Although several automatic segmentation methods exist, they are often restricted in terms of image contrast and field-of-view. This paper presents a new automatic segmentation method (PropSeg) optimized for robustness, accuracy and speed. The algorithm is based on the propagation of a deformable model and is divided into three parts: firstly, an initialization step detects the spinal cord position and orientation using a circular Hough transform on multiple axial slices rostral and caudal to the starting plane and builds an initial elliptical tubular mesh. Secondly, a low-resolution deformable model is propagated along the spinal cord. To deal with highly variable contrast levels between the spinal cord and the cerebrospinal fluid, the deformation is coupled with a local contrast-to-noise adaptation at each iteration. Thirdly, a refinement process and a global deformation are applied on the propagated mesh to provide an accurate segmentation of the spinal cord. Validation was performed in 15 healthy subjects and two patients with spinal cord injury, using T1- and T2-weighted images of the entire spinal cord and on multiecho T2*-weighted images. Our method was compared against manual segmentation and against an active surface method. Results show high precision for all the MR sequences. Dice coefficients were 0.9 for the T1- and T2-weighted cohorts and 0.86 for the T2*-weighted images. The proposed method runs in less than 1min on a normal computer and can be used to quantify morphological features such as cross-sectional area along the whole spinal cord.

  14. Toward Accurate and Quantitative Comparative Metagenomics

    PubMed Central

    Nayfach, Stephen; Pollard, Katherine S.

    2016-01-01

    Shotgun metagenomics and computational analysis are used to compare the taxonomic and functional profiles of microbial communities. Leveraging this approach to understand roles of microbes in human biology and other environments requires quantitative data summaries whose values are comparable across samples and studies. Comparability is currently hampered by the use of abundance statistics that do not estimate a meaningful parameter of the microbial community and biases introduced by experimental protocols and data-cleaning approaches. Addressing these challenges, along with improving study design, data access, metadata standardization, and analysis tools, will enable accurate comparative metagenomics. We envision a future in which microbiome studies are replicable and new metagenomes are easily and rapidly integrated with existing data. Only then can the potential of metagenomics for predictive ecological modeling, well-powered association studies, and effective microbiome medicine be fully realized. PMID:27565341

  15. Extracting Time-Accurate Acceleration Vectors From Nontrivial Accelerometer Arrangements.

    PubMed

    Franck, Jennifer A; Blume, Janet; Crisco, Joseph J; Franck, Christian

    2015-09-01

    Sports-related concussions are of significant concern in many impact sports, and their detection relies on accurate measurements of the head kinematics during impact. Among the most prevalent recording technologies are videography, and more recently, the use of single-axis accelerometers mounted in a helmet, such as the HIT system. Successful extraction of the linear and angular impact accelerations depends on an accurate analysis methodology governed by the equations of motion. Current algorithms are able to estimate the magnitude of acceleration and hit location, but make assumptions about the hit orientation and are often limited in the position and/or orientation of the accelerometers. The newly formulated algorithm presented in this manuscript accurately extracts the full linear and rotational acceleration vectors from a broad arrangement of six single-axis accelerometers directly from the governing set of kinematic equations. The new formulation linearizes the nonlinear centripetal acceleration term with a finite-difference approximation and provides a fast and accurate solution for all six components of acceleration over long time periods (>250 ms). The approximation of the nonlinear centripetal acceleration term provides an accurate computation of the rotational velocity as a function of time and allows for reconstruction of a multiple-impact signal. Furthermore, the algorithm determines the impact location and orientation and can distinguish between glancing, high rotational velocity impacts, or direct impacts through the center of mass. Results are shown for ten simulated impact locations on a headform geometry computed with three different accelerometer configurations in varying degrees of signal noise. Since the algorithm does not require simplifications of the actual impacted geometry, the impact vector, or a specific arrangement of accelerometer orientations, it can be easily applied to many impact investigations in which accurate kinematics need to

  16. Method and system for enabling real-time speckle processing using hardware platforms

    NASA Technical Reports Server (NTRS)

    Ortiz, Fernando E. (Inventor); Kelmelis, Eric (Inventor); Durbano, James P. (Inventor); Curt, Peterson F. (Inventor)

    2012-01-01

    An accelerator for the speckle atmospheric compensation algorithm may enable real-time speckle processing of video feeds that may enable the speckle algorithm to be applied in numerous real-time applications. The accelerator may be implemented in various forms, including hardware, software, and/or machine-readable media.

  17. Sparse and accurate high resolution SAR imaging

    NASA Astrophysics Data System (ADS)

    Vu, Duc; Zhao, Kexin; Rowe, William; Li, Jian

    2012-05-01

    We investigate the usage of an adaptive method, the Iterative Adaptive Approach (IAA), in combination with a maximum a posteriori (MAP) estimate to reconstruct high resolution SAR images that are both sparse and accurate. IAA is a nonparametric weighted least squares algorithm that is robust and user parameter-free. IAA has been shown to reconstruct SAR images with excellent side lobes suppression and high resolution enhancement. We first reconstruct the SAR images using IAA, and then we enforce sparsity by using MAP with a sparsity inducing prior. By coupling these two methods, we can produce a sparse and accurate high resolution image that are conducive for feature extractions and target classification applications. In addition, we show how IAA can be made computationally efficient without sacrificing accuracies, a desirable property for SAR applications where the size of the problems is quite large. We demonstrate the success of our approach using the Air Force Research Lab's "Gotcha Volumetric SAR Data Set Version 1.0" challenge dataset. Via the widely used FFT, individual vehicles contained in the scene are barely recognizable due to the poor resolution and high side lobe nature of FFT. However with our approach clear edges, boundaries, and textures of the vehicles are obtained.

  18. Algorithms for calculating detector efficiency normalization coefficients for true coincidences in 3D PET

    NASA Astrophysics Data System (ADS)

    Badawi, R. D.; Lodge, M. A.; Marsden, P. K.

    1998-01-01

    Accurate normalization of lines of response in 3D PET is a prerequisite for quantitative reconstruction. Most current methods are component based, calculating a series of geometric and intrinsic detector efficiency factors. We have reviewed the theory behind several existing algorithms for calculating detector efficiency factors in 2D and 3D PET, and have extended them to create a range of new algorithms. Three of the algorithms described are `fully 3D' in that they make use of data from all detector rings for the calculation of the efficiencies of any one line of response. We have assessed the performance of the new and existing methods using simulated and real data, and have demonstrated that the fully 3D algorithms allow the rapid acquisition of crystal efficiency normalization data using low-activity sources. Such methods enable the use of scatter-free scanning line sources or the use of very short acquisitions of cylindrical sources for routine normalization.

  19. An efficient automated algorithm to detect ocular surface temperature on sequence of thermograms using snake and target tracing function.

    PubMed

    Tan, Jen Hong; Ng, E Y K; Acharya U, Rajendra

    2011-10-01

    Functional infrared (IR) imaging is widely adopted in medical field nowadays, with more emphasis on breast cancer and ocular abnormalities. In this article, an algorithm is presented to accurately locate the eye and cornea in ocular thermographic sequences, which were recorded utilizing functional infrared imaging. The localization is achieved by snake algorithm coupled with a newly proposed target tracing function. The target tracing function enables automated localization, allows the absence of any manual assistance before the algorithm runs. Genetic algorithm is used to perform the search for global minimum on the function to produce desired localization. On all the cases we have studied, in average the region encircled by the algorithm covers 92% of the true ocular region. As for the non-ocular region covered, it only accounts for less than 5% of the encircled region.

  20. Accurate Analysis of Array References

    DTIC Science & Technology

    1992-09-22

    This thesis addresses the problem of data dependence analysis, the base step in detecting loop level parallelism in scientific programs. Traditional...data dependence analysis research has concentrated on the simpler problem of affine memory disambiguation. Many algorithms have been developed that...can devise an experiment to test the effectiveness of affine memory disambiguation at approximating the full dependence problem. We discover that the

  1. A fast and accurate decoder for underwater acoustic telemetry.

    PubMed

    Ingraham, J M; Deng, Z D; Li, X; Fu, T; McMichael, G A; Trumbo, B A

    2014-07-01

    The Juvenile Salmon Acoustic Telemetry System, developed by the U.S. Army Corps of Engineers, Portland District, has been used to monitor the survival of juvenile salmonids passing through hydroelectric facilities in the Federal Columbia River Power System. Cabled hydrophone arrays deployed at dams receive coded transmissions sent from acoustic transmitters implanted in fish. The signals' time of arrival on different hydrophones is used to track fish in 3D. In this article, a new algorithm that decodes the received transmissions is described and the results are compared to results for the previous decoding algorithm. In a laboratory environment, the new decoder was able to decode signals with lower signal strength than the previous decoder, effectively increasing decoding efficiency and range. In field testing, the new algorithm decoded significantly more signals than the previous decoder and three-dimensional tracking experiments showed that the new decoder's time-of-arrival estimates were accurate. At multiple distances from hydrophones, the new algorithm tracked more points more accurately than the previous decoder. The new algorithm was also more than 10 times faster, which is critical for real-time applications on an embedded system.

  2. PRIMAL: Fast and accurate pedigree-based imputation from sequence data in a founder population.

    PubMed

    Livne, Oren E; Han, Lide; Alkorta-Aranburu, Gorka; Wentworth-Sheilds, William; Abney, Mark; Ober, Carole; Nicolae, Dan L

    2015-03-01

    Founder populations and large pedigrees offer many well-known advantages for genetic mapping studies, including cost-efficient study designs. Here, we describe PRIMAL (PedigRee IMputation ALgorithm), a fast and accurate pedigree-based phasing and imputation algorithm for founder populations. PRIMAL incorporates both existing and original ideas, such as a novel indexing strategy of Identity-By-Descent (IBD) segments based on clique graphs. We were able to impute the genomes of 1,317 South Dakota Hutterites, who had genome-wide genotypes for ~300,000 common single nucleotide variants (SNVs), from 98 whole genome sequences. Using a combination of pedigree-based and LD-based imputation, we were able to assign 87% of genotypes with >99% accuracy over the full range of allele frequencies. Using the IBD cliques we were also able to infer the parental origin of 83% of alleles, and genotypes of deceased recent ancestors for whom no genotype information was available. This imputed data set will enable us to better study the relative contribution of rare and common variants on human phenotypes, as well as parental origin effect of disease risk alleles in >1,000 individuals at minimal cost.

  3. Predictive rendering for accurate material perception: modeling and rendering fabrics

    NASA Astrophysics Data System (ADS)

    Bala, Kavita

    2012-03-01

    In computer graphics, rendering algorithms are used to simulate the appearance of objects and materials in a wide range of applications. Designers and manufacturers rely entirely on these rendered images to previsualize scenes and products before manufacturing them. They need to differentiate between different types of fabrics, paint finishes, plastics, and metals, often with subtle differences, for example, between silk and nylon, formaica and wood. Thus, these applications need predictive algorithms that can produce high-fidelity images that enable such subtle material discrimination.

  4. Enabling Space Science and Exploration

    NASA Technical Reports Server (NTRS)

    Weber, William J.

    2006-01-01

    This viewgraph presentation on enabling space science and exploration covers the following topics: 1) Today s Deep Space Network; 2) Next Generation Deep Space Network; 3) Needed technologies; 4) Mission IT and networking; and 5) Multi-mission operations.

  5. Empowering versus Enabling in Academia.

    ERIC Educational Resources Information Center

    Espeland, Karen; Shanta, Linda

    2001-01-01

    Enabling behaviors that encourage dependence should be avoided by nursing faculty. An empowerment model that includes collegiality, communication, accountability, and autonomy is more suited to the professional preparation of nurses. (Contains 30 references.) (SK)

  6. Towards Accurate Application Characterization for Exascale (APEX)

    SciTech Connect

    Hammond, Simon David

    2015-09-01

    Sandia National Laboratories has been engaged in hardware and software codesign activities for a number of years, indeed, it might be argued that prototyping of clusters as far back as the CPLANT machines and many large capability resources including ASCI Red and RedStorm were examples of codesigned solutions. As the research supporting our codesign activities has moved closer to investigating on-node runtime behavior a nature hunger has grown for detailed analysis of both hardware and algorithm performance from the perspective of low-level operations. The Application Characterization for Exascale (APEX) LDRD was a project concieved of addressing some of these concerns. Primarily the research was to intended to focus on generating accurate and reproducible low-level performance metrics using tools that could scale to production-class code bases. Along side this research was an advocacy and analysis role associated with evaluating tools for production use, working with leading industry vendors to develop and refine solutions required by our code teams and to directly engage with production code developers to form a context for the application analysis and a bridge to the research community within Sandia. On each of these accounts significant progress has been made, particularly, as this report will cover, in the low-level analysis of operations for important classes of algorithms. This report summarizes the development of a collection of tools under the APEX research program and leaves to other SAND and L2 milestone reports the description of codesign progress with Sandia’s production users/developers.

  7. Highly Scalable Matching Pursuit Signal Decomposition Algorithm

    NASA Technical Reports Server (NTRS)

    Christensen, Daniel; Das, Santanu; Srivastava, Ashok N.

    2009-01-01

    Matching Pursuit Decomposition (MPD) is a powerful iterative algorithm for signal decomposition and feature extraction. MPD decomposes any signal into linear combinations of its dictionary elements or atoms . A best fit atom from an arbitrarily defined dictionary is determined through cross-correlation. The selected atom is subtracted from the signal and this procedure is repeated on the residual in the subsequent iterations until a stopping criterion is met. The reconstructed signal reveals the waveform structure of the original signal. However, a sufficiently large dictionary is required for an accurate reconstruction; this in return increases the computational burden of the algorithm, thus limiting its applicability and level of adoption. The purpose of this research is to improve the scalability and performance of the classical MPD algorithm. Correlation thresholds were defined to prune insignificant atoms from the dictionary. The Coarse-Fine Grids and Multiple Atom Extraction techniques were proposed to decrease the computational burden of the algorithm. The Coarse-Fine Grids method enabled the approximation and refinement of the parameters for the best fit atom. The ability to extract multiple atoms within a single iteration enhanced the effectiveness and efficiency of each iteration. These improvements were implemented to produce an improved Matching Pursuit Decomposition algorithm entitled MPD++. Disparate signal decomposition applications may require a particular emphasis of accuracy or computational efficiency. The prominence of the key signal features required for the proper signal classification dictates the level of accuracy necessary in the decomposition. The MPD++ algorithm may be easily adapted to accommodate the imposed requirements. Certain feature extraction applications may require rapid signal decomposition. The full potential of MPD++ may be utilized to produce incredible performance gains while extracting only slightly less energy than the

  8. The level of detail required in a deformable phantom to accurately perform quality assurance of deformable image registration

    NASA Astrophysics Data System (ADS)

    Saenz, Daniel L.; Kim, Hojin; Chen, Josephine; Stathakis, Sotirios; Kirby, Neil

    2016-09-01

    The primary purpose of the study was to determine how detailed deformable image registration (DIR) phantoms need to adequately simulate human anatomy and accurately assess the quality of DIR algorithms. In particular, how many distinct tissues are required in a phantom to simulate complex human anatomy? Pelvis and head-and-neck patient CT images were used for this study as virtual phantoms. Two data sets from each site were analyzed. The virtual phantoms were warped to create two pairs consisting of undeformed and deformed images. Otsu’s method was employed to create additional segmented image pairs of n distinct soft tissue CT number ranges (fat, muscle, etc). A realistic noise image was added to each image. Deformations were applied in MIM Software (MIM) and Velocity deformable multi-pass (DMP) and compared with the known warping. Images with more simulated tissue levels exhibit more contrast, enabling more accurate results. Deformation error (magnitude of the vector difference between known and predicted deformation) was used as a metric to evaluate how many CT number gray levels are needed for a phantom to serve as a realistic patient proxy. Stabilization of the mean deformation error was reached by three soft tissue levels for Velocity DMP and MIM, though MIM exhibited a persisting difference in accuracy between the discrete images and the unprocessed image pair. A minimum detail of three levels allows a realistic patient proxy for use with Velocity and MIM deformation algorithms.

  9. Accurate biopsy-needle depth estimation in limited-angle tomography using multi-view geometry

    NASA Astrophysics Data System (ADS)

    van der Sommen, Fons; Zinger, Sveta; de With, Peter H. N.

    2016-03-01

    Recently, compressed-sensing based algorithms have enabled volume reconstruction from projection images acquired over a relatively small angle (θ < 20°). These methods enable accurate depth estimation of surgical tools with respect to anatomical structures. However, they are computationally expensive and time consuming, rendering them unattractive for image-guided interventions. We propose an alternative approach for depth estimation of biopsy needles during image-guided interventions, in which we split the problem into two parts and solve them independently: needle-depth estimation and volume reconstruction. The complete proposed system consists of the previous two steps, preceded by needle extraction. First, we detect the biopsy needle in the projection images and remove it by interpolation. Next, we exploit epipolar geometry to find point-to-point correspondences in the projection images to triangulate the 3D position of the needle in the volume. Finally, we use the interpolated projection images to reconstruct the local anatomical structures and indicate the position of the needle within this volume. For validation of the algorithm, we have recorded a full CT scan of a phantom with an inserted biopsy needle. The performance of our approach ranges from a median error of 2.94 mm for an distributed viewing angle of 1° down to an error of 0.30 mm for an angle larger than 10°. Based on the results of this initial phantom study, we conclude that multi-view geometry offers an attractive alternative to time-consuming iterative methods for the depth estimation of surgical tools during C-arm-based image-guided interventions.

  10. Quantum Algorithms

    NASA Technical Reports Server (NTRS)

    Abrams, D.; Williams, C.

    1999-01-01

    This thesis describes several new quantum algorithms. These include a polynomial time algorithm that uses a quantum fast Fourier transform to find eigenvalues and eigenvectors of a Hamiltonian operator, and that can be applied in cases for which all know classical algorithms require exponential time.

  11. On numerically accurate finite element

    NASA Technical Reports Server (NTRS)

    Nagtegaal, J. C.; Parks, D. M.; Rice, J. R.

    1974-01-01

    A general criterion for testing a mesh with topologically similar repeat units is given, and the analysis shows that only a few conventional element types and arrangements are, or can be made suitable for computations in the fully plastic range. Further, a new variational principle, which can easily and simply be incorporated into an existing finite element program, is presented. This allows accurate computations to be made even for element designs that would not normally be suitable. Numerical results are given for three plane strain problems, namely pure bending of a beam, a thick-walled tube under pressure, and a deep double edge cracked tensile specimen. The effects of various element designs and of the new variational procedure are illustrated. Elastic-plastic computation at finite strain are discussed.

  12. Development of an Interval Management Algorithm Using Ground Speed Feedback for Delayed Traffic

    NASA Technical Reports Server (NTRS)

    Barmore, Bryan E.; Swieringa, Kurt A.; Underwood, Matthew C.; Abbott, Terence; Leonard, Robert D.

    2016-01-01

    One of the goals of NextGen is to enable frequent use of Optimized Profile Descents (OPD) for aircraft, even during periods of peak traffic demand. NASA is currently testing three new technologies that enable air traffic controllers to use speed adjustments to space aircraft during arrival and approach operations. This will allow an aircraft to remain close to their OPD. During the integration of these technologies, it was discovered that, due to a lack of accurate trajectory information for the leading aircraft, Interval Management aircraft were exhibiting poor behavior. NASA's Interval Management algorithm was modified to address the impact of inaccurate trajectory information and a series of studies were performed to assess the impact of this modification. These studies show that the modification provided some improvement when the Interval Management system lacked accurate trajectory information for the leading aircraft.

  13. Local Debonding and Fiber Breakage in Composite Materials Modeled Accurately

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Arnold, Steven M.

    2001-01-01

    A prerequisite for full utilization of composite materials in aerospace components is accurate design and life prediction tools that enable the assessment of component performance and reliability. Such tools assist both structural analysts, who design and optimize structures composed of composite materials, and materials scientists who design and optimize the composite materials themselves. NASA Glenn Research Center's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) software package (http://www.grc.nasa.gov/WWW/LPB/mac) addresses this need for composite design and life prediction tools by providing a widely applicable and accurate approach to modeling composite materials. Furthermore, MAC/GMC serves as a platform for incorporating new local models and capabilities that are under development at NASA, thus enabling these new capabilities to progress rapidly to a stage in which they can be employed by the code's end users.

  14. Enabling a New Planning and Scheduling Paradigm

    NASA Technical Reports Server (NTRS)

    Jaap, John; Davis, Elizabeth

    2004-01-01

    The Flight Projects Directorate at NASA's Marshall Space Flight Center is developing a new planning and scheduling environment and a new scheduling algorithm to enable a paradigm shift in planning and scheduling concepts. Over the past 33 years Marshall has developed and evolved a paradigm for generating payload timelines for Skylab, Spacelab, various other Shuttle payloads, and the International Space Station. The current paradigm starts by collecting the requirements, called "tasks models," from the scientists and technologists for the tasks that they want to be done. Because of shortcomings in the current modeling schema, some requirements are entered as notes. Next a cadre with knowledge of vehicle and hardware modifies these models to encompass and be compatible with the hardware model; again, notes are added when the modeling schema does not provide a better way to represent the requirements. Finally, another cadre further modifies the models to be compatible with the scheduling engine. This last cadre also submits the models to the scheduling engine or builds the timeline manually to accommodate requirements that are expressed in notes. A future paradigm would provide a scheduling engine that accepts separate science models and hardware models. The modeling schema would have the capability to represent all the requirements without resorting to notes. Furthermore, the scheduling engine would not require that the models be modified to account for the capabilities (limitations) of the scheduling engine. The enabling technology under development at Marshall has three major components. (1) A new modeling schema allows expressing all the requirements of the tasks without resorting to notes or awkward contrivances. The chosen modeling schema is both maximally expressive and easy to use. It utilizes graphics methods to show hierarchies of task constraints and networks of temporal relationships. (2) A new scheduling algorithm automatically schedules the models

  15. Algorithms and Requirements for Measuring Network Bandwidth

    SciTech Connect

    Jin, Guojun

    2002-12-08

    This report unveils new algorithms for actively measuring (not estimating) available bandwidths with very low intrusion, computing cross traffic, thus estimating the physical bandwidth, provides mathematical proof that the algorithms are accurate, and addresses conditions, requirements, and limitations for new and existing algorithms for measuring network bandwidths. The paper also discusses a number of important terminologies and issues for network bandwidth measurement, and introduces a fundamental parameter -Maximum Burst Size that is critical for implementing algorithms based on multiple packets.

  16. Health-Enabled Smart Sensor Fusion Technology

    NASA Technical Reports Server (NTRS)

    Wang, Ray

    2012-01-01

    A process was designed to fuse data from multiple sensors in order to make a more accurate estimation of the environment and overall health in an intelligent rocket test facility (IRTF), to provide reliable, high-confidence measurements for a variety of propulsion test articles. The object of the technology is to provide sensor fusion based on a distributed architecture. Specifically, the fusion technology is intended to succeed in providing health condition monitoring capability at the intelligent transceiver, such as RF signal strength, battery reading, computing resource monitoring, and sensor data reading. The technology also provides analytic and diagnostic intelligence at the intelligent transceiver, enhancing the IEEE 1451.x-based standard for sensor data management and distributions, as well as providing appropriate communications protocols to enable complex interactions to support timely and high-quality flow of information among the system elements.

  17. High order accurate finite difference schemes based on symmetry preservation

    NASA Astrophysics Data System (ADS)

    Ozbenli, Ersin; Vedula, Prakash

    2016-11-01

    A new algorithm for development of high order accurate finite difference schemes for numerical solution of partial differential equations using Lie symmetries is presented. Considering applicable symmetry groups (such as those relevant to space/time translations, Galilean transformation, scaling, rotation and projection) of a partial differential equation, invariant numerical schemes are constructed based on the notions of moving frames and modified equations. Several strategies for construction of invariant numerical schemes with a desired order of accuracy are analyzed. Performance of the proposed algorithm is demonstrated using analysis of one-dimensional partial differential equations, such as linear advection diffusion equations inviscid Burgers equation and viscous Burgers equation, as our test cases. Through numerical simulations based on these examples, the expected improvement in accuracy of invariant numerical schemes (up to fourth order) is demonstrated. Advantages due to implementation and enhanced computational efficiency inherent in our proposed algorithm are presented. Extension of the basic framework to multidimensional partial differential equations is also discussed.

  18. Barcoding T Cell Calcium Response Diversity with Methods for Automated and Accurate Analysis of Cell Signals (MAAACS)

    PubMed Central

    Sergé, Arnauld; Bernard, Anne-Marie; Phélipot, Marie-Claire; Bertaux, Nicolas; Fallet, Mathieu; Grenot, Pierre; Marguet, Didier; He, Hai-Tao; Hamon, Yannick

    2013-01-01

    We introduce a series of experimental procedures enabling sensitive calcium monitoring in T cell populations by confocal video-microscopy. Tracking and post-acquisition analysis was performed using Methods for Automated and Accurate Analysis of Cell Signals (MAAACS), a fully customized program that associates a high throughput tracking algorithm, an intuitive reconnection routine and a statistical platform to provide, at a glance, the calcium barcode of a population of individual T-cells. Combined with a sensitive calcium probe, this method allowed us to unravel the heterogeneity in shape and intensity of the calcium response in T cell populations and especially in naive T cells, which display intracellular calcium oscillations upon stimulation by antigen presenting cells. PMID:24086124

  19. Power spectral estimation algorithms

    NASA Technical Reports Server (NTRS)

    Bhatia, Manjit S.

    1989-01-01

    Algorithms to estimate the power spectrum using Maximum Entropy Methods were developed. These algorithms were coded in FORTRAN 77 and were implemented on the VAX 780. The important considerations in this analysis are: (1) resolution, i.e., how close in frequency two spectral components can be spaced and still be identified; (2) dynamic range, i.e., how small a spectral peak can be, relative to the largest, and still be observed in the spectra; and (3) variance, i.e., how accurate the estimate of the spectra is to the actual spectra. The application of the algorithms based on Maximum Entropy Methods to a variety of data shows that these criteria are met quite well. Additional work in this direction would help confirm the findings. All of the software developed was turned over to the technical monitor. A copy of a typical program is included. Some of the actual data and graphs used on this data are also included.

  20. Accurate lineshape spectroscopy and the Boltzmann constant

    PubMed Central

    Truong, G.-W.; Anstie, J. D.; May, E. F.; Stace, T. M.; Luiten, A. N.

    2015-01-01

    Spectroscopy has an illustrious history delivering serendipitous discoveries and providing a stringent testbed for new physical predictions, including applications from trace materials detection, to understanding the atmospheres of stars and planets, and even constraining cosmological models. Reaching fundamental-noise limits permits optimal extraction of spectroscopic information from an absorption measurement. Here, we demonstrate a quantum-limited spectrometer that delivers high-precision measurements of the absorption lineshape. These measurements yield a very accurate measurement of the excited-state (6P1/2) hyperfine splitting in Cs, and reveals a breakdown in the well-known Voigt spectral profile. We develop a theoretical model that accounts for this breakdown, explaining the observations to within the shot-noise limit. Our model enables us to infer the thermal velocity dispersion of the Cs vapour with an uncertainty of 35 p.p.m. within an hour. This allows us to determine a value for Boltzmann's constant with a precision of 6 p.p.m., and an uncertainty of 71 p.p.m. PMID:26465085

  1. Accurate upper body rehabilitation system using kinect.

    PubMed

    Sinha, Sanjana; Bhowmick, Brojeshwar; Chakravarty, Kingshuk; Sinha, Aniruddha; Das, Abhijit

    2016-08-01

    The growing importance of Kinect as a tool for clinical assessment and rehabilitation is due to its portability, low cost and markerless system for human motion capture. However, the accuracy of Kinect in measuring three-dimensional body joint center locations often fails to meet clinical standards of accuracy when compared to marker-based motion capture systems such as Vicon. The length of the body segment connecting any two joints, measured as the distance between three-dimensional Kinect skeleton joint coordinates, has been observed to vary with time. The orientation of the line connecting adjoining Kinect skeletal coordinates has also been seen to differ from the actual orientation of the physical body segment. Hence we have proposed an optimization method that utilizes Kinect Depth and RGB information to search for the joint center location that satisfies constraints on body segment length and as well as orientation. An experimental study have been carried out on ten healthy participants performing upper body range of motion exercises. The results report 72% reduction in body segment length variance and 2° improvement in Range of Motion (ROM) angle hence enabling to more accurate measurements for upper limb exercises.

  2. Fast and accurate exhaled breath ammonia measurement.

    PubMed

    Solga, Steven F; Mudalel, Matthew L; Spacek, Lisa A; Risby, Terence H

    2014-06-11

    This exhaled breath ammonia method uses a fast and highly sensitive spectroscopic method known as quartz enhanced photoacoustic spectroscopy (QEPAS) that uses a quantum cascade based laser. The monitor is coupled to a sampler that measures mouth pressure and carbon dioxide. The system is temperature controlled and specifically designed to address the reactivity of this compound. The sampler provides immediate feedback to the subject and the technician on the quality of the breath effort. Together with the quick response time of the monitor, this system is capable of accurately measuring exhaled breath ammonia representative of deep lung systemic levels. Because the system is easy to use and produces real time results, it has enabled experiments to identify factors that influence measurements. For example, mouth rinse and oral pH reproducibly and significantly affect results and therefore must be controlled. Temperature and mode of breathing are other examples. As our understanding of these factors evolves, error is reduced, and clinical studies become more meaningful. This system is very reliable and individual measurements are inexpensive. The sampler is relatively inexpensive and quite portable, but the monitor is neither. This limits options for some clinical studies and provides rational for future innovations.

  3. Performance analysis of image processing algorithms for classification of natural vegetation in the mountains of southern California

    NASA Technical Reports Server (NTRS)

    Yool, S. R.; Star, J. L.; Estes, J. E.; Botkin, D. B.; Eckhardt, D. W.

    1986-01-01

    The earth's forests fix carbon from the atmosphere during photosynthesis. Scientists are concerned that massive forest removals may promote an increase in atmospheric carbon dioxide, with possible global warming and related environmental effects. Space-based remote sensing may enable the production of accurate world forest maps needed to examine this concern objectively. To test the limits of remote sensing for large-area forest mapping, we use Landsat data acquired over a site in the forested mountains of southern California to examine the relative capacities of a variety of popular image processing algorithms to discriminate different forest types. Results indicate that certain algorithms are best suited to forest classification. Differences in performance between the algorithms tested appear related to variations in their sensitivities to spectral variations caused by background reflectance, differential illumination, and spatial pattern by species. Results emphasize the complexity between the land-cover regime, remotely sensed data and the algorithms used to process these data.

  4. A new algorithm for high-dimensional uncertainty quantification based on dimension-adaptive sparse grid approximation and reduced basis methods

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Quarteroni, Alfio

    2015-10-01

    In this work we develop an adaptive and reduced computational algorithm based on dimension-adaptive sparse grid approximation and reduced basis methods for solving high-dimensional uncertainty quantification (UQ) problems. In order to tackle the computational challenge of "curse of dimensionality" commonly faced by these problems, we employ a dimension-adaptive tensor-product algorithm [16] and propose a verified version to enable effective removal of the stagnation phenomenon besides automatically detecting the importance and interaction of different dimensions. To reduce the heavy computational cost of UQ problems modelled by partial differential equations (PDE), we adopt a weighted reduced basis method [7] and develop an adaptive greedy algorithm in combination with the previous verified algorithm for efficient construction of an accurate reduced basis approximation. The efficiency and accuracy of the proposed algorithm are demonstrated by several numerical experiments.

  5. JPSS CGS Tools For Rapid Algorithm Updates

    NASA Astrophysics Data System (ADS)

    Smith, D. C.; Grant, K. D.

    2011-12-01

    Northrop Grumman have developed tools and processes to enable changes to be evaluated, tested, and moved into the operational baseline in a rapid and efficient manner. This presentation will provide an overview of the tools available to the Cal/Val teams to ensure rapid and accurate assessment of algorithm changes, along with the processes in place to ensure baseline integrity. [1] K. Grant and G. Route, "JPSS CGS Tools for Rapid Algorithm Updates," NOAA 2011 Satellite Direct Readout Conference, Miami FL, Poster, Apr 2011. [2] K. Grant, G. Route and B. Reed, "JPSS CGS Tools for Rapid Algorithm Updates," AMS 91st Annual Meeting, Seattle WA, Poster, Jan 2011. [3] K. Grant, G. Route and B. Reed, "JPSS CGS Tools for Rapid Algorithm Updates," AGU 2010 Fall Meeting, San Francisco CA, Oral Presentation, Dec 2010.

  6. Optical Algorithms at Satellite Wavelengths for Total Suspended Matter in Tropical Coastal Waters

    PubMed Central

    Ouillon, Sylvain; Douillet, Pascal; Petrenko, Anne; Neveux, Jacques; Dupouy, Cécile; Froidefond, Jean-Marie; Andréfouët, Serge; Muñoz-Caravaca, Alain

    2008-01-01

    Is it possible to derive accurately Total Suspended Matter concentration or its proxy, turbidity, from remote sensing data in tropical coastal lagoon waters? To investigate this question, hyperspectral remote sensing reflectance, turbidity and chlorophyll pigment concentration were measured in three coral reef lagoons. The three sites enabled us to get data over very diverse environments: oligotrophic and sediment-poor waters in the southwest lagoon of New Caledonia, eutrophic waters in the Cienfuegos Bay (Cuba), and sediment-rich waters in the Laucala Bay (Fiji). In this paper, optical algorithms for turbidity are presented per site based on 113 stations in New Caledonia, 24 stations in Cuba and 56 stations in Fiji. Empirical algorithms are tested at satellite wavebands useful to coastal applications. Global algorithms are also derived for the merged data set (193 stations). The performances of global and local regression algorithms are compared. The best one-band algorithms on all the measurements are obtained at 681 nm using either a polynomial or a power model. The best two-band algorithms are obtained with R412/R620, R443/R670 and R510/R681. Two three-band algorithms based on Rrs620.Rrs681/Rrs412 and Rrs620.Rrs681/Rrs510 also give fair regression statistics. Finally, we propose a global algorithm based on one or three bands: turbidity is first calculated from Rrs681 and then, if < 1 FTU, it is recalculated using an algorithm based on Rrs620.Rrs681/Rrs412. On our data set, this algorithm is suitable for the 0.2-25 FTU turbidity range and for the three sites sampled (mean bias: 3.6 %, rms: 35%, mean quadratic error: 1.4 FTU). This shows that defining global empirical turbidity algorithms in tropical coastal waters is at reach. PMID:27879929

  7. The Superior Lambert Algorithm

    NASA Astrophysics Data System (ADS)

    der, G.

    2011-09-01

    Lambert algorithms are used extensively for initial orbit determination, mission planning, space debris correlation, and missile targeting, just to name a few applications. Due to the significance of the Lambert problem in Astrodynamics, Gauss, Battin, Godal, Lancaster, Gooding, Sun and many others (References 1 to 15) have provided numerous formulations leading to various analytic solutions and iterative methods. Most Lambert algorithms and their computer programs can only work within one revolution, break down or converge slowly when the transfer angle is near zero or 180 degrees, and their multi-revolution limitations are either ignored or barely addressed. Despite claims of robustness, many Lambert algorithms fail without notice, and the users seldom have a clue why. The DerAstrodynamics lambert2 algorithm, which is based on the analytic solution formulated by Sun, works for any number of revolutions and converges rapidly at any transfer angle. It provides significant capability enhancements over every other Lambert algorithm in use today. These include improved speed, accuracy, robustness, and multirevolution capabilities as well as implementation simplicity. Additionally, the lambert2 algorithm provides a powerful tool for solving the angles-only problem without artificial singularities (pointed out by Gooding in Reference 16), which involves 3 lines of sight captured by optical sensors, or systems such as the Air Force Space Surveillance System (AFSSS). The analytic solution is derived from the extended Godal’s time equation by Sun, while the iterative method of solution is that of Laguerre, modified for robustness. The Keplerian solution of a Lambert algorithm can be extended to include the non-Keplerian terms of the Vinti algorithm via a simple targeting technique (References 17 to 19). Accurate analytic non-Keplerian trajectories can be predicted for satellites and ballistic missiles, while performing at least 100 times faster in speed than most

  8. A novel supervised trajectory segmentation algorithm identifies distinct types of human adenovirus motion in host cells.

    PubMed

    Helmuth, Jo A; Burckhardt, Christoph J; Koumoutsakos, Petros; Greber, Urs F; Sbalzarini, Ivo F

    2007-09-01

    Biological trajectories can be characterized by transient patterns that may provide insight into the interactions of the moving object with its immediate environment. The accurate and automated identification of trajectory motifs is important for the understanding of the underlying mechanisms. In this work, we develop a novel trajectory segmentation algorithm based on supervised support vector classification. The algorithm is validated on synthetic data and applied to the identification of trajectory fingerprints of fluorescently tagged human adenovirus particles in live cells. In virus trajectories on the cell surface, periods of confined motion, slow drift, and fast drift are efficiently detected. Additionally, directed motion is found for viruses in the cytoplasm. The algorithm enables the linking of microscopic observations to molecular phenomena that are critical in many biological processes, including infectious pathogen entry and signal transduction.

  9. Secure Enclaves-Enabled Technologies

    DTIC Science & Technology

    2014-04-25

    solution. Recommendations There is the potential to exploit extremely lucrative opportunities utilizing our first- mover advantage in this...emerging market segment. However, there is still significant work to be completed. The SE Enabled browser extension application is still in the early

  10. Real Diffusion-Weighted MRI Enabling True Signal Averaging and Increased Diffusion Contrast

    PubMed Central

    Eichner, Cornelius; Cauley, Stephen F; Cohen-Adad, Julien; Möller, Harald E; Turner, Robert; Setsompop, Kawin; Wald, Lawrence L

    2015-01-01

    This project aims to characterize the impact of underlying noise distributions on diffusion-weighted imaging. The noise floor is a well-known problem for traditional magnitude-based diffusion-weighted MRI (dMRI) data, leading to biased diffusion model fits and inaccurate signal averaging. Here, we introduce a total-variation-based algorithm to eliminate shot-to-shot phase variations of complex-valued diffusion data with the intention to extract real-valued dMRI datasets. The obtained real-valued diffusion data are no longer superimposed by a noise floor but instead by a zero-mean Gaussian noise distribution, yielding dMRI data without signal bias. We acquired high-resolution dMRI data with strong diffusion weighting and, thus, low signal-to-noise ratio. Both the extracted real-valued and traditional magnitude data were compared regarding signal averaging, diffusion model fitting and accuracy in resolving crossing fibers. Our results clearly indicate that real-valued diffusion data enables idealized conditions for signal averaging. Furthermore, the proposed method enables unbiased use of widely employed linear least squares estimators for model fitting and demonstrates an increased sensitivity to detect secondary fiber directions with reduced angular error. The use of phase-corrected, real-valued data for dMRI will therefore help to clear the way for more detailed and accurate studies of white matter microstructure and structural connectivity on a fine scale. PMID:26241680

  11. Real diffusion-weighted MRI enabling true signal averaging and increased diffusion contrast.

    PubMed

    Eichner, Cornelius; Cauley, Stephen F; Cohen-Adad, Julien; Möller, Harald E; Turner, Robert; Setsompop, Kawin; Wald, Lawrence L

    2015-11-15

    This project aims to characterize the impact of underlying noise distributions on diffusion-weighted imaging. The noise floor is a well-known problem for traditional magnitude-based diffusion-weighted MRI (dMRI) data, leading to biased diffusion model fits and inaccurate signal averaging. Here, we introduce a total-variation-based algorithm to eliminate shot-to-shot phase variations of complex-valued diffusion data with the intention to extract real-valued dMRI datasets. The obtained real-valued diffusion data are no longer superimposed by a noise floor but instead by a zero-mean Gaussian noise distribution, yielding dMRI data without signal bias. We acquired high-resolution dMRI data with strong diffusion weighting and, thus, low signal-to-noise ratio. Both the extracted real-valued and traditional magnitude data were compared regarding signal averaging, diffusion model fitting and accuracy in resolving crossing fibers. Our results clearly indicate that real-valued diffusion data enables idealized conditions for signal averaging. Furthermore, the proposed method enables unbiased use of widely employed linear least squares estimators for model fitting and demonstrates an increased sensitivity to detect secondary fiber directions with reduced angular error. The use of phase-corrected, real-valued data for dMRI will therefore help to clear the way for more detailed and accurate studies of white matter microstructure and structural connectivity on a fine scale.

