Genetic Algorithm (GA)-Based Inclinometer Layout Optimization.
Liang, Weijie; Zhang, Ping; Chen, Xianping; Cai, Miao; Yang, Daoguo
2015-04-17
This paper presents numerical simulation results of an airflow inclinometer with sensitivity studies and thermal optimization of the printed circuit board (PCB) layout for an airflow inclinometer based on a genetic algorithm (GA). Due to the working principle of the gas sensor, the changes of the ambient temperature may cause dramatic voltage drifts of sensors. Therefore, eliminating the influence of the external environment for the airflow is essential for the performance and reliability of an airflow inclinometer. In this paper, the mechanism of an airflow inclinometer and the influence of different ambient temperatures on the sensitivity of the inclinometer will be examined by the ANSYS-FLOTRAN CFD program. The results show that with changes of the ambient temperature on the sensing element, the sensitivity of the airflow inclinometer is inversely proportional to the ambient temperature and decreases when the ambient temperature increases. GA is used to optimize the PCB thermal layout of the inclinometer. The finite-element simulation method (ANSYS) is introduced to simulate and verify the results of our optimal thermal layout, and the results indicate that the optimal PCB layout greatly improves (by more than 50%) the sensitivity of the inclinometer. The study may be useful in the design of PCB layouts that are related to sensitivity improvement of gas sensors.
Genetic Algorithm (GA)-Based Inclinometer Layout Optimization
Liang, Weijie; Zhang, Ping; Chen, Xianping; Cai, Miao; Yang, Daoguo
2015-01-01
This paper presents numerical simulation results of an airflow inclinometer with sensitivity studies and thermal optimization of the printed circuit board (PCB) layout for an airflow inclinometer based on a genetic algorithm (GA). Due to the working principle of the gas sensor, the changes of the ambient temperature may cause dramatic voltage drifts of sensors. Therefore, eliminating the influence of the external environment for the airflow is essential for the performance and reliability of an airflow inclinometer. In this paper, the mechanism of an airflow inclinometer and the influence of different ambient temperatures on the sensitivity of the inclinometer will be examined by the ANSYS-FLOTRAN CFD program. The results show that with changes of the ambient temperature on the sensing element, the sensitivity of the airflow inclinometer is inversely proportional to the ambient temperature and decreases when the ambient temperature increases. GA is used to optimize the PCB thermal layout of the inclinometer. The finite-element simulation method (ANSYS) is introduced to simulate and verify the results of our optimal thermal layout, and the results indicate that the optimal PCB layout greatly improves (by more than 50%) the sensitivity of the inclinometer. The study may be useful in the design of PCB layouts that are related to sensitivity improvement of gas sensors. PMID:25897500
ASMiGA: an archive-based steady-state micro genetic algorithm.
Nag, Kaustuv; Pal, Tandra; Pal, Nikhil R
2015-01-01
We propose a new archive-based steady-state micro genetic algorithm (ASMiGA). In this context, a new archive maintenance strategy is proposed, which maintains a set of nondominated solutions in the archive unless the archive size falls below a minimum allowable size. It makes the archive size adaptive and dynamic. We have proposed a new environmental selection strategy and a new mating selection strategy. The environmental selection strategy reduces the exploration in less probable objective spaces. The mating selection increases searching in more probable search regions by enhancing the exploitation of existing solutions. A new crossover strategy DE-3 is proposed here. ASMiGA is compared with five well-known multiobjective optimization algorithms of different types-generational evolutionary algorithms (SPEA2 and NSGA-II), archive-based hybrid scatter search, decomposition-based evolutionary approach, and archive-based micro genetic algorithm. For comparison purposes, four performance measures (HV, GD, IGD, and GS) are used on 33 test problems, of which seven problems are constrained. The proposed algorithm outperforms the other five algorithms.
NASA Astrophysics Data System (ADS)
Djeffal, F.; Lakhdar, N.; Meguellati, M.; Benhaya, A.
2009-09-01
The analytical modeling of electron mobility in wurtzite Gallium Nitride (GaN) requires several simplifying assumptions, generally necessary to lead to compact expressions of electron transport characteristics for GaN-based devices. Further progress in the development, design and optimization of GaN-based devices necessarily requires new theory and modeling tools in order to improve the accuracy and the computational time of devices simulators. Recently, the evolutionary techniques, genetic algorithms ( GA) and particle swarm optimization ( PSO), have attracted considerable attention among various heuristic optimization techniques. In this paper, a particle swarm optimizer is implemented and compared to a genetic algorithm for modeling and optimization of new closed electron mobility model for GaN-based devices design. The performance of both optimization techniques in term of computational time and convergence rate is also compared. Further, our obtained results for both techniques ( PSO and GA) are tested and compared with numerical data (Monte Carlo simulations) where a good agreement has been found for wide range of temperature, doping and applied electric field. The developed analytical models can also be incorporated into the circuits simulators to study GaN-based devices without impact on the computational time and data storage.
Chen, Bor-Sen; Chen, Po-Wei
2010-01-01
In the past decade, the development of synthetic gene networks has attracted much attention from many researchers. In particular, the genetic oscillator known as the repressilator has become a paradigm for how to design a gene network with a desired dynamic behaviour. Even though the repressilator can show oscillatory properties in its protein concentrations, their amplitudes, frequencies and phases are perturbed by the kinetic parametric fluctuations (intrinsic molecular perturbations) and external disturbances (extrinsic molecular noises) of the environment. Therefore, how to design a robust genetic oscillator with desired amplitude, frequency and phase under stochastic intrinsic and extrinsic molecular noises is an important topic for synthetic biology. In this study, based on periodic reference signals with arbitrary amplitudes, frequencies and phases, a robust synthetic gene oscillator is designed by tuning the kinetic parameters of repressilator via a genetic algorithm (GA) so that the protein concentrations can track the desired periodic reference signals under intrinsic and extrinsic molecular noises. GA is a stochastic optimization algorithm which was inspired by the mechanisms of natural selection and evolution genetics. By the proposed GA-based design algorithm, the repressilator can track the desired amplitude, frequency and phase of oscillation under intrinsic and extrinsic noises through the optimization of fitness function. The proposed GA-based design algorithm can mimic the natural selection in evolutionary process to select adequate kinetic parameters for robust genetic oscillators. The design method can be easily extended to any synthetic gene network design with prescribed behaviours. PMID:20535234
A hybrid algorithm with GA and DAEM
NASA Astrophysics Data System (ADS)
Wan, HongJie; Deng, HaoJiang; Wang, XueWei
2013-03-01
Although the expectation-maximization (EM) algorithm has been widely used for finding maximum likelihood estimation of parameters in probabilistic models, it has the problem of trapping by local maxima. To overcome this problem, the deterministic annealing EM (DAEM) algorithm was once proposed and had achieved better performance than EM algorithm, but it is not very effective at avoiding local maxima. In this paper, a solution is proposed by integrating GA and DAEM into one procedure to further improve the solution quality. The population based search of genetic algorithm will produce different solutions and thus can increase the search space of DAEM. Therefore, the proposed algorithm will reach better solution than just using DAEM. The algorithm retains the property of DAEM and gets the better solution by genetic operation. Experiment results on Gaussian mixture model parameter estimation demonstrate that the proposed algorithm can achieve better performance.
Chen, Hong-Yan; Zhao, Geng-Xing; Li, Xi-Can; Wang, Xiang-Feng; Li, Yu-Ling
2013-11-01
Taking the Qihe County in Shandong Province of East China as the study area, soil samples were collected from the field, and based on the hyperspectral reflectance measurement of the soil samples and the transformation with the first deviation, the spectra were denoised and compressed by discrete wavelet transform (DWT), the variables for the soil alkali hydrolysable nitrogen quantitative estimation models were selected by genetic algorithms (GA), and the estimation models for the soil alkali hydrolysable nitrogen content were built by using partial least squares (PLS) regression. The discrete wavelet transform and genetic algorithm in combining with partial least squares (DWT-GA-PLS) could not only compress the spectrum variables and reduce the model variables, but also improve the quantitative estimation accuracy of soil alkali hydrolysable nitrogen content. Based on the 1-2 levels low frequency coefficients of discrete wavelet transform, and under the condition of large scale decrement of spectrum variables, the calibration models could achieve the higher or the same prediction accuracy as the soil full spectra. The model based on the second level low frequency coefficients had the highest precision, with the model predicting R2 being 0.85, the RMSE being 8.11 mg x kg(-1), and RPD being 2.53, indicating the effectiveness of DWT-GA-PLS method in estimating soil alkali hydrolysable nitrogen content.
Pérez-Castillo, Yunierkis; Lazar, Cosmin; Taminau, Jonatan; Froeyen, Mathy; Cabrera-Pérez, Miguel Ángel; Nowé, Ann
2012-09-24
Computer-aided drug design has become an important component of the drug discovery process. Despite the advances in this field, there is not a unique modeling approach that can be successfully applied to solve the whole range of problems faced during QSAR modeling. Feature selection and ensemble modeling are active areas of research in ligand-based drug design. Here we introduce the GA(M)E-QSAR algorithm that combines the search and optimization capabilities of Genetic Algorithms with the simplicity of the Adaboost ensemble-based classification algorithm to solve binary classification problems. We also explore the usefulness of Meta-Ensembles trained with Adaboost and Voting schemes to further improve the accuracy, generalization, and robustness of the optimal Adaboost Single Ensemble derived from the Genetic Algorithm optimization. We evaluated the performance of our algorithm using five data sets from the literature and found that it is capable of yielding similar or better classification results to what has been reported for these data sets with a higher enrichment of active compounds relative to the whole actives subset when only the most active chemicals are considered. More important, we compared our methodology with state of the art feature selection and classification approaches and found that it can provide highly accurate, robust, and generalizable models. In the case of the Adaboost Ensembles derived from the Genetic Algorithm search, the final models are quite simple since they consist of a weighted sum of the output of single feature classifiers. Furthermore, the Adaboost scores can be used as ranking criterion to prioritize chemicals for synthesis and biological evaluation after virtual screening experiments.
NASA Astrophysics Data System (ADS)
Su, Xiaoru; Shu, Longcang; Chen, Xunhong; Lu, Chengpeng; Wen, Zhonghui
2016-12-01
Interactions between surface waters and groundwater are of great significance for evaluating water resources and protecting ecosystem health. Heat as a tracer method is widely used in determination of the interactive exchange with high precision, low cost and great convenience. The flow in a river-bank cross-section occurs in vertical and lateral directions. In order to depict the flow path and its spatial distribution in bank areas, a genetic algorithm (GA) two-dimensional (2-D) heat-transport nested-loop method for variably saturated sediments, GA-VS2DH, was developed based on Microsoft Visual Basic 6.0. VS2DH was applied to model a 2-D bank-water flow field and GA was used to calibrate the model automatically by minimizing the difference between observed and simulated temperatures in bank areas. A hypothetical model was developed to assess the reliability of GA-VS2DH in inverse modeling in a river-bank system. Some benchmark tests were conducted to recognize the capability of GA-VS2DH. The results indicated that the simulated seepage velocity and parameters associated with GA-VS2DH were acceptable and reliable. Then GA-VS2DH was applied to two field sites in China with different sedimentary materials, to verify the reliability of the method. GA-VS2DH could be applied in interpreting the cross-sectional 2-D water flow field. The estimates of horizontal hydraulic conductivity at the Dawen River and Qinhuai River sites are 1.317 and 0.015 m/day, which correspond to sand and clay sediment in the two sites, respectively.
RCQ-GA: RDF Chain Query Optimization Using Genetic Algorithms
NASA Astrophysics Data System (ADS)
Hogenboom, Alexander; Milea, Viorel; Frasincar, Flavius; Kaymak, Uzay
The application of Semantic Web technologies in an Electronic Commerce environment implies a need for good support tools. Fast query engines are needed for efficient querying of large amounts of data, usually represented using RDF. We focus on optimizing a special class of SPARQL queries, the so-called RDF chain queries. For this purpose, we devise a genetic algorithm called RCQ-GA that determines the order in which joins need to be performed for an efficient evaluation of RDF chain queries. The approach is benchmarked against a two-phase optimization algorithm, previously proposed in literature. The more complex a query is, the more RCQ-GA outperforms the benchmark in solution quality, execution time needed, and consistency of solution quality. When the algorithms are constrained by a time limit, the overall performance of RCQ-GA compared to the benchmark further improves.
Genetic algorithm-based form error evaluation
NASA Astrophysics Data System (ADS)
Cui, Changcai; Li, Bing; Huang, Fugui; Zhang, Rencheng
2007-07-01
Form error evaluation of geometrical products is a nonlinear optimization problem, for which a solution has been attempted by different methods with some complexity. A genetic algorithm (GA) was developed to deal with the problem, which was proved simple to understand and realize, and its key techniques have been investigated in detail. Firstly, the fitness function of GA was discussed emphatically as a bridge between GA and the concrete problems to be solved. Secondly, the real numbers-based representation of the desired solutions in the continual space optimization problem was discussed. Thirdly, many improved evolutionary strategies of GA were described on emphasis. These evolutionary strategies were the selection operation of 'odd number selection plus roulette wheel selection', the crossover operation of 'arithmetic crossover between near relatives and far relatives' and the mutation operation of 'adaptive Gaussian' mutation. After evolutions from generation to generation with the evolutionary strategies, the initial population produced stochastically around the least-squared solutions of the problem would be updated and improved iteratively till the best chromosome or individual of GA appeared. Finally, some examples were given to verify the evolutionary method. Experimental results show that the GA-based method can find desired solutions that are superior to the least-squared solutions except for a few examples in which the GA-based method can obtain similar results to those by the least-squared method. Compared with other optimization techniques, the GA-based method can obtain almost equal results but with less complicated models and computation time.
1989-06-01
Levinshtein and V . E . Chelnokov , "Subnanosecond tum-on of gallium arsenide thyristors," Sov. Tech. Phys. Lett., vol. 12, pp. 383-384, 1986; and...Angeles, California 90024 Abstract: A study of bipolar junction thyristors based on GaAs and AlGaAs materials for pulsed power switching applications is...related III- V heterostructures can be made to exhibit subnanosecond current rise-times under pulse power conditions, and thus should be considered
Genetic-based EM algorithm for learning Gaussian mixture models.
Pernkopf, Franz; Bouchaffra, Djamel
2005-08-01
We propose a genetic-based expectation-maximization (GA-EM) algorithm for learning Gaussian mixture models from multivariate data. This algorithm is capable of selecting the number of components of the model using the minimum description length (MDL) criterion. Our approach benefits from the properties of Genetic algorithms (GA) and the EM algorithm by combination of both into a single procedure. The population-based stochastic search of the GA explores the search space more thoroughly than the EM method. Therefore, our algorithm enables escaping from local optimal solutions since the algorithm becomes less sensitive to its initialization. The GA-EM algorithm is elitist which maintains the monotonic convergence property of the EM algorithm. The experiments on simulated and real data show that the GA-EM outperforms the EM method since: 1) We have obtained a better MDL score while using exactly the same termination condition for both algorithms. 2) Our approach identifies the number of components which were used to generate the underlying data more often than the EM algorithm.
NASA Astrophysics Data System (ADS)
Nakamura, Shuji
1998-08-01
Continuous-wave operation of InGaN multi-quantum-well (MQW) structure laser diodes (LDs) has been demonstrated at room temperature with output power up to 50 mW, operating temperature up to 100oC, emission wavelength of 400-420 nm, and a lifetime up to 300 h. InGaN MQW LDs with a lifetime of more than 1000 h are expected soon. Commercialization will begin in 1998 if research on the bluish-purple InGaN-based laser diodes continues to progress. The stimulated emission of the InGaN-based LDs originates from localized energy states of 100-250 meV depth, which are equivalent to quantum dot energy states, probably arising from from InGaN composition fluctuation in the InGaN well layers.
Ameliorated GA approach for base station planning
NASA Astrophysics Data System (ADS)
Wang, Andong; Sun, Hongyue; Wu, Xiaomin
2011-10-01
In this paper, we aim at locating base station (BS) rationally to satisfy the most customs by using the least BSs. An ameliorated GA is proposed to search for the optimum solution. In the algorithm, we mesh the area to be planned according to least overlap length derived from coverage radius, bring into isometric grid encoding method to represent BS distribution as well as its number and develop select, crossover and mutation operators to serve our unique necessity. We also construct our comprehensive object function after synthesizing coverage ratio, overlap ratio, population and geographical conditions. Finally, after importing an electronic map of the area to be planned, a recommended strategy draft would be exported correspondingly. We eventually import HongKong, China to simulate and yield a satisfactory solution.
Adaptive phase aberration correction based on imperialist competitive algorithm.
Yazdani, R; Hajimahmoodzadeh, M; Fallah, H R
2014-01-01
We investigate numerically the feasibility of phase aberration correction in a wavefront sensorless adaptive optical system, based on the imperialist competitive algorithm (ICA). Considering a 61-element deformable mirror (DM) and the Strehl ratio as the cost function of ICA, this algorithm is employed to search the optimum surface profile of DM for correcting the phase aberrations in a solid-state laser system. The correction results show that ICA is a powerful correction algorithm for static or slowly changing phase aberrations in optical systems, such as solid-state lasers. The correction capability and the convergence speed of this algorithm are compared with those of the genetic algorithm (GA) and stochastic parallel gradient descent (SPGD) algorithm. The results indicate that these algorithms have almost the same correction capability. Also, ICA and GA are almost the same in convergence speed and SPGD is the fastest of these algorithms.
State diagnostics of RTD based on nanoscale multilayered AlGaAs heterostructures
NASA Astrophysics Data System (ADS)
Makeev, M. O.; Meshkov, S. A.; Sinyakin, V. Yu
2016-08-01
In the present work the problems of technical diagnostics of RTD based on nanoscale multilayered AlGaAs heterostructures are being solved. The technique and the algorithms of RTD functionality region developing are being considered.
apGA: An adaptive parallel genetic algorithm
Liepins, G.E. ); Baluja, S. )
1991-01-01
We develop apGA, a parallel variant of the standard generational GA, that combines aggressive search with perpetual novelty, yet is able to preserve enough genetic structure to optimally solve variably scaled, non-uniform block deceptive and hierarchical deceptive problems. apGA combines elitism, adaptive mutation, adaptive exponential scaling, and temporal memory. We present empirical results for six classes of problems, including the DeJong test suite. Although we have not investigated hybrids, we note that apGA could be incorporated into other recent GA variants such as GENITOR, CHC, and the recombination stage of mGA. 12 refs., 2 figs., 2 tabs.
Fisz, Jacek J
2006-12-07
The optimization approach based on the genetic algorithm (GA) combined with multiple linear regression (MLR) method, is discussed. The GA-MLR optimizer is designed for the nonlinear least-squares problems in which the model functions are linear combinations of nonlinear functions. GA optimizes the nonlinear parameters, and the linear parameters are calculated from MLR. GA-MLR is an intuitive optimization approach and it exploits all advantages of the genetic algorithm technique. This optimization method results from an appropriate combination of two well-known optimization methods. The MLR method is embedded in the GA optimizer and linear and nonlinear model parameters are optimized in parallel. The MLR method is the only one strictly mathematical "tool" involved in GA-MLR. The GA-MLR approach simplifies and accelerates considerably the optimization process because the linear parameters are not the fitted ones. Its properties are exemplified by the analysis of the kinetic biexponential fluorescence decay surface corresponding to a two-excited-state interconversion process. A short discussion of the variable projection (VP) algorithm, designed for the same class of the optimization problems, is presented. VP is a very advanced mathematical formalism that involves the methods of nonlinear functionals, algebra of linear projectors, and the formalism of Fréchet derivatives and pseudo-inverses. Additional explanatory comments are added on the application of recently introduced the GA-NR optimizer to simultaneous recovery of linear and weakly nonlinear parameters occurring in the same optimization problem together with nonlinear parameters. The GA-NR optimizer combines the GA method with the NR method, in which the minimum-value condition for the quadratic approximation to chi(2), obtained from the Taylor series expansion of chi(2), is recovered by means of the Newton-Raphson algorithm. The application of the GA-NR optimizer to model functions which are multi
Saborido, Rubén; Ruiz, Ana B; Luque, Mariano
2016-02-08
In this article, we propose a new evolutionary algorithm for multiobjective optimization called Global WASF-GA (global weighting achievement scalarizing function genetic algorithm), which falls within the aggregation-based evolutionary algorithms. The main purpose of Global WASF-GA is to approximate the whole Pareto optimal front. Its fitness function is defined by an achievement scalarizing function (ASF) based on the Tchebychev distance, in which two reference points are considered (both utopian and nadir objective vectors) and the weight vector used is taken from a set of weight vectors whose inverses are well-distributed. At each iteration, all individuals are classified into different fronts. Each front is formed by the solutions with the lowest values of the ASF for the different weight vectors in the set, using the utopian vector and the nadir vector as reference points simultaneously. Varying the weight vector in the ASF while considering the utopian and the nadir vectors at the same time enables the algorithm to obtain a final set of nondominated solutions that approximate the whole Pareto optimal front. We compared Global WASF-GA to MOEA/D (different versions) and NSGA-II in two-, three-, and five-objective problems. The computational results obtained permit us to conclude that Global WASF-GA gets better performance, regarding the hypervolume metric and the epsilon indicator, than the other two algorithms in many cases, especially in three- and five-objective problems.
[Image reconstruction in electrical impedance tomography based on genetic algorithm].
Hou, Weidong; Mo, Yulong
2003-03-01
Image reconstruction in electrical impedance tomography (EIT) is a highly ill-posed, non-linear inverse problem. The modified Newton-Raphson (MNR) iteration algorithm is deduced from the strictest theoretic analysis. It is an optimization algorithm based on minimizing the object function. The MNR algorithm with regularization technique is usually not stable, due to the serious image reconstruction model error and measurement noise. So the reconstruction precision is not high when used in static EIT. A new static image reconstruction method for EIT based on genetic algorithm (GA-EIT) is proposed in this paper. The experimental results indicate that the performance (including stability, the precision and space resolution in reconstructing the static EIT image) of the GA-EIT algorithm is better than that of the MNR algorithm.
GA-based stable control for a class of underactuated mechanical systems
NASA Astrophysics Data System (ADS)
Liu, Diantong; Guo, Weiping; Yi, Jianqiang
2005-12-01
A nonlinear dynamic model of a class of underactuated mechanical systems was built using the Lagrangian method. Some system properties such as the system passivity were analyzed. A GA(Genetic Algorithms)-based stable control algorithm was proposed for the class of underactuated mechanical systems. The Lyapunov stability theory and system properties were utilized to guarantee the system's asymptotic stability to its equilibrium. A real-valued GA was used to adjust the parameters of a stable controller to improve the system performance. An underactuated double-pendulum-type overhead crane system is used to validate the proposed control algorithm. Simulation results illustrate the validity of proposed control algorithm under different conditions.
Bell-Curve Based Evolutionary Optimization Algorithm
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, J.; Laba, K.; Kincaid, R.
1998-01-01
The paper presents an optimization algorithm that falls in the category of genetic, or evolutionary algorithms. While the bit exchange is the basis of most of the Genetic Algorithms (GA) in research and applications in America, some alternatives, also in the category of evolutionary algorithms, but use a direct, geometrical approach have gained popularity in Europe and Asia. The Bell-Curve Based Evolutionary Algorithm (BCB) is in this alternative category and is distinguished by the use of a combination of n-dimensional geometry and the normal distribution, the bell-curve, in the generation of the offspring. The tool for creating a child is a geometrical construct comprising a line connecting two parents and a weighted point on that line. The point that defines the child deviates from the weighted point in two directions: parallel and orthogonal to the connecting line, the deviation in each direction obeying a probabilistic distribution. Tests showed satisfactory performance of BCB. The principal advantage of BCB is its controllability via the normal distribution parameters and the geometrical construct variables.
All-optical modulator cells based on AlGaAs/GaAs/InGaAs 905-nm laser heterostructures
NASA Astrophysics Data System (ADS)
Podoskin, A. A.; Shashkin, I. S.; Slipchenko, S. O.; Pikhtin, N. A.; Tarasov, I. S.
2017-01-01
All-optical cells based on AlGaAs/GaAs/InGaAs laser heterostructures for a 905-nm wavelength have been developed, which operate in the regime of optical-power modulation by means of controlled generation switching between the Fabry-Perot cavity modes and high-Q closed mode. At a modulated power of 1.6 W, a mode-switching time of 1.2 ns and smaller is achieved.
NASA Astrophysics Data System (ADS)
Sugaya, T.; Takeda, A.; Oshima, R.; Matsubara, K.; Niki, S.; Okano, Y.
2012-09-01
We report InGaP-based multistacked InGaAs quantum dot (QD) solar cells with GaAs spacer layers. We obtain a highly stacked and well-aligned InGaAs QD structure with GaAs spacer layers in an InGaP matrix grown by solid-source molecular beam epitaxy. The photoluminescence intensity of the InGaAs QDs in the InGaP matrix increases as the number of QD layers increases, which indicates the growth of a high-quality InGaP-based multistacked InGaAs QD structure. The short-circuit current density and the conversion efficiency of the InGaP-based QD solar cells increase as the number of InGaAs QD layers increases.
FOX-GA: a genetic algorithm for generating and analyzing battlefield courses of action.
Schlabach, J L; Hayes, C C; Goldberg, D E
1999-01-01
This paper describes FOX-GA, a genetic algorithm (GA) that generates and evaluates plans in the complex domain of military maneuver planning. FOX-GA's contributions are to demonstrate an effective application of GA technology to a complex real world planning problem, and to provide an understanding of the properties needed in a GA solution to meet the challenges of decision support in complex domains. Previous obstacles to applying GA technology to maneuver planning include the lack of efficient algorithms for determining the fitness of plans. Detailed simulations would ideally be used to evaluate these plans, but most such simulations typically require several hours to assess a single plan. Since a GA needs to quickly generate and evaluate thousands of plans, these methods are too slow. To solve this problem we developed an efficient evaluator (wargamer) that uses course-grained representations of this problem domain to allow appropriate yet intelligent trade-offs between computational efficiency and accuracy. An additional challenge was that users needed a diverse set of significantly different plan options from which to choose. Typical GA's tend to develop a group of "best" solutions that may be very similar (or identical) to each other. This may not provide users with sufficient choice. We addressed this problem by adding a niching strategy to the selection mechanism to insure diversity in the solution set, providing users with a more satisfactory range of choices. FOX-GA's impact will be in providing decision support to time constrained and cognitively overloaded battlestaff to help them rapidly explore options, create plans, and better cope with the information demands of modern warfare.
NASA Astrophysics Data System (ADS)
Lingrong, Jiang; Jianping, Liu; Aiqin, Tian; Yang, Cheng; Zengcheng, Li; Liqun, Zhang; Shuming, Zhang; Deyao, Li; Ikeda, M.; Hui, Yang
2016-11-01
Recently, many groups have focused on the development of GaN-based green LDs to meet the demand for laser display. Great progresses have been achieved in the past few years even that many challenges exist. In this article, we analysis the challenges to develop GaN-based green LDs, and then the approaches to improve the green LD structure in the aspect of crystalline quality, electrical properties, and epitaxial layer structure are reviewed, especially the work we have done. Project supported by the National Key Research and Development Progress of China (Nos. 2016YFB0401803, 2016YFB0402002), the National Natural Science Foundation of China (Nos. 61574160, 61334005), the Strategic Priority Research Program of the Chinese Academy of Science (No. XDA09020401), and the Science and Technology Support Project of Jiangsu Province (No. BE2013007).
The royal road for genetic algorithms: Fitness landscapes and GA performance
Mitchell, M.; Holland, J.H. ); Forrest, S. . Dept. of Computer Science)
1991-01-01
Genetic algorithms (GAs) play a major role in many artificial-life systems, but there is often little detailed understanding of why the GA performs as it does, and little theoretical basis on which to characterize the types of fitness landscapes that lead to successful GA performance. In this paper we propose a strategy for addressing these issues. Our strategy consists of defining a set of features of fitness landscapes that are particularly relevant to the GA, and experimentally studying how various configurations of these features affect the GA's performance along a number of dimensions. In this paper we informally describe an initial set of proposed feature classes, describe in detail one such class ( Royal Road'' functions), and present some initial experimental results concerning the role of crossover and building blocks'' on landscapes constructed from features of this class. 27 refs., 1 fig., 5 tabs.
DeMAID/GA USER'S GUIDE Design Manager's Aid for Intelligent Decomposition with a Genetic Algorithm
NASA Technical Reports Server (NTRS)
Rogers, James L.
1996-01-01
Many companies are looking for new tools and techniques to aid a design manager in making decisions that can reduce the time and cost of a design cycle. One tool that is available to aid in this decision making process is the Design Manager's Aid for Intelligent Decomposition (DeMAID). Since the initial release of DEMAID in 1989, numerous enhancements have been added to aid the design manager in saving both cost and time in a design cycle. The key enhancement is a genetic algorithm (GA) and the enhanced version is called DeMAID/GA. The GA orders the sequence of design processes to minimize the cost and time to converge to a solution. These enhancements as well as the existing features of the original version of DEMAID are described. Two sample problems are used to show how these enhancements can be applied to improve the design cycle. This report serves as a user's guide for DeMAID/GA.
Genetic Algorithm based Decentralized PI Type Controller: Load Frequency Control
NASA Astrophysics Data System (ADS)
Dwivedi, Atul; Ray, Goshaidas; Sharma, Arun Kumar
2016-12-01
This work presents a design of decentralized PI type Linear Quadratic (LQ) controller based on genetic algorithm (GA). The proposed design technique allows considerable flexibility in defining the control objectives and it does not consider any knowledge of the system matrices and moreover it avoids the solution of algebraic Riccati equation. To illustrate the results of this work, a load-frequency control problem is considered. Simulation results reveal that the proposed scheme based on GA is an alternative and attractive approach to solve load-frequency control problem from both performance and design point of views.
Characteristics study of 2DEG transport properties of AlGaN/GaN and AlGaAs/GaAs-based HEMT
Lenka, T. R. Panda, A. K.
2011-05-15
Growth of wide bandgap material over narrow bandgap material, results into a two dimensional electron gas (2DEG) at the heterointerface due to the conduction band discontinuity. In this paper the 2DEG transport properties of AlGaN/GaN-based high electron mobility transistor (HEMT) is discussed and its effect on various characteristics such as 2DEG density, C-V characteristics and Sheet resistances for different mole fractions are presented. The obtained results are also compared with AlGaAs/GaAs-based HEMT for the same structural parameter as like AlGaN/GaN-based HEMT. The calculated results of electron sheet concentration as a function of the Al mole fraction are in excellent agreement with some experimental data available in the literature.
Hybrid binary GA-EDA algorithms for complex “black-box” optimization problems
NASA Astrophysics Data System (ADS)
Sopov, E.
2017-02-01
Genetic Algorithms (GAs) have proved their efficiency solving many complex optimization problems. GAs can be also applied for “black-box” problems, because they realize the “blind” search and do not require any specific information about features of search space and objectives. It is clear that a GA uses the “Trial-and-Error” strategy to explorer search space, and collects some statistical information that is stored in the form of genes in the population. Estimation of Distribution Algorithms (EDA) have very similar realization as GAs, but use an explicit representation of search experience in the form of the statistical probabilities distribution. In this study we discus some approaches for improving the standard GA performance by combining the binary GA with EDA. Finally, a novel approach for the large-scale global optimization is proposed. The experimental results and comparison with some well-studied techniques are presented and discussed.
68Ga-Based radiopharmaceuticals: production and application relationship.
Velikyan, Irina
2015-07-16
The contribution of 68Ga to the promotion and expansion of clinical research and routine positron emission tomography (PET) for earlier better diagnostics and individualized medicine is considerable. The potential applications of 68Ga-comprising imaging agents include targeted, pre-targeted and non-targeted imaging. This review discusses the key aspects of the production of 68Ga and 68Ga-based radiopharmaceuticals in the light of the impact of regulatory requirements and endpoint pre-clinical and clinical applications.
NASA Astrophysics Data System (ADS)
Mintairov, S. A.; Kalyuzhnyy, N. A.; Maximov, M. V.; Nadtochiy, A. M.; Zhukov, A. E.
2017-01-01
MOCVD-grown GaAs single-junction solar cells (SC) with quantum well-dots (QWD) were fabricated and tested. The QWD were formed by the deposition of In0.4Ga0.6As layers separated with GaAs spacers. A remarkable improvement of photocurrent was achieved and the reduction of open-circuit voltage was partly suppressed by decreasing the spacers’ growth rate as well as increasing their thickness up to 40 nm. Based on the experimentally obtained characteristics of these single-junction SCs we estimated that using QWD media in the middle (GaAs-based) subcell can provide 1 abs. %, increasing the efficiency of the triple-junction GaInP/GaAs/Ge SCs.
Thermodynamic properties of gadolinium in Ga-Sn and Ga-Zn eutectic based alloys
NASA Astrophysics Data System (ADS)
Maltsev, Dmitry S.; Volkovich, Vladimir A.; Yamshchikov, Leonid F.; Chukin, Andrey V.
2016-09-01
Thermodynamic properties of gadolinium in Ga-Sn and Ga-Zn eutectic based alloys were studied. Temperature dependences of gadolinium activity in the studied alloys were determined at 573-1073 K employing the EMF method. Solubility of gadolinium in the Ga-Sn and Ga-Zn alloys was measured at 462-1073 K using IMCs sedimentation method. Activity coefficients as well as partial and excess thermodynamic functions of gadolinium in the studied alloys were calculated on the basis of the obtained experimental data.
Identification of handwriting by using the genetic algorithm (GA) and support vector machine (SVM)
NASA Astrophysics Data System (ADS)
Zhang, Qigui; Deng, Kai
2016-12-01
As portable digital camera and a camera phone comes more and more popular, and equally pressing is meeting the requirements of people to shoot at any time, to identify and storage handwritten character. In this paper, genetic algorithm(GA) and support vector machine(SVM)are used for identification of handwriting. Compare with parameters-optimized method, this technique overcomes two defects: first, it's easy to trap in the local optimum; second, finding the best parameters in the larger range will affects the efficiency of classification and prediction. As the experimental results suggest, GA-SVM has a higher recognition rate.
Simulations of InGaN-base heterojunction bipolar transistors
NASA Astrophysics Data System (ADS)
Lee, K. P.; Ren, F.; Pearton, S. J.; Dabiran, A. M.; Chow, P. P.
2003-06-01
GaN/InGaN heterojunction bipolar transistors (HBTs) are very promising for high speed, high power density applications at elevated temperatures. In this paper we report on simulations of the dc performance of GaN/In 0.2Ga 0.8N HBTs as a function of the layer design and doping levels. The conductivity of p-InGaN is significantly lower than p-GaN, reducing the deleterious effects of high ohmic contact resistance. Predicted dc current gains are given as a function of base doping and thickness and are in excess of several hundred even for aggressive layer designs. Advantages with respect to GaN base HBTs are also discussed.
High Performance InGaN-Based Solar Cells
2012-05-12
quantum efficiency (EQE) for our solar cells ; increasing the total absorption in our solar ...in Fig. 1.2(a), which shows a typical plot of the dependence of external quantum efficiency (EQE) on wavelength for an InGaN-based solar cell . Aside... solar cells are examined in Section 8. Section 9 then discusses how to best integrate InGaN-based solar cells with GaAs -based multijunction solar
An Evolved Wavelet Library Based on Genetic Algorithm
Vaithiyanathan, D.; Seshasayanan, R.; Kunaraj, K.; Keerthiga, J.
2014-01-01
As the size of the images being captured increases, there is a need for a robust algorithm for image compression which satiates the bandwidth limitation of the transmitted channels and preserves the image resolution without considerable loss in the image quality. Many conventional image compression algorithms use wavelet transform which can significantly reduce the number of bits needed to represent a pixel and the process of quantization and thresholding further increases the compression. In this paper the authors evolve two sets of wavelet filter coefficients using genetic algorithm (GA), one for the whole image portion except the edge areas and the other for the portions near the edges in the image (i.e., global and local filters). Images are initially separated into several groups based on their frequency content, edges, and textures and the wavelet filter coefficients are evolved separately for each group. As there is a possibility of the GA settling in local maximum, we introduce a new shuffling operator to prevent the GA from this effect. The GA used to evolve filter coefficients primarily focuses on maximizing the peak signal to noise ratio (PSNR). The evolved filter coefficients by the proposed method outperform the existing methods by a 0.31 dB improvement in the average PSNR and a 0.39 dB improvement in the maximum PSNR. PMID:25405225
The mGA1.0: A common LISP implementation of a messy genetic algorithm
NASA Technical Reports Server (NTRS)
Goldberg, David E.; Kerzic, Travis
1990-01-01
Genetic algorithms (GAs) are finding increased application in difficult search, optimization, and machine learning problems in science and engineering. Increasing demands are being placed on algorithm performance, and the remaining challenges of genetic algorithm theory and practice are becoming increasingly unavoidable. Perhaps the most difficult of these challenges is the so-called linkage problem. Messy GAs were created to overcome the linkage problem of simple genetic algorithms by combining variable-length strings, gene expression, messy operators, and a nonhomogeneous phasing of evolutionary processing. Results on a number of difficult deceptive test functions are encouraging with the mGA always finding global optima in a polynomial number of function evaluations. Theoretical and empirical studies are continuing, and a first version of a messy GA is ready for testing by others. A Common LISP implementation called mGA1.0 is documented and related to the basic principles and operators developed by Goldberg et. al. (1989, 1990). Although the code was prepared with care, it is not a general-purpose code, only a research version. Important data structures and global variations are described. Thereafter brief function descriptions are given, and sample input data are presented together with sample program output. A source listing with comments is also included.
Terahertz microbolometers based on disordered GaAs and GaN heterostructures
NASA Astrophysics Data System (ADS)
Wang, Kai; Ramaswamy, R.; Muraviev, A.; Sergeev, A.; Mitin, V.; Gaska, R.
2011-03-01
We present our results on design, fabrication, and characterization of hot-electron bolometers based on low-mobility two-dimensional electron gas (2DEG) heterostructures for THz heterodyne detection. Microbolometers based on GaAs/AlGaAs and GaN/AlGaN heterostructures have been fabricated and tested. Low contact resistances (0.2 ohm-mm for GaN and 0.7 ohm-mm for GaAs) were achieved. We determined the carrier concentration from the Hall measurements and the electron relaxation time from the mobility measurements. We also investigated kinetic parameters: temperature derivate of the resistivity and the electron cooling time. Optical characterization includes the transitivity measurements. The results show that the coupling to the THz radiation is mainly due to the Drude absorption, which increases in disordered structures. Temperature-dependent resistivity and electron cooling are determined by inelastic electron scattering on optical phonons. Finally, we compare GaAs and GaN microbolometers and analyze their parameters for various applications in THz sensing.
NASA Astrophysics Data System (ADS)
Song, Kaishan; Li, Lin; Li, Shuai; Tedesco, Lenore; Hall, Bob; Li, Zuchuan
2012-08-01
Eagle Creek, Morse and Geist reservoirs, drinking water supply sources for the Indianapolis, Indiana, USA metropolitan region, are experiencing nuisance cyanobacterial blooms. Hyperspectral remote sensing has been proven to be an effective tool for phycocyanin (C-PC) concentration retrieval, a proxy pigment unique to cyanobacteria in freshwater ecosystems. An adaptive model based on genetic algorithm and partial least squares (GA-PLS), together with three-band algorithm (TBA) and other band ratio algorithms were applied to hyperspectral data acquired from in situ (ASD spectrometer) and airborne (AISA sensor) platforms. The results indicated that GA-PLS achieved high correlation between measured and estimated C-PC for GR (RMSE = 16.3 μg/L, RMSE% = 18.2; range (R): 2.6-185.1 μg/L), MR (RMSE = 8.7 μg/L, RMSE% = 15.6; R: 3.3-371.0 μg/L) and ECR (RMSE = 19.3 μg/L, RMSE% = 26.4; R: 0.7-245.0 μg/L) for the in situ datasets. TBA also performed well compared to other band ratio algorithms due to its optimal band tuning process and the reduction of backscattering effects through the third band. GA-PLS (GR: RMSE = 24.1 μg/L, RMSE% = 25.2, R: 25.2-185.1 μg/L; MR: RMSE = 15.7 μg/L, RMSE% = 37.4, R: 2.0-135.1 μg/L) and TBA (GR: RMSE = 28.3 μg/L, RMSE% = 30.1; MR: RMSE = 17.7 μg/L, RMSE% = 41.9) methods results in somewhat lower accuracy using AISA imagery data, which is likely due to atmospheric correction or radiometric resolution. GA-PLS (TBA) obtained an RMSE of 24.82 μg/L (35.8 μg/L), and RMSE% of 31.24 (43.5) between measured and estimated C-PC for aggregated datasets. C-PC maps were generated through GA-PLS using AISA imagery data. The C-PC concentration had an average value of 67.31 ± 44.23 μg/L in MR with a large range of concentration, while the GR had a higher average value 103.17 ± 33.45 μg/L.
DFT algorithms for bit-serial GaAs array processor architectures
NASA Technical Reports Server (NTRS)
Mcmillan, Gary B.
1988-01-01
Systems and Processes Engineering Corporation (SPEC) has developed an innovative array processor architecture for computing Fourier transforms and other commonly used signal processing algorithms. This architecture is designed to extract the highest possible array performance from state-of-the-art GaAs technology. SPEC's architectural design includes a high performance RISC processor implemented in GaAs, along with a Floating Point Coprocessor and a unique Array Communications Coprocessor, also implemented in GaAs technology. Together, these data processors represent the latest in technology, both from an architectural and implementation viewpoint. SPEC has examined numerous algorithms and parallel processing architectures to determine the optimum array processor architecture. SPEC has developed an array processor architecture with integral communications ability to provide maximum node connectivity. The Array Communications Coprocessor embeds communications operations directly in the core of the processor architecture. A Floating Point Coprocessor architecture has been defined that utilizes Bit-Serial arithmetic units, operating at very high frequency, to perform floating point operations. These Bit-Serial devices reduce the device integration level and complexity to a level compatible with state-of-the-art GaAs device technology.
Computational identification of human long intergenic non-coding RNAs using a GA-SVM algorithm.
Wang, Yanqiu; Li, Yang; Wang, Qi; Lv, Yingli; Wang, Shiyuan; Chen, Xi; Yu, Xuexin; Jiang, Wei; Li, Xia
2014-01-01
Long intergenic non-coding RNAs (lincRNAs) are a new type of non-coding RNAs and are closely related with the occurrence and development of diseases. In previous studies, most lincRNAs have been identified through next-generation sequencing. Because lincRNAs exhibit tissue-specific expression, the reproducibility of lincRNA discovery in different studies is very poor. In this study, not including lincRNA expression, we used the sequence, structural and protein-coding potential features as potential features to construct a classifier that can be used to distinguish lincRNAs from non-lincRNAs. The GA-SVM algorithm was performed to extract the optimized feature subset. Compared with several feature subsets, the five-fold cross validation results showed that this optimized feature subset exhibited the best performance for the identification of human lincRNAs. Moreover, the LincRNA Classifier based on Selected Features (linc-SF) was constructed by support vector machine (SVM) based on the optimized feature subset. The performance of this classifier was further evaluated by predicting lincRNAs from two independent lincRNA sets. Because the recognition rates for the two lincRNA sets were 100% and 99.8%, the linc-SF was found to be effective for the prediction of human lincRNAs.
AlGaN/GaN based field effect transistors for terahertz detection and imaging
NASA Astrophysics Data System (ADS)
Sakowicz, M.; Lifshits, M. B.; Klimenko, O. A.; Coquillat, D.; Dyakonova, N.; Teppe, F.; Gaquière, C.; Poisson, M. A.; Delage, S.; Knap, W.
2012-03-01
AlGaN/GaN based FETs have great potential as sensitive and fast operating detectors because of their material advantages such as high breakdown voltage, high electron mobility, and high saturation velocity. These advantages could be exploited for resonant and non-resonant terahertz detection. We have designed, fabricated, and characterized AlGaN/GaN based FETs as single pixel terahertz detectors. This work focuses on non-resonant detection and imaging using GaN field plate FETs. To evaluate their performances as terahertz detectors, we have measured the responsivity as a function of gate voltage, the azimuthal angle between the terahertz electric field, the source-to-drain direction, and the temperature. A simple analytical model of the response is developed. It is based on plasma density perturbation in the transistor channel by the incoming terahertz radiation. The model shows how the non-resonant detection signal is related to static (dc) transistor characteristics and it fully describes the experimental results on the non-resonant sub-terahertz detection by the AlGaN/GaN based FETs. The imaging performances are evaluated by scanning objects in transmission mode and an example of application of terahertz imaging as new non-destructive technique for the quality control of materials is given. Results indicate that these FETs can be considered as promising devices for terahertz detection and imaging applications.
Forecasting of Market Clearing Price by Using GA Based Neural Network
NASA Astrophysics Data System (ADS)
Yang, Bo; Chen, Yun-Ping; Zhao, Zun-Lian; Han, Qi-Ye
Forecasting of Market Clearing Price (MCP) is important to economic benefits of electricity market participants. To accurately forecast MCP, a novel two-stage GA-based neural network model (GA-NN) is proposed. In the first stage, GA chromosome is designed into two parts: boolean coding part for neural network topology and real coding part for connection weights. By hybrid genetic operation of selection, crossover and mutation under the criterion of error minimization between the actual output and the desired output, optimal architecture of neural network is obtained. In the second stage, gradient learning algorithm with momentum rate is imposed on neural network with optimal architecture. After learning process, optimal connection weights are obtained. The proposed model is tested on MCP forecasting in California electricity market. The test results show that GA-NN has self-adaptive ability in its topology and connection weights and can obtain more accurate MCP forecasting values than BP neural network.