  12. Algorithms Could Automate Cancer Diagnosis

    NASA Technical Reports Server (NTRS)

    Baky, A. A.; Winkler, D. G.

    1982-01-01

    Five new algorithms are a complete statistical procedure for quantifying cell abnormalities from digitized images. Procedure could be basis for automated detection and diagnosis of cancer. Objective of procedure is to assign each cell an atypia status index (ASI), which quantifies level of abnormality. It is possible that ASI values will be accurate and economical enough to allow diagnoses to be made quickly and accurately by computer processing of laboratory specimens extracted from patients.

  13. Predicting polymeric crystal structures by evolutionary algorithms

    NASA Astrophysics Data System (ADS)

    Zhu, Qiang; Sharma, Vinit; Oganov, Artem R.; Ramprasad, Ramamurthy

    2014-10-01

    The recently developed evolutionary algorithm USPEX proved to be a tool that enables accurate and reliable prediction of structures. Here we extend this method to predict the crystal structure of polymers by constrained evolutionary search, where each monomeric unit is treated as a building block with fixed connectivity. This greatly reduces the search space and allows the initial structure generation with different sequences and packings of these blocks. The new constrained evolutionary algorithm is successfully tested and validated on a diverse range of experimentally known polymers, namely, polyethylene, polyacetylene, poly(glycolic acid), poly(vinyl chloride), poly(oxymethylene), poly(phenylene oxide), and poly (p-phenylene sulfide). By fixing the orientation of polymeric chains, this method can be further extended to predict the structures of complex linear polymers, such as all polymorphs of poly(vinylidene fluoride), nylon-6 and cellulose. The excellent agreement between predicted crystal structures and experimentally known structures assures a major role of this approach in the efficient design of the future polymeric materials.

  14. Exogenous Attention Enables Perceptual Learning.

    PubMed

    Szpiro, Sarit F A; Carrasco, Marisa

    2015-12-01

    Practice can improve visual perception, and these improvements are considered to be a form of brain plasticity. Training-induced learning is time-consuming and requires hundreds of trials across multiple days. The process of learning acquisition is understudied. Can learning acquisition be potentiated by manipulating visual attentional cues? We developed a protocol in which we used task-irrelevant cues for between-groups manipulation of attention during training. We found that training with exogenous attention can enable the acquisition of learning. Remarkably, this learning was maintained even when observers were subsequently tested under neutral conditions, which indicates that a change in perception was involved. Our study is the first to isolate the effects of exogenous attention and to demonstrate its efficacy to enable learning. We propose that exogenous attention boosts perceptual learning by enhancing stimulus encoding.

  15. Echo-Enabled Harmonic Generation

    SciTech Connect

    Stupakov, Gennady; /SLAC

    2012-06-28

    A recently proposed concept of the Echo-Enabled Harmonic Generation (EEHG) FEL uses two laser modulators in combination with two dispersion sections to generate a high-harmonic density modulation in a relativistic beam. This seeding technique holds promise of a one-stage soft x-ray FEL that radiates not only transversely but also longitudinally coherent pulses. Currently, an experimental verification of the concept is being conducted at the SLAC National Accelerator Laboratory aimed at the demonstration of the EEHG.

  16. Technologies for Networked Enabled Operations

    NASA Technical Reports Server (NTRS)

    Glass, B.; Levine, J.

    2005-01-01

    Current point-to-point data links will not scale to support future integration of surveillance, security, and globally-distributed air traffic data, and already hinders efficiency and capacity. While the FAA and industry focus on a transition to initial system-wide information management (SWIM) capabilities, this paper describes a set of initial studies of NAS network-enabled operations technology gaps targeted for maturity in later SWIM spirals (201 5-2020 timeframe).

  17. Nanofluidics: enabling processes for biotech

    NASA Astrophysics Data System (ADS)

    Ulmanella, Umberto; Ho, Chih-Ming

    2001-10-01

    The advance of micro and nanodevice manufacturing technology enables us to carry out biological and chemical processes in a more efficient manner. In fact, fluidic processes connect the macro and the micro/nano worlds. For devices approaching the size of the fluid molecules, many physical phenomena occur that are not observed in macro flows. In this brief review, we discuss a few selected topics which of are interest for basic research and are important for applications in biotechnology.

  18. A New GPU-Enabled MODTRAN Thermal Model for the PLUME TRACKER Volcanic Emission Analysis Toolkit

    NASA Astrophysics Data System (ADS)

    Acharya, P. K.; Berk, A.; Guiang, C.; Kennett, R.; Perkins, T.; Realmuto, V. J.

    2013-12-01

    Real-time quantification of volcanic gaseous and particulate releases is important for (1) recognizing rapid increases in SO2 gaseous emissions which may signal an impending eruption; (2) characterizing ash clouds to enable safe and efficient commercial aviation; and (3) quantifying the impact of volcanic aerosols on climate forcing. The Jet Propulsion Laboratory (JPL) has developed state-of-the-art algorithms, embedded in their analyst-driven Plume Tracker toolkit, for performing SO2, NH3, and CH4 retrievals from remotely sensed multi-spectral Thermal InfraRed spectral imagery. While Plume Tracker provides accurate results, it typically requires extensive analyst time. A major bottleneck in this processing is the relatively slow but accurate FORTRAN-based MODTRAN atmospheric and plume radiance model, developed by Spectral Sciences, Inc. (SSI). To overcome this bottleneck, SSI in collaboration with JPL, is porting these slow thermal radiance algorithms onto massively parallel, relatively inexpensive and commercially-available GPUs. This paper discusses SSI's efforts to accelerate the MODTRAN thermal emission algorithms used by Plume Tracker. Specifically, we are developing a GPU implementation of the Curtis-Godson averaging and the Voigt in-band transmittances from near line center molecular absorption, which comprise the major computational bottleneck. The transmittance calculations were decomposed into separate functions, individually implemented as GPU kernels, and tested for accuracy and performance relative to the original CPU code. Speedup factors of 14 to 30× were realized for individual processing components on an NVIDIA GeForce GTX 295 graphics card with no loss of accuracy. Due to the separate host (CPU) and device (GPU) memory spaces, a redesign of the MODTRAN architecture was required to ensure efficient data transfer between host and device, and to facilitate high parallel throughput. Currently, we are incorporating the separate GPU kernels into a

  19. Review of jet reconstruction algorithms

    NASA Astrophysics Data System (ADS)

    Atkin, Ryan

    2015-10-01

    Accurate jet reconstruction is necessary for understanding the link between the unobserved partons and the jets of observed collimated colourless particles the partons hadronise into. Understanding this link sheds light on the properties of these partons. A review of various common jet algorithms is presented, namely the Kt, Anti-Kt, Cambridge/Aachen, Iterative cones and the SIScone, highlighting their strengths and weaknesses. If one is interested in studying jets, the Anti-Kt algorithm is the best choice, however if ones interest is in the jet substructures then the Cambridge/Aachen algorithm would be the best option.

  20. New Generation Sensor Web Enablement

    PubMed Central

    Bröring, Arne; Echterhoff, Johannes; Jirka, Simon; Simonis, Ingo; Everding, Thomas; Stasch, Christoph; Liang, Steve; Lemmens, Rob

    2011-01-01

    Many sensor networks have been deployed to monitor Earth’s environment, and more will follow in the future. Environmental sensors have improved continuously by becoming smaller, cheaper, and more intelligent. Due to the large number of sensor manufacturers and differing accompanying protocols, integrating diverse sensors into observation systems is not straightforward. A coherent infrastructure is needed to treat sensors in an interoperable, platform-independent and uniform way. The concept of the Sensor Web reflects such a kind of infrastructure for sharing, finding, and accessing sensors and their data across different applications. It hides the heterogeneous sensor hardware and communication protocols from the applications built on top of it. The Sensor Web Enablement initiative of the Open Geospatial Consortium standardizes web service interfaces and data encodings which can be used as building blocks for a Sensor Web. This article illustrates and analyzes the recent developments of the new generation of the Sensor Web Enablement specification framework. Further, we relate the Sensor Web to other emerging concepts such as the Web of Things and point out challenges and resulting future work topics for research on Sensor Web Enablement. PMID:22163760

  1. 'Ethos' Enabling Organisational Knowledge Creation

    NASA Astrophysics Data System (ADS)

    Matsudaira, Yoshito

    This paper examines knowledge creation in relation to improvements on the production line in the manufacturing department of Nissan Motor Company and aims to clarify embodied knowledge observed in the actions of organisational members who enable knowledge creation will be clarified. For that purpose, this study adopts an approach that adds a first, second, and third-person's viewpoint to the theory of knowledge creation. Embodied knowledge, observed in the actions of organisational members who enable knowledge creation, is the continued practice of 'ethos' (in Greek) founded in Nissan Production Way as an ethical basis. Ethos is knowledge (intangible) assets for knowledge creating companies. Substantiated analysis classifies ethos into three categories: the individual, team and organisation. This indicates the precise actions of the organisational members in each category during the knowledge creation process. This research will be successful in its role of showing the indispensability of ethos - the new concept of knowledge assets, which enables knowledge creation -for future knowledge-based management in the knowledge society.

  2. Algorithm aversion: people erroneously avoid algorithms after seeing them err.

    PubMed

    Dietvorst, Berkeley J; Simmons, Joseph P; Massey, Cade

    2015-02-01

    Research shows that evidence-based algorithms more accurately predict the future than do human forecasters. Yet when forecasters are deciding whether to use a human forecaster or a statistical algorithm, they often choose the human forecaster. This phenomenon, which we call algorithm aversion, is costly, and it is important to understand its causes. We show that people are especially averse to algorithmic forecasters after seeing them perform, even when they see them outperform a human forecaster. This is because people more quickly lose confidence in algorithmic than human forecasters after seeing them make the same mistake. In 5 studies, participants either saw an algorithm make forecasts, a human make forecasts, both, or neither. They then decided whether to tie their incentives to the future predictions of the algorithm or the human. Participants who saw the algorithm perform were less confident in it, and less likely to choose it over an inferior human forecaster. This was true even among those who saw the algorithm outperform the human.

  3. Accurate glucose detection in a small etalon

    NASA Astrophysics Data System (ADS)

    Martini, Joerg; Kuebler, Sebastian; Recht, Michael; Torres, Francisco; Roe, Jeffrey; Kiesel, Peter; Bruce, Richard

    2010-02-01

    We are developing a continuous glucose monitor for subcutaneous long-term implantation. This detector contains a double chamber Fabry-Perot-etalon that measures the differential refractive index (RI) between a reference and a measurement chamber at 850 nm. The etalon chambers have wavelength dependent transmission maxima which dependent linearly on the RI of their contents. An RI difference of ▵n=1.5.10-6 changes the spectral position of a transmission maximum by 1pm in our measurement. By sweeping the wavelength of a single-mode Vertical-Cavity-Surface-Emitting-Laser (VCSEL) linearly in time and detecting the maximum transmission peaks of the etalon we are able to measure the RI of a liquid. We have demonstrated accuracy of ▵n=+/-3.5.10-6 over a ▵n-range of 0 to 1.75.10-4 and an accuracy of 2% over a ▵nrange of 1.75.10-4 to 9.8.10-4. The accuracy is primarily limited by the reference measurement. The RI difference between the etalon chambers is made specific to glucose by the competitive, reversible release of Concanavalin A (ConA) from an immobilized dextran matrix. The matrix and ConA bound to it, is positioned outside the optical detection path. ConA is released from the matrix by reacting with glucose and diffuses into the optical path to change the RI in the etalon. Factors such as temperature affect the RI in measurement and detection chamber equally but do not affect the differential measurement. A typical standard deviation in RI is +/-1.4.10-6 over the range 32°C to 42°C. The detector enables an accurate glucose specific concentration measurement.

  4. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  5. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  6. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  7. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  8. 38 CFR 4.46 - Accurate measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Accurate measurement. 4... RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.46 Accurate measurement. Accurate measurement of the length of stumps, excursion of joints, dimensions and location of scars with respect...

  9. Enablement as a Positive Force in Counselling.

    ERIC Educational Resources Information Center

    Stamler, Lynnette Leeseberg

    1996-01-01

    Explores the concept of enablement and provides a framework for the counselor and counselor educator to use in facilitating client- or student-directed goals. Examines use of enablement, enablement versus co-dependency, the use of the enablement framework in the counseling role, and clinical examples of the enablement framework. (RJM)

  10. Haplotyping algorithms

    SciTech Connect

    Sobel, E.; Lange, K.; O`Connell, J.R.

    1996-12-31

    Haplotyping is the logical process of inferring gene flow in a pedigree based on phenotyping results at a small number of genetic loci. This paper formalizes the haplotyping problem and suggests four algorithms for haplotype reconstruction. These algorithms range from exhaustive enumeration of all haplotype vectors to combinatorial optimization by simulated annealing. Application of the algorithms to published genetic analyses shows that manual haplotyping is often erroneous. Haplotyping is employed in screening pedigrees for phenotyping errors and in positional cloning of disease genes from conserved haplotypes in population isolates. 26 refs., 6 figs., 3 tabs.

  11. Noise-enabled optical ratchets

    PubMed Central

    León-Montiel, Roberto de J.; Quinto-Su, Pedro A.

    2017-01-01

    In this contribution, we report on the implementation of a novel noise-enabled optical ratchet system. We demonstrate that, unlike commonly-used ratchet schemes—where complex asymmetric optical potentials are needed—efficient transport of microparticles across a one-dimensional optical lattice can be produced by introducing controllable noise in the system. This work might open interesting routes towards the development of new technologies aimed at enhancing the efficiency of transport occurring at the micro- and nanoscale, from novel particle-sorting tools to efficient molecular motors. PMID:28287152

  12. Optimized microsystems-enabled photovoltaics

    DOEpatents

    Cruz-Campa, Jose Luis; Nielson, Gregory N.; Young, Ralph W.; Resnick, Paul J.; Okandan, Murat; Gupta, Vipin P.

    2015-09-22

    Technologies pertaining to designing microsystems-enabled photovoltaic (MEPV) cells are described herein. A first restriction for a first parameter of an MEPV cell is received. Subsequently, a selection of a second parameter of the MEPV cell is received. Values for a plurality of parameters of the MEPV cell are computed such that the MEPV cell is optimized with respect to the second parameter, wherein the values for the plurality of parameters are computed based at least in part upon the restriction for the first parameter.

  13. Noise-enabled optical ratchets

    NASA Astrophysics Data System (ADS)

    León-Montiel, Roberto De J.; Quinto-Su, Pedro A.

    2017-03-01

    In this contribution, we report on the implementation of a novel noise-enabled optical ratchet system. We demonstrate that, unlike commonly-used ratchet schemes—where complex asymmetric optical potentials are needed—efficient transport of microparticles across a one-dimensional optical lattice can be produced by introducing controllable noise in the system. This work might open interesting routes towards the development of new technologies aimed at enhancing the efficiency of transport occurring at the micro- and nanoscale, from novel particle-sorting tools to efficient molecular motors.

  14. An Optimal Class Association Rule Algorithm

    NASA Astrophysics Data System (ADS)

    Jean Claude, Turiho; Sheng, Yang; Chuang, Li; Kaia, Xie

    Classification and association rule mining algorithms are two important aspects of data mining. Class association rule mining algorithm is a promising approach for it involves the use of association rule mining algorithm to discover classification rules. This paper introduces an optimal class association rule mining algorithm known as OCARA. It uses optimal association rule mining algorithm and the rule set is sorted by priority of rules resulting into a more accurate classifier. It outperforms the C4.5, CBA, RMR on UCI eight data sets, which is proved by experimental results.

  15. Onboard Science and Applications Algorithm for Hyperspectral Data Reduction

    NASA Technical Reports Server (NTRS)

    Chien, Steve A.; Davies, Ashley G.; Silverman, Dorothy; Mandl, Daniel

    2012-01-01

    An onboard processing mission concept is under development for a possible Direct Broadcast capability for the HyspIRI mission, a Hyperspectral remote sensing mission under consideration for launch in the next decade. The concept would intelligently spectrally and spatially subsample the data as well as generate science products onboard to enable return of key rapid response science and applications information despite limited downlink bandwidth. This rapid data delivery concept focuses on wildfires and volcanoes as primary applications, but also has applications to vegetation, coastal flooding, dust, and snow/ice applications. Operationally, the HyspIRI team would define a set of spatial regions of interest where specific algorithms would be executed. For example, known coastal areas would have certain products or bands downlinked, ocean areas might have other bands downlinked, and during fire seasons other areas would be processed for active fire detections. Ground operations would automatically generate the mission plans specifying the highest priority tasks executable within onboard computation, setup, and data downlink constraints. The spectral bands of the TIR (thermal infrared) instrument can accurately detect the thermal signature of fires and send down alerts, as well as the thermal and VSWIR (visible to short-wave infrared) data corresponding to the active fires. Active volcanism also produces a distinctive thermal signature that can be detected onboard to enable spatial subsampling. Onboard algorithms and ground-based algorithms suitable for onboard deployment are mature. On HyspIRI, the algorithm would perform a table-driven temperature inversion from several spectral TIR bands, and then trigger downlink of the entire spectrum for each of the hot pixels identified. Ocean and coastal applications include sea surface temperature (using a small spectral subset of TIR data, but requiring considerable ancillary data), and ocean color applications to track

  16. Autonomy enables new science missions

    NASA Astrophysics Data System (ADS)

    Doyle, Richard J.; Gor, Victoria; Man, Guy K.; Stolorz, Paul E.; Chapman, Clark; Merline, William J.; Stern, Alan

    1997-01-01

    The challenge of space flight in NASA's future is to enable smaller, more frequent and intensive space exploration at much lower total cost without substantially decreasing mission reliability, capability, or the scientific return on investment. The most effective way to achieve this goal is to build intelligent capabilities into the spacecraft themselves. Our technological vision for meeting the challenge of returning quality science through limited communication bandwidth will actually put scientists in a more direct link with the spacecraft than they have enjoyed to date. Technologies such as pattern recognition and machine learning can place a part of the scientist's awareness onboard the spacecraft to prioritize downlink or to autonomously trigger time-critical follow-up observations-particularly important in flyby missions-without ground interaction. Onboard knowledge discovery methods can be used to include candidate discoveries in each downlink for scientists' scrutiny. Such capabilities will allow scientists to quickly reprioritize missions in a much more intimate and efficient manner than is possible today. Ultimately, new classes of exploration missions will be enabled.

  17. Nanomaterial-Enabled Neural Stimulation

    PubMed Central

    Wang, Yongchen; Guo, Liang

    2016-01-01

    Neural stimulation is a critical technique in treating neurological diseases and investigating brain functions. Traditional electrical stimulation uses electrodes to directly create intervening electric fields in the immediate vicinity of neural tissues. Second-generation stimulation techniques directly use light, magnetic fields or ultrasound in a non-contact manner. An emerging generation of non- or minimally invasive neural stimulation techniques is enabled by nanotechnology to achieve a high spatial resolution and cell-type specificity. In these techniques, a nanomaterial converts a remotely transmitted primary stimulus such as a light, magnetic or ultrasonic signal to a localized secondary stimulus such as an electric field or heat to stimulate neurons. The ease of surface modification and bio-conjugation of nanomaterials facilitates cell-type-specific targeting, designated placement and highly localized membrane activation. This review focuses on nanomaterial-enabled neural stimulation techniques primarily involving opto-electric, opto-thermal, magneto-electric, magneto-thermal and acousto-electric transduction mechanisms. Stimulation techniques based on other possible transduction schemes and general consideration for these emerging neurotechnologies are also discussed. PMID:27013938

  18. Enabling Exploration Through Docking Standards

    NASA Technical Reports Server (NTRS)

    Hatfield, Caris A.

    2012-01-01

    Human exploration missions beyond low earth orbit will likely require international cooperation in order to leverage limited resources. International standards can help enable cooperative missions by providing well understood, predefined interfaces allowing compatibility between unique spacecraft and systems. The International Space Station (ISS) partnership has developed a publicly available International Docking System Standard (IDSS) that provides a solution to one of these key interfaces by defining a common docking interface. The docking interface provides a way for even dissimilar spacecraft to dock for exchange of crew and cargo, as well as enabling the assembly of large space systems. This paper provides an overview of the key attributes of the IDSS, an overview of the NASA Docking System (NDS), and the plans for updating the ISS with IDSS compatible interfaces. The NDS provides a state of the art, low impact docking system that will initially be made available to commercial crew and cargo providers. The ISS will be used to demonstrate the operational utility of the IDSS interface as a foundational technology for cooperative exploration.

  19. Directory Enabled Policy Based Networking

    SciTech Connect

    KELIIAA, CURTIS M.

    2001-10-01

    This report presents a discussion of directory-enabled policy-based networking with an emphasis on its role as the foundation for securely scalable enterprise networks. A directory service provides the object-oriented logical environment for interactive cyber-policy implementation. Cyber-policy implementation includes security, network management, operational process and quality of service policies. The leading network-technology vendors have invested in these technologies for secure universal connectivity that transverses Internet, extranet and intranet boundaries. Industry standards are established that provide the fundamental guidelines for directory deployment scalable to global networks. The integration of policy-based networking with directory-service technologies provides for intelligent management of the enterprise network environment as an end-to-end system of related clients, services and resources. This architecture allows logical policies to protect data, manage security and provision critical network services permitting a proactive defense-in-depth cyber-security posture. Enterprise networking imposes the consideration of supporting multiple computing platforms, sites and business-operation models. An industry-standards based approach combined with principled systems engineering in the deployment of these technologies allows these issues to be successfully addressed. This discussion is focused on a directory-based policy architecture for the heterogeneous enterprise network-computing environment and does not propose specific vendor solutions. This document is written to present practical design methodology and provide an understanding of the risks, complexities and most important, the benefits of directory-enabled policy-based networking.

  20. Robust and Accurate Seismic(acoustic) Ray Tracer

    NASA Astrophysics Data System (ADS)

    Debski, W.; Ando, M.

    Recent development of high resolution seismic tomography as well as a need for a high precision seismic (acoustic) source locations calls for robust and very precise numeri- cal methods of an estimation of seismic (acoustic) travel times and ray paths. Here we present a method based on a parametrisation of the ray path by a series of the Cheby- shev polynomials. This pseudo-spectral method, combined with the accurate Gauss- Lobbato integration procedure allows to reach a very high relative travel time accu- racy t/t 10-7. At the same time use of the Genetic Algorithm based optimizer (Evolutionary Algorithm) assures an extreme robustness which allows the method to be used in complicated 3D geological structures like multi-fault areas, mines, or real engineering applications, constructions, etc.

  1. An integrative variant analysis pipeline for accurate genotype/haplotype inference in population NGS data.

    PubMed

    Wang, Yi; Lu, James; Yu, Jin; Gibbs, Richard A; Yu, Fuli

    2013-05-01

    Next-generation sequencing is a powerful approach for discovering genetic variation. Sensitive variant calling and haplotype inference from population sequencing data remain challenging. We describe methods for high-quality discovery, genotyping, and phasing of SNPs for low-coverage (approximately 5×) sequencing of populations, implemented in a pipeline called SNPTools. Our pipeline contains several innovations that specifically address challenges caused by low-coverage population sequencing: (1) effective base depth (EBD), a nonparametric statistic that enables more accurate statistical modeling of sequencing data; (2) variance ratio scoring, a variance-based statistic that discovers polymorphic loci with high sensitivity and specificity; and (3) BAM-specific binomial mixture modeling (BBMM), a clustering algorithm that generates robust genotype likelihoods from heterogeneous sequencing data. Last, we develop an imputation engine that refines raw genotype likelihoods to produce high-quality phased genotypes/haplotypes. Designed for large population studies, SNPTools' input/output (I/O) and storage aware design leads to improved computing performance on large sequencing data sets. We apply SNPTools to the International 1000 Genomes Project (1000G) Phase 1 low-coverage data set and obtain genotyping accuracy comparable to that of SNP microarray.

  2. Multimodal spatial calibration for accurately registering EEG sensor positions.

    PubMed

    Zhang, Jianhua; Chen, Jian; Chen, Shengyong; Xiao, Gang; Li, Xiaoli

    2014-01-01

    This paper proposes a fast and accurate calibration method to calibrate multiple multimodal sensors using a novel photogrammetry system for fast localization of EEG sensors. The EEG sensors are placed on human head and multimodal sensors are installed around the head to simultaneously obtain all EEG sensor positions. A multiple views' calibration process is implemented to obtain the transformations of multiple views. We first develop an efficient local repair algorithm to improve the depth map, and then a special calibration body is designed. Based on them, accurate and robust calibration results can be achieved. We evaluate the proposed method by corners of a chessboard calibration plate. Experimental results demonstrate that the proposed method can achieve good performance, which can be further applied to EEG source localization applications on human brain.

  3. Light Field Imaging Based Accurate Image Specular Highlight Removal

    PubMed Central

    Wang, Haoqian; Xu, Chenxue; Wang, Xingzheng; Zhang, Yongbing; Peng, Bo

    2016-01-01

    Specular reflection removal is indispensable to many computer vision tasks. However, most existing methods fail or degrade in complex real scenarios for their individual drawbacks. Benefiting from the light field imaging technology, this paper proposes a novel and accurate approach to remove specularity and improve image quality. We first capture images with specularity by the light field camera (Lytro ILLUM). After accurately estimating the image depth, a simple and concise threshold strategy is adopted to cluster the specular pixels into “unsaturated” and “saturated” category. Finally, a color variance analysis of multiple views and a local color refinement are individually conducted on the two categories to recover diffuse color information. Experimental evaluation by comparison with existed methods based on our light field dataset together with Stanford light field archive verifies the effectiveness of our proposed algorithm. PMID:27253083

  4. Uniformly high order accurate essentially non-oscillatory schemes 3

    NASA Technical Reports Server (NTRS)

    Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S. R.

    1986-01-01

    In this paper (a third in a series) the construction and the analysis of essentially non-oscillatory shock capturing methods for the approximation of hyperbolic conservation laws are presented. Also presented is a hierarchy of high order accurate schemes which generalizes Godunov's scheme and its second order accurate MUSCL extension to arbitrary order of accuracy. The design involves an essentially non-oscillatory piecewise polynomial reconstruction of the solution from its cell averages, time evolution through an approximate solution of the resulting initial value problem, and averaging of this approximate solution over each cell. The reconstruction algorithm is derived from a new interpolation technique that when applied to piecewise smooth data gives high-order accuracy whenever the function is smooth but avoids a Gibbs phenomenon at discontinuities. Unlike standard finite difference methods this procedure uses an adaptive stencil of grid points and consequently the resulting schemes are highly nonlinear.

  5. Accurate multiple network alignment through context-sensitive random walk

    PubMed Central

    2015-01-01

    Background Comparative network analysis can provide an effective means of analyzing large-scale biological networks and gaining novel insights into their structure and organization. Global network alignment aims to predict the best overall mapping between a given set of biological networks, thereby identifying important similarities as well as differences among the networks. It has been shown that network alignment methods can be used to detect pathways or network modules that are conserved across different networks. Until now, a number of network alignment algorithms have been proposed based on different formulations and approaches, many of them focusing on pairwise alignment. Results In this work, we propose a novel multiple network alignment algorithm based on a context-sensitive random walk model. The random walker employed in the proposed algorithm switches between two different modes, namely, an individual walk on a single network and a simultaneous walk on two networks. The switching decision is made in a context-sensitive manner by examining the current neighborhood, which is effective for quantitatively estimating the degree of correspondence between nodes that belong to different networks, in a manner that sensibly integrates node similarity and topological similarity. The resulting node correspondence scores are then used to predict the maximum expected accuracy (MEA) alignment of the given networks. Conclusions Performance evaluation based on synthetic networks as well as real protein-protein interaction networks shows that the proposed algorithm can construct more accurate multiple network alignments compared to other leading methods. PMID:25707987

  6. Fixed-Wing Micro Aerial Vehicle for Accurate Corridor Mapping

    NASA Astrophysics Data System (ADS)

    Rehak, M.; Skaloud, J.

    2015-08-01

    In this study we present a Micro Aerial Vehicle (MAV) equipped with precise position and attitude sensors that together with a pre-calibrated camera enables accurate corridor mapping. The design of the platform is based on widely available model components to which we integrate an open-source autopilot, customized mass-market camera and navigation sensors. We adapt the concepts of system calibration from larger mapping platforms to MAV and evaluate them practically for their achievable accuracy. We present case studies for accurate mapping without ground control points: first for a block configuration, later for a narrow corridor. We evaluate the mapping accuracy with respect to checkpoints and digital terrain model. We show that while it is possible to achieve pixel (3-5 cm) mapping accuracy in both cases, precise aerial position control is sufficient for block configuration, the precise position and attitude control is required for corridor mapping.

  7. Spatially Enabling the Health Sector

    PubMed Central

    Weeramanthri, Tarun Stephen; Woodgate, Peter

    2016-01-01

    Spatial information describes the physical location of either people or objects, and the measured relationships between them. In this article, we offer the view that greater utilization of spatial information and its related technology, as part of a broader redesign of the architecture of health information at local and national levels, could assist and speed up the process of health reform, which is taking place across the globe in richer and poorer countries alike. In making this point, we describe the impetus for health sector reform, recent developments in spatial information and analytics, and current Australasian spatial health research. We highlight examples of uptake of spatial information by the health sector, as well as missed opportunities. Our recommendations to spatially enable the health sector are applicable to high- and low-resource settings. PMID:27867933

  8. Simulation Enabled Safeguards Assessment Methodology

    SciTech Connect

    Robert Bean; Trond Bjornard; Thomas Larson

    2007-09-01

    It is expected that nuclear energy will be a significant component of future supplies. New facilities, operating under a strengthened international nonproliferation regime will be needed. There is good reason to believe virtual engineering applied to the facility design, as well as to the safeguards system design will reduce total project cost and improve efficiency in the design cycle. Simulation Enabled Safeguards Assessment MEthodology (SESAME) has been developed as a software package to provide this capability for nuclear reprocessing facilities. The software architecture is specifically designed for distributed computing, collaborative design efforts, and modular construction to allow step improvements in functionality. Drag and drop wireframe construction allows the user to select the desired components from a component warehouse, render the system for 3D visualization, and, linked to a set of physics libraries and/or computational codes, conduct process evaluations of the system they have designed.

  9. Context-Enabled Business Intelligence

    SciTech Connect

    Troy Hiltbrand

    2012-04-01

    To truly understand context and apply it in business intelligence, it is vital to understand what context is and how it can be applied in addressing organizational needs. Context describes the facets of the environment that impact the way that end users interact with the system. Context includes aspects of location, chronology, access method, demographics, social influence/ relationships, end-user attitude/ emotional state, behavior/ past behavior, and presence. To be successful in making Business Intelligence content enabled, it is important to be able to capture the context of use user. With advances in technology, there are a number of ways in which this user based information can be gathered and exposed to enhance the overall end user experience.

  10. Enabling the Kepler Exoplanet Census

    NASA Astrophysics Data System (ADS)

    Morton, Tim

    2013-01-01

    The Kepler mission, with its unrivaled photometric precision and nearly continuous monitoring, provides an unprecedented opportunity for an exoplanet census. However, while it has identified thousands of transiting planet candidates, only relatively few have yet been dynamically confirmed as bona fide planets, with only a handful more even conceivably amenable to future dynamical confirmation. As a result, the ability to draw detailed conclusions about the diversity of exoplanet systems from Kepler detections relies critically on assigning false positive probabilities to thousands of unconfirmed candidates. I have developed a procedure to calculate these probabilities using only the Kepler photometry, optionally including available follow-up observations. Using this, I can often statistically validate a candidate signal using two single-epoch observations: a stellar spectrum and a high-resolution image. Accordingly, I have applied this procedure to the publicly released Kepler Objects of Interest (KOIs) using results from several large follow-up campaigns: spectroscopic surveys of >100 KOIs with TripleSpec at the Palomar 200-in and >700 KOIs with Keck/HIRES, and imaging surveys of >60 KOIs with Keck/NIRC2 and nearly 1000 KOIs with the Palomar Robo-AO system. This has enabled me to identify hundreds of Kepler candidates as newly secure planets, identify some as likely false positives, and prescribe the most useful follow-up observations for the rest of the KOIs. These results will enable Kepler to fulfill its promise as a mission to study the statistics of exoplanet systems. In addition, this new approach to transit survey follow-up---detailed probabilistic assessment of large numbers of candidates in order to inform the application of relatively scarce follow-up resources---will remain fruitful as transit surveys continue to produce many more candidates than can be followed up with traditional strategies.

  11. Smart Sensors Enable Smart Air Conditioning Control

    PubMed Central

    Cheng, Chin-Chi; Lee, Dasheng

    2014-01-01

    In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants' information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans' intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It's also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection. PMID:24961213

  12. Smart sensors enable smart air conditioning control.

    PubMed

    Cheng, Chin-Chi; Lee, Dasheng

    2014-06-24

    In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants' information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans' intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It's also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection.

  13. Improved algorithm for hyperspectral data dimension determination

    NASA Astrophysics Data System (ADS)

    CHEN, Jie; DU, Lei; LI, Jing; HAN, Yachao; GAO, Zihong

    2017-02-01

    The correlation between adjacent bands of hyperspectral image data is relatively strong. However, signal coexists with noise and the HySime (hyperspectral signal identification by minimum error) algorithm which is based on the principle of least squares is designed to calculate the estimated noise value and the estimated signal correlation matrix value. The algorithm is effective with accurate noise value but ineffective with estimated noise value obtained from spectral dimension reduction and de-correlation process. This paper proposes an improved HySime algorithm based on noise whitening process. It carries out the noise whitening, instead of removing noise pixel by pixel, process on the original data first, obtains the noise covariance matrix estimated value accurately, and uses the HySime algorithm to calculate the signal correlation matrix value in order to improve the precision of results. With simulated as well as real data experiments in this paper, results show that: firstly, the improved HySime algorithm are more accurate and stable than the original HySime algorithm; secondly, the improved HySime algorithm results have better consistency under the different conditions compared with the classic noise subspace projection algorithm (NSP); finally, the improved HySime algorithm improves the adaptability of non-white image noise with noise whitening process.

  14. Combining Structural Modeling with Ensemble Machine Learning to Accurately Predict Protein Fold Stability and Binding Affinity Effects upon Mutation

    PubMed Central

    Garcia Lopez, Sebastian; Kim, Philip M.

    2014-01-01

    Advances in sequencing have led to a rapid accumulation of mutations, some of which are associated with diseases. However, to draw mechanistic conclusions, a biochemical understanding of these mutations is necessary. For coding mutations, accurate prediction of significant changes in either the stability of proteins or their affinity to their binding partners is required. Traditional methods have used semi-empirical force fields, while newer methods employ machine learning of sequence and structural features. Here, we show how combining both of these approaches leads to a marked boost in accuracy. We introduce ELASPIC, a novel ensemble machine learning approach that is able to predict stability effects upon mutation in both, domain cores and domain-domain interfaces. We combine semi-empirical energy terms, sequence conservation, and a wide variety of molecular details with a Stochastic Gradient Boosting of Decision Trees (SGB-DT) algorithm. The accuracy of our predictions surpasses existing methods by a considerable margin, achieving correlation coefficients of 0.77 for stability, and 0.75 for affinity predictions. Notably, we integrated homology modeling to enable proteome-wide prediction and show that accurate prediction on modeled structures is possible. Lastly, ELASPIC showed significant differences between various types of disease-associated mutations, as well as between disease and common neutral mutations. Unlike pure sequence-based prediction methods that try to predict phenotypic effects of mutations, our predictions unravel the molecular details governing the protein instability, and help us better understand the molecular causes of diseases. PMID:25243403

  15. Performing Accurate Rigid Kinematics Measurements from 3D in vivo Image Sequences through Median Consensus Simultaneous Registration.

    PubMed

    Cresson, T; Jacq, J; Burdin, V; Roux, Ch

    2005-01-01

    While focusing at accurate 3D joint kinematics, this paper explores the problem of how to perform a robust rigid registration for a sequence of object surfaces observed using standard 3D medical imaging techniques. Each object instance is assumed to give access to a polyhedral encoding of its boundary. We consider the case where object instances are noised with significant truncations and segmentation errors. The proposed method aims to tackle this problem in a global way, fully exploiting the duality between redundancy and complementarity of the available instances set. The algorithm operates through robust and simultaneous registration of all geometrical instances on a virtual instance accounting for their median consensus. When compared with standard robust techniques, trials reveal significant gains, as much in robustness as in accuracy. The considered applications are mainly focused on generating highly accurate kinematics in relation to the bone structures of the most complex joints - the tarsus and the carpus - for which no alternative examination techniques exist, enabling fine morphological analysis as well as access to internal joint motions.

  16. Enabling Participation In Exoplanet Science

    NASA Astrophysics Data System (ADS)

    Taylor, Stuart F.

    2015-08-01

    Determining the distribution of exoplanets has required the contributions of a community of astronomers, who all require the support of colleagues to finish their projects in a manner to enable them to enter new collaborations to continue to contribute to understanding exoplanet science.The contributions of each member of the astronomy community are to be encouraged and must never be intentionally obstructed.We present a member’s long pursuit to be a contributing part of the exoplanet community through doing transit photometry as a means of commissioning the telescopes for a new observatory, followed by pursuit of interpreting the distributions in exoplanet parameter data.We present how the photometry projects have been presented as successful by the others who have claimed to have completed them, but how by requiring its employees to present results while omitting one member has been obstructive against members working together and has prevented the results from being published in what can genuinely be called a peer-reviewed fashion.We present how by tolerating one group to obstruct one member from finishing participation and then falsely denying credit is counterproductive to doing science.We show how expecting one member to attempt to go around an ostracizing group by starting something different is destructive to the entire profession. We repeat previously published appeals to help ostracized members to “go around the observatory” by calling for discussion on how the community must act to reverse cases of shunning, bullying, and other abuses. Without better recourse and support from the community, actions that do not meet standard good collegial behavior end up forcing good members from the community. The most important actions are to enable an ostracized member to have recourse to participating in group papers by either working through other authors or through the journal. All journals and authors must expect that no co-author is keeping out a major

  17. Enabling technology for human collaboration.

    SciTech Connect

    Murphy, Tim Andrew; Jones, Wendell Bruce; Warner, David Jay; Doser, Adele Beatrice; Johnson, Curtis Martin; Merkle, Peter Benedict

    2003-11-01

    This report summarizes the results of a five-month LDRD late start project which explored the potential of enabling technology to improve the performance of small groups. The purpose was to investigate and develop new methods to assist groups working in high consequence, high stress, ambiguous and time critical situations, especially those for which it is impractical to adequately train or prepare. A testbed was constructed for exploratory analysis of a small group engaged in tasks with high cognitive and communication performance requirements. The system consisted of five computer stations, four with special devices equipped to collect physiologic, somatic, audio and video data. Test subjects were recruited and engaged in a cooperative video game. Each team member was provided with a sensor array for physiologic and somatic data collection while playing the video game. We explored the potential for real-time signal analysis to provide information that enables emergent and desirable group behavior and improved task performance. The data collected in this study included audio, video, game scores, physiological, somatic, keystroke, and mouse movement data. The use of self-organizing maps (SOMs) was explored to search for emergent trends in the physiological data as it correlated with the video, audio and game scores. This exploration resulted in the development of two approaches for analysis, to be used concurrently, an individual SOM and a group SOM. The individual SOM was trained using the unique data of each person, and was used to monitor the effectiveness and stress level of each member of the group. The group SOM was trained using the data of the entire group, and was used to monitor the group effectiveness and dynamics. Results suggested that both types of SOMs were required to adequately track evolutions and shifts in group effectiveness. Four subjects were used in the data collection and development of these tools. This report documents a proof of concept

  18. An improved method for Daugman's iris localization algorithm.

    PubMed

    Ren, Xinying; Peng, Zhiyong; Zeng, Qingning; Peng, Chaonan; Zhang, Jianhua; Wu, Shuicai; Zeng, Yanjun

    2008-01-01

    Computer-based automatic recognition of persons for security reasons is highly desirable. Iris patterns provide an opportunity for separation of individuals to an extent that would avoid false positives and negatives. The current standard for this science is Daugman's iris localization algorithm. Part of the time required for analysis and comparison with other images relates to eyelid and eyelash positioning and length. We sought to remove the upper and lower eyelids and eyelashes to determine if separation of individuals could still be attained. Our experiments suggest separation can be achieved as effectively and more quickly by removing distracting and variable features while retaining enough stable factors in the iris to enable accurate identification.

  19. Adaptive Mesh Refinement Algorithms for Parallel Unstructured Finite Element Codes

    SciTech Connect

    Parsons, I D; Solberg, J M

    2006-02-03

    This project produced algorithms for and software implementations of adaptive mesh refinement (AMR) methods for solving practical solid and thermal mechanics problems on multiprocessor parallel computers using unstructured finite element meshes. The overall goal is to provide computational solutions that are accurate to some prescribed tolerance, and adaptivity is the correct path toward this goal. These new tools will enable analysts to conduct more reliable simulations at reduced cost, both in terms of analyst and computer time. Previous academic research in the field of adaptive mesh refinement has produced a voluminous literature focused on error estimators and demonstration problems; relatively little progress has been made on producing efficient implementations suitable for large-scale problem solving on state-of-the-art computer systems. Research issues that were considered include: effective error estimators for nonlinear structural mechanics; local meshing at irregular geometric boundaries; and constructing efficient software for parallel computing environments.

  20. Modular algorithm concept evaluation tool (MACET) sensor fusion algorithm testbed

    NASA Astrophysics Data System (ADS)

    Watson, John S.; Williams, Bradford D.; Talele, Sunjay E.; Amphay, Sengvieng A.

    1995-07-01

    Target acquisition in a high clutter environment in all-weather at any time of day represents a much needed capability for the air-to-surface strike mission. A considerable amount of the research at the Armament Directorate at Wright Laboratory, Advanced Guidance Division WL/MNG, has been devoted to exploring various seeker technologies, including multi-spectral sensor fusion, that may yield a cost efficient system with these capabilities. Critical elements of any such seekers are the autonomous target acquisition and tracking algorithms. These algorithms allow the weapon system to operate independently and accurately in realistic battlefield scenarios. In order to assess the performance of the multi-spectral sensor fusion algorithms being produced as part of the seeker technology development programs, the Munition Processing Technology Branch of WL/MN is developing an algorithm testbed. This testbed consists of the Irma signature prediction model, data analysis workstations, such as the TABILS Analysis and Management System (TAMS), and the Modular Algorithm Concept Evaluation Tool (MACET) algorithm workstation. All three of these components are being enhanced to accommodate multi-spectral sensor fusion systems. MACET is being developed to provide a graphical interface driven simulation by which to quickly configure algorithm components and conduct performance evaluations. MACET is being developed incrementally with each release providing an additional channel of operation. To date MACET 1.0, a passive IR algorithm environment, has been delivered. The second release, MACET 1.1 is presented in this paper using the MMW/IR data from the Advanced Autonomous Dual Mode Seeker (AADMS) captive flight demonstration. Once completed, the delivered software from past algorithm development efforts will be converted to the MACET library format, thereby providing an on-line database of the algorithm research conducted to date.

  1. A comparison of two formulations for high-order accurate essentially non-oscillatory schemes

    NASA Technical Reports Server (NTRS)

    Casper, Jay; Shu, Chi-Wang; Atkins, H. L.

    1993-01-01

    The finite-volume and finite-difference implementations of high-order accurate essentially non-oscillatory shock-capturing schemes are discussed and compared. Results obtained with fourth-order accurate algorithms based on both formulations are examined for accuracy, sensitivity to grid irregularities, resolution of waves that are oblique to the mesh, and computational efficiency. Some algorithm modifications that may be required for a given application are suggested. Conclusions that pertain to the relative merits of both formulations are drawn, and some circumstances for which each might be useful are noted.

  2. Algorithm development

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.; Lomax, Harvard

    1987-01-01

    The past decade has seen considerable activity in algorithm development for the Navier-Stokes equations. This has resulted in a wide variety of useful new techniques. Some examples for the numerical solution of the Navier-Stokes equations are presented, divided into two parts. One is devoted to the incompressible Navier-Stokes equations, and the other to the compressible form.

  3. Approximation algorithms

    PubMed Central

    Schulz, Andreas S.; Shmoys, David B.; Williamson, David P.

    1997-01-01

    Increasing global competition, rapidly changing markets, and greater consumer awareness have altered the way in which corporations do business. To become more efficient, many industries have sought to model some operational aspects by gigantic optimization problems. It is not atypical to encounter models that capture 106 separate “yes” or “no” decisions to be made. Although one could, in principle, try all 2106 possible solutions to find the optimal one, such a method would be impractically slow. Unfortunately, for most of these models, no algorithms are known that find optimal solutions with reasonable computation times. Typically, industry must rely on solutions of unguaranteed quality that are constructed in an ad hoc manner. Fortunately, for some of these models there are good approximation algorithms: algorithms that produce solutions quickly that are provably close to optimal. Over the past 6 years, there has been a sequence of major breakthroughs in our understanding of the design of approximation algorithms and of limits to obtaining such performance guarantees; this area has been one of the most flourishing areas of discrete mathematics and theoretical computer science. PMID:9370525

  4. Online Planning Algorithm

    NASA Technical Reports Server (NTRS)

    Rabideau, Gregg R.; Chien, Steve A.

    2010-01-01

    AVA v2 software selects goals for execution from a set of goals that oversubscribe shared resources. The term goal refers to a science or engineering request to execute a possibly complex command sequence, such as image targets or ground-station downlinks. Developed as an extension to the Virtual Machine Language (VML) execution system, the software enables onboard and remote goal triggering through the use of an embedded, dynamic goal set that can oversubscribe resources. From the set of conflicting goals, a subset must be chosen that maximizes a given quality metric, which in this case is strict priority selection. A goal can never be pre-empted by a lower priority goal, and high-level goals can be added, removed, or updated at any time, and the "best" goals will be selected for execution. The software addresses the issue of re-planning that must be performed in a short time frame by the embedded system where computational resources are constrained. In particular, the algorithm addresses problems with well-defined goal requests without temporal flexibility that oversubscribes available resources. By using a fast, incremental algorithm, goal selection can be postponed in a "just-in-time" fashion allowing requests to be changed or added at the last minute. Thereby enabling shorter response times and greater autonomy for the system under control.

  5. Quality metric for accurate overlay control in <20nm nodes

    NASA Astrophysics Data System (ADS)

    Klein, Dana; Amit, Eran; Cohen, Guy; Amir, Nuriel; Har-Zvi, Michael; Huang, Chin-Chou Kevin; Karur-Shanmugam, Ramkumar; Pierson, Bill; Kato, Cindy; Kurita, Hiroyuki

    2013-04-01

    The semiconductor industry is moving toward 20nm nodes and below. As the Overlay (OVL) budget is getting tighter at these advanced nodes, the importance in the accuracy in each nanometer of OVL error is critical. When process owners select OVL targets and methods for their process, they must do it wisely; otherwise the reported OVL could be inaccurate, resulting in yield loss. The same problem can occur when the target sampling map is chosen incorrectly, consisting of asymmetric targets that will cause biased correctable terms and a corrupted wafer. Total measurement uncertainty (TMU) is the main parameter that process owners use when choosing an OVL target per layer. Going towards the 20nm nodes and below, TMU will not be enough for accurate OVL control. KLA-Tencor has introduced a quality score named `Qmerit' for its imaging based OVL (IBO) targets, which is obtained on the-fly for each OVL measurement point in X & Y. This Qmerit score will enable the process owners to select compatible targets which provide accurate OVL values for their process and thereby improve their yield. Together with K-T Analyzer's ability to detect the symmetric targets across the wafer and within the field, the Archer tools will continue to provide an independent, reliable measurement of OVL error into the next advanced nodes, enabling fabs to manufacture devices that meet their tight OVL error budgets.

  6. A Short Survey of Document Structure Similarity Algorithms

    SciTech Connect

    Buttler, D

    2004-02-27

    This paper provides a brief survey of document structural similarity algorithms, including the optimal Tree Edit Distance algorithm and various approximation algorithms. The approximation algorithms include the simple weighted tag similarity algorithm, Fourier transforms of the structure, and a new application of the shingle technique to structural similarity. We show three surprising results. First, the Fourier transform technique proves to be the least accurate of any of approximation algorithms, while also being slowest. Second, optimal Tree Edit Distance algorithms may not be the best technique for clustering pages from different sites. Third, the simplest approximation to structure may be the most effective and efficient mechanism for many applications.

  7. CUDA Enabled Graph Subset Examiner

    SciTech Connect

    Johnston, Jeremy T.

    2016-12-22

    Finding Godsil-McKay switching sets in graphs is one way to demonstrate that a specific graph is not determined by its spectrum--the eigenvalues of its adjacency matrix. An important area of active research in pure mathematics is determining which graphs are determined by their spectra, i.e. when the spectrum of the adjacency matrix uniquely determines the underlying graph. We are interested in exploring the spectra of graphs in the Johnson scheme and specifically seek to determine which of these graphs are determined by their spectra. Given a graph G, a Godsil-McKay switching set is an induced subgraph H on 2k vertices with the following properties: I) H is regular, ii) every vertex in G/H is adjacent to either 0, k, or 2k vertices of H, and iii) at least one vertex in G/H is adjacent to k vertices in H. The software package examines each subset of a user specified size to determine whether or not it satisfies those 3 conditions. The software makes use of the massive parallel processing power of CUDA enabled GPUs. It also exploits the vertex transitivity of graphs in the Johnson scheme by reasoning that if G has a Godsil-McKay switching set, then it has a switching set which includes vertex 1. While the code (in its current state) is tuned to this specific problem, the method of examining each induced subgraph of G can be easily re-written to check for any user specified conditions on the subgraphs and can therefore be used much more broadly.

  8. Solar Glitter -- Microsystems Enabled Photovoltaics

    NASA Astrophysics Data System (ADS)

    Nielson, Gregory N.

    2012-02-01

    Many products have significantly benefitted from, or been enabled by, the ability to manufacture structures at an ever decreasing length scale. Obvious examples of this include integrated circuits, flat panel displays, micro-scale sensors, and LED lighting. These industries have benefited from length scale effects in terms of improved performance, reduced cost, or new functionality (or a combination of these). In a similar manner, we are working to take advantage of length scale effects that exist within solar photovoltaic (PV) systems. While this is a significant step away from traditional approaches to solar power systems, the benefits in terms of new functionality, improved performance, and reduced cost for solar power are compelling. We are exploring scale effects that result from the size of the solar cells within the system. We have developed unique cells of both crystalline silicon and III-V materials that are very thin (5-20 microns thick) and have very small lateral dimensions (on the order of hundreds of microns across). These cells minimize the amount of expensive semiconductor material required for the system, allow improved cell performance, and provide an expanded design space for both module and system concepts allowing optimized power output and reduced module and balance of system costs. Furthermore, the small size of the cells allows for unique high-efficiency, high-flexibility PV panels and new building-integrated PV options that are currently unavailable. These benefits provide a pathway for PV power to become cost competitive with grid power and allow unique power solutions independent of grid power.

  9. Enabling individualized therapy through nanotechnology

    PubMed Central

    Sakamoto, Jason H.; van de Ven, Anne L.; Godin, Biana; Blanco, Elvin; Serda, Rita E.; Grattoni, Alessandro; Ziemys, Arturas; Bouamrani, Ali; Hu, Tony; Ranganathan, Shivakumar I.; De Rosa, Enrica; Martinez, Jonathan O.; Smid, Christine A.; Buchanan, Rachel M.; Lee, Sei-Young; Srinivasan, Srimeenakshi; Landry, Matthew; Meyn, Anne; Tasciotti, Ennio; Liu, Xuewu; Decuzzi, Paolo; Ferrari, Mauro

    2010-01-01

    Individualized medicine is the healthcare strategy that rebukes the idiomatic dogma of ‘losing sight of the forest for the trees’. We are entering a new era of healthcare where it is no longer acceptable to develop and market a drug that is effective for only 80% of the patient population. The emergence of “-omic” technologies (e.g. genomics, transcriptomics, proteomics, metabolomics) and advances in systems biology are magnifying the deficiencies of standardized therapy, which often provide little treatment latitude for accommodating patient physiologic idiosyncrasies. A personalized approach to medicine is not a novel concept. Ever since the scientific community began unraveling the mysteries of the genome, the promise of discarding generic treatment regimens in favor of patient-specific therapies became more feasible and realistic. One of the major scientific impediments of this movement towards personalized medicine has been the need for technological enablement. Nanotechnology is projected to play a critical role in patient-specific therapy; however, this transition will depend heavily upon the evolutionary development of a systems biology approach to clinical medicine based upon “-omic” technology analysis and integration. This manuscript provides a forward looking assessment of the promise of nanomedicine as it pertains to individualized medicine and establishes a technology “snapshot” of the current state of nano-based products over a vast array of clinical indications and range of patient specificity. Other issues such as market driven hurdles and regulatory compliance reform are anticipated to “self-correct” in accordance to scientific advancement and healthcare demand. These peripheral, non-scientific concerns are not addressed at length in this manuscript; however they do exist, and their impact to the paradigm shifting healthcare transformation towards individualized medicine will be critical for its success. PMID:20045055

  10. Hydrologic Prediction Through Earthcube Enabled Hydrogeophysical Cyberinfrastructure

    NASA Astrophysics Data System (ADS)

    Versteeg, R. J.; Johnson, D.

    2012-12-01

    Accurate prediction of hydrologic processes is contingent on the successful interaction of multiple components, including (1) accurate conceptual and numerical models describing physical, chemical and biological processes (2) a numerical framework for integration of such processes and (3) multidisciplinary temporal data streams which feeds such models. Over the past ten years the main focus in the hydrogeophysical community has been the advancement and developments of conceptual and numerical models. While this advancement still poses numerous challenges (e.g. the in silico modeling of microbiological processes and the coupling of models across different interfaces) there is now a fairly good high level understanding of the types, scales of and interplay between processes. In parallel with this advancement there have been rapid developments in data acquisition capabilities (ranging from satellite based remote sensing to low cost sensor networks) and the associated cyberinfrastructure which allows for mash ups of data from heterogeneous and independent sensor networks. The tools for this in generally have come from outside the hydrogeophysical community - partly these are specific scientific tools developed through NSF, DOE and NASA funding, and partly these are general web2.0 tools or tools developed under commercial initiatives (e.g. the IBM Smarter Planet initiative). One challenge facing the hydrogeophysical community is how to effectively harness all these tools to develop hydrologic prediction tools. One of the primary opportunities for this is the NSF funded EarthCube effort (http://earthcube.ning.com/ ). The goal of EarthCube is to transform the conduct of research by supporting the development of community-guided cyberinfrastructure to integrate data and information for knowledge management across the Geosciences. Note that Earthcube is part of a larger NSF effort (Cyberinfrastructure for the 21st Century (CIF21), and that Earthcube is driven by the vision

  11. Development of Improved Algorithms and Multiscale Modeling Capability with SUNTANS

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Development of Improved Algorithms and Multiscale...a wide range of scales through use of accurate numerical methods and high- performance computational algorithms . The tool will be applied to study...dissipation. OBJECTIVES The primary objective is to enhance the capabilities of the SUNTANS model through development of algorithms to study

  12. A two-dimensional deformable phantom for quantitatively verifying deformation algorithms

    SciTech Connect

    Kirby, Neil; Chuang, Cynthia; Pouliot, Jean

    2011-08-15

    Purpose: The incorporation of deformable image registration into the treatment planning process is rapidly advancing. For this reason, the methods used to verify the underlying deformation algorithms must evolve equally fast. This manuscript proposes a two-dimensional deformable phantom, which can objectively verify the accuracy of deformation algorithms, as the next step for improving these techniques. Methods: The phantom represents a single plane of the anatomy for a head and neck patient. Inflation of a balloon catheter inside the phantom simulates tumor growth. CT and camera images of the phantom are acquired before and after its deformation. Nonradiopaque markers reside on the surface of the deformable anatomy and are visible through an acrylic plate, which enables an optical camera to measure their positions; thus, establishing the ground-truth deformation. This measured deformation is directly compared to the predictions of deformation algorithms, using several similarity metrics. The ratio of the number of points with more than a 3 mm deformation error over the number that are deformed by more than 3 mm is used for an error metric to evaluate algorithm accuracy. Results: An optical method of characterizing deformation has been successfully demonstrated. For the tests of this method, the balloon catheter deforms 32 out of the 54 surface markers by more than 3 mm. Different deformation errors result from the different similarity metrics. The most accurate deformation predictions had an error of 75%. Conclusions: The results presented here demonstrate the utility of the phantom for objectively verifying deformation algorithms and determining which is the most accurate. They also indicate that the phantom would benefit from more electron density heterogeneity. The reduction of the deformable anatomy to a two-dimensional system allows for the use of nonradiopaque markers, which do not influence deformation algorithms. This is the fundamental advantage of this

  13. Learning accurate very fast decision trees from uncertain data streams

    NASA Astrophysics Data System (ADS)

    Liang, Chunquan; Zhang, Yang; Shi, Peng; Hu, Zhengguo

    2015-12-01

    Most existing works on data stream classification assume the streaming data is precise and definite. Such assumption, however, does not always hold in practice, since data uncertainty is ubiquitous in data stream applications due to imprecise measurement, missing values, privacy protection, etc. The goal of this paper is to learn accurate decision tree models from uncertain data streams for classification analysis. On the basis of very fast decision tree (VFDT) algorithms, we proposed an algorithm for constructing an uncertain VFDT tree with classifiers at tree leaves (uVFDTc). The uVFDTc algorithm can exploit uncertain information effectively and efficiently in both the learning and the classification phases. In the learning phase, it uses Hoeffding bound theory to learn from uncertain data streams and yield fast and reasonable decision trees. In the classification phase, at tree leaves it uses uncertain naive Bayes (UNB) classifiers to improve the classification performance. Experimental results on both synthetic and real-life datasets demonstrate the strong ability of uVFDTc to classify uncertain data streams. The use of UNB at tree leaves has improved the performance of uVFDTc, especially the any-time property, the benefit of exploiting uncertain information, and the robustness against uncertainty.

  14. Very Fast and Accurate Azimuth Disambiguation of Vector Magnetograms

    NASA Astrophysics Data System (ADS)

    Rudenko, G. V.; Anfinogentov, S. A.

    2014-05-01

    We present a method for fast and accurate azimuth disambiguation of vector magnetogram data regardless of the location of the analyzed region on the solar disk. The direction of the transverse field is determined with the principle of minimum deviation of the field from the reference (potential) field. The new disambiguation (NDA) code is examined on the well-known models of Metcalf et al. ( Solar Phys. 237, 267, 2006) and Leka et al. ( Solar Phys. 260, 83, 2009), and on an artificial model based on the observed magnetic field of AR 10930 (Rudenko, Myshyakov, and Anfinogentov, Astron. Rep. 57, 622, 2013). We compare Hinode/SOT-SP vector magnetograms of AR 10930 disambiguated with three codes: the NDA code, the nonpotential magnetic-field calculation (NPFC: Georgoulis, Astrophys. J. Lett. 629, L69, 2005), and the spherical minimum-energy method (Rudenko, Myshyakov, and Anfinogentov, Astron. Rep. 57, 622, 2013). We then illustrate the performance of NDA on SDO/HMI full-disk magnetic-field observations. We show that our new algorithm is more than four times faster than the fastest algorithm that provides the disambiguation with a satisfactory accuracy (NPFC). At the same time, its accuracy is similar to that of the minimum-energy method (a very slow algorithm). In contrast to other codes, the NDA code maintains high accuracy when the region to be analyzed is very close to the limb.

  15. Smell Detection Agent Based Optimization Algorithm

    NASA Astrophysics Data System (ADS)

    Vinod Chandra, S. S.

    2016-09-01

    In this paper, a novel nature-inspired optimization algorithm has been employed and the trained behaviour of dogs in detecting smell trails is adapted into computational agents for problem solving. The algorithm involves creation of a surface with smell trails and subsequent iteration of the agents in resolving a path. This algorithm can be applied in different computational constraints that incorporate path-based problems. Implementation of the algorithm can be treated as a shortest path problem for a variety of datasets. The simulated agents have been used to evolve the shortest path between two nodes in a graph. This algorithm is useful to solve NP-hard problems that are related to path discovery. This algorithm is also useful to solve many practical optimization problems. The extensive derivation of the algorithm can be enabled to solve shortest path problems.

  16. Fast and Accurate Discovery of Degenerate Linear Motifs in Protein Sequences

    PubMed Central

    Levy, Emmanuel D.; Michnick, Stephen W.

    2014-01-01

    Linear motifs mediate a wide variety of cellular functions, which makes their characterization in protein sequences crucial to understanding cellular systems. However, the short length and degenerate nature of linear motifs make their discovery a difficult problem. Here, we introduce MotifHound, an algorithm particularly suited for the discovery of small and degenerate linear motifs. MotifHound performs an exact and exhaustive enumeration of all motifs present in proteins of interest, including all of their degenerate forms, and scores the overrepresentation of each motif based on its occurrence in proteins of interest relative to a background (e.g., proteome) using the hypergeometric distribution. To assess MotifHound, we benchmarked it together with state-of-the-art algorithms. The benchmark consists of 11,880 sets of proteins from S. cerevisiae; in each set, we artificially spiked-in one motif varying in terms of three key parameters, (i) number of occurrences, (ii) length and (iii) the number of degenerate or “wildcard” positions. The benchmark enabled the evaluation of the impact of these three properties on the performance of the different algorithms. The results showed that MotifHound and SLiMFinder were the most accurate in detecting degenerate linear motifs. Interestingly, MotifHound was 15 to 20 times faster at comparable accuracy and performed best in the discovery of highly degenerate motifs. We complemented the benchmark by an analysis of proteins experimentally shown to bind the FUS1 SH3 domain from S. cerevisiae. Using the full-length protein partners as sole information, MotifHound recapitulated most experimentally determined motifs binding to the FUS1 SH3 domain. Moreover, these motifs exhibited properties typical of SH3 binding peptides, e.g., high intrinsic disorder and evolutionary conservation, despite the fact that none of these properties were used as prior information. MotifHound is available (http://michnick.bcm.umontreal.ca or http

  17. Interacting with image hierarchies for fast and accurate object segmentation

    NASA Astrophysics Data System (ADS)

    Beard, David V.; Eberly, David H.; Hemminger, Bradley M.; Pizer, Stephen M.; Faith, R. E.; Kurak, Charles; Livingston, Mark

    1994-05-01

    Object definition is an increasingly important area of medical image research. Accurate and fairly rapid object definition is essential for measuring the size and, perhaps more importantly, the change in size of anatomical objects such as kidneys and tumors. Rapid and fairly accurate object definition is essential for 3D real-time visualization including both surgery planning and Radiation oncology treatment planning. One approach to object definition involves the use of 3D image hierarchies, such as Eberly's Ridge Flow. However, the image hierarchy segmentation approach requires user interaction in selecting regions and subtrees. Further, visualizing and comprehending the anatomy and the selected portions of the hierarchy can be problematic. In this paper we will describe the Magic Crayon tool which allows a user to define rapidly and accurately various anatomical objects by interacting with image hierarchies such as those generated with Eberly's Ridge Flow algorithm as well as other 3D image hierarchies. Preliminary results suggest that fairly complex anatomical objects can be segmented in under a minute with sufficient accuracy for 3D surgery planning, 3D radiation oncology treatment planning, and similar applications. Potential modifications to the approach for improved accuracy are summarized.

  18. First Attempt of Orbit Determination of SLR Satellites and Space Debris Using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Deleflie, F.; Coulot, D.; Descosta, R.; Fernier, A.; Richard, P.

    2013-08-01

    We present an orbit determination method based on genetic algorithms. Contrary to usual estimation methods mainly based on least-squares methods, these algorithms do not require any a priori knowledge of the initial state vector to be estimated. These algorithms can be applied when a new satellite is launched or for uncatalogued objects that appear in images obtained from robotic telescopes such as the TAROT ones. We show in this paper preliminary results obtained from an SLR satellite, for which tracking data acquired by the ILRS network enable to build accurate orbital arcs at a few centimeter level, which can be used as a reference orbit ; in this case, the basic observations are made up of time series of ranges, obtained from various tracking stations. We show as well the results obtained from the observations acquired by the two TAROT telescopes on the Telecom-2D satellite operated by CNES ; in that case, the observations are made up of time series of azimuths and elevations, seen from the two TAROT telescopes. The method is carried out in several steps: (i) an analytical propagation of the equations of motion, (ii) an estimation kernel based on genetic algorithms, which follows the usual steps of such approaches: initialization and evolution of a selected population, so as to determine the best parameters. Each parameter to be estimated, namely each initial keplerian element, has to be searched among an interval that is preliminary chosen. The algorithm is supposed to converge towards an optimum over a reasonable computational time.

  19. Clustering algorithm for determining community structure in large networks

    NASA Astrophysics Data System (ADS)

    Pujol, Josep M.; Béjar, Javier; Delgado, Jordi

    2006-07-01

    We propose an algorithm to find the community structure in complex networks based on the combination of spectral analysis and modularity optimization. The clustering produced by our algorithm is as accurate as the best algorithms on the literature of modularity optimization; however, the main asset of the algorithm is its efficiency. The best match for our algorithm is Newman’s fast algorithm, which is the reference algorithm for clustering in large networks due to its efficiency. When both algorithms are compared, our algorithm outperforms the fast algorithm both in efficiency and accuracy of the clustering, in terms of modularity. Thus, the results suggest that the proposed algorithm is a good choice to analyze the community structure of medium and large networks in the range of tens and hundreds of thousand vertices.

  20. Petascale Computing Enabling Technologies Project Final Report

    SciTech Connect

    de Supinski, B R

    2010-02-14

    The Petascale Computing Enabling Technologies (PCET) project addressed challenges arising from current trends in computer architecture that will lead to large-scale systems with many more nodes, each of which uses multicore chips. These factors will soon lead to systems that have over one million processors. Also, the use of multicore chips will lead to less memory and less memory bandwidth per core. We need fundamentally new algorithmic approaches to cope with these memory constraints and the huge number of processors. Further, correct, efficient code development is difficult even with the number of processors in current systems; more processors will only make it harder. The goal of PCET was to overcome these challenges by developing the computer science and mathematical underpinnings needed to realize the full potential of our future large-scale systems. Our research results will significantly increase the scientific output obtained from LLNL large-scale computing resources by improving application scientist productivity and system utilization. Our successes include scalable mathematical algorithms that adapt to these emerging architecture trends and through code correctness and performance methodologies that automate critical aspects of application development as well as the foundations for application-level fault tolerance techniques. PCET's scope encompassed several research thrusts in computer science and mathematics: code correctness and performance methodologies, scalable mathematics algorithms appropriate for multicore systems, and application-level fault tolerance techniques. Due to funding limitations, we focused primarily on the first three thrusts although our work also lays the foundation for the needed advances in fault tolerance. In the area of scalable mathematics algorithms, our preliminary work established that OpenMP performance of the AMG linear solver benchmark and important individual kernels on Atlas did not match the predictions of our

  1. Algorithm for navigated ESS.

    PubMed

    Baudoin, T; Grgić, M V; Zadravec, D; Geber, G; Tomljenović, D; Kalogjera, L

    2013-12-01

    ENT navigation has given new opportunities in performing Endoscopic Sinus Surgery (ESS) and improving surgical outcome of the patients` treatment. ESS assisted by a navigation system could be called Navigated Endoscopic Sinus Surgery (NESS). As it is generally accepted that the NESS should be performed only in cases of complex anatomy and pathology, it has not yet been established as a state-of-the-art procedure and thus not used on a daily basis. This paper presents an algorithm for use of a navigation system for basic ESS in the treatment of chronic rhinosinusitis (CRS). The algorithm includes five units that should be highlighted using a navigation system. They are as follows: 1) nasal vestibule unit, 2) OMC unit, 3) anterior ethmoid unit, 4) posterior ethmoid unit, and 5) sphenoid unit. Each unit has a shape of a triangular pyramid and consists of at least four reference points or landmarks. As many landmarks as possible should be marked when determining one of the five units. Navigated orientation in each unit should always precede any surgical intervention. The algorithm should improve the learning curve of trainees and enable surgeons to use the navigation system routinely and systematically.

  2. Mill profiler machines soft materials accurately

    NASA Technical Reports Server (NTRS)

    Rauschl, J. A.

    1966-01-01

    Mill profiler machines bevels, slots, and grooves in soft materials, such as styrofoam phenolic-filled cores, to any desired thickness. A single operator can accurately control cutting depths in contour or straight line work.

  3. An algorithm for haplotype analysis

    SciTech Connect

    Lin, Shili; Speed, T.P.

    1997-12-01

    This paper proposes an algorithm for haplotype analysis based on a Monte Carlo method. Haplotype configurations are generated according to the distribution of joint haplotypes of individuals in a pedigree given their phenotype data, via a Markov chain Monte Carlo algorithm. The haplotype configuration which maximizes this conditional probability distribution can thus be estimated. In addition, the set of haplotype configurations with relatively high probabilities can also be estimated as possible alternatives to the most probable one. This flexibility enables geneticists to choose the haplotype configurations which are most reasonable to them, allowing them to include their knowledge of the data under analysis. 18 refs., 2 figs., 1 tab.

  4. Accurate Automated Apnea Analysis in Preterm Infants

    PubMed Central

    Vergales, Brooke D.; Paget-Brown, Alix O.; Lee, Hoshik; Guin, Lauren E.; Smoot, Terri J.; Rusin, Craig G.; Clark, Matthew T.; Delos, John B.; Fairchild, Karen D.; Lake, Douglas E.; Moorman, Randall; Kattwinkel, John

    2017-01-01

    Objective In 2006 the apnea of prematurity (AOP) consensus group identified inaccurate counting of apnea episodes as a major barrier to progress in AOP research. We compare nursing records of AOP to events detected by a clinically validated computer algorithm that detects apnea from standard bedside monitors. Study Design Waveform, vital sign, and alarm data were collected continuously from all very low-birth-weight infants admitted over a 25-month period, analyzed for central apnea, bradycardia, and desaturation (ABD) events, and compared with nursing documentation collected from charts. Our algorithm defined apnea as > 10 seconds if accompanied by bradycardia and desaturation. Results Of the 3,019 nurse-recorded events, only 68% had any algorithm-detected ABD event. Of the 5,275 algorithm-detected prolonged apnea events > 30 seconds, only 26% had nurse-recorded documentation within 1 hour. Monitor alarms sounded in only 74% of events of algorithm-detected prolonged apnea events > 10 seconds. There were 8,190,418 monitor alarms of any description throughout the neonatal intensive care unit during the 747 days analyzed, or one alarm every 2 to 3 minutes per nurse. Conclusion An automated computer algorithm for continuous ABD quantitation is a far more reliable tool than the medical record to address the important research questions identified by the 2006 AOP consensus group. PMID:23592319

  5. High-speed scanning: an improved algorithm

    NASA Astrophysics Data System (ADS)

    Nachimuthu, A.; Hoang, Khoi

    1995-10-01

    In using machine vision for assessing an object's surface quality, many images are required to be processed in order to separate the good areas from the defective ones. Examples can be found in the leather hide grading process; in the inspection of garments/canvas on the production line; in the nesting of irregular shapes into a given surface... . The most common method of subtracting the total area from the sum of defective areas does not give an acceptable indication of how much of the `good' area can be used, particularly if the findings are to be used for the nesting of irregular shapes. This paper presents an image scanning technique which enables the estimation of useable areas within an inspected surface in terms of the user's definition, not the supplier's claims. That is, how much useable area the user can use, not the total good area as the supplier estimated. An important application of the developed technique is in the leather industry where the tanner (the supplier) and the footwear manufacturer (the user) are constantly locked in argument due to disputed quality standards of finished leather hide, which disrupts production schedules and wasted costs in re-grading, re- sorting... . The developed basic algorithm for area scanning of a digital image will be presented. The implementation of an improved scanning algorithm will be discussed in detail. The improved features include Boolean OR operations and many other innovative functions which aim at optimizing the scanning process in terms of computing time and the accurate estimation of useable areas.

  6. A robust and accurate formulation of molecular and colloidal electrostatics.

    PubMed

    Sun, Qiang; Klaseboer, Evert; Chan, Derek Y C

    2016-08-07

    This paper presents a re-formulation of the boundary integral method for the Debye-Hückel model of molecular and colloidal electrostatics that removes the mathematical singularities that have to date been accepted as an intrinsic part of the conventional boundary integral equation method. The essence of the present boundary regularized integral equation formulation consists of subtracting a known solution from the conventional boundary integral method in such a way as to cancel out the singularities associated with the Green's function. This approach better reflects the non-singular physical behavior of the systems on boundaries with the benefits of the following: (i) the surface integrals can be evaluated accurately using quadrature without any need to devise special numerical integration procedures, (ii) being able to use quadratic or spline function surface elements to represent the surface more accurately and the variation of the functions within each element is represented to a consistent level of precision by appropriate interpolation functions, (iii) being able to calculate electric fields, even at boundaries, accurately and directly from the potential without having to solve hypersingular integral equations and this imparts high precision in calculating the Maxwell stress tensor and consequently, intermolecular or colloidal forces, (iv) a reliable way to handle geometric configurations in which different parts of the boundary can be very close together without being affected by numerical instabilities, therefore potentials, fields, and forces between surfaces can be found accurately at surface separations down to near contact, and (v) having the simplicity of a formulation that does not require complex algorithms to handle singularities will result in significant savings in coding effort and in the reduction of opportunities for coding errors. These advantages are illustrated using examples drawn from molecular and colloidal electrostatics.

  7. A robust and accurate formulation of molecular and colloidal electrostatics

    NASA Astrophysics Data System (ADS)

    Sun, Qiang; Klaseboer, Evert; Chan, Derek Y. C.

    2016-08-01

    This paper presents a re-formulation of the boundary integral method for the Debye-Hückel model of molecular and colloidal electrostatics that removes the mathematical singularities that have to date been accepted as an intrinsic part of the conventional boundary integral equation method. The essence of the present boundary regularized integral equation formulation consists of subtracting a known solution from the conventional boundary integral method in such a way as to cancel out the singularities associated with the Green's function. This approach better reflects the non-singular physical behavior of the systems on boundaries with the benefits of the following: (i) the surface integrals can be evaluated accurately using quadrature without any need to devise special numerical integration procedures, (ii) being able to use quadratic or spline function surface elements to represent the surface more accurately and the variation of the functions within each element is represented to a consistent level of precision by appropriate interpolation functions, (iii) being able to calculate electric fields, even at boundaries, accurately and directly from the potential without having to solve hypersingular integral equations and this imparts high precision in calculating the Maxwell stress tensor and consequently, intermolecular or colloidal forces, (iv) a reliable way to handle geometric configurations in which different parts of the boundary can be very close together without being affected by numerical instabilities, therefore potentials, fields, and forces between surfaces can be found accurately at surface separations down to near contact, and (v) having the simplicity of a formulation that does not require complex algorithms to handle singularities will result in significant savings in coding effort and in the reduction of opportunities for coding errors. These advantages are illustrated using examples drawn from molecular and colloidal electrostatics.

  8. Accurate vessel segmentation with constrained B-snake.

    PubMed

    Yuanzhi Cheng; Xin Hu; Ji Wang; Yadong Wang; Tamura, Shinichi

    2015-08-01

    We describe an active contour framework with accurate shape and size constraints on the vessel cross-sectional planes to produce the vessel segmentation. It starts with a multiscale vessel axis tracing in a 3D computed tomography (CT) data, followed by vessel boundary delineation on the cross-sectional planes derived from the extracted axis. The vessel boundary surface is deformed under constrained movements on the cross sections and is voxelized to produce the final vascular segmentation. The novelty of this paper lies in the accurate contour point detection of thin vessels based on the CT scanning model, in the efficient implementation of missing contour points in the problematic regions and in the active contour model with accurate shape and size constraints. The main advantage of our framework is that it avoids disconnected and incomplete segmentation of the vessels in the problematic regions that contain touching vessels (vessels in close proximity to each other), diseased portions (pathologic structure attached to a vessel), and thin vessels. It is particularly suitable for accurate segmentation of thin and low contrast vessels. Our method is evaluated and demonstrated on CT data sets from our partner site, and its results are compared with three related methods. Our method is also tested on two publicly available databases and its results are compared with the recently published method. The applicability of the proposed method to some challenging clinical problems, the segmentation of the vessels in the problematic regions, is demonstrated with good results on both quantitative and qualitative experimentations; our segmentation algorithm can delineate vessel boundaries that have level of variability similar to those obtained manually.

  9. A new frame-based registration algorithm

    NASA Technical Reports Server (NTRS)

    Yan, C. H.; Whalen, R. T.; Beaupre, G. S.; Sumanaweera, T. S.; Yen, S. Y.; Napel, S.

    1998-01-01

    This paper presents a new algorithm for frame registration. Our algorithm requires only that the frame be comprised of straight rods, as opposed to the N structures or an accurate frame model required by existing algorithms. The algorithm utilizes the full 3D information in the frame as well as a least squares weighting scheme to achieve highly accurate registration. We use simulated CT data to assess the accuracy of our algorithm. We compare the performance of the proposed algorithm to two commonly used algorithms. Simulation results show that the proposed algorithm is comparable to the best existing techniques with knowledge of the exact mathematical frame model. For CT data corrupted with an unknown in-plane rotation or translation, the proposed technique is also comparable to the best existing techniques. However, in situations where there is a discrepancy of more than 2 mm (0.7% of the frame dimension) between the frame and the mathematical model, the proposed technique is significantly better (p < or = 0.05) than the existing techniques. The proposed algorithm can be applied to any existing frame without modification. It provides better registration accuracy and is robust against model mis-match. It allows greater flexibility on the frame structure. Lastly, it reduces the frame construction cost as adherence to a concise model is not required.

  10. Global tree network for computing structures enabling global processing operations

    DOEpatents

    Blumrich; Matthias A.; Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Hoenicke, Dirk; Steinmacher-Burow, Burkhard D.; Takken, Todd E.; Vranas, Pavlos M.