A novel pipeline based FPGA implementation of a genetic algorithm
NASA Astrophysics Data System (ADS)
Thirer, Nonel
2014-05-01
To solve problems when an analytical solution is not available, more and more bio-inspired computation techniques have been applied in the last years. Thus, an efficient algorithm is the Genetic Algorithm (GA), which imitates the biological evolution process, finding the solution by the mechanism of "natural selection", where the strong has higher chances to survive. A genetic algorithm is an iterative procedure which operates on a population of individuals called "chromosomes" or "possible solutions" (usually represented by a binary code). GA performs several processes with the population individuals to produce a new population, like in the biological evolution. To provide a high speed solution, pipelined based FPGA hardware implementations are used, with a nstages pipeline for a n-phases genetic algorithm. The FPGA pipeline implementations are constraints by the different execution time of each stage and by the FPGA chip resources. To minimize these difficulties, we propose a bio-inspired technique to modify the crossover step by using non identical twins. Thus two of the chosen chromosomes (parents) will build up two new chromosomes (children) not only one as in classical GA. We analyze the contribution of this method to reduce the execution time in the asynchronous and synchronous pipelines and also the possibility to a cheaper FPGA implementation, by using smaller populations. The full hardware architecture for a FPGA implementation to our target ALTERA development card is presented and analyzed.
A Genetic Algorithm Approach to InGaP/GaAs HBT Parameter Extraction and RF Characterization
NASA Astrophysics Data System (ADS)
Li, Yiming; Cho, Yen-Yu; Wang, Chuan-Sheng; Huang, Kuen-Yu
2003-04-01
In this paper, a computational intelligence technique is applied to extract and simulate the stationary and high-frequency properties of heterojunction bipolar transistors (HBTs). A set of HBT circuit equations formulated with the Gummel-Poon model in time domain is solved with (1) the waveform relaxation (WR), (2) monotone iterative (MI) method, and (3) genetic algorithm (GA) with floating-point operators. The coupled nonlinear equations are decoupled and solved with the WR and MI methods in time domain, and the results obtained are used for the optimization of the characteristics with the GA method. The iteration can be terminated when the final convergent global solution is obtained. The time domain result is used in analyzing the property of the output third-order intercept point (OIP3) with the fast Fourier transform (FFT). Compared with the SPICE result, our simulation results demonstrate that this method is accurate and stable in high frequency simulation. This approach has practical applications in HBT characterization and radio frequency (RF) circuit optimal design.
Dilute Nitride Nanowire Lasers Based on a GaAs/GaNAs Core/Shell Structure.
Chen, Shula; Jansson, Mattias; Stehr, Jan E; Huang, Yuqing; Ishikawa, Fumitaro; Chen, Weimin M; Buyanova, Irina A
2017-03-08
Nanowire (NW) lasers operating in the near-infrared spectral range are of significant technological importance for applications in telecommunications, sensing, and medical diagnostics. So far, lasing within this spectral range has been achieved using GaAs/AlGaAs, GaAs/GaAsP, and InGaAs/GaAs core/shell NWs. Another promising III-V material, not yet explored in its lasing capacity, is the dilute nitride GaNAs. In this work, we demonstrate, for the first time, optically pumped lasing from the GaNAs shell of a single GaAs/GaNAs core/shell NW. The characteristic "S"-shaped pump power dependence of the lasing intensity, with the concomitant line width narrowing, is observed, which yields a threshold gain, gth, of 3300 cm(-1) and a spontaneous emission coupling factor, β, of 0.045. The dominant lasing peak is identified to arise from the HE21b cavity mode, as determined from its pronounced emission polarization along the NW axis combined with theoretical calculations of lasing threshold for guided modes inside the nanowire. Even without intentional passivation of the NW surface, the lasing emission can be sustained up to 150 K. This is facilitated by the improved surface quality due to nitrogen incorporation, which partly suppresses the surface-related nonradiative recombination centers via nitridation. Our work therefore represents the first step toward development of room-temperature infrared NW lasers based on dilute nitrides with extended tunability in the lasing wavelength.
Predictive control of SOFC based on a GA-RBF neural network model
NASA Astrophysics Data System (ADS)
Wu, Xiao-Juan; Zhu, Xin-Jian; Cao, Guang-Yi; Tu, Heng-Yong
Transients in a load have a significant impact on the performance and durability of a solid oxide fuel cell (SOFC) system. One of the main reasons is that the fuel utilization changes drastically due to the load change. Therefore, in order to guarantee the fuel utilization to operate within a safe range, a nonlinear model predictive control (MPC) method is proposed to control the stack terminal voltage as a proper constant in this paper. The nonlinear predictive controller is based on an improved radial basis function (RBF) neural network identification model. During the process of modeling, the genetic algorithm (GA) is used to optimize the parameters of RBF neural networks. And then a nonlinear predictive control algorithm is applied to track the voltage of the SOFC. Compared with the constant fuel utilization control method, the simulation results show that the nonlinear predictive control algorithm based on the GA-RBF model performs much better.
Space concentrator solar cells based on multilayer LPE grown AlGaAs/GaAs heterostructure
NASA Technical Reports Server (NTRS)
Khvostikov, V. P.; Larionov, V. R.; Paleeva, E. V.; Sorokina, S. V.; Chosta, O. I.; Shvarts, M. Z.; Zimogorova, N. S.
1995-01-01
The high efficiency solar cells based on multilayer AlGaAs/GaAs heterostructures, prepared by low temperature liquid phase epitaxy (LPE), were developed and tested. An investigation of the low temperature LPE process for the crystallization of AlGaAs heterostructures of as high as 24.0 to 24.7 percent under AMO conditions at concentration ratios of 20 to 100x, were reached. Developed solar cells show substantial radiation resistance to the damage induced by 3.75 MeV electrons.
Heterojunction DDR THz IMPATT diodes based on AlxGa1-xN/GaN material system
NASA Astrophysics Data System (ADS)
Banerjee, Suranjana; Mitra, Monojit
2015-06-01
Simulation studies are made on the large-signal RF performance and avalanche noise properties of heterojunction double-drift region (DDR) impact avalanche transit time (IMPATT) diodes based on AlxGa1-xN/GaN material system designed to operate at 1.0 THz frequency. Two different heterojunction DDR structures such as n-Al0.4Ga0.6N/p-GaN and n-GaN/p-Al0.4Ga0.6N are proposed in this study. The large-signal output power, conversion efficiency and noise properties of the heterojunction DDR IMPATTs are compared with homojunction DDR IMPATT devices based on GaN and Al0.4Ga0.6N. The results show that the n-Al0.4Ga0.6N/p-GaN heterojunction DDR device not only surpasses the n-GaN/p-Al0.4Ga0.6N DDR device but also homojunction DDR IMPATTs based on GaN and Al0.4Ga0.6N as regards large-signal conversion efficiency, power output and avalanche noise performance at 1.0 THz.
Electrical performances of commercial GaN and GaAs based optoelectronics under neutron irradiation
NASA Astrophysics Data System (ADS)
Fauzi, D. Ahmad; Rashid, N. K. A. Md; Karim, J. Abdul; Zin, M. R. Mohamed; Hasbullah, N. F.; Sheik Fareed, O. A.
2013-12-01
This paper aims to demonstrate the effects of displacement damage caused by high energetic neutron particle towards the electrical performances of gallium arsenide (GaAs) and gallium nitride (GaN) p-n based diodes. The investigations are carried out through current-voltage (I-V) and capacitance-voltage (C-V) measurements using Keithley 4200 SCS. Two different commercial optoelectronics diodes; GaN on SiC light emitting diode (LED) and GaAs infrared emitting diode (IRED) were radiated with neutron using pneumatic transfer system (PTS) in the PUSPATI TRIGA Mark II research reactor under total neutron flux of 1×1012 neutron/cm2.s. Following the neutron exposure for 1, 3 and 5 minutes, the I-V forward bias and reverse bias leakage current increase for GaAs IREDs, but minimal changes were observed in the GaN LEDs. The C-V measurements revealed that the capacitance and carrier concentration of GaAs IREDs decrease with increasing radiation flux.
Electroabsorption modulators based on bulk GaN films and GaN/AlGaN multiple quantum wells
NASA Astrophysics Data System (ADS)
Kao, Chen-Kai; Bhattacharyya, Anirban; Thomidis, Christos; Paiella, Roberto; Moustakas, Theodore D.
2011-04-01
Ultraviolet electroabsorption modulators based on bulk GaN films and on GaN/AlGaN multiple quantum wells were developed and characterized. In both types of devices, the absorption edge at room temperature is dominated by excitonic effects and can be strongly modified through the application of an external electric field. In the bulk devices, the applied voltage causes a broadening and quenching of the excitonic absorption, leading to enhanced transmission. In the quantum-well devices, the external field partially cancels the built-in polarization-induced electric fields in the well layers, thereby increasing the absorption. Unlike optical modulators based on smaller-bandgap zinc blende semiconductors, the bulk devices here are shown to provide similar performance levels as the quantum well devices, which is mainly a consequence of the uniquely large exciton binding energies of nitride semiconductors.
TOPICAL REVIEW: InGaN-based violet laser diodes
NASA Astrophysics Data System (ADS)
Nakamura, S.
1999-06-01
High-efficiency light-emitting diodes emitting amber, green, blue and ultraviolet light have been obtained through the use of InGaN active layers instead of GaN active layers. The localized energy states caused by In composition fluctuation in the InGaN active layer seem to be related to the high efficiency of the InGaN-based emitting devices. Long-lifetime violet InGaN multi-quantum-well/GaN/AlGaN separate-confinement heterostructure laser diodes (LDs) were successfully fabricated using epitaxially laterally overgrown GaN by reducing a large number of threading dislocations originating from the interface between GaN and sapphire substrate. The threading dislocations shorten the lifetime of the LDs through an increase of the threshold current density. The LDs with cleaved mirror facets showed an output power as high as 30 mW under room-temperature continuous-wave (CW) operation with a stable fundamental transverse mode. The lifetime of the LDs at a constant output power of 5 mW was estimated to be approximately 3000 h under CW operation at an ambient temperature of 50 °C. These results indicate that these LDs already can be used for many real applications, such as digital versatile disks, laser printers, sensors and exciting light sources as a commercial product with a high output power and a high reliability.
Feature Selection for Natural Language Call Routing Based on Self-Adaptive Genetic Algorithm
NASA Astrophysics Data System (ADS)
Koromyslova, A.; Semenkina, M.; Sergienko, R.
2017-02-01
The text classification problem for natural language call routing was considered in the paper. Seven different term weighting methods were applied. As dimensionality reduction methods, the feature selection based on self-adaptive GA is considered. k-NN, linear SVM and ANN were used as classification algorithms. The tasks of the research are the following: perform research of text classification for natural language call routing with different term weighting methods and classification algorithms and investigate the feature selection method based on self-adaptive GA. The numerical results showed that the most effective term weighting is TRR. The most effective classification algorithm is ANN. Feature selection with self-adaptive GA provides improvement of classification effectiveness and significant dimensionality reduction with all term weighting methods and with all classification algorithms.
NASA Astrophysics Data System (ADS)
Liu, Hua-Long; Liu, Hua-Dong
2014-10-01
Partial discharge (PD) in power transformers is one of the prime reasons resulting in insulation degradation and power faults. Hence, it is of great importance to study the techniques of the detection and localization of PD in theory and practice. The detection and localization of PD employing acoustic emission (AE) techniques, as a kind of non-destructive testing, plus due to the advantages of powerful capability of locating and high precision, have been paid more and more attention. The localization algorithm is the key factor to decide the localization accuracy in AE localization of PD. Many kinds of localization algorithms exist for the PD source localization adopting AE techniques including intelligent and non-intelligent algorithms. However, the existed algorithms possess some defects such as the premature convergence phenomenon, poor local optimization ability and unsuitability for the field applications. To overcome the poor local optimization ability and easily caused premature convergence phenomenon of the fundamental genetic algorithm (GA), a new kind of improved GA is proposed, namely the sequence quadratic programming-genetic algorithm (SQP-GA). For the hybrid optimization algorithm, SQP-GA, the sequence quadratic programming (SQP) algorithm which is used as a basic operator is integrated into the fundamental GA, so the local searching ability of the fundamental GA is improved effectively and the premature convergence phenomenon is overcome. Experimental results of the numerical simulations of benchmark functions show that the hybrid optimization algorithm, SQP-GA, is better than the fundamental GA in the convergence speed and optimization precision, and the proposed algorithm in this paper has outstanding optimization effect. At the same time, the presented SQP-GA in the paper is applied to solve the ultrasonic localization problem of PD in transformers, then the ultrasonic localization method of PD in transformers based on the SQP-GA is proposed. And
Human emotion detector based on genetic algorithm using lip features
NASA Astrophysics Data System (ADS)
Brown, Terrence; Fetanat, Gholamreza; Homaifar, Abdollah; Tsou, Brian; Mendoza-Schrock, Olga
2010-04-01
We predicted human emotion using a Genetic Algorithm (GA) based lip feature extractor from facial images to classify all seven universal emotions of fear, happiness, dislike, surprise, anger, sadness and neutrality. First, we isolated the mouth from the input images using special methods, such as Region of Interest (ROI) acquisition, grayscaling, histogram equalization, filtering, and edge detection. Next, the GA determined the optimal or near optimal ellipse parameters that circumvent and separate the mouth into upper and lower lips. The two ellipses then went through fitness calculation and were followed by training using a database of Japanese women's faces expressing all seven emotions. Finally, our proposed algorithm was tested using a published database consisting of emotions from several persons. The final results were then presented in confusion matrices. Our results showed an accuracy that varies from 20% to 60% for each of the seven emotions. The errors were mainly due to inaccuracies in the classification, and also due to the different expressions in the given emotion database. Detailed analysis of these errors pointed to the limitation of detecting emotion based on the lip features alone. Similar work [1] has been done in the literature for emotion detection in only one person, we have successfully extended our GA based solution to include several subjects.
GaInN-based tunnel junctions with graded layers
NASA Astrophysics Data System (ADS)
Takasuka, Daiki; Akatsuka, Yasuto; Ino, Masataka; Koide, Norikatsu; Takeuchi, Tetsuya; Iwaya, Motoaki; Kamiyama, Satoshi; Akasaki, Isamu
2016-08-01
We demonstrated low-resistivity GaInN-based tunnel junctions using graded GaInN layers. A systematic investigation of the samples grown by metalorganic vapor phase epitaxy revealed that a tunnel junction consisting of a 4 nm both-sides graded GaInN layer (Mg: 1 × 1020 cm-3) and a 2 nm GaN layer (Si: 7 × 1020 cm-3) showed the lowest specific series resistance of 2.3 × 10-4 Ω cm2 at 3 kA/cm2 in our experiment. The InN mole fraction in the 4 nm both-sides graded GaInN layer was changed from 0 through 0.4 to 0. The obtained resistance is comparable to those of standard p-contacts with Ni/Au and MBE-grown tunnel junctions.
Xue, Y.; Liu, S.; Hu, Y.; Yang, J.; Chen, Q.
2007-01-01
To improve the accuracy in prediction, Genetic Algorithm based Adaptive Neural Network Ensemble (GA-ANNE) is presented. Intersections are allowed between different training sets based on the fuzzy clustering analysis, which ensures the diversity as well as the accuracy of individual Neural Networks (NNs). Moreover, to improve the accuracy of the adaptive weights of individual NNs, GA is used to optimize the cluster centers. Empirical results in predicting carbon flux of Duke Forest reveal that GA-ANNE can predict the carbon flux more accurately than Radial Basis Function Neural Network (RBFNN), Bagging NN ensemble, and ANNE. ?? 2007 IEEE.
Research on Routing Selection Algorithm Based on Genetic Algorithm
NASA Astrophysics Data System (ADS)
Gao, Guohong; Zhang, Baojian; Li, Xueyong; Lv, Jinna
The hereditary algorithm is a kind of random searching and method of optimizing based on living beings natural selection and hereditary mechanism. In recent years, because of the potentiality in solving complicate problems and the successful application in the fields of industrial project, hereditary algorithm has been widely concerned by the domestic and international scholar. Routing Selection communication has been defined a standard communication model of IP version 6.This paper proposes a service model of Routing Selection communication, and designs and implements a new Routing Selection algorithm based on genetic algorithm.The experimental simulation results show that this algorithm can get more resolution at less time and more balanced network load, which enhances search ratio and the availability of network resource, and improves the quality of service.
FPGA-based genetic algorithm implementation for AC chopper fed induction motor
NASA Astrophysics Data System (ADS)
Mahendran, S.; Gnanambal, I.; Maheswari, A.
2016-12-01
Genetic algorithm (GA)-based harmonic elimination technique is proposed for designing AC chopper. GA is used to calculate optimal firing angles to eliminate lower order harmonics in output voltage. Total harmonic distortion of output voltage is taken for the fitness function used in the GA. Thus, the ratings of the load are not mandatory to be known for calculating the switching angles using proposed technique. For the performance assessment of GA, Newton-Raphson (NR) method is applied in this present work. Simulation results show that the proposed technique is better in terms of less computational complexity and quick convergence. Simulation results were verified by field programmable gate array controller-based prototype. Simulation study and experimental investigations show that the proposed GA method is superior to the conventional methods.
Vertical Graphene-base transistor on GaN substrate
NASA Astrophysics Data System (ADS)
Zubair, Ahmad; Saadat, Omair; Song, Yi; Kong, Jing; Dresselhaus, Mildred; Palacios, Tomas
2014-03-01
The high carrier mobility, saturation velocity and thermal conductivity make graphene an attractive candidate for RF electronics. In addition to conventional lateral transistors, several alternative vertical device structures like hot electron transistors have been demonstrated to be promising for RF applications. The unique combination of sub-nanometer thickness and high conductivity makes graphene an excellent base material for hot electron transistors by lowering the base transit time in these vertical devices. The demonstrated graphene-base hot electron transistor performance is limited by low current density and low common-base current gain. In this work, we fabricated a graphene-base transistor on GaN/AlGaN heterostructure. We studied the tunneling from GaN/AlGaN heterojunction to graphene and compared with other demonstrated vertical graphene-base devices. We also investigated the effect of AlGaN thickness and different filtering barriers on both room temperature and low temperature transport characteristics of the fabricated devices. With careful design and optimization of the structure, graphene-base transistors on GaN substrate can be a potential candidate for future graphene RF electronics.
A "Tuned" Mask Learnt Approach Based on Gravitational Search Algorithm.
Wan, Youchuan; Wang, Mingwei; Ye, Zhiwei; Lai, Xudong
2016-01-01
Texture image classification is an important topic in many applications in machine vision and image analysis. Texture feature extracted from the original texture image by using "Tuned" mask is one of the simplest and most effective methods. However, hill climbing based training methods could not acquire the satisfying mask at a time; on the other hand, some commonly used evolutionary algorithms like genetic algorithm (GA) and particle swarm optimization (PSO) easily fall into the local optimum. A novel approach for texture image classification exemplified with recognition of residential area is detailed in the paper. In the proposed approach, "Tuned" mask is viewed as a constrained optimization problem and the optimal "Tuned" mask is acquired by maximizing the texture energy via a newly proposed gravitational search algorithm (GSA). The optimal "Tuned" mask is achieved through the convergence of GSA. The proposed approach has been, respectively, tested on some public texture and remote sensing images. The results are then compared with that of GA, PSO, honey-bee mating optimization (HBMO), and artificial immune algorithm (AIA). Moreover, feature extracted by Gabor wavelet is also utilized to make a further comparison. Experimental results show that the proposed method is robust and adaptive and exhibits better performance than other methods involved in the paper in terms of fitness value and classification accuracy.
Method of stereo matching based on genetic algorithm
NASA Astrophysics Data System (ADS)
Lu, Chaohui; An, Ping; Zhang, Zhaoyang
2003-09-01
A new stereo matching scheme based on image edge and genetic algorithm (GA) is presented to improve the conventional stereo matching method in this paper. In order to extract robust edge feature for stereo matching, infinite symmetric exponential filter (ISEF) is firstly applied to remove the noise of image, and nonlinear Laplace operator together with local variance of intensity are then used to detect edges. Apart from the detected edge, the polarity of edge pixels is also obtained. As an efficient search method, genetic algorithm is applied to find the best matching pair. For this purpose, some new ideas are developed for applying genetic algorithm to stereo matching. Experimental results show that the proposed methods are effective and can obtain good results.
Improvement of unsupervised texture classification based on genetic algorithms
NASA Astrophysics Data System (ADS)
Okumura, Hiroshi; Togami, Yuuki; Arai, Kohei
2004-11-01
At the previous conference, the authors are proposed a new unsupervised texture classification method based on the genetic algorithms (GA). In the method, the GA are employed to determine location and size of the typical textures in the target image. The proposed method consists of the following procedures: 1) the determination of the number of classification category; 2) each chromosome used in the GA consists of coordinates of center pixel of each training area candidate and those size; 3) 50 chromosomes are generated using random number; 4) fitness of each chromosome is calculated; the fitness is the product of the Classification Reliability in the Mixed Texture Cases (CRMTC) and the Stability of NZMV against Scanning Field of View Size (SNSFS); 5) in the selection operation in the GA, the elite preservation strategy is employed; 6) in the crossover operation, multi point crossover is employed and two parent chromosomes are selected by the roulette strategy; 7) in mutation operation, the locuses where the bit inverting occurs are decided by a mutation rate; 8) go to the procedure 4. However, this method has not been automated because it requires not only target image but also the number of categories for classification. In this paper, we describe some improvement for implementation of automated texture classification. Some experiments are conducted to evaluate classification capability of the proposed method by using images from Brodatz's photo album and actual airborne multispectral scanner. The experimental results show that the proposed method can select appropriate texture samples and can provide reasonable classification results.
Enhanced output power of GaN-based LEDs with embedded AlGaN pyramidal shells.
Tu, Shang-Ju; Sheu, Jinn-Kong; Lee, Ming-Lun; Yang, Chih-Ciao; Chang, Kuo-Hua; Yeh, Yu-Hsiang; Huang, Feng-Wen; Lai, Wei-Chih
2011-06-20
In this article, the characteristics of GaN-based LEDs grown on Ar-implanted GaN templates to form inverted Al0.27Ga0.83N pyramidal shells beneath an active layer were investigated. GaN-based epitaxial layers grown on the selective Ar-implanted regions had lower growth rates compared with those grown on the implantation-free regions. This resulted in selective growth, and formation of V-shaped concaves in the epitaxial layers. Accordingly, the inverted Al0.27Ga0.83N pyramidal shells were formed after the Al0.27Ga0.83N and GaN layers were subsequently grown on the V-shaped concaves. The experimental results indicate that the light-output power of LEDs with inverted AlGaN pyramidal shells was higher than those of conventional LEDs. With a 20 mA current injection, the output power was enhanced by 10% when the LEDs were embedded with inverted Al0.27Ga0.83N pyramidal shells. The enhancement in output power was primarily due to the light scattering at the Al0.27Ga0.83N/GaN interface, which leads to a higher escape probability for the photons, that is, light-extraction efficiency. Based on the ray tracing simulation, the output power of LEDs grown on Ar-implanted GaN templates can be enhanced by over 20% compared with the LEDs without the embedded AlGaN pyramidal shells, if the AlGaN layers were replaced by Al0.5Ga0.5N layers.
Economic Dispatch Using Genetic Algorithm Based Hybrid Approach
Tahir Nadeem Malik; Aftab Ahmad; Shahab Khushnood
2006-07-01
Power Economic Dispatch (ED) is vital and essential daily optimization procedure in the system operation. Present day large power generating units with multi-valves steam turbines exhibit a large variation in the input-output characteristic functions, thus non-convexity appears in the characteristic curves. Various mathematical and optimization techniques have been developed, applied to solve economic dispatch (ED) problem. Most of these are calculus-based optimization algorithms that are based on successive linearization and use the first and second order differentiations of objective function and its constraint equations as the search direction. They usually require heat input, power output characteristics of generators to be of monotonically increasing nature or of piecewise linearity. These simplifying assumptions result in an inaccurate dispatch. Genetic algorithms have used to solve the economic dispatch problem independently and in conjunction with other AI tools and mathematical programming approaches. Genetic algorithms have inherent ability to reach the global minimum region of search space in a short time, but then take longer time to converge the solution. GA based hybrid approaches get around this problem and produce encouraging results. This paper presents brief survey on hybrid approaches for economic dispatch, an architecture of extensible computational framework as common environment for conventional, genetic algorithm and hybrid approaches based solution for power economic dispatch, the implementation of three algorithms in the developed framework. The framework tested on standard test systems for its performance evaluation. (authors)
Simplified gas sensor model based on AlGaN/GaN heterostructure Schottky diode
NASA Astrophysics Data System (ADS)
Das, Subhashis; Majumdar, S.; Kumar, R.; Chakraborty, A.; Bag, A.; Biswas, D.
2015-08-01
Physics based modeling of AlGaN/GaN heterostructure Schottky diode gas sensor has been investigated for high sensitivity and linearity of the device. Here the surface and heterointerface properties are greatly exploited. The dependence of two dimensional electron gas (2DEG) upon the surface charges is mainly utilized. The simulation of Schottky diode has been done in Technology Computer Aided Design (TCAD) tool and I-V curves are generated, from the I-V curves 76% response has been recorded in presence of 500 ppm gas at a biasing voltage of 0.95 Volt.
Simplified gas sensor model based on AlGaN/GaN heterostructure Schottky diode
Das, Subhashis Majumdar, S.; Kumar, R.; Bag, A.; Chakraborty, A.; Biswas, D.
2015-08-28
Physics based modeling of AlGaN/GaN heterostructure Schottky diode gas sensor has been investigated for high sensitivity and linearity of the device. Here the surface and heterointerface properties are greatly exploited. The dependence of two dimensional electron gas (2DEG) upon the surface charges is mainly utilized. The simulation of Schottky diode has been done in Technology Computer Aided Design (TCAD) tool and I-V curves are generated, from the I-V curves 76% response has been recorded in presence of 500 ppm gas at a biasing voltage of 0.95 Volt.
Terahertz intersubband photodetectors based on semi-polar GaN/AlGaN heterostructures
NASA Astrophysics Data System (ADS)
Durmaz, Habibe; Nothern, Denis; Brummer, Gordie; Moustakas, Theodore D.; Paiella, Roberto
2016-05-01
Terahertz intersubband photodetectors are developed based on GaN/AlGaN quantum wells grown on a free-standing semi-polar ( 20 2 ¯ 1 ¯ ) GaN substrate. These quantum wells are nearly free of the polarization-induced internal electric fields that severely complicate the design of nitride intersubband devices on traditional c-plane substrates. As a result, a promising bound-to-quasi-bound THz photodetector design can be implemented. Pronounced photocurrent peaks at the design frequency near 10 THz are measured, covering frequencies that are fundamentally inaccessible to existing arsenide intersubband devices due to reststrahlen absorption. This materials system provides a favorable platform to utilize the intrinsic advantages of nitride semiconductors for THz optoelectronics.
GaAs-based photorefractive time-integrating correlator
NASA Technical Reports Server (NTRS)
Liu, Duncan T. H.; Luke, Keung L.; Cheng, Li-Jen
1992-01-01
A potential application of the photorefractive time-integrating correlator is the real-time radar jamming interference rejection system, using the adaptive filter method; a fast photorefractive crystal is needed for adapting a rapidly changing jamming signal. An effort is presently made to demonstrate and characterize a GaAs-based photorefractive time-integrating correlator, since GaAs crystals are 2-3 orders of magnitude faster than most other alternatives.
Rafiei, Hamid; Khanzadeh, Marziyeh; Mozaffari, Shahla; Bostanifar, Mohammad Hassan; Avval, Zhila Mohajeri; Aalizadeh, Reza; Pourbasheer, Eslam
2016-01-01
Quantitative structure-activity relationship (QSAR) study has been employed for predicting the inhibitory activities of the Hepatitis C virus (HCV) NS5B polymerase inhibitors. A data set consisted of 72 compounds was selected, and then different types of molecular descriptors were calculated. The whole data set was split into a training set (80 % of the dataset) and a test set (20 % of the dataset) using principle component analysis. The stepwise (SW) and the genetic algorithm (GA) techniques were used as variable selection tools. Multiple linear regression method was then used to linearly correlate the selected descriptors with inhibitory activities. Several validation technique including leave-one-out and leave-group-out cross-validation, Y-randomization method were used to evaluate the internal capability of the derived models. The external prediction ability of the derived models was further analyzed using modified r2, concordance correlation coefficient values and Golbraikh and Tropsha acceptable model criteria's. Based on the derived results (GA-MLR), some new insights toward molecular structural requirements for obtaining better inhibitory activity were obtained. PMID:27065774
Hu, Hongpo; Zhou, Shengjun; Liu, Xingtong; Gao, Yilin; Gui, Chengqun; Liu, Sheng
2017-01-01
We report on the demonstration of GaN-based ultraviolet light-emitting diodes (UV LEDs) emitting at 375 nm grown on patterned sapphire substrate (PSS) with in-situ low temperature GaN/AlGaN nucleation layers (NLs) and ex-situ sputtered AlN NL. The threading dislocation (TD) densities in GaN-based UV LEDs with GaN/AlGaN/sputtered AlN NLs were determined by high-resolution X-ray diffraction (XRD) and cross-sectional transmission electron microscopy (TEM), which revealed that the TD density in UV LED with AlGaN NL was the highest, whereas that in UV LED with sputtered AlN NL was the lowest. The light output power (LOP) of UV LED with AlGaN NL was 18.2% higher than that of UV LED with GaN NL owing to a decrease in the absorption of 375 nm UV light in the AlGaN NL with a larger bandgap. Using a sputtered AlN NL instead of the AlGaN NL, the LOP of UV LED was further enhanced by 11.3%, which is attributed to reduced TD density in InGaN/AlInGaN active region. In the sputtered AlN thickness range of 10–25 nm, the LOP of UV LED with 15-nm-thick sputtered AlN NL was the highest, revealing that optimum thickness of the sputtered AlN NL is around 15 nm. PMID:28294166
NASA Astrophysics Data System (ADS)
Hu, Hongpo; Zhou, Shengjun; Liu, Xingtong; Gao, Yilin; Gui, Chengqun; Liu, Sheng
2017-03-01
We report on the demonstration of GaN-based ultraviolet light-emitting diodes (UV LEDs) emitting at 375 nm grown on patterned sapphire substrate (PSS) with in-situ low temperature GaN/AlGaN nucleation layers (NLs) and ex-situ sputtered AlN NL. The threading dislocation (TD) densities in GaN-based UV LEDs with GaN/AlGaN/sputtered AlN NLs were determined by high-resolution X-ray diffraction (XRD) and cross-sectional transmission electron microscopy (TEM), which revealed that the TD density in UV LED with AlGaN NL was the highest, whereas that in UV LED with sputtered AlN NL was the lowest. The light output power (LOP) of UV LED with AlGaN NL was 18.2% higher than that of UV LED with GaN NL owing to a decrease in the absorption of 375 nm UV light in the AlGaN NL with a larger bandgap. Using a sputtered AlN NL instead of the AlGaN NL, the LOP of UV LED was further enhanced by 11.3%, which is attributed to reduced TD density in InGaN/AlInGaN active region. In the sputtered AlN thickness range of 10–25 nm, the LOP of UV LED with 15-nm-thick sputtered AlN NL was the highest, revealing that optimum thickness of the sputtered AlN NL is around 15 nm.
GaAs-based optoelectronic neurons
NASA Technical Reports Server (NTRS)
Lin, Steven H. (Inventor); Kim, Jae H. (Inventor); Psaltis, Demetri (Inventor)
1993-01-01
An integrated, optoelectronic, variable thresholding neuron implemented monolithically in GaAs integrated circuit and exhibiting high differential optical gain and low power consumption is presented. Two alternative embodiments each comprise an LED monolithically integrated with a detector and two transistors. One of the transistors is responsive to a bias voltage applied to its gate for varying the threshold of the neuron. One embodiment is implemented as an LED monolithically integrated with a double heterojunction bipolar phototransistor (detector) and two metal semiconductor field effect transistors (MESFET's) on a single GaAs substrate and another embodiment is implemented as an LED monolithically integrated with three MESFET's (one of which is an optical FET detector) on a single GaAs substrate. The first noted embodiment exhibits a differential optical gain of 6 and an optical switching energy of 10 pJ. The second embodiment has a differential optical gain of 80 and an optical switching energy of 38 pJ. Power consumption is 2.4 and 1.8 mW, respectively. Input 'light' power needed to turn on the LED is 2 micro-W and 54 nW, respectively. In both embodiments the detector is in series with a biasing MESFET and saturates the other MESFET upon detecting light above a threshold level. The saturated MESFET turns on the LED. Voltage applied to the biasing MESFET gate controls the threshold.
InGaN based green laser diodes on semipolar GaN substrate
NASA Astrophysics Data System (ADS)
Adachi, Masahiro
2014-10-01
This paper reviews the development of the InGaN-based green laser diodes on semipolar GaN substrates, especially focusing on (20\\bar{2}1) plane. The reduction of piezoelectric fields in InGaN quantum wells on the (20\\bar{2}1) planes was investigated by a small blue shift in electroluminescence peaks, and high crystal quality was confirmed by clear interfaces in a transmission electron microscopy image, narrower FWHM in electroluminescence peaks, and smaller localization energy in time resolved PL results, as compared with the other planes. These physical characteristics of the (20\\bar{2}1) leads to better laser properties: lower threshold current densities, higher output powers of over 100 mW in the spectral region beyond 530 nm, and higher wall plug efficiencies as high as 7.0-8.9% in the wavelength range of 525-532 nm, compared to those of the other planes. Estimated lifetimes were over 5000 h at 50 mW and 2000 h at 70 mW under cw operation with auto power control at a case temperature of 55 °C. The (20\\bar{2}1) plane is the promising candidate for InGaN-based true green laser diodes.
Multiple sequence alignment using multi-objective based bacterial foraging optimization algorithm.
Rani, R Ranjani; Ramyachitra, D
2016-12-01
Multiple sequence alignment (MSA) is a widespread approach in computational biology and bioinformatics. MSA deals with how the sequences of nucleotides and amino acids are sequenced with possible alignment and minimum number of gaps between them, which directs to the functional, evolutionary and structural relationships among the sequences. Still the computation of MSA is a challenging task to provide an efficient accuracy and statistically significant results of alignments. In this work, the Bacterial Foraging Optimization Algorithm was employed to align the biological sequences which resulted in a non-dominated optimal solution. It employs Multi-objective, such as: Maximization of Similarity, Non-gap percentage, Conserved blocks and Minimization of gap penalty. BAliBASE 3.0 benchmark database was utilized to examine the proposed algorithm against other methods In this paper, two algorithms have been proposed: Hybrid Genetic Algorithm with Artificial Bee Colony (GA-ABC) and Bacterial Foraging Optimization Algorithm. It was found that Hybrid Genetic Algorithm with Artificial Bee Colony performed better than the existing optimization algorithms. But still the conserved blocks were not obtained using GA-ABC. Then BFO was used for the alignment and the conserved blocks were obtained. The proposed Multi-Objective Bacterial Foraging Optimization Algorithm (MO-BFO) was compared with widely used MSA methods Clustal Omega, Kalign, MUSCLE, MAFFT, Genetic Algorithm (GA), Ant Colony Optimization (ACO), Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO) and Hybrid Genetic Algorithm with Artificial Bee Colony (GA-ABC). The final results show that the proposed MO-BFO algorithm yields better alignment than most widely used methods.
Yasuda, H. Hosako, I.
2015-03-16
We investigate the performance of terahertz quantum cascade lasers (THz-QCLs) based on Al{sub x}Ga{sub 1−x}As/Al{sub y}Ga{sub 1−y}As and GaSb/AlGaSb material systems to realize higher-temperature operation. Calculations with the non-equilibrium Green's function method reveal that the AlGaAs-well-based THz-QCLs do not show improved performance, mainly because of alloy scattering in the ternary compound semiconductor. The GaSb-based THz-QCLs offer clear advantages over GaAs-based THz-QCLs. Weaker longitudinal optical phonon–electron interaction in GaSb produces higher peaks in the spectral functions of the lasing levels, which enables more electrons to be accumulated in the upper lasing level.
NASA Astrophysics Data System (ADS)
Jia, Chuanyu; Yu, Tongjun; Feng, Xiaohui; Wang, Kun; Zhang, Guoyi
2016-09-01
The carrier confinement effect and piezoelectric field-induced quantum-confined stark effect of different GaN-based near-UV LED samples from 395 nm to 410 nm emission peak wavelength were investigated theoretically and experimentally. It is found that near-UV LEDs with InGaN/AlGaN multiple quantum wells (MQWs) active region have higher output power than those with InGaN/GaN MQWs for better carrier confinement effect. However, as emission peak wavelength is longer than 406 nm, the output power of the near-UV LEDs with AlGaN barrier is lower than that of the LEDs with GaN barrier due to more serious spatial separation of electrons and holes induced by the increase of piezoelectric field. The N-doped InGaN/AlGaN superlattices (SLs) were adopted as a strain relief layer (SRL) between n-GaN and MQWs in order to suppress the polarization field. It is demonstrated the output power of near-UV LEDs is increased obviously by using SLs SRL and AlGaN barrier for the discussed emission wavelength range. Besides, the forward voltage of near-UV LEDs with InGaN/AlGaN SLs SRL is lower than that of near-UV LEDs without SRL.
Pulsed electron-beam-pumped laser based on AlGaN/InGaN/GaN quantum-well heterostructure
Gamov, N A; Zhdanova, E V; Zverev, M M; Peregudov, D V; Studenov, V B; Mazalov, A V; Kureshov, V A; Sabitov, D R; Padalitsa, A A; Marmalyuk, A A
2015-07-31
The parameters of pulsed blue-violet (λ ≈ 430 nm at T = 300 K) lasers based on an AlGaN/InGaN/GaN structure with five InGaN quantum wells and transverse electron-beam pumping are studied. At room temperature of the active element, the minimum electron energy was 9 keV and the minimum threshold electron beam current density was 8 A cm{sup -2} at an electron energy of 18 keV. (lasers)
GaN-based LEDs for light communication
NASA Astrophysics Data System (ADS)
Zhao, LiXia; Zhu, ShiChao; Wu, ChunHui; Yang, Chao; Yu, ZhiGuo; Yang, Hua; Liu, Lei
2016-10-01
Rapid improvement in the efficiency of GaN-based LEDs not only speed up its applications for general illumination, but offer the possibilities for data transmission. This review is to provide an overview of current progresses of GaN-based LEDs for light communications. The modulation bandwidth of GaN-based LEDs has been first improved by optimizing the LED epilayer structures and the modulation bandwidth of 73 MHz was achieved at the driving current density of 40 A/cm2 by changing the multi-quantum well structures. After that, in order to increase the current density tolerance, different parallel flip-chip micro-LED arrays were fabricated. With a high injected current density of ˜7900 A/cm2, a maximum modulation bandwidth of ˜227 MHz was obtained with optical power greater than 30 mW. Besides the increase of carrier concentrations, the radiative recombination coefficient B was also enhanced by modifying the photon surrounding environment based on some novel nanostructures such as resonant cavity, surface plasmon, and photonic crystals. The optical 3 dB modulation bandwidth of GaN-based nanostructure LEDs with Ag nanoparticles was enhanced by 2 times compared with GaN-based nanostructure LEDs without Ag nanoparticles. Our results demonstrate that using the QW-SP coupling can effectively help to enhance the carrier spontaneous emission rate and also increase the modulation bandwidth for LEDs, especially for LEDs with high intrinsic IQE. In addition, we discuss the progress of the faster color conversion stimulated by GaN-based LEDs.
Fatigue Life Prediction of Ductile Iron Based on DE-SVM Algorithm
NASA Astrophysics Data System (ADS)
Yiqun, Ma; Xiaoping, Wang; lun, An
the model, predicting fatigue life of ductile iron, based on SVM (Support Vector Machine, SVM) has been established. For it is easy to fall into local optimum during parameter optimization of SVM, DE (Differential Evolution algorithm, DE) algorithm was adopted to optimize to improve prediction precision. Fatigue life of ductile iron is predicted combining with concrete examples, and simulation experiment to optimize SVM is conducted adopting GA (Genetic Algorithm), ACO (Ant Colony Optimization) and POS (Partial Swarm Optimization). Results reveal that DE-SVM algorithm is of a better prediction performance.
Smell Detection Agent Based Optimization Algorithm
NASA Astrophysics Data System (ADS)
Vinod Chandra, S. S.
2016-09-01
In this paper, a novel nature-inspired optimization algorithm has been employed and the trained behaviour of dogs in detecting smell trails is adapted into computational agents for problem solving. The algorithm involves creation of a surface with smell trails and subsequent iteration of the agents in resolving a path. This algorithm can be applied in different computational constraints that incorporate path-based problems. Implementation of the algorithm can be treated as a shortest path problem for a variety of datasets. The simulated agents have been used to evolve the shortest path between two nodes in a graph. This algorithm is useful to solve NP-hard problems that are related to path discovery. This algorithm is also useful to solve many practical optimization problems. The extensive derivation of the algorithm can be enabled to solve shortest path problems.
GA-SVM Based Lungs Nodule Detection and Classification
NASA Astrophysics Data System (ADS)
Jaffar, M. Arfan; Hussain, Ayyaz; Jabeen, Fauzia; Nazir, M.; Mirza, Anwar M.
In this paper we have proposed a method for lungs nodule detection from computed tomography (CT) scanned images by using Genetic Algorithms (GA) and morphological techniques. First of all, GA has been used for automated segmentation of lungs. Region of interests (ROIs) have been extracted by using 8 directional searches slice by slice and then features extraction have been performed. Finally SVM have been used to classify ROI that contain nodule. The proposed system is capable to perform fully automatic segmentation and nodule detection from CT Scan Lungs images. The technique was tested against the 50 datasets of different patients received from Aga Khan Medical University, Pakistan and Lung Image Database Consortium (LIDC) dataset.
HVPE-GaN growth on GaN-based Advanced Substrates by Smart Cut™
NASA Astrophysics Data System (ADS)
Iwinska, M.; Amilusik, M.; Fijalkowski, M.; Sochacki, T.; Lucznik, B.; Grzanka, E.; Litwin-Staszewska, E.; Weyher, J. L.; Nowakowska-Siwinska, A.; Muziol, G.; Skierbiszewski, C.; Grzegory, I.; Guiot, E.; Caulmilone, R.; Bockowski, M.
2016-12-01
Advanced Substrates consist of a thin GaN layer bonded to a carrier wafer. The layer is separated from starting material by Smart Cut™ technology. GaN on sapphire Advanced Substrates were successfully used as seeds for HVPE-GaN growth. Unintentionally doped and silicon-doped thick GaN layers were crystallized. The results were compared to HVPE-GaN grown on standard MOCVD-GaN/sapphire templates. Free-standing HVPE-GaN with high free carrier concentration was obtained. A laser diode was built on the n-type doped HVPE-GaN grown on an Advanced Substrate.
Suppression of optical field leakage to GaN substrate in GaN-based green laser diode
NASA Astrophysics Data System (ADS)
Liang, Feng; Zhao, Degang; Jiang, Desheng; Liu, Zongshun; Zhu, Jianjun; Chen, Ping; Yang, Jing; Liu, Wei; Li, Xiang; Liu, Shuangtao; Xing, Yao; Zhang, Liqun; Long, Heng; Zhang, Jian
2017-02-01
In this study, n-InGaN and u-InGaN are proposed to be the lower waveguide (LWG) and quantum barrier (QB), respectively, to eliminate the leakage of optical field to GaN substrate in GaN-based green laser diode (LD). The optical and electrical characteristics of LDs are calculated by the economic software LASTIP, and it is found that the leakage of optical field is suppressed significantly and the threshold current is also reduced. Further theoretical analysis shows that n-In0.08Ga0.92N LWG and u-In0.02Ga0.98N QB is effective to concentrate the optical field and to enhance optical confinement for our green LDs, leading to an improvement of optical and electrical performance of green LDs.
Photoemission characteristics of thin GaAs-based heterojunction photocathodes
Feng, Cheng; Zhang, Yijun Qian, Yunsheng; Shi, Feng; Zou, Jijun; Zeng, Yugang
2015-01-14
To better understand the different photoemission mechanism of thin heterojunction photocathodes, the quantum efficiency models of reflection-mode and transmission-mode GaAs-based heterojunction photocathodes are revised based on one-dimensional continuity equations, wherein photoelectrons generated from both the emission layer and buffer layer are taken into account. By comparison of simulated results between the revised and conventional models, it is found that the electron contribution from the buffer layer to shortwave quantum efficiency is closely related to some factors, such as the thicknesses of emission layer and buffer layer and the interface recombination velocity. Besides, the experimental quantum efficiency data of reflection-mode and transmission-mode AlGaAs/GaAs photocathodes are well fitted to the revised models, which confirm the applicability of the revised quantum efficiency models.
NASA Astrophysics Data System (ADS)
Wang, Xuewu; Shi, Yingpan; Ding, Dongyan; Gu, Xingsheng
2016-02-01
Spot-welding robots have a wide range of applications in manufacturing industries. There are usually many weld joints in a welding task, and a reasonable welding path to traverse these weld joints has a significant impact on welding efficiency. Traditional manual path planning techniques can handle a few weld joints effectively, but when the number of weld joints is large, it is difficult to obtain the optimal path. The traditional manual path planning method is also time consuming and inefficient, and cannot guarantee optimality. Double global optimum genetic algorithm-particle swarm optimization (GA-PSO) based on the GA and PSO algorithms is proposed to solve the welding robot path planning problem, where the shortest collision-free paths are used as the criteria to optimize the welding path. Besides algorithm effectiveness analysis and verification, the simulation results indicate that the algorithm has strong searching ability and practicality, and is suitable for welding robot path planning.