    2010-01-19

    A system and method for enabling high-speed, low-latency global tree network communications among processing nodes interconnected according to a tree network structure. The global tree network enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices are included that interconnect the nodes of the tree via links to facilitate performance of low-latency global processing operations at nodes of the virtual tree and sub-tree structures. The global operations performed include one or more of: broadcast operations downstream from a root node to leaf nodes of a virtual tree, reduction operations upstream from leaf nodes to the root node in the virtual tree, and point-to-point message passing from any node to the root node. The global tree network is configurable to provide global barrier and interrupt functionality in asynchronous or synchronized manner, and, is physically and logically partitionable.

  11. Informatics Methods to Enable Sharing of Quantitative Imaging Research Data

    PubMed Central

    Levy, Mia A.; Freymann, John B.; Kirby, Justin S.; Fedorov, Andriy; Fennessy, Fiona M.; Eschrich, Steven A.; Berglund, Anders E.; Fenstermacher, David A.; Tan, Yongqiang; Guo, Xiaotao; Casavant, Thomas L.; Brown, Bartley J.; Braun, Terry A.; Dekker, Andre; Roelofs, Erik; Mountz, James M.; Boada, Fernando; Laymon, Charles; Oborski, Matt; Rubin, Daniel L

    2012-01-01

    Introduction The National Cancer Institute (NCI) Quantitative Research Network (QIN) is a collaborative research network whose goal is to share data, algorithms and research tools to accelerate quantitative imaging research. A challenge is the variability in tools and analysis platforms used in quantitative imaging. Our goal was to understand the extent of this variation and to develop an approach to enable sharing data and to promote reuse of quantitative imaging data in the community. Methods We performed a survey of the current tools in use by the QIN member sites for representation and storage of their QIN research data including images, image meta-data and clinical data. We identified existing systems and standards for data sharing and their gaps for the QIN use case. We then proposed a system architecture to enable data sharing and collaborative experimentation within the QIN. Results There area variety of tools currently used by each QIN institution. We developed a general information system architecture to support the QIN goals. We also describe the remaining architecture gaps we are developing to enable members to share research images and image meta-data across the network. Conclusions As a research network, the QIN will stimulate quantitative imaging research by pooling data, algorithms and research tools. However, there are gaps in current functional requirements that will need to be met by future informatics development. Special attention must be given to the technical requirements needed to translate these methods into the clinical research workflow to enable validation and qualification of these novel imaging biomarkers. PMID:22770688

  12. A MEDLINE categorization algorithm

    PubMed Central

    Darmoni, Stefan J; Névéol, Aurelie; Renard, Jean-Marie; Gehanno, Jean-Francois; Soualmia, Lina F; Dahamna, Badisse; Thirion, Benoit

    2006-01-01

    Background Categorization is designed to enhance resource description by organizing content description so as to enable the reader to grasp quickly and easily what are the main topics discussed in it. The objective of this work is to propose a categorization algorithm to classify a set of scientific articles indexed with the MeSH thesaurus, and in particular those of the MEDLINE bibliographic database. In a large bibliographic database such as MEDLINE, finding materials of particular interest to a specialty group, or relevant to a particular audience, can be difficult. The categorization refines the retrieval of indexed material. In the CISMeF terminology, metaterms can be considered as super-concepts. They were primarily conceived to improve recall in the CISMeF quality-controlled health gateway. Methods The MEDLINE categorization algorithm (MCA) is based on semantic links existing between MeSH terms and metaterms on the one hand and between MeSH subheadings and metaterms on the other hand. These links are used to automatically infer a list of metaterms from any MeSH term/subheading indexing. Medical librarians manually select the semantic links. Results The MEDLINE categorization algorithm lists the medical specialties relevant to a MEDLINE file by decreasing order of their importance. The MEDLINE categorization algorithm is available on a Web site. It can run on any MEDLINE file in a batch mode. As an example, the top 3 medical specialties for the set of 60 articles published in BioMed Central Medical Informatics & Decision Making, which are currently indexed in MEDLINE are: information science, organization and administration and medical informatics. Conclusion We have presented a MEDLINE categorization algorithm in order to classify the medical specialties addressed in any MEDLINE file in the form of a ranked list of relevant specialties. The categorization method introduced in this paper is based on the manual indexing of resources with MeSH (terms

  13. Accurate derivation of heart rate variability signal for detection of sleep disordered breathing in children.

    PubMed

    Chatlapalli, S; Nazeran, H; Melarkod, V; Krishnam, R; Estrada, E; Pamula, Y; Cabrera, S

    2004-01-01

    The electrocardiogram (ECG) signal is used extensively as a low cost diagnostic tool to provide information concerning the heart's state of health. Accurate determination of the QRS complex, in particular, reliable detection of the R wave peak, is essential in computer based ECG analysis. ECG data from Physionet's Sleep-Apnea database were used to develop, test, and validate a robust heart rate variability (HRV) signal derivation algorithm. The HRV signal was derived from pre-processed ECG signals by developing an enhanced Hilbert transform (EHT) algorithm with built-in missing beat detection capability for reliable QRS detection. The performance of the EHT algorithm was then compared against that of a popular Hilbert transform-based (HT) QRS detection algorithm. Autoregressive (AR) modeling of the HRV power spectrum for both EHT- and HT-derived HRV signals was achieved and different parameters from their power spectra as well as approximate entropy were derived for comparison. Poincare plots were then used as a visualization tool to highlight the detection of the missing beats in the EHT method After validation of the EHT algorithm on ECG data from the Physionet, the algorithm was further tested and validated on a dataset obtained from children undergoing polysomnography for detection of sleep disordered breathing (SDB). Sensitive measures of accurate HRV signals were then derived to be used in detecting and diagnosing sleep disordered breathing in children. All signal processing algorithms were implemented in MATLAB. We present a description of the EHT algorithm and analyze pilot data for eight children undergoing nocturnal polysomnography. The pilot data demonstrated that the EHT method provides an accurate way of deriving the HRV signal and plays an important role in extraction of reliable measures to distinguish between periods of normal and sleep disordered breathing (SDB) in children.

  14. The Simplified Aircraft-Based Paired Approach With the ALAS Alerting Algorithm

    NASA Technical Reports Server (NTRS)

    Perry, Raleigh B.; Madden, Michael M.; Torres-Pomales, Wilfredo; Butler, Ricky W.

    2013-01-01

    This paper presents the results of an investigation of a proposed concept for closely spaced parallel runways called the Simplified Aircraft-based Paired Approach (SAPA). This procedure depends upon a new alerting algorithm called the Adjacent Landing Alerting System (ALAS). This study used both low fidelity and high fidelity simulations to validate the SAPA procedure and test the performance of the new alerting algorithm. The low fidelity simulation enabled a determination of minimum approach distance for the worst case over millions of scenarios. The high fidelity simulation enabled an accurate determination of timings and minimum approach distance in the presence of realistic trajectories, communication latencies, and total system error for 108 test cases. The SAPA procedure and the ALAS alerting algorithm were applied to the 750-ft parallel spacing (e.g., SFO 28L/28R) approach problem. With the SAPA procedure as defined in this paper, this study concludes that a 750-ft application does not appear to be feasible, but preliminary results for 1000-ft parallel runways look promising.

  15. Adaptive link selection algorithms for distributed estimation

    NASA Astrophysics Data System (ADS)

    Xu, Songcen; de Lamare, Rodrigo C.; Poor, H. Vincent

    2015-12-01

    This paper presents adaptive link selection algorithms for distributed estimation and considers their application to wireless sensor networks and smart grids. In particular, exhaustive search-based least mean squares (LMS) / recursive least squares (RLS) link selection algorithms and sparsity-inspired LMS / RLS link selection algorithms that can exploit the topology of networks with poor-quality links are considered. The proposed link selection algorithms are then analyzed in terms of their stability, steady-state, and tracking performance and computational complexity. In comparison with the existing centralized or distributed estimation strategies, the key features of the proposed algorithms are as follows: (1) more accurate estimates and faster convergence speed can be obtained and (2) the network is equipped with the ability of link selection that can circumvent link failures and improve the estimation performance. The performance of the proposed algorithms for distributed estimation is illustrated via simulations in applications of wireless sensor networks and smart grids.

  16. Interactive Isogeometric Volume Visualization with Pixel-Accurate Geometry.

    PubMed

    Fuchs, Franz G; Hjelmervik, Jon M

    2016-02-01

    A recent development, called isogeometric analysis, provides a unified approach for design, analysis and optimization of functional products in industry. Traditional volume rendering methods for inspecting the results from the numerical simulations cannot be applied directly to isogeometric models. We present a novel approach for interactive visualization of isogeometric analysis results, ensuring correct, i.e., pixel-accurate geometry of the volume including its bounding surfaces. The entire OpenGL pipeline is used in a multi-stage algorithm leveraging techniques from surface rendering, order-independent transparency, as well as theory and numerical methods for ordinary differential equations. We showcase the efficiency of our approach on different models relevant to industry, ranging from quality inspection of the parametrization of the geometry, to stress analysis in linear elasticity, to visualization of computational fluid dynamics results.

  17. A fast and accurate FPGA based QRS detection system.

    PubMed

    Shukla, Ashish; Macchiarulo, Luca

    2008-01-01

    An accurate Field Programmable Gate Array (FPGA) based ECG Analysis system is described in this paper. The design, based on a popular software based QRS detection algorithm, calculates the threshold value for the next peak detection cycle, from the median of eight previously detected peaks. The hardware design has accuracy in excess of 96% in detecting the beats correctly when tested with a subset of five 30 minute data records obtained from the MIT-BIH Arrhythmia database. The design, implemented using a proprietary design tool (System Generator), is an extension of our previous work and uses 76% resources available in a small-sized FPGA device (Xilinx Spartan xc3s500), has a higher detection accuracy as compared to our previous design and takes almost half the analysis time in comparison to software based approach.

  18. Accurate measurement of the pulse wave delay with imaging photoplethysmography

    PubMed Central

    Kamshilin, Alexei A.; Sidorov, Igor S.; Babayan, Laura; Volynsky, Maxim A.; Giniatullin, Rashid; Mamontov, Oleg V.

    2016-01-01

    Assessment of the cardiovascular parameters using noncontact video-based or imaging photoplethysmography (IPPG) is usually considered as inaccurate because of strong influence of motion artefacts. To optimize this technique we performed a simultaneous recording of electrocardiogram and video frames of the face for 36 healthy volunteers. We found that signal disturbances originate mainly from the stochastically enhanced dichroic notch caused by endogenous cardiovascular mechanisms, with smaller contribution of the motion artefacts. Our properly designed algorithm allowed us to increase accuracy of the pulse-transit-time measurement and visualize propagation of the pulse wave in the facial region. Thus, the accurate measurement of the pulse wave parameters with this technique suggests a sensitive approach to assess local regulation of microcirculation in various physiological and pathological states. PMID:28018731

  19. Accurate Anisotropic Fast Marching for Diffusion-Based Geodesic Tractography

    PubMed Central

    Jbabdi, S.; Bellec, P.; Toro, R.; Daunizeau, J.; Pélégrini-Issac, M.; Benali, H.

    2008-01-01

    Using geodesics for inferring white matter fibre tracts from diffusion-weighted MR data is an attractive method for at least two reasons: (i) the method optimises a global criterion, and hence is less sensitive to local perturbations such as noise or partial volume effects, and (ii) the method is fast, allowing to infer on a large number of connexions in a reasonable computational time. Here, we propose an improved fast marching algorithm to infer on geodesic paths. Specifically, this procedure is designed to achieve accurate front propagation in an anisotropic elliptic medium, such as DTI data. We evaluate the numerical performance of this approach on simulated datasets, as well as its robustness to local perturbation induced by fiber crossing. On real data, we demonstrate the feasibility of extracting geodesics to connect an extended set of brain regions. PMID:18299703

  20. Research on feature data extraction algorithms of printing

    NASA Astrophysics Data System (ADS)

    Sun, Zhihui; Ma, Jianzhuang

    2013-07-01

    The electric-carving printing ink cell image taken in complex lighting conditions with the traditional image processing algorithms can not be got the accurate edge information, so the feature data is not be accurately extracted. This paper use the improved P&M equation for ink cell image smoothing, while the eight-directions edge detection based Sobel is used for searching edge of ink cell, edge tracking algorithm make point of edge coordinate. These algorithms effectively reduce the influence of the unevenness light, accurately extract the feature data of the ink cell.

  1. Fast and accurate database searches with MS-GF+Percolator.

    PubMed

    Granholm, Viktor; Kim, Sangtae; Navarro, José C F; Sjölund, Erik; Smith, Richard D; Käll, Lukas

    2014-02-07

    One can interpret fragmentation spectra stemming from peptides in mass-spectrometry-based proteomics experiments using so-called database search engines. Frequently, one also runs post-processors such as Percolator to assess the confidence, infer unique peptides, and increase the number of identifications. A recent search engine, MS-GF+, has shown promising results, due to a new and efficient scoring algorithm. However, MS-GF+ provides few statistical estimates about the peptide-spectrum matches, hence limiting the biological interpretation. Here, we enabled Percolator processing for MS-GF+ output and observed an increased number of identified peptides for a wide variety of data sets. In addition, Percolator directly reports p values and false discovery rate estimates, such as q values and posterior error probabilities, for peptide-spectrum matches, peptides, and proteins, functions that are useful for the whole proteomics community.

  2. Influence of pansharpening techniques in obtaining accurate vegetation thematic maps

    NASA Astrophysics Data System (ADS)

    Ibarrola-Ulzurrun, Edurne; Gonzalo-Martin, Consuelo; Marcello-Ruiz, Javier

    2016-10-01

    In last decades, there have been a decline in natural resources, becoming important to develop reliable methodologies for their management. The appearance of very high resolution sensors has offered a practical and cost-effective means for a good environmental management. In this context, improvements are needed for obtaining higher quality of the information available in order to get reliable classified images. Thus, pansharpening enhances the spatial resolution of the multispectral band by incorporating information from the panchromatic image. The main goal in the study is to implement pixel and object-based classification techniques applied to the fused imagery using different pansharpening algorithms and the evaluation of thematic maps generated that serve to obtain accurate information for the conservation of natural resources. A vulnerable heterogenic ecosystem from Canary Islands (Spain) was chosen, Teide National Park, and Worldview-2 high resolution imagery was employed. The classes considered of interest were set by the National Park conservation managers. 7 pansharpening techniques (GS, FIHS, HCS, MTF based, Wavelet `à trous' and Weighted Wavelet `à trous' through Fractal Dimension Maps) were chosen in order to improve the data quality with the goal to analyze the vegetation classes. Next, different classification algorithms were applied at pixel-based and object-based approach, moreover, an accuracy assessment of the different thematic maps obtained were performed. The highest classification accuracy was obtained applying Support Vector Machine classifier at object-based approach in the Weighted Wavelet `à trous' through Fractal Dimension Maps fused image. Finally, highlight the difficulty of the classification in Teide ecosystem due to the heterogeneity and the small size of the species. Thus, it is important to obtain accurate thematic maps for further studies in the management and conservation of natural resources.

  3. Methodology for Formulating Diesel Surrogate Fuels with Accurate Compositional, Ignition-Quality, and Volatility Characteristics

    SciTech Connect

    Mueller, C. J.; Cannella, W. J.; Bruno, T. J.; Bunting, B.; Dettman, H. D.; Franz, J. A.; Huber, M. L.; Natarajan, M.; Pitz, W. J.; Ratcliff, M. A.; Wright, K.

    2012-06-21

    In this study, a novel approach was developed to formulate surrogate fuels having characteristics that are representative of diesel fuels produced from real-world refinery streams. Because diesel fuels typically consist of hundreds of compounds, it is difficult to conclusively determine the effects of fuel composition on combustion properties. Surrogate fuels, being simpler representations of these practical fuels, are of interest because they can provide a better understanding of fundamental fuel-composition and property effects on combustion and emissions-formation processes in internal-combustion engines. In addition, the application of surrogate fuels in numerical simulations with accurate vaporization, mixing, and combustion models could revolutionize future engine designs by enabling computational optimization for evolving real fuels. Dependable computational design would not only improve engine function, it would do so at significant cost savings relative to current optimization strategies that rely on physical testing of hardware prototypes. The approach in this study utilized the state-of-the-art techniques of {sup 13}C and {sup 1}H nuclear magnetic resonance spectroscopy and the advanced distillation curve to characterize fuel composition and volatility, respectively. The ignition quality was quantified by the derived cetane number. Two well-characterized, ultra-low-sulfur No.2 diesel reference fuels produced from refinery streams were used as target fuels: a 2007 emissions certification fuel and a Coordinating Research Council (CRC) Fuels for Advanced Combustion Engines (FACE) diesel fuel. A surrogate was created for each target fuel by blending eight pure compounds. The known carbon bond types within the pure compounds, as well as models for the ignition qualities and volatilities of their mixtures, were used in a multiproperty regression algorithm to determine optimal surrogate formulations. The predicted and measured surrogate-fuel properties were

  4. Methodology for Formulating Diesel Surrogate Fuels with Accurate Compositional, Ignition-Quality, and Volatility Characteristics

    SciTech Connect

    Mueller, Charles J.; Cannella, William J.; Bruno, Thomas J.; Bunting, Bruce; Dettman, Heather D.; Franz, James A.; Huber, Marcia L.; Natarajan, Mani; Pitz, William J.; Ratcliff, Matthew A.; Wright, Ken

    2012-06-21

    In this study, a novel approach was developed to formulate surrogate fuels having characteristics that are representative of diesel fuels produced from real-world refinery streams. Because diesel fuels typically consist of hundreds of compounds, it is difficult to conclusively determine the effects of fuel composition on combustion properties. Surrogate fuels, being simpler representations of these practical fuels, are of interest because they can provide a better understanding of fundamental fuel-composition and property effects on combustion and emissions-formation processes in internal-combustion engines. In addition, the application of surrogate fuels in numerical simulations with accurate vaporization, mixing, and combustion models could revolutionize future engine designs by enabling computational optimization for evolving real fuels. Dependable computational design would not only improve engine function, it would do so at significant cost savings relative to current optimization strategies that rely on physical testing of hardware prototypes. The approach in this study utilized the state-of-the-art techniques of 13C and 1H nuclear magnetic resonance spectroscopy and the advanced distillation curve to characterize fuel composition and volatility, respectively. The ignition quality was quantified by the derived cetane number. Two well-characterized, ultra-low-sulfur #2 diesel reference fuels produced from refinery streams were used as target fuels: a 2007 emissions certification fuel and a Coordinating Research Council (CRC) Fuels for Advanced Combustion Engines (FACE) diesel fuel. A surrogate was created for each target fuel by blending eight pure compounds. The known carbon bond types within the pure compounds, as well as models for the ignition qualities and volatilities of their mixtures, were used in a multiproperty regression algorithm to determine optimal surrogate formulations. The predicted and measured surrogate-fuel properties were quantitatively

  5. An Internet enabled impact limiter material database

    SciTech Connect

    Wix, S.; Kanipe, F.; McMurtry, W.

    1998-09-01

    This paper presents a detailed explanation of the construction of an interest enabled database, also known as a database driven web site. The data contained in the internet enabled database are impact limiter material and seal properties. The technique used in constructing the internet enabled database presented in this paper are applicable when information that is changing in content needs to be disseminated to a wide audience.

  6. Accurate reactions open up the way for more cooperative societies

    NASA Astrophysics Data System (ADS)

    Vukov, Jeromos

    2014-09-01

    We consider a prisoner's dilemma model where the interaction neighborhood is defined by a square lattice. Players are equipped with basic cognitive abilities such as being able to distinguish their partners, remember their actions, and react to their strategy. By means of their short-term memory, they can remember not only the last action of their partner but the way they reacted to it themselves. This additional accuracy in the memory enables the handling of different interaction patterns in a more appropriate way and this results in a cooperative community with a strikingly high cooperation level for any temptation value. However, the more developed cognitive abilities can only be effective if the copying process of the strategies is accurate enough. The excessive extent of faulty decisions can deal a fatal blow to the possibility of stable cooperative relations.

  7. Accurate reactions open up the way for more cooperative societies.

    PubMed

    Vukov, Jeromos

    2014-09-01

    We consider a prisoner's dilemma model where the interaction neighborhood is defined by a square lattice. Players are equipped with basic cognitive abilities such as being able to distinguish their partners, remember their actions, and react to their strategy. By means of their short-term memory, they can remember not only the last action of their partner but the way they reacted to it themselves. This additional accuracy in the memory enables the handling of different interaction patterns in a more appropriate way and this results in a cooperative community with a strikingly high cooperation level for any temptation value. However, the more developed cognitive abilities can only be effective if the copying process of the strategies is accurate enough. The excessive extent of faulty decisions can deal a fatal blow to the possibility of stable cooperative relations.

  8. Quantum Chemistry on Quantum Computers: A Polynomial-Time Quantum Algorithm for Constructing the Wave Functions of Open-Shell Molecules.

    PubMed

    Sugisaki, Kenji; Yamamoto, Satoru; Nakazawa, Shigeaki; Toyota, Kazuo; Sato, Kazunobu; Shiomi, Daisuke; Takui, Takeji

    2016-08-18

    Quantum computers are capable to efficiently perform full configuration interaction (FCI) calculations of atoms and molecules by using the quantum phase estimation (QPE) algorithm. Because the success probability of the QPE depends on the overlap between approximate and exact wave functions, efficient methods to prepare accurate initial guess wave functions enough to have sufficiently large overlap with the exact ones are highly desired. Here, we propose a quantum algorithm to construct the wave function consisting of one configuration state function, which is suitable for the initial guess wave function in QPE-based FCI calculations of open-shell molecules, based on the addition theorem of angular momentum. The proposed quantum algorithm enables us to prepare the wave function consisting of an exponential number of Slater determinants only by a polynomial number of quantum operations.

  9. Sampling Within k-Means Algorithm to Cluster Large Datasets

    SciTech Connect

    Bejarano, Jeremy; Bose, Koushiki; Brannan, Tyler; Thomas, Anita; Adragni, Kofi; Neerchal, Nagaraj; Ostrouchov, George

    2011-08-01

    Due to current data collection technology, our ability to gather data has surpassed our ability to analyze it. In particular, k-means, one of the simplest and fastest clustering algorithms, is ill-equipped to handle extremely large datasets on even the most powerful machines. Our new algorithm uses a sample from a dataset to decrease runtime by reducing the amount of data analyzed. We perform a simulation study to compare our sampling based k-means to the standard k-means algorithm by analyzing both the speed and accuracy of the two methods. Results show that our algorithm is significantly more efficient than the existing algorithm with comparable accuracy. Further work on this project might include a more comprehensive study both on more varied test datasets as well as on real weather datasets. This is especially important considering that this preliminary study was performed on rather tame datasets. Also, these datasets should analyze the performance of the algorithm on varied values of k. Lastly, this paper showed that the algorithm was accurate for relatively low sample sizes. We would like to analyze this further to see how accurate the algorithm is for even lower sample sizes. We could find the lowest sample sizes, by manipulating width and confidence level, for which the algorithm would be acceptably accurate. In order for our algorithm to be a success, it needs to meet two benchmarks: match the accuracy of the standard k-means algorithm and significantly reduce runtime. Both goals are accomplished for all six datasets analyzed. However, on datasets of three and four dimension, as the data becomes more difficult to cluster, both algorithms fail to obtain the correct classifications on some trials. Nevertheless, our algorithm consistently matches the performance of the standard algorithm while becoming remarkably more efficient with time. Therefore, we conclude that analysts can use our algorithm, expecting accurate results in considerably less time.

  10. Accurate pointing of tungsten welding electrodes

    NASA Technical Reports Server (NTRS)

    Ziegelmeier, P.

    1971-01-01

    Thoriated-tungsten is pointed accurately and quickly by using sodium nitrite. Point produced is smooth and no effort is necessary to hold the tungsten rod concentric. The chemically produced point can be used several times longer than ground points. This method reduces time and cost of preparing tungsten electrodes.

  11. Accurate Modeling of Scaffold Hopping Transformations in Drug Discovery.

    PubMed

    Wang, Lingle; Deng, Yuqing; Wu, Yujie; Kim, Byungchan; LeBard, David N; Wandschneider, Dan; Beachy, Mike; Friesner, Richard A; Abel, Robert

    2017-01-10

    The accurate prediction of protein-ligand binding free energies remains a significant challenge of central importance in computational biophysics and structure-based drug design. Multiple recent advances including the development of greatly improved protein and ligand molecular mechanics force fields, more efficient enhanced sampling methods, and low-cost powerful GPU computing clusters have enabled accurate and reliable predictions of relative protein-ligand binding free energies through the free energy perturbation (FEP) methods. However, the existing FEP methods can only be used to calculate the relative binding free energies for R-group modifications or single-atom modifications and cannot be used to efficiently evaluate scaffold hopping modifications to a lead molecule. Scaffold hopping or core hopping, a very common design strategy in drug discovery projects, is critical not only in the early stages of a discovery campaign where novel active matter must be identified but also in lead optimization where the resolution of a variety of ADME/Tox problems may require identification of a novel core structure. In this paper, we introduce a method that enables theoretically rigorous, yet computationally tractable, relative protein-ligand binding free energy calculations to be pursued for scaffold hopping modifications. We apply the method to six pharmaceutically interesting cases where diverse types of scaffold hopping modifications were required to identify the drug molecules ultimately sent into the clinic. For these six diverse cases, the predicted binding affinities were in close agreement with experiment, demonstrating the wide applicability and the significant impact Core Hopping FEP may provide in drug discovery projects.

  12. SU-E-J-97: Quality Assurance of Deformable Image Registration Algorithms: How Realistic Should Phantoms Be?

    SciTech Connect

    Saenz, D; Stathakis, S; Kirby, N; Kim, H; Chen, J

    2015-06-15

    Purpose: Deformable image registration (DIR) has widespread uses in radiotherapy for applications such as dose accumulation studies, multi-modality image fusion, and organ segmentation. The quality assurance (QA) of such algorithms, however, remains largely unimplemented. This work aims to determine how detailed a physical phantom needs to be to accurately perform QA of a DIR algorithm. Methods: Virtual prostate and head-and-neck phantoms, made from patient images, were used for this study. Both sets consist of an undeformed and deformed image pair. The images were processed to create additional image pairs with one through five homogeneous tissue levels using Otsu’s method. Realistic noise was then added to each image. The DIR algorithms from MIM and Velocity (Deformable Multipass) were applied to the original phantom images and the processed ones. The resulting deformations were then compared to the known warping. A higher number of tissue levels creates more contrast in an image and enables DIR algorithms to produce more accurate results. For this reason, error (distance between predicted and known deformation) is utilized as a metric to evaluate how many levels are required for a phantom to be a realistic patient proxy. Results: For the prostate image pairs, the mean error decreased from 1–2 tissue levels and remained constant for 3+ levels. The mean error reduction was 39% and 26% for Velocity and MIM respectively. For head and neck, mean error fell similarly through 2 levels and flattened with total reduction of 16% and 49% for Velocity and MIM. For Velocity, 3+ levels produced comparable accuracy as the actual patient images, whereas MIM showed further accuracy improvement. Conclusion: The number of tissue levels needed to produce an accurate patient proxy depends on the algorithm. For Velocity, three levels were enough, whereas five was still insufficient for MIM.

  13. Resource optimization scheme for multimedia-enabled wireless mesh networks.

    PubMed

    Ali, Amjad; Ahmed, Muhammad Ejaz; Piran, Md Jalil; Suh, Doug Young

    2014-08-08

    Wireless mesh networking is a promising technology that can support numerous multimedia applications. Multimedia applications have stringent quality of service (QoS) requirements, i.e., bandwidth, delay, jitter, and packet loss ratio. Enabling such QoS-demanding applications over wireless mesh networks (WMNs) require QoS provisioning routing protocols that lead to the network resource underutilization problem. Moreover, random topology deployment leads to have some unused network resources. Therefore, resource optimization is one of the most critical design issues in multi-hop, multi-radio WMNs enabled with multimedia applications. Resource optimization has been studied extensively in the literature for wireless Ad Hoc and sensor networks, but existing studies have not considered resource underutilization issues caused by QoS provisioning routing and random topology deployment. Finding a QoS-provisioned path in wireless mesh networks is an NP complete problem. In this paper, we propose a novel Integer Linear Programming (ILP) optimization model to reconstruct the optimal connected mesh backbone topology with a minimum number of links and relay nodes which satisfies the given end-to-end QoS demands for multimedia traffic and identification of extra resources, while maintaining redundancy. We further propose a polynomial time heuristic algorithm called Link and Node Removal Considering Residual Capacity and Traffic Demands (LNR-RCTD). Simulation studies prove that our heuristic algorithm provides near-optimal results and saves about 20% of resources from being wasted by QoS provisioning routing and random topology deployment.

  14. Resource Optimization Scheme for Multimedia-Enabled Wireless Mesh Networks

    PubMed Central

    Ali, Amjad; Ahmed, Muhammad Ejaz; Piran, Md. Jalil; Suh, Doug Young

    2014-01-01

    Wireless mesh networking is a promising technology that can support numerous multimedia applications. Multimedia applications have stringent quality of service (QoS) requirements, i.e., bandwidth, delay, jitter, and packet loss ratio. Enabling such QoS-demanding applications over wireless mesh networks (WMNs) require QoS provisioning routing protocols that lead to the network resource underutilization problem. Moreover, random topology deployment leads to have some unused network resources. Therefore, resource optimization is one of the most critical design issues in multi-hop, multi-radio WMNs enabled with multimedia applications. Resource optimization has been studied extensively in the literature for wireless Ad Hoc and sensor networks, but existing studies have not considered resource underutilization issues caused by QoS provisioning routing and random topology deployment. Finding a QoS-provisioned path in wireless mesh networks is an NP complete problem. In this paper, we propose a novel Integer Linear Programming (ILP) optimization model to reconstruct the optimal connected mesh backbone topology with a minimum number of links and relay nodes which satisfies the given end-to-end QoS demands for multimedia traffic and identification of extra resources, while maintaining redundancy. We further propose a polynomial time heuristic algorithm called Link and Node Removal Considering Residual Capacity and Traffic Demands (LNR-RCTD). Simulation studies prove that our heuristic algorithm provides near-optimal results and saves about 20% of resources from being wasted by QoS provisioning routing and random topology deployment. PMID:25111241

  15. Accurate Langevin approaches to simulate Markovian channel dynamics

    NASA Astrophysics Data System (ADS)

    Huang, Yandong; Rüdiger, Sten; Shuai, Jianwei

    2015-12-01

    The stochasticity of ion-channels dynamic is significant for physiological processes on neuronal cell membranes. Microscopic simulations of the ion-channel gating with Markov chains can be considered to be an accurate standard. However, such Markovian simulations are computationally demanding for membrane areas of physiologically relevant sizes, which makes the noise-approximating or Langevin equation methods advantageous in many cases. In this review, we discuss the Langevin-like approaches, including the channel-based and simplified subunit-based stochastic differential equations proposed by Fox and Lu, and the effective Langevin approaches in which colored noise is added to deterministic differential equations. In the framework of Fox and Lu’s classical models, several variants of numerical algorithms, which have been recently developed to improve accuracy as well as efficiency, are also discussed. Through the comparison of different simulation algorithms of ion-channel noise with the standard Markovian simulation, we aim to reveal the extent to which the existing Langevin-like methods approximate results using Markovian methods. Open questions for future studies are also discussed.

  16. Basophile: Accurate Fragment Charge State Prediction Improves Peptide Identification Rates

    SciTech Connect

    Wang, Dong; Dasari, Surendra; Chambers, Matthew C.; Holman, Jerry D.; Chen, Kan; Liebler, Daniel; Orton, Daniel J.; Purvine, Samuel O.; Monroe, Matthew E.; Chung, Chang Y.; Rose, Kristie L.; Tabb, David L.

    2013-03-07

    In shotgun proteomics, database search algorithms rely on fragmentation models to predict fragment ions that should be observed for a given peptide sequence. The most widely used strategy (Naive model) is oversimplified, cleaving all peptide bonds with equal probability to produce fragments of all charges below that of the precursor ion. More accurate models, based on fragmentation simulation, are too computationally intensive for on-the-fly use in database search algorithms. We have created an ordinal-regression-based model called Basophile that takes fragment size and basic residue distribution into account when determining the charge retention during CID/higher-energy collision induced dissociation (HCD) of charged peptides. This model improves the accuracy of predictions by reducing the number of unnecessary fragments that are routinely predicted for highly-charged precursors. Basophile increased the identification rates by 26% (on average) over the Naive model, when analyzing triply-charged precursors from ion trap data. Basophile achieves simplicity and speed by solving the prediction problem with an ordinal regression equation, which can be incorporated into any database search software for shotgun proteomic identification.

  17. Basophile: Accurate Fragment Charge State Prediction Improves Peptide Identification Rates

    DOE PAGES

    Wang, Dong; Dasari, Surendra; Chambers, Matthew C.; ...

    2013-03-07

    In shotgun proteomics, database search algorithms rely on fragmentation models to predict fragment ions that should be observed for a given peptide sequence. The most widely used strategy (Naive model) is oversimplified, cleaving all peptide bonds with equal probability to produce fragments of all charges below that of the precursor ion. More accurate models, based on fragmentation simulation, are too computationally intensive for on-the-fly use in database search algorithms. We have created an ordinal-regression-based model called Basophile that takes fragment size and basic residue distribution into account when determining the charge retention during CID/higher-energy collision induced dissociation (HCD) of chargedmore » peptides. This model improves the accuracy of predictions by reducing the number of unnecessary fragments that are routinely predicted for highly-charged precursors. Basophile increased the identification rates by 26% (on average) over the Naive model, when analyzing triply-charged precursors from ion trap data. Basophile achieves simplicity and speed by solving the prediction problem with an ordinal regression equation, which can be incorporated into any database search software for shotgun proteomic identification.« less

  18. Toward accurate and fast iris segmentation for iris biometrics.

    PubMed

    He, Zhaofeng; Tan, Tieniu; Sun, Zhenan; Qiu, Xianchao

    2009-09-01

    Iris segmentation is an essential module in iris recognition because it defines the effective image region used for subsequent processing such as feature extraction. Traditional iris segmentation methods often involve an exhaustive search of a large parameter space, which is time consuming and sensitive to noise. To address these problems, this paper presents a novel algorithm for accurate and fast iris segmentation. After efficient reflection removal, an Adaboost-cascade iris detector is first built to extract a rough position of the iris center. Edge points of iris boundaries are then detected, and an elastic model named pulling and pushing is established. Under this model, the center and radius of the circular iris boundaries are iteratively refined in a way driven by the restoring forces of Hooke's law. Furthermore, a smoothing spline-based edge fitting scheme is presented to deal with noncircular iris boundaries. After that, eyelids are localized via edge detection followed by curve fitting. The novelty here is the adoption of a rank filter for noise elimination and a histogram filter for tackling the shape irregularity of eyelids. Finally, eyelashes and shadows are detected via a learned prediction model. This model provides an adaptive threshold for eyelash and shadow detection by analyzing the intensity distributions of different iris regions. Experimental results on three challenging iris image databases demonstrate that the proposed algorithm outperforms state-of-the-art methods in both accuracy and speed.

  19. Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots

    PubMed Central

    Hajdin, Christine E.; Bellaousov, Stanislav; Huggins, Wayne; Leonard, Christopher W.; Mathews, David H.; Weeks, Kevin M.

    2013-01-01

    A pseudoknot forms in an RNA when nucleotides in a loop pair with a region outside the helices that close the loop. Pseudoknots occur relatively rarely in RNA but are highly overrepresented in functionally critical motifs in large catalytic RNAs, in riboswitches, and in regulatory elements of viruses. Pseudoknots are usually excluded from RNA structure prediction algorithms. When included, these pairings are difficult to model accurately, especially in large RNAs, because allowing this structure dramatically increases the number of possible incorrect folds and because it is difficult to search the fold space for an optimal structure. We have developed a concise secondary structure modeling approach that combines SHAPE (selective 2′-hydroxyl acylation analyzed by primer extension) experimental chemical probing information and a simple, but robust, energy model for the entropic cost of single pseudoknot formation. Structures are predicted with iterative refinement, using a dynamic programming algorithm. This melded experimental and thermodynamic energy function predicted the secondary structures and the pseudoknots for a set of 21 challenging RNAs of known structure ranging in size from 34 to 530 nt. On average, 93% of known base pairs were predicted, and all pseudoknots in well-folded RNAs were identified. PMID:23503844

  20. Accurate and efficient linear scaling DFT calculations with universal applicability.

    PubMed

    Mohr, Stephan; Ratcliff, Laura E; Genovese, Luigi; Caliste, Damien; Boulanger, Paul; Goedecker, Stefan; Deutsch, Thierry

    2015-12-21

    Density functional theory calculations are computationally extremely expensive for systems containing many atoms due to their intrinsic cubic scaling. This fact has led to the development of so-called linear scaling algorithms during the last few decades. In this way it becomes possible to perform ab initio calculations for several tens of thousands of atoms within reasonable walltimes. However, even though the use of linear scaling algorithms is physically well justified, their implementation often introduces some small errors. Consequently most implementations offering such a linear complexity either yield only a limited accuracy or, if one wants to go beyond this restriction, require a tedious fine tuning of many parameters. In our linear scaling approach within the BigDFT package, we were able to overcome this restriction. Using an ansatz based on localized support functions expressed in an underlying Daubechies wavelet basis - which offers ideal properties for accurate linear scaling calculations - we obtain an amazingly high accuracy and a universal applicability while still keeping the possibility of simulating large system with linear scaling walltimes requiring only a moderate demand of computing resources. We prove the effectiveness of our method on a wide variety of systems with different boundary conditions, for single-point calculations as well as for geometry optimizations and molecular dynamics.

  1. Accurate absolute GPS positioning through satellite clock error estimation

    NASA Astrophysics Data System (ADS)

    Han, S.-C.; Kwon, J. H.; Jekeli, C.

    2001-05-01

    An algorithm for very accurate absolute positioning through Global Positioning System (GPS) satellite clock estimation has been developed. Using International GPS Service (IGS) precise orbits and measurements, GPS clock errors were estimated at 30-s intervals. Compared to values determined by the Jet Propulsion Laboratory, the agreement was at the level of about 0.1 ns (3 cm). The clock error estimates were then applied to an absolute positioning algorithm in both static and kinematic modes. For the static case, an IGS station was selected and the coordinates were estimated every 30 s. The estimated absolute position coordinates and the known values had a mean difference of up to 18 cm with standard deviation less than 2 cm. For the kinematic case, data obtained every second from a GPS buoy were tested and the result from the absolute positioning was compared to a differential GPS (DGPS) solution. The mean differences between the coordinates estimated by the two methods are less than 40 cm and the standard deviations are less than 25 cm. It was verified that this poorer standard deviation on 1-s position results is due to the clock error interpolation from 30-s estimates with Selective Availability (SA). After SA was turned off, higher-rate clock error estimates (such as 1 s) could be obtained by a simple interpolation with negligible corruption. Therefore, the proposed absolute positioning technique can be used to within a few centimeters' precision at any rate by estimating 30-s satellite clock errors and interpolating them.

  2. Basophile: Accurate Fragment Charge State Prediction Improves Peptide Identification Rates

    PubMed Central

    Wang, Dong; Dasari, Surendra; Chambers, Matthew C.; Holman, Jerry D.; Chen, Kan; Liebler, Daniel C.; Orton, Daniel J.; Purvine, Samuel O.; Monroe, Matthew E.; Chung, Chang Y.; Rose, Kristie L.; Tabb, David L.