Electrically detected nuclear magnetic resonance in GaAs/AlGaAs-based quantum point contacts
NASA Astrophysics Data System (ADS)
Keane, Zachary; Godfrey, Matthew; Burke, Adam; Chen, Jason; Fricke, Sebastian; Klochan, Oleh; Micolich, Adam; Beere, Harvey; Ritchie, Dave; Trunov, Kirill; Reuter, Dirk; Wieck, Andreas; Hamilton, Alex
2011-03-01
Nuclear magnetic resonance (NMR) is a well-known technique with widespread applications in physics, chemistry and medicine. Conventional NMR studies use inductive coils to detect the magnetic field produced by precessing nuclear spins; this approach requires on the order of 1012 spins for detection. Recently, resistive detection of NMR through the hyperfine interaction has been demonstrated with electrons in mesoscopic 2- and 1-dimensional devices based on high-quality GaAs/AlGaAs heterostructures. These studies are typically sensitive to 108 spins, enabling NMR on much smaller sample volumes. Holes are predicted to have much weaker nuclear spin coupling than electrons, which could be relevant to the emerging fields of spintronics and quantum information processing. We present a preliminary comparison between the magnitude of the NMR signal in electron and hole quantum point contacts.
GaAs-based high temperature electrically pumped polariton laser
Baten, Md Zunaid; Bhattacharya, Pallab Frost, Thomas; Deshpande, Saniya; Das, Ayan; Lubyshev, Dimitri; Fastenau, Joel M.; Liu, Amy W. K.
2014-06-09
Strong coupling effects and polariton lasing are observed at 155 K with an edge-emitting GaAs-based microcavity diode with a single Al{sub 0.31}Ga{sub 0.69}As/Al{sub 0.41}Ga{sub 0.59}As quantum well as the emitter. The threshold for polariton lasing is observed at 90 A/cm{sup 2}, accompanied by a reduction of the emission linewidth to 0.85 meV and a blueshift of the emission wavelength by 0.89 meV. Polariton lasing is confirmed by the observation of a polariton population redistribution in momentum space and spatial coherence. Conventional photon lasing is recorded in the same device at higher pump powers.
Biosensors based on GaN nanoring optical cavities
NASA Astrophysics Data System (ADS)
Kouno, Tetsuya; Takeshima, Hoshi; Kishino, Katsumi; Sakai, Masaru; Hara, Kazuhiko
2016-05-01
Biosensors based on GaN nanoring optical cavities were demonstrated using room-temperature photoluminescence measurements. The outer diameter, height, and thickness of the GaN nanorings were approximately 750-800, 900, and 130-180 nm, respectively. The nanorings functioned as whispering-gallery-mode (WGM)-type optical cavities and exhibited sharp resonant peaks like lasing actions. The evanescent component of the WGM was strongly affected by the refractive index of the ambient environment, the type of liquid, and the sucrose concentration of the analyzed solution, resulting in shifts of the resonant wavelengths. The results indicate that the GaN nanorings can potentially be used in sugar sensors of the biosensors.
Research on the key techniques of form and position evaluation based on the genetic algorithm
NASA Astrophysics Data System (ADS)
Cui, Changcai; Li, Bing
2006-11-01
The Evolutionary Algorithm (EA)-Genetic Algorithm (GA) was improved to evaluate the form and position errors that were summarized as nonlinear optimization problems. The key techniques in the implementation of the GA have been studied in detail. The emphasis was on the fitness functions of the GA concerned with the concrete problem so that they were proposed first. Second the expression of the desired solutions was discussed in the continual space optimization problem. Because different expression was suitable for different problem, here the real numbers were used to express the solutions to find which were called as chromosomes in the GA. Third the improved evolutionary strategies of GA were described respectively on emphasis. They were the selection operation of Odd Number Selection plus Roulette Wheel Selection, the crossover operation of Arithmetic Crossover Between Near Relatives and Far Relatives, and the mutation operation of Adaptive Gaussian mutation. The evolutionary strategies determined the update of the whole population and the terminal solution. After operations from generation to generation, the initial stochastic population on the basis of the least squared solutions would be improved until the best chromosome/individual appeared. Finally some examples were computed to verify the devised method. The experimental results show that the GA-based method can find the desired solutions that are superior to the least squared solutions and almost equal to those given by other optimization techniques except a few examples give a similar result.
Qi, Jun; Niu, Jun-Feng; Wang, Li-Li
2008-01-01
A modified method to develop quantitative structure-property relationship (QSPR) models of organic compounds was proposed based on genetic algorithm (GA) and support vector machine (SVM) (GA-SVM). GA was used to perform the variable selection, and SVM was used to construct QSPR models. GA-SVM was applied to develop the QSPR models for n-octanol-water partition coefficients ( Kow) of 38 typical organic compounds in food industry. 5 descriptors (molecular weights, Hansen polarity, boiling point, percent oxygen and percent hydrogen) were selected in the QSPR model. The coefficient of multiple determination (R2), the sum of squares due to error (SSE) and the root mean squared error (RMSE) values between the measured values and predicted values of the model developed by GA-SVM are 0.999, 0.048 and 0.036, respectively, indicating good predictive capability for lgKow values of these organic compounds. Based on leave-one-out cross validation, the QSPR model constructed by GA-SVM showed good robustness (SSE = 0.295, RMSE = 0.089, R2 = 0.995). Moreover, the models developed by GA-SVM were compared with the models constructed by genetic algorithm-radial basis function neural network (GA-RBFNN) and linear method. The models constructed by GA-SVM show the optimal predictive capability and robustness in the comparison, which illustrates GA-SVM is the optimal method for developing QSPR models for lgKow values of these organic compounds.
Radosavljević, S.; Radovanović, J. Milanović, V.; Tomić, S.
2014-07-21
We have described a method for structural parameters optimization of GaN/AlGaN multiple quantum well based up-converter for silicon solar cells. It involves a systematic tuning of individual step quantum wells by use of the genetic algorithm for global optimization. In quantum well structures, the up-conversion process can be achieved by utilizing nonlinear optical effects based on intersubband transitions. Both single and double step quantum wells have been tested in order to maximize the second order susceptibility derived from the density matrix formalism. The results obtained for single step wells proved slightly better and have been further pursued to obtain a more complex design, optimized for conversion of an entire range of incident photon energies.
Genetics algorithm optimization of DWT-DCT based image Watermarking
NASA Astrophysics Data System (ADS)
Budiman, Gelar; Novamizanti, Ledya; Iwut, Iwan
2017-01-01
Data hiding in an image content is mandatory for setting the ownership of the image. Two dimensions discrete wavelet transform (DWT) and discrete cosine transform (DCT) are proposed as transform method in this paper. First, the host image in RGB color space is converted to selected color space. We also can select the layer where the watermark is embedded. Next, 2D-DWT transforms the selected layer obtaining 4 subband. We select only one subband. And then block-based 2D-DCT transforms the selected subband. Binary-based watermark is embedded on the AC coefficients of each block after zigzag movement and range based pixel selection. Delta parameter replacing pixels in each range represents embedded bit. +Delta represents bit “1” and –delta represents bit “0”. Several parameters to be optimized by Genetics Algorithm (GA) are selected color space, layer, selected subband of DWT decomposition, block size, embedding range, and delta. The result of simulation performs that GA is able to determine the exact parameters obtaining optimum imperceptibility and robustness, in any watermarked image condition, either it is not attacked or attacked. DWT process in DCT based image watermarking optimized by GA has improved the performance of image watermarking. By five attacks: JPEG 50%, resize 50%, histogram equalization, salt-pepper and additive noise with variance 0.01, robustness in the proposed method has reached perfect watermark quality with BER=0. And the watermarked image quality by PSNR parameter is also increased about 5 dB than the watermarked image quality from previous method.
Edge detection based on genetic algorithm and sobel operator in image
NASA Astrophysics Data System (ADS)
Tong, Xin; Ren, Aifeng; Zhang, Haifeng; Ruan, Hang; Luo, Ming
2011-10-01
Genetic algorithm (GA) is widely used as the optimization problems using techniques inspired by natural evolution. In this paper we present a new edge detection technique based on GA and sobel operator. The sobel edge detection built in DSP Builder is first used to determine the boundaries of objects within an image. Then the genetic algorithm using SOPC Builder proposes a new threshold algorithm for the image processing. Finally, the performance of the new edge detection technique-based the best threshold approaches in DSP Builder and Quartus II software is compared both qualitatively and quantitatively with the single sobel operator. The new edge detection technique is shown to perform very well in terms of robustness to noise, edge search capability and quality of the final edge image.
QPSO-based adaptive DNA computing algorithm.
Karakose, Mehmet; Cigdem, Ugur
2013-01-01
DNA (deoxyribonucleic acid) computing that is a new computation model based on DNA molecules for information storage has been increasingly used for optimization and data analysis in recent years. However, DNA computing algorithm has some limitations in terms of convergence speed, adaptability, and effectiveness. In this paper, a new approach for improvement of DNA computing is proposed. This new approach aims to perform DNA computing algorithm with adaptive parameters towards the desired goal using quantum-behaved particle swarm optimization (QPSO). Some contributions provided by the proposed QPSO based on adaptive DNA computing algorithm are as follows: (1) parameters of population size, crossover rate, maximum number of operations, enzyme and virus mutation rate, and fitness function of DNA computing algorithm are simultaneously tuned for adaptive process, (2) adaptive algorithm is performed using QPSO algorithm for goal-driven progress, faster operation, and flexibility in data, and (3) numerical realization of DNA computing algorithm with proposed approach is implemented in system identification. Two experiments with different systems were carried out to evaluate the performance of the proposed approach with comparative results. Experimental results obtained with Matlab and FPGA demonstrate ability to provide effective optimization, considerable convergence speed, and high accuracy according to DNA computing algorithm.
NASA Astrophysics Data System (ADS)
Siade, A. J.; Cheng, W.; Yeh, W. W.
2010-12-01
This study optimizes observation well locations and sampling frequencies for the purpose of estimating unknown groundwater extraction in an aquifer system. Proper orthogonal decomposition (POD) is used to reduce the groundwater flow model, thus reducing the computation burden and data storage space associated with solving this problem for heavily discretized models. This reduced model can store a significant amount of system information in a much smaller reduced state vector. Along with the sensitivity equation method, the proposed approach can efficiently compute the Jacobian matrix that forms the information matrix associated with the experimental design. The criterion adopted for experimental design is the maximization of the trace of the weighted information matrix. Under certain conditions, this is equivalent to the classical A-optimality criterion established in experimental design. A genetic algorithm (GA) is used to optimize the observation well locations and sampling frequencies for maximizing the collected information from the hydraulic head sampling at the observation wells. We applied the proposed approach to a hypothetical 30,000-node groundwater aquifer system. We studied the relationship among the number of observation wells, observation well locations, sampling frequencies, and the collected information for estimating unknown groundwater extraction.
A region labeling algorithm based on block
NASA Astrophysics Data System (ADS)
Wang, Jing
2009-10-01
The time performance of region labeling algorithm is important for image process. However, common region labeling algorithms cannot meet the requirements of real-time image processing. In this paper, a technique using block to record the connective area is proposed. By this technique, connective closure and information related to the target can be computed during a one-time image scan. It records the edge pixel's coordinate, including outer side edges and inner side edges, as well as the label, and then it can calculate connecting area's shape center, area and gray. Compared to others, this block based region labeling algorithm is more efficient. It can well meet the time requirements of real-time processing. Experiment results also validate the correctness and efficiency of the algorithm. Experiment results show that it can detect any connecting areas in binary images, which contains various complex and quaint patterns. The block labeling algorithm is used in a real-time image processing program now.
Positive temperature coefficient of photovoltaic efficiency in solar cells based on InGaN/GaN MQWs
NASA Astrophysics Data System (ADS)
Chen, Zhaoying; Zheng, Xiantong; Li, Zhilong; Wang, Ping; Rong, Xin; Wang, Tao; Yang, Xuelin; Xu, Fujun; Qin, Zhixin; Ge, Weikun; Shen, Bo; Wang, Xinqiang
2016-08-01
We report a 23.4% improvement of conversion efficiency in solar cells based on InGaN/GaN multiple quantum wells by using a patterned sapphire substrate in the fabrication process. The efficiency enhancement is due to the improvement of the crystalline quality, as proven by the reduction of the threading dislocation density. More importantly, the better crystalline quality leads to a positive photovoltaic efficiency temperature coefficient up to 423 K, which shows the property and advantage of wide gap semiconductors like InGaN, signifying the potential of III-nitride based solar cells for high temperature and concentrating solar power applications.
Design of OFDM radar pulses using genetic algorithm based techniques
NASA Astrophysics Data System (ADS)
Lellouch, Gabriel; Mishra, Amit Kumar; Inggs, Michael
2016-08-01
The merit of evolutionary algorithms (EA) to solve convex optimization problems is widely acknowledged. In this paper, a genetic algorithm (GA) optimization based waveform design framework is used to improve the features of radar pulses relying on the orthogonal frequency division multiplexing (OFDM) structure. Our optimization techniques focus on finding optimal phase code sequences for the OFDM signal. Several optimality criteria are used since we consider two different radar processing solutions which call either for single or multiple-objective optimizations. When minimization of the so-called peak-to-mean envelope power ratio (PMEPR) single-objective is tackled, we compare our findings with existing methods and emphasize on the merit of our approach. In the scope of the two-objective optimization, we first address PMEPR and peak-to-sidelobe level ratio (PSLR) and show that our approach based on the non-dominated sorting genetic algorithm-II (NSGA-II) provides design solutions with noticeable improvements as opposed to random sets of phase codes. We then look at another case of interest where the objective functions are two measures of the sidelobe level, namely PSLR and the integrated-sidelobe level ratio (ISLR) and propose to modify the NSGA-II to include a constrain on the PMEPR instead. In the last part, we illustrate via a case study how our encoding solution makes it possible to minimize the single objective PMEPR while enabling a target detection enhancement strategy, when the SNR metric would be chosen for the detection framework.
Power Disturbances Classification Using S-Transform Based GA-PNN
NASA Astrophysics Data System (ADS)
Manimala, K.; Selvi, K.
2015-09-01
The significance of detection and classification of power quality events that disturb the voltage and/or current waveforms in the electrical power distribution networks is well known. Consequently, in spite of a large number of research reports in this area, a research on the selection of proper parameter for specific classifiers was so far not explored. The parameter selection is very important for successful modelling of input-output relationship in a function approximation model. In this study, probabilistic neural network (PNN) has been used as a function approximation tool for power disturbance classification and genetic algorithm (GA) is utilised for optimisation of the smoothing parameter of the PNN. The important features extracted from raw power disturbance signal using S-Transform are given to the PNN for effective classification. The choice of smoothing parameter for PNN classifier will significantly impact the classification accuracy. Hence, GA based parameter optimization is done to ensure good classification accuracy by selecting suitable parameter of the PNN classifier. Testing results show that the proposed S-Transform based GA-PNN model has better classification ability than classifiers based on conventional grid search method for parameter selection. The noisy and practical signals are considered for the classification process to show the effectiveness of the proposed method in comparison with existing methods.
Method of plasma etching Ga-based compound semiconductors
Qiu, Weibin; Goddard, Lynford L.
2012-12-25
A method of plasma etching Ga-based compound semiconductors includes providing a process chamber and a source electrode adjacent to the process chamber. The process chamber contains a sample comprising a Ga-based compound semiconductor. The sample is in contact with a platen which is electrically connected to a first power supply, and the source electrode is electrically connected to a second power supply. The method includes flowing SiCl.sub.4 gas into the chamber, flowing Ar gas into the chamber, and flowing H.sub.2 gas into the chamber. RF power is supplied independently to the source electrode and the platen. A plasma is generated based on the gases in the process chamber, and regions of a surface of the sample adjacent to one or more masked portions of the surface are etched to create a substantially smooth etched surface including features having substantially vertical walls beneath the masked portions.
A Comparative Study of Probability Collectives Based Multi-agent Systems and Genetic Algorithms
NASA Technical Reports Server (NTRS)
Huang, Chien-Feng; Wolpert, David H.; Bieniawski, Stefan; Strauss, Charles E. M.
2005-01-01
We compare Genetic Algorithms (GA's) with Probability Collectives (PC), a new framework for distributed optimization and control. In contrast to GA's, PC-based methods do not update populations of solutions. Instead they update an explicitly parameterized probability distribution p over the space of solutions. That updating of p arises as the optimization of a functional of p. The functional is chosen so that any p that optimizes it should be p peaked about good solutions. The PC approach works in both continuous and discrete problems. It does not suffer from the resolution limitation of the finite bit length encoding of parameters into GA alleles. It also has deep connections with both game theory and statistical physics. We review the PC approach using its motivation as the information theoretic formulation of bounded rationality for multi-agent systems. It is then compared with GA's on a diverse set of problems. To handle high dimensional surfaces, in the PC method investigated here p is restricted to a product distribution. Each distribution in that product is controlled by a separate agent. The test functions were selected for their difficulty using either traditional gradient descent or genetic algorithms. On those functions the PC-based approach significantly outperforms traditional GA's in both rate of descent, trapping in false minima, and long term optimization.
Exemplar-Based Policy with Selectable Strategies and its Optimization Using GA
NASA Astrophysics Data System (ADS)
Ikeda, Kokolo; Kobayashi, Shigenobu; Kita, Hajime
As an approach for dynamic control problems and decision making problems, usually formulated as Markov Decision Processes (MDPs), we focus direct policy search (DPS), where a policy is represented by a model with parameters, and the parameters are optimized so as to maximize the evaluation function by applying the parameterized policy to the problem. In this paper, a novel framework for DPS, an exemplar-based policy optimization using genetic algorithm (EBP-GA) is presented and analyzed. In this approach, the policy is composed of a set of virtual exemplars and a case-based action selector, and the set of exemplars are selected and evolved by a genetic algorithm. Here, an exemplar is a real or virtual, free-styled and suggestive information such as ``take the action A at the state S'' or ``the state S1 is better to attain than S2''. One advantage of EBP-GA is the generalization and localization ability for policy expression, based on case-based reasoning methods. Another advantage is that both the introduction of prior knowledge and the extraction of knowledge after optimization are relatively straightforward. These advantages are confirmed through the proposal of two new policy expressions, experiments on two different problems and their analysis.
Su, Feng; Yuan, Peijiang; Wang, Yangzhen; Zhang, Chen
2016-10-01
Artificial neural networks (ANNs) are powerful computational tools that are designed to replicate the human brain and adopted to solve a variety of problems in many different fields. Fault tolerance (FT), an important property of ANNs, ensures their reliability when significant portions of a network are lost. In this paper, a fault/noise injection-based (FIB) genetic algorithm (GA) is proposed to construct fault-tolerant ANNs. The FT performance of an FIB-GA was compared with that of a common genetic algorithm, the back-propagation algorithm, and the modification of weights algorithm. The FIB-GA showed a slower fitting speed when solving the exclusive OR (XOR) problem and the overlapping classification problem, but it significantly reduced the errors in cases of single or multiple faults in ANN weights or nodes. Further analysis revealed that the fit weights showed no correlation with the fitting errors in the ANNs constructed with the FIB-GA, suggesting a relatively even distribution of the various fitting parameters. In contrast, the output weights in the training of ANNs implemented with the use the other three algorithms demonstrated a positive correlation with the errors. Our findings therefore indicate that a combination of the fault/noise injection-based method and a GA is capable of introducing FT to ANNs and imply that the distributed ANNs demonstrate superior FT performance.
Review of radiation damage in GaN-based materials and devices
Pearton, Stephen J.; Deist, Richard; Ren, Fan; Liu, Lu; Polyakov, Alexander Y.; Kim, Jihyun
2013-09-15
A review of the effects of proton, neutron, γ-ray, and electron irradiation on GaN materials and devices is presented. Neutron irradiation tends to create disordered regions in the GaN, while the damage from the other forms of radiation is more typically point defects. In all cases, the damaged region contains carrier traps that reduce the mobility and conductivity of the GaN and at high enough doses, a significant degradation of device performance. GaN is several orders of magnitude more resistant to radiation damage than GaAs of similar doping concentrations. In terms of heterostructures, preliminary data suggests that the radiation hardness decreases in the order AlN/GaN > AlGaN/GaN > InAlN/GaN, consistent with the average bond strengths in the Al-based materials.
Fernandez, Michael; Caballero, Julio; Fernandez, Leyden; Sarai, Akinori
2011-02-01
Many articles in "in silico" drug design implemented genetic algorithm (GA) for feature selection, model optimization, conformational search, or docking studies. Some of these articles described GA applications to quantitative structure-activity relationships (QSAR) modeling in combination with regression and/or classification techniques. We reviewed the implementation of GA in drug design QSAR and specifically its performance in the optimization of robust mathematical models such as Bayesian-regularized artificial neural networks (BRANNs) and support vector machines (SVMs) on different drug design problems. Modeled data sets encompassed ADMET and solubility properties, cancer target inhibitors, acetylcholinesterase inhibitors, HIV-1 protease inhibitors, ion-channel and calcium entry blockers, and antiprotozoan compounds as well as protein classes, functional, and conformational stability data. The GA-optimized predictors were often more accurate and robust than previous published models on the same data sets and explained more than 65% of data variances in validation experiments. In addition, feature selection over large pools of molecular descriptors provided insights into the structural and atomic properties ruling ligand-target interactions.
Classification of Two Class Motor Imagery Tasks Using Hybrid GA-PSO Based K-Means Clustering.
Suraj; Tiwari, Purnendu; Ghosh, Subhojit; Sinha, Rakesh Kumar
2015-01-01
Transferring the brain computer interface (BCI) from laboratory condition to meet the real world application needs BCI to be applied asynchronously without any time constraint. High level of dynamism in the electroencephalogram (EEG) signal reasons us to look toward evolutionary algorithm (EA). Motivated by these two facts, in this work a hybrid GA-PSO based K-means clustering technique has been used to distinguish two class motor imagery (MI) tasks. The proposed hybrid GA-PSO based K-means clustering is found to outperform genetic algorithm (GA) and particle swarm optimization (PSO) based K-means clustering techniques in terms of both accuracy and execution time. The lesser execution time of hybrid GA-PSO technique makes it suitable for real time BCI application. Time frequency representation (TFR) techniques have been used to extract the feature of the signal under investigation. TFRs based features are extracted and relying on the concept of event related synchronization (ERD) and desynchronization (ERD) feature vector is formed.
Self-aligned process for emitter- and base-regrowth GaN HBTs and BJTs
NASA Astrophysics Data System (ADS)
Lee, K. P.; Zhang, A. P.; Dang, G.; Ren, F.; Han, J.; Chu, S. N. G.; Hobson, W. S.; Lopata, J.; Abernathy, C. R.; Pearton, S. J.; Lee, J. W.
2001-02-01
The development of a self-aligned fabrication process for small emitter contact area ( 2×4 μm 2) GaN/AlGaN heterojunction bipolar transistors and GaN bipolar junction transistors is described. The process features dielectric-spacer sidewalls, low damage dry etching and selected-area regrowth of p-GaAs(C) on the base contact or n-GaN/AlGaN on the emitter contact. Series resistance effects are still found to influence the device performance.
Optimisation of nonlinear motion cueing algorithm based on genetic algorithm
NASA Astrophysics Data System (ADS)
Asadi, Houshyar; Mohamed, Shady; Rahim Zadeh, Delpak; Nahavandi, Saeid
2015-04-01
Motion cueing algorithms (MCAs) are playing a significant role in driving simulators, aiming to deliver the most accurate human sensation to the simulator drivers compared with a real vehicle driver, without exceeding the physical limitations of the simulator. This paper provides the optimisation design of an MCA for a vehicle simulator, in order to find the most suitable washout algorithm parameters, while respecting all motion platform physical limitations, and minimising human perception error between real and simulator driver. One of the main limitations of the classical washout filters is that it is attuned by the worst-case scenario tuning method. This is based on trial and error, and is effected by driving and programmers experience, making this the most significant obstacle to full motion platform utilisation. This leads to inflexibility of the structure, production of false cues and makes the resulting simulator fail to suit all circumstances. In addition, the classical method does not take minimisation of human perception error and physical constraints into account. Production of motion cues and the impact of different parameters of classical washout filters on motion cues remain inaccessible for designers for this reason. The aim of this paper is to provide an optimisation method for tuning the MCA parameters, based on nonlinear filtering and genetic algorithms. This is done by taking vestibular sensation error into account between real and simulated cases, as well as main dynamic limitations, tilt coordination and correlation coefficient. Three additional compensatory linear blocks are integrated into the MCA, to be tuned in order to modify the performance of the filters successfully. The proposed optimised MCA is implemented in MATLAB/Simulink software packages. The results generated using the proposed method show increased performance in terms of human sensation, reference shape tracking and exploiting the platform more efficiently without reaching
Envelope analysis with a genetic algorithm-based adaptive filter bank for bearing fault detection.
Kang, Myeongsu; Kim, Jaeyoung; Choi, Byeong-Keun; Kim, Jong-Myon
2015-07-01
This paper proposes a fault detection methodology for bearings using envelope analysis with a genetic algorithm (GA)-based adaptive filter bank. Although a bandpass filter cooperates with envelope analysis for early identification of bearing defects, no general consensus has been reached as to which passband is optimal. This study explores the impact of various passbands specified by the GA in terms of a residual frequency components-to-defect frequency components ratio, which evaluates the degree of defectiveness in bearings and finally outputs an optimal passband for reliable bearing fault detection.
Optimization of lamp arrangement in a closed-conduit UV reactor based on a genetic algorithm.
Sultan, Tipu; Ahmad, Zeshan; Cho, Jinsoo
2016-01-01
The choice for the arrangement of the UV lamps in a closed-conduit ultraviolet (CCUV) reactor significantly affects the performance. However, a systematic methodology for the optimal lamp arrangement within the chamber of the CCUV reactor is not well established in the literature. In this research work, we propose a viable systematic methodology for the lamp arrangement based on a genetic algorithm (GA). In addition, we analyze the impacts of the diameter, angle, and symmetry of the lamp arrangement on the reduction equivalent dose (RED). The results are compared based on the simulated RED values and evaluated using the computational fluid dynamics simulations software ANSYS FLUENT. The fluence rate was calculated using commercial software UVCalc3D, and the GA-based lamp arrangement optimization was achieved using MATLAB. The simulation results provide detailed information about the GA-based methodology for the lamp arrangement, the pathogen transport, and the simulated RED values. A significant increase in the RED values was achieved by using the GA-based lamp arrangement methodology. This increase in RED value was highest for the asymmetric lamp arrangement within the chamber of the CCUV reactor. These results demonstrate that the proposed GA-based methodology for symmetric and asymmetric lamp arrangement provides a viable technical solution to the design and optimization of the CCUV reactor.
Method of plasma etching GA-based compound semiconductors
Qiu, Weibin; Goddard, Lynford L.
2013-01-01
A method of plasma etching Ga-based compound semiconductors includes providing a process chamber and a source electrode adjacent thereto. The chamber contains a Ga-based compound semiconductor sample in contact with a platen which is electrically connected to a first power supply, and the source electrode is electrically connected to a second power supply. SiCl.sub.4 and Ar gases are flowed into the chamber. RF power is supplied to the platen at a first power level, and RF power is supplied to the source electrode. A plasma is generated. Then, RF power is supplied to the platen at a second power level lower than the first power level and no greater than about 30 W. Regions of a surface of the sample adjacent to one or more masked portions of the surface are etched at a rate of no more than about 25 nm/min to create a substantially smooth etched surface.
Microscopic, electrical and optical studies on InGaN/GaN quantum wells based LED devices
Mutta, Geeta Rani; Venturi, Giulia; Castaldini, Antonio; Cavallini, Anna
2014-02-21
We report here on the micro structural, electronic and optical properties of a GaN-based InGaN/GaN MQW LED grown by the MOVPE method. The present study shows that the threading dislocations present in these LED structures are terminated as V pits at the surface and have an impact on the electrical and optical activity of these devices. It has been pointed that these dislocations were of edge, screw and mixed types. EBIC maps suggest that the electrically active defects are screw and mixed dislocations and behave as nonradiative recombinant centres.
Waveguide effect of GaAsSb quantum wells in a laser structure based on GaAs
Aleshkin, V. Ya.; Afonenko, A. A.; Dikareva, N. V.; Dubinov, A. A. Kudryavtsev, K. E.; Morozov, S. V.; Nekorkin, S. M.
2013-11-15
The waveguide effect of GaAsSb quantum wells in a semiconductor-laser structure based on GaAs is studied theoretically and experimentally. It is shown that quantum wells themselves can be used as waveguide layers in the laser structure. As the excitation-power density attains a value of 2 kW/cm{sup 2} at liquid-nitrogen temperature, superluminescence at the wavelength corresponding to the optical transition in bulk GaAs (at 835 nm) is observed.
An Improved SoC Test Scheduling Method Based on Simulated Annealing Algorithm
NASA Astrophysics Data System (ADS)
Zheng, Jingjing; Shen, Zhihang; Gao, Huaien; Chen, Bianna; Zheng, Weida; Xiong, Xiaoming
2017-02-01
In this paper, we propose an improved SoC test scheduling method based on simulated annealing algorithm (SA). It is our first to disorganize IP core assignment for each TAM to produce a new solution for SA, allocate TAM width for each TAM using greedy algorithm and calculate corresponding testing time. And accepting the core assignment according to the principle of simulated annealing algorithm and finally attain the optimum solution. Simultaneously, we run the test scheduling experiment with the international reference circuits provided by International Test Conference 2002(ITC’02) and the result shows that our algorithm is superior to the conventional integer linear programming algorithm (ILP), simulated annealing algorithm (SA) and genetic algorithm(GA). When TAM width reaches to 48,56 and 64, the testing time based on our algorithm is lesser than the classic methods and the optimization rates are 30.74%, 3.32%, 16.13% respectively. Moreover, the testing time based on our algorithm is very close to that of improved genetic algorithm (IGA), which is state-of-the-art at present.
Araújo, Fabíola; Filho, José; Klautau, Aldebaro
2016-12-01
Voice imitation basically consists in estimating a synthesizer's input parameters to mimic a target speech signal. This is a difficult inverse problem because the mapping is time-varying, non-linear and from many to one. It typically requires considerable amount of time to be done manually. This work presents the evolution of a system based on a genetic algorithm (GA) to automatically estimate the input parameters of the Klatt and HLSyn formant synthesizers using an analysis-by-synthesis process. Results are presented for natural (human-generated) speech for three male speakers. The results obtained with the GA-based system outperform those obtained with the baseline Winsnoori with respect to four objective figures of merit and a subjective test. The GA with Klatt synthesizer generated similar voices to the target and the subjective tests indicate an improvement in the quality of the synthetic voices when compared to the ones produced by the baseline.
CoPt ferromagnetic injector in light-emitting Schottky diodes based on InGaAs/GaAs nanostructures
Zdoroveyshchev, A. V. Dorokhin, M. V.; Demina, P. B.; Kudrin, A. V.; Vikhrova, O. V.; Ved’, M. V.; Danilov, Yu. A.; Erofeeva, I. V.; Krjukov, R. N.; Nikolichev, D. E.
2015-12-15
The possibility of fabricating a ferromagnetic injector based on a near-equiatomic CoPt alloy with pronounced perpendicular magnetization anisotropy in the InGaAs/GaAs spin light-emitting diode is shown. The physical properties of experimental spin light-emitting diode prototypes are comprehensively studied. Circularly polarized electroluminescence of fabricated diodes is obtained in zero magnetic field due to the remanent magnetization of CoPt layers.
Quantum ratchet effects induced by terahertz radiation in GaN-based two-dimensional structures
NASA Astrophysics Data System (ADS)
Weber, W.; Golub, L. E.; Danilov, S. N.; Karch, J.; Reitmaier, C.; Wittmann, B.; Bel'Kov, V. V.; Ivchenko, E. L.; Kvon, Z. D.; Vinh, N. Q.; van der Meer, A. F. G.; Murdin, B.; Ganichev, S. D.
2008-06-01
Photogalvanic effects are observed and investigated in wurtzite (0001)-oriented GaN/AlGaN low-dimensional structures excited by terahertz radiation. The structures are shown to represent linear quantum ratchets. Experimental and theoretical analysis exhibits that the observed photocurrents are related to the lack of an inversion center in the GaN-based heterojunctions.
Study on the etching process GaAs-based VCSEL
NASA Astrophysics Data System (ADS)
Feng, Yuan; Liu, Guojun; Hao, Yongqin; Yan, Changling; Zhang, Jiabin; Li, Yang; Li, Zaijin
2016-11-01
Wet etching process is a key technology in fabrication of VCSEL and their array in order to improve opto-electric characteristics of high-power VCSEL, devices with multi-ring distribution hole VCSEL is fabricated. The H3PO4 etching solution was used in the wet etching progress and etching rate is studied by changing etching solution concentration and etching time. The optimum technological conditions were determined by studying the etching morphology and etching depth of the GaAs-VCSEL. The tested results show that the complete morphology and the appropriate depth can be obtained by using the concentration ratio of 1:1:10, which can meet the requirements of GaAs-based VCSEL micro- structure etching process.
Barrier height enhancement of Ni/GaN Schottky diode using Ru based passivation scheme
Kumar, Ashish Kumar, Mukesh; Singh, R.; Kaur, Riajeet; Joshi, Amish G.; Vinayak, Seema
2014-03-31
Wet chemical passivation of n-GaN surface using Ru based solution has been reported. X-ray photoelectron spectroscopy characterization of the GaN surface revealed removal of surface oxides by the introduction of Ru complex species. Ni/n-GaN Schottky barrier diodes were fabricated on passivated GaN and a remarkable improvement in Schottky barrier height from 0.76 eV to 0.92 eV was observed.
SFC Optimization for Aero Engine Based on Hybrid GA-SQP Method
NASA Astrophysics Data System (ADS)
Li, Jie; Fan, Ding; Sreeram, Victor
2013-12-01
This study focuses on on-line specific fuel consumption (SFC) optimization of aero engines. For solving this optimization problem, a nonlinear pneumatic and thermodynamics model of the aero engine is built and a hybrid optimization technique which is formed by combining the genetic algorithm (GA) and the sequential quadratic programming (SQP) is presented. The ability of standard GA and standard SQP in solving this type of problem is investigated. It has been found that, although the SQP is fast, very little SFC reductions can be obtained. The GA is able to solve the problem well but a lot of computational time is needed. The presented hybrid GA-SQP gives a good SFC optimization effect and saves 76.6% computational time when compared to the standard GA. It has been shown that the hybrid GA-SQP is a more effective and higher real-time method for SFC on-line optimization of the aero engine.
NASA Astrophysics Data System (ADS)
Liu, B.; Li, S. C.; Nie, L. C.; Wang, J.; L, X.; Zhang, Q. S.
2012-12-01
Traditional inversion method is the most commonly used procedure for three-dimensional (3D) resistivity inversion, which usually takes the linearization of the problem and accomplish it by iterations. However, its accuracy is often dependent on the initial model, which can make the inversion trapped in local optima, even cause a bad result. Non-linear method is a feasible way to eliminate the dependence on the initial model. However, for large problems such as 3D resistivity inversion with inversion parameters exceeding a thousand, main challenges of non-linear method are premature and quite low search efficiency. To deal with these problems, we present an improved Genetic Algorithm (GA) method. In the improved GA method, smooth constraint and inequality constraint are both applied on the object function, by which the degree of non-uniqueness and ill-conditioning is decreased. Some measures are adopted from others by reference to maintain the diversity and stability of GA, e.g. real-coded method, and the adaptive adjustment of crossover and mutation probabilities. Then a generation method of approximately uniform initial population is proposed in this paper, with which uniformly distributed initial generation can be produced and the dependence on initial model can be eliminated. Further, a mutation direction control method is presented based on the joint algorithm, in which the linearization method is embedded in GA. The update vector produced by linearization method is used as mutation increment to maintain a better search direction compared with the traditional GA with non-controlled mutation operation. By this method, the mutation direction is optimized and the search efficiency is improved greatly. The performance of improved GA is evaluated by comparing with traditional inversion results in synthetic example or with drilling columnar sections in practical example. The synthetic and practical examples illustrate that with the improved GA method we can eliminate
Enhanced light output power of InGaN-based amber LEDs by strain-compensating AlN/AlGaN barriers
NASA Astrophysics Data System (ADS)
Iida, Daisuke; Lu, Shen; Hirahara, Sota; Niwa, Kazumasa; Kamiyama, Satoshi; Ohkawa, Kazuhiro
2016-08-01
We investigated the effect of a combined AlN/Al0.03Ga0.97N barrier on InGaN-based amber light-emitting diodes (LEDs) grown by metalorganic vapor-phase epitaxy. InGaN-based multiple quantum wells with a combined AlN/Al0.03Ga0.97N barrier showed intense photoluminescence with a narrow full-width at half-maximum. The amber LEDs with a combined AlN/Al0.03Ga0.97N barrier achieved a light output power enhanced approximately 2.5-fold at 20 mA compared to that of the LED with a combined AlN/GaN barrier, owing to the reduction of defects in InGaN active layers. Thus, the efficiency of high-In-content InGaN-based LEDs can be improved in the spectrum range of amber.
Double Motor Coordinated Control Based on Hybrid Genetic Algorithm and CMAC
NASA Astrophysics Data System (ADS)
Cao, Shaozhong; Tu, Ji
A novel hybrid cerebellar model articulation controller (CMAC) and online adaptive genetic algorithm (GA) controller is introduced to control two Brushless DC motor (BLDCM) which applied in a biped robot. Genetic Algorithm simulates the random learning among the individuals of a group, and CMAC simulates the self-learning of an individual. To validate the ability and superiority of the novel algorithm, experiments have been done in MATLAB/SIMULINK. Analysis among GA, hybrid GA-CMAC and CMAC feed-forward control is also given. The results prove that the torque ripple of the coordinated control system is eliminated by using the hybrid GA-CMAC algorithm.
An, Jianfei; Song, Kezhu; Zhang, Shuangxi; Yang, Junfeng; Cao, Ping
2014-04-16
An improved method based on a genetic algorithm (GA) is developed to design a broadband electrical impedance matching network for piezoelectric ultrasound transducer. A key feature of the new method is that it can optimize both the topology of the matching network and perform optimization on the components. The main idea of this method is to find the optimal matching network in a set of candidate topologies. Some successful experiences of classical algorithms are absorbed to limit the size of the set of candidate topologies and greatly simplify the calculation process. Both binary-coded GA and real-coded GA are used for topology optimization and components optimization, respectively. Some calculation strategies, such as elitist strategy and clearing niche method, are adopted to make sure that the algorithm can converge to the global optimal result. Simulation and experimental results prove that matching networks with better performance might be achieved by this improved method.
Conductivity based on selective etch for GaN devices and applications thereof
Zhang, Yu; Sun, Qian; Han, Jung
2015-12-08
This invention relates to methods of generating NP gallium nitride (GaN) across large areas (>1 cm.sup.2) with controlled pore diameters, pore density, and porosity. Also disclosed are methods of generating novel optoelectronic devices based on porous GaN. Additionally a layer transfer scheme to separate and create free-standing crystalline GaN thin layers is disclosed that enables a new device manufacturing paradigm involving substrate recycling. Other disclosed embodiments of this invention relate to fabrication of GaN based nanocrystals and the use of NP GaN electrodes for electrolysis, water splitting, or photosynthetic process applications.
Adaptively resizing populations: Algorithm, analysis, and first results
NASA Technical Reports Server (NTRS)
Smith, Robert E.; Smuda, Ellen
1993-01-01
Deciding on an appropriate population size for a given Genetic Algorithm (GA) application can often be critical to the algorithm's success. Too small, and the GA can fall victim to sampling error, affecting the efficacy of its search. Too large, and the GA wastes computational resources. Although advice exists for sizing GA populations, much of this advice involves theoretical aspects that are not accessible to the novice user. An algorithm for adaptively resizing GA populations is suggested. This algorithm is based on recent theoretical developments that relate population size to schema fitness variance. The suggested algorithm is developed theoretically, and simulated with expected value equations. The algorithm is then tested on a problem where population sizing can mislead the GA. The work presented suggests that the population sizing algorithm may be a viable way to eliminate the population sizing decision from the application of GA's.
Laser diode bars based on strain-compensated AlGaPAs/GaAs heterostructures
Marmalyuk, Aleksandr A; Ladugin, M A; Yarotskaya, I V; Panarin, V A; Mikaelyan, G T
2012-01-31
Traditional (in the AlGaAs/GaAs system) and phosphorus-compensated (in the AlGaAs/AlGaPAs/GaAs system) laser heterostructures emitting at a wavelength of 850 nm are grown by MOVPE and studied. Laser diode bars are fabricated and their output characteristics are studied. The method used to grow heterolayers allowed us to control (minimise) mechanical stresses in the AlGaPAs/GaAs laser heterostructure, which made it possible to keep its curvature at the level of the initial curvature of the substrate. It is shown that the use of a compensated AlGaPAs/GaAs heterostructure improves the linear distribution of emitting elements in the near field of laser diode arrays and allows the power - current characteristic to retain its slope at high pump currents owing to a uniform contact of all emitting elements with the heat sink. The radius of curvature of the grown compensated heterostructures turns out to be smaller than that of traditional heterostructures.
NASA Astrophysics Data System (ADS)
Koleske, D. D.; Fischer, A. J.; Bryant, B. N.; Kotula, P. G.; Wierer, J. J.
2015-04-01
InGaN/AlGaN/GaN-based multiple quantum wells (MQWs) with AlGaN interlayers (ILs) are investigated, specifically to examine the fundamental mechanisms behind their increased radiative efficiency at wavelengths of 530-590 nm. The AlzGa1-zN (z~0.38) IL is ~1-2 nm thick, and is grown after and at the same growth temperature as the ~3 nm thick InGaN quantum well (QW). This is followed by an increase in temperature for the growth of a ~10 nm thick GaN barrier layer. The insertion of the AlGaN IL within the MQW provides various benefits. First, the AlGaN IL allows for growth of the InxGa1-xN QW well below typical growth temperatures to achieve higher x (up to~0.25). Second, annealing the IL capped QW prior to the GaN barrier growth improves the AlGaN IL smoothness as determined by atomic force microscopy, improves the InGaN/AlGaN/GaN interface quality as determined from scanning transmission electron microscope images and x-ray diffraction, and increases the radiative efficiency by reducing non-radiative defects as determined by time-resolved photoluminescence measurements. Finally, the AlGaN IL increases the spontaneous and piezoelectric polarization induced electric fields acting on the InGaN QW, providing an additional red-shift to the emission wavelength as determined by Schrodinger-Poisson modeling and fitting to the experimental data. The relative impact of increased indium concentration and polarization fields on the radiative efficiency of MQWs with AlGaN ILs is explored along with implications to conventional longer wavelength emitters.
Lee, Ming-Lun; Yeh, Yu-Hsiang; Tu, Shang-Ju; Chen, P C; Wu, Ming-Jui; Lai, Wei-Chih; Sheu, Jinn-Kong
2013-09-09
GaN-based blue light-emitting diodes (LEDs) with micro truncated hexagonal pyramid (THP) array were grown on selective-area Si-implanted GaN (SIG) templates. The GaN epitaxial layer regrown on the SIG templates exhibited selective growth and subsequent lateral growth to form the THP array. The observed selective-area growth was attributed to the different crystal structures between the Si-implanted and implantation-free regions. Consequently, LEDs grown on the GaN THP array emitted broad electroluminescence spectra with multiple peaks. Spatially resolved cathodoluminescence revealed that the broad spectra originated from different areas within each THP. Transmission electron microscopy showed the GaN-based epitaxial layers, including InGaN/GaN multi-quantum wells regrown at different growth rates (or with different In content in the InGaN wells) between the semi-polar and c-face planes of each THP.
Optimal Hops-Based Adaptive Clustering Algorithm
NASA Astrophysics Data System (ADS)
Xuan, Xin; Chen, Jian; Zhen, Shanshan; Kuo, Yonghong
This paper proposes an optimal hops-based adaptive clustering algorithm (OHACA). The algorithm sets an energy selection threshold before the cluster forms so that the nodes with less energy are more likely to go to sleep immediately. In setup phase, OHACA introduces an adaptive mechanism to adjust cluster head and load balance. And the optimal distance theory is applied to discover the practical optimal routing path to minimize the total energy for transmission. Simulation results show that OHACA prolongs the life of network, improves utilizing rate and transmits more data because of energy balance.
Numerical Algorithms Based on Biorthogonal Wavelets
NASA Technical Reports Server (NTRS)
Ponenti, Pj.; Liandrat, J.
1996-01-01
Wavelet bases are used to generate spaces of approximation for the resolution of bidimensional elliptic and parabolic problems. Under some specific hypotheses relating the properties of the wavelets to the order of the involved operators, it is shown that an approximate solution can be built. This approximation is then stable and converges towards the exact solution. It is designed such that fast algorithms involving biorthogonal multi resolution analyses can be used to resolve the corresponding numerical problems. Detailed algorithms are provided as well as the results of numerical tests on partial differential equations defined on the bidimensional torus.
A Reliability-Based Track Fusion Algorithm
Xu, Li; Pan, Liqiang; Jin, Shuilin; Liu, Haibo; Yin, Guisheng
2015-01-01
The common track fusion algorithms in multi-sensor systems have some defects, such as serious imbalances between accuracy and computational cost, the same treatment of all the sensor information regardless of their quality, high fusion errors at inflection points. To address these defects, a track fusion algorithm based on the reliability (TFR) is presented in multi-sensor and multi-target environments. To improve the information quality, outliers in the local tracks are eliminated at first. Then the reliability of local tracks is calculated, and the local tracks with high reliability are chosen for the state estimation fusion. In contrast to the existing methods, TFR reduces high fusion errors at the inflection points of system tracks, and obtains a high accuracy with less computational cost. Simulation results verify the effectiveness and the superiority of the algorithm in dense sensor environments. PMID:25950174
Feature matching algorithm based on spatial similarity
NASA Astrophysics Data System (ADS)
Tang, Wenjing; Hao, Yanling; Zhao, Yuxin; Li, Ning
2008-10-01
The disparities of features that represent the same real world entities from disparate sources usually occur, thus the identification or matching of features is crutial to the map conflation. Motivated by the idea of identifying the same entities through integrating known information by eyes, the feature matching algorithm based on spatial similarity is proposed in this paper. Total similarity is obtained by integrating positional similarity, shape similarity and size similarity with a weighted average algorithm, then the matching entities is achieved according to the maximum total similarity. The matching of areal features is analyzed in detail. Regarding the areal feature as a whole, the proposed algorithm identifies the same areal features by their shape-center points in order to calculate their positional similarity, and shape similarity is given by the function of describing the shape, which ensures its precision not be affected by interferes and avoids the loss of shape information, furthermore the size of areal features is measured by their covered areas. Test results show the stability and reliability of the proposed algorithm, and its precision and recall are higher than other matching algorithm.
Fault diagnosis using noise modeling and a new artificial immune system based algorithm
NASA Astrophysics Data System (ADS)
Abbasi, Farshid; Mojtahedi, Alireza; Ettefagh, Mir Mohammad
2015-12-01
A new fault classification/diagnosis method based on artificial immune system (AIS) algorithms for the structural systems is proposed. In order to improve the accuracy of the proposed method, i.e., higher success rate, Gaussian and non-Gaussian noise generating models are applied to simulate environmental noise. The identification of noise model, known as training process, is based on the estimation of the noise model parameters by genetic algorithms (GA) utilizing real experimental features. The proposed fault classification/diagnosis algorithm is applied to the noise contaminated features. Then, the results are compared to that obtained without noise modeling. The performance of the proposed method is examined using three laboratory case studies in two healthy and damaged conditions. Finally three different types of noise models are studied and it is shown experimentally that the proposed algorithm with non-Gaussian noise modeling leads to more accurate clustering of memory cells as the major part of the fault classification procedure.
A swarm intelligence based memetic algorithm for task allocation in distributed systems
NASA Astrophysics Data System (ADS)
Sarvizadeh, Raheleh; Haghi Kashani, Mostafa
2012-01-01
This paper proposes a Swarm Intelligence based Memetic algorithm for Task Allocation and scheduling in distributed systems. The tasks scheduling in distributed systems is known as an NP-complete problem. Hence, many genetic algorithms have been proposed for searching optimal solutions from entire solution space. However, these existing approaches are going to scan the entire solution space without considering the techniques that can reduce the complexity of the optimization. Spending too much time for doing scheduling is considered the main shortcoming of these approaches. Therefore, in this paper memetic algorithm has been used to cope with this shortcoming. With regard to load balancing efficiently, Bee Colony Optimization (BCO) has been applied as local search in the proposed memetic algorithm. Extended experimental results demonstrated that the proposed method outperformed the existing GA-based method in terms of CPU utilization.
A swarm intelligence based memetic algorithm for task allocation in distributed systems
NASA Astrophysics Data System (ADS)
Sarvizadeh, Raheleh; Haghi Kashani, Mostafa
2011-12-01
This paper proposes a Swarm Intelligence based Memetic algorithm for Task Allocation and scheduling in distributed systems. The tasks scheduling in distributed systems is known as an NP-complete problem. Hence, many genetic algorithms have been proposed for searching optimal solutions from entire solution space. However, these existing approaches are going to scan the entire solution space without considering the techniques that can reduce the complexity of the optimization. Spending too much time for doing scheduling is considered the main shortcoming of these approaches. Therefore, in this paper memetic algorithm has been used to cope with this shortcoming. With regard to load balancing efficiently, Bee Colony Optimization (BCO) has been applied as local search in the proposed memetic algorithm. Extended experimental results demonstrated that the proposed method outperformed the existing GA-based method in terms of CPU utilization.
NASA Astrophysics Data System (ADS)
Davydova, Evgeniya I.; Zverkov, M. V.; Konyaev, V. P.; Krichevskii, V. V.; Ladugin, M. A.; Marmalyuk, Aleksandr A.; Padalitsa, A. A.; Simakov, V. A.; Sukharev, A. V.; Uspenskii, Mikhail B.
2009-08-01
Ternary vertically integrated lasers based on the InGaAs/AlGaAs/GaAs heterostructure grown by the method of MOS hydride epitaxy in a single epitaxial process are studied. The typical slope of the watt—ampere characteristic for a triple laser diode is 2.6 W A-1. The frequency characteristics and temperature dependences of the optical power on the pump power demonstrate good homogeneity of the grown structures. Laser diodes based on the triple laser heterostructure (the stripe contact width is 200 μm and the cavity length is 1 mm) emit 80 W at 0.9 μm in the pulsed regime at the injection current of 40 A.
Solar cells based on InP/GaP/Si structure
NASA Astrophysics Data System (ADS)
Kvitsiani, O.; Laperashvil, D.; Laperashvili, T.; Mikelashvili, V.
2016-10-01
Solar cells (SCs) based on III-V semiconductors are reviewed. Presented work emphases on the Solar Cells containing Quantum Dots (QDs) for next-generation photovoltaics. In this work the method of fabrication of InP QDs on III-V semiconductors is investigated. The original method of electrochemical deposition of metals: indium (In), gallium (Ga) and of alloys (InGa) on the surface of gallium phosphide (GaP), and mechanism of formation of InP QDs on GaP surface is presented. The possibilities of application of InP/GaP/Si structure as SC are discussed, and the challenges arising is also considered.
Land cover classification using random forest with genetic algorithm-based parameter optimization
NASA Astrophysics Data System (ADS)
Ming, Dongping; Zhou, Tianning; Wang, Min; Tan, Tian
2016-07-01
Land cover classification based on remote sensing imagery is an important means to monitor, evaluate, and manage land resources. However, it requires robust classification methods that allow accurate mapping of complex land cover categories. Random forest (RF) is a powerful machine-learning classifier that can be used in land remote sensing. However, two important parameters of RF classification, namely, the number of trees and the number of variables tried at each split, affect classification accuracy. Thus, optimal parameter selection is an inevitable problem in RF-based image classification. This study uses the genetic algorithm (GA) to optimize the two parameters of RF to produce optimal land cover classification accuracy. HJ-1B CCD2 image data are used to classify six different land cover categories in Changping, Beijing, China. Experimental results show that GA-RF can avoid arbitrariness in the selection of parameters. The experiments also compare land cover classification results by using GA-RF method, traditional RF method (with default parameters), and support vector machine method. When the GA-RF method is used, classification accuracies, respectively, improved by 1.02% and 6.64%. The comparison results show that GA-RF is a feasible solution for land cover classification without compromising accuracy or incurring excessive time.
Zhang, Rong; Verkruysse, Wim; Choi, Bernard; Viator, John A; Jung, Byungjo; Svaasand, Lars O; Aguilar, Guillermo; Nelson, J Stuart
2005-01-01
We present an initial study on applying genetic algorithms (GA) to retrieve human skin optical properties using visual reflectance spectroscopy (VRS). A three-layered skin model consisting of 13 parameters is first used to simulate skin and, through an analytical model based on optical diffusion theory, we study their independent effects on the reflectance spectra. Based on a preliminary analysis, nine skin parameters are chosen to be fitted by GA. The fitting procedure is applied first on simulated reflectance spectra with added white noise, and then on measured spectra from normal and port wine stain (PWS) human skin. A normalized residue of less than 0.005 is achieved for simulated spectra. In the case of measured spectra from human skin, the normalized residue is less than 0.01. Comparisons between applying GA and manual iteration (MI) fitting show that GA performed much better than the MI fitting method and can easily distinguish melanin concentrations for different skin types. Furthermore, the GA approach can lead to a reasonable understanding of the blood volume fraction and other skin properties, provided that the applicability of the diffusion approximation is satisfied.
Characteristics of High-Efficient InGaN-Based White LED Lighting
2000-07-01
UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO 11311 TITLE: Characteristics of High-Efficient InGaN -Based White LED ...thru ADP011332 UNCLASSIFIED Characteristics of high-efficient InGaN -based white LED lighting Yuji Uchida’, Tatsumi Setomoto’, Tsunemasa Taguchi...characteristics of an efficient white LEDs lighting source, which is composed of cannon-ball type 10 cd-class InGaN -based white LEDs , are described. It is
NASA Astrophysics Data System (ADS)
Wu, Qiong; Wang, Jihua; Wang, Cheng; Xu, Tongyu
2016-09-01
Genetic algorithm (GA) has a significant effect in the band optimization selection of Partial Least Squares (PLS) correction model. Application of genetic algorithm in selection of characteristic bands can achieve the optimal solution more rapidly, effectively improve measurement accuracy and reduce variables used for modeling. In this study, genetic algorithm as a module conducted band selection for the application of hyperspectral imaging in nondestructive testing of corn seedling leaves, and GA-PLS model was established. In addition, PLS quantitative model of full spectrum and experienced-spectrum region were established in order to suggest the feasibility of genetic algorithm optimizing wave bands, and model robustness was evaluated. There were 12 characteristic bands selected by genetic algorithm. With reflectance values of corn seedling component information at spectral characteristic wavelengths corresponding to 12 characteristic bands as variables, a model about SPAD values of corn leaves acquired was established by PLS, and modeling results showed r = 0.7825. The model results were better than those of PLS model established in full spectrum and experience-based selected bands. The results suggested that genetic algorithm can be used for data optimization and screening before establishing the corn seedling component information model by PLS method and effectively increase measurement accuracy and greatly reduce variables used for modeling.
A novel tree structure based watermarking algorithm
NASA Astrophysics Data System (ADS)
Lin, Qiwei; Feng, Gui
2008-03-01
In this paper, we propose a new blind watermarking algorithm for images which is based on tree structure. The algorithm embeds the watermark in wavelet transform domain, and the embedding positions are determined by significant coefficients wavelets tree(SCWT) structure, which has the same idea with the embedded zero-tree wavelet (EZW) compression technique. According to EZW concepts, we obtain coefficients that are related to each other by a tree structure. This relationship among the wavelet coefficients allows our technique to embed more watermark data. If the watermarked image is attacked such that the set of significant coefficients is changed, the tree structure allows the correlation-based watermark detector to recover synchronously. The algorithm also uses a visual adaptive scheme to insert the watermark to minimize watermark perceptibility. In addition to the watermark, a template is inserted into the watermarked image at the same time. The template contains synchronization information, allowing the detector to determine the geometric transformations type applied to the watermarked image. Experimental results show that the proposed watermarking algorithm is robust against most signal processing attacks, such as JPEG compression, median filtering, sharpening and rotating. And it is also an adaptive method which shows a good performance to find the best areas to insert a stronger watermark.
Improved Cost-Base Design of Water Distribution Networks using Genetic Algorithm
NASA Astrophysics Data System (ADS)
Moradzadeh Azar, Foad; Abghari, Hirad; Taghi Alami, Mohammad; Weijs, Steven
2010-05-01
Population growth and progressive extension of urbanization in different places of Iran cause an increasing demand for primary needs. The water, this vital liquid is the most important natural need for human life. Providing this natural need is requires the design and construction of water distribution networks, that incur enormous costs on the country's budget. Any reduction in these costs enable more people from society to access extreme profit least cost. Therefore, investment of Municipal councils need to maximize benefits or minimize expenditures. To achieve this purpose, the engineering design depends on the cost optimization techniques. This paper, presents optimization models based on genetic algorithm(GA) to find out the minimum design cost Mahabad City's (North West, Iran) water distribution network. By designing two models and comparing the resulting costs, the abilities of GA were determined. the GA based model could find optimum pipe diameters to reduce the design costs of network. Results show that the water distribution network design using Genetic Algorithm could lead to reduction of at least 7% in project costs in comparison to the classic model. Keywords: Genetic Algorithm, Optimum Design of Water Distribution Network, Mahabad City, Iran.
GA-Based Computer-Aided Electromagnetic Design of Two-Phase SRM for Compressor Drives
NASA Astrophysics Data System (ADS)
Kano, Yoshiaki; Kosaka, Takashi; Matsui, Nobuyuki
This paper presents an approach to Genetic Algorithm (GA)-based computer-aided autonomous electromagnetic design of 2-phase Switched Reluctance Motor drives. The proposed drive is designed for compressor drives in low-priced refrigerators as an alternative to existing brushless DC motors drives with rare-earth magnets. In the proposed design approach, three GA loops work to optimize the lamination design so as to meet the requirements for the target application under the given constraints while simultaneously fine-tuning the control parameters. To achieve the design optimization within an acceptable CPU-time, the repeated-calculation required to obtain fitness evaluation in the proposed approach does not use FEM, but consists of geometric flux tube-based non-linear magnetic analysis and a dynamic simulator based on an analytical expression of the magnetizing curves obtained from the non-linear magnetic analysis. The design results show the proposed approach can autonomously find a feasible design solution of SRM drive for the target application from huge search space. The experimental studies using a 2-phase 8/6 prototype manufactured in accordance with the optimized design parameters show the validity of the proposed approach.
Estimation of parameters of a biochemically based model of photosynthesis using a genetic algorithm.
Su, Yonghong; Zhu, Gaofeng; Miao, Zewei; Feng, Qi; Chang, Zongqiang
2009-12-01
Photosynthesis response to carbon dioxide concentration can provide data on a number of important parameters related to leaf physiology. The genetic algorithm (GA), which is a robust stochastic evolutionary computational algorithm inspired by both natural selection and natural genetics, is proposed to simultaneously estimate the parameters [including maximum carboxylation rate allowed by ribulose 1.5-bisphosphate carboxylase/oxygenase (Rubisco) carboxylation rate (V(cmax)), potential light-saturated electron transport rate (J(max)), triose-phosphate utilization (TPU), leaf dark respiration in the light (R(d)) and mesophyll conductance (g(m))] of the photosynthesis models presented by Farquhar, von Caemmerer and Berry, and Ethier and Livingston. The results show that by properly constraining the parameter bounds the GA-based estimate methods can effectively and efficiently obtain globally (or, at least near globally) optimal solutions, which are as good as or better than those obtained by non-linear curve fitting methods used in previous studies. More complicated problems such as taking the g(m) variation response to CO(2) into account can be easily formulated and solved by using GA. The influence of the crossover probability (P(c)), mutation probability (P(m)), population size and generation on the performance of GA was also investigated.
Multiple watermarking algorithm based on chaotic sequences
NASA Astrophysics Data System (ADS)
Ji, Zhen; Xiao, Weiwei; Zhang, Jihong
2003-01-01
Multiple digital watermarking technique can resolve the problems of multiple copyright claim and keep the traces of digital products in the different phase of publishing, selling and using. In this paper, a multiple digital watermarking algorithm based on chaotic sequences is proposed. The chaotic sequences have the advantages of massive, high security, and weakest correlation. The massive and independent digital watermark signals are generated through 1-D chaotic maps, which are determined by different initial conditions and parameters. The chaotic digital watermark signals effectively resolve the construction of massive watermarks with good performance. The capacity of the multiple watermarking is also analyzed in this paper. The length of the watermark can be selected adaptively according to the number of the watermarks. Multiple digital watermarking algorithm is more complex than the single watermarking algorithm in the embedding method. The principal problem is how to ensure that the late-coming watermark will not damage the embedded watermarks. Each watermark is added to the middle frequency coefficients of wavelet domain randomly by exploiting 2-D chaotic system, so the embedding and extracting of each watermark does not disturbed each other. Thinking of the parameters of 2-D chaotic system as the key to embedding procedure can prevent the watermarks to be removed malevolently, therefore the performance of security is better. The embedding algorithm based on noise analysis and wavelet transform is also exploited in this paper. To meet the transparence and robustness of the watermark, the watermark strength is adapted to the noise strength within the tolerance of wavelet coefficients. The experimental results demonstrate that this proposed algorithm is robust to many common attacks and the performance can satisfy the requirements in the application.
Network-based recommendation algorithms: A review
NASA Astrophysics Data System (ADS)
Yu, Fei; Zeng, An; Gillard, Sébastien; Medo, Matúš
2016-06-01
Recommender systems are a vital tool that helps us to overcome the information overload problem. They are being used by most e-commerce web sites and attract the interest of a broad scientific community. A recommender system uses data on users' past preferences to choose new items that might be appreciated by a given individual user. While many approaches to recommendation exist, the approach based on a network representation of the input data has gained considerable attention in the past. We review here a broad range of network-based recommendation algorithms and for the first time compare their performance on three distinct real datasets. We present recommendation topics that go beyond the mere question of which algorithm to use-such as the possible influence of recommendation on the evolution of systems that use it-and finally discuss open research directions and challenges.
LSB Based Quantum Image Steganography Algorithm
NASA Astrophysics Data System (ADS)
Jiang, Nan; Zhao, Na; Wang, Luo
2016-01-01
Quantum steganography is the technique which hides a secret message into quantum covers such as quantum images. In this paper, two blind LSB steganography algorithms in the form of quantum circuits are proposed based on the novel enhanced quantum representation (NEQR) for quantum images. One algorithm is plain LSB which uses the message bits to substitute for the pixels' LSB directly. The other is block LSB which embeds a message bit into a number of pixels that belong to one image block. The extracting circuits can regain the secret message only according to the stego cover. Analysis and simulation-based experimental results demonstrate that the invisibility is good, and the balance between the capacity and the robustness can be adjusted according to the needs of applications.
Automated Vectorization of Decision-Based Algorithms
NASA Technical Reports Server (NTRS)
James, Mark
2006-01-01
Virtually all existing vectorization algorithms are designed to only analyze the numeric properties of an algorithm and distribute those elements across multiple processors. This advances the state of the practice because it is the only known system, at the time of this reporting, that takes high-level statements and analyzes them for their decision properties and converts them to a form that allows them to automatically be executed in parallel. The software takes a high-level source program that describes a complex decision- based condition and rewrites it as a disjunctive set of component Boolean relations that can then be executed in parallel. This is important because parallel architectures are becoming more commonplace in conventional systems and they have always been present in NASA flight systems. This technology allows one to take existing condition-based code and automatically vectorize it so it naturally decomposes across parallel architectures.
Effects of Ga Addition on Interfacial Reactions Between Sn-Based Solders and Ni
NASA Astrophysics Data System (ADS)
Wang, Chao-Hong; Li, Kuan-Ting
2016-12-01
The use of Ga as a micro-alloying element in Sn-based solders can change the microstructure of solder joints to improve the mechanical properties, and even suppress the interfacial intermetallic compound (IMC) growth. This research investigated the effects of Ga addition (0.2-1 wt.%Ga) on the IMC formation and morphological evolution in the Sn-based solder joints with Ni substrate. In the soldering reaction at 250°C and with less than 0.2 wt.%Ga addition, the formed phase was Ni3Sn4. When the Ga addition increased to 0.5 wt.%, it changed to a thin Ni2Ga3 layer of ˜1 μm thick, which stably existed at the interface in the initial 1-h reaction. Subsequently, the whole Ni2Ga3 layer detached from the Ni substrate and drifted into the molten solder. The Ni3Sn4 phase became dominant in the later stage. Notably, the Ga addition significantly reduced the grain size of Ni3Sn4, resulting in the massive spalling of Ni3Sn4 grains. With 1 wt.%Ga addition, the Ni2Ga3 layer remained very thin with no significant growth, and it stably existed at the interface for more than 10 h. In addition, the solid-state reactions were examined at temperatures of 160°C to 200°C. With addition of 0.5 wt.%Ga, the Ni3Sn4 phase dominated the whole reaction. By contrast, with increasing to 1 wt.%Ga, only a thin Ni2Ga3 layer was found even after aging at 160°C for more than 1200 h. The 1 wt.%Ga addition in solder can effectively inhibit the Ni3Sn4 formation in soldering and the long-term aging process.
Mohamed, Ahmed F; Elarini, Mahdi M; Othman, Ahmed M
2014-05-01
One of the most recent optimization techniques applied to the optimal design of photovoltaic system to supply an isolated load demand is the Artificial Bee Colony Algorithm (ABC). The proposed methodology is applied to optimize the cost of the PV system including photovoltaic, a battery bank, a battery charger controller, and inverter. Two objective functions are proposed: the first one is the PV module output power which is to be maximized and the second one is the life cycle cost (LCC) which is to be minimized. The analysis is performed based on measured solar radiation and ambient temperature measured at Helwan city, Egypt. A comparison between ABC algorithm and Genetic Algorithm (GA) optimal results is done. Another location is selected which is Zagazig city to check the validity of ABC algorithm in any location. The ABC is more optimal than GA. The results encouraged the use of the PV systems to electrify the rural sites of Egypt.
Multibias and thermal behavior of microwave GaN and GaAs based HEMTs
NASA Astrophysics Data System (ADS)
Alim, Mohammad A.; Rezazadeh, Ali A.; Gaquiere, Christophe
2016-12-01
Multibias and thermal characterizations on 0.25 μm × (2 × 100) μm AlGaN/GaN/SiC HEMT and 0.5 μm × (2 × 100) μm AlGaAs/InGaAs pseudomorphic HEMT have carried out for the first time. Two competitive device technologies are investigated with the variations of bias and temperature in order to afford a detailed realization of their potentialities. The main finding includes the self heating effect in the GaN device, zero temperature coefficient points at the drain current and transconductance in the GaAs device. The thermal resistance RTH of 7.1, 8.2 and 9.4 °C mm/W for the GaN device was estimated at 25, 75 and 150 °C respectively which are consistent with those found in the open literature. The temperature trend of the threshold voltage VT, Schottky barrier height ϕb, sheet charge densities of two dimensional electron gas ns, and capacitance under the gate Cg are exactly opposite in the two devices; whereas the knee voltage Vk, on resistance Ron, and series resistance Rseries are shows similar trend. The multi-bias and thermal behavior of the output current Ids, output conductance gds, transconductance gm, cut-off frequency ft, maximum frequency fmax, effective velocity of electron, veff and field dependent mobility, μ demonstrates a great potential of GaN device. These results provide some valuable insights for technology of preference for future and current applications.
A Terahertz Detector Based on AlGaN/GaN High Electron Mobility Transistor with Bowtie Antennas
NASA Astrophysics Data System (ADS)
Sun, J. D.; Sun, Y. F.; Zhou, Y.; Zhang, Z. P.; Lin, W. K.; Zen, C. H.; Wu, D. M.; Zhang, B. S.; Qin, H.; Li, L. L.; Xu, W.
2011-12-01
We report on the characterization of room temperature terahertz (THz) based on a GaN/AlGaN high electron mobility transistor(HEMT) including bowtie antennas. Under THz irradiation around 1 THz, strong photocurrent is observed when the electron channel is strongly modulated by the gate voltage. Both experimental and simulation data support the validity of self-mixing model. The equivalent noise power (NEP) and responsivity are estimated to be 1nW/√Hz and 42 mA/W at 300 K, respectively.
SAR image registration based on Susan algorithm
NASA Astrophysics Data System (ADS)
Wang, Chun-bo; Fu, Shao-hua; Wei, Zhong-yi
2011-10-01
Synthetic Aperture Radar (SAR) is an active remote sensing system which can be installed on aircraft, satellite and other carriers with the advantages of all day and night and all-weather ability. It is the important problem that how to deal with SAR and extract information reasonably and efficiently. Particularly SAR image geometric correction is the bottleneck to impede the application of SAR. In this paper we introduces image registration and the Susan algorithm knowledge firstly, then introduces the process of SAR image registration based on Susan algorithm and finally presents experimental results of SAR image registration. The Experiment shows that this method is effective and applicable, no matter from calculating the time or from the calculation accuracy.
Utilizing knowledge-base semantics in graph-based algorithms
Darwiche, A.
1996-12-31
Graph-based algorithms convert a knowledge base with a graph structure into one with a tree structure (a join-tree) and then apply tree-inference on the result. Nodes in the join-tree are cliques of variables and tree-inference is exponential in w*, the size of the maximal clique in the join-tree. A central property of join-trees that validates tree-inference is the running-intersection property: the intersection of any two cliques must belong to every clique on the path between them. We present two key results in connection to graph-based algorithms. First, we show that the running-intersection property, although sufficient, is not necessary for validating tree-inference. We present a weaker property for this purpose, called running-interaction, that depends on non-structural (semantical) properties of a knowledge base. We also present a linear algorithm that may reduce w* of a join-tree, possibly destroying its running-intersection property, while maintaining its running-interaction property and, hence, its validity for tree-inference. Second, we develop a simple algorithm for generating trees satisfying the running-interaction property. The algorithm bypasses triangulation (the standard technique for constructing join-trees) and does not construct a join-tree first. We show that the proposed algorithm may in some cases generate trees that are more efficient than those generated by modifying a join-tree.
Polarization Enhanced Charge Transfer: Dual-Band GaN-Based Plasmonic Photodetector
Jia, Ran; Zhao, Dongfang; Gao, Naikun; Liu, Duo
2017-01-01
Here, we report a dual-band plasmonic photodetector based on Ga-polar gallium nitride (GaN) for highly sensitive detection of UV and green light. We discover that decoration of Au nanoparticles (NPs) drastically increases the photoelectric responsivities by more than 50 times in comparition to the blank GaN photodetector. The observed behaviors are attributed to polarization enhanced charge transfer of optically excited hot electrons from Au NPs to GaN driven by the strong spontaneous polarization field of Ga-polar GaN. Moreover, defect ionization promoted by localized surface plasmon resonances (LSPRs) is also discussed. This novel type of photodetector may shed light on the design and fabrication of photoelectric devices based on polar semiconductors and microstructural defects. PMID:28084401
Polarization Enhanced Charge Transfer: Dual-Band GaN-Based Plasmonic Photodetector
NASA Astrophysics Data System (ADS)
Jia, Ran; Zhao, Dongfang; Gao, Naikun; Liu, Duo
2017-01-01
Here, we report a dual-band plasmonic photodetector based on Ga-polar gallium nitride (GaN) for highly sensitive detection of UV and green light. We discover that decoration of Au nanoparticles (NPs) drastically increases the photoelectric responsivities by more than 50 times in comparition to the blank GaN photodetector. The observed behaviors are attributed to polarization enhanced charge transfer of optically excited hot electrons from Au NPs to GaN driven by the strong spontaneous polarization field of Ga-polar GaN. Moreover, defect ionization promoted by localized surface plasmon resonances (LSPRs) is also discussed. This novel type of photodetector may shed light on the design and fabrication of photoelectric devices based on polar semiconductors and microstructural defects.
Tani, M; Matsuura, S; Sakai, K; Nakashima, S
1997-10-20
Terahertz radiation was generated with several designs of photoconductive antennas (three dipoles, a bow tie, and a coplanar strip line) fabricated on low-temperature-grown (LT) GaAs and semi-insulating (SI) GaAs, and the emission properties of the photoconductive antennas were compared with each other. The radiation spectrum of each antenna was characterized with the photoconductive sampling technique. The total radiation power was also measured by a bolometer for comparison of the relative radiation power. The radiation spectra of the LT-GaAs-based and SI-GaAs-based photoconductive antennas of the same design showed no significant difference. The pump-power dependencies of the radiation power showed saturation for higher pump intensities, which was more serious in SI-GaAs-based antennas than in LT-GaAs-based antennas. We attributed the origin of the saturation to the field screening of the photocarriers.
GaN-based light-emitting diodes suitable for white light
NASA Astrophysics Data System (ADS)
Mukai, Takashi; Yamada, Motokazu; Mitani, Tomotsugu; Narukawa, Yukio; Shioji, Shuji; Niki, Isamu; Sonobe, Shin-ya; Izuno, Kunihiro; Suenaga, Ryoma
2003-07-01
High-efficient light emitting diodes (LEDs) emitting red, amber, green, blue and ultraviolet light have been obtained through the use of an InGaN active layers. The localized energy states caused by In composition fluctuation in the InGaN active layer seem to be related to the high efficiency of the InGaN-based emitting devices in spite of having a large number of threading dislocations (TDs). InGaN single-quantum-well-structure blue LEDs were grown on epitaxially laterally overgrown GaN (ELOG) and sapphire substrates. The characteristics of both LEDs was almost same. These results indicate that the dislocation doesn't affect the efficiency practically. Recently, the development of high-power light source using GaN-based LEDs has become active. In such high-power LEDs, the density of forward current is much higher than that of past LEDs. Therefore, an advantage of carrier localization in InGaN active layer becomes small, because of band filling under high injection level. This means that reducing the density of TDs becomes important, just like GaN-based laser diodes. Also, we show recent results of GaN-based LEDs.
A genetic algorithm based method for docking flexible molecules
Judson, R.S.; Jaeger, E.P.; Treasurywala, A.M.
1993-11-01
The authors describe a computational method for docking flexible molecules into protein binding sites. The method uses a genetic algorithm (GA) to search the combined conformation/orientation space of the molecule to find low energy conformation. Several techniques are described that increase the efficiency of the basic search method. These include the use of several interacting GA subpopulations or niches; the use of a growing algorithm that initially docks only a small part of the molecule; and the use of gradient minimization during the search. To illustrate the method, they dock Cbz-GlyP-Leu-Leu (ZGLL) into thermolysin. This system was chosen because a well refined crystal structure is available and because another docking method had previously been tested on this system. Their method is able to find conformations that lie physically close to and in some cases lower in energy than the crystal conformation in reasonable periods of time on readily available hardware.
Optimal sensor placement for time-domain identification using a wavelet-based genetic algorithm
NASA Astrophysics Data System (ADS)
Mahdavi, Seyed Hossein; Razak, Hashim Abdul
2016-06-01
This paper presents a wavelet-based genetic algorithm strategy for optimal sensor placement (OSP) effective for time-domain structural identification. Initially, the GA-based fitness evaluation is significantly improved by using adaptive wavelet functions. Later, a multi-species decimal GA coding system is modified to be suitable for an efficient search around the local optima. In this regard, a local operation of mutation is introduced in addition with regeneration and reintroduction operators. It is concluded that different characteristics of applied force influence the features of structural responses, and therefore the accuracy of time-domain structural identification is directly affected. Thus, the reliable OSP strategy prior to the time-domain identification will be achieved by those methods dealing with minimizing the distance of simulated responses for the entire system and condensed system considering the force effects. The numerical and experimental verification on the effectiveness of the proposed strategy demonstrates the considerably high computational performance of the proposed OSP strategy, in terms of computational cost and the accuracy of identification. It is deduced that the robustness of the proposed OSP algorithm lies in the precise and fast fitness evaluation at larger sampling rates which result in the optimum evaluation of the GA-based exploration and exploitation phases towards the global optimum solution.
Emission spectra of a laser based on an In(Ga)As/GaAs quantum-dot superlattice
Sobolev, M. M. Buyalo, M. S.; Nevedomskiy, V. N.; Zadiranov, Yu. M.; Zolotareva, R. V.; Vasil’ev, A. P.; Ustinov, V. M.; Portnoi, E. L.
2015-10-15
The spectral characteristics of a laser with an active region based on a ten-layer system of In(Ga)As/GaAs vertically correlated quantum dots with 4.5-nm GaAs spacer layers between InAs quantum dots are studied under the conditions of spontaneous and stimulated emission, depending on the current and the duration of pump pulses. Data obtained by transmission electron microscopy and electroluminescence and absorption polarization anisotropy measurements make it possible to demonstrate that the investigated system of tunnel-coupled InAs quantum dots separated by thin GaAs barriers represents a quantum-dot superlattice. With an increase in the laser pump current, the electroluminescence intensity increases linearly and the spectral position of the electroluminescence maximum shifts to higher energies, which is caused by the dependence of the miniband density-of-states distribution on the pump current. Upon exceeding the threshold current, multimode lasing via the miniband ground state is observed. One of the lasing modes can be attributed to the zero-phonon line, and the other is determined by the longitudinal-optical phonon replica of quantum-dot emission. The results obtained give evidence that, under conditions of the laser pumping of an In(Ga)As/GaAs quantum-dot superlattice, strong coupling between the discrete electron states in the miniband and optical phonons takes place. This leads to the formation of quantum-dot polarons, resulting from the resonant mixing of electronic states whose energy separation is comparable to the optical-phonon energy.
Insulated gate and surface passivation structures for GaN-based power transistors
NASA Astrophysics Data System (ADS)
Yatabe, Zenji; Asubar, Joel T.; Hashizume, Tamotsu
2016-10-01
Recent years have witnessed GaN-based devices delivering their promise of unprecedented power and frequency levels and demonstrating their capability as an able replacement for Si-based devices. High-electron-mobility transistors (HEMTs), a key representative architecture of GaN-based devices, are well-suited for high-power and high frequency device applications, owing to highly desirable III-nitride physical properties. However, these devices are still hounded by issues not previously encountered in their more established Si- and GaAs-based devices counterparts. Metal-insulator-semiconductor (MIS) structures are usually employed with varying degrees of success in sidestepping the major problematic issues such as excessive leakage current and current instability. While different insulator materials have been applied to GaN-based transistors, the properties of insulator/III-N interfaces are still not fully understood. This is mainly due to the difficulty of characterizing insulator/AlGaN interfaces in a MIS HEMT because of the two resulting interfaces: insulator/AlGaN and AlGaN/GaN, making the potential modulation rather complicated. Although there have been many reports of low interface-trap densities in HEMT MIS capacitors, several papers have incorrectly evaluated their capacitance-voltage (C-V) characteristics. A HEMT MIS structure typically shows a 2-step C-V behavior. However, several groups reported C-V curves without the characteristic step at the forward bias regime, which is likely to the high-density states at the insulator/AlGaN interface impeding the potential control of the AlGaN surface by the gate bias. In this review paper, first we describe critical issues and problems including leakage current, current collapse and threshold voltage instability in AlGaN/GaN HEMTs. Then we present interface properties, focusing on interface states, of GaN MIS systems using oxides, nitrides and high-κ dielectrics. Next, the properties of a variety of AlGaN/GaN MIS
GaN Based Electronics And Their Applications
NASA Astrophysics Data System (ADS)
Ren, Fan
2002-03-01
The Group III-nitrides were initially researched for their promise to fill the void for a blue solid state light emitter. Electronic devices from III-nitrides have been a more recent phenomenon. The thermal conductivity of GaN is three times that of GaAs. For high power or high temperature applications, good thermal conductivity is imperative for heat removal or sustained operation at elevated temperatures. The development of III-N and other wide bandgap technologies for high temperature applications will likely take place at the expense of competing technologies, such as silicon-on-insulator (SOI), at moderate temperatures. At higher temperatures (>300°C), novel devices and components will become possible. The automotive industry will likely be one of the largest markets for such high temperature electronics. One of the most noteworthy advantages for III-N materials over other wide bandgap semiconductors is the availability of AlGaN/GaN and InGaN/GaN heterostructures. A 2-dimensional electron gas (2DEG) has been shown to exist at the AlGaN/GaN interface, and heterostructure field effect transistors (HFETs) from these materials can exhibit 2DEG mobilities approaching 2000 cm2 / V?s at 300K. Power handling capabilities of 12 W/mm appear feasible, and extraordinary large signal performance has already been demonstrated, with a current state-of-the-art of >10W/mm at X-band. In this talk, high speed and high temperature AlGaN/GaN HEMTs as well as MOSHEMTs, high breakdown voltage GaN (>6KV) and AlGaN (9.7 KV) Schottky diodes, and their applications will be presented.
Improved pulse laser ranging algorithm based on high speed sampling
NASA Astrophysics Data System (ADS)
Gao, Xuan-yi; Qian, Rui-hai; Zhang, Yan-mei; Li, Huan; Guo, Hai-chao; He, Shi-jie; Guo, Xiao-kang
2016-10-01
Narrow pulse laser ranging achieves long-range target detection using laser pulse with low divergent beams. Pulse laser ranging is widely used in military, industrial, civil, engineering and transportation field. In this paper, an improved narrow pulse laser ranging algorithm is studied based on the high speed sampling. Firstly, theoretical simulation models have been built and analyzed including the laser emission and pulse laser ranging algorithm. An improved pulse ranging algorithm is developed. This new algorithm combines the matched filter algorithm and the constant fraction discrimination (CFD) algorithm. After the algorithm simulation, a laser ranging hardware system is set up to implement the improved algorithm. The laser ranging hardware system includes a laser diode, a laser detector and a high sample rate data logging circuit. Subsequently, using Verilog HDL language, the improved algorithm is implemented in the FPGA chip based on fusion of the matched filter algorithm and the CFD algorithm. Finally, the laser ranging experiment is carried out to test the improved algorithm ranging performance comparing to the matched filter algorithm and the CFD algorithm using the laser ranging hardware system. The test analysis result demonstrates that the laser ranging hardware system realized the high speed processing and high speed sampling data transmission. The algorithm analysis result presents that the improved algorithm achieves 0.3m distance ranging precision. The improved algorithm analysis result meets the expected effect, which is consistent with the theoretical simulation.
GaSb substrates with extended IR wavelength for advanced space based applications
Allen, Lisa P.; Flint, Patrick; Dallas, Gordon; Bakken, Daniel; Blanchat, Kevin; Brown, Gail J.; Vangala, Shivashankar R.; Goodhue, William D.; Krishnaswami, Kannan
2009-05-01
GaSb substrates have advantages that make them attractive for implementation of a wide range of infrared (IR) detectors with higher operating temperatures for stealth and space based applications. A significant aspect that would enable widespread commercial application of GaSb wafers for very long wavelength IR (VLWIR) applications is the capability for transmissivity beyond 15 m. Due largely to the GaSb (antisite) defect and other point defects in undoped GaSb substrates, intrinsic GaSb is still slightly p-type and strongly absorbs in the VLWIR. This requires backside thinning of the GaSb substrate for IR transmissivity. An extremely low n-type GaSb substrate is preferred to eliminate thinning and provide a substrate solution for backside illuminated VLWIR devices. By providing a more homogeneous radial distribution of the melt solute to suppress GaSb formation and controlling the cooling rate, ultra low doped n:GaSb has been achieved. This study examines the surface properties and IR transmission spectra of ultra low doped GaSb substrates at both room and low temperatures. Atomic force microscopy (AFM), homoepitaxy by MBE, and infrared Fourier transform (FTIR) analysis was implemented to examine material quality. As compared with standard low doped GaSb, the ultra low doped substrates show over 50% transmission and consistent wavelength transparency past 23 m with improved %T at low temperature. Homoepitaxy and AFM results indicate the ultra low doped GaSb has a low thermal desorbtion character and qualified morphology. In summary, improvements in room temperature IR transmission and extended wavelength characteristics have been shown consistently for ultra low doped n:GaSb substrates.
Investigation of HCl-based surface treatment for GaN devices
Okada, Hiroshi; Shinohara, Masatohi; Kondo, Yutaka; Sekiguchi, Hiroto; Yamane, Keisuke; Wakahara, Akihiro
2016-02-01
Surface treatments of GaN in HCl-based solutions are studied by X-ray photoelectron spectroscopy (XPS) and electrical characterization of fabricated GaN surfaces. A dilute-HCl treatment (HCl:H{sub 2}O=1:1) at room temperature and a boiled-HCl treatment (undiluted HCl) at 108°C are made on high-temperature annealed n-GaN. From the XPS study, removal of surface oxide by the dilute-HCl treatment was found, and more thoroughly oxide-removal was confirmed in the boiled-HCl treatment. Effect of the surface treatment on electrical characteristics on AlGaN/GaN transistor is also studied by applying treatment processes prior to the surface SiN deposition. Increase of drain current is found in boiled-HCl treated samples. The results suggest that the boiled-HCl treatment is effective for GaN device fabrication.
Jiang, Wenjuan; Shi, Yunbo; Zhao, Wenjie; Wang, Xiangxin
2016-01-01
The main part of the magnetic fluxgate sensor is the magnetic core, the hysteresis characteristic of which affects the performance of the sensor. When the fluxgate sensors are modelled for design purposes, an accurate model of hysteresis characteristic of the cores is necessary to achieve good agreement between modelled and experimental data. The Jiles-Atherton model is simple and can reflect the hysteresis properties of the magnetic material precisely, which makes it widely used in hysteresis modelling and simulation of ferromagnetic materials. However, in practice, it is difficult to determine the parameters accurately owing to the sensitivity of the parameters. In this paper, the Biogeography-Based Optimization (BBO) algorithm is applied to identify the Jiles-Atherton model parameters. To enhance the performances of the BBO algorithm such as global search capability, search accuracy and convergence rate, an improved Biogeography-Based Optimization (IBBO) algorithm is put forward by using Arnold map and mutation strategy of Differential Evolution (DE) algorithm. Simulation results show that IBBO algorithm is superior to Genetic Algorithm (GA), Particle Swarm Optimization (PSO) algorithm, Differential Evolution algorithm and BBO algorithm in identification accuracy and convergence rate. The IBBO algorithm is applied to identify Jiles-Atherton model parameters of selected permalloy. The simulation hysteresis loop is in high agreement with experimental data. Using permalloy as core of fluxgate probe, the simulation output is consistent with experimental output. The IBBO algorithm can identify the parameters of Jiles-Atherton model accurately, which provides a basis for the precise analysis and design of instruments and equipment with magnetic core. PMID:27347974
An improved conscan algorithm based on a Kalman filter
NASA Technical Reports Server (NTRS)
Eldred, D. B.
1994-01-01
Conscan is commonly used by DSN antennas to allow adaptive tracking of a target whose position is not precisely known. This article describes an algorithm that is based on a Kalman filter and is proposed to replace the existing fast Fourier transform based (FFT-based) algorithm for conscan. Advantages of this algorithm include better pointing accuracy, continuous update information, and accommodation of missing data. Additionally, a strategy for adaptive selection of the conscan radius is proposed. The performance of the algorithm is illustrated through computer simulations and compared to the FFT algorithm. The results show that the Kalman filter algorithm is consistently superior.
Image processing with genetic algorithm in a raisin sorting system based on machine vision
NASA Astrophysics Data System (ADS)
Abbasgholipour, Mahdi; Alasti, Behzad Mohammadi; Abbasgholipour, Vahdi; Derakhshan, Ali; Abbasgholipour, Mohammad; Rahmatfam, Sharmin; Rahmatfam, Sheyda; Habibifar, Rahim
2012-04-01
This study was undertaken to develop machine vision-based raisin detection technology. Supervised color image segmentation using a Permutation-coded Genetic Algorithm (GA) identifying regions in Hue-Saturation-Intensity (HSI) color space (GAHSI) for desired and undesired raisin detection was successfully implemented. Images were captured to explore the possibility of using GAHSI to locate desired raisin and undesired raisin regions in color space simultaneously. In this research, images were processed separately using three segmentation method, K-Means clustering in L*a*b* color space and GAHSI for single image, GA for single image in Red-Green-Blue (RGB) color space (GARGB). The GAHSI results provided evidence for the existence and separability of such regions. When compared with cluster analysis-based segmentation results, the GAHSI method showed no significant difference.
Genetic algorithm based design optimization of a permanent magnet brushless dc motor
NASA Astrophysics Data System (ADS)
Upadhyay, P. R.; Rajagopal, K. R.
2005-05-01
Genetic algorithm (GA) based design optimization of a permanent magnet brushless dc motor is presented in this paper. A 70 W, 350 rpm, ceiling fan motor with radial-filed configuration is designed by considering the efficiency as the objective function. Temperature-rise and motor weight are the constraints and the slot electric loading, magnet-fraction, slot-fraction, airgap, and airgap flux density are the design variables. The efficiency and the phase-inductance of the motor designed using the developed CAD program are improved by using the GA based optimization technique; from 84.75% and 5.55 mH to 86.06% and 2.4 mH, respectively.
NASA Astrophysics Data System (ADS)
Wang, Li-yong; Li, Le; Zhang, Zhi-hua
2016-09-01
Hot compression tests of Ti-6Al-4V alloy in a wide temperature range of 1023-1323 K and strain rate range of 0.01-10 s-1 were conducted by a servo-hydraulic and computer-controlled Gleeble-3500 machine. In order to accurately and effectively characterize the highly nonlinear flow behaviors, support vector regression (SVR) which is a machine learning method was combined with genetic algorithm (GA) for characterizing the flow behaviors, namely, the GA-SVR. The prominent character of GA-SVR is that it with identical training parameters will keep training accuracy and prediction accuracy at a stable level in different attempts for a certain dataset. The learning abilities, generalization abilities, and modeling efficiencies of the mathematical regression model, ANN, and GA-SVR for Ti-6Al-4V alloy were detailedly compared. Comparison results show that the learning ability of the GA-SVR is stronger than the mathematical regression model. The generalization abilities and modeling efficiencies of these models were shown as follows in ascending order: the mathematical regression model < ANN < GA-SVR. The stress-strain data outside experimental conditions were predicted by the well-trained GA-SVR, which improved simulation accuracy of the load-stroke curve and can further improve the related research fields where stress-strain data play important roles, such as speculating work hardening and dynamic recovery, characterizing dynamic recrystallization evolution, and improving processing maps.
Tumuluru, J.S.; Sokhansanj, Shahabaddine
2008-12-01
Abstract In the present study, response surface method (RSM) and genetic algorithm (GA) were used to study the effects of process variables like screw speed, rpm (x1), L/D ratio (x2), barrel temperature ( C; x3), and feed mix moisture content (%; x4), on flow rate of biomass during single-screw extrusion cooking. A second-order regression equation was developed for flow rate in terms of the process variables. The significance of the process variables based on Pareto chart indicated that screw speed and feed mix moisture content had the most influence followed by L/D ratio and barrel temperature on the flow rate. RSM analysis indicated that a screw speed>80 rpm, L/D ratio> 12, barrel temperature>80 C, and feed mix moisture content>20% resulted in maximum flow rate. Increase in screw speed and L/D ratio increased the drag flow and also the path of traverse of the feed mix inside the extruder resulting in more shear. The presence of lipids of about 35% in the biomass feed mix might have induced a lubrication effect and has significantly influenced the flow rate. The second-order regression equations were further used as the objective function for optimization using genetic algorithm. A population of 100 and iterations of 100 have successfully led to convergence the optimum. The maximum and minimum flow rates obtained using GA were 13.19 10 7 m3/s (x1=139.08 rpm, x2=15.90, x3=99.56 C, and x4=59.72%) and 0.53 10 7 m3/s (x1=59.65 rpm, x2= 11.93, x3=68.98 C, and x4=20.04%).