    2013-01-01

    In shotgun proteomics, database search algorithms rely on fragmentation models to predict fragment ions that should be observed for a given peptide sequence. The most widely used strategy (Naive model) is oversimplified, cleaving all peptide bonds with equal probability to produce fragments of all charges below that of the precursor ion. More accurate models, based on fragmentation simulation, are too computationally intensive for on-the-fly use in database search algorithms. We have created an ordinal-regression-based model called Basophile that takes fragment size and basic residue distribution into account when determining the charge retention during CID/higher-energy collision induced dissociation (HCD) of charged peptides. This model improves the accuracy of predictions by reducing the number of unnecessary fragments that are routinely predicted for highly-charged precursors. Basophile increased the identification rates by 26% (on average) over the Naive model, when analyzing triply-charged precursors from ion trap data. Basophile achieves simplicity and speed by solving the prediction problem with an ordinal regression equation, which can be incorporated into any database search software for shotgun proteomic identification. PMID:23499924

  3. Algorithm for in-flight gyroscope calibration

    NASA Technical Reports Server (NTRS)

    Davenport, P. B.; Welter, G. L.

    1988-01-01

    An optimal algorithm for the in-flight calibration of spacecraft gyroscope systems is presented. Special consideration is given to the selection of the loss function weight matrix in situations in which the spacecraft attitude sensors provide significantly more accurate information in pitch and yaw than in roll, such as will be the case in the Hubble Space Telescope mission. The results of numerical tests that verify the accuracy of the algorithm are discussed.

  4. An enhanced mode shape identification algorithm

    NASA Technical Reports Server (NTRS)

    Roemer, Michael J.; Mook, D. Joseph

    1989-01-01

    A mode shape identification algorithm is developed which is characterized by a low sensitivity to measurement noise and a high accuracy of mode identification. The algorithm proposed here is also capable of identifying the mode shapes of structures with significant damping. The combined results indicate that mode shape identification is much more dependent on measurement noise than identification of natural frequencies. Accurate detection of modal parameters and mode shapes is demonstrated for modes with damping ratios exceeding 15 percent.

  5. Accurate three-dimensional documentation of distinct sites

    NASA Astrophysics Data System (ADS)

    Singh, Mahesh K.; Dutta, Ashish; Subramanian, Venkatesh K.

    2017-01-01

    One of the most critical aspects of documenting distinct sites is acquiring detailed and accurate range information. Several three-dimensional (3-D) acquisition techniques are available, but each has its own limitations. This paper presents a range data fusion method with the aim to enhance the descriptive contents of the entire 3-D reconstructed model. A kernel function is introduced for supervised classification of the range data using a kernelized support vector machine. The classification method is based on the local saliency features of the acquired range data. The range data acquired from heterogeneous range sensors are transformed into a defined common reference frame. Based on the segmentation criterion, the fusion of range data is performed by integrating finer regions of range data acquired from a laser range scanner with the coarser region of Kinect's range data. After fusion, the Delaunay triangulation algorithm is applied to generate the highly accurate, realistic 3-D model of the scene. Finally, experimental results show the robustness of the proposed approach.

  6. Adaptive Cuckoo Search Algorithm for Unconstrained Optimization

    PubMed Central

    2014-01-01

    Modification of the intensification and diversification approaches in the recently developed cuckoo search algorithm (CSA) is performed. The alteration involves the implementation of adaptive step size adjustment strategy, and thus enabling faster convergence to the global optimal solutions. The feasibility of the proposed algorithm is validated against benchmark optimization functions, where the obtained results demonstrate a marked improvement over the standard CSA, in all the cases. PMID:25298971

  7. Adaptive cuckoo search algorithm for unconstrained optimization.

    PubMed

    Ong, Pauline

    2014-01-01

    Modification of the intensification and diversification approaches in the recently developed cuckoo search algorithm (CSA) is performed. The alteration involves the implementation of adaptive step size adjustment strategy, and thus enabling faster convergence to the global optimal solutions. The feasibility of the proposed algorithm is validated against benchmark optimization functions, where the obtained results demonstrate a marked improvement over the standard CSA, in all the cases.

  8. More-Accurate Model of Flows in Rocket Injectors

    NASA Technical Reports Server (NTRS)

    Hosangadi, Ashvin; Chenoweth, James; Brinckman, Kevin; Dash, Sanford

    2011-01-01

    An improved computational model for simulating flows in liquid-propellant injectors in rocket engines has been developed. Models like this one are needed for predicting fluxes of heat in, and performances of, the engines. An important part of predicting performance is predicting fluctuations of temperature, fluctuations of concentrations of chemical species, and effects of turbulence on diffusion of heat and chemical species. Customarily, diffusion effects are represented by parameters known in the art as the Prandtl and Schmidt numbers. Prior formulations include ad hoc assumptions of constant values of these parameters, but these assumptions and, hence, the formulations, are inaccurate for complex flows. In the improved model, these parameters are neither constant nor specified in advance: instead, they are variables obtained as part of the solution. Consequently, this model represents the effects of turbulence on diffusion of heat and chemical species more accurately than prior formulations do, and may enable more-accurate prediction of mixing and flows of heat in rocket-engine combustion chambers. The model has been implemented within CRUNCH CFD, a proprietary computational fluid dynamics (CFD) computer program, and has been tested within that program. The model could also be implemented within other CFD programs.

  9. Accurate and precise zinc isotope ratio measurements in urban aerosols.

    PubMed

    Gioia, Simone; Weiss, Dominik; Coles, Barry; Arnold, Tim; Babinski, Marly

    2008-12-15

    We developed an analytical method and constrained procedural boundary conditions that enable accurate and precise Zn isotope ratio measurements in urban aerosols. We also demonstrate the potential of this new isotope system for air pollutant source tracing. The procedural blank is around 5 ng and significantly lower than published methods due to a tailored ion chromatographic separation. Accurate mass bias correction using external correction with Cu is limited to Zn sample content of approximately 50 ng due to the combined effect of blank contribution of Cu and Zn from the ion exchange procedure and the need to maintain a Cu/Zn ratio of approximately 1. Mass bias is corrected for by applying the common analyte internal standardization method approach. Comparison with other mass bias correction methods demonstrates the accuracy of the method. The average precision of delta(66)Zn determinations in aerosols is around 0.05 per thousand per atomic mass unit. The method was tested on aerosols collected in Sao Paulo City, Brazil. The measurements reveal significant variations in delta(66)Zn(Imperial) ranging between -0.96 and -0.37 per thousand in coarse and between -1.04 and 0.02 per thousand in fine particular matter. This variability suggests that Zn isotopic compositions distinguish atmospheric sources. The isotopic light signature suggests traffic as the main source. We present further delta(66)Zn(Imperial) data for the standard reference material NIST SRM 2783 (delta(66)Zn(Imperial) = 0.26 +/- 0.10 per thousand).

  10. Accurate optical CD profiler based on specialized finite element method

    NASA Astrophysics Data System (ADS)

    Carrero, Jesus; Perçin, Gökhan

    2012-03-01

    As the semiconductor industry is moving to very low-k1 patterning solutions, the metrology problems facing process engineers are becoming much more complex. Choosing the right optical critical dimension (OCD) metrology technique is essential for bridging the metrology gap and achieving the required manufacturing volume throughput. The critical dimension scanning electron microscope (CD-SEM) measurement is usually distorted by the high aspect ratio of the photoresist and hard mask layers. CD-SEM measurements cease to correlate with complex three-dimensional profiles, such as the cases for double patterning and FinFETs, thus necessitating sophisticated, accurate and fast computational methods to bridge the gap. In this work, a suite of computational methods that complement advanced OCD equipment, and enabling them to operate at higher accuracies, are developed. In this article, a novel method for accurately modeling OCD profiles is presented. A finite element formulation in primal form is used to discretize the equations. The implementation uses specialized finite element spaces to solve Maxwell equations in two dimensions.

  11. Accurate interlaminar stress recovery from finite element analysis

    NASA Technical Reports Server (NTRS)

    Tessler, Alexander; Riggs, H. Ronald

    1994-01-01

    The accuracy and robustness of a two-dimensional smoothing methodology is examined for the problem of recovering accurate interlaminar shear stress distributions in laminated composite and sandwich plates. The smoothing methodology is based on a variational formulation which combines discrete least-squares and penalty-constraint functionals in a single variational form. The smoothing analysis utilizes optimal strains computed at discrete locations in a finite element analysis. These discrete strain data are smoothed with a smoothing element discretization, producing superior accuracy strains and their first gradients. The approach enables the resulting smooth strain field to be practically C1-continuous throughout the domain of smoothing, exhibiting superconvergent properties of the smoothed quantity. The continuous strain gradients are also obtained directly from the solution. The recovered strain gradients are subsequently employed in the integration o equilibrium equations to obtain accurate interlaminar shear stresses. The problem is a simply-supported rectangular plate under a doubly sinusoidal load. The problem has an exact analytic solution which serves as a measure of goodness of the recovered interlaminar shear stresses. The method has the versatility of being applicable to the analysis of rather general and complex structures built of distinct components and materials, such as found in aircraft design. For these types of structures, the smoothing is achieved with 'patches', each patch covering the domain in which the smoothed quantity is physically continuous.

  12. Accurate determination of membrane dynamics with line-scan FCS.

    PubMed

    Ries, Jonas; Chiantia, Salvatore; Schwille, Petra

    2009-03-04

    Here we present an efficient implementation of line-scan fluorescence correlation spectroscopy (i.e., one-dimensional spatio-temporal image correlation spectroscopy) using a commercial laser scanning microscope, which allows the accurate measurement of diffusion coefficients and concentrations in biological lipid membranes within seconds. Line-scan fluorescence correlation spectroscopy is a calibration-free technique. Therefore, it is insensitive to optical artifacts, saturation, or incorrect positioning of the laser focus. In addition, it is virtually unaffected by photobleaching. Correction schemes for residual inhomogeneities and depletion of fluorophores due to photobleaching extend the applicability of line-scan fluorescence correlation spectroscopy to more demanding systems. This technique enabled us to measure accurate diffusion coefficients and partition coefficients of fluorescent lipids in phase-separating supported bilayers of three commonly used raft-mimicking compositions. Furthermore, we probed the temperature dependence of the diffusion coefficient in several model membranes, and in human embryonic kidney cell membranes not affected by temperature-induced optical aberrations.

  13. Commentary: Academic Enablers and School Learning.

    ERIC Educational Resources Information Center

    Keith, Timothy Z.

    2002-01-01

    This commentary presents academic enablers within the broader, overlapping context of school learning theory, including the theories of Carroll, Harnishfeger and Wiley, Walberg, and others. Multivariate models are needed to understand the influences of academic enabler and school learning variables on learning, as well as the influences of these…

  14. Feedback about More Accurate versus Less Accurate Trials: Differential Effects on Self-Confidence and Activation

    ERIC Educational Resources Information Center

    Badami, Rokhsareh; VaezMousavi, Mohammad; Wulf, Gabriele; Namazizadeh, Mahdi

    2012-01-01

    One purpose of the present study was to examine whether self-confidence or anxiety would be differentially affected by feedback from more accurate rather than less accurate trials. The second purpose was to determine whether arousal variations (activation) would predict performance. On Day 1, participants performed a golf putting task under one of…

  15. Motion Cueing Algorithm Development: Initial Investigation and Redesign of the Algorithms

    NASA Technical Reports Server (NTRS)

    Telban, Robert J.; Wu, Weimin; Cardullo, Frank M.; Houck, Jacob A. (Technical Monitor)

    2000-01-01

    In this project four motion cueing algorithms were initially investigated. The classical algorithm generated results with large distortion and delay and low magnitude. The NASA adaptive algorithm proved to be well tuned with satisfactory performance, while the UTIAS adaptive algorithm produced less desirable results. Modifications were made to the adaptive algorithms to reduce the magnitude of undesirable spikes. The optimal algorithm was found to have the potential for improved performance with further redesign. The center of simulator rotation was redefined. More terms were added to the cost function to enable more tuning flexibility. A new design approach using a Fortran/Matlab/Simulink setup was employed. A new semicircular canals model was incorporated in the algorithm. With these changes results show the optimal algorithm has some advantages over the NASA adaptive algorithm. Two general problems observed in the initial investigation required solutions. A nonlinear gain algorithm was developed that scales the aircraft inputs by a third-order polynomial, maximizing the motion cues while remaining within the operational limits of the motion system. A braking algorithm was developed to bring the simulator to a full stop at its motion limit and later release the brake to follow the cueing algorithm output.

  16. Enabling pulsar and fast transient searches using coherent dedispersion

    NASA Astrophysics Data System (ADS)

    Bassa, C. G.; Pleunis, Z.; Hessels, J. W. T.

    2017-01-01

    We present an implementation of the coherent dedispersion algorithm capable of dedispersing high-time-resolution radio observations to many different dispersion measures (DMs). This approach allows the removal of the dispersive effects of the interstellar medium and enables searches for pulsed emission from pulsars and other millisecond-duration transients at low observing frequencies and/or high DMs where time broadening of the signal due to dispersive smearing would otherwise severely reduce the sensitivity. The implementation, called cdmt, for coherent dispersion measure trials, exploits the parallel processing capability of general-purpose graphics processing units to accelerate the computations. We describe the coherent dedispersion algorithm and detail how cdmt implements the algorithm to efficiently compute many coherent DM trials. We apply the concept of a semi-coherent dedispersion search, where coherently dedispersed trials at coarsely separated DMs are subsequently incoherently dedispersed at finer steps in DM. The software is used in an ongoing LOFAR pilot survey to test the feasibility of performing semi-coherent dedispersion searches for millisecond pulsars at 135 MHz. This pilot survey has led to the discovery of a radio millisecond pulsar-the first at these low frequencies. This is the first time that such a broad and comprehensive search in DM-space has been done using coherent dedispersion, and we argue that future low-frequency pulsar searches using this approach are both scientifically compelling and feasible. Finally, we compare the performance of cdmt with other available alternatives.

  17. Seasonal cultivated and fallow cropland mapping using MODIS-based automated cropland classification algorithm

    USGS Publications Warehouse

    Wu, Zhuoting; Thenkabail, Prasad S.; Mueller, Rick; Zakzeski, Audra; Melton, Forrest; Johnson, Lee; Rosevelt, Carolyn; Dwyer, John; Jones, Jeanine; Verdin, James P.

    2014-01-01

    Increasing drought occurrences and growing populations demand accurate, routine, and consistent cultivated and fallow cropland products to enable water and food security analysis. The overarching goal of this research was to develop and test automated cropland classification algorithm (ACCA) that provide accurate, consistent, and repeatable information on seasonal cultivated as well as seasonal fallow cropland extents and areas based on the Moderate Resolution Imaging Spectroradiometer remote sensing data. Seasonal ACCA development process involves writing series of iterative decision tree codes to separate cultivated and fallow croplands from noncroplands, aiming to accurately mirror reliable reference data sources. A pixel-by-pixel accuracy assessment when compared with the U.S. Department of Agriculture (USDA) cropland data showed, on average, a producer’s accuracy of 93% and a user’s accuracy of 85% across all months. Further, ACCA-derived cropland maps agreed well with the USDA Farm Service Agency crop acreage-reported data for both cultivated and fallow croplands with R-square values over 0.7 and field surveys with an accuracy of ≥95% for cultivated croplands and ≥76% for fallow croplands. Our results demonstrated the ability of ACCA to generate cropland products, such as cultivated and fallow cropland extents and areas, accurately, automatically, and repeatedly throughout the growing season.

  18. POSE Algorithms for Automated Docking

    NASA Technical Reports Server (NTRS)

    Heaton, Andrew F.; Howard, Richard T.

    2011-01-01

    POSE (relative position and attitude) can be computed in many different ways. Given a sensor that measures bearing to a finite number of spots corresponding to known features (such as a target) of a spacecraft, a number of different algorithms can be used to compute the POSE. NASA has sponsored the development of a flash LIDAR proximity sensor called the Vision Navigation Sensor (VNS) for use by the Orion capsule in future docking missions. This sensor generates data that can be used by a variety of algorithms to compute POSE solutions inside of 15 meters, including at the critical docking range of approximately 1-2 meters. Previously NASA participated in a DARPA program called Orbital Express that achieved the first automated docking for the American space program. During this mission a large set of high quality mated sensor data was obtained at what is essentially the docking distance. This data set is perhaps the most accurate truth data in existence for docking proximity sensors in orbit. In this paper, the flight data from Orbital Express is used to test POSE algorithms at 1.22 meters range. Two different POSE algorithms are tested for two different Fields-of-View (FOVs) and two different pixel noise levels. The results of the analysis are used to predict future performance of the POSE algorithms with VNS data.

  19. Method for Accurate Unsupervised Cell Nucleus Segmentation

    DTIC Science & Technology

    2007-11-02

    development of a cervical cancer screening ma- chine despite projects being initiated in the 1950’s is perhaps a good indication of the magnitude of the...classi- fication processes can only become more robust. REFERENCES [1] P. Bamford. The Segmentation of Cell Images with Applica- tion to Cervical Cancer Screening... Cervical Cancer : Algorithms and Implementation. PhD thesis, Uppsala University, 1989.

  20. Accurate Guitar Tuning by Cochlear Implant Musicians

    PubMed Central

    Lu, Thomas; Huang, Juan; Zeng, Fan-Gang

    2014-01-01

    Modern cochlear implant (CI) users understand speech but find difficulty in music appreciation due to poor pitch perception. Still, some deaf musicians continue to perform with their CI. Here we show unexpected results that CI musicians can reliably tune a guitar by CI alone and, under controlled conditions, match simultaneously presented tones to <0.5 Hz. One subject had normal contralateral hearing and produced more accurate tuning with CI than his normal ear. To understand these counterintuitive findings, we presented tones sequentially and found that tuning error was larger at ∼30 Hz for both subjects. A third subject, a non-musician CI user with normal contralateral hearing, showed similar trends in performance between CI and normal hearing ears but with less precision. This difference, along with electric analysis, showed that accurate tuning was achieved by listening to beats rather than discriminating pitch, effectively turning a spectral task into a temporal discrimination task. PMID:24651081

  1. New model accurately predicts reformate composition

    SciTech Connect

    Ancheyta-Juarez, J.; Aguilar-Rodriguez, E. )

    1994-01-31

    Although naphtha reforming is a well-known process, the evolution of catalyst formulation, as well as new trends in gasoline specifications, have led to rapid evolution of the process, including: reactor design, regeneration mode, and operating conditions. Mathematical modeling of the reforming process is an increasingly important tool. It is fundamental to the proper design of new reactors and revamp of existing ones. Modeling can be used to optimize operating conditions, analyze the effects of process variables, and enhance unit performance. Instituto Mexicano del Petroleo has developed a model of the catalytic reforming process that accurately predicts reformate composition at the higher-severity conditions at which new reformers are being designed. The new AA model is more accurate than previous proposals because it takes into account the effects of temperature and pressure on the rate constants of each chemical reaction.

  2. Accurate colorimetric feedback for RGB LED clusters

    NASA Astrophysics Data System (ADS)

    Man, Kwong; Ashdown, Ian

    2006-08-01

    We present an empirical model of LED emission spectra that is applicable to both InGaN and AlInGaP high-flux LEDs, and which accurately predicts their relative spectral power distributions over a wide range of LED junction temperatures. We further demonstrate with laboratory measurements that changes in LED spectral power distribution with temperature can be accurately predicted with first- or second-order equations. This provides the basis for a real-time colorimetric feedback system for RGB LED clusters that can maintain the chromaticity of white light at constant intensity to within +/-0.003 Δuv over a range of 45 degrees Celsius, and to within 0.01 Δuv when dimmed over an intensity range of 10:1.

  3. Accurate guitar tuning by cochlear implant musicians.

    PubMed

    Lu, Thomas; Huang, Juan; Zeng, Fan-Gang

    2014-01-01

    Modern cochlear implant (CI) users understand speech but find difficulty in music appreciation due to poor pitch perception. Still, some deaf musicians continue to perform with their CI. Here we show unexpected results that CI musicians can reliably tune a guitar by CI alone and, under controlled conditions, match simultaneously presented tones to <0.5 Hz. One subject had normal contralateral hearing and produced more accurate tuning with CI than his normal ear. To understand these counterintuitive findings, we presented tones sequentially and found that tuning error was larger at ∼ 30 Hz for both subjects. A third subject, a non-musician CI user with normal contralateral hearing, showed similar trends in performance between CI and normal hearing ears but with less precision. This difference, along with electric analysis, showed that accurate tuning was achieved by listening to beats rather than discriminating pitch, effectively turning a spectral task into a temporal discrimination task.

  4. Enabling Disabled Persons to Gain Access to Digital Media

    NASA Technical Reports Server (NTRS)

    Beach, Glenn; OGrady, Ryan

    2011-01-01

    A report describes the first phase in an effort to enhance the NaviGaze software to enable profoundly disabled persons to operate computers. (Running on a Windows-based computer equipped with a video camera aimed at the user s head, the original NaviGaze software processes the user's head movements and eye blinks into cursor movements and mouse clicks to enable hands-free control of the computer.) To accommodate large variations in movement capabilities among disabled individuals, one of the enhancements was the addition of a graphical user interface for selection of parameters that affect the way the software interacts with the computer and tracks the user s movements. Tracking algorithms were improved to reduce sensitivity to rotations and reduce the likelihood of tracking the wrong features. Visual feedback to the user was improved to provide an indication of the state of the computer system. It was found that users can quickly learn to use the enhanced software, performing single clicks, double clicks, and drags within minutes of first use. Available programs that could increase the usability of NaviGaze were identified. One of these enables entry of text by using NaviGaze as a mouse to select keys on a virtual keyboard.

  5. An Accurate, Simplified Model Intrabeam Scattering

    SciTech Connect

    Bane, Karl LF

    2002-05-23

    Beginning with the general Bjorken-Mtingwa solution for intrabeam scattering (IBS) we derive an accurate, greatly simplified model of IBS, valid for high energy beams in normal storage ring lattices. In addition, we show that, under the same conditions, a modified version of Piwinski's IBS formulation (where {eta}{sub x,y}{sup 2}/{beta}{sub x,y} has been replaced by {Eta}{sub x,y}) asymptotically approaches the result of Bjorken-Mtingwa.

  6. An accurate registration technique for distorted images

    NASA Technical Reports Server (NTRS)

    Delapena, Michele; Shaw, Richard A.; Linde, Peter; Dravins, Dainis

    1990-01-01

    Accurate registration of International Ultraviolet Explorer (IUE) images is crucial because the variability of the geometrical distortions that are introduced by the SEC-Vidicon cameras ensures that raw science images are never perfectly aligned with the Intensity Transfer Functions (ITFs) (i.e., graded floodlamp exposures that are used to linearize and normalize the camera response). A technique for precisely registering IUE images which uses a cross correlation of the fixed pattern that exists in all raw IUE images is described.

  7. On accurate determination of contact angle

    NASA Technical Reports Server (NTRS)

    Concus, P.; Finn, R.

    1992-01-01

    Methods are proposed that exploit a microgravity environment to obtain highly accurate measurement of contact angle. These methods, which are based on our earlier mathematical results, do not require detailed measurement of a liquid free-surface, as they incorporate discontinuous or nearly-discontinuous behavior of the liquid bulk in certain container geometries. Physical testing is planned in the forthcoming IML-2 space flight and in related preparatory ground-based experiments.

  8. An exact accelerated stochastic simulation algorithm.

    PubMed

    Mjolsness, Eric; Orendorff, David; Chatelain, Philippe; Koumoutsakos, Petros

    2009-04-14

    An exact method for stochastic simulation of chemical reaction networks, which accelerates the stochastic simulation algorithm (SSA), is proposed. The present "ER-leap" algorithm is derived from analytic upper and lower bounds on the multireaction probabilities sampled by SSA, together with rejection sampling and an adaptive multiplicity for reactions. The algorithm is tested on a number of well-quantified reaction networks and is found experimentally to be very accurate on test problems including a chaotic reaction network. At the same time ER-leap offers a substantial speedup over SSA with a simulation time proportional to the 23 power of the number of reaction events in a Galton-Watson process.

  9. Mathematical algorithms for approximate reasoning

    NASA Technical Reports Server (NTRS)

    Murphy, John H.; Chay, Seung C.; Downs, Mary M.

    1988-01-01

    from the conclusion. These algorithms allow one to reason accurately with uncertain data. The above environment can replicate state-f-the-art expert system environments which provides a continuity between the current expert systems which cannot be validated or verified and future expert systems which should be both validated and verified

  10. Contextual classification of multispectral image data: Approximate algorithm

    NASA Technical Reports Server (NTRS)

    Tilton, J. C. (Principal Investigator)

    1980-01-01

    An approximation to a classification algorithm incorporating spatial context information in a general, statistical manner is presented which is computationally less intensive. Classifications that are nearly as accurate are produced.

  11. Algorithmic chemistry

    SciTech Connect

    Fontana, W.

    1990-12-13

    In this paper complex adaptive systems are defined by a self- referential loop in which objects encode functions that act back on these objects. A model for this loop is presented. It uses a simple recursive formal language, derived from the lambda-calculus, to provide a semantics that maps character strings into functions that manipulate symbols on strings. The interaction between two functions, or algorithms, is defined naturally within the language through function composition, and results in the production of a new function. An iterated map acting on sets of functions and a corresponding graph representation are defined. Their properties are useful to discuss the behavior of a fixed size ensemble of randomly interacting functions. This function gas'', or Turning gas'', is studied under various conditions, and evolves cooperative interaction patterns of considerable intricacy. These patterns adapt under the influence of perturbations consisting in the addition of new random functions to the system. Different organizations emerge depending on the availability of self-replicators.

  12. High Frequency QRS ECG Accurately Detects Cardiomyopathy

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Arenare, Brian; Poulin, Gregory; Moser, Daniel R.; Delgado, Reynolds

    2005-01-01

    High frequency (HF, 150-250 Hz) analysis over the entire QRS interval of the ECG is more sensitive than conventional ECG for detecting myocardial ischemia. However, the accuracy of HF QRS ECG for detecting cardiomyopathy is unknown. We obtained simultaneous resting conventional and HF QRS 12-lead ECGs in 66 patients with cardiomyopathy (EF = 23.2 plus or minus 6.l%, mean plus or minus SD) and in 66 age- and gender-matched healthy controls using PC-based ECG software recently developed at NASA. The single most accurate ECG parameter for detecting cardiomyopathy was an HF QRS morphological score that takes into consideration the total number and severity of reduced amplitude zones (RAZs) present plus the clustering of RAZs together in contiguous leads. This RAZ score had an area under the receiver operator curve (ROC) of 0.91, and was 88% sensitive, 82% specific and 85% accurate for identifying cardiomyopathy at optimum score cut-off of 140 points. Although conventional ECG parameters such as the QRS and QTc intervals were also significantly longer in patients than controls (P less than 0.001, BBBs excluded), these conventional parameters were less accurate (area under the ROC = 0.77 and 0.77, respectively) than HF QRS morphological parameters for identifying underlying cardiomyopathy. The total amplitude of the HF QRS complexes, as measured by summed root mean square voltages (RMSVs), also differed between patients and controls (33.8 plus or minus 11.5 vs. 41.5 plus or minus 13.6 mV, respectively, P less than 0.003), but this parameter was even less accurate in distinguishing the two groups (area under ROC = 0.67) than the HF QRS morphologic and conventional ECG parameters. Diagnostic accuracy was optimal (86%) when the RAZ score from the HF QRS ECG and the QTc interval from the conventional ECG were used simultaneously with cut-offs of greater than or equal to 40 points and greater than or equal to 445 ms, respectively. In conclusion 12-lead HF QRS ECG employing

  13. A High-Speed Vision-Based Sensor for Dynamic Vibration Analysis Using Fast Motion Extraction Algorithms.

    PubMed

    Zhang, Dashan; Guo, Jie; Lei, Xiujun; Zhu, Changan

    2016-04-22

    The development of image sensor and optics enables the application of vision-based techniques to the non-contact dynamic vibration analysis of large-scale structures. As an emerging technology, a vision-based approach allows for remote measuring and does not bring any additional mass to the measuring object compared with traditional contact measurements. In this study, a high-speed vision-based sensor system is developed to extract structure vibration signals in real time. A fast motion extraction algorithm is required for this system because the maximum sampling frequency of the charge-coupled device (CCD) sensor can reach up to 1000 Hz. Two efficient subpixel level motion extraction algorithms, namely the modified Taylor approximation refinement algorithm and the localization refinement algorithm, are integrated into the proposed vision sensor. Quantitative analysis shows that both of the two modified algorithms are at least five times faster than conventional upsampled cross-correlation approaches and achieve satisfactory error performance. The practicability of the developed sensor is evaluated by an experiment in a laboratory environment and a field test. Experimental results indicate that the developed high-speed vision-based sensor system can extract accurate dynamic structure vibration signals by tracking either artificial targets or natural features.

  14. Dynamic displacement measurement of large-scale structures based on the Lucas-Kanade template tracking algorithm

    NASA Astrophysics Data System (ADS)

    Guo, Jie; Zhu, Chang`an

    2016-01-01

    The development of optics and computer technologies enables the application of the vision-based technique that uses digital cameras to the displacement measurement of large-scale structures. Compared with traditional contact measurements, vision-based technique allows for remote measurement, has a non-intrusive characteristic, and does not necessitate mass introduction. In this study, a high-speed camera system is developed to complete the displacement measurement in real time. The system consists of a high-speed camera and a notebook computer. The high-speed camera can capture images at a speed of hundreds of frames per second. To process the captured images in computer, the Lucas-Kanade template tracking algorithm in the field of computer vision is introduced. Additionally, a modified inverse compositional algorithm is proposed to reduce the computing time of the original algorithm and improve the efficiency further. The modified algorithm can rapidly accomplish one displacement extraction within 1 ms without having to install any pre-designed target panel onto the structures in advance. The accuracy and the efficiency of the system in the remote measurement of dynamic displacement are demonstrated in the experiments on motion platform and sound barrier on suspension viaduct. Experimental results show that the proposed algorithm can extract accurate displacement signal and accomplish the vibration measurement of large-scale structures.

  15. A High-Speed Vision-Based Sensor for Dynamic Vibration Analysis Using Fast Motion Extraction Algorithms

    PubMed Central

    Zhang, Dashan; Guo, Jie; Lei, Xiujun; Zhu, Changan

    2016-01-01

    The development of image sensor and optics enables the application of vision-based techniques to the non-contact dynamic vibration analysis of large-scale structures. As an emerging technology, a vision-based approach allows for remote measuring and does not bring any additional mass to the measuring object compared with traditional contact measurements. In this study, a high-speed vision-based sensor system is developed to extract structure vibration signals in real time. A fast motion extraction algorithm is required for this system because the maximum sampling frequency of the charge-coupled device (CCD) sensor can reach up to 1000 Hz. Two efficient subpixel level motion extraction algorithms, namely the modified Taylor approximation refinement algorithm and the localization refinement algorithm, are integrated into the proposed vision sensor. Quantitative analysis shows that both of the two modified algorithms are at least five times faster than conventional upsampled cross-correlation approaches and achieve satisfactory error performance. The practicability of the developed sensor is evaluated by an experiment in a laboratory environment and a field test. Experimental results indicate that the developed high-speed vision-based sensor system can extract accurate dynamic structure vibration signals by tracking either artificial targets or natural features. PMID:27110784

  16. Algorithms For Integrating Nonlinear Differential Equations

    NASA Technical Reports Server (NTRS)

    Freed, A. D.; Walker, K. P.

    1994-01-01

    Improved algorithms developed for use in numerical integration of systems of nonhomogenous, nonlinear, first-order, ordinary differential equations. In comparison with integration algorithms, these algorithms offer greater stability and accuracy. Several asymptotically correct, thereby enabling retention of stability and accuracy when large increments of independent variable used. Accuracies attainable demonstrated by applying them to systems of nonlinear, first-order, differential equations that arise in study of viscoplastic behavior, spread of acquired immune-deficiency syndrome (AIDS) virus and predator/prey populations.

  17. UFLIC: A Line Integral Convolution Algorithm for Visualizing Unsteady Flows

    NASA Technical Reports Server (NTRS)

    Shen, Han-Wei; Kao, David L.; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    This paper presents an algorithm, UFLIC (Unsteady Flow LIC), to visualize vector data in unsteady flow fields. Using the Line Integral Convolution (LIC) as the underlying method, a new convolution algorithm is proposed that can effectively trace the flow's global features over time. The new algorithm consists of a time-accurate value depositing scheme and a successive feed-forward method. The value depositing scheme accurately models the flow advection, and the successive feed-forward method maintains the coherence between animation frames. Our new algorithm can produce time-accurate, highly coherent flow animations to highlight global features in unsteady flow fields. CFD scientists, for the first time, are able to visualize unsteady surface flows using our algorithm.

  18. Efficient Fourier-based algorithms for time-periodic unsteady problems

    NASA Astrophysics Data System (ADS)

    Gopinath, Arathi Kamath

    2007-12-01

    This dissertation work proposes two algorithms for the simulation of time-periodic unsteady problems via the solution of Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations. These algorithms use a Fourier representation in time and hence solve for the periodic state directly without resolving transients (which consume most of the resources in a time-accurate scheme). In contrast to conventional Fourier-based techniques which solve the governing equations in frequency space, the new algorithms perform all the calculations in the time domain, and hence require minimal modifications to an existing solver. The complete space-time solution is obtained by iterating in a fifth pseudo-time dimension. Various time-periodic problems such as helicopter rotors, wind turbines, turbomachinery and flapping-wings can be simulated using the Time Spectral method. The algorithm is first validated using pitching airfoil/wing test cases. The method is further extended to turbomachinery problems, and computational results verified by comparison with a time-accurate calculation. The technique can be very memory intensive for large problems, since the solution is computed (and hence stored) simultaneously at all time levels. Often, the blade counts of a turbomachine are rescaled such that a periodic fraction of the annulus can be solved. This approximation enables the solution to be obtained at a fraction of the cost of a full-scale time-accurate solution. For a viscous computation over a three-dimensional single-stage rescaled compressor, an order of magnitude savings is achieved. The second algorithm, the reduced-order Harmonic Balance method is applicable only to turbomachinery flows, and offers even larger computational savings than the Time Spectral method. It simulates the true geometry of the turbomachine using only one blade passage per blade row as the computational domain. In each blade row of the turbomachine, only the dominant frequencies are resolved, namely

  19. Algorithm refinement for the stochastic Burgers' equation

    SciTech Connect

    Bell, John B.; Foo, Jasmine; Garcia, Alejandro L. . E-mail: algarcia@algarcia.org

    2007-04-10

    In this paper, we develop an algorithm refinement (AR) scheme for an excluded random walk model whose mean field behavior is given by the viscous Burgers' equation. AR hybrids use the adaptive mesh refinement framework to model a system using a molecular algorithm where desired while allowing a computationally faster continuum representation to be used in the remainder of the domain. The focus in this paper is the role of fluctuations on the dynamics. In particular, we demonstrate that it is necessary to include a stochastic forcing term in Burgers' equation to accurately capture the correct behavior of the system. The conclusion we draw from this study is that the fidelity of multiscale methods that couple disparate algorithms depends on the consistent modeling of fluctuations in each algorithm and on a coupling, such as algorithm refinement, that preserves this consistency.

  20. Utility Energy Services Contracts: Enabling Documents

    SciTech Connect

    Thomas, Karen; Vasquez, Deb

    2017-01-01

    The Federal Energy Management Program's 'Utility Energy Service Contracts: Enabling Documents' provide legislative information and materials that clarify the authority for federal agencies to enter into utility energy service contracts, or UESCs.

  1. Utility Energy Services Contracts: Enabling Documents

    SciTech Connect

    2009-05-01

    Utility Energy Services Contracts: Enabling Documents provides materials that clarify the authority for Federal agencies to enter into utility energy services contracts (UESCs), as well as sample documents and resources to ease utility partnership contracting.

  2. Accurate upwind methods for the Euler equations

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1993-01-01

    A new class of piecewise linear methods for the numerical solution of the one-dimensional Euler equations of gas dynamics is presented. These methods are uniformly second-order accurate, and can be considered as extensions of Godunov's scheme. With an appropriate definition of monotonicity preservation for the case of linear convection, it can be shown that they preserve monotonicity. Similar to Van Leer's MUSCL scheme, they consist of two key steps: a reconstruction step followed by an upwind step. For the reconstruction step, a monotonicity constraint that preserves uniform second-order accuracy is introduced. Computational efficiency is enhanced by devising a criterion that detects the 'smooth' part of the data where the constraint is redundant. The concept and coding of the constraint are simplified by the use of the median function. A slope steepening technique, which has no effect at smooth regions and can resolve a contact discontinuity in four cells, is described. As for the upwind step, existing and new methods are applied in a manner slightly different from those in the literature. These methods are derived by approximating the Euler equations via linearization and diagonalization. At a 'smooth' interface, Harten, Lax, and Van Leer's one intermediate state model is employed. A modification for this model that can resolve contact discontinuities is presented. Near a discontinuity, either this modified model or a more accurate one, namely, Roe's flux-difference splitting. is used. The current presentation of Roe's method, via the conceptually simple flux-vector splitting, not only establishes a connection between the two splittings, but also leads to an admissibility correction with no conditional statement, and an efficient approximation to Osher's approximate Riemann solver. These reconstruction and upwind steps result in schemes that are uniformly second-order accurate and economical at smooth regions, and yield high resolution at discontinuities.

  3. Accurate measurement of unsteady state fluid temperature

    NASA Astrophysics Data System (ADS)

    Jaremkiewicz, Magdalena

    2017-03-01

    In this paper, two accurate methods for determining the transient fluid temperature were presented. Measurements were conducted for boiling water since its temperature is known. At the beginning the thermometers are at the ambient temperature and next they are immediately immersed into saturated water. The measurements were carried out with two thermometers of different construction but with the same housing outer diameter equal to 15 mm. One of them is a K-type industrial thermometer widely available commercially. The temperature indicated by the thermometer was corrected considering the thermometers as the first or second order inertia devices. The new design of a thermometer was proposed and also used to measure the temperature of boiling water. Its characteristic feature is a cylinder-shaped housing with the sheath thermocouple located in its center. The temperature of the fluid was determined based on measurements taken in the axis of the solid cylindrical element (housing) using the inverse space marching method. Measurements of the transient temperature of the air flowing through the wind tunnel using the same thermometers were also carried out. The proposed measurement technique provides more accurate results compared with measurements using industrial thermometers in conjunction with simple temperature correction using the inertial thermometer model of the first or second order. By comparing the results, it was demonstrated that the new thermometer allows obtaining the fluid temperature much faster and with higher accuracy in comparison to the industrial thermometer. Accurate measurements of the fast changing fluid temperature are possible due to the low inertia thermometer and fast space marching method applied for solving the inverse heat conduction problem.

  4. Algorithm For Solution Of Subset-Regression Problems

    NASA Technical Reports Server (NTRS)

    Verhaegen, Michel

    1991-01-01

    Reliable and flexible algorithm for solution of subset-regression problem performs QR decomposition with new column-pivoting strategy, enables selection of subset directly from originally defined regression parameters. This feature, in combination with number of extensions, makes algorithm very flexible for use in analysis of subset-regression problems in which parameters have physical meanings. Also extended to enable joint processing of columns contaminated by noise with those free of noise, without using scaling techniques.

  5. ISS - Enabling Exploration Through Docking Standards

    NASA Technical Reports Server (NTRS)

    Hatfield, Caris A.