Jia, Xiuling; Chen, Dunjun; Bin, Liu; Lu, Hai; Zhang, Rong; Zheng, Youdou
2016-01-01
A novel ion-imprinted electrochemical sensor based on AlGaN/GaN high electron mobility transistors (HEMTs) was developed to detect trace amounts of phosphate anion. This sensor combined the advantages of the ion sensitivity of AlGaN/GaN HEMTs and specific recognition of ion imprinted polymers. The current response showed that the fabricated sensor is highly sensitive and selective to phosphate anions. The current change exhibited approximate linear dependence for phosphate concentration from 0.02 mg L−1 to 2 mg L−1, the sensitivity and detection limit of the sensor is 3.191 μA/mg L−1 and 1.97 μg L−1, respectively. The results indicated that this AlGaN/GaN HEMT-based electrochemical sensor has the potential applications on phosphate anion detection. PMID:27278795
Wiedemann effect of Fe—Ga based magnetostrictive wires
NASA Astrophysics Data System (ADS)
Li, Ji-Heng; Gao, Xue-Xu; Zhu, Jie; Bao, Xiao-Qian; Cheng, Liang; Xie, Jian-Xin
2012-08-01
(Fe83Ga17)98Cr2 wires each with a diameter of 0.7 mm are prepared by hot swaging and warm drawing from the casting rods directly, because the ductility of Fe83Ga17 alloy is improved by adding Cr element. The Wiedemann twists and dependences on magnetostrictions of Fe83Ga17 and (Fe83Ga17)98Cr2 wires are investigated. The largest observed Wiedemann twists of 245 s·cm-1 and 182 s·cm-1 are detected in the annealed Fe83Ga17 and (Fe83Ga17)98Cr2 wires, respectively. The magnetostrictions of the annealed Fe83Ga17 and (Fe83Ga17)98Cr2 wires are 160 ppm and 107 ppm, respectively. The maximum of the Wiedemann twist increases with magnetostriction increasing. However the magnetostriction is just one important factor that affects the Wiedemann effect of alloy wire, and the relationship between magnetostriction and Wiedemann effect is a complex function rather than a simple function.
GaN-based terahertz quantum cascade lasers
NASA Astrophysics Data System (ADS)
Terashima, Wataru; Hirayama, Hideki
2015-05-01
III-nitride semiconductors having huge longitudinal optical phonon energies are promising as materials to solve a problem of "development of operational frequency range (5-12 THz)" on THz-QCLs. In this study, for the purpose of THz lasing from target subband levels, we designed unique quantum cascade (QC) structures whose active regions consisted of two quantum wells (QWs) for one period and the number of wave-functions contributed to lasing is limited to minimum 3 subband levels. (i.e., Pure 3-level laser system). We fabricated THz-QCLs with QC structures of a pure 3- level laser system (100-200 periods) through a radio-frequency molecular beam epitaxy (RF-MBE) and a metal organic chemical vapor deposition (MOCVD) on MOCVD-growth AlGaN/AlN templates grown on c-plane sapphire substrates. Clear satellite peaks in XRD analyses could be observed, indicating that layer structures were stacked with a good periodicity. By comparing data with simulation spectra, it was found that error of film thicknesses were 1-3 %. We observed sharp lasing spectra with peaks at frequencies of ~5.5 THz and ~7.0 THz whose full width at half maximum (FWHM) values were close to those of resolution of FTIR spectrometer, when we tried pulse current injection measurements into THz-QCL devices. We successfully for the first time realized GaN-based THz-QCL devices lasing at almost the same frequencies as the target ones by designing a 2QWs-type QC structure with a pure 3-level laser system. We also successfully achieved lasing at ~5.5 and ~7.0 THz, which are highest reported to date for any kinds of THz- QCLs.
Plasmonic terahertz detectors based on a high-electron mobility GaAs/AlGaAs heterostructure
Białek, M. Witowski, A. M.; Grynberg, M.; Łusakowski, J.; Orlita, M.; Potemski, M.; Czapkiewicz, M.; Umansky, V.
2014-06-07
In order to characterize magnetic field (B) tunable THz plasmonic detectors, spectroscopy experiments were carried out at liquid helium temperatures and high magnetic fields on devices fabricated on a high electron mobility GaAs/AlGaAs heterostructure. The samples were either gated (the gate of a meander shape) or ungated. Spectra of a photovoltage generated by THz radiation were obtained as a function of B at a fixed THz excitation from a THz laser or as a function of THz photon frequency at a fixed B with a Fourier spectrometer. In the first type of measurements, the wave vector of magnetoplasmons excited was defined by geometrical features of samples. It was also found that the magnetoplasmon spectrum depended on the gate geometry which gives an additional parameter to control plasma excitations in THz detectors. Fourier spectra showed a strong dependence of the magnetoplasmon resonance amplitude on the conduction-band electron filling factor which was explained within a model of the electron gas heating with THz radiation. The study allows to define both the advantages and limitations of plasmonic devices based on high-mobility GaAs/AlGaAs heterostructures for THz detection at low temperatures and high magnetic fields.
Yu, Xuezhe; Li, Lixia; Wang, Hailong; Xiao, Jiaxing; Shen, Chao; Pan, Dong; Zhao, Jianhua
2016-05-19
For the epitaxial growth of Ga-based III-V semiconductor nanowires (NWs) on Si, Ga droplets could provide a clean and compatible solution in contrast to the common Au catalyst. However, the use of Ga droplets is rather limited except for that in Ga-catalyzed GaAs NW studies in a relatively narrow growth temperature (Ts) window around 620 °C on Si. In this paper, we have investigated the two-step growth of Ga-catalyzed III-V NWs on Si (111) substrates by molecular-beam epitaxy. First, by optimizing the surface oxide, vertically aligned GaAs NWs with a high yield are obtained at Ts = 620 °C. Then a two-temperature procedure is adopted to preserve Ga droplets at lower Ts, which leads to an extension of Ts down to 500 °C for GaAs NWs. Based on this procedure, systematic morphological and structural studies for Ga-catalyzed GaAs NWs in the largest Ts range could be presented. Then within the same growth scheme, for the first time, we demonstrate Ga-catalyzed GaAs/GaSb heterostructure NWs. These GaSb NWs are axially grown on the GaAs NW sections and are pure zinc-blende single crystals. Compositional measurements confirm that the catalyst particles indeed mainly consist of Ga and GaSb sections are of high purity but with a minor composition of As. In the end, we present GaAsSb NW growth with a tunable Sb composition. Our results provide useful information for the controllable synthesis of multi-compositional Ga-catalyzed III-V semiconductor NWs on Si for heterogeneous integration.
NASA Astrophysics Data System (ADS)
Subramanian, Nithya
Optimization under uncertainty accounts for design variables and external parameters or factors with probabilistic distributions instead of fixed deterministic values; it enables problem formulations that might maximize or minimize an expected value while satisfying constraints using probabilities. For discrete optimization under uncertainty, a Monte Carlo Sampling (MCS) approach enables high-accuracy estimation of expectations but it also results in high computational expense. The Genetic Algorithm (GA) with a Population-Based Sampling (PBS) technique enables optimization under uncertainty with discrete variables at a lower computational expense than using Monte Carlo sampling for every fitness evaluation. Population-Based Sampling uses fewer samples in the exploratory phase of the GA and a larger number of samples when `good designs' start emerging over the generations. This sampling technique therefore reduces the computational effort spent on `poor designs' found in the initial phase of the algorithm. Parallel computation evaluates the expected value of the objective and constraints in parallel to facilitate reduced wall-clock time. A customized stopping criterion is also developed for the GA with Population-Based Sampling. The stopping criterion requires that the design with the minimum expected fitness value to have at least 99% constraint satisfaction and to have accumulated at least 10,000 samples. The average change in expected fitness values in the last ten consecutive generations is also monitored. The optimization of composite laminates using ply orientation angle as a discrete variable provides an example to demonstrate further developments of the GA with Population-Based Sampling for discrete optimization under uncertainty. The focus problem aims to reduce the expected weight of the composite laminate while treating the laminate's fiber volume fraction and externally applied loads as uncertain quantities following normal distributions. Construction of
Multi-robot task allocation based on two dimensional artificial fish swarm algorithm
NASA Astrophysics Data System (ADS)
Zheng, Taixiong; Li, Xueqin; Yang, Liangyi
2007-12-01
The problem of task allocation for multiple robots is to allocate more relative-tasks to less relative-robots so as to minimize the processing time of these tasks. In order to get optimal multi-robot task allocation scheme, a twodimensional artificial swarm algorithm based approach is proposed in this paper. In this approach, the normal artificial fish is extended to be two dimension artificial fish. In the two dimension artificial fish, each vector of primary artificial fish is extended to be an m-dimensional vector. Thus, each vector can express a group of tasks. By redefining the distance between artificial fish and the center of artificial fish, the behavior of two dimension fish is designed and the task allocation algorithm based on two dimension artificial swarm algorithm is put forward. At last, the proposed algorithm is applied to the problem of multi-robot task allocation and comparer with GA and SA based algorithm is done. Simulation and compare result shows the proposed algorithm is effective.
[Conductivity reconstruction of edema in human brain based on modified genetic algorithm].
Liun, Jicheng; Huang, Kama; Hu, Yayi
2007-04-01
It is the intent of this study to estimate the progression or regression of edema at the bedside continuously. Based on the theoretic model, the Adaptive Genetic Algorithm (AGA) has been applied in the calculation of conductivity reconstruction. Dynamic crossover and mutation operators which are based on Haiming Distance are brought forward in this paper to maintain generation's diversity. Then, both AGA and Standard GA (SGA) have been applied in the conductivity reconstruction of edema in human brain. It is shown that AGA not only has attained a higher degree of efficiency but also has enhanced the capability to converge to the best answer.
A “Tuned” Mask Learnt Approach Based on Gravitational Search Algorithm
Wan, Youchuan; Ye, Zhiwei
2016-01-01
Texture image classification is an important topic in many applications in machine vision and image analysis. Texture feature extracted from the original texture image by using “Tuned” mask is one of the simplest and most effective methods. However, hill climbing based training methods could not acquire the satisfying mask at a time; on the other hand, some commonly used evolutionary algorithms like genetic algorithm (GA) and particle swarm optimization (PSO) easily fall into the local optimum. A novel approach for texture image classification exemplified with recognition of residential area is detailed in the paper. In the proposed approach, “Tuned” mask is viewed as a constrained optimization problem and the optimal “Tuned” mask is acquired by maximizing the texture energy via a newly proposed gravitational search algorithm (GSA). The optimal “Tuned” mask is achieved through the convergence of GSA. The proposed approach has been, respectively, tested on some public texture and remote sensing images. The results are then compared with that of GA, PSO, honey-bee mating optimization (HBMO), and artificial immune algorithm (AIA). Moreover, feature extracted by Gabor wavelet is also utilized to make a further comparison. Experimental results show that the proposed method is robust and adaptive and exhibits better performance than other methods involved in the paper in terms of fitness value and classification accuracy. PMID:28090204
Large-signal microwave performance of GaN-based NDR diode oscillators
NASA Astrophysics Data System (ADS)
Alekseev, Egor; Pavlidis, Dimitris
2000-06-01
The GaN material parameters relevant to the negative differential resistance (NDR) devices are discussed, and their physical models based on the theoretical predictions and experimental device characteristics are introduced. Gunn diode design criteria were applied to design the GaN NDR diodes. A higher electrical strength of the GaN allowed operation with higher doping (˜10 17 cm -3) and at a higher bias (90 V for a 3 μm thick diode). The transient hydrodynamic simulations were used to carry out the harmonic power analysis of the GaN NDR diode oscillators in order to evaluate their large-signal microwave characteristics. The GaAs Gunn diode oscillators were also simulated for a comparison and verification purposes. The dependence of the oscillation frequency and output power on the GaN NDR diode design and operating conditions are reported. It was found that, due to the higher electron velocities and reduced time constants, GaN NDR diodes offered twice the frequency capability of the GaAs Gunn diodes (87 GHz vs. 40 GHz), while their output power density was 2×10 5 W/cm 2 compared with ˜10 3 W/cm 2 for the GaAs devices. The reported improvements in the microwave performance are supported by the high value of the GaN Pf2Z figure of merit, which is 50-100 times higher than the GaAs, indicating a strong potential of the GaN for the microwave signal generation.
Prediction of atomic structure of Pt-based bimetallic nanoalloys by using genetic algorithm
NASA Astrophysics Data System (ADS)
Oh, Jung Soo; Nam, Ho-Seok; Choi, Jung-Hae; Lee, Seung-Cheol
2013-05-01
The atom-arrangements in Pt-based bimetallic nanoalloys were predicted by the combined use of genetic algorithm (GA) and molecular dynamics (MD) simulations. The nanoparticles of these nanoalloys were assumed to be a 3.5 nm-diameter truncated octahedron with Pt and noble metals of fixed composition ratio of 1:1. For the GA, a Python code, which concurrently linked with the MD method that uses the embedded atom method inter-atomic potentials, was developed for the prediction of the atom arrangements in these bimetallic nanoalloys. Successfully, the GA calculation predicted the core-shell structures for both Pt-Ag and Pt-Au nanoalloy, but an onion-like multilayered core-shell structure for Pt-Cu nanoalloy. The structural characteristics in the bimetallic nanoalloy were mainly due to the differences in the surface energy and cohesive energy between Pt and the other alloying metal elements and their miscibility gap and so on. Briefly, the prediction performance was analyzed to show the superior searching ability of GA.
NASA Astrophysics Data System (ADS)
Okumura, Hiroshi; Maeda, Masaru; Sueyasu, Hideki; Togami, Yuuki; Tadanou, Takeshi; Arai, Kohei
2004-02-01
A new unsupervised texture classification method based on the genetic algorithms (GA) is proposed. In the method, the GA are employed to determine location and size of the typical textures in the target image. The proposed method consists of the following procedures: (1) the determination of the number of classification category; (2) each chromosome used in the GA consists of coordinates of center pixel of each training area candidate and those size; (3) 50 chromosomes are generated using random number; (4) fitness of each chromosome is calculated; the fitness is the product of the Classification Reliability in the Mixed Texture Cases (CRMTC) and the Stability of NZMV against Scanning Field of View Size (SNSFS); (5) in the selection operation in the GA, the elite preservation strategy is employed; (6) in the crossover operation, multi point crossover is employed and two parent chromosomes are selected by the roulette strategy; (7) in mutation operation, the locuses where the bit inverting occurs are decided by a mutation rate; (8) go to the procedure 4. Some experiments are conducted to evaluate classification capability of the proposed method by using images from Brodatz's photo album and actual airborne multispectral scanner. The experimental results show that the proposed method can select appropriate texture samples and can provide reasonable classification results.
Nonresonant tunneling phonon depopulated GaN based terahertz quantum cascade structures
NASA Astrophysics Data System (ADS)
Freeman, Will; Karunasiri, Gamani
2013-04-01
GaN based terahertz quantum cascade structures are theoretically studied. Since the Fröhlich interaction is ˜15 times higher in GaN than in GaAs, level broadening makes obtaining appreciable optical gain difficult even with a large population inversion. A density matrix Monte Carlo method is used to calculate the broadening of the optical gain spectra as a function of lattice temperature. We find by using a proposed method of nonresonant tunneling and electron-longitudinal-optical phonon scattering for depopulation of the lower lasing state, that it is possible to sufficiently isolate the upper lasing state and control the lower lasing state lifetime to obtain high optical gain in GaN. The results predict lasing out to 300 K which is significantly higher than for GaAs based structures.
Genetic Algorithm Phase Retrieval for the Systematic Image-Based Optical Alignment Testbed
NASA Technical Reports Server (NTRS)
Taylor, Jaime; Rakoczy, John; Steincamp, James
2003-01-01
Phase retrieval requires calculation of the real-valued phase of the pupil fimction from the image intensity distribution and characteristics of an optical system. Genetic 'algorithms were used to solve two one-dimensional phase retrieval problem. A GA successfully estimated the coefficients of a polynomial expansion of the phase when the number of coefficients was correctly specified. A GA also successfully estimated the multiple p h e s of a segmented optical system analogous to the seven-mirror Systematic Image-Based Optical Alignment (SIBOA) testbed located at NASA s Marshall Space Flight Center. The SIBOA testbed was developed to investigate phase retrieval techniques. Tiphilt and piston motions of the mirrors accomplish phase corrections. A constant phase over each mirror can be achieved by an independent tip/tilt correction: the phase Conection term can then be factored out of the Discrete Fourier Tranform (DFT), greatly reducing computations.
NASA Astrophysics Data System (ADS)
Zheng, Genrang; Lin, ZhengChun
The problem of winner determination in combinatorial auctions is a hotspot electronic business, and a NP hard problem. A Hybrid Artificial Fish Swarm Algorithm(HAFSA), which is combined with First Suite Heuristic Algorithm (FSHA) and Artificial Fish Swarm Algorithm (AFSA), is proposed to solve the problem after probing it base on the theories of AFSA. Experiment results show that the HAFSA is a rapidly and efficient algorithm for The problem of winner determining. Compared with Ant colony Optimization Algorithm, it has a good performance with broad and prosperous application.
Lu, Chunhong; Zhu, Zhaomin; Gu, Xiaofeng
2014-09-01
In this paper, we develop a novel feature selection algorithm based on the genetic algorithm (GA) using a specifically devised trace-based separability criterion. According to the scores of class separability and variable separability, this criterion measures the significance of feature subset, independent of any specific classification. In addition, a mutual information matrix between variables is used as features for classification, and no prior knowledge about the cardinality of feature subset is required. Experiments are performed by using a standard lung cancer dataset. The obtained solutions are verified with three different classifiers, including the support vector machine (SVM), the back-propagation neural network (BPNN), and the K-nearest neighbor (KNN), and compared with those obtained by the whole feature set, the F-score and the correlation-based feature selection methods. The comparison results show that the proposed intelligent system has a good diagnosis performance and can be used as a promising tool for lung cancer diagnosis.
Evaporation-based Ge/.sup.68 Ga Separation
Mirzadeh, Saed; Whipple, Richard E.; Grant, Patrick M.; O'Brien, Jr., Harold A.
1981-01-01
Micro concentrations of .sup.68 Ga in secular equilibrium with .sup.68 Ge in strong aqueous HCl solution may readily be separated in ionic form from the .sup.68 Ge for biomedical use by evaporating the solution to dryness and then leaching the .sup.68 Ga from the container walls with dilute aqueous solutions of HCl or NaCl. The chloro-germanide produced during the evaporation may be quantitatively recovered to be used again as a source of .sup.68 Ga. If the solution is distilled to remove any oxidizing agents which may be present as impurities, the separation factor may easily exceed 10.sup.5. The separation is easily completed and the .sup.68 Ga made available in ionic form in 30 minutes or less.
A New Aloha Anti-Collision Algorithm Based on CDMA
NASA Astrophysics Data System (ADS)
Bai, Enjian; Feng, Zhu
The tags' collision is a common problem in RFID (radio frequency identification) system. The problem has affected the integrity of the data transmission during the process of communication in the RFID system. Based on analysis of the existing anti-collision algorithm, a novel anti-collision algorithm is presented. The new algorithm combines the group dynamic frame slotted Aloha algorithm with code division multiple access technology. The algorithm can effectively reduce the collision probability between tags. Under the same number of tags, the algorithm is effective in reducing the reader recognition time and improve overall system throughput rate.
NASA Astrophysics Data System (ADS)
Mohanbabu, A.; Anbuselvan, N.; Mohankumar, N.; Godwinraj, D.; Sarkar, C. K.
2014-01-01
In this paper, we present a physics-based model for two-dimensional electron gas (2DEG) sheet carrier density ns and various microwave characteristics such as transconductance, cut-off frequency (ft) of the proposed Spacer layer based AlxGa1-xN/AlN/GaN High Electron Mobility Transistors (HEMTs) is modeled by considering the quasi-triangular quantum well. To obtain charge density ns, the variation of Fermi level with supply voltage and the formation of various energy sub-bands E0, E1 are considered. The obtained results are simple and easy to analyze the sheet carrier density, DC model and microwave frequency performance analysis for nanoscale Spacer layer based AlxGa1-xN/AlN/GaN HEMT power devices. The Spacer layer based AlGaN/AlN/GaN heterostructure HEMTs shows excellent promise as one of the candidates to substitute present AlGaN/GaN HEMTs for future high speed and high power applications. Derived model results for drain current, transconductance, current-gain cutoff frequency for different short and long gate length device are calibrated and verified with experimental data over a full range for gate and drain applied voltages and is useful for nanoscale and microwave analysis for circuit design.
Tzou, An-Jye; Lin, Da-Wei; Yu, Chien-Rong; Li, Zhen-Yu; Liao, Yu-Kuang; Lin, Bing-Cheng; Huang, Jhih-Kai; Lin, Chien-Chung; Kao, Tsung Sheng; Kuo, Hao-Chung; Chang, Chun-Yen
2016-05-30
In this study, high-performance InGaN-based green light-emitting diodes (LEDs) with a quaternary InAlGaN/GaN superlattice electron blocking layer (QSL-EBL) have been demonstrated. The band structural simulation was employed to investigate the electrostatic field and carriers distribution, show that the efficiency and droop behavior can be intensively improved by using a QSL-EBL in LEDs. The QSL-EBL structure can reduce the polarization-related electrostatic fields in the multiple quantum wells (MQWs), leading to a smoother band diagram and a more uniform carriers distribution among the quantum wells under forward bias. In comparison with green LEDs with conventional bulk-EBL structure, the light output power of LEDs with QSL-EBL was greatly enhanced by 53%. The efficiency droop shows only 30% at 100 A/cm^{2} comparing to its peak value, suggesting that the QSL-EBL LED is promising for future white lighting with high performance.
NASA Astrophysics Data System (ADS)
Hsiao, Feng-Hsiag
2016-10-01
In this study, a novel approach via improved genetic algorithm (IGA)-based fuzzy observer is proposed to realise exponential optimal H∞ synchronisation and secure communication in multiple time-delay chaotic (MTDC) systems. First, an original message is inserted into the MTDC system. Then, a neural-network (NN) model is employed to approximate the MTDC system. Next, a linear differential inclusion (LDI) state-space representation is established for the dynamics of the NN model. Based on this LDI state-space representation, this study proposes a delay-dependent exponential stability criterion derived in terms of Lyapunov's direct method, thus ensuring that the trajectories of the slave system approach those of the master system. Subsequently, the stability condition of this criterion is reformulated into a linear matrix inequality (LMI). Due to GA's random global optimisation search capabilities, the lower and upper bounds of the search space can be set so that the GA will seek better fuzzy observer feedback gains, accelerating feedback gain-based synchronisation via the LMI-based approach. IGA, which exhibits better performance than traditional GA, is used to synthesise a fuzzy observer to not only realise the exponential synchronisation, but also achieve optimal H∞ performance by minimizing the disturbance attenuation level and recovering the transmitted message. Finally, a numerical example with simulations is given in order to demonstrate the effectiveness of our approach.
Degradation mechanisms of Ti/Al/Ni/Au-based Ohmic contacts on AlGaN/GaN HEMTs
Hwang, Ya-Hsi; Ahn, Shihyun; Dong, Chen; ...
2015-04-27
We investigated the degradation mechanism of Ti/Al/Ni/Au-based Ohmic metallization on AlGaN/GaN high electron mobility transistors upon exposure to buffer oxide etchant (BOE). The major effect of BOE on the Ohmic metal was an increase of sheet resistance from 2.89 to 3.69 Ω/ₜafter 3 min BOE treatment. The alloyed Ohmic metallization consisted 3–5 μm Ni-Al alloy islands surrounded by Au-Al alloy-rings. The morphology of both the islands and ring areas became flatter after BOE etching. Lastly, we used energy dispersive x-ray analysis and Auger electron microscopy to analyze the compositions and metal distributions in the metal alloys prior to and aftermore » BOE exposure.« less
Degradation mechanisms of Ti/Al/Ni/Au-based Ohmic contacts on AlGaN/GaN HEMTs
Hwang, Ya-Hsi; Ahn, Shihyun; Dong, Chen; Zhu, Weidi; Kim, Byung-Jae; Le, Lingcong; Ren, Fan; Lind, Aaron G.; Dahl, James; Jones, Kevin S.; Pearton, Stephen J.; Kravchenko, Ivan I.; Zhang, Ming-Lan
2015-04-27
We investigated the degradation mechanism of Ti/Al/Ni/Au-based Ohmic metallization on AlGaN/GaN high electron mobility transistors upon exposure to buffer oxide etchant (BOE). The major effect of BOE on the Ohmic metal was an increase of sheet resistance from 2.89 to 3.69 Ω/ₜafter 3 min BOE treatment. The alloyed Ohmic metallization consisted 3–5 μm Ni-Al alloy islands surrounded by Au-Al alloy-rings. The morphology of both the islands and ring areas became flatter after BOE etching. Lastly, we used energy dispersive x-ray analysis and Auger electron microscopy to analyze the compositions and metal distributions in the metal alloys prior to and after BOE exposure.
NASA Astrophysics Data System (ADS)
Nogajewski, K.; Łusakowski, J.; Knap, W.; Popov, V. V.; Teppe, F.; Rumyantsev, S. L.; Shur, M. S.
2011-11-01
Magnetotransport and magnetooptics investigations of plasmon excitations in large-area grating-gate terahertz modulators based on AlGaN/GaN high-electron-mobility transistors with different grating-gate duty cycle are reported. We demonstrate that the effect of the gate potential on the ungated region extends beyond the conventional fringing effect distance, ranging over 250-350 nm instead of expected 26-30 nm. This phenomenon enables excitation of the localized gated magnetoplasmon modes only if the inter-finger spacing in the grating gate exceeds 350 nm. For narrower slits, only the collective gated magnetoplasmon modes extending over the entire period of the structure can be excited.
Characterization of a room temperature terahertz detector based on a GaN/AlGaN HEMT
NASA Astrophysics Data System (ADS)
Yu, Zhou; Jiandong, Sun; Yunfei, Sun; Zhipeng, Zhang; Wenkui, Lin; Hongxin, Liu; Chunhong, Zeng; Min, Lu; Yong, Cai; Dongmin, Wu; Shitao, Lou; Hua, Qin; Baoshun, Zhang
2011-06-01
We report on the characterization of a room temperature terahertz detector based on a GaN/AlGaN high electron mobility transistor integrated with three patch antennas. Experimental results prove that both horizontal and perpendicular electric fields are induced in the electron channel. A photocurrent is generated when the electron channel is strongly modulated by the gate voltage. Despite the large channel length and gate-source/drain distance, significant horizontal and perpendicular fields are achieved. The device is well described by the self-mixing of terahertz fields in the electron channel. The noise-equivalent power and responsivity are estimated to be and 3 mA=W at 292 K, respectively. No decrease in responsivity is observed up to a modulation frequency of 5 kHz. The detector performance can be further improved by engineering the source-gate-drain geometry to enhance the nonlinearity.
Region labeling algorithm based on boundary tracking for binary image
NASA Astrophysics Data System (ADS)
Chen, Li; Yang, Yang; Cen, Zhaofeng; Li, Xiaotong
2010-11-01
Region labeling for binary image is an important part of image processing. For the special use of small and multi-objects labeling, a new region labeling algorithm based on boundary tracking is proposed in this paper. Experiments prove that our algorithm is feasible and efficient, and even faster than some of other algorithms.
Thickness dependence on the optoelectronic properties of multilayered GaSe based photodetector
NASA Astrophysics Data System (ADS)
Ko, Pil Ju; Abderrahmane, Abdelkader; Takamura, Tsukasa; Kim, Nam-Hoon; Sandhu, Adarsh
2016-08-01
Two-dimensional (2D) layered materials exhibit unique optoelectronic properties at atomic thicknesses. In this paper, we fabricated metal-semiconductor-metal based photodetectors using layered gallium selenide (GaSe) with different thicknesses. The electrical and optoelectronic properties of the photodetectors were studied, and these devices showed good electrical characteristics down to GaSe flake thicknesses of 30 nm. A photograting effect was observed in the absence of a gate voltage, thereby implying a relatively high photoresponsivity. Higher values of the photoresponsivity occurred for thicker layers of GaSe with a maximum value 0.57 AW-1 and external quantum efficiency of of 132.8%, and decreased with decreasing GaSe flake thickness. The detectivity was 4.05 × 1010 cm Hz1/2 W-1 at 532 nm laser wavelength, underscoring that GaSe is a promising p-type 2D material for photodetection applications in the visible spectrum.
Absorption properties of GaAsBi based p-i-n heterojunction diodes
NASA Astrophysics Data System (ADS)
Zhou, Zhize; Mendes, Danuta F.; Richards, Robert D.; Bastiman, Faebian; David, John PR
2015-09-01
The absorption properties of GaAsBi have been investigated using GaAsBi based p-i-n diodes with different bismuth compositions (˜2.1 and ˜3.4%). The absorption behaviour of GaAsBi as a function of incident photon energy above the band gap follows that of a direct band gap material. With increasing bismuth content, the absorption of photons with energy lower than the band gap in GaAsBi is enhanced, probably due to localized states caused by Bi-related defects. A simplified analysis has been undertaken on the behaviour of absorption as a function of bias voltage. By undertaking photoresponsivity measurements as a function of reverse bias, the background doping type and the minority carriers diffusion lengths in GaAsBi have been determined.
Genetic Algorithms for Agent-Based Infrastructure Interdependency Modeling and Analysis
May Permann
2007-03-01
Today’s society relies greatly upon an array of complex national and international infrastructure networks such as transportation, electric power, telecommunication, and financial networks. This paper describes initial research combining agent-based infrastructure modeling software and genetic algorithms (GAs) to help optimize infrastructure protection and restoration decisions. This research proposes to apply GAs to the problem of infrastructure modeling and analysis in order to determine the optimum assets to restore or protect from attack or other disaster. This research is just commencing and therefore the focus of this paper is the integration of a GA optimization method with a simulation through the simulation’s agents.
InGaN-based thin film solar cells: Epitaxy, structural design, and photovoltaic properties
Sang, Liwen; Liao, Meiyong; Koide, Yasuo; Sumiya, Masatomo
2015-03-14
In{sub x}Ga{sub 1−x}N, with the tunable direct bandgaps from ultraviolet to near infrared region, offers a promising candidate for the high-efficiency next-generation thin-film photovoltaic applications. Although the adoption of thick InGaN film as the active region is desirable to obtain efficient light absorption and carrier collection compared to InGaN/GaN quantum wells structure, the understanding on the effect from structural design is still unclear due to the poor-quality InGaN films with thickness and difficulty of p-type doping. In this paper, we comprehensively investigate the effects from film epitaxy, doping, and device structural design on the performances of the InGaN-based solar cells. The high-quality InGaN thick film is obtained on AlN/sapphire template, and p-In{sub 0.08}Ga{sub 0.92}N is achieved with a high hole concentration of more than 10{sup 18 }cm{sup −3}. The dependence of the photovoltaic performances on different structures, such as active regions and p-type regions is analyzed with respect to the carrier transport mechanism in the dark and under illumination. The strategy of improving the p-i interface by using a super-thin AlN interlayer is provided, which successfully enhances the performance of the solar cells.
A new frame-based registration algorithm
NASA Technical Reports Server (NTRS)
Yan, C. H.; Whalen, R. T.; Beaupre, G. S.; Sumanaweera, T. S.; Yen, S. Y.; Napel, S.
1998-01-01
This paper presents a new algorithm for frame registration. Our algorithm requires only that the frame be comprised of straight rods, as opposed to the N structures or an accurate frame model required by existing algorithms. The algorithm utilizes the full 3D information in the frame as well as a least squares weighting scheme to achieve highly accurate registration. We use simulated CT data to assess the accuracy of our algorithm. We compare the performance of the proposed algorithm to two commonly used algorithms. Simulation results show that the proposed algorithm is comparable to the best existing techniques with knowledge of the exact mathematical frame model. For CT data corrupted with an unknown in-plane rotation or translation, the proposed technique is also comparable to the best existing techniques. However, in situations where there is a discrepancy of more than 2 mm (0.7% of the frame dimension) between the frame and the mathematical model, the proposed technique is significantly better (p < or = 0.05) than the existing techniques. The proposed algorithm can be applied to any existing frame without modification. It provides better registration accuracy and is robust against model mis-match. It allows greater flexibility on the frame structure. Lastly, it reduces the frame construction cost as adherence to a concise model is not required.
NASA Astrophysics Data System (ADS)
Mukherjee, Bijoy K.; Metia, Santanu
2009-10-01
The paper is divided into three parts. The first part gives a brief introduction to the overall paper, to fractional order PID (PIλDμ) controllers and to Genetic Algorithm (GA). In the second part, first it has been studied how the performance of an integer order PID controller deteriorates when implemented with lossy capacitors in its analog realization. Thereafter it has been shown that the lossy capacitors can be effectively modeled by fractional order terms. Then, a novel GA based method has been proposed to tune the controller parameters such that the original performance is retained even though realized with the same lossy capacitors. Simulation results have been presented to validate the usefulness of the method. Some Ziegler-Nichols type tuning rules for design of fractional order PID controllers have been proposed in the literature [11]. In the third part, a novel GA based method has been proposed which shows how equivalent integer order PID controllers can be obtained which will give performance level similar to those of the fractional order PID controllers thereby removing the complexity involved in the implementation of the latter. It has been shown with extensive simulation results that the equivalent integer order PID controllers more or less retain the robustness and iso-damping properties of the original fractional order PID controllers. Simulation results also show that the equivalent integer order PID controllers are more robust than the normal Ziegler-Nichols tuned PID controllers.
On image matrix based feature extraction algorithms.
Wang, Liwei; Wang, Xiao; Feng, Jufu
2006-02-01
Principal component analysis (PCA) and linear discriminant analysis (LDA) are two important feature extraction methods and have been widely applied in a variety of areas. A limitation of PCA and LDA is that when dealing with image data, the image matrices must be first transformed into vectors, which are usually of very high dimensionality. This causes expensive computational cost and sometimes the singularity problem. Recently two methods called two-dimensional PCA (2DPCA) and two-dimensional LDA (2DLDA) were proposed to overcome this disadvantage by working directly on 2-D image matrices without a vectorization procedure. The 2DPCA and 2DLDA significantly reduce the computational effort and the possibility of singularity in feature extraction. In this paper, we show that these matrices based 2-D algorithms are equivalent to special cases of image block based feature extraction, i.e., partition each image into several blocks and perform standard PCA or LDA on the aggregate of all image blocks. These results thus provide a better understanding of the 2-D feature extraction approaches.
Adaptive RED algorithm based on minority game
NASA Astrophysics Data System (ADS)
Wei, Jiaolong; Lei, Ling; Qian, Jingjing
2007-11-01
With more and more applications appearing and the technology developing in the Internet, only relying on terminal system can not satisfy the complicated demand of QoS network. Router mechanisms must be participated into protecting responsive flows from the non-responsive. Routers mainly use active queue management mechanism (AQM) to avoid congestion. In the point of interaction between the routers, the paper applies minority game to describe the interaction of the users and observes the affection on the length of average queue. The parameters α, β of ARED being hard to confirm, adaptive RED based on minority game can depict the interactions of main body and amend the parameter α, β of ARED to the best. Adaptive RED based on minority game optimizes ARED and realizes the smoothness of average queue length. At the same time, this paper extends the network simulator plat - NS by adding new elements. Simulation has been implemented and the results show that new algorithm can reach the anticipative objects.
Terahertz emission from GaN-based nanophononic structures: the nexus between scale and frequency
NASA Astrophysics Data System (ADS)
Jeong, H.; Jho, Y. D.
2011-12-01
We report a newly-found terahertz generation mechanism related with acoustic standing waves confined within GaN-based piezoelectric layers and its frequency control by adapting relevant active layer thicknesses.
Bounded Error Approximation Algorithms for Risk-Based Intrusion Response
2015-09-17
AFRL-AFOSR-VA-TR-2015-0324 Bounded Error Approximation Algorithms for Risk-Based Intrusion Response K Subramani West Virginia University Research...2015. 4. TITLE AND SUBTITLE Bounded Error Approximation Algorithms for Risk-Based Intrusion Response 5a. CONTRACT NUMBER FA9550-12-1-0199. 5b. GRANT... Algorithms for Risk-Based Intrusion Response DISTRIBUTION A: Distribution approved for public release. Definition 1.7 Given an integer k, an undirected
Fabrication of photonic crystal circuits based on GaN ultrathin membranes by maskless lithography
NASA Astrophysics Data System (ADS)
Volciuc, Olesea; Braniste, Tudor; Sergentu, Vladimir; Ursaki, Veaceslav; Tiginyanu, Ion M.; Gutowski, Jürgen
2015-06-01
We report on maskless fabrication of photonic crystal (PhC) circuits based on ultrathin (d ~ 15 nm) nanoperforated GaN membranes exhibiting a triangular lattice arrangement of holes with diameters of 150 nm. In recent years, we have proposed and developed a cost-effective technology for GaN micro- and nanostructuring, the so-called surface charge lithography (SCL), which opened wide possibilities for a controlled fabrication of GaN ultrathin membranes. SCL is a maskless approach based on direct writing of negative charges on the surface of a semiconductor by a focused ion beam (FIB). These charges shield the material against photo-electrochemical (PEC) etching. Ultrathin GaN membranes suspended on specially designed GaN microstructures have been fabricated using a technological route based on SCL with two selected doses of ion beam treatment. Calculation of the dispersion law in nanoperforated membranes in the approximation of scalar waves is indicative of the occurrence of surface and bulk modes, and there is a range of frequencies where only surface modes can exist. Advantages of the occurrence of two types of modes in ultrathin nanoperforated GaN membranes from the point of view of their incorporation in photonic and optoelectronic integrated circuits are discussed. Along with this, we present the results of a comparative analysis of persistent photoconductivity (PPC) and optical quenching (OQ) effects occurring in continuous and nanoperforated ultrathin GaN suspended membranes, and assess the mechanisms behind these phenomena.
N-polar InGaN-based LEDs fabricated on sapphire via pulsed sputtering
NASA Astrophysics Data System (ADS)
Ueno, Kohei; Kishikawa, Eiji; Ohta, Jitsuo; Fujioka, Hiroshi
2017-02-01
High-quality N-polar GaN epitaxial films with an atomically flat surface were grown on sapphire (0001) via pulsed sputtering deposition, and their structural and electrical properties were investigated. The crystalline quality of N-polar GaN improves with increasing film thickness and the full width at half maximum values of the x-ray rocking curves for 0002 and 101 ¯ 2 diffraction were 313 and 394 arcsec, respectively, at the film thickness of 6 μ m . Repeatable p-type doping in N-polar GaN films was achieved using Mg dopant, and their hole concentration and mobility can be controlled in the range of 8 × 1016-2 × 1018 cm-3 and 2-9 cm2V-1s-1, respectively. The activation energy of Mg in N-polar GaN based on a temperature-dependent Hall measurement was estimated to be 161 meV, which is comparable to that of the Ga-polar GaN. Based on these results, we demonstrated the fabrication of N-polar InGaN-based light emitting diodes with the long wavelength up to 609 nm.
NASA Astrophysics Data System (ADS)
Gang-Cheng, Jiao; Zheng-Tang, Liu; Hui, Guo; Yi-Jun, Zhang
2016-04-01
In order to develop the photodetector for effective blue-green response, the 18-mm-diameter vacuum image tube combined with the transmission-mode Al0.7Ga0.3As0.9 P 0.1/GaAs0.9 P 0.1 photocathode grown by molecular beam epitaxy is tentatively fabricated. A comparison of photoelectric property, spectral characteristic and performance parameter between the transmission-mode GaAsP-based and blue-extended GaAs-based photocathodes shows that the GaAsP-based photocathode possesses better absorption and higher quantum efficiency in the blue-green waveband, combined with a larger surface electron escape probability. Especially, the quantum efficiency at 532 nm for the GaAsP-based photocathode achieves as high as 59%, nearly twice that for the blue-extended GaAs-based one, which would be more conducive to the underwater range-gated imaging based on laser illumination. Moreover, the simulation results show that the favorable blue-green response can be achieved by optimizing the emission-layer thickness in a range of 0.4 μm-0.6 μm. Project supported by the National Natural Science Foundation of China (Grant No. 61301023) and the Science and Technology on Low-Light-Level Night Vision Laboratory Foundation, China (Grant No. BJ2014001).
Combined string searching algorithm based on knuth-morris- pratt and boyer-moore algorithms
NASA Astrophysics Data System (ADS)
Tsarev, R. Yu; Chernigovskiy, A. S.; Tsareva, E. A.; Brezitskaya, V. V.; Nikiforov, A. Yu; Smirnov, N. A.
2016-04-01
The string searching task can be classified as a classic information processing task. Users either encounter the solution of this task while working with text processors or browsers, employing standard built-in tools, or this task is solved unseen by the users, while they are working with various computer programmes. Nowadays there are many algorithms for solving the string searching problem. The main criterion of these algorithms’ effectiveness is searching speed. The larger the shift of the pattern relative to the string in case of pattern and string characters’ mismatch is, the higher is the algorithm running speed. This article offers a combined algorithm, which has been developed on the basis of well-known Knuth-Morris-Pratt and Boyer-Moore string searching algorithms. These algorithms are based on two different basic principles of pattern matching. Knuth-Morris-Pratt algorithm is based upon forward pattern matching and Boyer-Moore is based upon backward pattern matching. Having united these two algorithms, the combined algorithm allows acquiring the larger shift in case of pattern and string characters’ mismatch. The article provides an example, which illustrates the results of Boyer-Moore and Knuth-Morris- Pratt algorithms and combined algorithm’s work and shows advantage of the latter in solving string searching problem.
An innovative thinking-based intelligent information fusion algorithm.
Lu, Huimin; Hu, Liang; Liu, Gang; Zhou, Jin
2013-01-01
This study proposes an intelligent algorithm that can realize information fusion in reference to the relative research achievements in brain cognitive theory and innovative computation. This algorithm treats knowledge as core and information fusion as a knowledge-based innovative thinking process. Furthermore, the five key parts of this algorithm including information sense and perception, memory storage, divergent thinking, convergent thinking, and evaluation system are simulated and modeled. This algorithm fully develops innovative thinking skills of knowledge in information fusion and is a try to converse the abstract conception of brain cognitive science to specific and operable research routes and strategies. Furthermore, the influences of each parameter of this algorithm on algorithm performance are analyzed and compared with those of classical intelligent algorithms trough test. Test results suggest that the algorithm proposed in this study can obtain the optimum problem solution by less target evaluation times, improve optimization effectiveness, and achieve the effective fusion of information.
Three-photon absorption in optical parametric oscillators based on OP-GaAs
NASA Astrophysics Data System (ADS)
Heckl, Oliver H.; Bjork, Bryce J.; Winkler, Georg; Bryan Changala, P.; Spaun, Ben; Porat, Gil; Bui, Thinh Q.; Lee, Kevin F.; Jiang, Jie; Fermann, Martin E.; Schunemann, Peter G.; Ye, Jun
2016-11-01
We report on the first singly-resonant (SR), synchronously pumped optical parametric oscillator (OPO) based on orientation-patterned gallium arsenide (OP-GaAs). Together with a doubly resonant (DR) degenerate OPO based on the same OP-GaAs material, the output spectra cover 3 to 6 ${\\mu}$m within ~3 dB of relative power. The DR-OPO has the highest output power reported to date from a femtosecond, synchronously pumped OPO based on OP-GaAs. We discovered strong three photon absorption with a coefficient of 0.35 ${\\pm}$ 0.06 cm${^3}$/GW${^2}$ for our OP-GaAs sample, which limits the output power of these OPOs as mid-IR light sources. We present a detailed study of the three photon loss on the performance of both the SR and DR-OPOs, and compare them to those without this loss mechanism.
Deng, Li; Wang, Guohua; Yu, Suihuai
2016-01-01
In order to consider the psychological cognitive characteristics affecting operating comfort and realize the automatic layout design, cognitive ergonomics and GA-ACA (genetic algorithm and ant colony algorithm) were introduced into the layout design of human-machine interaction interface. First, from the perspective of cognitive psychology, according to the information processing process, the cognitive model of human-machine interaction interface was established. Then, the human cognitive characteristics were analyzed, and the layout principles of human-machine interaction interface were summarized as the constraints in layout design. Again, the expression form of fitness function, pheromone, and heuristic information for the layout optimization of cabin was studied. The layout design model of human-machine interaction interface was established based on GA-ACA. At last, a layout design system was developed based on this model. For validation, the human-machine interaction interface layout design of drilling rig control room was taken as an example, and the optimization result showed the feasibility and effectiveness of the proposed method.
Deng, Li; Wang, Guohua; Yu, Suihuai
2016-01-01
In order to consider the psychological cognitive characteristics affecting operating comfort and realize the automatic layout design, cognitive ergonomics and GA-ACA (genetic algorithm and ant colony algorithm) were introduced into the layout design of human-machine interaction interface. First, from the perspective of cognitive psychology, according to the information processing process, the cognitive model of human-machine interaction interface was established. Then, the human cognitive characteristics were analyzed, and the layout principles of human-machine interaction interface were summarized as the constraints in layout design. Again, the expression form of fitness function, pheromone, and heuristic information for the layout optimization of cabin was studied. The layout design model of human-machine interaction interface was established based on GA-ACA. At last, a layout design system was developed based on this model. For validation, the human-machine interaction interface layout design of drilling rig control room was taken as an example, and the optimization result showed the feasibility and effectiveness of the proposed method. PMID:26884745
An Image Encryption Algorithm Based on Information Hiding
NASA Astrophysics Data System (ADS)
Ge, Xin; Lu, Bin; Liu, Fenlin; Gong, Daofu
Aiming at resolving the conflict between security and efficiency in the design of chaotic image encryption algorithms, an image encryption algorithm based on information hiding is proposed based on the “one-time pad” idea. A random parameter is introduced to ensure a different keystream for each encryption, which has the characteristics of “one-time pad”, improving the security of the algorithm rapidly without significant increase in algorithm complexity. The random parameter is embedded into the ciphered image with information hiding technology, which avoids negotiation for its transport and makes the application of the algorithm easier. Algorithm analysis and experiments show that the algorithm is secure against chosen plaintext attack, differential attack and divide-and-conquer attack, and has good statistical properties in ciphered images.
Polarization image fusion algorithm based on improved PCNN
NASA Astrophysics Data System (ADS)
Zhang, Siyuan; Yuan, Yan; Su, Lijuan; Hu, Liang; Liu, Hui
2013-12-01
The polarization detection technique provides polarization information of objects which conventional detection techniques are unable to obtain. In order to fully utilize of obtained polarization information, various polarization imagery fusion algorithms have been developed. In this research, we proposed a polarization image fusion algorithm based on the improved pulse coupled neural network (PCNN). The improved PCNN algorithm uses polarization parameter images to generate the fused polarization image with object details for polarization information analysis and uses the matching degree M as the fusion rule. The improved PCNN fused image is compared with fused images based on Laplacian pyramid (LP) algorithm, Wavelet algorithm and PCNN algorithm. Several performance indicators are introduced to evaluate the fused images. The comparison showed the presented algorithm yields image with much higher quality and preserves more detail information of the objects.
GaN-Based High Temperature and Radiation-Hard Electronics for Harsh Environments
NASA Technical Reports Server (NTRS)
Son, Kyung-ah; Liao, Anna; Lung, Gerald; Gallegos, Manuel; Hatakeh, Toshiro; Harris, Richard D.; Scheick, Leif Z.; Smythe, William D.
2010-01-01
We develop novel GaN-based high temperature and radiation-hard electronics to realize data acquisition electronics and transmitters suitable for operations in harsh planetary environments. In this paper, we discuss our research on metal-oxide-semiconductor (MOS) transistors that are targeted for 500 (sup o)C operation and >2 Mrad radiation hardness. For the target device performance, we develop Schottky-free AlGaN/GaN MOS transistors, where a gate electrode is processed in a MOS layout using an Al2O3 gate dielectric layer....
Study on Underwater Image Denoising Algorithm Based on Wavelet Transform
NASA Astrophysics Data System (ADS)
Jian, Sun; Wen, Wang
2017-02-01
This paper analyzes the application of MATLAB in underwater image processing, the transmission characteristics of the underwater laser light signal and the kinds of underwater noise has been described, the common noise suppression algorithm: Wiener filter, median filter, average filter algorithm is brought out. Then the advantages and disadvantages of each algorithm in image sharpness and edge protection areas have been compared. A hybrid filter algorithm based on wavelet transform has been proposed which can be used for Color Image Denoising. At last the PSNR and NMSE of each algorithm has been given out, which compares the ability to de-noising
Guided macro-mutation in a graded energy based genetic algorithm for protein structure prediction.
Rashid, Mahmood A; Iqbal, Sumaiya; Khatib, Firas; Hoque, Md Tamjidul; Sattar, Abdul
2016-04-01
Protein structure prediction is considered as one of the most challenging and computationally intractable combinatorial problem. Thus, the efficient modeling of convoluted search space, the clever use of energy functions, and more importantly, the use of effective sampling algorithms become crucial to address this problem. For protein structure modeling, an off-lattice model provides limited scopes to exercise and evaluate the algorithmic developments due to its astronomically large set of data-points. In contrast, an on-lattice model widens the scopes and permits studying the relatively larger proteins because of its finite set of data-points. In this work, we took the full advantage of an on-lattice model by using a face-centered-cube lattice that has the highest packing density with the maximum degree of freedom. We proposed a graded energy-strategically mixes the Miyazawa-Jernigan (MJ) energy with the hydrophobic-polar (HP) energy-based genetic algorithm (GA) for conformational search. In our application, we introduced a 2 × 2 HP energy guided macro-mutation operator within the GA to explore the best possible local changes exhaustively. Conversely, the 20 × 20 MJ energy model-the ultimate objective function of our GA that needs to be minimized-considers the impacts amongst the 20 different amino acids and allow searching the globally acceptable conformations. On a set of benchmark proteins, our proposed approach outperformed state-of-the-art approaches in terms of the free energy levels and the root-mean-square deviations.
Index Theory-Based Algorithm for the Gradiometer Inverse Problem
2015-03-28
Index Theory-Based Algorithm for the Gradiometer Inverse Problem Robert C. Anderson and Jonathan W. Fitton Abstract: We present an Index Theory...based gravity gradiometer inverse problem algorithm. This algorithm relates changes in the index value computed on a closed curve containing a line...field generated by the positive eigenvector of the gradiometer tensor to the closeness of fit of the proposed inverse solution to the mass and
NASA Astrophysics Data System (ADS)
Davydova, Evgeniya I.; Ladugin, M. A.; Marmalyuk, Aleksandr A.; Padalitsa, A. A.; Petrovskii, A. V.; Sukharev, A. V.; Uspenskii, Mikhail B.; Shishkin, Viktor A.
2009-01-01
Emission parameters of single-mode laser diodes based on InGaAs/GaAs/AlGaAs heterostructures doped with carbon and grown by using the metallorganic vapour phase epitaxy (MOVPE) technique are studied. The obtained results show that maintaining a certain doping profile ensuring optimisation of series resistance and internal optical losses during all fabrication stages of the active element of a diode laser, provides for enhancement of the laser efficiency. Based on laser heterostructures studied in this paper, highly efficient single-transverse-mode laser diodes emitting 300 mW at 980 nm have been manufactured.
GaN-Based Detector Enabling Technology for Next Generation Ultraviolet Planetary Missions
NASA Technical Reports Server (NTRS)
Aslam, S.; Gronoff, G.; Hewagama, T.; Janz, S.; Kotecki, C.
2012-01-01
The ternary alloy AlN-GaN-InN system provides several distinct advantages for the development of UV detectors for future planetary missions. First, (InN), (GaN) and (AlN) have direct bandgaps 0.8, 3.4 and 6.2 eV, respectively, with corresponding wavelength cutoffs of 1550 nm, 365 nm and 200 nm. Since they are miscible with each other, these nitrides form complete series of indium gallium nitride (In(sub l-x)Ga(sub x)N) and aluminum gallium nitride (Al(sub l-x)Ga(sub x)N) alloys thus allowing the development of detectors with a wavelength cut-off anywhere in this range. For the 2S0-365 nm spectral wavelength range AlGaN detectors can be designed to give a 1000x solar radiation rejection at cut-off wavelength of 325 nm, than can be achieved with Si based detectors. For tailored wavelength cut-offs in the 365-4S0 nm range, InGaN based detectors can be fabricated, which still give 20-40x better solar radiation rejection than Si based detectors. This reduced need for blocking filters greatly increases the Detective Quantum efficiency (DQE) and simplifies the instrument's optical systems. Second, the wide direct bandgap reduces the thermally generated dark current to levels allowing many observations to be performed at room temperature. Third, compared to narrow bandgap materials, wide bandgap semiconductors are significantly more radiation tolerant. Finally, with the use of an (AI, In)GaN array, the overall system cost is reduced by eliminating stringent Si CCD cooling systems. Compared to silicon, GaN based detectors have superior QE based on a direct bandgap and longer absorption lengths in the UV.
High-resistivity GaN buffer templates and their optimization for GaN-based HFETs
NASA Astrophysics Data System (ADS)
Hubbard, S. M.; Zhao, G.; Pavlidis, D.; Sutton, W.; Cho, E.
2005-11-01
High-resistance (HR) GaN templates for AlGaN/GaN heterojunction field effect transistor (HFET) applications were grown using organometallic vapor phase epitaxy. The GaN sheet resistance was tuned using final nucleation layer (NL) annealing temperature and NL thickness. Using an annealing temperature of 1033 °C and NL thickness of 26 nm, GaN with sheet resistance of 10 10 Ω/sq was achieved, comparable to that of Fe-doped GaN. Material characterization results show that the high-resistance GaN is achieved due to compensating acceptor levels that may be introduced through edge-type threading dislocations. Optimization of annealing temperature and NL thickness provided a means to maximize GaN sheet resistance without significantly degrading material quality. In situ laser reflectance was used to correlate the NL properties to sheet resistance and material quality, providing a figure of merit for expected sheet resistance. AlGaN/GaN HFET layers grown using HR GaN templates with R of 10 10 Ω/sq gave surface and interface roughness of 14 and 7 Å, respectively. The 2DEG Hall mobility and sheet charge of HFETs grown using HR GaN templates was comparable to similar layers grown using unintentionally doped (UID) GaN templates.
Controlled synthesis of GaN-based nanowires for photoelectrochemical water splitting applications
NASA Astrophysics Data System (ADS)
Ebaid, Mohamed; Kang, Jin-Ho; Ryu, Sang-Wan
2017-01-01
Photoelectrochemical (PEC) water splitting using semiconductor materials as light absorbers have been extensively studied. Several semiconducting materials have been proposed, such as TiO2, ZnO, and GaN. Because the efficiency of PEC water splitting is dependent on visible light absorption, the ability to tune the bandgap of GaN by alloying with In makes it advantageous over other wide bandgap semiconductors. The fabrication of GaN-based materials with nanoscale geometry offers more merit for their use in PEC water splitting. In this review, we provide an overview of the recent progress made in the synthesis and application of GaN-based nanomaterials in PEC water splitting. The outstanding challenges and the future prospects of this field will also be addressed.
Demonstration of InGaN-based orange LEDs with hybrid multiple-quantum-wells structure
NASA Astrophysics Data System (ADS)
Iida, Daisuke; Niwa, Kazumasa; Kamiyama, Satoshi; Ohkawa, Kazuhiro
2016-11-01
We demonstrate the effectiveness of a hybrid multiple-quantum-wells (MQWs) structure in InGaN-based orange light-emitting diodes (LEDs) grown by metalorganic vapor phase epitaxy. The hybrid MQWs-LED is composed of orange InGaN double QWs and a blue-green InGaN single QW. Using the hybrid MQWs structure, the orange LEDs exhibited electroluminescence spectra with narrow full widths at half maximum of 51 nm at 20 mA. The light output power and external quantum efficiency of the InGaN-based orange LEDs were 0.23 mW and 0.6%, respectively, at 20 mA.
NASA Astrophysics Data System (ADS)
Turner, David B.; Willett, Peter
2000-01-01
The EVA structural descriptor, based upon calculated fundamental molecular vibrational frequencies, has proved to be an effective descriptor for both QSAR and database similarity calculations. The descriptor is sensitive to 3D structure but has an advantage over field-based 3D-QSAR methods inasmuch as structural superposition is not required. The original technique involves a standardisation method wherein uniform Gaussians of fixed standard deviation (σ) are used to smear out frequencies projected onto a linear scale. The smearing function permits the overlap of proximal frequencies and thence the extraction of a fixed dimensional descriptor regardless of the number and precise values of the frequencies. It is proposed here that there exist optimal localised values of σ in different spectral regions; that is, the overlap of frequencies using uniform Gaussians may, at certain points in the spectrum, either be insufficient to pick up relationships where they exist or mix up information to such an extent that significant correlations are obscured by noise. A genetic algorithm is used to search for optimal localised σ values using crossvalidated PLS regression scores as the fitness score to be optimised. The resultant models were then validated against a previously unseen test set of compounds and through data scrambling. The performance of EVA_GA is compared to that of EVA and analogous CoMFA studies; in the latter case a brief evaluation is made of the effect of grid resolution upon the stability of CoMFA PLS scores particularly in relation to test set predictions.
Direct deposition of GaN-based photocathodes on microchannel plates
NASA Astrophysics Data System (ADS)
Dabiran, Amir M.; Wowchak, Andrew M.; Chow, Peter P.; Siegmund, Oswald H. W.; Hull, Jeffrey S.; Malloy, James; Tremsin, Anton S.
2009-02-01
Epitaxial growth of p-type GaN-based UV photocathode by RF plasma assisted molecular beam epitaxy (MBE) on sapphire, fused silica, and alumina substrates was investigated. The electrical measurements indicted the growth of highly p-type GaN films as thin as 0.1 μm on c-plane sapphire with a thin AlN nucleation layer. Polycrystalline p-type GaN was obtained for growth on fused silica and alumina. Negative electron affinity (NEA) photocathodes were fabricated by cesium activation of the p-type GaN films in vacuum. Quantum efficiency for UV detection on different substrates was then characterized. To study the integration of UV photocathodes with MCPs, direct deposition of p-type GaN films on glass MCPs were done at low growth temperatures by MBE. The detection efficiency of polycrystalline p- GaN photocathodes in reflection mode was much less than the high quality p-type GaN films on sapphire, however, it was comparable to the detection efficiency of the latter measured in the semitransparent mode. This indicates the potential for fabrication of improved photocathodes with higher gain and better spatial and temporal resolutions.
A GaAs-based self-aligned stripe distributed feedback laser
NASA Astrophysics Data System (ADS)
Lei, H.; Stevens, B. J.; Fry, P. W.; Babazadeh, N.; Ternent, G.; Childs, D. T.; Groom, K. M.
2016-08-01
We demonstrate operation of a GaAs-based self-aligned stripe (SAS) distributed feedback (DFB) laser. In this structure, a first order GaInP/GaAs index-coupled DFB grating is built within the p-doped AlGaAs layer between the active region and the n-doped GaInP opto-electronic confinement layer of a SAS laser structure. In this process no Al-containing layers are exposed to atmosphere prior to overgrowth. The use of AlGaAs cladding affords the luxury of full flexibility in upper cladding design, which proved necessary due to limitations imposed by the grating infill and overgrowth with the GaInP current block layer. Resultant devices exhibit single-mode lasing with high side-mode-suppression of >40 dB over the temperature range 20 °C-70 °C. The experimentally determined optical profile and grating confinement correlate well with those simulated using Fimmwave.
InGaN-based UV/blue/green/amber LEDs
NASA Astrophysics Data System (ADS)
Mukai, Takashi; Yamada, Motokazu; Nakamura, Shuji
1999-04-01
High-efficient light emitting diodes (LEDs) emitting red, amber, green, blue, and ultraviolet light have been obtained through the use of an InGaN active layers instead of GaN active layers. Red LEDs with an emission wavelength of 680 nm which emission energy was smaller than the band-gap energy of InN were fabricated mainly resulting from the piezoelectric field due to the strain. The localized energy states caused by In composition fluctuation in the InGaN active layer seem to be related to the high efficiency of the InGaN-based emitting devices in spite of having a large number of threading dislocations. InGaN single-quantum-well- structure blue LEDs were grown on epitaxially laterally overgrown GaN and sapphire substrates. The emission spectra showed the similar blue shift with increasing forward currents between both LEDs. The output power of both LEDs was almost the same, as high as 6 mW at a current of 20 mA. These results indicate that the In composition fluctuation is not caused by dislocations, the dislocations are not effective to reduce the efficiency of the emission, and that the dislocations from the leakage current pathway in InGaN.
Ocean feature recognition using genetic algorithms with fuzzy fitness functions (GA/F3)
NASA Technical Reports Server (NTRS)
Ankenbrandt, C. A.; Buckles, B. P.; Petry, F. E.; Lybanon, M.
1990-01-01
A model for genetic algorithms with semantic nets is derived for which the relationships between concepts is depicted as a semantic net. An organism represents the manner in which objects in a scene are attached to concepts in the net. Predicates between object pairs are continuous valued truth functions in the form of an inverse exponential function (e sub beta lxl). 1:n relationships are combined via the fuzzy OR (Max (...)). Finally, predicates between pairs of concepts are resolved by taking the average of the combined predicate values of the objects attached to the concept at the tail of the arc representing the predicate in the semantic net. The method is illustrated by applying it to the identification of oceanic features in the North Atlantic.
NASA Astrophysics Data System (ADS)
Tsatsulnikov, A. F.; Lundin, W. V.; Sakharov, A. V.; Zavarin, E. E.; Usov, S. O.; Nikolaev, A. E.; Kryzhanovskaya, N. V.; Chernyakov, A. E.; Zakgeim, A. L.; Cherkashin, N. A.; Hytch, M.
2011-12-01
This work presents the results of the investigation of approaches to the synthesis of the active region of LED with extended optical range. Combination of short-period InGaN/GaN superlattice and InGaN quantum well was applied to extend optical range of emission up to 560 nm. Monolithic white LED structures containing two blue and one green QWs separated by the short-period InGaN/GaN superlattice were grown with external quantum efficiency up to 5-6%.
Underwater Sensor Network Redeployment Algorithm Based on Wolf Search
Jiang, Peng; Feng, Yang; Wu, Feng
2016-01-01
This study addresses the optimization of node redeployment coverage in underwater wireless sensor networks. Given that nodes could easily become invalid under a poor environment and the large scale of underwater wireless sensor networks, an underwater sensor network redeployment algorithm was developed based on wolf search. This study is to apply the wolf search algorithm combined with crowded degree control in the deployment of underwater wireless sensor networks. The proposed algorithm uses nodes to ensure coverage of the events, and it avoids the prematurity of the nodes. The algorithm has good coverage effects. In addition, considering that obstacles exist in the underwater environment, nodes are prevented from being invalid by imitating the mechanism of avoiding predators. Thus, the energy consumption of the network is reduced. Comparative analysis shows that the algorithm is simple and effective in wireless sensor network deployment. Compared with the optimized artificial fish swarm algorithm, the proposed algorithm exhibits advantages in network coverage, energy conservation, and obstacle avoidance. PMID:27775659
Silva, Leonardo W T; Barros, Vitor F; Silva, Sandro G
2014-08-18
In launching operations, Rocket Tracking Systems (RTS) process the trajectory data obtained by radar sensors. In order to improve functionality and maintenance, radars can be upgraded by replacing antennas with parabolic reflectors (PRs) with phased arrays (PAs). These arrays enable the electronic control of the radiation pattern by adjusting the signal supplied to each radiating element. However, in projects of phased array radars (PARs), the modeling of the problem is subject to various combinations of excitation signals producing a complex optimization problem. In this case, it is possible to calculate the problem solutions with optimization methods such as genetic algorithms (GAs). For this, the Genetic Algorithm with Maximum-Minimum Crossover (GA-MMC) method was developed to control the radiation pattern of PAs. The GA-MMC uses a reconfigurable algorithm with multiple objectives, differentiated coding and a new crossover genetic operator. This operator has a different approach from the conventional one, because it performs the crossover of the fittest individuals with the least fit individuals in order to enhance the genetic diversity. Thus, GA-MMC was successful in more than 90% of the tests for each application, increased the fitness of the final population by more than 20% and reduced the premature convergence.
Silva, Leonardo W. T.; Barros, Vitor F.; Silva, Sandro G.
2014-01-01
In launching operations, Rocket Tracking Systems (RTS) process the trajectory data obtained by radar sensors. In order to improve functionality and maintenance, radars can be upgraded by replacing antennas with parabolic reflectors (PRs) with phased arrays (PAs). These arrays enable the electronic control of the radiation pattern by adjusting the signal supplied to each radiating element. However, in projects of phased array radars (PARs), the modeling of the problem is subject to various combinations of excitation signals producing a complex optimization problem. In this case, it is possible to calculate the problem solutions with optimization methods such as genetic algorithms (GAs). For this, the Genetic Algorithm with Maximum-Minimum Crossover (GA-MMC) method was developed to control the radiation pattern of PAs. The GA-MMC uses a reconfigurable algorithm with multiple objectives, differentiated coding and a new crossover genetic operator. This operator has a different approach from the conventional one, because it performs the crossover of the fittest individuals with the least fit individuals in order to enhance the genetic diversity. Thus, GA-MMC was successful in more than 90% of the tests for each application, increased the fitness of the final population by more than 20% and reduced the premature convergence. PMID:25196013
Ling, Steve S H; Nguyen, Hung T
2011-03-01
Hypoglycemia or low blood glucose is dangerous and can result in unconsciousness, seizures, and even death. It is a common and serious side effect of insulin therapy in patients with diabetes. Hypoglycemic monitor is a noninvasive monitor that measures some physiological parameters continuously to provide detection of hypoglycemic episodes in type 1 diabetes mellitus patients (T1DM). Based on heart rate (HR), corrected QT interval of the ECG signal, change of HR, and the change of corrected QT interval, we develop a genetic algorithm (GA)-based multiple regression with fuzzy inference system (FIS) to classify the presence of hypoglycemic episodes. GA is used to find the optimal fuzzy rules and membership functions of FIS and the model parameters of regression method. From a clinical study of 16 children with T1DM, natural occurrence of nocturnal hypoglycemic episodes is associated with HRs and corrected QT intervals. The overall data were organized into a training set (eight patients) and a testing set (another eight patients) randomly selected. The results show that the proposed algorithm performs a good sensitivity with an acceptable specificity.
Region counting algorithm based on region labeling automaton
NASA Astrophysics Data System (ADS)
Yang, Sudi; Gu, Guoqing
2007-12-01
Region counting is a conception in computer graphics and image analysis, and it has many applications in medical area recently. The existing region-counting algorithms are almost based on filling method. Although filling algorithm has been improved well, the speed of these algorithms used to count regions is not satisfied. A region counting algorithm based on region labeling automaton is proposed in this paper. By tracing the boundaries of the regions, the number of the region can be obtained fast. And the proposed method was found to be fastest and requiring less memory.
Avci, Derya; Dogantekin, Akif
2016-01-01
Parkinson disease is a major public health problem all around the world. This paper proposes an expert disease diagnosis system for Parkinson disease based on genetic algorithm- (GA-) wavelet kernel- (WK-) Extreme Learning Machines (ELM). The classifier used in this paper is single layer neural network (SLNN) and it is trained by the ELM learning method. The Parkinson disease datasets are obtained from the UCI machine learning database. In wavelet kernel-Extreme Learning Machine (WK-ELM) structure, there are three adjustable parameters of wavelet kernel. These parameters and the numbers of hidden neurons play a major role in the performance of ELM. In this study, the optimum values of these parameters and the numbers of hidden neurons of ELM were obtained by using a genetic algorithm (GA). The performance of the proposed GA-WK-ELM method is evaluated using statical methods such as classification accuracy, sensitivity and specificity analysis, and ROC curves. The calculated highest classification accuracy of the proposed GA-WK-ELM method is found as 96.81%.
Analysis of image thresholding segmentation algorithms based on swarm intelligence
NASA Astrophysics Data System (ADS)
Zhang, Yi; Lu, Kai; Gao, Yinghui; Yang, Bo
2013-03-01
Swarm intelligence-based image thresholding segmentation algorithms are playing an important role in the research field of image segmentation. In this paper, we briefly introduce the theories of four existing image segmentation algorithms based on swarm intelligence including fish swarm algorithm, artificial bee colony, bacteria foraging algorithm and particle swarm optimization. Then some image benchmarks are tested in order to show the differences of the segmentation accuracy, time consumption, convergence and robustness for Salt & Pepper noise and Gaussian noise of these four algorithms. Through these comparisons, this paper gives qualitative analyses for the performance variance of the four algorithms. The conclusions in this paper would give a significant guide for the actual image segmentation.
General inference algorithm of Bayesian networks based on clique tree
NASA Astrophysics Data System (ADS)
Li, Haijun; Liu, Xiao
2008-10-01
A general inference algorithm which based on exact algorithm of clique tree and importance sampling principle was put forward this article. It applied advantages of two algorithms, made information transfer from one clique to another, but don't calculate exact interim result. It calculated and dealt with the information using approximate algorithm, calculated the information from one clique to another using current potential. Because this algorithm was an iterative course of improvement, this continuous ran could increases potential of each clique, and produced much more exact information. Hybrid Bayesian Networks inference algorithm based on general softmax function could deal whit any function for CPD, and could be applicable for any models. Simulation test proved that the effect of classification was fine.
NASA Astrophysics Data System (ADS)
Craig, A. P.; Marshall, A. R. J.; Tian, Z.-B.; Krishna, S.
2015-05-01
InAsSb-based nBn photodetectors were fabricated on GaAs, using the interfacial misfit (IMF) array growth mode, and on native GaSb. At -0.1 V operating bias, 200 K dark current densities of 1.4 × 10-5 A cm-2 (on GaAs) and 4.8 × 10-6 A cm-2 (on GaSb) were measured. At the same temperature, specific detectivity (D*) figures of 1.2 × 1010 Jones (on GaAs) and 7.2 × 1010 Jones (on GaSb) were calculated. Arrhenius plots of the dark current densities yielded activation energies of 0.37 eV (on GaAs) and 0.42 eV (on GaSb). These values are close to the 4 K bandgap of the absorption layers (0.32-0.35 eV) indicating diffusion limited dark currents and small valence band offsets. Significantly, these devices could be used for mid-infrared focal plane arrays operating within the temperature range of cost-effective thermoelectric coolers.
Photoelectrochemical corrosion of GaN-based p-n structures
NASA Astrophysics Data System (ADS)
Fomichev, A. D.; Kurin, S. Yu; Ermakovi, I. A.; Puzyk, M. V.; Usikov, A. S.; Helava, H.; Nikiforov, A.; Papchenko, B. P.; Makarov, Yu N.; Chernyakov, A. E.
2016-08-01
Direct water photoelectrolysis using III-N materials is a promising way for hydrogen production. GaN/AlGaN based p-n structures were used in a photoelectrochemical process to investigate the material etching (corrosion) in an electrolyte. At the beginning, the corrosion performs through the top p-type layers via channels associated with threading defects and can penetrate deep into the structure. Then, the corrosion process occurs in lateral direction in n- type layers forming voids and cavities in the structure. The lateral etching is due to net positive charges at the AlGaN/GaN interfaces arising because of spontaneous and piezoelectric polarization in the structure and positively charged ionized donors in the space charge region of the p-n junction.
Strain relaxation of thick (11–22) semipolar InGaN layer for long wavelength nitride-based device
Kim, Jaehwan; Min, Daehong; Jang, Jongjin; Lee, Kyuseung; Chae, Sooryong; Nam, Okhyun
2014-10-28
In this study, the properties of thick stress-relaxed (11–22) semipolar InGaN layers were investigated. Owing to the inclination of growth orientation, misfit dislocations (MDs) occurred at the heterointerface when the strain state of the (11–22) semipolar InGaN layers reached the critical point. We found that unlike InGaN layers based on polar and nonpolar growth orientations, the surface morphologies of the stress-relaxed (11–22) semipolar InGaN layers did not differ from each other and were similar to the morphology of the underlying GaN layer. In addition, misfit strain across the whole InGaN layer was gradually relaxed by MD formation at the heterointerface. To minimize the effect of surface roughness and defects in GaN layers on the InGaN layer, we conducted further investigation on a thick (11–22) semipolar InGaN layer grown on an epitaxial lateral overgrown GaN template. We found that the lateral indium composition across the whole stress-relaxed InGaN layer was almost uniform. Therefore, thick stress-relaxed (11–22) semipolar InGaN layers are suitable candidates for use as underlying layers in long-wavelength devices, as they can be used to control strain accumulation in the heterostructure active region without additional influence of surface roughness.
Barzilai-Borwein method in graph drawing algorithm based on Kamada-Kawai algorithm
NASA Astrophysics Data System (ADS)
Hasal, Martin; Pospisil, Lukas; Nowakova, Jana
2016-06-01
Extension of Kamada-Kawai algorithm, which was designed for calculating layouts of simple undirected graphs, is presented in this paper. Graphs drawn by Kamada-Kawai algorithm exhibit symmetries, tend to produce aesthetically pleasing and crossing-free layouts for planar graphs. Minimization of Kamada-Kawai algorithm is based on Newton-Raphson method, which needs Hessian matrix of second derivatives of minimized node. Disadvantage of Kamada-Kawai embedder algorithm is computational requirements. This is caused by searching of minimal potential energy of the whole system, which is minimized node by node. The node with highest energy is minimized against all nodes till the local equilibrium state is reached. In this paper with Barzilai-Borwein (BB) minimization algorithm, which needs only gradient for minimum searching, instead of Newton-Raphson method, is worked. It significantly improves the computational time and requirements.
High-power laser diodes based on InGaAsP alloys
NASA Astrophysics Data System (ADS)
Razeghi, Manijeh
1994-06-01
HIGH-POWER, high-coherence solid-state lasers, based on dielectric materials such as ruby or Nd:YAG (yttrium aluminium garnet), have many civilian and military applications. The active media in these lasers are insulating, and must therefore be excited (or `pumped') by optical, rather than electrical, means. Conventional gas-discharge lamps can be used as the pumping source, but semiconductor diode lasers are more efficient, as their wavelength can be tailored to match the absorption properties of the lasing material. Semiconducting AlGaAs alloys are widely used for this purpose1, 2, but oxidation of the aluminium and the spreading of defects during device operation limit the lifetime of the diodes3, and hence the reliability of the system as a whole. Aluminium-free InGaAsP compounds, on the other hand, do not have these lifetime-limiting properties4-8. We report here the fabrication of high-power lasers based on InGaAsP (lattice-matched to GaAs substrates), which operate over the same wavelength range as conventional AlGaAs laser diodes and show significantly improved reliability. The other optical and electrical properties of these diodes are either comparable or superior to those of the AlGaAs system.
Function-Based Algorithms for Biological Sequences
ERIC Educational Resources Information Center
Mohanty, Pragyan Sheela P.
2015-01-01
Two problems at two different abstraction levels of computational biology are studied. At the molecular level, efficient pattern matching algorithms in DNA sequences are presented. For gene order data, an efficient data structure is presented capable of storing all gene re-orderings in a systematic manner. A common characteristic of presented…
Agent-Based Automated Algorithm Generator
2010-01-12
Detection and Isolation Agent (FDIA), Prognostic Agent (PA), Fusion Agent (FA), and Maintenance Mining Agent (MMA). FDI agents perform diagnostics...manner and loosely coupled). The library of D/P algorithms will be hosted in server-side agents, consisting of four types of major agents: Fault
AlGaN/GaN High Electron Mobility Transistor-Based Biosensor for the Detection of C-Reactive Protein
Lee, Hee Ho; Bae, Myunghan; Jo, Sung-Hyun; Shin, Jang-Kyoo; Son, Dong Hyeok; Won, Chul-Ho; Jeong, Hyun-Min; Lee, Jung-Hee; Kang, Shin-Won
2015-01-01
In this paper, we propose an AlGaN/GaN high electron mobility transistor (HEMT)-based biosensor for the detection of C-reactive protein (CRP) using a null-balancing circuit. A null-balancing circuit was used to measure the output voltage of the sensor directly. The output voltage of the proposed biosensor was varied by antigen-antibody interactions on the gate surface due to CRP charges. The AlGaN/GaN HFET-based biosensor with null-balancing circuit applied shows that CRP can be detected in a wide range of concentrations, varying from 10 ng/mL to 1000 ng/mL. X-ray photoelectron spectroscopy was carried out to verify the immobilization of self-assembled monolayer with Au on the gated region. PMID:26225981
NASA Astrophysics Data System (ADS)
Chen, Y.; Maharjan, N.; Liu, Z.; Nakarmi, M. L.; Chaldyshev, V. V.; Kundelev, E. V.; Poddubny, A. N.; Vasil'ev, A. P.; Yagovkina, M. A.; Shakya, N. M.
2017-03-01
An AlGaAs/GaAs multiple-quantum-well based resonant Bragg structure was designed to match the optical Bragg resonance with the exciton-polariton resonance at the second quantum state in the GaAs quantum wells. The sample structure with 60 periods of AlGaAs/GaAs quantum wells was grown on a semi-insulating GaAs substrate by molecular beam epitaxy. Angle- and temperature-dependent photoluminescence, optical reflectance, and electro-reflectance spectroscopies were employed to study the resonant optical properties of the Bragg structure. Broad and enhanced optical and electro-reflectance features were observed when the Bragg resonance was tuned to the second quantum state of the GaAs quantum well excitons, manifesting a strong light-matter interaction. From the electro-optical experiments, we found the electro-reflectance features related to the transitions of x(e2-hh2) and x(e2-hh1) excitons. The excitonic transition x(e2-hh1), which is prohibited at zero electric field, was allowed by a DC bias due to the brake of symmetry and increased overlap of the electron and hole wave functions caused by the electric field. By tuning the Bragg resonance frequency, we have observed the electro-reflectance feature related to the second quantum state up to room temperature, which evidences a robust light-matter interaction in the resonant Bragg structure.
NASA Astrophysics Data System (ADS)
Lu, Lin; Wan, Zhi; Xu, FuJun; Wang, XinQiang; Lv, Chen; Shen, Bo; Jiang, Ming; Chen, QiGong
2017-04-01
Characteristics of AlGaN-based deep-ultraviolet light-emitting diodes (DUV-LEDs) with light-emitting wavelength around 265 nm via step-like AlGaN quantum wells (QWs) have been investigated. Simulation approach yields a result that, there is significant enhancement of light output power (LOP) for DUV-LEDs with two-layer step-like AlGaN QWs compared to that with conventional one. The location and thickness of AlGaN layer with higher Al-content in the step-like QWs are confirmed to significantly affect the distributions and overlap of electron and hole wavefunctions. The best material characteristic is obtained when the step-like QW is designed as an asymmetric structure, such as Al0.74Ga0.26N (1.8 nm)/Al0.64Ga0.36N (1.2 nm), where AlGaN with higher Al-content layer is set to be located nearer from n-side and be thick as far as possible. The key factors for the performance improvements for this specific design is the enhanced hole transport and mitigated auger recombination.
Utrilla, A. D.; Ulloa, J. M. Guzman, A.; Hierro, A.
2014-07-28
The application of a GaAsSb/GaAsN short-period superlattice capping layer (CL) on InAs/GaAs quantum dots (QDs) is shown to be an option for providing improved luminescence properties to this system. Separating both GaAsSb and GaAsN ternaries during the growth in 2 monolayer-thick phases solves the GaAsSbN immiscibility-related problems. Strong fluctuations in the CL composition and strain field as well as in the QD size distribution are significantly reduced, and a more regular CL interface is also obtained. Room-temperature (RT) photoluminescence (PL) is obtained for overall N contents as high as 3%, yielding PL peak wavelengths beyond 1.4 μm in samples with a type-II band alignment. High external quantum efficiency electroluminescence and photocurrent from the QD ground state are also demonstrated at RT in a single QD-layer p-i-n device. Thus, it becomes possible to combine and transfer the complementary benefits of Sb- and N-containing GaAs alloys to InAs QD-based optoelectronics.
Zhang, Daqing; Xiao, Jianfeng; Zhou, Nannan; Zheng, Mingyue; Luo, Xiaomin; Jiang, Hualiang; Chen, Kaixian
2015-01-01
Blood-brain barrier (BBB) is a highly complex physical barrier determining what substances are allowed to enter the brain. Support vector machine (SVM) is a kernel-based machine learning method that is widely used in QSAR study. For a successful SVM model, the kernel parameters for SVM and feature subset selection are the most important factors affecting prediction accuracy. In most studies, they are treated as two independent problems, but it has been proven that they could affect each other. We designed and implemented genetic algorithm (GA) to optimize kernel parameters and feature subset selection for SVM regression and applied it to the BBB penetration prediction. The results show that our GA/SVM model is more accurate than other currently available log BB models. Therefore, to optimize both SVM parameters and feature subset simultaneously with genetic algorithm is a better approach than other methods that treat the two problems separately. Analysis of our log BB model suggests that carboxylic acid group, polar surface area (PSA)/hydrogen-bonding ability, lipophilicity, and molecular charge play important role in BBB penetration. Among those properties relevant to BBB penetration, lipophilicity could enhance the BBB penetration while all the others are negatively correlated with BBB penetration. PMID:26504797
Study on hologram mosaic algorithm based on Harris corners
NASA Astrophysics Data System (ADS)
Yao, Jiabao; Tian, Qiuhong; Sun, Zhengrong; Huang, Liu; Wang, Limin
2016-01-01
To solve the problem of the small field of the view caused by CCD in the process of the hologram record, the hologram mosaic algorithm based on the Harris corners is proposed. The Harris corners in multi-scale are extracted and the mismatching points are removed. The final homography is calculated by using the improved RANSAC algorithm based on L-M algorithm. Finally, the stitched hologram with high quality can be obtained based on the weighted average fusion algorithm. It can overcome the influence to the hologram that the incident angles of the object beam are not consistent. Two experiments carried out with different reconstructed distance demonstrate that the proposed algorithm can realize the measurement of the big object by using the hologram method. Furthermore, it has high accuracy and strong robustness.
Algorithm-Based Fault Tolerance Integrated with Replication
NASA Technical Reports Server (NTRS)
Some, Raphael; Rennels, David
2008-01-01
In a proposed approach to programming and utilization of commercial off-the-shelf computing equipment, a combination of algorithm-based fault tolerance (ABFT) and replication would be utilized to obtain high degrees of fault tolerance without incurring excessive costs. The basic idea of the proposed approach is to integrate ABFT with replication such that the algorithmic portions of computations would be protected by ABFT, and the logical portions by replication. ABFT is an extremely efficient, inexpensive, high-coverage technique for detecting and mitigating faults in computer systems used for algorithmic computations, but does not protect against errors in logical operations surrounding algorithms.
Target classification algorithm based on feature aided tracking
NASA Astrophysics Data System (ADS)
Zhan, Ronghui; Zhang, Jun
2013-03-01
An effective target classification algorithm based on feature aided tracking (FAT) is proposed, using the length of target (target extent) as the classification information. To implement the algorithm, the Rao-Blackwellised unscented Kalman filter (RBUKF) is used to jointly estimate the kinematic state and target extent; meanwhile the joint probability data association (JPDA) algorithm is exploited to implement multi-target data association aided by target down-range extent. Simulation results under different condition show the presented algorithm is both accurate and robust, and it is suitable for the application of near spaced targets tracking and classification under the environment of dense clutters.
GaN-based light-emitting diodes on various substrates: a critical review
NASA Astrophysics Data System (ADS)
Li, Guoqiang; Wang, Wenliang; Yang, Weijia; Lin, Yunhao; Wang, Haiyan; Lin, Zhiting; Zhou, Shizhong
2016-05-01
GaN and related III-nitrides have attracted considerable attention as promising materials for application in optoelectronic devices, in particular, light-emitting diodes (LEDs). At present, sapphire is still the most popular commercial substrate for epitaxial growth of GaN-based LEDs. However, due to its relatively large lattice mismatch with GaN and low thermal conductivity, sapphire is not the most ideal substrate for GaN-based LEDs. Therefore, in order to obtain high-performance and high-power LEDs with relatively low cost, unconventional substrates, which are of low lattice mismatch with GaN, high thermal conductivity and low cost, have been tried as substitutes for sapphire. As a matter of fact, it is not easy to obtain high-quality III-nitride films on those substrates for various reasons. However, by developing a variety of techniques, distincts progress has been made during the past decade, with high-performance LEDs being successfully achieved on these unconventional substrates. This review focuses on state-of-the-art high-performance GaN-based LED materials and devices on unconventional substrates. The issues involved in the growth of GaN-based LED structures on each type of unconventional substrate are outlined, and the fundamental physics behind these issues is detailed. The corresponding solutions for III-nitride growth, defect control, and chip processing for each type of unconventional substrate are discussed in depth, together with a brief introduction to some newly developed techniques in order to realize LED structures on unconventional substrates. This is very useful for understanding the progress in this field of physics. In this review, we also speculate on the prospects for LEDs on unconventional substrates.
A Danger-Theory-Based Immune Network Optimization Algorithm
Li, Tao; Xiao, Xin; Shi, Yuanquan
2013-01-01
Existing artificial immune optimization algorithms reflect a number of shortcomings, such as premature convergence and poor local search ability. This paper proposes a danger-theory-based immune network optimization algorithm, named dt-aiNet. The danger theory emphasizes that danger signals generated from changes of environments will guide different levels of immune responses, and the areas around danger signals are called danger zones. By defining the danger zone to calculate danger signals for each antibody, the algorithm adjusts antibodies' concentrations through its own danger signals and then triggers immune responses of self-regulation. So the population diversity can be maintained. Experimental results show that the algorithm has more advantages in the solution quality and diversity of the population. Compared with influential optimization algorithms, CLONALG, opt-aiNet, and dopt-aiNet, the algorithm has smaller error values and higher success rates and can find solutions to meet the accuracies within the specified function evaluation times. PMID:23483853
Improved artificial bee colony algorithm based gravity matching navigation method.
Gao, Wei; Zhao, Bo; Zhou, Guang Tao; Wang, Qiu Ying; Yu, Chun Yang
2014-07-18
Gravity matching navigation algorithm is one of the key technologies for gravity aided inertial navigation systems. With the development of intelligent algorithms, the powerful search ability of the Artificial Bee Colony (ABC) algorithm makes it possible to be applied to the gravity matching navigation field. However, existing search mechanisms of basic ABC algorithms cannot meet the need for high accuracy in gravity aided navigation. Firstly, proper modifications are proposed to improve the performance of the basic ABC algorithm. Secondly, a new search mechanism is presented in this paper which is based on an improved ABC algorithm using external speed information. At last, modified Hausdorff distance is introduced to screen the possible matching results. Both simulations and ocean experiments verify the feasibility of the method, and results show that the matching rate of the method is high enough to obtain a precise matching position.
GaN nanostructure-based light emitting diodes and semiconductor lasers.
Viswanath, Annamraju Kasi
2014-02-01
GaN and related materials have received a lot of attention because of their applications in a number of semiconductor devices such as LEDs, laser diodes, field effect transistors, photodetectors etc. An introduction to optical phenomena in semiconductors, light emission in p-n junctions, evolution of LED technology, bandgaps of various semiconductors that are suitable for the development of LEDs are discussed first. The detailed discussion on photoluminescence of GaN nanostructures is made, since this is crucial to develop optical devices. Fabrication technology of many nanostructures of GaN such as nanowires, nanorods, nanodots, nanoparticles, nanofilms and their luminescence properties are given. Then the optical processes including ultrafast phenomena, radiative, non-radiative recombination, quantum efficiency, lifetimes of excitons in InGaN quantum well are described. The LED structures based on InGaN that give various important colors of red, blue, green, and their design considerations to optimize the output were highlighted. The recent efforts in GaN technology are updated. Finally the present challenges and future directions in this field are also pointed out.
Light-Emitting Devices Based on Top-down Fabricated GaAs Quantum Nanodisks
Higo, Akio; Kiba, Takayuki; Tamura, Yosuke; Thomas, Cedric; Takayama, Junichi; Wang, Yunpeng; Sodabanlu, Hassanet; Sugiyama, Masakazu; Nakano, Yoshiaki; Yamashita, Ichiro; Murayama, Akihiro; Samukawa, Seiji
2015-01-01
Quantum dots photonic devices based on the III–V compound semiconductor technology offer low power consumption, temperature stability, and high-speed modulation. We fabricated GaAs nanodisks (NDs) of sub-20-nm diameters by a top-down process using a biotemplate and neutral beam etching (NBE). The GaAs NDs were embedded in an AlGaAs barrier regrown by metalorganic vapor phase epitaxy (MOVPE). The temperature dependence of photoluminescence emission energies and the transient behavior were strongly affected by the quantum confinement effects of the embedded NDs. Therefore, the quantum levels of the NDs may be tuned by controlling their dimensions. We combined NBE and MOVPE in a high-throughput process compatible with industrial production systems to produce GaAs NDs with tunable optical characteristics. ND light emitting diode exhibited a narrow spectral width of 38 nm of high-intensity emission as a result of small deviation of ND sizes and superior crystallographic quality of the etched GaAs/AlGaAs layer. PMID:25792119
CUDT: a CUDA based decision tree algorithm.
Lo, Win-Tsung; Chang, Yue-Shan; Sheu, Ruey-Kai; Chiu, Chun-Chieh; Yuan, Shyan-Ming
2014-01-01
Decision tree is one of the famous classification methods in data mining. Many researches have been proposed, which were focusing on improving the performance of decision tree. However, those algorithms are developed and run on traditional distributed systems. Obviously the latency could not be improved while processing huge data generated by ubiquitous sensing node in the era without new technology help. In order to improve data processing latency in huge data mining, in this paper, we design and implement a new parallelized decision tree algorithm on a CUDA (compute unified device architecture), which is a GPGPU solution provided by NVIDIA. In the proposed system, CPU is responsible for flow control while the GPU is responsible for computation. We have conducted many experiments to evaluate system performance of CUDT and made a comparison with traditional CPU version. The results show that CUDT is 5 ∼ 55 times faster than Weka-j48 and is 18 times speedup than SPRINT for large data set.
NASA Astrophysics Data System (ADS)
Gao, Qingxue; Liu, Rong; Xiao, Hongdi; Cao, Dezhong; Liu, Jianqiang; Ma, Jin
2016-11-01
A strong phase-separated InGaN/GaN layer, which consists of multiple quantum wells (MQW) and superlattices (SL) layers and can produce a blue wavelength spectrum, has been grown on n-GaN thin film, and then fabricated into nanoporous structures by electrochemical etching method in oxalic acid. Scanning electron microscopy (SEM) technique reveals that the etching voltage of 8 V leads to a vertically aligned nanoporous structure, whereas the films etched at 15 V show branching pores within the n-GaN layer. Due to the low doping concentration of barriers (GaN layers) in the InGaN/GaN layer, we observed a record-low rate of etching (<100 nm/min) and nanopores which are mainly originated from the V-pits in the phase-separated layer. In addition, there exists a horizontal nanoporous structure at the interface between the phase-separated layer and the n-GaN layer, presumably resulting from the high transition of electrons between the barrier and the well (InGaN layer) at the interface. As compared to the as-grown MQW structure, the etched MQW structure exhibits a photoluminescence (PL) enhancement with a partial relaxation of compressive stress due to the increased light-extracting surface area and light-guiding effect. Such a compressive stress relaxation can be further confirmed by Raman spectra.