    2011-01-01

    NASA and the ISS partnership are jointly developing a key standard to enable future collaborative exploration. The IDSS is based on flight proven design while incorporating new low impact technology. Low impact technology accommodates a wide range of vehicle contact and capture conditions. This standard will get early demonstration on the ISS. Experience gained here will enable operational experience and the opportunity to refine the standard.

  6. GIS Enabled Modeling and Simulation (GEMS)

    DTIC Science & Technology

    2007-06-01

    polygons, visual databases include texture information to provide a visualization of ground and material types. These databases include 3D models ...US Army TEC GIS-Enabled Modeling and Simulation project, and was the lead developer on the building interior semantic information portion of the...GIS Enabled Modeling and Simulation (GEMS) Thomas Stanzione Kevin Johnson MAK Technologies 68 Moulton Street Cambridge, MA 02138 (617) 876

  7. Coastal Zone Color Scanner atmospheric correction algorithm: multiple scattering effects.

    PubMed

    Gordon, H R; Castaño, D J

    1987-06-01

    An analysis of the errors due to multiple scattering which are expected to be encountered in application of the current Coastal Zone Color Scanner (CZCS) atmospheric correction algorithm is presented in detail. This was prompted by the observations of others that significant errors would be encountered if the present algorithm were applied to a hypothetical instrument possessing higher radiometric sensitivity than the present CZCS. This study provides CZCS users sufficient information with which to judge the efficacy of the current algorithm with the current sensor and enables them to estimate the impact of the algorithm-induced errors on their applications in a variety of situations. The greatest source of error is the assumption that the molecular and aerosol contributions to the total radiance observed at the sensor can be computed separately. This leads to the requirement that a value epsilon'(lambda,lambda(0)) for the atmospheric correction parameter, which bears little resemblance to its theoretically meaningful counterpart, must usually be employed in the algorithm to obtain an accurate atmospheric correction. The behavior of '(lambda,lambda(0)) with the aerosol optical thickness and aerosol phase function is thoroughly investigated through realistic modeling of radiative transfer in a stratified atmosphere over a Fresnel reflecting ocean. A unique feature of the analysis is that it is carried out in scan coordinates rather than typical earth-sun coordinates allowing elucidation of the errors along typical CZCS scan lines; this is important since, in the normal application of the algorithm, it is assumed that the same value of can be used for an entire CZCS scene or at least for a reasonably large subscene. Two types of variation of ' are found in models for which it would be constant in the single scattering approximation: (1) variation with scan angle in scenes in which a relatively large portion of the aerosol scattering phase function would be examined

  8. The first accurate description of an aurora

    NASA Astrophysics Data System (ADS)

    Schröder, Wilfried

    2006-12-01

    As technology has advanced, the scientific study of auroral phenomena has increased by leaps and bounds. A look back at the earliest descriptions of aurorae offers an interesting look into how medieval scholars viewed the subjects that we study.Although there are earlier fragmentary references in the literature, the first accurate description of the aurora borealis appears to be that published by the German Catholic scholar Konrad von Megenberg (1309-1374) in his book Das Buch der Natur (The Book of Nature). The book was written between 1349 and 1350.

  9. Determining accurate distances to nearby galaxies

    NASA Astrophysics Data System (ADS)

    Bonanos, Alceste Zoe

    2005-11-01

    Determining accurate distances to nearby or distant galaxies is a very simple conceptually, yet complicated in practice, task. Presently, distances to nearby galaxies are only known to an accuracy of 10-15%. The current anchor galaxy of the extragalactic distance scale is the Large Magellanic Cloud, which has large (10-15%) systematic uncertainties associated with it, because of its morphology, its non-uniform reddening and the unknown metallicity dependence of the Cepheid period-luminosity relation. This work aims to determine accurate distances to some nearby galaxies, and subsequently help reduce the error in the extragalactic distance scale and the Hubble constant H 0 . In particular, this work presents the first distance determination of the DIRECT Project to M33 with detached eclipsing binaries. DIRECT aims to obtain a new anchor galaxy for the extragalactic distance scale by measuring direct, accurate (to 5%) distances to two Local Group galaxies, M31 and M33, with detached eclipsing binaries. It involves a massive variability survey of these galaxies and subsequent photometric and spectroscopic follow-up of the detached binaries discovered. In this work, I also present a catalog of variable stars discovered in one of the DIRECT fields, M31Y, which includes 41 eclipsing binaries. Additionally, we derive the distance to the Draco Dwarf Spheroidal galaxy, with ~100 RR Lyrae found in our first CCD variability study of this galaxy. A "hybrid" method of discovering Cepheids with ground-based telescopes is described next. It involves applying the image subtraction technique on the images obtained from ground-based telescopes and then following them up with the Hubble Space Telescope to derive Cepheid period-luminosity distances. By re-analyzing ESO Very Large Telescope data on M83 (NGC 5236), we demonstrate that this method is much more powerful for detecting variability, especially in crowded fields. I finally present photometry for the Wolf-Rayet binary WR 20a

  10. New law requires 'medically accurate' lesson plans.

    PubMed

    1999-09-17

    The California Legislature has passed a bill requiring all textbooks and materials used to teach about AIDS be medically accurate and objective. Statements made within the curriculum must be supported by research conducted in compliance with scientific methods, and published in peer-reviewed journals. Some of the current lesson plans were found to contain scientifically unsupported and biased information. In addition, the bill requires material to be "free of racial, ethnic, or gender biases." The legislation is supported by a wide range of interests, but opposed by the California Right to Life Education Fund, because they believe it discredits abstinence-only material.

  11. Rapid and Accurate Analysis of an X-Ray Fluorescence Microscopy Data Set through Gaussian Mixture-Based Soft Clustering Methods

    PubMed Central

    Ward, Jesse; Marvin, Rebecca; O'Halloran, Thomas; Jacobsen, Chris; Vogt, Stefan

    2013-01-01

    X-ray fluorescence (XRF) microscopy is an important tool for studying trace metals in biology, enabling simultaneous detection of multiple elements of interest and allowing quantification of metals in organelles without the need for subcellular fractionation. Currently, analysis of XRF images is often done using manually defined regions of interest (ROIs). However, since advances in synchrotron instrumentation have enabled the collection of very large data sets encompassing hundreds of cells, manual approaches are becoming increasingly impractical. We describe here the use of soft clustering to identify cell ROIs based on elemental contents, using data collected over a sample of the malaria parasite Plasmodium falciparum as a test case. Soft clustering was able to successfully classify regions in infected erythrocytes as “parasite,”“food vacuole,”“host,” or “background.” In contrast, hard clustering using the k-means algorithm was found to have difficulty in distinguishing cells from background. While initial tests showed convergence on two or three distinct solutions in 60% of the cells studied, subsequent modifications to the clustering routine improved results to yield 100% consistency in image segmentation. Data extracted using soft cluster ROIs were found to be as accurate as data extracted using manually defined ROIs, and analysis time was considerably improved. PMID:23924688

  12. Accurate identification of periodic oscillations buried in white or colored noise using fast orthogonal search.

    PubMed

    Chon, K H

    2001-06-01

    We use a previously introduced fast orthogonal search algorithm to detect sinusoidal frequency components buried in either white or colored noise. We show that the method outperforms the correlogram, modified covariance autoregressive (MODCOVAR) and multiple-signal classification (MUSIC) methods. Fast orthogonal search method achieves accurate detection of sinusoids even with signal-to-noise ratios as low as -10 dB, and is superior at detecting sinusoids buried in 1/f noise. Since the utilized method accurately detects sinusoids even under colored noise, it can be used to extract a 1/f noise process observed in physiological signals such as heart rate and renal blood pressure and flow data.

  13. Robust high-resolution cloth using parallelism, history-based collisions, and accurate friction.

    PubMed

    Selle, Andrew; Su, Jonathan; Irving, Geoffrey; Fedkiw, Ronald

    2009-01-01

    In this paper we simulate high resolution cloth consisting of up to 2 million triangles which allows us to achieve highly detailed folds and wrinkles. Since the level of detail is also influenced by object collision and self collision, we propose a more accurate model for cloth-object friction. We also propose a robust history-based repulsion/collision framework where repulsions are treated accurately and efficiently on a per time step basis. Distributed memory parallelism is used for both time evolution and collisions and we specifically address Gauss-Seidel ordering of repulsion/collision response. This algorithm is demonstrated by several high resolution and high-fidelity simulations.

  14. Inference from matrix products: a heuristic spin glass algorithm

    SciTech Connect

    Hastings, Matthew B

    2008-01-01

    We present an algorithm for finding ground states of two-dimensional spin-glass systems based on ideas from matrix product states in quantum information theory. The algorithm works directly at zero temperature and defines an approximation to the energy whose accuracy depends on a parameter k. We test the algorithm against exact methods on random field and random bond Ising models, and we find that accurate results require a k which scales roughly polynomially with the system size. The algorithm also performs well when tested on small systems with arbitrary interactions, where no fast, exact algorithms exist. The time required is significantly less than Monte Carlo schemes.

  15. Highly accurate fast lung CT registration

    NASA Astrophysics Data System (ADS)

    Rühaak, Jan; Heldmann, Stefan; Kipshagen, Till; Fischer, Bernd

    2013-03-01

    Lung registration in thoracic CT scans has received much attention in the medical imaging community. Possible applications range from follow-up analysis, motion correction for radiation therapy, monitoring of air flow and pulmonary function to lung elasticity analysis. In a clinical environment, runtime is always a critical issue, ruling out quite a few excellent registration approaches. In this paper, a highly efficient variational lung registration method based on minimizing the normalized gradient fields distance measure with curvature regularization is presented. The method ensures diffeomorphic deformations by an additional volume regularization. Supplemental user knowledge, like a segmentation of the lungs, may be incorporated as well. The accuracy of our method was evaluated on 40 test cases from clinical routine. In the EMPIRE10 lung registration challenge, our scheme ranks third, with respect to various validation criteria, out of 28 algorithms with an average landmark distance of 0.72 mm. The average runtime is about 1:50 min on a standard PC, making it by far the fastest approach of the top-ranking algorithms. Additionally, the ten publicly available DIR-Lab inhale-exhale scan pairs were registered to subvoxel accuracy at computation times of only 20 seconds. Our method thus combines very attractive runtimes with state-of-the-art accuracy in a unique way.

  16. Robust and Accurate Vision-Based Pose Estimation Algorithm Based on Four Coplanar Feature Points

    PubMed Central

    Zhang, Zimiao; Zhang, Shihai; Li, Qiu

    2016-01-01

    Vision-based pose estimation is an important application of machine vision. Currently, analytical and iterative methods are used to solve the object pose. The analytical solutions generally take less computation time. However, the analytical solutions are extremely susceptible to noise. The iterative solutions minimize the distance error between feature points based on 2D image pixel coordinates. However, the non-linear optimization needs a good initial estimate of the true solution, otherwise they are more time consuming than analytical solutions. Moreover, the image processing error grows rapidly with measurement range increase. This leads to pose estimation errors. All the reasons mentioned above will cause accuracy to decrease. To solve this problem, a novel pose estimation method based on four coplanar points is proposed. Firstly, the coordinates of feature points are determined according to the linear constraints formed by the four points. The initial coordinates of feature points acquired through the linear method are then optimized through an iterative method. Finally, the coordinate system of object motion is established and a method is introduced to solve the object pose. The growing image processing error causes pose estimation errors the measurement range increases. Through the coordinate system, the pose estimation errors could be decreased. The proposed method is compared with two other existing methods through experiments. Experimental results demonstrate that the proposed method works efficiently and stably. PMID:27999338

  17. High Order Accurate Algorithms for Shocks, Rapidly Changing Solutions and Multiscale Problems

    DTIC Science & Technology

    2014-11-13

    for front propagation with obstacles, and homotopy method for steady states. Applications include high order simulations for 3D gaseous detonations ...obstacles, and homotopy method for steady states. Applications include high order simulations for 3D gaseous detonations , sound generation study via... detonation waves, Combustion and Flame, (02 2013): 0. doi: 10.1016/j.combustflame.2012.10.002 Yang Yang, Ishani Roy, Chi-Wang Shu, Li-Zhi Fang. THE

  18. Classification algorithms with multi-modal data fusion could accurately distinguish neuromyelitis optica from multiple sclerosis.

    PubMed

    Eshaghi, Arman; Riyahi-Alam, Sadjad; Saeedi, Roghayyeh; Roostaei, Tina; Nazeri, Arash; Aghsaei, Aida; Doosti, Rozita; Ganjgahi, Habib; Bodini, Benedetta; Shakourirad, Ali; Pakravan, Manijeh; Ghana'ati, Hossein; Firouznia, Kavous; Zarei, Mojtaba; Azimi, Amir Reza; Sahraian, Mohammad Ali

    2015-01-01

    Neuromyelitis optica (NMO) exhibits substantial similarities to multiple sclerosis (MS) in clinical manifestations and imaging results and has long been considered a variant of MS. With the advent of a specific biomarker in NMO, known as anti-aquaporin 4, this assumption has changed; however, the differential diagnosis remains challenging and it is still not clear whether a combination of neuroimaging and clinical data could be used to aid clinical decision-making. Computer-aided diagnosis is a rapidly evolving process that holds great promise to facilitate objective differential diagnoses of disorders that show similar presentations. In this study, we aimed to use a powerful method for multi-modal data fusion, known as a multi-kernel learning and performed automatic diagnosis of subjects. We included 30 patients with NMO, 25 patients with MS and 35 healthy volunteers and performed multi-modal imaging with T1-weighted high resolution scans, diffusion tensor imaging (DTI) and resting-state functional MRI (fMRI). In addition, subjects underwent clinical examinations and cognitive assessments. We included 18 a priori predictors from neuroimaging, clinical and cognitive measures in the initial model. We used 10-fold cross-validation to learn the importance of each modality, train and finally test the model performance. The mean accuracy in differentiating between MS and NMO was 88%, where visible white matter lesion load, normal appearing white matter (DTI) and functional connectivity had the most important contributions to the final classification. In a multi-class classification problem we distinguished between all of 3 groups (MS, NMO and healthy controls) with an average accuracy of 84%. In this classification, visible white matter lesion load, functional connectivity, and cognitive scores were the 3 most important modalities. Our work provides preliminary evidence that computational tools can be used to help make an objective differential diagnosis of NMO and MS.

  19. QuartetS: A Fast and Accurate Algorithm for Large-Scale Orthology Detection

    DTIC Science & Technology

    2011-01-01

    currently underway (1). In parallel, for particular model species, experimental studies are attempting to annotate and decode vast amounts of these...shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1...orthologs. We can deter- mine if genes x and y have originated from the duplication event implied by z1 and z2 by reconstructing the evolu- tionary history

  20. Use of a ray-based reconstruction algorithm to accurately quantify preclinical microSPECT images.

    PubMed

    Vandeghinste, Bert; Van Holen, Roel; Vanhove, Christian; De Vos, Filip; Vandenberghe, Stefaan; Staelens, Steven

    2014-01-01

    This work aimed to measure the in vivo quantification errors obtained when ray-based iterative reconstruction is used in micro-single-photon emission computed tomography (SPECT). This was investigated with an extensive phantom-based evaluation and two typical in vivo studies using 99mTc and 111In, measured on a commercially available cadmium zinc telluride (CZT)-based small-animal scanner. Iterative reconstruction was implemented on the GPU using ray tracing, including (1) scatter correction, (2) computed tomography-based attenuation correction, (3) resolution recovery, and (4) edge-preserving smoothing. It was validated using a National Electrical Manufacturers Association (NEMA) phantom. The in vivo quantification error was determined for two radiotracers: [99mTc]DMSA in naive mice (n  =  10 kidneys) and [111In]octreotide in mice (n  =  6) inoculated with a xenograft neuroendocrine tumor (NCI-H727). The measured energy resolution is 5.3% for 140.51 keV (99mTc), 4.8% for 171.30 keV, and 3.3% for 245.39 keV (111In). For 99mTc, an uncorrected quantification error of 28 ± 3% is reduced to 8 ± 3%. For 111In, the error reduces from 26 ± 14% to 6 ± 22%. The in vivo error obtained with 99mTc-dimercaptosuccinic acid ([99mTc]DMSA) is reduced from 16.2 ± 2.8% to -0.3 ± 2.1% and from 16.7 ± 10.1% to 2.2 ± 10.6% with [111In]octreotide. Absolute quantitative in vivo SPECT is possible without explicit system matrix measurements. An absolute in vivo quantification error smaller than 5% was achieved and exemplified for both [99mTc]DMSA and [111In]octreotide.

  1. High Order Accurate Algorithms for Shocks, Rapidly Changing Solutions and Multiscale Problems

    DTIC Science & Technology

    2013-01-07

    Chi-Wang Shu. Point -wise hierarchical reconstruction for discontinuous Galerkin and finite volume methods for solving conservation laws, Journal of...Ishani Roy, Chi-Wang Shu, Li-Zhi Fang. EFFECT OF DUST ON Ly? PHOTON TRANSFER IN AN OPTICALLY THICK HALO, The Astrophysical Journal, (10 2011): 0. doi...continuous at the junction points where two quadratic polynomials meet, and with piecewise linear initial condition and piecewise constant boundary

  2. AN ACCURATE ALGORITHM FOR NONUNIFORM FAST FOURIER TRANSFORMS (NUFFT). (R825225)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  3. AN ACCURATE AND EFFICIENT ALGORITHM FOR NUMERICAL SIMULATION OF CONDUCTION-TYPE PROBLEMS. (R824801)

    EPA Science Inventory

    Abstract

    A modification of the finite analytic numerical method for conduction-type (diffusion) problems is presented. The finite analytic discretization scheme is derived by means of the Fourier series expansion for the most general case of nonuniform grid and variabl...

  4. Algorithm Animation with Galant.

    PubMed

    Stallmann, Matthias F

    2017-01-01

    Although surveys suggest positive student attitudes toward the use of algorithm animations, it is not clear that they improve learning outcomes. The Graph Algorithm Animation Tool, or Galant, challenges and motivates students to engage more deeply with algorithm concepts, without distracting them with programming language details or GUIs. Even though Galant is specifically designed for graph algorithms, it has also been used to animate other algorithms, most notably sorting algorithms.

  5. Accurate taxonomic assignment of short pyrosequencing reads.

    PubMed

    Clemente, José C; Jansson, Jesper; Valiente, Gabriel

    2010-01-01

    Ambiguities in the taxonomy dependent assignment of pyrosequencing reads are usually resolved by mapping each read to the lowest common ancestor in a reference taxonomy of all those sequences that match the read. This conservative approach has the drawback of mapping a read to a possibly large clade that may also contain many sequences not matching the read. A more accurate taxonomic assignment of short reads can be made by mapping each read to the node in the reference taxonomy that provides the best precision and recall. We show that given a suffix array for the sequences in the reference taxonomy, a short read can be mapped to the node of the reference taxonomy with the best combined value of precision and recall in time linear in the size of the taxonomy subtree rooted at the lowest common ancestor of the matching sequences. An accurate taxonomic assignment of short reads can thus be made with about the same efficiency as when mapping each read to the lowest common ancestor of all matching sequences in a reference taxonomy. We demonstrate the effectiveness of our approach on several metagenomic datasets of marine and gut microbiota.

  6. Accurate shear measurement with faint sources

    SciTech Connect

    Zhang, Jun; Foucaud, Sebastien; Luo, Wentao E-mail: walt@shao.ac.cn

    2015-01-01

    For cosmic shear to become an accurate cosmological probe, systematic errors in the shear measurement method must be unambiguously identified and corrected for. Previous work of this series has demonstrated that cosmic shears can be measured accurately in Fourier space in the presence of background noise and finite pixel size, without assumptions on the morphologies of galaxy and PSF. The remaining major source of error is source Poisson noise, due to the finiteness of source photon number. This problem is particularly important for faint galaxies in space-based weak lensing measurements, and for ground-based images of short exposure times. In this work, we propose a simple and rigorous way of removing the shear bias from the source Poisson noise. Our noise treatment can be generalized for images made of multiple exposures through MultiDrizzle. This is demonstrated with the SDSS and COSMOS/ACS data. With a large ensemble of mock galaxy images of unrestricted morphologies, we show that our shear measurement method can achieve sub-percent level accuracy even for images of signal-to-noise ratio less than 5 in general, making it the most promising technique for cosmic shear measurement in the ongoing and upcoming large scale galaxy surveys.

  7. Accurate pose estimation for forensic identification

    NASA Astrophysics Data System (ADS)

    Merckx, Gert; Hermans, Jeroen; Vandermeulen, Dirk

    2010-04-01

    In forensic authentication, one aims to identify the perpetrator among a series of suspects or distractors. A fundamental problem in any recognition system that aims for identification of subjects in a natural scene is the lack of constrains on viewing and imaging conditions. In forensic applications, identification proves even more challenging, since most surveillance footage is of abysmal quality. In this context, robust methods for pose estimation are paramount. In this paper we will therefore present a new pose estimation strategy for very low quality footage. Our approach uses 3D-2D registration of a textured 3D face model with the surveillance image to obtain accurate far field pose alignment. Starting from an inaccurate initial estimate, the technique uses novel similarity measures based on the monogenic signal to guide a pose optimization process. We will illustrate the descriptive strength of the introduced similarity measures by using them directly as a recognition metric. Through validation, using both real and synthetic surveillance footage, our pose estimation method is shown to be accurate, and robust to lighting changes and image degradation.

  8. Accurate basis set truncation for wavefunction embedding

    NASA Astrophysics Data System (ADS)

    Barnes, Taylor A.; Goodpaster, Jason D.; Manby, Frederick R.; Miller, Thomas F.

    2013-07-01

    Density functional theory (DFT) provides a formally exact framework for performing embedded subsystem electronic structure calculations, including DFT-in-DFT and wavefunction theory-in-DFT descriptions. In the interest of efficiency, it is desirable to truncate the atomic orbital basis set in which the subsystem calculation is performed, thus avoiding high-order scaling with respect to the size of the MO virtual space. In this study, we extend a recently introduced projection-based embedding method [F. R. Manby, M. Stella, J. D. Goodpaster, and T. F. Miller III, J. Chem. Theory Comput. 8, 2564 (2012)], 10.1021/ct300544e to allow for the systematic and accurate truncation of the embedded subsystem basis set. The approach is applied to both covalently and non-covalently bound test cases, including water clusters and polypeptide chains, and it is demonstrated that errors associated with basis set truncation are controllable to well within chemical accuracy. Furthermore, we show that this approach allows for switching between accurate projection-based embedding and DFT embedding with approximate kinetic energy (KE) functionals; in this sense, the approach provides a means of systematically improving upon the use of approximate KE functionals in DFT embedding.

  9. Robust and fast characterization of OCT-based optical attenuation using a novel frequency-domain algorithm for brain cancer detection

    NASA Astrophysics Data System (ADS)

    Yuan, Wu; Kut, Carmen; Liang, Wenxuan; Li, Xingde

    2017-03-01

    Cancer is known to alter the local optical properties of tissues. The detection of OCT-based optical attenuation provides a quantitative method to efficiently differentiate cancer from non-cancer tissues. In particular, the intraoperative use of quantitative OCT is able to provide a direct visual guidance in real time for accurate identification of cancer tissues, especially these without any obvious structural layers, such as brain cancer. However, current methods are suboptimal in providing high-speed and accurate OCT attenuation mapping for intraoperative brain cancer detection. In this paper, we report a novel frequency-domain (FD) algorithm to enable robust and fast characterization of optical attenuation as derived from OCT intensity images. The performance of this FD algorithm was compared with traditional fitting methods by analyzing datasets containing images from freshly resected human brain cancer and from a silica phantom acquired by a 1310 nm swept-source OCT (SS-OCT) system. With graphics processing unit (GPU)-based CUDA C/C++ implementation, this new attenuation mapping algorithm can offer robust and accurate quantitative interpretation of OCT images in real time during brain surgery.

  10. Robust and fast characterization of OCT-based optical attenuation using a novel frequency-domain algorithm for brain cancer detection

    PubMed Central

    Yuan, Wu; Kut, Carmen; Liang, Wenxuan; Li, Xingde

    2017-01-01

    Cancer is known to alter the local optical properties of tissues. The detection of OCT-based optical attenuation provides a quantitative method to efficiently differentiate cancer from non-cancer tissues. In particular, the intraoperative use of quantitative OCT is able to provide a direct visual guidance in real time for accurate identification of cancer tissues, especially these without any obvious structural layers, such as brain cancer. However, current methods are suboptimal in providing high-speed and accurate OCT attenuation mapping for intraoperative brain cancer detection. In this paper, we report a novel frequency-domain (FD) algorithm to enable robust and fast characterization of optical attenuation as derived from OCT intensity images. The performance of this FD algorithm was compared with traditional fitting methods by analyzing datasets containing images from freshly resected human brain cancer and from a silica phantom acquired by a 1310 nm swept-source OCT (SS-OCT) system. With graphics processing unit (GPU)-based CUDA C/C++ implementation, this new attenuation mapping algorithm can offer robust and accurate quantitative interpretation of OCT images in real time during brain surgery. PMID:28327613

  11. Robust and fast characterization of OCT-based optical attenuation using a novel frequency-domain algorithm for brain cancer detection.

    PubMed

    Yuan, Wu; Kut, Carmen; Liang, Wenxuan; Li, Xingde

    2017-03-22

    Cancer is known to alter the local optical properties of tissues. The detection of OCT-based optical attenuation provides a quantitative method to efficiently differentiate cancer from non-cancer tissues. In particular, the intraoperative use of quantitative OCT is able to provide a direct visual guidance in real time for accurate identification of cancer tissues, especially these without any obvious structural layers, such as brain cancer. However, current methods are suboptimal in providing high-speed and accurate OCT attenuation mapping for intraoperative brain cancer detection. In this paper, we report a novel frequency-domain (FD) algorithm to enable robust and fast characterization of optical attenuation as derived from OCT intensity images. The performance of this FD algorithm was compared with traditional fitting methods by analyzing datasets containing images from freshly resected human brain cancer and from a silica phantom acquired by a 1310 nm swept-source OCT (SS-OCT) system. With graphics processing unit (GPU)-based CUDA C/C++ implementation, this new attenuation mapping algorithm can offer robust and accurate quantitative interpretation of OCT images in real time during brain surgery.

  12. A unique, accurate LWIR optics measurement system

    NASA Astrophysics Data System (ADS)

    Fantone, Stephen D.; Orband, Daniel G.

    2011-05-01

    A compact low-cost LWIR test station has been developed that provides real time MTF testing of IR optical systems and EO imaging systems. The test station is intended to be operated by a technician and can be used to measure the focal length, blur spot size, distortion, and other metrics of system performance. The challenges and tradeoffs incorporated into this instrumentation will be presented. The test station performs the measurement of an IR lens or optical system's first order quantities (focal length, back focal length) including on and off-axis imaging performance (e.g., MTF, resolution, spot size) under actual test conditions to enable the simulation of their actual use. Also described is the method of attaining the needed accuracies so that derived calculations like focal length (EFL = image shift/tan(theta)) can be performed to the requisite accuracy. The station incorporates a patented video capture technology and measures MTF and blur characteristics using newly available lowcost LWIR cameras. This allows real time determination of the optical system performance enabling faster measurements, higher throughput and lower cost results than scanning systems. Multiple spectral filters are also accommodated within the test stations which facilitate performance evaluation under various spectral conditions.

  13. Accurate detection of differential RNA processing

    PubMed Central

    Drewe, Philipp; Stegle, Oliver; Hartmann, Lisa; Kahles, André; Bohnert, Regina; Wachter, Andreas; Borgwardt, Karsten; Rätsch, Gunnar

    2013-01-01

    Deep transcriptome sequencing (RNA-Seq) has become a vital tool for studying the state of cells in the context of varying environments, genotypes and other factors. RNA-Seq profiling data enable identification of novel isoforms, quantification of known isoforms and detection of changes in transcriptional or RNA-processing activity. Existing approaches to detect differential isoform abundance between samples either require a complete isoform annotation or fall short in providing statistically robust and calibrated significance estimates. Here, we propose a suite of statistical tests to address these open needs: a parametric test that uses known isoform annotations to detect changes in relative isoform abundance and a non-parametric test that detects differential read coverages and can be applied when isoform annotations are not available. Both methods account for the discrete nature of read counts and the inherent biological variability. We demonstrate that these tests compare favorably to previous methods, both in terms of accuracy and statistical calibrations. We use these techniques to analyze RNA-Seq libraries from Arabidopsis thaliana and Drosophila melanogaster. The identified differential RNA processing events were consistent with RT–qPCR measurements and previous studies. The proposed toolkit is available from http://bioweb.me/rdiff and enables in-depth analyses of transcriptomes, with or without available isoform annotation. PMID:23585274

  14. Development of an Accurate Feed-Forward Temperature Control Tankless Water Heater

    SciTech Connect

    David Yuill

    2008-06-30

    The following document is the final report for DE-FC26-05NT42327: Development of an Accurate Feed-Forward Temperature Control Tankless Water Heater. This work was carried out under a cooperative agreement from the Department of Energy's National Energy Technology Laboratory, with additional funding from Keltech, Inc. The objective of the project was to improve the temperature control performance of an electric tankless water heater (TWH). The reason for doing this is to minimize or eliminate one of the barriers to wider adoption of the TWH. TWH use less energy than typical (storage) water heaters because of the elimination of standby losses, so wider adoption will lead to reduced energy consumption. The project was carried out by Building Solutions, Inc. (BSI), a small business based in Omaha, Nebraska. BSI partnered with Keltech, Inc., a manufacturer of electric tankless water heaters based in Delton, Michigan. Additional work was carried out by the University of Nebraska and Mike Coward. A background study revealed several advantages and disadvantages to TWH. Besides using less energy than storage heaters, TWH provide an endless supply of hot water, have a longer life, use less floor space, can be used at point-of-use, and are suitable as boosters to enable alternative water heating technologies, such as solar or heat-pump water heaters. Their disadvantages are their higher cost, large instantaneous power requirement, and poor temperature control. A test method was developed to quantify performance under a representative range of disturbances to flow rate and inlet temperature. A device capable of conducting this test was designed and built. Some heaters currently on the market were tested, and were found to perform quite poorly. A new controller was designed using model predictive control (MPC). This control method required an accurate dynamic model to be created and required significant tuning to the controller before good control was achieved. The MPC design

  15. An input shaping controller enabling cranes to move without sway

    SciTech Connect

    Singer, N.; Singhose, W.; Kriikku, E.

    1997-06-01

    A gantry crane at the Savannah River Technology Center was retrofitted with an Input Shaping controller. The controller intercepts the operator`s pendant commands and modifies them in real time so that the crane is moved without residual sway in the suspended load. Mechanical components on the crane were modified to make the crane suitable for the anti-sway algorithm. This paper will describe the required mechanical modifications to the crane, as well as, a new form of Input Shaping that was developed for use on the crane. Experimental results are presented which demonstrate the effectiveness of the new process. Several practical considerations will be discussed including a novel (patent pending) approach for making small, accurate moves without residual oscillations.

  16. Accurate atom-mapping computation for biochemical reactions.

    PubMed

    Latendresse, Mario; Malerich, Jeremiah P; Travers, Mike; Karp, Peter D

    2012-11-26

    The complete atom mapping of a chemical reaction is a bijection of the reactant atoms to the product atoms that specifies the terminus of each reactant atom. Atom mapping of biochemical reactions is useful for many applications of systems biology, in particular for metabolic engineering where synthesizing new biochemical pathways has to take into account for the number of carbon atoms from a source compound that are conserved in the synthesis of a target compound. Rapid, accurate computation of the atom mapping(s) of a biochemical reaction remains elusive despite significant work on this topic. In particular, past researchers did not validate the accuracy of mapping algorithms. We introduce a new method for computing atom mappings called the minimum weighted edit-distance (MWED) metric. The metric is based on bond propensity to react and computes biochemically valid atom mappings for a large percentage of biochemical reactions. MWED models can be formulated efficiently as Mixed-Integer Linear Programs (MILPs). We have demonstrated this approach on 7501 reactions of the MetaCyc database for which 87% of the models could be solved in less than 10 s. For 2.1% of the reactions, we found multiple optimal atom mappings. We show that the error rate is 0.9% (22 reactions) by comparing these atom mappings to 2446 atom mappings of the manually curated Kyoto Encyclopedia of Genes and Genomes (KEGG) RPAIR database. To our knowledge, our computational atom-mapping approach is the most accurate and among the fastest published to date. The atom-mapping data will be available in the MetaCyc database later in 2012; the atom-mapping software will be available within the Pathway Tools software later in 2012.

  17. Robustness of Tree Extraction Algorithms from LIDAR

    NASA Astrophysics Data System (ADS)

    Dumitru, M.; Strimbu, B. M.

    2015-12-01

    Forest inventory faces a new era as unmanned aerial systems (UAS) increased the precision of measurements, while reduced field effort and price of data acquisition. A large number of algorithms were developed to identify various forest attributes from UAS data. The objective of the present research is to assess the robustness of two types of tree identification algorithms when UAS data are combined with digital elevation models (DEM). The algorithms use as input photogrammetric point cloud, which are subsequent rasterized. The first type of algorithms associate tree crown with an inversed watershed (subsequently referred as watershed based), while the second type is based on simultaneous representation of tree crown as an individual entity, and its relation with neighboring crowns (subsequently referred as simultaneous representation). A DJI equipped with a SONY a5100 was used to acquire images over an area from center Louisiana. The images were processed with Pix4D, and a photogrammetric point cloud with 50 points / m2 was attained. DEM was obtained from a flight executed in 2013, which also supplied a LIDAR point cloud with 30 points/m2. The algorithms were tested on two plantations with different species and crown class complexities: one homogeneous (i.e., a mature loblolly pine plantation), and one heterogeneous (i.e., an unmanaged uneven-aged stand with mixed species pine -hardwoods). Tree identification on photogrammetric point cloud reveled that simultaneous representation algorithm outperforms watershed algorithm, irrespective stand complexity. Watershed algorithm exhibits robustness to parameters, but the results were worse than majority sets of parameters needed by the simultaneous representation algorithm. The simultaneous representation algorithm is a better alternative to watershed algorithm even when parameters are not accurately estimated. Similar results were obtained when the two algorithms were run on the LIDAR point cloud.

  18. A Global Approach to Accurate and Automatic Quantitative Analysis of NMR Spectra by Complex Least-Squares Curve Fitting

    NASA Astrophysics Data System (ADS)

    Martin, Y. L.

    The performance of quantitative analysis of 1D NMR spectra depends greatly on the choice of the NMR signal model. Complex least-squares analysis is well suited for optimizing the quantitative determination of spectra containing a limited number of signals (<30) obtained under satisfactory conditions of signal-to-noise ratio (>20). From a general point of view it is concluded, on the basis of mathematical considerations and numerical simulations, that, in the absence of truncation of the free-induction decay, complex least-squares curve fitting either in the time or in the frequency domain and linear-prediction methods are in fact nearly equivalent and give identical results. However, in the situation considered, complex least-squares analysis in the frequency domain is more flexible since it enables the quality of convergence to be appraised at every resonance position. An efficient data-processing strategy has been developed which makes use of an approximate conjugate-gradient algorithm. All spectral parameters (frequency, damping factors, amplitudes, phases, initial delay associated with intensity, and phase parameters of a baseline correction) are simultaneously managed in an integrated approach which is fully automatable. The behavior of the error as a function of the signal-to-noise ratio is theoretically estimated, and the influence of apodization is discussed. The least-squares curve fitting is theoretically proved to be the most accurate approach for quantitative analysis of 1D NMR data acquired with reasonable signal-to-noise ratio. The method enables complex spectral residuals to be sorted out. These residuals, which can be cumulated thanks to the possibility of correcting for frequency shifts and phase errors, extract systematic components, such as isotopic satellite lines, and characterize the shape and the intensity of the spectral distortion with respect to the Lorentzian model. This distortion is shown to be nearly independent of the chemical species

  19. Planar Near-Field Phase Retrieval Using GPUs for Accurate THz Far-Field Prediction

    NASA Astrophysics Data System (ADS)

    Junkin, Gary

    2013-04-01

    With a view to using Phase Retrieval to accurately predict Terahertz antenna far-field from near-field intensity measurements, this paper reports on three fundamental advances that achieve very low algorithmic error penalties. The first is a new Gaussian beam analysis that provides accurate initial complex aperture estimates including defocus and astigmatic phase errors, based only on first and second moment calculations. The second is a powerful noise tolerant near-field Phase Retrieval algorithm that combines Anderson's Plane-to-Plane (PTP) with Fienup's Hybrid-Input-Output (HIO) and Successive Over-Relaxation (SOR) to achieve increased accuracy at reduced scan separations. The third advance employs teraflop Graphical Processing Units (GPUs) to achieve practically real time near-field phase retrieval and to obtain the optimum aperture constraint without any a priori information.

  20. An Enabling Technology for New Planning and Scheduling Paradigms

    NASA Technical Reports Server (NTRS)

    Jaap, John; Davis, Elizabeth

    2004-01-01

    The Night Projects Directorate at NASA's Marshall Space Flight Center is developing a new planning and scheduling environment and a new scheduling algorithm to enable a paradigm shift in planning and scheduling concepts. Over the past 33 years Marshall has developed and evolved a paradigm for generating payload timelines for Skylab, Spacelab, various other Shuttle payloads, and the International Space Station. The current paradigm starts by collecting the requirements, called ?ask models," from the scientists and technologists for the tasks that are to be scheduled. Because of shortcomings in the current modeling schema, some requirements are entered as notes. Next, a cadre with knowledge of vehicle and hardware modifies these models to encompass and be compatible with the hardware model; again, notes are added when the modeling schema does not provide a better way to represent the requirements. Finally, the models are modified to be compatible with the scheduling engine. Then the models are submitted to the scheduling engine for automatic scheduling or, when requirements are expressed in notes, the timeline is built manually. A future paradigm would provide a scheduling engine that accepts separate science models and hardware models. The modeling schema would have the capability to represent all the requirements without resorting to notes. Furthermore, the scheduling engine would not require that the models be modified to account for the capabilities (limitations) of the scheduling engine. The enabling technology under development at Marshall has three major components: (1) A new modeling schema allows expressing all the requirements of the tasks without resorting to notes or awkward contrivances. The chosen modeling schema is both maximally expressive and easy to use. It utilizes graphical methods to show hierarchies of task constraints and networks of temporal relationships. (2) A new scheduling algorithm automatically schedules the models without the

  1. Protective jacket enabling decision support for workers in cold climate.

    PubMed

    Seeberg, Trine M; Vardoy, Astrid-Sofie B; Austad, Hanne O; Wiggen, Oystein; Stenersen, Henning S; Liverud, Anders E; Storholmen, Tore Christian B; Faerevik, Hilde

    2013-01-01

    The cold and harsh climate in the High North represents a threat to safety and work performance. The aim of this study was to show that sensors integrated in clothing can provide information that can improve decision support for workers in cold climate without disturbing the user. Here, a wireless demonstrator consisting of a working jacket with integrated temperature, humidity and activity sensors has been developed. Preliminary results indicate that the demonstrator can provide easy accessible information about the thermal conditions at the site of the worker and local cooling effects of extremities. The demonstrator has the ability to distinguish between activity and rest, and enables implementation of more sophisticated sensor fusion algorithms to assess work load and pre-defined activities. This information can be used in an enhanced safety perspective as an improved tool to advice outdoor work control for workers in cold climate.

  2. Enabling Genomic-Phenomic Association Discovery without Sacrificing Anonymity

    PubMed Central

    Heatherly, Raymond D.; Loukides, Grigorios; Denny, Joshua C.; Haines, Jonathan L.; Roden, Dan M.; Malin, Bradley A.