Neural Network-Based Hyperspectral Algorithms
2016-06-07
our effort is development of robust numerical inversion algorithms, which will retrieve inherent optical properties of the water column as well as...combination of in-situ and model data of water column variables (IOP’s, depth, bottom type, upwelling radiance, etc.) a neural network non-linear...function approximation model will be used to establish the inverse relationship between upwelling surface radiance and the water column variables, 2
Fast image matching algorithm based on projection characteristics
NASA Astrophysics Data System (ADS)
Zhou, Lijuan; Yue, Xiaobo; Zhou, Lijun
2011-06-01
Based on analyzing the traditional template matching algorithm, this paper identified the key factors restricting the speed of matching and put forward a brand new fast matching algorithm based on projection. Projecting the grayscale image, this algorithm converts the two-dimensional information of the image into one-dimensional one, and then matches and identifies through one-dimensional correlation, meanwhile, because of normalization has been done, when the image brightness or signal amplitude increasing in proportion, it could also perform correct matching. Experimental results show that the projection characteristics based image registration method proposed in this article could greatly improve the matching speed, which ensuring the matching accuracy as well.
A high-performance genetic algorithm: using traveling salesman problem as a case.
Tsai, Chun-Wei; Tseng, Shih-Pang; Chiang, Ming-Chao; Yang, Chu-Sing; Hong, Tzung-Pei
2014-01-01
This paper presents a simple but efficient algorithm for reducing the computation time of genetic algorithm (GA) and its variants. The proposed algorithm is motivated by the observation that genes common to all the individuals of a GA have a high probability of surviving the evolution and ending up being part of the final solution; as such, they can be saved away to eliminate the redundant computations at the later generations of a GA. To evaluate the performance of the proposed algorithm, we use it not only to solve the traveling salesman problem but also to provide an extensive analysis on the impact it may have on the quality of the end result. Our experimental results indicate that the proposed algorithm can significantly reduce the computation time of GA and GA-based algorithms while limiting the degradation of the quality of the end result to a very small percentage compared to traditional GA.
A High-Performance Genetic Algorithm: Using Traveling Salesman Problem as a Case
Tsai, Chun-Wei; Tseng, Shih-Pang; Yang, Chu-Sing
2014-01-01
This paper presents a simple but efficient algorithm for reducing the computation time of genetic algorithm (GA) and its variants. The proposed algorithm is motivated by the observation that genes common to all the individuals of a GA have a high probability of surviving the evolution and ending up being part of the final solution; as such, they can be saved away to eliminate the redundant computations at the later generations of a GA. To evaluate the performance of the proposed algorithm, we use it not only to solve the traveling salesman problem but also to provide an extensive analysis on the impact it may have on the quality of the end result. Our experimental results indicate that the proposed algorithm can significantly reduce the computation time of GA and GA-based algorithms while limiting the degradation of the quality of the end result to a very small percentage compared to traditional GA. PMID:24892038
Long, Yi; Du, Zhi-jiang; Wang, Wei-dong; Dong, Wei
2016-01-01
A lower limb assistive exoskeleton is designed to help operators walk or carry payloads. The exoskeleton is required to shadow human motion intent accurately and compliantly to prevent incoordination. If the user's intention is estimated accurately, a precise position control strategy will improve collaboration between the user and the exoskeleton. In this paper, a hybrid position control scheme, combining sliding mode control (SMC) with a cerebellar model articulation controller (CMAC) neural network, is proposed to control the exoskeleton to react appropriately to human motion intent. A genetic algorithm (GA) is utilized to determine the optimal sliding surface and the sliding control law to improve performance of SMC. The proposed control strategy (SMC_GA_CMAC) is compared with three other types of approaches, that is, conventional SMC without optimization, optimal SMC with GA (SMC_GA), and SMC with CMAC compensation (SMC_CMAC), all of which are employed to track the desired joint angular position which is deduced from Clinical Gait Analysis (CGA) data. Position tracking performance is investigated with cosimulation using ADAMS and MATLAB/SIMULINK in two cases, of which the first case is without disturbances while the second case is with a bounded disturbance. The cosimulation results show the effectiveness of the proposed control strategy which can be employed in similar exoskeleton systems. PMID:27069353
Long, Yi; Du, Zhi-Jiang; Wang, Wei-Dong; Dong, Wei
2016-01-01
A lower limb assistive exoskeleton is designed to help operators walk or carry payloads. The exoskeleton is required to shadow human motion intent accurately and compliantly to prevent incoordination. If the user's intention is estimated accurately, a precise position control strategy will improve collaboration between the user and the exoskeleton. In this paper, a hybrid position control scheme, combining sliding mode control (SMC) with a cerebellar model articulation controller (CMAC) neural network, is proposed to control the exoskeleton to react appropriately to human motion intent. A genetic algorithm (GA) is utilized to determine the optimal sliding surface and the sliding control law to improve performance of SMC. The proposed control strategy (SMC_GA_CMAC) is compared with three other types of approaches, that is, conventional SMC without optimization, optimal SMC with GA (SMC_GA), and SMC with CMAC compensation (SMC_CMAC), all of which are employed to track the desired joint angular position which is deduced from Clinical Gait Analysis (CGA) data. Position tracking performance is investigated with cosimulation using ADAMS and MATLAB/SIMULINK in two cases, of which the first case is without disturbances while the second case is with a bounded disturbance. The cosimulation results show the effectiveness of the proposed control strategy which can be employed in similar exoskeleton systems.
Prudaev, I. A. Golygin, I. Yu.; Shirapov, S. B.; Romanov, I. S.; Khludkov, S. S.; Tolbanov, O. P.
2013-10-15
The experimental current-voltage characteristics and dependences of the external quantum yield on the current density of light-emitting diodes based on InGaN/GaN multiple quantum wells for the wide temperature range T = 10-400 K are presented. It is shown that, at low-temperatures T < 100 K, the injection of holes into the quantum wells occurs from localized acceptor states. The low-temperature injection of electrons into p-GaN occurs due to quasi-ballistic transport in the region of multiple quantum wells. An increase in temperature leads to an increase in the current which is governed by thermally activated hole and electron injection from the allowed bands of GaN.
Finite-sample based learning algorithms for feedforward networks
Rao, N.S.V.; Protopopescu, V.; Mann, R.C.; Oblow, E.M.; Iyengar, S.S.
1995-04-01
We discuss two classes of convergent algorithms for learning continuous functions (and also regression functions) that are represented by FeedForward Networks (FFN). The first class of algorithms, applicable to networks with unknown weights located only in the output layer, is obtained by utilizing the potential function methods of Aizerman et al. The second class, applicable to general feedforward networks, is obtained by utilizing the classical Robbins-Monro style stochastic approximation methods. Conditions relating the sample sizes to the error bounds are derived for both classes of algorithms using martingale-type inequalities. For concreteness, the discussion is presented in terms of neural networks, but the results are applicable to general feedforward networks, in particular to wavelet networks. The algorithms can also be directly applied to concept learning problems. A main distinguishing feature of the this work is that the sample sizes are based on explicit algorithms rather than information-based methods.
Polarized GaN-based LED with an integrated multi-layer subwavelength structure.
Zhang, Guiju; Wang, Chinhua; Cao, Bing; Huang, Zengli; Wang, Jianfeng; Zhang, Baoshun; Xu, Ke
2010-03-29
A novel type of GaN-based LED with a highly polarized output using an integrated multi-layer subwavelength grating structure is proposed. Characteristics of both optical transmission and polarization extinction ratio of the polarized GaN-based LED with three different multi-layer subwavelength structures are investigated. It is found that both TM transmission (T(TM)) and the extinction ratio(ER) of the LED output can be effectively enhanced by incorporating a dielectric transition layer between the metal grating and GaN substrate with a lower refractive index than that of the GaN substrate. Flat sensitivity of the T(TM) on the period, duty cycle of the metallic grating, and the wide range of operating wavelength have been achieved in contrast to the conventional sensitive behavior in single-layer metallic grating. Up to 0.75 high duty cycle of the metallic grating can be employed to achieve >60dB ER while T(TM) maintains higher than ~90%, which breaks the conventional limit of T(TM) and ER being always a pair of trade-off parameters. Typical optimized multilayer structures in terms of material, thickness, grating periods and duty cycle using MgF(2) and ZnS, respectively, as the transition layers are obtained. The results provide guidance in designing, optimizing and fabricating the novel integrated GaN-based and polarized photonic devices.
FOCUS: a deconvolution method based on algorithmic complexity
NASA Astrophysics Data System (ADS)
Delgado, C.
2006-07-01
A new method for improving the resolution of images is presented. It is based on Occam's razor principle implemented using algorithmic complexity arguments. The performance of the method is illustrated using artificial and real test data.
NASA Astrophysics Data System (ADS)
Zhou, Mandi; Shu, Jiong; Chen, Zhigang; Ji, Minhe
2012-11-01
Hyperspectral imagery has been widely used in terrain classification for its high resolution. Urban vegetation, known as an essential part of the urban ecosystem, can be difficult to discern due to high similarity of spectral signatures among some land-cover classes. In this paper, we investigate a hybrid approach of the genetic-algorithm tuned fuzzy support vector machine (GA-FSVM) technique and apply it to urban vegetation classification from aerial hyperspectral urban imagery. The approach adopts the genetic algorithm to optimize parameters of support vector machine, and employs the K-nearest neighbor algorithm to calculate the membership function for each fuzzy parameter, aiming to reduce the effects of the isolated and noisy samples. Test data come from push-broom hyperspectral imager (PHI) hyperspectral remote sensing image which partially covers a corner of the Shanghai World Exposition Park, while PHI is a hyper-spectral sensor developed by Shanghai Institute of Technical Physics. Experimental results show the GA-FSVM model generates overall accuracy of 71.2%, outperforming the maximum likelihood classifier with 49.4% accuracy and the artificial neural network method with 60.8% accuracy. It indicates GA-FSVM is a promising model for vegetation classification from hyperspectral urban data, and has good advantage in the application of classification involving abundant mixed pixels and small samples problem.
PCA-LBG-based algorithms for VQ codebook generation
NASA Astrophysics Data System (ADS)
Tsai, Jinn-Tsong; Yang, Po-Yuan
2015-04-01
Vector quantisation (VQ) codebooks are generated by combining principal component analysis (PCA) algorithms with Linde-Buzo-Gray (LBG) algorithms. All training vectors are grouped according to the projected values of the principal components. The PCA-LBG-based algorithms include (1) PCA-LBG-Median, which selects the median vector of each group, (2) PCA-LBG-Centroid, which adopts the centroid vector of each group, and (3) PCA-LBG-Random, which randomly selects a vector of each group. The LBG algorithm finds a codebook based on the better vectors sent to an initial codebook by the PCA. The PCA performs an orthogonal transformation to convert a set of potentially correlated variables into a set of variables that are not linearly correlated. Because the orthogonal transformation efficiently distinguishes test image vectors, the proposed PCA-LBG-based algorithm is expected to outperform conventional algorithms in designing VQ codebooks. The experimental results confirm that the proposed PCA-LBG-based algorithms indeed obtain better results compared to existing methods reported in the literature.
Patch Based Multiple Instance Learning Algorithm for Object Tracking
2017-01-01
To deal with the problems of illumination changes or pose variations and serious partial occlusion, patch based multiple instance learning (P-MIL) algorithm is proposed. The algorithm divides an object into many blocks. Then, the online MIL algorithm is applied on each block for obtaining strong classifier. The algorithm takes account of both the average classification score and classification scores of all the blocks for detecting the object. In particular, compared with the whole object based MIL algorithm, the P-MIL algorithm detects the object according to the unoccluded patches when partial occlusion occurs. After detecting the object, the learning rates for updating weak classifiers' parameters are adaptively tuned. The classifier updating strategy avoids overupdating and underupdating the parameters. Finally, the proposed method is compared with other state-of-the-art algorithms on several classical videos. The experiment results illustrate that the proposed method performs well especially in case of illumination changes or pose variations and partial occlusion. Moreover, the algorithm realizes real-time object tracking. PMID:28321248
Patch Based Multiple Instance Learning Algorithm for Object Tracking.
Wang, Zhenjie; Wang, Lijia; Zhang, Hua
2017-01-01
To deal with the problems of illumination changes or pose variations and serious partial occlusion, patch based multiple instance learning (P-MIL) algorithm is proposed. The algorithm divides an object into many blocks. Then, the online MIL algorithm is applied on each block for obtaining strong classifier. The algorithm takes account of both the average classification score and classification scores of all the blocks for detecting the object. In particular, compared with the whole object based MIL algorithm, the P-MIL algorithm detects the object according to the unoccluded patches when partial occlusion occurs. After detecting the object, the learning rates for updating weak classifiers' parameters are adaptively tuned. The classifier updating strategy avoids overupdating and underupdating the parameters. Finally, the proposed method is compared with other state-of-the-art algorithms on several classical videos. The experiment results illustrate that the proposed method performs well especially in case of illumination changes or pose variations and partial occlusion. Moreover, the algorithm realizes real-time object tracking.
A novel bit-quad-based Euler number computing algorithm.
Yao, Bin; He, Lifeng; Kang, Shiying; Chao, Yuyan; Zhao, Xiao
2015-01-01
The Euler number of a binary image is an important topological property in computer vision and pattern recognition. This paper proposes a novel bit-quad-based Euler number computing algorithm. Based on graph theory and analysis on bit-quad patterns, our algorithm only needs to count two bit-quad patterns. Moreover, by use of the information obtained during processing the previous bit-quad, the average number of pixels to be checked for processing a bit-quad is only 1.75. Experimental results demonstrated that our method outperforms significantly conventional Euler number computing algorithms.
Investigation of optically generated kink effect in GaAs-based heterojunction phototransistors
NASA Astrophysics Data System (ADS)
Khan, H. A.; Rezazadeh, A. A.
2011-09-01
An optically generated kink observed in the Gummel plot of AlGaAs/GaAs single heterojunction phototransistors (sHPTs) is reported when illuminated with relatively high optical powers. The observed sudden rise in collector current and decrease in the base current, referred to as `optical kink effect', is carefully studied and analyzed. The measurements are performed for incident optical power of up to 225 μW at an incident wavelength of 635 nm. This rise in the current gain of HPTs, in three terminal configuration, is associated with the base-collector space-charge modulation similar to the kirk effect.
NASA Astrophysics Data System (ADS)
Pierścińska, Dorota; Marona, Łucja; Pierściński, Kamil; Wiśniewski, Przemysław; Perlin, Piotr; Bugajski, Maciej
2017-02-01
In this paper accurate measurements of temperature distribution on the facet of GaN-based diode lasers are presented as well as development of the instrumentation for high-resolution thermal imaging based on thermoreflectance. It is shown that thermoreflectance can be successfully applied to provide information on heat dissipation in these devices. We demonstrate the quantitative measurements of the temperature profiles and high-resolution temperature maps on the front facet of nitride lasers and prove that thermoreflectance spectroscopy can be considered as the accurate and fast nondestructive tool for investigation of thermally induced degradation modes of GaN lasers.
CUDT: A CUDA Based Decision Tree Algorithm
Sheu, Ruey-Kai; Chiu, Chun-Chieh
2014-01-01
Decision tree is one of the famous classification methods in data mining. Many researches have been proposed, which were focusing on improving the performance of decision tree. However, those algorithms are developed and run on traditional distributed systems. Obviously the latency could not be improved while processing huge data generated by ubiquitous sensing node in the era without new technology help. In order to improve data processing latency in huge data mining, in this paper, we design and implement a new parallelized decision tree algorithm on a CUDA (compute unified device architecture), which is a GPGPU solution provided by NVIDIA. In the proposed system, CPU is responsible for flow control while the GPU is responsible for computation. We have conducted many experiments to evaluate system performance of CUDT and made a comparison with traditional CPU version. The results show that CUDT is 5∼55 times faster than Weka-j48 and is 18 times speedup than SPRINT for large data set. PMID:25140346
The prediction in computer color matching of dentistry based on GA+BP neural network.
Li, Haisheng; Lai, Long; Chen, Li; Lu, Cheng; Cai, Qiang
2015-01-01
Although the use of computer color matching can reduce the influence of subjective factors by technicians, matching the color of a natural tooth with a ceramic restoration is still one of the most challenging topics in esthetic prosthodontics. Back propagation neural network (BPNN) has already been introduced into the computer color matching in dentistry, but it has disadvantages such as unstable and low accuracy. In our study, we adopt genetic algorithm (GA) to optimize the initial weights and threshold values in BPNN for improving the matching precision. To our knowledge, we firstly combine the BPNN with GA in computer color matching in dentistry. Extensive experiments demonstrate that the proposed method improves the precision and prediction robustness of the color matching in restorative dentistry.
Dark-current characteristics of GaN-based UV avalanche photodiodes
NASA Astrophysics Data System (ADS)
Xu, Jintong; Chang, Chao; Li, Xiangyang
2015-04-01
For UV detecting, it needs high ratio of signal to noise, which means high responsibility and low noise. GaN-based avalanche photodiodes can provide a high internal photocurrent gain. In this paper, we report the testing and characterization of GaN based thin film materials, optimization design of device structure, the device etching and passivation technology, and the photoelectric characteristics of the devices. Also, uniformity of the device was obtained. The relationship between dark current and material quality or device processes was the focus of this study. GaN based material with high aluminum components have high density defects. Scanning electron microscope, cathodoluminescence spectra, X-ray double crystal diffraction and transmission spectroscopy testing were employed to evaluate the quality of GaN-based material. It shows that patterned sapphire substrate or thick AlN buffer layer is more effective to get high quality materials. GaN-based materials have larger hole ionization coefficient, so back incident structure were adopted to maximize the hole-derived multiplication course and it was helped to get a smaller multiplication noise. The device with separate absorption and multiplication regions is also prospective to reduce the avalanche noise. According to AlGaN based material characteristics and actual device fabrication, device structure was optimized further. Low physical damage inductively coupled plasma (ICP) etching method was used to etch mesa and wet etching method was employed to treat mesa damage. Silica is passivation material of device mesa. For solar-blind ultraviolet device, it is necessary to adopt a wider bandgap material than AlGaN material. The current-voltage characteristics under reverse bias were measured in darkness and under UV illumination. The distribution of dark current and response of different devices was obtained. In short, for GaN-based UV avalanche photodiode, dark current was related to high density dislocation of
Mueller, Dirk; Klette, Ingo; Baum, Richard P; Gottschaldt, M; Schultz, Michael K; Breeman, Wouter A P
2012-08-15
A simple sodium chloride (NaCl) based (68)Ga eluate concentration and labeling method that enables rapid, high-efficiency labeling of DOTA conjugated peptides in high radiochemical purity is described. The method utilizes relatively few reagents and comprises minimal procedural steps. It is particularly well-suited for routine automated synthesis of clinical radiopharmaceuticals. For the (68)Ga generator eluate concentration step, commercially available cation-exchange cartridges and (68)Ga generators were used. The (68)Ga generator eluate was collected by use of a strong cation exchange cartridge. 98% of the total activity of (68)Ga was then eluted from the cation exchange cartridge with 0.5 mL of 5 M NaCl solution containing a small amount of 5.5 M HCl. After buffering with ammonium acetate, the eluate was used directly for radiolabeling of DOTATOC and DOTATATE. The (68)Ga-labeled peptides were obtained in higher radiochemical purity compared to other commonly used procedures, with radiochemical yields greater than 80%. The presence of (68)Ge could not be detected in the final product. The new method obviates the need for organic solvents, which eliminates the required quality control of the final product by gas chromatography, thereby reducing postsynthesis analytical effort significantly. The (68)Ga-labeled products were used directly, with no subsequent purification steps, such as solid-phase extraction. The NaCl method was further evaluated using an automated fluid handling system and it routinely facilitates radiochemical yields in excess of 65% in less than 15 min, with radiochemical purity consistently greater than 99% for the preparation of (68)Ga-DOTATOC.
Haplotyping a single triploid individual based on genetic algorithm.
Wu, Jingli; Chen, Xixi; Li, Xianchen
2014-01-01
The minimum error correction model is an important combinatorial model for haplotyping a single individual. In this article, triploid individual haplotype reconstruction problem is studied by using the model. A genetic algorithm based method GTIHR is presented for reconstructing the triploid individual haplotype. A novel coding method and an effectual hill-climbing operator are introduced for the GTIHR algorithm. This relatively short chromosome code can lead to a smaller solution space, which plays a positive role in speeding up the convergence process. The hill-climbing operator ensures algorithm GTIHR converge at a good solution quickly, and prevents premature convergence simultaneously. The experimental results prove that algorithm GTIHR can be implemented efficiently, and can get higher reconstruction rate than previous algorithms.
Label propagation algorithm based on local cycles for community detection
NASA Astrophysics Data System (ADS)
Zhang, Xian-Kun; Fei, Song; Song, Chen; Tian, Xue; Ao, Yang-Yue
2015-12-01
Label propagation algorithm (LPA) has been proven to be an extremely fast method for community detection in large complex networks. But an important issue of the algorithm has not yet been properly addressed that random update orders in label propagation process hamper the algorithm robustness of algorithm. We note that when there are multiple maximal labels among a node neighbors' labels, choosing a node' label from which there is a local cycle to the node instead of a random node' label can avoid the labels propagating among communities at random. In this paper, an improved LPA based on local cycles is given. We have evaluated the proposed algorithm on computer-generated networks with planted partition and some real-world networks whose community structure are already known. The result shows that the performance of the proposed approach is even significantly improved.
Simple-random-sampling-based multiclass text classification algorithm.
Liu, Wuying; Wang, Lin; Yi, Mianzhu
2014-01-01
Multiclass text classification (MTC) is a challenging issue and the corresponding MTC algorithms can be used in many applications. The space-time overhead of the algorithms must be concerned about the era of big data. Through the investigation of the token frequency distribution in a Chinese web document collection, this paper reexamines the power law and proposes a simple-random-sampling-based MTC (SRSMTC) algorithm. Supported by a token level memory to store labeled documents, the SRSMTC algorithm uses a text retrieval approach to solve text classification problems. The experimental results on the TanCorp data set show that SRSMTC algorithm can achieve the state-of-the-art performance at greatly reduced space-time requirements.
Multiparty Quantum Key Agreement Based on Quantum Search Algorithm
Cao, Hao; Ma, Wenping
2017-01-01
Quantum key agreement is an important topic that the shared key must be negotiated equally by all participants, and any nontrivial subset of participants cannot fully determine the shared key. To date, the embed modes of subkey in all the previously proposed quantum key agreement protocols are based on either BB84 or entangled states. The research of the quantum key agreement protocol based on quantum search algorithms is still blank. In this paper, on the basis of investigating the properties of quantum search algorithms, we propose the first quantum key agreement protocol whose embed mode of subkey is based on a quantum search algorithm known as Grover’s algorithm. A novel example of protocols with 5 – party is presented. The efficiency analysis shows that our protocol is prior to existing MQKA protocols. Furthermore it is secure against both external attack and internal attacks. PMID:28332610
Multiparty Quantum Key Agreement Based on Quantum Search Algorithm.
Cao, Hao; Ma, Wenping
2017-03-23
Quantum key agreement is an important topic that the shared key must be negotiated equally by all participants, and any nontrivial subset of participants cannot fully determine the shared key. To date, the embed modes of subkey in all the previously proposed quantum key agreement protocols are based on either BB84 or entangled states. The research of the quantum key agreement protocol based on quantum search algorithms is still blank. In this paper, on the basis of investigating the properties of quantum search algorithms, we propose the first quantum key agreement protocol whose embed mode of subkey is based on a quantum search algorithm known as Grover's algorithm. A novel example of protocols with 5 - party is presented. The efficiency analysis shows that our protocol is prior to existing MQKA protocols. Furthermore it is secure against both external attack and internal attacks.
Multiparty Quantum Key Agreement Based on Quantum Search Algorithm
NASA Astrophysics Data System (ADS)
Cao, Hao; Ma, Wenping
2017-03-01
Quantum key agreement is an important topic that the shared key must be negotiated equally by all participants, and any nontrivial subset of participants cannot fully determine the shared key. To date, the embed modes of subkey in all the previously proposed quantum key agreement protocols are based on either BB84 or entangled states. The research of the quantum key agreement protocol based on quantum search algorithms is still blank. In this paper, on the basis of investigating the properties of quantum search algorithms, we propose the first quantum key agreement protocol whose embed mode of subkey is based on a quantum search algorithm known as Grover’s algorithm. A novel example of protocols with 5 – party is presented. The efficiency analysis shows that our protocol is prior to existing MQKA protocols. Furthermore it is secure against both external attack and internal attacks.
Interpreting lateral 2-D bank hyporheic flux based on GA-VS2DH
NASA Astrophysics Data System (ADS)
Su, Xiaoru; Shu, Longcang; Wen, Zhonghui; Lu, Chengpeng; Eshete, Abunu
2015-04-01
Hyporheic flux is of great significance for evaluating water resources and protecting ecosystem health. Heat as a tracer was widely used in recognizing the hyporheic flux with high precision, low cost and great convenience. The hyporheic flux in bank cross-section occurs in vertical and lateral directions. In order to depict the hyporheic flow path and its spatial distribution in bank area, a GA-VS2DH nested loop method was developed based on Microsoft Visual Basic 6.0. VS2DH was applied to model 2-D bank hyporheic flow and GA was used to calibrate the model automatically by minimizing the difference between observed and simulated temperatures of sediments in bank area. A hypothetic model was developed to assess the reliability of GA-VS2DH in simulating hyporheic flux and parameters estimation in river bank system. Some numerical experiments were conducted to recognize the capability of GA-VS2DH. Then the GA-VS2DH was applied in two field sites with river bank sediments made by sand and clay, respectively, to verify the reliability of the method. The results indicated that the simulated hyporheic flux and parameters of GA-VS2DH were reliable. GA-VS2DH could be applied in interpreting lateral 2-D bank hyporheic flux. Hydraulic conductivity (K) and dispersivity (D) are the two most sensitive parameters and the estimates of these two parameters have more reliability than the others. The estimates of hydraulic conductivity at Dawen River site and Qinhuai River site are 1.293 and 0.019 m/d, respectively, which corresponded to sand and clay sediment in the two sites.
NASA Astrophysics Data System (ADS)
Salih, A. L.; Mühlbauer, M.; Grumpe, A.; Pasckert, J. H.; Wöhler, C.; Hiesinger, H.
2016-06-01
The analysis of the impact crater size-frequency distribution (CSFD) is a well-established approach to the determination of the age of planetary surfaces. Classically, estimation of the CSFD is achieved by manual crater counting and size determination in spacecraft images, which, however, becomes very time-consuming for large surface areas and/or high image resolution. With increasing availability of high-resolution (nearly) global image mosaics of planetary surfaces, a variety of automated methods for the detection of craters based on image data and/or topographic data have been developed. In this contribution a template-based crater detection algorithm is used which analyses image data acquired under known illumination conditions. Its results are used to establish the CSFD for the examined area, which is then used to estimate the absolute model age of the surface. The detection threshold of the automatic crater detection algorithm is calibrated based on a region with available manually determined CSFD such that the age inferred from the manual crater counts corresponds to the age inferred from the automatic crater detection results. With this detection threshold, the automatic crater detection algorithm can be applied to a much larger surface region around the calibration area. The proposed age estimation method is demonstrated for a Kaguya Terrain Camera image mosaic of 7.4 m per pixel resolution of the floor region of the lunar crater Tsiolkovsky, which consists of dark and flat mare basalt and has an area of nearly 10,000 km2. The region used for calibration, for which manual crater counts are available, has an area of 100 km2. In order to obtain a spatially resolved age map, CSFDs and surface ages are computed for overlapping quadratic regions of about 4.4 x 4.4 km2 size offset by a step width of 74 m. Our constructed surface age map of the floor of Tsiolkovsky shows age values of typically 3.2-3.3 Ga, while for small regions lower (down to 2.9 Ga) and higher
Adaptive bad pixel correction algorithm for IRFPA based on PCNN
NASA Astrophysics Data System (ADS)
Leng, Hanbing; Zhou, Zuofeng; Cao, Jianzhong; Yi, Bo; Yan, Aqi; Zhang, Jian
2013-10-01
Bad pixels and response non-uniformity are the primary obstacles when IRFPA is used in different thermal imaging systems. The bad pixels of IRFPA include fixed bad pixels and random bad pixels. The former is caused by material or manufacture defect and their positions are always fixed, the latter is caused by temperature drift and their positions are always changing. Traditional radiometric calibration-based bad pixel detection and compensation algorithm is only valid to the fixed bad pixels. Scene-based bad pixel correction algorithm is the effective way to eliminate these two kinds of bad pixels. Currently, the most used scene-based bad pixel correction algorithm is based on adaptive median filter (AMF). In this algorithm, bad pixels are regarded as image noise and then be replaced by filtered value. However, missed correction and false correction often happens when AMF is used to handle complex infrared scenes. To solve this problem, a new adaptive bad pixel correction algorithm based on pulse coupled neural networks (PCNN) is proposed. Potential bad pixels are detected by PCNN in the first step, then image sequences are used periodically to confirm the real bad pixels and exclude the false one, finally bad pixels are replaced by the filtered result. With the real infrared images obtained from a camera, the experiment results show the effectiveness of the proposed algorithm.
NASA Astrophysics Data System (ADS)
Chang, Kow-Ming; Chu, Jiunn-Yi; Cheng, Chao-Chen
2005-08-01
Indium-tin-oxide (ITO) contacts to p-GaN exhibit ohmic characteristics by inserting a 10-nm-thick p-In 0.1Ga 0.9N layer as an intermediate. The specific contact resistivity of 4.5 × 10 -2 Ω cm 2 was obtained while annealing ITO/p-GaN contacts at 500 °C. Based on the variation of contact resistivity with respect to temperature, the dominant transport mechanism of ITO/p-GaN structure tended from thermionic field emission to thermionic emission when the post-annealing temperature was raised from 400 °C to 600 °C. From the XPS, XRD and SIMS results, the outdiffusion of gallium atoms and the formation of Ga-O bonds could introduce the gallium vacancies and increase the net concentration of holes, which would benefit the carrier tunneling through the interface. The GaN-based light-emitting diodes (LEDs) with 500 °C-annealed ITO contacts exhibited the forward voltage of 3.43 V and output power of 4.30 mW at a 20-mA-current injection. Although the forward voltage showed a little higher than the conventional LEDs by 0.2 V, the external quantum efficiency and power efficiency were enhanced by about 46% and 36%, respectively. As for the life test, LEDs with 500 °C-annealed ITO contacts presented a similar reliability as the conventional LEDs. Therefore, ITO contacts can make GaN-based LEDs highly bright and reliable in practice.
Detailed physics based modeling of triple-junction InGaP/GaAs/Ge solar cell
NASA Astrophysics Data System (ADS)
Fedoseyev, Alexandre; Bald, Timothy; Raman, Ashok; Hubbard, Seth; Forbes, David; Freundlich, Alexandre
2014-03-01
Space exploration missions and space electronic equipment require improvements in solar cell efficiency and radiation hardness. Triple-junction photovoltaic (TJ PV) cell is one of the most widely used PV for space missions due to it high efficiency. A proper models and simulation techniques are needed to speed-up the development on novel solar cell devices and reduce the related expenses. In this paper we have developed a detailed 3D TCAD model of a TJ PV cell, and calibrated the various (not accurately known) physical parameters to match experimental data, such as dark and light JV, external quantum efficiency (EQE) . A detailed model of triple-junction InGaP/GaAs/Ge solar cell has been developed and implemented in CFDRC's 3D NanoTCAD simulator. The model schematic, materials, layer thicknesses, doping levels and meshing are discussed. This triple-junction model is based on the experimental measurements of a Spectrolab triple-junction cell by [1] with material layer thicknesses provided by Rochester Institute of Technology [2]. This model of the triple-junction solar cell is primarily intended to simulate the external quantum efficiency, JV and other characteristics of a physical cell. Simulation results of light JV characteristics and EQE are presented. The calculated performance parameters compare well against measured experimental data [1]. Photovoltaic performance parameters (Jsc, Voc, Jm, Vm, FF, and Efficiency) can also be simulated using the presented model. This TCAD model is to be used to design an enhanced TJ PV with increased efficiency and radiation tolerance. Keywords: photovoltaic cell, triple-junction, numerical modeling, TCAD, dark and light JV.
Monte Carlo simulation of the kinetic effects on GaAs/GaAs(001) MBE growth
NASA Astrophysics Data System (ADS)
Ageev, Oleg A.; Solodovnik, Maxim S.; Balakirev, Sergey V.; Mikhaylin, Ilya A.; Eremenko, Mikhail M.
2017-01-01
The molecular beam epitaxial growth of GaAs on the GaAs(001)-(2×4) surface is investigated using a kinetic Monte Carlo-based method. The developed algorithm permits to focus on the kinetic effects in a wide range of growth conditions and enables considerable computational speedup. The simulation results show that the growth rate has a dramatic influence upon both the island morphology and Ga surface diffusion length. The average island size reduces with increasing growth rate while the island density increases with increasing growth rate as well as As4/Ga beam equivalent pressure ratio. As the growth rate increases, the island density becomes weaker dependent upon the As4/Ga pressure ratio and approaches to a saturation value. We also discuss three characteristics of Ga surface diffusion, namely a diffusion length of a Ga adatom deposited first, an average diffusion length, and an island spacing as an average distance between islands. The calculations show that the As4/Ga pressure ratio dependences of these characteristics obey the same law, but with different coefficients. An increase of the As4/Ga pressure ratio leads to a decrease in both the diffusion length and island spacing. However, its influence becomes stronger with increasing growth rate for the first Ga adatom diffusion length and weaker for the average diffusion length and for the island spacing.
A survey on GaN- based devices for terahertz photonics
NASA Astrophysics Data System (ADS)
Ahi, Kiarash; Anwar, Mehdi
2016-09-01
With fast growing of the photonics and power electronic systems, the need for high power- high frequency semiconductor devices is sensed tremendously. GaN provides the highest electron saturation velocity, breakdown voltage and operation temperature, and thus combined frequency-power performance among commonly used semiconductors. With achieving the first THz image in just two decades ago, generation and detection of terahertz (THz) radiation is one of the most emerging photonic areas. The industrial needs for compact, economical, high resolution and high power THz imaging and spectroscopy systems are fueling the utilization of GaN for the realizing of the next generation of THz systems. As it is reviewed in this paper, the mentioned characteristics of GaN together with its capabilities of providing high 2-dimentional election densities and large longitudinal-optical phonon of 90 meV, make it one of the most promising semiconductor materials for the future of the THz generation, detection, mixing, and frequency multiplication. GaN- based devices have shown capabilities of operating in the upper THz frequency band of 5- 12 THz with relatively high photon densities and in room temperature. As a result, THz imaging and spectroscopy systems with high resolutions and depths of penetrations can be realized via utilizing GaN- based devices. In this paper, a comprehensive review on the history and state of the art of the GaN- based electronic devices, including plasma HFETs, NDRs, HDSDs, IMPATTs, QCLs, HEMTs, Gunn diodes and TeraFETs together with their impact on the future of THz imaging and spectroscopy systems is provided.
Chakravarty, Rubel; Chakraborty, Sudipta; Ram, Ramu; Dash, Ashutosh; Pillai, M R A
2013-10-01
This article describes the long-term evaluation of a nanoceria-polyacrylonitrile (CeO2-PAN) composite sorbent-based (68)Ge/(68)Ga generator reported. This generator used the new CeO2-PAN composite sorbent for preparation of the (68)Ge/(68)Ga generator. Since this sorbent has not been previously evaluated, a thorough long-term evaluation of the performance of the generator is necessary to ensure its applicability for clinical practice. The performance of the generator was evaluated in terms of (68)Ga yield, (68)Ge breakthrough, radioactive concentration of the (68)Ga solution, and suitability of the (68)Ga for the preparation of (68)Ga-labeled tracers. The (68)Ge/(68)Ga generator was able to provide a (68)Ga activity with consistent yields (>70%) and having acceptable radionuclidic (<10(-4)% of (68)Ge breakthrough), radiochemical, and chemical purities for an extended period of time. The eluted (68)GaCl3 is useful for the majority of the (68)Ga complexation chemistry.
Fabrication and Characterization of Liquid-Phase Sensor utilizing GaN-Based Two Terminal Devices
NASA Astrophysics Data System (ADS)
Abidin, Mastura Shafinaz Zainal; Jeat, Wang Soo; Hashim, Abdul Manaf; Rahman, Shaharin Fadzli Abd; Sharifabad, Maneea Eizadi; Omar, Nurul Afzan; Qindeel, Rabia
2011-05-01
Gallium Nitride (GaN) based materials are highly suitable for liquid-phase sensor applications due to their chemical stability and high internal piezoelectric polarization. The sensitivity of GaN surfaces in aqueous solutions and polar liquids has been investigated. For this purpose, two terminal devices fabricated on bulk Si doped-GaN structures and undoped-AlGaN/GaN heterostructures with unpassivated open area are used to measure the responses to the changes of the H+ concentration in aqueous solutions and the dipole moment in polar liquids. The I-V characteristics show that the devices are able to distinguish the variations of pH. It is observed that the drain current decreases linearly with pH for both device structures. Evaluating the sensitivity in aqueous solutions at VDS = 2V, a quite large current change is obtained for both structures. For the response to polar liquids, it is also found that the drain current decreases with the dipole moments. The results indicate that both devices are capable of distinguishing molecules with different dipole moments.
Fabrication of non-polar GaN based highly responsive and fast UV photodetector
NASA Astrophysics Data System (ADS)
Gundimeda, Abhiram; Krishna, Shibin; Aggarwal, Neha; Sharma, Alka; Sharma, Nita Dilawar; Maurya, K. K.; Husale, Sudhir; Gupta, Govind
2017-03-01
We report the fabrication of ultraviolet photodetector on non-polar (11-20), nearly stress free, Gallium Nitride (GaN) film epitaxially grown on r-plane (1-102) sapphire substrate. High crystalline film leads to the formation of two faceted triangular islands like structures on the surface. The fabricated GaN ultraviolet photodetector exhibited a high responsivity of 340 mA/W at 5 V bias at room temperature which is the best performance reported for a-GaN/r-sapphire films. A detectivity of 1.24 × 109 Jones and noise equivalent power of 2.4 × 10-11 WHz-1/2 were also attained. The rise time and decay time of 280 ms and 450 ms have been calculated, respectively, which were the fastest response times reported for non-polar GaN ultraviolet photodetector. Such high performance devices substantiate that non-polar GaN can serve as an excellent photoconductive material for ultraviolet photodetector based applications.
AdaBoost-based algorithm for network intrusion detection.
Hu, Weiming; Hu, Wei; Maybank, Steve
2008-04-01
Network intrusion detection aims at distinguishing the attacks on the Internet from normal use of the Internet. It is an indispensable part of the information security system. Due to the variety of network behaviors and the rapid development of attack fashions, it is necessary to develop fast machine-learning-based intrusion detection algorithms with high detection rates and low false-alarm rates. In this correspondence, we propose an intrusion detection algorithm based on the AdaBoost algorithm. In the algorithm, decision stumps are used as weak classifiers. The decision rules are provided for both categorical and continuous features. By combining the weak classifiers for continuous features and the weak classifiers for categorical features into a strong classifier, the relations between these two different types of features are handled naturally, without any forced conversions between continuous and categorical features. Adaptable initial weights and a simple strategy for avoiding overfitting are adopted to improve the performance of the algorithm. Experimental results show that our algorithm has low computational complexity and error rates, as compared with algorithms of higher computational complexity, as tested on the benchmark sample data.
Analysis of rotational motion measurement based on HS algorithm
NASA Astrophysics Data System (ADS)
Nong, Hua-Kang; Guo, Bai-Wei
2017-01-01
In micro aircraft design and testing, as well as motor and rotational motion monitoring, it will need to achieve a noncontact detection for rotational motion. HS (Horn and Schunck) algorithm is deduced under the premise that adjacent image intervals and the little change of image gray. HS algorithm is an optical flow calculation method that based on the image in the global smooth constraint. This paper propose an indicator that is used to characterize the optical flow field, and analyze the feasibility of the HS algorithm for the rotational motion measurement.
A Novel Image Encryption Algorithm Based on DNA Subsequence Operation
Zhang, Qiang; Xue, Xianglian; Wei, Xiaopeng
2012-01-01
We present a novel image encryption algorithm based on DNA subsequence operation. Different from the traditional DNA encryption methods, our algorithm does not use complex biological operation but just uses the idea of DNA subsequence operations (such as elongation operation, truncation operation, deletion operation, etc.) combining with the logistic chaotic map to scramble the location and the value of pixel points from the image. The experimental results and security analysis show that the proposed algorithm is easy to be implemented, can get good encryption effect, has a wide secret key's space, strong sensitivity to secret key, and has the abilities of resisting exhaustive attack and statistic attack. PMID:23093912
Restart-Based Genetic Algorithm for the Quadratic Assignment Problem
NASA Astrophysics Data System (ADS)
Misevicius, Alfonsas
The power of genetic algorithms (GAs) has been demonstrated for various domains of the computer science, including combinatorial optimization. In this paper, we propose a new conceptual modification of the genetic algorithm entitled a "restart-based genetic algorithm" (RGA). An effective implementation of RGA for a well-known combinatorial optimization problem, the quadratic assignment problem (QAP), is discussed. The results obtained from the computational experiments on the QAP instances from the publicly available library QAPLIB show excellent performance of RGA. This is especially true for the real-life like QAPs.
Heuristic-based scheduling algorithm for high level synthesis
NASA Technical Reports Server (NTRS)
Mohamed, Gulam; Tan, Han-Ngee; Chng, Chew-Lye
1992-01-01
A new scheduling algorithm is proposed which uses a combination of a resource utilization chart, a heuristic algorithm to estimate the minimum number of hardware units based on operator mobilities, and a list-scheduling technique to achieve fast and near optimal schedules. The schedule time of this algorithm is almost independent of the length of mobilities of operators as can be seen from the benchmark example (fifth order digital elliptical wave filter) presented when the cycle time was increased from 17 to 18 and then to 21 cycles. It is implemented in C on a SUN3/60 workstation.
Rate control algorithm based on frame complexity estimation for MVC
NASA Astrophysics Data System (ADS)
Yan, Tao; An, Ping; Shen, Liquan; Zhang, Zhaoyang
2010-07-01
Rate control has not been well studied for multi-view video coding (MVC). In this paper, we propose an efficient rate control algorithm for MVC by improving the quadratic rate-distortion (R-D) model, which reasonably allocate bit-rate among views based on correlation analysis. The proposed algorithm consists of four levels for rate bits control more accurately, of which the frame layer allocates bits according to frame complexity and temporal activity. Extensive experiments show that the proposed algorithm can efficiently implement bit allocation and rate control according to coding parameters.
A second order derivative scheme based on Bregman algorithm class
NASA Astrophysics Data System (ADS)
Campagna, Rosanna; Crisci, Serena; Cuomo, Salvatore; Galletti, Ardelio; Marcellino, Livia
2016-10-01
The algorithms based on the Bregman iterative regularization are known for efficiently solving convex constraint optimization problems. In this paper, we introduce a second order derivative scheme for the class of Bregman algorithms. Its properties of convergence and stability are investigated by means of numerical evidences. Moreover, we apply the proposed scheme to an isotropic Total Variation (TV) problem arising out of the Magnetic Resonance Image (MRI) denoising. Experimental results confirm that our algorithm has good performance in terms of denoising quality, effectiveness and robustness.
Quantum Image Encryption Algorithm Based on Quantum Image XOR Operations
NASA Astrophysics Data System (ADS)
Gong, Li-Hua; He, Xiang-Tao; Cheng, Shan; Hua, Tian-Xiang; Zhou, Nan-Run
2016-07-01
A novel encryption algorithm for quantum images based on quantum image XOR operations is designed. The quantum image XOR operations are designed by using the hyper-chaotic sequences generated with the Chen's hyper-chaotic system to control the control-NOT operation, which is used to encode gray-level information. The initial conditions of the Chen's hyper-chaotic system are the keys, which guarantee the security of the proposed quantum image encryption algorithm. Numerical simulations and theoretical analyses demonstrate that the proposed quantum image encryption algorithm has larger key space, higher key sensitivity, stronger resistance of statistical analysis and lower computational complexity than its classical counterparts.
GaN ultraviolet detector based demonstrator board for UV-index monitoring
NASA Astrophysics Data System (ADS)
Song, Man; Xie, Feng; Wang, Jun; Wang, Tanglin; Guo, Jin
2015-04-01
Currently, various types of III nitride-based materials have been successfully used for short-wavelength optoelectronic devices. The GaN ultraviolet detector has been wildly used for UV-Index(UVI) monitoring, UV curing and water disinfection. The global solar UVI describes the levels of solar UV radiation at the Earth's surface. The higher the UVI value, the greater the potential damage to the skin and eyes. The UVI monitoring demonstrator board with GaN detector is briefly introduced in this paper.
Modeling of radiation damage recovery in particle detectors based on GaN
NASA Astrophysics Data System (ADS)
Gaubas, E.; Ceponis, T.; Pavlov, J.
2015-12-01
The pulsed characteristics of the capacitor-type and PIN diode type detectors based on GaN have been simulated using the dynamic and drift-diffusion models. The drift-diffusion current simulations have been implemented by employing the commercial software package Synopsys TCAD Sentaurus. The bipolar drift regime has been analyzed. The possible internal gain in charge collection through carrier multiplication processes determined by impact ionization has been considered in order to compensate carrier lifetime reduction due to radiation defects introduced into GaN material of detector.