    2013-01-01

    Health information technologies facilitate the collection of massive quantities of patient-level data. A growing body of research demonstrates that such information can support novel, large-scale biomedical investigations at a fraction of the cost of traditional prospective studies. While healthcare organizations are being encouraged to share these data in a de-identified form, there is hesitation over concerns that it will allow corresponding patients to be re-identified. Currently proposed technologies to anonymize clinical data may make unrealistic assumptions with respect to the capabilities of a recipient to ascertain a patients identity. We show that more pragmatic assumptions enable the design of anonymization algorithms that permit the dissemination of detailed clinical profiles with provable guarantees of protection. We demonstrate this strategy with a dataset of over one million medical records and show that 192 genotype-phenotype associations can be discovered with fidelity equivalent to non-anonymized clinical data. PMID:23405076

  3. Aerocapture Guidance Algorithm Comparison Campaign

    NASA Technical Reports Server (NTRS)

    Rousseau, Stephane; Perot, Etienne; Graves, Claude; Masciarelli, James P.; Queen, Eric

    2002-01-01

    The aerocapture is a promising technique for the future human interplanetary missions. The Mars Sample Return was initially based on an insertion by aerocapture. A CNES orbiter Mars Premier was developed to demonstrate this concept. Mainly due to budget constraints, the aerocapture was cancelled for the French orbiter. A lot of studies were achieved during the three last years to develop and test different guidance algorithms (APC, EC, TPC, NPC). This work was shared between CNES and NASA, with a fruitful joint working group. To finish this study an evaluation campaign has been performed to test the different algorithms. The objective was to assess the robustness, accuracy, capability to limit the load, and the complexity of each algorithm. A simulation campaign has been specified and performed by CNES, with a similar activity on the NASA side to confirm the CNES results. This evaluation has demonstrated that the numerical guidance principal is not competitive compared to the analytical concepts. All the other algorithms are well adapted to guaranty the success of the aerocapture. The TPC appears to be the more robust, the APC the more accurate, and the EC appears to be a good compromise.

  4. [An Algorithm for Correcting Fetal Heart Rate Baseline].

    PubMed

    Li, Xiaodong; Lu, Yaosheng

    2015-10-01

    Fetal heart rate (FHR) baseline estimation is of significance for the computerized analysis of fetal heart rate and the assessment of fetal state. In our work, a fetal heart rate baseline correction algorithm was presented to make the existing baseline more accurate and fit to the tracings. Firstly, the deviation of the existing FHR baseline was found and corrected. And then a new baseline was obtained finally after treatment with some smoothing methods. To assess the performance of FHR baseline correction algorithm, a new FHR baseline estimation algorithm that combined baseline estimation algorithm and the baseline correction algorithm was compared with two existing FHR baseline estimation algorithms. The results showed that the new FHR baseline estimation algorithm did well in both accuracy and efficiency. And the results also proved the effectiveness of the FHR baseline correction algorithm.

  5. Artificial Neural Network and Genetic Algorithm Hybrid Intelligence for Predicting Thai Stock Price Index Trend

    PubMed Central

    Boonjing, Veera; Intakosum, Sarun

    2016-01-01

    This study investigated the use of Artificial Neural Network (ANN) and Genetic Algorithm (GA) for prediction of Thailand's SET50 index trend. ANN is a widely accepted machine learning method that uses past data to predict future trend, while GA is an algorithm that can find better subsets of input variables for importing into ANN, hence enabling more accurate prediction by its efficient feature selection. The imported data were chosen technical indicators highly regarded by stock analysts, each represented by 4 input variables that were based on past time spans of 4 different lengths: 3-, 5-, 10-, and 15-day spans before the day of prediction. This import undertaking generated a big set of diverse input variables with an exponentially higher number of possible subsets that GA culled down to a manageable number of more effective ones. SET50 index data of the past 6 years, from 2009 to 2014, were used to evaluate this hybrid intelligence prediction accuracy, and the hybrid's prediction results were found to be more accurate than those made by a method using only one input variable for one fixed length of past time span. PMID:27974883

  6. Artificial Neural Network and Genetic Algorithm Hybrid Intelligence for Predicting Thai Stock Price Index Trend.

    PubMed

    Inthachot, Montri; Boonjing, Veera; Intakosum, Sarun

    2016-01-01

    This study investigated the use of Artificial Neural Network (ANN) and Genetic Algorithm (GA) for prediction of Thailand's SET50 index trend. ANN is a widely accepted machine learning method that uses past data to predict future trend, while GA is an algorithm that can find better subsets of input variables for importing into ANN, hence enabling more accurate prediction by its efficient feature selection. The imported data were chosen technical indicators highly regarded by stock analysts, each represented by 4 input variables that were based on past time spans of 4 different lengths: 3-, 5-, 10-, and 15-day spans before the day of prediction. This import undertaking generated a big set of diverse input variables with an exponentially higher number of possible subsets that GA culled down to a manageable number of more effective ones. SET50 index data of the past 6 years, from 2009 to 2014, were used to evaluate this hybrid intelligence prediction accuracy, and the hybrid's prediction results were found to be more accurate than those made by a method using only one input variable for one fixed length of past time span.

  7. Cumulative Reconstructor: fast wavefront reconstruction algorithm for Extremely Large Telescopes.

    PubMed

    Rosensteiner, Matthias

    2011-10-01

    The Cumulative Reconstructor (CuRe) is a new direct reconstructor for an optical wavefront from Shack-Hartmann wavefront sensor measurements. In this paper, the algorithm is adapted to realistic telescope geometries and the transition from modified Hudgin to Fried geometry is discussed. After a discussion of the noise propagation, we analyze the complexity of the algorithm. Our numerical tests confirm that the algorithm is very fast and accurate and can therefore be used for adaptive optics systems of Extremely Large Telescopes.

  8. Does the Taylor Spatial Frame Accurately Correct Tibial Deformities?

    PubMed Central

    Segal, Kira; Ilizarov, Svetlana; Fragomen, Austin T.; Ilizarov, Gabriel

    2009-01-01

    Background Optimal leg alignment is the goal of tibial osteotomy. The Taylor Spatial Frame (TSF) and the Ilizarov method enable gradual realignment of angulation and translation in the coronal, sagittal, and axial planes, therefore, the term six-axis correction. Questions/purposes We asked whether this approach would allow precise correction of tibial deformities. Methods We retrospectively reviewed 102 patients (122 tibiae) with tibial deformities treated with percutaneous osteotomy and gradual correction with the TSF. The proximal osteotomy group was subdivided into two subgroups to distinguish those with an intentional overcorrection of the mechanical axis deviation (MAD). The minimum followup after frame removal was 10 months (average, 48 months; range, 10–98 months). Results In the proximal osteotomy group, patients with varus and valgus deformities for whom the goal of alignment was neutral or overcorrection experienced accurate correction of MAD. In the proximal tibia, the medial proximal tibial angle improved from 80° to 89° in patients with a varus deformity and from 96° to 85° in patients with a valgus deformity. In the middle osteotomy group, all patients had less than 5° coronal plane deformity and 15 of 17 patients had less that 5° sagittal plane deformity. In the distal osteotomy group, the lateral distal tibial angle improved from 77° to 86° in patients with a valgus deformity and from 101° to 90° for patients with a varus deformity. Conclusions Gradual correction of all tibial deformities with the TSF was accurate and with few complications. Level of Evidence Level IV, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence. PMID:19911244

  9. On enabling secure applications through off-line biometric identification

    SciTech Connect

    Davida, G.I.; Frankel, Y.; Matt, B.J.

    1998-04-01

    In developing secure applications and systems, the designers often must incorporate secure user identification in the design specification. In this paper, the authors study secure off line authenticated user identification schemes based on a biometric system that can measure a user`s biometric accurately (up to some Hamming distance). The schemes presented here enhance identification and authorization in secure applications by binding a biometric template with authorization information on a token such as a magnetic strip. Also developed here are schemes specifically designed to minimize the compromise of a user`s private biometrics data, encapsulated in the authorization information, without requiring secure hardware tokens. In this paper the authors furthermore study the feasibility of biometrics performing as an enabling technology for secure system and application design. The authors investigate a new technology which allows a user`s biometrics to facilitate cryptographic mechanisms.

  10. New Labour and the enabling state.

    PubMed

    Taylor, Ian

    2000-11-01

    The notion of the 'enabling state' gained currency in the UK during the 1990s as an alternative to the 'providing' or the welfare state. It reflected the process of contracting out in the NHS and compulsory competitive tendering (CCT) in local government during the 1980s, but was also associated with developments during the 1990s in health, social care and education in particular. The creation of an internal market in the NHS and the associated purchaser-provider split appeared to transfer 'ownership' of services increasingly to the providers - hospitals, General Practitioners (GPs) and schools. The mixed economy of care that was stimulated by the 1990 NHS and Community Care Act appeared to offer local authorities the opportunity to enable non state providers to offer care services in the community. The new service charters were part of the enablement process because they offered users more opportunity to influence provision. This article examines how far service providers were enabled and assesses the extent to which new Labour's policies enhance or reject the 'enabling state' in favour of more direct provision.

  11. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, D.D.

    The present invention is a thermometer used for measuring furnace temperatures in the range of about 1800/sup 0/ to 2700/sup 0/C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  12. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, Douglas D.

    1985-01-01

    The present invention is a thermometer used for measuring furnace temperaes in the range of about 1800.degree. to 2700.degree. C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  13. Highly accurate articulated coordinate measuring machine

    DOEpatents

    Bieg, Lothar F.; Jokiel, Jr., Bernhard; Ensz, Mark T.; Watson, Robert D.

    2003-12-30

    Disclosed is a highly accurate articulated coordinate measuring machine, comprising a revolute joint, comprising a circular encoder wheel, having an axis of rotation; a plurality of marks disposed around at least a portion of the circumference of the encoder wheel; bearing means for supporting the encoder wheel, while permitting free rotation of the encoder wheel about the wheel's axis of rotation; and a sensor, rigidly attached to the bearing means, for detecting the motion of at least some of the marks as the encoder wheel rotates; a probe arm, having a proximal end rigidly attached to the encoder wheel, and having a distal end with a probe tip attached thereto; and coordinate processing means, operatively connected to the sensor, for converting the output of the sensor into a set of cylindrical coordinates representing the position of the probe tip relative to a reference cylindrical coordinate system.

  14. Obtaining accurate translations from expressed sequence tags.

    PubMed

    Wasmuth, James; Blaxter, Mark

    2009-01-01

    The genomes of an increasing number of species are being investigated through the generation of expressed sequence tags (ESTs). However, ESTs are prone to sequencing errors and typically define incomplete transcripts, making downstream annotation difficult. Annotation would be greatly improved with robust polypeptide translations. Many current solutions for EST translation require a large number of full-length gene sequences for training purposes, a resource that is not available for the majority of EST projects. As part of our ongoing EST programs investigating these "neglected" genomes, we have developed a polypeptide prediction pipeline, prot4EST. It incorporates freely available software to produce final translations that are more accurate than those derived from any single method. We describe how this integrated approach goes a long way to overcoming the deficit in training data.

  15. Micron Accurate Absolute Ranging System: Range Extension

    NASA Technical Reports Server (NTRS)

    Smalley, Larry L.; Smith, Kely L.

    1999-01-01

    The purpose of this research is to investigate Fresnel diffraction as a means of obtaining absolute distance measurements with micron or greater accuracy. It is believed that such a system would prove useful to the Next Generation Space Telescope (NGST) as a non-intrusive, non-contact measuring system for use with secondary concentrator station-keeping systems. The present research attempts to validate past experiments and develop ways to apply the phenomena of Fresnel diffraction to micron accurate measurement. This report discusses past research on the phenomena, and the basis of the use Fresnel diffraction distance metrology. The apparatus used in the recent investigations, experimental procedures used, preliminary results are discussed in detail. Continued research and equipment requirements on the extension of the effective range of the Fresnel diffraction systems is also described.

  16. Accurate radio positions with the Tidbinbilla interferometer

    NASA Technical Reports Server (NTRS)

    Batty, M. J.; Gulkis, S.; Jauncey, D. L.; Rayner, P. T.

    1979-01-01

    The Tidbinbilla interferometer (Batty et al., 1977) is designed specifically to provide accurate radio position measurements of compact radio sources in the Southern Hemisphere with high sensitivity. The interferometer uses the 26-m and 64-m antennas of the Deep Space Network at Tidbinbilla, near Canberra. The two antennas are separated by 200 m on a north-south baseline. By utilizing the existing antennas and the low-noise traveling-wave masers at 2.29 GHz, it has been possible to produce a high-sensitivity instrument with a minimum of capital expenditure. The north-south baseline ensures that a good range of UV coverage is obtained, so that sources lying in the declination range between about -80 and +30 deg may be observed with nearly orthogonal projected baselines of no less than about 1000 lambda. The instrument also provides high-accuracy flux density measurements for compact radio sources.

  17. Magnetic ranging tool accurately guides replacement well

    SciTech Connect

    Lane, J.B.; Wesson, J.P. )

    1992-12-21

    This paper reports on magnetic ranging surveys and directional drilling technology which accurately guided a replacement well bore to intersect a leaking gas storage well with casing damage. The second well bore was then used to pump cement into the original leaking casing shoe. The repair well bore kicked off from the surface hole, bypassed casing damage in the middle of the well, and intersected the damaged well near the casing shoe. The repair well was subsequently completed in the gas storage zone near the original well bore, salvaging the valuable bottom hole location in the reservoir. This method would prevent the loss of storage gas, and it would prevent a potential underground blowout that could permanently damage the integrity of the storage field.

  18. Development and evaluation of an articulated registration algorithm for human skeleton registration.

    PubMed

    Yip, Stephen; Perk, Timothy; Jeraj, Robert

    2014-03-21

    Accurate registration over multiple scans is necessary to assess treatment response of bone diseases (e.g. metastatic bone lesions). This study aimed to develop and evaluate an articulated registration algorithm for the whole-body skeleton registration in human patients. In articulated registration, whole-body skeletons are registered by auto-segmenting into individual bones using atlas-based segmentation, and then rigidly aligning them. Sixteen patients (weight = 80-117 kg, height = 168-191 cm) with advanced prostate cancer underwent the pre- and mid-treatment PET/CT scans over a course of cancer therapy. Skeletons were extracted from the CT images by thresholding (HU>150). Skeletons were registered using the articulated, rigid, and deformable registration algorithms to account for position and postural variability between scans. The inter-observers agreement in the atlas creation, the agreement between the manually and atlas-based segmented bones, and the registration performances of all three registration algorithms were all assessed using the Dice similarity index-DSIobserved, DSIatlas, and DSIregister. Hausdorff distance (dHausdorff) of the registered skeletons was also used for registration evaluation. Nearly negligible inter-observers variability was found in the bone atlases creation as the DSIobserver was 96 ± 2%. Atlas-based and manual segmented bones were in excellent agreement with DSIatlas of 90 ± 3%. Articulated (DSIregsiter = 75 ± 2%, dHausdorff = 0.37 ± 0.08 cm) and deformable registration algorithms (DSIregister = 77 ± 3%, dHausdorff = 0.34 ± 0.08 cm) considerably outperformed the rigid registration algorithm (DSIregsiter = 59 ± 9%, dHausdorff = 0.69 ± 0.20 cm) in the skeleton registration as the rigid registration algorithm failed to capture the skeleton flexibility in the joints. Despite superior skeleton registration performance, deformable registration algorithm failed to preserve the local rigidity of bones as over 60% of the skeletons

  19. Development and evaluation of an articulated registration algorithm for human skeleton registration

    NASA Astrophysics Data System (ADS)

    Yip, Stephen; Perk, Timothy; Jeraj, Robert

    2014-03-01

    Accurate registration over multiple scans is necessary to assess treatment response of bone diseases (e.g. metastatic bone lesions). This study aimed to develop and evaluate an articulated registration algorithm for the whole-body skeleton registration in human patients. In articulated registration, whole-body skeletons are registered by auto-segmenting into individual bones using atlas-based segmentation, and then rigidly aligning them. Sixteen patients (weight = 80-117 kg, height = 168-191 cm) with advanced prostate cancer underwent the pre- and mid-treatment PET/CT scans over a course of cancer therapy. Skeletons were extracted from the CT images by thresholding (HU>150). Skeletons were registered using the articulated, rigid, and deformable registration algorithms to account for position and postural variability between scans. The inter-observers agreement in the atlas creation, the agreement between the manually and atlas-based segmented bones, and the registration performances of all three registration algorithms were all assessed using the Dice similarity index—DSIobserved, DSIatlas, and DSIregister. Hausdorff distance (dHausdorff) of the registered skeletons was also used for registration evaluation. Nearly negligible inter-observers variability was found in the bone atlases creation as the DSIobserver was 96 ± 2%. Atlas-based and manual segmented bones were in excellent agreement with DSIatlas of 90 ± 3%. Articulated (DSIregsiter = 75 ± 2%, dHausdorff = 0.37 ± 0.08 cm) and deformable registration algorithms (DSIregister = 77 ± 3%, dHausdorff = 0.34 ± 0.08 cm) considerably outperformed the rigid registration algorithm (DSIregsiter = 59 ± 9%, dHausdorff = 0.69 ± 0.20 cm) in the skeleton registration as the rigid registration algorithm failed to capture the skeleton flexibility in the joints. Despite superior skeleton registration performance, deformable registration algorithm failed to preserve the local rigidity of bones as over 60% of the

  20. Bicluster Sampled Coherence Metric (BSCM) provides an accurate environmental context for phenotype predictions

    PubMed Central

    2015-01-01

    Background Biclustering is a popular method for identifying under which experimental conditions biological signatures are co-expressed. However, the general biclustering problem is NP-hard, offering room to focus algorithms on specific biological tasks. We hypothesize that conditional co-regulation of genes is a key factor in determining cell phenotype and that accurately segregating conditions in biclusters will improve such predictions. Thus, we developed a bicluster sampled coherence metric (BSCM) for determining which conditions and signals should be included in a bicluster. Results Our BSCM calculates condition and cluster size specific p-values, and we incorporated these into the popular integrated biclustering algorithm cMonkey. We demonstrate that incorporation of our new algorithm significantly improves bicluster co-regulation scores (p-value = 0.009) and GO annotation scores (p-value = 0.004). Additionally, we used a bicluster based signal to predict whether a given experimental condition will result in yeast peroxisome induction. Using the new algorithm, the classifier accuracy improves from 41.9% to 76.1% correct. Conclusions We demonstrate that the proposed BSCM helps determine which signals ought to be co-clustered, resulting in more accurately assigned bicluster membership. Furthermore, we show that BSCM can be extended to more accurately detect under which experimental conditions the genes are co-clustered. Features derived from this more accurate analysis of conditional regulation results in a dramatic improvement in the ability to predict a cellular phenotype in yeast. The latest cMonkey is available for download at https://github.com/baliga-lab/cmonkey2. The experimental data and source code featured in this paper is available http://AitchisonLab.com/BSCM. BSCM has been incorporated in the official cMonkey release. PMID:25881257

  1. The high cost of accurate knowledge.

    PubMed

    Sutcliffe, Kathleen M; Weber, Klaus

    2003-05-01

    Many business thinkers believe it's the role of senior managers to scan the external environment to monitor contingencies and constraints, and to use that precise knowledge to modify the company's strategy and design. As these thinkers see it, managers need accurate and abundant information to carry out that role. According to that logic, it makes sense to invest heavily in systems for collecting and organizing competitive information. Another school of pundits contends that, since today's complex information often isn't precise anyway, it's not worth going overboard with such investments. In other words, it's not the accuracy and abundance of information that should matter most to top executives--rather, it's how that information is interpreted. After all, the role of senior managers isn't just to make decisions; it's to set direction and motivate others in the face of ambiguities and conflicting demands. Top executives must interpret information and communicate those interpretations--they must manage meaning more than they must manage information. So which of these competing views is the right one? Research conducted by academics Sutcliffe and Weber found that how accurate senior executives are about their competitive environments is indeed less important for strategy and corresponding organizational changes than the way in which they interpret information about their environments. Investments in shaping those interpretations, therefore, may create a more durable competitive advantage than investments in obtaining and organizing more information. And what kinds of interpretations are most closely linked with high performance? Their research suggests that high performers respond positively to opportunities, yet they aren't overconfident in their abilities to take advantage of those opportunities.

  2. An efficient polyenergetic SART (pSART) reconstruction algorithm for quantitative myocardial CT perfusion

    SciTech Connect

    Lin, Yuan Samei, Ehsan

    2014-02-15

    Purpose: In quantitative myocardial CT perfusion imaging, beam hardening effect due to dense bone and high concentration iodinated contrast agent can result in visible artifacts and inaccurate CT numbers. In this paper, an efficient polyenergetic Simultaneous Algebraic Reconstruction Technique (pSART) was presented to eliminate the beam hardening artifacts and to improve the CT quantitative imaging ability. Methods: Our algorithm made threea priori assumptions: (1) the human body is composed of several base materials (e.g., fat, breast, soft tissue, bone, and iodine); (2) images can be coarsely segmented to two types of regions, i.e., nonbone regions and noniodine regions; and (3) each voxel can be decomposed into a mixture of two most suitable base materials according to its attenuation value and its corresponding region type information. Based on the above assumptions, energy-independent accumulated effective lengths of all base materials can be fast computed in the forward ray-tracing process and be used repeatedly to obtain accurate polyenergetic projections, with which a SART-based equation can correctly update each voxel in the backward projecting process to iteratively reconstruct artifact-free images. This approach effectively reduces the influence of polyenergetic x-ray sources and it further enables monoenergetic images to be reconstructed at any arbitrarily preselected target energies. A series of simulation tests were performed on a size-variable cylindrical phantom and a realistic anthropomorphic thorax phantom. In addition, a phantom experiment was also performed on a clinical CT scanner to further quantitatively validate the proposed algorithm. Results: The simulations with the cylindrical phantom and the anthropomorphic thorax phantom showed that the proposed algorithm completely eliminated beam hardening artifacts and enabled quantitative imaging across different materials, phantom sizes, and spectra, as the absolute relative errors were reduced

  3. Enabling the Discovery of Gravitational Radiation

    NASA Astrophysics Data System (ADS)

    Isaacson, Richard

    2017-01-01

    The discovery of gravitational radiation was announced with the publication of the results of a physics experiment involving over a thousand participants. This was preceded by a century of theoretical work, involving a similarly large group of physicists, mathematicians, and computer scientists. This huge effort was enabled by a substantial commitment of resources, both public and private, to develop the different strands of this complex research enterprise, and to build a community of scientists to carry it out. In the excitement following the discovery, the role of key enablers of this success has not always been adequately recognized in popular accounts. In this talk, I will try to call attention to a few of the key ingredients that proved crucial to enabling the successful discovery of gravitational waves, and the opening of a new field of science.

  4. Accurate radiation temperature and chemical potential from quantitative photoluminescence analysis of hot carrier populations

    NASA Astrophysics Data System (ADS)

    Gibelli, François; Lombez, Laurent; Guillemoles, Jean-François

    2017-02-01

    In order to characterize hot carrier populations in semiconductors, photoluminescence measurement is a convenient tool, enabling us to probe the carrier thermodynamical properties in a contactless way. However, the analysis of the photoluminescence spectra is based on some assumptions which will be discussed in this work. We especially emphasize the importance of the variation of the material absorptivity that should be considered to access accurate thermodynamical properties of the carriers, especially by varying the excitation power. The proposed method enables us to obtain more accurate results of thermodynamical properties by taking into account a rigorous physical description and finds direct application in investigating hot carrier solar cells, which are an adequate concept for achieving high conversion efficiencies with a relatively simple device architecture.

  5. Accurate radiation temperature and chemical potential from quantitative photoluminescence analysis of hot carrier populations.

    PubMed

    Gibelli, François; Lombez, Laurent; Guillemoles, Jean-François

    2017-02-15

    In order to characterize hot carrier populations in semiconductors, photoluminescence measurement is a convenient tool, enabling us to probe the carrier thermodynamical properties in a contactless way. However, the analysis of the photoluminescence spectra is based on some assumptions which will be discussed in this work. We especially emphasize the importance of the variation of the material absorptivity that should be considered to access accurate thermodynamical properties of the carriers, especially by varying the excitation power. The proposed method enables us to obtain more accurate results of thermodynamical properties by taking into account a rigorous physical description and finds direct application in investigating hot carrier solar cells, which are an adequate concept for achieving high conversion efficiencies with a relatively simple device architecture.

  6. Approaching system equilibrium with accurate or not accurate feedback information in a two-route system

    NASA Astrophysics Data System (ADS)

    Zhao, Xiao-mei; Xie, Dong-fan; Li, Qi

    2015-02-01

    With the development of intelligent transport system, advanced information feedback strategies have been developed to reduce traffic congestion and enhance the capacity. However, previous strategies provide accurate information to travelers and our simulation results show that accurate information brings negative effects, especially in delay case. Because travelers prefer to the best condition route with accurate information, and delayed information cannot reflect current traffic condition but past. Then travelers make wrong routing decisions, causing the decrease of the capacity and the increase of oscillations and the system deviating from the equilibrium. To avoid the negative effect, bounded rationality is taken into account by introducing a boundedly rational threshold BR. When difference between two routes is less than the BR, routes have equal probability to be chosen. The bounded rationality is helpful to improve the efficiency in terms of capacity, oscillation and the gap deviating from the system equilibrium.

  7. Origami-enabled deformable silicon solar cells

    SciTech Connect

    Tang, Rui; Huang, Hai; Liang, Hanshuang; Liang, Mengbing; Tu, Hongen; Xu, Yong; Song, Zeming; Jiang, Hanqing; Yu, Hongyu

    2014-02-24

    Deformable electronics have found various applications and elastomeric materials have been widely used to reach flexibility and stretchability. In this Letter, we report an alternative approach to enable deformability through origami. In this approach, the deformability is achieved through folding and unfolding at the creases while the functional devices do not experience strain. We have demonstrated an example of origami-enabled silicon solar cells and showed that this solar cell can reach up to 644% areal compactness while maintaining reasonable good performance upon cyclic folding/unfolding. This approach opens an alternative direction of producing flexible, stretchable, and deformable electronics.

  8. Energy Savings Performance Contract (ESPC) ENABLE Program

    SciTech Connect

    2012-06-01

    The Energy Savings Performance Contract (ESPC) ENABLE program, a new project funding approach, allows small Federal facilities to realize energy and water savings in six months or less. ESPC ENABLE provides a standardized and streamlined process to install targeted energy conservation measures (ECMs) such as lighting, water, and controls with measurement and verification (M&V) appropriate for the size and scope of the project. This allows Federal facilities smaller than 200,000 square feet to make progress towards important energy efficiency and water conservation requirements.

  9. Enabling human HUMS with data modeling

    NASA Astrophysics Data System (ADS)

    Jaenisch, Holger M.; Handley, James W.; Jaenisch, Kristina K.; Hicklen, Michael L.

    2006-05-01

    We simulate a notional Navy SEAL rebreather diver on an extended mission using Model Predictive Control (MPC) theory. A mathematical framework for enabling physiological HUMS (Health Usage Management Systems) is shown. A rebreather simulation is used to derive MPC baseline Data Models of diver status by converting the simulation first into differential equations and then into lookup tables (LUT). When abnormal readings are indicated, sensor data from the diver is published to the ad hoc network, enabling intermittent upload. Mission success confidence is updated and determined during the mission. A novel method of converting MPC Data Models into lookup tables worn by the diver is given.

  10. Upgraded NERVA systems: Enabler nuclear system

    NASA Technical Reports Server (NTRS)

    Farbman, Gerry

    1991-01-01

    The NERVA/Rover Enabler technology enables to go on a low risk, short-term program to meet the requirements of the Mars mission and maybe some lunar missions. The following subject areas are covered: NERVA technology - the foundation for tomorrow's space missions; NERVA/Rover reactor system test sequence; NERVA engine development program; nuclear thermal reactor capability based on many related Westinghouse technology programs; investment in Rover/Nerva technology; synergistic applications of NERVA technology; flow schematic of the NDR engine; the NERVA nuclear subsystem; and technology evolution.

  11. Networking Technologies Enable Advances in Earth Science

    NASA Technical Reports Server (NTRS)

    Johnson, Marjory; Freeman, Kenneth; Gilstrap, Raymond; Beck, Richard

    2004-01-01

    This paper describes an experiment to prototype a new way of conducting science by applying networking and distributed computing technologies to an Earth Science application. A combination of satellite, wireless, and terrestrial networking provided geologists at a remote field site with interactive access to supercomputer facilities at two NASA centers, thus enabling them to validate and calibrate remotely sensed geological data in near-real time. This represents a fundamental shift in the way that Earth scientists analyze remotely sensed data. In this paper we describe the experiment and the network infrastructure that enabled it, analyze the data flow during the experiment, and discuss the scientific impact of the results.

  12. A novel algorithm for Bluetooth ECG.

    PubMed

    Pandya, Utpal T; Desai, Uday B

    2012-11-01

    In wireless transmission of ECG, data latency will be significant when battery power level and data transmission distance are not maintained. In applications like home monitoring or personalized care, to overcome the joint effect of previous issues of wireless transmission and other ECG measurement noises, a novel filtering strategy is required. Here, a novel algorithm, identified as peak rejection adaptive sampling modified moving average (PRASMMA) algorithm for wireless ECG is introduced. This algorithm first removes error in bit pattern of received data if occurred in wireless transmission and then removes baseline drift. Afterward, a modified moving average is implemented except in the region of each QRS complexes. The algorithm also sets its filtering parameters according to different sampling rate selected for acquisition of signals. To demonstrate the work, a prototyped Bluetooth-based ECG module is used to capture ECG with different sampling rate and in different position of patient. This module transmits ECG wirelessly to Bluetooth-enabled devices where the PRASMMA algorithm is applied on captured ECG. The performance of PRASMMA algorithm is compared with moving average and S-Golay algorithms visually as well as numerically. The results show that the PRASMMA algorithm can significantly improve the ECG reconstruction by efficiently removing the noise and its use can be extended to any parameters where peaks are importance for diagnostic purpose.

  13. Tuning-free controller to accurately regulate flow rates in a microfluidic network

    PubMed Central

    Heo, Young Jin; Kang, Junsu; Kim, Min Jun; Chung, Wan Kyun

    2016-01-01

    We describe a control algorithm that can improve accuracy and stability of flow regulation in a microfluidic network that uses a conventional pressure pump system. The algorithm enables simultaneous and independent control of fluid flows in multiple micro-channels of a microfluidic network, but does not require any model parameters or tuning process. We investigate robustness and optimality of the proposed control algorithm and those are verified by simulations and experiments. In addition, the control algorithm is compared with a conventional PID controller to show that the proposed control algorithm resolves critical problems induced by the PID control. The capability of the control algorithm can be used not only in high-precision flow regulation in the presence of disturbance, but in some useful functions for lab-on-a-chip devices such as regulation of volumetric flow rate, interface position control of two laminar flows, valveless flow switching, droplet generation and particle manipulation. We demonstrate those functions and also suggest further potential biological applications which can be accomplished by the proposed control framework. PMID:26987587

  14. Accurate Maximum-Margin Training for Parsing With Context-Free Grammars.

    PubMed

    Bauer, Alexander; Braun, Mikio; Muller, Klaus-Robert

    2017-01-01

    The task of natural language parsing can naturally be embedded in the maximum-margin framework for structured output prediction using an appropriate joint feature map and a suitable structured loss function. While there are efficient learning algorithms based on the cutting-plane method for optimizing the resulting quadratic objective with potentially exponential number of linear constraints, their efficiency crucially depends on the inference algorithms used to infer the most violated constraint in a current iteration. In this paper, we derive an extension of the well-known Cocke-Kasami-Younger (CKY) algorithm used for parsing with probabilistic context-free grammars for the case of loss-augmented inference enabling an effective training in the cutting-plane approach. The resulting algorithm is guaranteed to find an optimal solution in polynomial time exceeding the running time of the CKY algorithm by a term, which only depends on the number of possible loss values. In order to demonstrate the feasibility of the presented algorithm, we perform a set of experiments for parsing English sentences.

  15. Tuning-free controller to accurately regulate flow rates in a microfluidic network

    NASA Astrophysics Data System (ADS)

    Heo, Young Jin; Kang, Junsu; Kim, Min Jun; Chung, Wan Kyun

    2016-03-01

    We describe a control algorithm that can improve accuracy and stability of flow regulation in a microfluidic network that uses a conventional pressure pump system. The algorithm enables simultaneous and independent control of fluid flows in multiple micro-channels of a microfluidic network, but does not require any model parameters or tuning process. We investigate robustness and optimality of the proposed control algorithm and those are verified by simulations and experiments. In addition, the control algorithm is compared with a conventional PID controller to show that the proposed control algorithm resolves critical problems induced by the PID control. The capability of the control algorithm can be used not only in high-precision flow regulation in the presence of disturbance, but in some useful functions for lab-on-a-chip devices such as regulation of volumetric flow rate, interface position control of two laminar flows, valveless flow switching, droplet generation and particle manipulation. We demonstrate those functions and also suggest further potential biological applications which can be accomplished by the proposed control framework.

  16. Tuning-free controller to accurately regulate flow rates in a microfluidic network.

    PubMed

    Heo, Young Jin; Kang, Junsu; Kim, Min Jun; Chung, Wan Kyun

    2016-03-18

    We describe a control algorithm that can improve accuracy and stability of flow regulation in a microfluidic network that uses a conventional pressure pump system. The algorithm enables simultaneous and independent control of fluid flows in multiple micro-channels of a microfluidic network, but does not require any model parameters or tuning process. We investigate robustness and optimality of the proposed control algorithm and those are verified by simulations and experiments. In addition, the control algorithm is compared with a conventional PID controller to show that the proposed control algorithm resolves critical problems induced by the PID control. The capability of the control algorithm can be used not only in high-precision flow regulation in the presence of disturbance, but in some useful functions for lab-on-a-chip devices such as regulation of volumetric flow rate, interface position control of two laminar flows, valveless flow switching, droplet generation and particle manipulation. We demonstrate those functions and also suggest further potential biological applications which can be accomplished by the proposed control framework.

  17. Concurrent and Accurate Short Read Mapping on Multicore Processors.

    PubMed

    Martínez, Héctor; Tárraga, Joaquín; Medina, Ignacio; Barrachina, Sergio; Castillo, Maribel; Dopazo, Joaquín; Quintana-Ortí, Enrique S

    2015-01-01

    We introduce a parallel aligner with a work-flow organization for fast and accurate mapping of RNA sequences on servers equipped with multicore processors. Our software, HPG Aligner SA (HPG Aligner SA is an open-source application. The software is available at http://www.opencb.org, exploits a suffix array to rapidly map a large fraction of the RNA fragments (reads), as well as leverages the accuracy of the Smith-Waterman algorithm to deal with conflictive reads. The aligner is enhanced with a careful strategy to detect splice junctions based on an adaptive division of RNA reads into small segments (or seeds), which are then mapped onto a number of candidate alignment locations, providing crucial information for the successful alignment of the complete reads. The experimental results on a platform with Intel multicore technology report the parallel performance of HPG Aligner SA, on RNA reads of 100-400 nucleotides, which excels in execution time/sensitivity to state-of-the-art aligners such as TopHat 2+Bowtie 2, MapSplice, and STAR.

  18. Accurate calculation of field and carrier distributions in doped semiconductors

    NASA Astrophysics Data System (ADS)

    Yang, Wenji; Tang, Jianping; Yu, Hongchun; Wang, Yanguo

    2012-06-01

    We use the numerical squeezing algorithm(NSA) combined with the shooting method to accurately calculate the built-in fields and carrier distributions in doped silicon films (SFs) in the micron and sub-micron thickness range and results are presented in graphical form for variety of doping profiles under different boundary conditions. As a complementary approach, we also present the methods and the results of the inverse problem (IVP) - finding out the doping profile in the SFs for given field distribution. The solution of the IVP provides us the approach to arbitrarily design field distribution in SFs - which is very important for low dimensional (LD) systems and device designing. Further more, the solution of the IVP is both direct and much easy for all the one-, two-, and three-dimensional semiconductor systems. With current efforts focused on the LD physics, knowing of the field and carrier distribution details in the LD systems will facilitate further researches on other aspects and hence the current work provides a platform for those researches.

  19. AUTOMATED, HIGHLY ACCURATE VERIFICATION OF RELAP5-3D

    SciTech Connect

    George L Mesina; David Aumiller; Francis Buschman

    2014-07-01

    Computer programs that analyze light water reactor safety solve complex systems of governing, closure and special process equations to model the underlying physics. In addition, these programs incorporate many other features and are quite large. RELAP5-3D[1] has over 300,000 lines of coding for physics, input, output, data management, user-interaction, and post-processing. For software quality assurance, the code must be verified and validated before being released to users. Verification ensures that a program is built right by checking that it meets its design specifications. Recently, there has been an increased importance on the development of automated verification processes that compare coding against its documented algorithms and equations and compares its calculations against analytical solutions and the method of manufactured solutions[2]. For the first time, the ability exists to ensure that the data transfer operations associated with timestep advancement/repeating and writing/reading a solution to a file have no unintended consequences. To ensure that the code performs as intended over its extensive list of applications, an automated and highly accurate verification method has been modified and applied to RELAP5-3D. Furthermore, mathematical analysis of the adequacy of the checks used in the comparisons is provided.

  20. Extremely accurate sequential verification of RELAP5-3D

    SciTech Connect

    Mesina, George L.; Aumiller, David L.; Buschman, Francis X.

    2015-11-19

    Large computer programs like RELAP5-3D solve complex systems of governing, closure and special process equations to model the underlying physics of nuclear power plants. Further, these programs incorporate many other features for physics, input, output, data management, user-interaction, and post-processing. For software quality assurance, the code must be verified and validated before being released to users. For RELAP5-3D, verification and validation are restricted to nuclear power plant applications. Verification means ensuring that the program is built right by checking that it meets its design specifications, comparing coding to algorithms and equations and comparing calculations against analytical solutions and method of manufactured solutions. Sequential verification performs these comparisons initially, but thereafter only compares code calculations between consecutive code versions to demonstrate that no unintended changes have been introduced. Recently, an automated, highly accurate sequential verification method has been developed for RELAP5-3D. The method also provides to test that no unintended consequences result from code development in the following code capabilities: repeating a timestep advancement, continuing a run from a restart file, multiple cases in a single code execution, and modes of coupled/uncoupled operation. In conclusion, mathematical analyses of the adequacy of the checks used in the comparisons are provided.

  1. Extremely accurate sequential verification of RELAP5-3D

    DOE PAGES

    Mesina, George L.; Aumiller, David L.; Buschman, Francis X.

    2015-11-19

    Large computer programs like RELAP5-3D solve complex systems of governing, closure and special process equations to model the underlying physics of nuclear power plants. Further, these programs incorporate many other features for physics, input, output, data management, user-interaction, and post-processing. For software quality assurance, the code must be verified and validated before being released to users. For RELAP5-3D, verification and validation are restricted to nuclear power plant applications. Verification means ensuring that the program is built right by checking that it meets its design specifications, comparing coding to algorithms and equations and comparing calculations against analytical solutions and method ofmore » manufactured solutions. Sequential verification performs these comparisons initially, but thereafter only compares code calculations between consecutive code versions to demonstrate that no unintended changes have been introduced. Recently, an automated, highly accurate sequential verification method has been developed for RELAP5-3D. The method also provides to test that no unintended consequences result from code development in the following code capabilities: repeating a timestep advancement, continuing a run from a restart file, multiple cases in a single code execution, and modes of coupled/uncoupled operation. In conclusion, mathematical analyses of the adequacy of the checks used in the comparisons are provided.« less

  2. Ad hoc methods for accurate determination of Bader's atomic boundary

    NASA Astrophysics Data System (ADS)

    Polestshuk, Pavel M.

    2013-08-01

    In addition to the recently published triangulation method [P. M. Polestshuk, J. Comput. Chem. 34, 206 (2013)], 10.1002/jcc.23121, two new highly accurate approaches, ZFSX and SINTY, for the integration over an atomic region covered by a zero-flux surface (zfs) were developed and efficiently interfaced into the TWOE program. ZFSX method was realized as three independent modules (ZFSX-1, ZFSX-3, and ZFSX-5) handling interatomic surfaces of a different complexity. Details of algorithmic implementation of ZFSX and SINTY are discussed. A special attention to an extended analysis of errors in calculations of atomic properties is paid. It was shown that uncertainties in zfs determination caused by ZFSX and SINTY approaches contribute negligibly (less than 10-6 a.u.) to the total atomic integration errors. Moreover, the new methods are able to evaluate atomic integrals with a reasonable time and can be universally applied for the systems of any complexity. It is suggested, therefore, that ZFSX and SINTY can be regarded as benchmark methods for the computation of any Quantum Theory of Atoms in Molecules atomic property.

  3. Accurate estimators of correlation functions in Fourier space

    NASA Astrophysics Data System (ADS)

    Sefusatti, E.; Crocce, M.; Scoccimarro, R.; Couchman, H. M. P.

    2016-08-01

    Efficient estimators of Fourier-space statistics for large number of objects rely on fast Fourier transforms (FFTs), which are affected by aliasing from unresolved small-scale modes due to the finite FFT grid. Aliasing takes the form of a sum over images, each of them corresponding to the Fourier content displaced by increasing multiples of the sampling frequency of the grid. These spurious contributions limit the accuracy in the estimation of Fourier-space statistics, and are typically ameliorated by simultaneously increasing grid size and discarding high-frequency modes. This results in inefficient estimates for e.g. the power spectrum when desired systematic biases are well under per cent level. We show that using interlaced grids removes odd images, which include the dominant contribution to aliasing. In addition, we discuss the choice of interpolation kernel used to define density perturbations on the FFT grid and demonstrate that using higher order interpolation kernels than the standard Cloud-In-Cell algorithm results in significant reduction of the remaining images. We show that combining fourth-order interpolation with interlacing gives very accurate Fourier amplitudes and phases of density perturbations. This results in power spectrum and bispectrum estimates that have systematic biases below 0.01 per cent all the way to the Nyquist frequency of the grid, thus maximizing the use of unbiased Fourier coefficients for a given grid size and greatly reducing systematics for applications to large cosmological data sets.

  4. Fast, accurate, robust and Open Source Brain Extraction Tool (OSBET)

    NASA Astrophysics Data System (ADS)

    Namias, R.; Donnelly Kehoe, P.; D'Amato, J. P.; Nagel, J.

    2015-12-01

    The removal of non-brain regions in neuroimaging is a critical task to perform a favorable preprocessing. The skull-stripping depends on different factors including the noise level in the image, the anatomy of the subject being scanned and the acquisition sequence. For these and other reasons, an ideal brain extraction method should be fast, accurate, user friendly, open-source and knowledge based (to allow for the interaction with the algorithm in case the expected outcome is not being obtained), producing stable results and making it possible to automate the process for large datasets. There are already a large number of validated tools to perform this task but none of them meets the desired characteristics. In this paper we introduced an open source brain extraction tool (OSBET), composed of four steps using simple well-known operations such as: optimal thresholding, binary morphology, labeling and geometrical analysis that aims to assemble all the desired features. We present an experiment comparing OSBET with other six state-of-the-art techniques against a publicly available dataset consisting of 40 T1-weighted 3D scans and their corresponding manually segmented images. OSBET gave both: a short duration with an excellent accuracy, getting the best Dice Coefficient metric. Further validation should be performed, for instance, in unhealthy population, to generalize its usage for clinical purposes.

  5. Ad hoc methods for accurate determination of Bader's atomic boundary.

    PubMed

    Polestshuk, Pavel M

    2013-08-07

    In addition to the recently published triangulation method [P. M. Polestshuk, J. Comput. Chem. 34, 206 (2013)], two new highly accurate approaches, ZFSX and SINTY, for the integration over an atomic region covered by a zero-flux surface (zfs) were developed and efficiently interfaced into the TWOE program. ZFSX method was realized as three independent modules (ZFSX-1, ZFSX-3, and ZFSX-5) handling interatomic surfaces of a different complexity. Details of algorithmic implementation of ZFSX and SINTY are discussed. A special attention to an extended analysis of errors in calculations of atomic properties is paid. It was shown that uncertainties in zfs determination caused by ZFSX and SINTY approaches contribute negligibly (less than 10(-6) a.u.) to the total atomic integration errors. Moreover, the new methods are able to evaluate atomic integrals with a reasonable time and can be universally applied for the systems of any complexity. It is suggested, therefore, that ZFSX and SINTY can be regarded as benchmark methods for the computation of any Quantum Theory of Atoms in Molecules atomic property.

  6. ELODIE: A spectrograph for accurate radial velocity measurements.

    NASA Astrophysics Data System (ADS)

    Baranne, A.; Queloz, D.; Mayor, M.; Adrianzyk, G.; Knispel, G.; Kohler, D.; Lacroix, D.; Meunier, J.-P.; Rimbaud, G.; Vin, A.

    1996-10-01

    The fibre-fed echelle spectrograph of Observatoire de Haute-Provence, ELODIE, is presented. This instrument has been in operation since the end of 1993 on the 1.93 m telescope. ELODIE is designed as an updated version of the cross-correlation spectrometer CORAVEL, to perform very accurate radial velocity measurements such as needed in the search, by Doppler shift, for brown-dwarfs or giant planets orbiting around nearby stars. In one single exposure a spectrum at a resolution of 42000 (λ/{DELTA}λ) ranging from 3906A to 6811A is recorded on a 1024x1024 CCD. This performance is achieved by using a tanθ=4 echelle grating and a combination of a prism and a grism as cross-disperser. An automatic on-line data treatment reduces all the ELODIE echelle spectra and computes cross-correlation functions. The instrument design and the data reduction algorithms are described in this paper. The efficiency and accuracy of the instrument and its long term instrumental stability allow us to measure radial velocities with an accuracy better than 15m/s for stars up to 9th magnitude in less than 30 minutes exposure time. Observations of 16th magnitude stars are also possible to measure velocities at about 1km/s accuracy. For classic spectroscopic studies (S/N>100) 9th magnitude stars can be observed in one hour exposure time.

  7. Higher order accurate partial implicitization: An unconditionally stable fourth-order-accurate explicit numerical technique

    NASA Technical Reports Server (NTRS)

    Graves, R. A., Jr.

    1975-01-01

    The previously obtained second-order-accurate partial implicitization numerical technique used in the solution of fluid dynamic problems was modified with little complication to achieve fourth-order accuracy. The Von Neumann stability analysis demonstrated the unconditional linear stability of the technique. The order of the truncation error was deduced from the Taylor series expansions of the linearized difference equations and was verified by numerical solutions to Burger's equation. For comparison, results were also obtained for Burger's equation using a second-order-accurate partial-implicitization scheme, as well as the fourth-order scheme of Kreiss.

  8. Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers.

    PubMed

    Hattne, Johan; Echols, Nathaniel; Tran, Rosalie; Kern, Jan; Gildea, Richard J; Brewster, Aaron S; Alonso-Mori, Roberto; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G; Lassalle-Kaiser, Benedikt; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; DiFiore, Dörte; Milathianaki, Despina; Fry, Alan R; Miahnahri, Alan; White, William E; Schafer, Donald W; Seibert, M Marvin; Koglin, Jason E; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J; Glatzel, Pieter; Zwart, Petrus H; Grosse-Kunstleve, Ralf W; Bogan, Michael J; Messerschmidt, Marc; Williams, Garth J; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Yano, Junko; Bergmann, Uwe; Yachandra, Vittal K; Adams, Paul D; Sauter, Nicholas K

    2014-05-01

    X-ray free-electron laser (XFEL) sources enable the use of crystallography to solve three-dimensional macromolecular structures under native conditions and without radiation damage. Results to date, however, have been limited by the challenge of deriving accurate Bragg intensities from a heterogeneous population of microcrystals, while at the same time modeling the X-ray spectrum and detector geometry. Here we present a computational approach designed to extract meaningful high-resolution signals from fewer diffraction measurements.

  9. Segmentation of MRI Brain Images with an Improved Harmony Searching Algorithm

    PubMed Central

    Yang, Zhang; Li, Guo; Weifeng, Ding

    2016-01-01

    The harmony searching (HS) algorithm is a kind of optimization search algorithm currently applied in many practical problems. The HS algorithm constantly revises variables in the harmony database and the probability of different values that can be used to complete iteration convergence to achieve the optimal effect. Accordingly, this study proposed a modified algorithm to improve the efficiency of the algorithm. First, a rough set algorithm was employed to improve the convergence and accuracy of the HS algorithm. Then, the optimal value was obtained using the improved HS algorithm. The optimal value of convergence was employed as the initial value of the fuzzy clustering algorithm for segmenting magnetic resonance imaging (MRI) brain images. Experimental results showed that the improved HS algorithm attained better convergence and more accurate results than those of the original HS algorithm. In our study, the MRI image segmentation effect of the improved algorithm was superior to that of the original fuzzy clustering method. PMID:27403428

  10. Segmentation of MRI Brain Images with an Improved Harmony Searching Algorithm.

    PubMed

    Yang, Zhang; Shufan, Ye; Li, Guo; Weifeng, Ding

    2016-01-01

    The harmony searching (HS) algorithm is a kind of optimization search algorithm currently applied in many practical problems. The HS algorithm constantly revises variables in the harmony database and the probability of different values that can be used to complete iteration convergence to achieve the optimal effect. Accordingly, this study proposed a modified algorithm to improve the efficiency of the algorithm. First, a rough set algorithm was employed to improve the convergence and accuracy of the HS algorithm. Then, the optimal value was obtained using the improved HS algorithm. The optimal value of convergence was employed as the initial value of the fuzzy clustering algorithm for segmenting magnetic resonance imaging (MRI) brain images. Experimental results showed that the improved HS algorithm attained better convergence and more accurate results than those of the original HS algorithm. In our study, the MRI image segmentation effect of the improved algorithm was superior to that of the original fuzzy clustering method.

  11. Enabling Radiative Transfer on AMR grids in CRASH

    NASA Astrophysics Data System (ADS)

    Hariharan, N.; Graziani, L.; Ciardi, B.; Miniati, F.; Bungartz, H.-J.

    2017-01-01

    We introduce CRASH-AMR, a new version of the cosmological Radiative Transfer (RT) code CRASH, enabled to use refined grids. This new feature allows us to attain higher resolution in our RT simulations and thus to describe more accurately ionisation and temperature patterns in high density regions. We have tested CRASH-AMR by simulating the evolution of an ionised region produced by a single source embedded in gas at constant density, as well as by a more realistic configuration of multiple sources in an inhomogeneous density field. While we find an excellent agreement with the previous version of CRASH when the AMR feature is disabled, showing that no numerical artifact has been introduced in CRASH-AMR, when additional refinement levels are used the code can simulate more accurately the physics of ionised gas in high density regions. This result has been attained at no computational loss, as RT simulations on AMR grids with maximum resolution equivalent to that of a uniform cartesian grid can be run with a gain of up to 60% in computational time.

  12. Improving the Mapping of Smith-Waterman Sequence Database Searches onto CUDA-Enabled GPUs

    PubMed Central

    Huang, Liang-Tsung; Wu, Chao-Chin; Lai, Lien-Fu; Li, Yun-Ju

    2015-01-01

    Sequence alignment lies at heart of the bioinformatics. The Smith-Waterman algorithm is one of the key sequence search algorithms and has gained popularity due to improved implementations and rapidly increasing compute power. Recently, the Smith-Waterman algorithm has been successfully mapped onto the emerging general-purpose graphics processing units (GPUs). In this paper, we focused on how to improve the mapping, especially for short query sequences, by better usage of shared memory. We performed and evaluated the proposed method on two different platforms (Tesla C1060 and Tesla K20) and compared it with two classic methods in CUDASW++. Further, the performance on different numbers of threads and blocks has been analyzed. The results showed that the proposed method significantly improves Smith-Waterman algorithm on CUDA-enabled GPUs in proper allocation of block and thread numbers. PMID:26339591

  13. The BR eigenvalue algorithm

    SciTech Connect

    Geist, G.A.; Howell, G.W.; Watkins, D.S.

    1997-11-01

    The BR algorithm, a new method for calculating the eigenvalues of an upper Hessenberg matrix, is introduced. It is a bulge-chasing algorithm like the QR algorithm, but, unlike the QR algorithm, it is well adapted to computing the eigenvalues of the narrowband, nearly tridiagonal matrices generated by the look-ahead Lanczos process. This paper describes the BR algorithm and gives numerical evidence that it works well in conjunction with the Lanczos process. On the biggest problems run so far, the BR algorithm beats the QR algorithm by a factor of 30--60 in computing time and a factor of over 100 in matrix storage space.

  14. Accurate three-dimensional pose recognition from monocular images using template matched filtering

    NASA Astrophysics Data System (ADS)

    Picos, Kenia; Diaz-Ramirez, Victor H.; Kober, Vitaly; Montemayor, Antonio S.; Pantrigo, Juan J.

    2016-06-01

    An accurate algorithm for three-dimensional (3-D) pose recognition of a rigid object is presented. The algorithm is based on adaptive template matched filtering and local search optimization. When a scene image is captured, a bank of correlation filters is constructed to find the best correspondence between the current view of the target in the scene and a target image synthesized by means of computer graphics. The synthetic image is created using a known 3-D model of the target and an iterative procedure based on local search. Computer simulation results obtained with the proposed algorithm in synthetic and real-life scenes are presented and discussed in terms of accuracy of pose recognition in the presence of noise, cluttered background, and occlusion. Experimental results show that our proposal presents high accuracy for 3-D pose estimation using monocular images.

  15. Accurate modeling of switched reluctance machine based on hybrid trained WNN

    NASA Astrophysics Data System (ADS)

    Song, Shoujun; Ge, Lefei; Ma, Shaojie; Zhang, Man

    2014-04-01

    According to the strong nonlinear electromagnetic characteristics of switched reluctance machine (SRM), a novel accurate modeling method is proposed based on hybrid trained wavelet neural network (WNN) which combines improved genetic algorithm (GA) with gradient descent (GD) method to train the network. In the novel method, WNN is trained by GD method based on the initial weights obtained per improved GA optimization, and the global parallel searching capability of stochastic algorithm and local convergence speed of deterministic algorithm are combined to enhance the training accuracy, stability and speed. Based on the measured electromagnetic characteristics of a 3-phase 12/8-pole SRM, the nonlinear simulation model is built by hybrid trained WNN in Matlab. The phase current and mechanical characteristics from simulation under different working conditions meet well with those from experiments, which indicates the accuracy of the model for dynamic and static performance evaluation of SRM and verifies the effectiveness of the proposed modeling method.

  16. Accurate mask-based spatially regularized correlation filter for visual tracking

    NASA Astrophysics Data System (ADS)

    Gu, Xiaodong; Xu, Xinping

    2017-01-01

    Recently, discriminative correlation filter (DCF)-based trackers have achieved extremely successful results in many competitions and benchmarks. These methods utilize a periodic assumption of the training samples to efficiently learn a classifier. However, this assumption will produce unwanted boundary effects, which severely degrade the tracking performance. Correlation filters with limited boundaries and spatially regularized DCFs were proposed to reduce boundary effects. However, their methods used the fixed mask or predesigned weights function, respectively, which was unsuitable for large appearance variation. We propose an accurate mask-based spatially regularized correlation filter for visual tracking. Our augmented objective can reduce the boundary effect even in large appearance variation. In our algorithm, the masking matrix is converted into the regularized function that acts on the correlation filter in frequency domain, which makes the algorithm fast convergence. Our online tracking algorithm performs favorably against state-of-the-art trackers on OTB-2015 Benchmark in terms of efficiency, accuracy, and robustness.

  17. Accurate Wind Characterization in Complex Terrain Using the Immersed Boundary Method

    SciTech Connect

    Lundquist, K A; Chow, F K; Lundquist, J K; Kosovic, B

    2009-09-30

    This paper describes an immersed boundary method (IBM) that facilitates the explicit resolution of complex terrain within the Weather Research and Forecasting (WRF) model. Two different interpolation methods, trilinear and inverse distance weighting, are used at the core of the IBM algorithm. Functional aspects of the algorithm's implementation and the accuracy of results are considered. Simulations of flow over a three-dimensional hill with shallow terrain slopes are preformed with both WRF's native terrain-following coordinate and with both IB methods. Comparisons of flow fields from the three simulations show excellent agreement, indicating that both IB methods produce accurate results. However, when ease of implementation is considered, inverse distance weighting is superior. Furthermore, inverse distance weighting is shown to be more adept at handling highly complex urban terrain, where the trilinear interpolation algorithm breaks down. This capability is demonstrated by using the inverse distance weighting core of the IBM to model atmospheric flow in downtown Oklahoma City.

  18. A persistent scatterer interpolation for retrieving accurate ground deformation over InSAR-decorrelated agricultural fields

    NASA Astrophysics Data System (ADS)

    Chen, Jingyi; Zebker, Howard A.; Knight, Rosemary

    2015-11-01

    Interferometric synthetic aperture radar (InSAR) is a radar remote sensing technique for measuring surface deformation to millimeter-level accuracy at meter-scale resolution. Obtaining accurate deformation measurements in agricultural regions is difficult because the signal is often decorrelated due to vegetation growth. We present here a new algorithm for retrieving InSAR deformation measurements over areas with severe vegetation decorrelation using adaptive phase interpolation between persistent scatterer (PS) pixels, those points at which surface scattering properties do not change much over time and thus decorrelation artifacts are minimal. We apply this algorithm to L-band ALOS interferograms acquired over the San Luis Valley, Colorado, and the Tulare Basin, California. In both areas, the pumping of groundwater for irrigation results in deformation of the land that can be detected using InSAR. We show that the PS-based algorithm can significantly reduce the artifacts due to vegetation decorrelation while preserving the deformation signature.

  19. Accurate modeling of switched reluctance machine based on hybrid trained WNN

    SciTech Connect

    Song, Shoujun Ge, Lefei; Ma, Shaojie; Zhang, Man

    2014-04-15

    According to the strong nonlinear electromagnetic characteristics of switched reluctance machine (SRM), a novel accurate modeling method is proposed based on hybrid trained wavelet neural network (WNN) which combines improved genetic algorithm (GA) with gradient descent (GD) method to train the network. In the novel method, WNN is trained by GD method based on the initial weights obtained per improved GA optimization, and the global parallel searching capability of stochastic algorithm and local convergence speed of deterministic algorithm are combined to enhance the training accuracy, stability and speed. Based on the measured electromagnetic characteristics of a 3-phase 12/8-pole SRM, the nonlinear simulation model is built by hybrid trained WNN in Matlab. The phase current and mechanical characteristics from simulation under different working conditions meet well with those from experiments, which indicates the accuracy of the model for dynamic and static performance evaluation of SRM and verifies the effectiveness of the proposed modeling method.

  20. Automatic identification and accurate temporal detection of inhalations in asthma inhaler recordings.

    PubMed

    Holmes, Martin S; Le Menn, Marine; D'Arcy, Shona; Rapcan, Viliam; MacHale, Elaine; Costello, Richard W; Reilly, Richard B

    2012-01-01

    Asthma is chronic airways disease characterized by recurrent attacks of breathlessness and wheezing. Adherence to medication regimes is a common failing for asthmatic patients and there exists a requirement to monitor such patients' adherence. The detection of inhalations from recordings of inhaler use can provide empirical evidence about patients' adherence to their asthma medication regime. Manually listening to recordings of inhaler use is a tedious and time consuming process and thus an algorithm which can automatically and accurately carry out this task would be of great value. This study employs a recording device attached to a commonly used dry powder inhaler to record the acoustic signals of patients taking their prescribed medication. An algorithm was developed to automatically detect and accurately demarcate inhalations from the acoustic signals. This algorithm was tested on a dataset of 255 separate recordings of inhaler use in real world environments. The dataset was obtained from 12 asthma outpatients who attended a respiratory clinic over a three month period. Evaluation of the algorithm on this dataset achieved sensitivity of 95%, specificity of 94% and an accuracy of 89% in detecting inhalations compared to manual inhalation detection.

  1. Enabling user-guided segmentation and tracking of surface-labeled cells in time-lapse image sets of living tissues.

    PubMed

    Mashburn, David N; Lynch, Holley E; Ma, Xiaoyan; Hutson, M Shane

    2012-05-01

    To study the process of morphogenesis, one often needs to collect and segment time-lapse images of living tissues to accurately track changing cellular morphology. This task typically involves segmenting and tracking tens to hundreds of individual cells over hundreds of image frames, a scale that would certainly benefit from automated routines; however, any automated routine would need to reliably handle a large number of sporadic, and yet typical problems (e.g., illumination inconsistency, photobleaching, rapid cell motions, and drift of focus or of cells moving through the imaging plane). Here, we present a segmentation and cell tracking approach based on the premise that users know their data best-interpreting and using image features that are not accounted for in any a priori algorithm design. We have developed a program, SeedWater Segmenter, that combines a parameter-less and fast automated watershed algorithm with a suite of manual intervention tools that enables users with little to no specialized knowledge of image processing to efficiently segment images with near-perfect accuracy based on simple user interactions.

  2. Research on the rapid and accurate positioning and orientation approach for land missile-launching vehicle.

    PubMed

    Li, Kui; Wang, Lei; Lv, Yanhong; Gao, Pengyu; Song, Tianxiao

    2015-10-20

    Getting a land vehicle's accurate position, azimuth and attitude rapidly is significant for vehicle based weapons' combat effectiveness. In this paper, a new approach to acquire vehicle's accurate position and orientation is proposed. It uses biaxial optical detection platform (BODP) to aim at and lock in no less than three pre-set cooperative targets, whose accurate positions are measured beforehand. Then, it calculates the vehicle's accurate position, azimuth and attitudes by the rough position and orientation provided by vehicle based navigation systems and no less than three couples of azimuth and pitch angles measured by BODP. The proposed approach does not depend on Global Navigation Satellite System (GNSS), thus it is autonomous and difficult to interfere. Meanwhile, it only needs a rough position and orientation as algorithm's iterative initial value, consequently, it does not have high performance requirement for Inertial Navigation System (INS), odometer and other vehicle based navigation systems, even in high precise applications. This paper described the system's working procedure, presented theoretical deviation of the algorithm, and then verified its effectiveness through simulation and vehicle experiments. The simulation and experimental results indicate that the proposed approach can achieve positioning and orientation accuracy of 0.2 m and 20″ respectively in less than 3 min.

  3. Symphony: a framework for accurate and holistic WSN simulation.

    PubMed

    Riliskis, Laurynas; Osipov, Evgeny

    2015-02-25

    Research on wireless sensor networks has progressed rapidly over the last decade, and these technologies have been widely adopted for both industrial and domestic uses. Several operating systems have been developed, along with a multitude of network protocols for all layers of the communication stack. Industrial Wireless Sensor Network (WSN) systems must satisfy strict criteria and are typically more complex and larger in scale than domestic systems. Together with the non-deterministic behavior of network hardware in real settings, this greatly complicates the debugging and testing of WSN functionality. To facilitate the testing, validation, and debugging of large-scale WSN systems, we have developed a simulation framework that accurately reproduces the processes that occur inside real equipment, including both hardware- and software-induced delays. The core of the framework consists of a virtualized operating system and an emulated hardware platform that is integrated with the general purpose network simulator ns-3. Our framework enables the user to adjust the real code base as would be done in real deployments and also to test the boundary effects of different hardware components on the performance of distributed applications and protocols. Additionally we have developed a clock emulator with several different skew models and a component that handles sensory data feeds. The new framework should substantially shorten WSN application development cycles.

  4. Accurate de novo design of hyperstable constrained peptides

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Gaurav; Mulligan, Vikram Khipple; Bahl, Christopher D.; Gilmore, Jason M.; Harvey, Peta J.; Cheneval, Olivier; Buchko, Garry W.; Pulavarti, Surya V. S. R. K.; Kaas, Quentin; Eletsky, Alexander; Huang, Po-Ssu; Johnsen, William A.; Greisen, Per, Jr.; Rocklin, Gabriel J.; Song, Yifan; Linsky, Thomas W.; Watkins, Andrew; Rettie, Stephen A.; Xu, Xianzhong; Carter, Lauren P.; Bonneau, Richard; Olson, James M.; Coutsias, Evangelos; Correnti, Colin E.; Szyperski, Thomas; Craik, David J.; Baker, David

    2016-10-01

    Naturally occurring, pharmacologically active peptides constrained with covalent crosslinks generally have shapes that have evolved to fit precisely into binding pockets on their targets. Such peptides can have excellent pharmaceutical properties, combining the stability and tissue penetration of small-molecule drugs with the specificity of much larger protein therapeutics. The ability to design constrained peptides with precisely specified tertiary structures would enable the design of shape-complementary inhibitors of arbitrary targets. Here we describe the development of computational methods for accurate de novo design of conformationally restricted peptides, and the use of these methods to design 18-47 residue, disulfide-crosslinked peptides, a subset of which are heterochiral and/or N-C backbone-cyclized. Both genetically encodable and non-canonical peptides are exceptionally stable to thermal and chemical denaturation, and 12 experimentally determined X-ray and NMR structures are nearly identical to the computational design models. The computational design methods and stable scaffolds presented here provide the basis for development of a new generation of peptide-based drugs.

  5. Symphony: A Framework for Accurate and Holistic WSN Simulation

    PubMed Central

    Riliskis, Laurynas; Osipov, Evgeny

    2015-01-01

    Research on wireless sensor networks has progressed rapidly over the last decade, and these technologies have been widely adopted for both industrial and domestic uses. Several operating systems have been developed, along with a multitude of network protocols for all layers of the communication stack. Industrial Wireless Sensor Network (WSN) systems must satisfy strict criteria and are typically more complex and larger in scale than domestic systems. Together with the non-deterministic behavior of network hardware in real settings, this greatly complicates the debugging and testing of WSN functionality. To facilitate the testing, validation, and debugging of large-scale WSN systems, we have developed a simulation framework that accurately reproduces the processes that occur inside real equipment, including both hardware- and software-induced delays. The core of the framework consists of a virtualized operating system and an emulated hardware platform that is integrated with the general purpose network simulator ns-3. Our framework enables the user to adjust the real code base as would be done in real deployments and also to test the boundary effects of different hardware components on the performance of distributed applications and protocols. Additionally we have developed a clock emulator with several different skew models and a component that handles sensory data feeds. The new framework should substantially shorten WSN application development cycles. PMID:25723144

  6. Progress in fast, accurate multi-scale climate simulations

    SciTech Connect

    Collins, W. D.; Johansen, H.; Evans, K. J.; Woodward, C. S.; Caldwell, P. M.

    2015-06-01

    We present a survey of physical and computational techniques that have the potential to contribute to the next generation of high-fidelity, multi-scale climate simulations. Examples of the climate science problems that can be investigated with more depth with these computational improvements include the capture of remote forcings of localized hydrological extreme events, an accurate representation of cloud features over a range of spatial and temporal scales, and parallel, large ensembles of simulations to more effectively explore model sensitivities and uncertainties. Numerical techniques, such as adaptive mesh refinement, implicit time integration, and separate treatment of fast physical time scales are enabling improved accuracy and fidelity in simulation of dynamics and allowing more complete representations of climate features at the global scale. At the same time, partnerships with computer science teams have focused on taking advantage of evolving computer architectures such as many-core processors and GPUs. As a result, approaches which were previously considered prohibitively costly have become both more efficient and scalable. In combination, progress in these three critical areas is poised to transform climate modeling in the coming decades.

  7. Data fusion for accurate microscopic rough surface metrology.

    PubMed

    Chen, Yuhang

    2016-06-01

    Data fusion for rough surface measurement and evaluation was analyzed on simulated datasets, one with higher density (HD) but lower accuracy and the other with lower density (LD) but higher accuracy. Experimental verifications were then performed on laser scanning microscopy (LSM) and atomic force microscopy (AFM) characterizations of surface areal roughness artifacts. The results demonstrated that the fusion based on Gaussian process models is effective and robust under different measurement biases and noise strengths. All the amplitude, height distribution, and spatial characteristics of the original sample structure can be precisely recovered, with better metrological performance than any individual measurements. As for the influencing factors, the HD noise has a relatively weaker effect as compared with the LD noise. Furthermore, to enable an accurate fusion, the ratio of LD sampling interval to surface autocorrelation length should be smaller than a critical threshold. In general, data fusion is capable of enhancing the nanometrology of rough surfaces by combining efficient LSM measurement and down-sampled fast AFM scan. The accuracy, resolution, spatial coverage and efficiency can all be significantly improved. It is thus expected to have potential applications in development of hybrid microscopy and in surface metrology.

  8. Progress in Fast, Accurate Multi-scale Climate Simulations

    SciTech Connect

    Collins, William D; Johansen, Hans; Evans, Katherine J; Woodward, Carol S.; Caldwell, Peter

    2015-01-01

    We present a survey of physical and computational techniques that have the potential to con- tribute to the next generation of high-fidelity, multi-scale climate simulations. Examples of the climate science problems that can be investigated with more depth include the capture of remote forcings of localized hydrological extreme events, an accurate representation of cloud features over a range of spatial and temporal scales, and parallel, large ensembles of simulations to more effectively explore model sensitivities and uncertainties. Numerical techniques, such as adaptive mesh refinement, implicit time integration, and separate treatment of fast physical time scales are enabling improved accuracy and fidelity in simulation of dynamics and allow more complete representations of climate features at the global scale. At the same time, part- nerships with computer science teams have focused on taking advantage of evolving computer architectures, such as many-core processors and GPUs, so that these approaches which were previously considered prohibitively costly have become both more efficient and scalable. In combination, progress in these three critical areas is poised to transform climate modeling in the coming decades.

  9. Stonehenge: A Simple and Accurate Predictor of Lunar Eclipses

    NASA Astrophysics Data System (ADS)

    Challener, S.

    1999-12-01

    Over the last century, much has been written about the astronomical significance of Stonehenge. The rage peaked in the mid to late 1960s when new computer technology enabled astronomers to make the first complete search for celestial alignments. Because there are hundreds of rocks or holes at Stonehenge and dozens of bright objects in the sky, the quest was fraught with obvious statistical problems. A storm of controversy followed and the subject nearly vanished from print. Only a handful of these alignments remain compelling. Today, few astronomers and still fewer archaeologists would argue that Stonehenge served primarily as an observatory. Instead, Stonehenge probably served as a sacred meeting place, which was consecrated by certain celestial events. These would include the sun's risings and settings at the solstices and possibly some lunar risings as well. I suggest that Stonehenge was also used to predict lunar eclipses. While Hawkins and Hoyle also suggested that Stonehenge was used in this way, their methods are complex and they make use of only early, minor, or outlying areas of Stonehenge. In contrast, I suggest a way that makes use of the imposing, central region of Stonehenge; the area built during the final phase of activity. To predict every lunar eclipse without predicting eclipses that do not occur, I use the less familiar lunar cycle of 47 lunar months. By moving markers about the Sarsen Circle, the Bluestone Circle, and the Bluestone Horseshoe, all umbral lunar eclipses can be predicted accurately.

  10. Turbulence Models for Accurate Aerothermal Prediction in Hypersonic Flows

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang-Hong; Wu, Yi-Zao; Wang, Jiang-Feng

    Accurate description of the aerodynamic and aerothermal environment is crucial to the integrated design and optimization for high performance hypersonic vehicles. In the simulation of aerothermal environment, the effect of viscosity is crucial. The turbulence modeling remains a major source of uncertainty in the computational prediction of aerodynamic forces and heating. In this paper, three turbulent models were studied: the one-equation eddy viscosity transport model of Spalart-Allmaras, the Wilcox k-ω model and the Menter SST model. For the k-ω model and SST model, the compressibility correction, press dilatation and low Reynolds number correction were considered. The influence of these corrections for flow properties were discussed by comparing with the results without corrections. In this paper the emphasis is on the assessment and evaluation of the turbulence models in prediction of heat transfer as applied to a range of hypersonic flows with comparison to experimental data. This will enable establishing factor of safety for the design of thermal protection systems of hypersonic vehicle.

  11. Accurate measurement of liquid transport through nanoscale conduits

    PubMed Central

    Alibakhshi, Mohammad Amin; Xie, Quan; Li, Yinxiao; Duan, Chuanhua

    2016-01-01

    Nanoscale liquid transport governs the behaviour of a wide range of nanofluidic systems, yet remains poorly characterized and understood due to the enormous hydraulic resistance associated with the nanoconfinement and the resulting minuscule flow rates in such systems. To overcome this problem, here we present a new measurement technique based on capillary flow and a novel hybrid nanochannel design and use it to measure water transport through single 2-D hydrophilic silica nanochannels with heights down to 7 nm. Our results show that silica nanochannels exhibit increased mass flow resistance compared to the classical hydrodynamics prediction. This difference increases with decreasing channel height and reaches 45% in the case of 7 nm nanochannels. This resistance increase is attributed to the formation of a 7-angstrom-thick stagnant hydration layer on the hydrophilic surfaces. By avoiding use of any pressure and flow sensors or any theoretical estimations the hybrid nanochannel scheme enables facile and precise flow measurement through single nanochannels, nanotubes, or nanoporous media and opens the prospect for accurate characterization of both hydrophilic and hydrophobic nanofluidic systems. PMID:27112404

  12. Accurate de novo design of hyperstable constrained peptides.

    PubMed

    Bhardwaj, Gaurav; Mulligan, Vikram Khipple; Bahl, Christopher D; Gilmore, Jason M; Harvey, Peta J; Cheneval, Olivier; Buchko, Garry W; Pulavarti, Surya V S R K; Kaas, Quentin; Eletsky, Alexander; Huang, Po-Ssu; Johnsen, William A; Greisen, Per Jr; Rocklin, Gabriel J; Song, Yifan; Linsky, Thomas W; Watkins, Andrew; Rettie, Stephen A; Xu, Xianzhong; Carter, Lauren P; Bonneau, Richard; Olson, James M; Coutsias, Evangelos; Correnti, Colin E; Szyperski, Thomas; Craik, David J; Baker, David

    2016-10-20

    Naturally occurring, pharmacologically active peptides constrained with covalent crosslinks generally have shapes that have evolved to fit precisely into binding pockets on their targets. Such peptides can have excellent pharmaceutical properties, combining the stability and tissue penetration of small-molecule drugs with the specificity of much larger protein therapeutics. The ability to design constrained peptides with precisely specified tertiary structures would enable the design of shape-complementary inhibitors of arbitrary targets. Here we describe the development of computational methods for accurate de novo design of conformationally restricted peptides, and the use of these methods to design 18-47 residue, disulfide-crosslinked peptides, a subset of which are heterochiral and/or N-C backbone-cyclized. Both genetically encodable and non-canonical peptides are exceptionally stable to thermal and chemical denaturation, and 12 experimentally determined X-ray and NMR structures are nearly identical to the computational design models. The computational design methods and stable scaffolds presented here provide the basis for development of a new generation of peptide-based drugs.

  13. An overview of the CATS level 1 processing algorithms and data products

    NASA Astrophysics Data System (ADS)

    Yorks, J. E.; McGill, M. J.; Palm, S. P.; Hlavka, D. L.; Selmer, P. A.; Nowottnick, E. P.; Vaughan, M. A.; Rodier, S. D.; Hart, W. D.

    2016-05-01

    The Cloud-Aerosol Transport System (CATS) is an elastic backscatter lidar that was launched on 10 January 2015 to the International Space Station (ISS). CATS provides both space-based technology demonstrations for future Earth Science missions and operational science measurements. This paper outlines the CATS Level 1 data products and processing algorithms. Initial results and validation data demonstrate the ability to accurately detect optically thin atmospheric layers with 1064 nm nighttime backscatter as low as 5.0E-5 km-1 sr-1. This sensitivity, along with the orbital characteristics of the ISS, enables the use of CATS data for cloud and aerosol climate studies. The near-real-time downlinking and processing of CATS data are unprecedented capabilities and provide data that have applications such as forecasting of volcanic plume transport for aviation safety and aerosol vertical structure that will improve air quality health alerts globally.

  14. Network Enabled Operations: A Canadian Perspective

    DTIC Science & Technology

    2005-05-13

    Decisive: US Naval Institute Proceedings. ** VERDON , J. (2004) Transformation in the CF - People Implications of Effects-Based and Network-Enabled...Operations: A Canadian Perspective (U) 4. AUTHORS (First name, middle initial and last name. If military, show rank, e.g. Maj. John E. Doe.) Michael H

  15. Nanotechnologv Enabled Biological and Chemical Sensors

    NASA Technical Reports Server (NTRS)

    Koehne, Jessica; Meyyappan, M.

    2011-01-01

    Nanotechnology is an enabling technology that will impact almost all economic sectors: one of the most important and with great potential is the health/medical sector. - Nanomaterials for drug delivery - Early warning sensors - Implantable devices - Artificial parts with improved characteristics Carbon nanotubes and nanofibers show promise for use in sensor development, electrodes and other biomedical applications.

  16. School Bureaucracies That Work: Enabling, Not Coercive.

    ERIC Educational Resources Information Center

    Hoy, Wayne K.; Sweetland, Scott R.

    2000-01-01

    Attempts to reconcile two theoretically opposing perspectives of bureaucracy (as either alienating or facilitative) by creating and testing a new construct called "enabling bureaucracy." Empirical results are encouraging. Schools can be designed with formalized procedures and hierarchical structures that help rather than hinder teaching and…

  17. ICT-Enabled Learning: The Student Perspective

    ERIC Educational Resources Information Center

    Scott, Geoff; Grebennikov, Leonid; Gozzard, Terry

    2009-01-01

    This research seeks to contribute to current discussions in Australian higher education on how best to deploy ICT-enabled learning. Its particular focus is on examining the qualitative data from students on their experience of using Information and Communication Technologies (ICT) at one college in an Australian university. In total, about 71,240…

  18. Enabling a Comprehensive Teaching Strategy: Video Lectures

    ERIC Educational Resources Information Center

    Brecht, H. David; Ogilby, Suzanne M.

    2008-01-01

    This study empirically tests the feasibility and effectiveness of video lectures as a form of video instruction that enables a comprehensive teaching strategy used throughout a traditional classroom course. It examines student use patterns and the videos' effects on student learning, using qualitative and nonparametric statistical analyses of…

  19. Action Learning: Avoiding Conflict or Enabling Action

    ERIC Educational Resources Information Center

    Corley, Aileen; Thorne, Ann

    2006-01-01

    Action learning is based on the premise that action and learning are inextricably entwined and it is this potential, to enable action, which has contributed to the growth of action learning within education and management development programmes. However has this growth in action learning lead to an evolution or a dilution of Revan's classical…

  20. Safely Enabling Low-Altitude Airspace Operations

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal

    2015-01-01

    Near-term Goal: Enable initial low-altitude airspace and UAS operations with demonstrated safety as early as possible, within 5 years. Long-term Goal: Accommodate increased UAS operations with highest safety, efficiency, and capacity as much autonomously as possible (10-15 years).