Advances in UV sensitive visible blind GaN-based APDs
NASA Astrophysics Data System (ADS)
Ulmer, Melville P.; McClintock, Ryan; Razeghi, Manijeh
2011-01-01
In this paper, we describe our current state-of-the-art process of making visible-blind APDs based on GaN. We have grown our material on both conventional sapphire and low dislocation density free-standing c- and m-plane GaN substrates. Leakage current, gain, and single photon detection efficiency (SPDE) of these APDs are compared. The spectral response and Geiger-mode photon counting performance of UV APDs are studied under low photon fluxes. Single photon detection capabilities with over 30% are demonstrated. We show how with pulse height discrimination the Geiger-mode operation conditions can be optimized for enhanced SPDE versus dark counts.
Broadband nanophotonic waveguides and resonators based on epitaxial GaN thin films
Bruch, Alexander W.; Xiong, Chi; Leung, Benjamin; Poot, Menno; Han, Jung; Tang, Hong X.
2015-10-05
We demonstrate broadband, low loss optical waveguiding in single crystalline GaN grown epitaxially on c-plane sapphire wafers through a buffered metal-organic chemical vapor phase deposition process. High Q optical microring resonators are realized in near infrared, infrared, and near visible regimes with intrinsic quality factors exceeding 50 000 at all the wavelengths we studied. TEM analysis of etched waveguide reveals growth and etch-induced defects. Reduction of these defects through improved material and device processing could lead to even lower optical losses and enable a wideband photonic platform based on GaN-on-sapphire material system.
A novel iris segmentation algorithm based on small eigenvalue analysis
NASA Astrophysics Data System (ADS)
Harish, B. S.; Aruna Kumar, S. V.; Guru, D. S.; Ngo, Minh Ngoc
2015-12-01
In this paper, a simple and robust algorithm is proposed for iris segmentation. The proposed method consists of two steps. In first step, iris and pupil is segmented using Robust Spatial Kernel FCM (RSKFCM) algorithm. RSKFCM is based on traditional Fuzzy-c-Means (FCM) algorithm, which incorporates spatial information and uses kernel metric as distance measure. In second step, small eigenvalue transformation is applied to localize iris boundary. The transformation is based on statistical and geometrical properties of the small eigenvalue of the covariance matrix of a set of edge pixels. Extensive experimentations are carried out on standard benchmark iris dataset (viz. CASIA-IrisV4 and UBIRIS.v2). We compared our proposed method with existing iris segmentation methods. Our proposed method has the least time complexity of O(n(i+p)) . The result of the experiments emphasizes that the proposed algorithm outperforms the existing iris segmentation methods.
Genetic algorithm based fuzzy control of spacecraft autonomous rendezvous
NASA Technical Reports Server (NTRS)
Karr, C. L.; Freeman, L. M.; Meredith, D. L.
1990-01-01
The U.S. Bureau of Mines is currently investigating ways to combine the control capabilities of fuzzy logic with the learning capabilities of genetic algorithms. Fuzzy logic allows for the uncertainty inherent in most control problems to be incorporated into conventional expert systems. Although fuzzy logic based expert systems have been used successfully for controlling a number of physical systems, the selection of acceptable fuzzy membership functions has generally been a subjective decision. High performance fuzzy membership functions for a fuzzy logic controller that manipulates a mathematical model simulating the autonomous rendezvous of spacecraft are learned using a genetic algorithm, a search technique based on the mechanics of natural genetics. The membership functions learned by the genetic algorithm provide for a more efficient fuzzy logic controller than membership functions selected by the authors for the rendezvous problem. Thus, genetic algorithms are potentially an effective and structured approach for learning fuzzy membership functions.
Medical image compression algorithm based on wavelet transform
NASA Astrophysics Data System (ADS)
Chen, Minghong; Zhang, Guoping; Wan, Wei; Liu, Minmin
2005-02-01
With rapid development of electronic imaging and multimedia technology, the telemedicine is applied to modern medical servings in the hospital. Digital medical image is characterized by high resolution, high precision and vast data. The optimized compression algorithm can alleviate restriction in the transmission speed and data storage. This paper describes the characteristics of human vision system based on the physiology structure, and analyses the characteristics of medical image in the telemedicine, then it brings forward an optimized compression algorithm based on wavelet zerotree. After the image is smoothed, it is decomposed with the haar filters. Then the wavelet coefficients are quantified adaptively. Therefore, we can maximize efficiency of compression and achieve better subjective visual image. This algorithm can be applied to image transmission in the telemedicine. In the end, we examined the feasibility of this algorithm with an image transmission experiment in the network.
A region growing vessel segmentation algorithm based on spectrum information.
Jiang, Huiyan; He, Baochun; Fang, Di; Ma, Zhiyuan; Yang, Benqiang; Zhang, Libo
2013-01-01
We propose a region growing vessel segmentation algorithm based on spectrum information. First, the algorithm does Fourier transform on the region of interest containing vascular structures to obtain its spectrum information, according to which its primary feature direction will be extracted. Then combined edge information with primary feature direction computes the vascular structure's center points as the seed points of region growing segmentation. At last, the improved region growing method with branch-based growth strategy is used to segment the vessels. To prove the effectiveness of our algorithm, we use the retinal and abdomen liver vascular CT images to do experiments. The results show that the proposed vessel segmentation algorithm can not only extract the high quality target vessel region, but also can effectively reduce the manual intervention.
Preparation of GaN-based cross-sectional TEM specimens by laser lift-off.
Zilan, Li; Xiaodong, Hu; Ke, Chen; Ruijuan, Nie; Xuhui, Luo; Xiaoping, Zhang; Tongjun, Yu; Bei, Zhang; Song, Chen; Zhijian, Yang; Zhizhong, Chen; Guoyi, Zhang
2005-01-01
Laser lift-off (LLO) technology is successfully used to prepare GaN-based TEM cross-sectional specimens. Detailed procedures of the method to prepare the specimens are demonstrated. Large thin areas suitable for TEM analysis were obtained. TEM images of the resulting GaN interface are studied, and the changes in structural quality are confined to approximately the first 250 nm of the epilayer. Clear TEM images of the whole epilayer and the InGaN quantum wells and the HRTEM images of the superlattice layer are demonstrated, showing that LLO is a quick and ideal method to study the crystal structure of the epilayer, especially if only the upper layers are of interest.
Structure, magnetism, and electron-transport properties of Mn2CrGa-based nanomaterials
NASA Astrophysics Data System (ADS)
Zhang, Wenyong; Kharel, Parashu; Skomski, Ralph; Valloppilly, Shah; Li, Xingzhong; Sellmyer, David J.
2016-05-01
Mn2CrGa in the disordered cubic structure has been synthesized using rapid quenching and subsequent annealing. The cubic phase transforms to a stable tetragonal phase when a fraction of Cr or Ga is replaced by Pt or Al, respectively. All samples are ferrimagnetic with high Curie temperatures (Tc); Mn2CrGa exhibits the highest Tc of about 813 K. The tetragonal samples have appreciable values of magnetocrystalline anisotropy energy, which leads to an increase in coercivity (Hc) that approaches about 10 kOe in the Pt-doped sample. The Hc linearly increases with a decrease of temperature, concomitant with the anisotropy change with temperature. All samples are metallic and show negative magnetoresistance with room-temperature resistivities on the order of 1 mΩcm. The magnetic properties including high Tc and low magnetic moment suggest that these tetragonal materials have potential for spin-transfer-torque-based devices.
Frequency-tunable continuous-wave terahertz sources based on GaAs plasmonic photomixers
Yang, Shang-Hua; Jarrahi, Mona
2015-09-28
We present frequency-tunable, continuous-wave terahertz sources based on GaAs plasmonic photomixers, which offer high terahertz radiation power levels at 50% radiation duty cycle. The use of plasmonic contact electrodes enhances photomixer quantum efficiency while maintaining its ultrafast operation by concentrating a large number of photocarriers in close proximity to the device contact electrodes. Additionally, the relatively high thermal conductivity and high resistivity of GaAs allow operation under high optical pump power levels and long duty cycles without reaching the thermal breakdown limit of the photomixer. We experimentally demonstrate continuous-wave terahertz radiation with a radiation frequency tuning range of more than 2 THz and a record-high radiation power of 17 μW at 1 THz through plasmonic photomixers fabricated on a low temperature grown GaAs substrate at 50% radiation duty cycle.
Demonstration of a GaAs-based 1550-nm continuous wave photomixer
Zhang, W.-D. Brown, E. R.; Middendorf, J. R.
2015-01-12
An Er:GaAs-based 1550-nm CW photomixer is demonstrated. The related mechanism is extrinsic photoconductivity with optical absorption between the localized deep levels created by the Er and the extended states above the conduction band edge of GaAs. With the power boost made possible by a fiber-coupled erbium-doped-fiber amplifier, the Er:GaAs photomixers, operating at 1550 nm, radiate THz power levels easily measured by a Golay cell, and display a power spectrum having a −3 dB roll-off frequency of 307 GHz. This corresponds to a photocarrier lifetime of 520 fs, in good agreement with a previous measurement of the bandwidth of the same material in a photoconductive switch.
Epitaxial Growth of GaN-based LEDs on Simple Sacrificial Substrates
Ian Ferguson; Chris Summers
2009-12-31
The objective of this project is to produce alternative substrate technologies for GaN-based LEDs by developing an ALD interlayer of Al{sub 2}O{sub 3} on sacrificial substrates such as ZnO and Si. A sacrificial substrate is used for device growth that can easily be removed using a wet chemical etchant leaving only the thin GaN epi-layer. After substrate removal, the GaN LED chip can then be mounted in several different ways to a metal heat sink/reflector and light extraction techniques can then be applied to the chip and compared for performance. Success in this work will lead to high efficiency LED devices with a simple low cost fabrication method and high product yield as stated by DOE goals for its solid state lighting portfolio.
2013-08-01
also address the issue of nonreproducible relaxation in the antimonide buffer . If the antimonide buffer does not relax reproducibly, then the in-plane...lattice constant of the buffer will be changed from growth to growth, also affecting the QW strain between growths. Such issues lead to performance...variation in the gain peak is much more catastrophic. Thus, any metamorphic buffer -based approach has to result in two con- ditions in the active region: 1
A new augmentation based algorithm for extracting maximal chordal subgraphs
Bhowmick, Sanjukta; Chen, Tzu-Yi; Halappanavar, Mahantesh
2014-10-18
If every cycle of a graph is chordal length greater than three then it contains an edge between non-adjacent vertices. Chordal graphs are of interest both theoretically, since they admit polynomial time solutions to a range of NP-hard graph problems, and practically, since they arise in many applications including sparse linear algebra, computer vision, and computational biology. A maximal chordal subgraph is a chordal subgraph that is not a proper subgraph of any other chordal subgraph. Existing algorithms for computing maximal chordal subgraphs depend on dynamically ordering the vertices, which is an inherently sequential process and therefore limits the algorithms’ parallelizability. In our paper we explore techniques to develop a scalable parallel algorithm for extracting a maximal chordal subgraph. We demonstrate that an earlier attempt at developing a parallel algorithm may induce a non-optimal vertex ordering and is therefore not guaranteed to terminate with a maximal chordal subgraph. We then give a new algorithm that first computes and then repeatedly augments a spanning chordal subgraph. After proving that the algorithm terminates with a maximal chordal subgraph, we then demonstrate that this algorithm is more amenable to parallelization and that the parallel version also terminates with a maximal chordal subgraph. That said, the complexity of the new algorithm is higher than that of the previous parallel algorithm, although the earlier algorithm computes a chordal subgraph which is not guaranteed to be maximal. Finally, we experimented with our augmentation-based algorithm on both synthetic and real-world graphs. We provide scalability results and also explore the effect of different choices for the initial spanning chordal subgraph on both the running time and on the number of edges in the maximal chordal subgraph.
A new augmentation based algorithm for extracting maximal chordal subgraphs
Bhowmick, Sanjukta; Chen, Tzu-Yi; Halappanavar, Mahantesh
2014-10-18
If every cycle of a graph is chordal length greater than three then it contains an edge between non-adjacent vertices. Chordal graphs are of interest both theoretically, since they admit polynomial time solutions to a range of NP-hard graph problems, and practically, since they arise in many applications including sparse linear algebra, computer vision, and computational biology. A maximal chordal subgraph is a chordal subgraph that is not a proper subgraph of any other chordal subgraph. Existing algorithms for computing maximal chordal subgraphs depend on dynamically ordering the vertices, which is an inherently sequential process and therefore limits the algorithms’more » parallelizability. In our paper we explore techniques to develop a scalable parallel algorithm for extracting a maximal chordal subgraph. We demonstrate that an earlier attempt at developing a parallel algorithm may induce a non-optimal vertex ordering and is therefore not guaranteed to terminate with a maximal chordal subgraph. We then give a new algorithm that first computes and then repeatedly augments a spanning chordal subgraph. After proving that the algorithm terminates with a maximal chordal subgraph, we then demonstrate that this algorithm is more amenable to parallelization and that the parallel version also terminates with a maximal chordal subgraph. That said, the complexity of the new algorithm is higher than that of the previous parallel algorithm, although the earlier algorithm computes a chordal subgraph which is not guaranteed to be maximal. Finally, we experimented with our augmentation-based algorithm on both synthetic and real-world graphs. We provide scalability results and also explore the effect of different choices for the initial spanning chordal subgraph on both the running time and on the number of edges in the maximal chordal subgraph.« less
Room-temperature electron spin amplifier based on Ga(In)NAs alloys.
Puttisong, Yuttapoom; Buyanova, Irina A; Ptak, Aaron J; Tu, Charles W; Geelhaar, Lutz; Riechert, Henning; Chen, Weimin M
2013-02-06
The first experimental demonstration of a spin amplifier at room temperature is presented. An efficient, defect-enabled spin amplifier based on a non-magnetic semiconductor, Ga(In)NAs, is proposed and demonstrated, with a large spin gain (up to 2700% at zero field) for conduction electrons and a high cut-off frequency of up to 1 GHz.
Cryogenic operation of GaAs based multiplier chains to 400 GHz
NASA Technical Reports Server (NTRS)
Maestrini, A.; Pukala, D.; Maiwald, F.; Schlecht, E.; Chattopadhyay, G.; Mehdi, I.
2000-01-01
The FIRST/HIFI mission allows for the local oscillator frequency multiplier chains to be cooled to 120 - 150 K in order to increase available output power. This paper will discuss the implication of cooling on GaAs based planar Schottky diode varactors for flight applications.
Quantum Private Comparison Based on Quantum Search Algorithm
NASA Astrophysics Data System (ADS)
Zhang, Wei-Wei; Li, Dan; Song, Ting-Ting; Li, Yan-Bing
2013-05-01
We propose two quantum private comparison protocols based on quantum search algorithm with the help of a semi-honest third party. Our protocols utilize the properties of quantum search algorithm, the unitary operations, and the single-particle measurements. The security of our protocols is discussed with respect to both the outsider attack and the participant attack. There is no information leaked about the private information and the comparison result, even the third party cannot know these information.
A SAR ATR algorithm based on coherent change detection
Harmony, D.W.
2000-12-01
This report discusses an automatic target recognition (ATR) algorithm for synthetic aperture radar (SAR) imagery that is based on coherent change detection techniques. The algorithm relies on templates created from training data to identify targets. Objects are identified or rejected as targets by comparing their SAR signatures with templates using the same complex correlation scheme developed for coherent change detection. Preliminary results are presented in addition to future recommendations.
Study on Privacy Protection Algorithm Based on K-Anonymity
NASA Astrophysics Data System (ADS)
FeiFei, Zhao; LiFeng, Dong; Kun, Wang; Yang, Li
Basing on the study of K-Anonymity algorithm in privacy protection issue, this paper proposed a "Degree Priority" method of visiting Lattice nodes on the generalization tree to improve the performance of K-Anonymity algorithm. This paper also proposed a "Two Times K-anonymity" methods to reduce the information loss in the process of K-Anonymity. Finally, we used experimental results to demonstrate the effectiveness of these methods.
Near-optimum design of GaAs-based concentrator space solar cells for 80 C operation
NASA Technical Reports Server (NTRS)
Goradia, C.; Ghalla-Goradia, M.; Curtis, H.
1984-01-01
Using a detailed computer simulation model and reasonable values of optical, geometrical and material parameters from current published literature, parameter optimization studies were performed on two cell geometries, namely, the circular geometry for a Cassegrainian concentrator with 100 AM0, 80 C operation and the rectangular geometry for a venetian blind concentrator with 20 AM0, 80 C operation. For each cell geometry, three cell configurations were considered: p/n AlGaAs/GaAs; n/p AlGaAs/GaAs; and, n/p GaAs shallow homojunction. The studies show the possibility of designing GaAs-based space solar cells with beginning-of-life efficiencies exceeding 22 percent at 20 to 100 AM0, 80 C and probable efficiency degradation of less than 15 percent after a 70 percent reduction in diffusion length in each cell region.
NASA Astrophysics Data System (ADS)
Upadhyay, S.; Mandal, A.; Ghadi, H.; Pal, D.; Subrahmanyam, N. B. V.; Singh, P.; Chakrabarti, S.
2015-05-01
Self-assembled In(Ga)As/GaAs quantum dot infrared photodetectors (QDIPs) have promising applications in the midwavelength infrared and long-wavelength infrared regions for various defense and space application purposes. It has been demonstrated that the performance of QDIPs has improved significantly by using architectures such as dots-in-awell, different combinational capping or post growth treatment with high energy hydrogen ions. In this work, we enhanced the electrical properties InGaAs/GaAs using high energy proton implantation. Irradiation with proton resulted suppression in field assisted tunnelling of dark current by three orders for implanted devices. Photoluminescence (PL) enhancement was observed up to certain dose of protons due to eradication of as-grown defects and non radiative recombination centers. In addition, peak detectivity (D*) increased up to two orders of magnitude from 6.1 x108 to 1.0 × 1010 cm-Hz1/2/W for all implanted devices.
Monolithic white light emitting diodes using a (Ga,In)N-based light converter
NASA Astrophysics Data System (ADS)
Damilano, Benjamin; Lekhal, Kaddour; Kim-Chauveau, Hyonju; Hussain, Sakhawat; Frayssinet, Eric; Brault, Julien; Chenot, Sébastien; Vennéguès, Philippe; De Mierry, Philippe; Massies, Jean
2014-03-01
Commercially available inorganic white light emitting diodes (LEDs) are essentially based on the combination of a blue InGaN based LED chip covered by a long wavelength emitting (yellow, red) phosphor. We propose to avoid this step of phosphor deposition by taking advantage of the fact that yellow to red emission can be achieved using InGaN alloys. By stacking an InGaN/GaN multiple quantum well (QW) emitting in the yellow, acting as a light converter, and a short wavelength blue-violet pump LED grown on top, white light emission can be obtained. Furthermore, if we extend the emission spectrum of the light converter into the red, a warm white light color is demonstrated when a pump LED is grown on top. However, the high In content InGaN QWs of the light converter have a low thermal stability and the QW efficiency tends to degrade during the growth of the pump LED. Three different solutions are explored to avoid the thermal degradation of the light converter. The monolithic LED structures were grown by molecular beam epitaxy (MBE), by a combination of both MBE and metal-organic chemical vapor phase epitaxy (MOCVD), or by a low temperature full-MOCVD process. The best results are obtained using a complete MOCVD growth process. The structure and the MOCVD growth conditions are specifically adapted in order to avoid the thermal degradation of the large In composition InGaN QWs emitting at long wavelength during the growth of the subsequent layers.
List-Based Simulated Annealing Algorithm for Traveling Salesman Problem
Zhan, Shi-hua; Lin, Juan; Zhang, Ze-jun
2016-01-01
Simulated annealing (SA) algorithm is a popular intelligent optimization algorithm which has been successfully applied in many fields. Parameters' setting is a key factor for its performance, but it is also a tedious work. To simplify parameters setting, we present a list-based simulated annealing (LBSA) algorithm to solve traveling salesman problem (TSP). LBSA algorithm uses a novel list-based cooling schedule to control the decrease of temperature. Specifically, a list of temperatures is created first, and then the maximum temperature in list is used by Metropolis acceptance criterion to decide whether to accept a candidate solution. The temperature list is adapted iteratively according to the topology of the solution space of the problem. The effectiveness and the parameter sensitivity of the list-based cooling schedule are illustrated through benchmark TSP problems. The LBSA algorithm, whose performance is robust on a wide range of parameter values, shows competitive performance compared with some other state-of-the-art algorithms. PMID:27034650
Face detection based on multiple kernel learning algorithm
NASA Astrophysics Data System (ADS)
Sun, Bo; Cao, Siming; He, Jun; Yu, Lejun
2016-09-01
Face detection is important for face localization in face or facial expression recognition, etc. The basic idea is to determine whether there is a face in an image or not, and also its location, size. It can be seen as a binary classification problem, which can be well solved by support vector machine (SVM). Though SVM has strong model generalization ability, it has some limitations, which will be deeply analyzed in the paper. To access them, we study the principle and characteristics of the Multiple Kernel Learning (MKL) and propose a MKL-based face detection algorithm. In the paper, we describe the proposed algorithm in the interdisciplinary research perspective of machine learning and image processing. After analyzing the limitation of describing a face with a single feature, we apply several ones. To fuse them well, we try different kernel functions on different feature. By MKL method, the weight of each single function is determined. Thus, we obtain the face detection model, which is the kernel of the proposed method. Experiments on the public data set and real life face images are performed. We compare the performance of the proposed algorithm with the single kernel-single feature based algorithm and multiple kernels-single feature based algorithm. The effectiveness of the proposed algorithm is illustrated. Keywords: face detection, feature fusion, SVM, MKL
NASA Astrophysics Data System (ADS)
Jang, Seon-Ho; Jo, Yong-Ryun; Lee, Young-Woong; Kim, Sei-Min; Kim, Bong-Joong; Bae, Jae-Hyun; An, Huei-Chun; Jang, Ja-Soon
2015-05-01
We report a highly transparent conducting electrode (TCE) scheme of MgxZn1-xO:Ga/Au/NiOx which was deposited on p-GaN by e-beam for GaN-based light emitting diodes (LEDs). The optical and electrical properties of the electrode were optimized by thermal annealing at 500°C for 1 minute in N2 + O2 (5:3) ambient. The light transmittance at the optimal condition increased up to 84-97% from the UV-A to yellow region. The specific contact resistance decreased to 4.3(±0.3) × 10-5 Ωcm2. The improved properties of the electrode were attributed to the directionally elongated crystalline nanostructures formed in the MgxZn1-xO:Ga layer which is compositionally uniform. Interestingly, the Au alloy nano-clusters created in the MgxZn1-xO:Ga layer during annealing at 500°C may also enhance the properties of the electrode by acting as a conducting bridge and a nano-sized mirror. Based on studies of the external quantum efficiency of blue LED devices, the proposed electrode scheme combined with an optimized annealing treatment suggests a potential alternative to ITO. [Figure not available: see fulltext.
Supplier selection based on a neural network model using genetic algorithm.
Golmohammadi, Davood; Creese, Robert C; Valian, Haleh; Kolassa, John
2009-09-01
In this paper, a decision-making model was developed to select suppliers using neural networks (NNs). This model used historical supplier performance data for selection of vendor suppliers. Input and output were designed in a unique manner for training purposes. The managers' judgments about suppliers were simulated by using a pairwise comparisons matrix for output estimation in the NN. To obtain the benefit of a search technique for model structure and training, genetic algorithm (GA) was applied for the initial weights and architecture of the network. The suppliers' database information (input) can be updated over time to change the suppliers' score estimation based on their performance. The case study illustrated shows how the model can be applied for suppliers' selection.
Genetic algorithm-based classifiers fusion for multisensor activity recognition of elderly people.
Chernbumroong, Saisakul; Cang, Shuang; Yu, Hongnian
2015-01-01
Activity recognition of an elderly person can be used to provide information and intelligent services to health care professionals, carers, elderly people, and their families so that the elderly people can remain at homes independently. This study investigates the use and contribution of wrist-worn multisensors for activity recognition. We found that accelerometers are the most important sensors and heart rate data can be used to boost classification of activities with diverse heart rates. We propose a genetic algorithm-based fusion weight selection (GAFW) approach which utilizes GA to find fusion weights. For all possible classifier combinations and fusion methods, the study shows that 98% of times GAFW can achieve equal or higher accuracy than the best classifier within the group.
A face recognition algorithm based on thermal and visible data
NASA Astrophysics Data System (ADS)
Sochenkov, Ilya; Tihonkih, Dmitrii; Vokhmintcev, Aleksandr; Melnikov, Andrey; Makovetskii, Artyom
2016-09-01
In this work we present an algorithm of fusing thermal infrared and visible imagery to identify persons. The proposed face recognition method contains several components. In particular this is rigid body image registration. The rigid registration is achieved by a modified variant of the iterative closest point (ICP) algorithm. We consider an affine transformation in three-dimensional space that preserves the angles between the lines. An algorithm of matching is inspirited by the recent results of neurophysiology of vision. Also we consider the ICP minimizing error metric stage for the case of an arbitrary affine transformation. Our face recognition algorithm also uses the localized-contouring algorithms to segment the subject's face; thermal matching based on partial least squares discriminant analysis. Thermal imagery face recognition methods are advantageous when there is no control over illumination or for detecting disguised faces. The proposed algorithm leads to good matching accuracies for different person recognition scenarios (near infrared, far infrared, thermal infrared, viewed sketch). The performance of the proposed face recognition algorithm in real indoor environments is presented and discussed.
A Color Image Edge Detection Algorithm Based on Color Difference
NASA Astrophysics Data System (ADS)
Zhuo, Li; Hu, Xiaochen; Jiang, Liying; Zhang, Jing
2016-12-01
Although image edge detection algorithms have been widely applied in image processing, the existing algorithms still face two important problems. On one hand, to restrain the interference of noise, smoothing filters are generally exploited in the existing algorithms, resulting in loss of significant edges. On the other hand, since the existing algorithms are sensitive to noise, many noisy edges are usually detected, which will disturb the subsequent processing. Therefore, a color image edge detection algorithm based on color difference is proposed in this paper. Firstly, a new operation called color separation is defined in this paper, which can reflect the information of color difference. Then, for the neighborhood of each pixel, color separations are calculated in four different directions to detect the edges. Experimental results on natural and synthetic images show that the proposed algorithm can remove a large number of noisy edges and be robust to the smoothing filters. Furthermore, the proposed edge detection algorithm is applied in road foreground segmentation and shadow removal, which achieves good performances.
Hyperspectral recognition of processing tomato early blight based on GA and SVM
NASA Astrophysics Data System (ADS)
Yin, Xiaojun; Zhao, SiFeng
2013-03-01
Processing tomato early blight seriously affect the yield and quality of its.Determine the leaves spectrum of different disease severity level of processing tomato early blight.We take the sensitive bands of processing tomato early blight as support vector machine input vector.Through the genetic algorithm(GA) to optimize the parameters of SVM, We could recognize different disease severity level of processing tomato early blight.The result show:the sensitive bands of different disease severity levels of processing tomato early blight is 628-643nm and 689-692nm.The sensitive bands are as the GA and SVM input vector.We get the best penalty parameters is 0.129 and kernel function parameters is 3.479.We make classification training and testing by polynomial nuclear,radial basis function nuclear,Sigmoid nuclear.The best classification model is the radial basis function nuclear of SVM. Training accuracy is 84.615%,Testing accuracy is 80.681%.It is combined GA and SVM to achieve multi-classification of processing tomato early blight.It is provided the technical support of prediction processing tomato early blight occurrence, development and diffusion rule in large areas.
Particle flow reconstruction based on the directed tree clustering algorithm
Chakraborty, D.; Lima, J. G. R.; McIntosh, R.; Zutshi, V.
2006-10-27
We present the status of particle flow algorithm development at Northern Illinois University. A key element in our approach is the calorimeter-based directed tree clustering algorithm. We have attempted to identify and tackle the essential challenges and analyze the effect of several different approaches to the reconstruction of jet energies and the Z-boson mass. A number of possibilities have been studied, such as analog vs. digital energy measurement, hit density-based clustering and the use of single or multiple energy thresholds. We plan to use this PFA-based reconstruction to compare some of the proposed detector technologies and geometries.
Three-photon absorption in optical parametric oscillators based on OP-GaAs.
Heckl, Oliver H; Bjork, Bryce J; Winkler, Georg; Bryan Changala, P; Spaun, Ben; Porat, Gil; Bui, Thinh Q; Lee, Kevin F; Jiang, Jie; Fermann, Martin E; Schunemann, Peter G; Ye, Jun
2016-11-15
We report on, to the best of our knowledge, the first singly resonant (SR), synchronously pumped optical parametric oscillator (OPO) based on orientation-patterned gallium arsenide (OP-GaAs). Together with a doubly resonant (DR) degenerate OPO based on the same OP-GaAs material, the output spectra cover 3 to 6 μm within ∼3 dB of relative power. The DR-OPO has the highest output power reported to date from a femtosecond, synchronously pumped OPO based on OP-GaAs. We observed strong three-photon absorption with a coefficient of 0.35±0.08 cm^{3}/GW^{2} for our OP-GaAs sample, which limits the output power of these OPOs as mid-IR light sources. We present a detailed study of the three-photon loss on the performance of both the SR- and DR-OPOs, and compare them to those without this loss mechanism.
NASA Astrophysics Data System (ADS)
Hongesombut, Komsan; Mitani, Yasunori; Tsuji, Kiichiro
Fuzzy logic control has been applied to various applications in power systems. Its control rules and membership functions are typically obtained by trial and error methods or experience knowledge. Proposed here is the application of a micro-genetic algorithm (micro-GA) to simultaneously design optimal membership functions and control rules for STATCOM. First, we propose a simple approach to extract membership functions and fuzzy logic control rules based on observed signals. Then a proposed GA will be applied to optimize membership functions and its control rules. To validate the effectiveness of the proposed approach, several simulation studies have been performed on a multimachine power system. Simulation results show that the proposed fuzzy logic controller with STATCOM can effectively and robustly enhance the damping of oscillations.
Time series segmentation: a new approach based on Genetic Algorithm and Hidden Markov Model
NASA Astrophysics Data System (ADS)
Toreti, A.; Kuglitsch, F. G.; Xoplaki, E.; Luterbacher, J.
2009-04-01
The subdivision of a time series into homogeneous segments has been performed using various methods applied to different disciplines. In climatology, for example, it is accompanied by the well-known homogenization problem and the detection of artificial change points. In this context, we present a new method (GAMM) based on Hidden Markov Model (HMM) and Genetic Algorithm (GA), applicable to series of independent observations (and easily adaptable to autoregressive processes). A left-to-right hidden Markov model, estimating the parameters and the best-state sequence, respectively, with the Baum-Welch and Viterbi algorithms, was applied. In order to avoid the well-known dependence of the Baum-Welch algorithm on the initial condition, a Genetic Algorithm was developed. This algorithm is characterized by mutation, elitism and a crossover procedure implemented with some restrictive rules. Moreover the function to be minimized was derived following the approach of Kehagias (2004), i.e. it is the so-called complete log-likelihood. The number of states was determined applying a two-fold cross-validation procedure (Celeux and Durand, 2008). Being aware that the last issue is complex, and it influences all the analysis, a Multi Response Permutation Procedure (MRPP; Mielke et al., 1981) was inserted. It tests the model with K+1 states (where K is the state number of the best model) if its likelihood is close to K-state model. Finally, an evaluation of the GAMM performances, applied as a break detection method in the field of climate time series homogenization, is shown. 1. G. Celeux and J.B. Durand, Comput Stat 2008. 2. A. Kehagias, Stoch Envir Res 2004. 3. P.W. Mielke, K.J. Berry, G.W. Brier, Monthly Wea Rev 1981.
Calciati, Marco; Vallone, Marco; Zhou, Xiangyu; Ghione, Giovanni; Goano, Michele Bertazzi, Francesco; Meneghini, Matteo; Meneghesso, Gaudenzio; Zanoni, Enrico; Verzellesi, Giovanni; Zhu, Dandan; Humphreys, Colin
2014-06-15
Electroluminescence (EL) characterization of InGaN/GaN light-emitting diodes (LEDs), coupled with numerical device models of different sophistication, is routinely adopted not only to establish correlations between device efficiency and structural features, but also to make inferences about the loss mechanisms responsible for LED efficiency droop at high driving currents. The limits of this investigative approach are discussed here in a case study based on a comprehensive set of current- and temperature-dependent EL data from blue LEDs with low and high densities of threading dislocations (TDs). First, the effects limiting the applicability of simpler (closed-form and/or one-dimensional) classes of models are addressed, like lateral current crowding, vertical carrier distribution nonuniformity, and interband transition broadening. Then, the major sources of uncertainty affecting state-of-the-art numerical device simulation are reviewed and discussed, including (i) the approximations in the transport description through the multi-quantum-well active region, (ii) the alternative valence band parametrizations proposed to calculate the spontaneous emission rate, (iii) the difficulties in defining the Auger coefficients due to inadequacies in the microscopic quantum well description and the possible presence of extra, non-Auger high-current-density recombination mechanisms and/or Auger-induced leakage. In the case of the present LED structures, the application of three-dimensional numerical-simulation-based analysis to the EL data leads to an explanation of efficiency droop in terms of TD-related and Auger-like nonradiative losses, with a C coefficient in the 10{sup −30} cm{sup 6}/s range at room temperature, close to the larger theoretical calculations reported so far. However, a study of the combined effects of structural and model uncertainties suggests that the C values thus determined could be overestimated by about an order of magnitude. This preliminary
Application of genetic algorithm to hexagon-based motion estimation.
Kung, Chih-Ming; Cheng, Wan-Shu; Jeng, Jyh-Horng
2014-01-01
With the improvement of science and technology, the development of the network, and the exploitation of the HDTV, the demands of audio and video become more and more important. Depending on the video coding technology would be the solution for achieving these requirements. Motion estimation, which removes the redundancy in video frames, plays an important role in the video coding. Therefore, many experts devote themselves to the issues. The existing fast algorithms rely on the assumption that the matching error decreases monotonically as the searched point moves closer to the global optimum. However, genetic algorithm is not fundamentally limited to this restriction. The character would help the proposed scheme to search the mean square error closer to the algorithm of full search than those fast algorithms. The aim of this paper is to propose a new technique which focuses on combing the hexagon-based search algorithm, which is faster than diamond search, and genetic algorithm. Experiments are performed to demonstrate the encoding speed and accuracy of hexagon-based search pattern method and proposed method.
Research on Bayes matting algorithm based on Gaussian mixture model
NASA Astrophysics Data System (ADS)
Quan, Wei; Jiang, Shan; Han, Cheng; Zhang, Chao; Jiang, Zhengang
2015-12-01
The digital matting problem is a classical problem of imaging. It aims at separating non-rectangular foreground objects from a background image, and compositing with a new background image. Accurate matting determines the quality of the compositing image. A Bayesian matting Algorithm Based on Gaussian Mixture Model is proposed to solve this matting problem. Firstly, the traditional Bayesian framework is improved by introducing Gaussian mixture model. Then, a weighting factor is added in order to suppress the noises of the compositing images. Finally, the effect is further improved by regulating the user's input. This algorithm is applied to matting jobs of classical images. The results are compared to the traditional Bayesian method. It is shown that our algorithm has better performance in detail such as hair. Our algorithm eliminates the noise well. And it is very effectively in dealing with the kind of work, such as interested objects with intricate boundaries.
PCNN document segmentation method based on bacterial foraging optimization algorithm
NASA Astrophysics Data System (ADS)
Liao, Yanping; Zhang, Peng; Guo, Qiang; Wan, Jian
2014-04-01
Pulse Coupled Neural Network(PCNN) is widely used in the field of image processing, but it is a difficult task to define the relative parameters properly in the research of the applications of PCNN. So far the determination of parameters of its model needs a lot of experiments. To deal with the above problem, a document segmentation based on the improved PCNN is proposed. It uses the maximum entropy function as the fitness function of bacterial foraging optimization algorithm, adopts bacterial foraging optimization algorithm to search the optimal parameters, and eliminates the trouble of manually set the experiment parameters. Experimental results show that the proposed algorithm can effectively complete document segmentation. And result of the segmentation is better than the contrast algorithms.
Research on machine learning framework based on random forest algorithm
NASA Astrophysics Data System (ADS)
Ren, Qiong; Cheng, Hui; Han, Hai
2017-03-01
With the continuous development of machine learning, industry and academia have released a lot of machine learning frameworks based on distributed computing platform, and have been widely used. However, the existing framework of machine learning is limited by the limitations of machine learning algorithm itself, such as the choice of parameters and the interference of noises, the high using threshold and so on. This paper introduces the research background of machine learning framework, and combined with the commonly used random forest algorithm in machine learning classification algorithm, puts forward the research objectives and content, proposes an improved adaptive random forest algorithm (referred to as ARF), and on the basis of ARF, designs and implements the machine learning framework.
Quantum Image Encryption Algorithm Based on Image Correlation Decomposition
NASA Astrophysics Data System (ADS)
Hua, Tianxiang; Chen, Jiamin; Pei, Dongju; Zhang, Wenquan; Zhou, Nanrun
2015-02-01
A novel quantum gray-level image encryption and decryption algorithm based on image correlation decomposition is proposed. The correlation among image pixels is established by utilizing the superposition and measurement principle of quantum states. And a whole quantum image is divided into a series of sub-images. These sub-images are stored into a complete binary tree array constructed previously and then randomly performed by one of the operations of quantum random-phase gate, quantum revolving gate and Hadamard transform. The encrypted image can be obtained by superimposing the resulting sub-images with the superposition principle of quantum states. For the encryption algorithm, the keys are the parameters of random phase gate, rotation angle, binary sequence and orthonormal basis states. The security and the computational complexity of the proposed algorithm are analyzed. The proposed encryption algorithm can resist brute force attack due to its very large key space and has lower computational complexity than its classical counterparts.
A layer reduction based community detection algorithm on multiplex networks
NASA Astrophysics Data System (ADS)
Wang, Xiaodong; Liu, Jing
2017-04-01
Detecting hidden communities is important for the analysis of complex networks. However, many algorithms have been designed for single layer networks (SLNs) while just a few approaches have been designed for multiplex networks (MNs). In this paper, we propose an algorithm based on layer reduction for detecting communities on MNs, which is termed as LRCD-MNs. First, we improve a layer reduction algorithm termed as neighaggre to combine similar layers and keep others separated. Then, we use neighaggre to find the community structure hidden in MNs. Experiments on real-life networks show that neighaggre can obtain higher relative entropy than the other algorithm. Moreover, we apply LRCD-MNs on some real-life and synthetic multiplex networks and the results demonstrate that, although LRCD-MNs does not have the advantage in terms of modularity, it can obtain higher values of surprise, which is used to evaluate the quality of partitions of a network.
Facial Affect Recognition Using Regularized Discriminant Analysis-Based Algorithms
NASA Astrophysics Data System (ADS)
Lee, Chien-Cheng; Huang, Shin-Sheng; Shih, Cheng-Yuan
2010-12-01
This paper presents a novel and effective method for facial expression recognition including happiness, disgust, fear, anger, sadness, surprise, and neutral state. The proposed method utilizes a regularized discriminant analysis-based boosting algorithm (RDAB) with effective Gabor features to recognize the facial expressions. Entropy criterion is applied to select the effective Gabor feature which is a subset of informative and nonredundant Gabor features. The proposed RDAB algorithm uses RDA as a learner in the boosting algorithm. The RDA combines strengths of linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA). It solves the small sample size and ill-posed problems suffered from QDA and LDA through a regularization technique. Additionally, this study uses the particle swarm optimization (PSO) algorithm to estimate optimal parameters in RDA. Experiment results demonstrate that our approach can accurately and robustly recognize facial expressions.
A Methodology for the Hybridization Based in Active Components: The Case of cGA and Scatter Search.
Villagra, Andrea; Alba, Enrique; Leguizamón, Guillermo
2016-01-01
This work presents the results of a new methodology for hybridizing metaheuristics. By first locating the active components (parts) of one algorithm and then inserting them into second one, we can build efficient and accurate optimization, search, and learning algorithms. This gives a concrete way of constructing new techniques that contrasts the spread ad hoc way of hybridizing. In this paper, the enhanced algorithm is a Cellular Genetic Algorithm (cGA) which has been successfully used in the past to find solutions to such hard optimization problems. In order to extend and corroborate the use of active components as an emerging hybridization methodology, we propose here the use of active components taken from Scatter Search (SS) to improve cGA. The results obtained over a varied set of benchmarks are highly satisfactory in efficacy and efficiency when compared with a standard cGA. Moreover, the proposed hybrid approach (i.e., cGA+SS) has shown encouraging results with regard to earlier applications of our methodology.
A Methodology for the Hybridization Based in Active Components: The Case of cGA and Scatter Search
Alba, Enrique; Leguizamón, Guillermo
2016-01-01
This work presents the results of a new methodology for hybridizing metaheuristics. By first locating the active components (parts) of one algorithm and then inserting them into second one, we can build efficient and accurate optimization, search, and learning algorithms. This gives a concrete way of constructing new techniques that contrasts the spread ad hoc way of hybridizing. In this paper, the enhanced algorithm is a Cellular Genetic Algorithm (cGA) which has been successfully used in the past to find solutions to such hard optimization problems. In order to extend and corroborate the use of active components as an emerging hybridization methodology, we propose here the use of active components taken from Scatter Search (SS) to improve cGA. The results obtained over a varied set of benchmarks are highly satisfactory in efficacy and efficiency when compared with a standard cGA. Moreover, the proposed hybrid approach (i.e., cGA+SS) has shown encouraging results with regard to earlier applications of our methodology. PMID:27403153
Interpolative modeling of GaAs FET S-parameter data bases for use in Monte Carlo simulations
NASA Technical Reports Server (NTRS)
Campbell, L.; Purviance, J.
1992-01-01
A statistical interpolation technique is presented for modeling GaAs FET S-parameter measurements for use in the statistical analysis and design of circuits. This is accomplished by interpolating among the measurements in a GaAs FET S-parameter data base in a statistically valid manner.
NASA Technical Reports Server (NTRS)
Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Hong, W.; Sundaram, M.; Carralejo, R.; Shott, C. A.; Maker, P. D.; Miller, R. E.
1997-01-01
In this paper, we discuss the development of this very sensitive long wavelength infrared (LWIR) camera based on a GaAs/AlGaAs QWIP focal plane array (FPA) and its performance in quantum efficiency, NE(delta)T, uniformity, and operability.
Progress and challenges in electrically pumped GaN-based VCSELs
NASA Astrophysics Data System (ADS)
Haglund, A.; Hashemi, E.; Bengtsson, J.; Gustavsson, J.; Stattin, M.; Calciati, M.; Goano, M.
2016-04-01
ABSTRACT The Vertical-Cavity Surface-Emitting Laser (VCSEL) is an established optical source in short-distance optical communication links, computer mice and tailored infrared power heating systems. Its low power consumption, easy integration into two-dimensional arrays, and low-cost manufacturing also make this type of semiconductor laser suitable for application in areas such as high-resolution printing, medical applications, and general lighting. However, these applications require emission wavelengths in the blue-UV instead of the established infrared regime, which can be achieved by using GaN-based instead of GaAs-based materials. The development of GaN-based VCSELs is challenging, but during recent years several groups have managed to demonstrate electrically pumped GaN-based VCSELs with close to 1 mW of optical output power and threshold current densities between 3-16 kA/cm2. The performance is limited by challenges such as achieving high-reflectivity mirrors, vertical and lateral carrier confinement, efficient lateral current spreading, accurate cavity length control and lateral optical mode confinement. This paper summarizes different strategies to solve these issues in electrically pumped GaN-VCSELs together with state-of-the-art results. We will highlight our work on combined transverse current and optical mode confinement, where we show that many structures used for current confinement result in unintentionally optically anti-guided resonators. Such resonators can have a very high optical loss, which easily doubles the threshold gain for lasing. We will also present an alternative to the use of distributed Bragg reflectors as high-reflectivity mirrors, namely TiO2/air high contrast gratings (HCGs). Fabricated HCGs of this type show a high reflectivity (>95%) over a 25 nm wavelength span.
Progress and prospects of GaN-based LEDs using nanostructures
NASA Astrophysics Data System (ADS)
Zhao, Li-Xia; Yu, Zhi-Guo; Sun, Bo; Zhu, Shi-Chao; An, Ping-Bo; Yang, Chao; Liu, Lei; Wang, Jun-Xi; Li, Jin-Min
2015-06-01
Progress with GaN-based light emitting diodes (LEDs) that incorporate nanostructures is reviewed, especially the recent achievements in our research group. Nano-patterned sapphire substrates have been used to grow an AlN template layer for deep-ultraviolet (DUV) LEDs. One efficient surface nano-texturing technology, hemisphere-cones-hybrid nanostructures, was employed to enhance the extraction efficiency of InGaN flip-chip LEDs. Hexagonal nanopyramid GaN-based LEDs have been fabricated and show electrically driven color modification and phosphor-free white light emission because of the linearly increased quantum well width and indium incorporation from the shell to the core. Based on the nanostructures, we have also fabricated surface plasmon-enhanced nanoporous GaN-based green LEDs using AAO membrane as a mask. Benefitting from the strong lateral SP coupling as well as good electrical protection by a passivation layer, the EL intensity of an SP-enhanced nanoporous LED was significantly enhanced by 380%. Furthermore, nanostructures have been used for the growth of GaN LEDs on amorphous substrates, the fabrication of stretchable LEDs, and for increasing the 3-dB modulation bandwidth for visible light communication. Project supported by the National Natural Science Foundation of China (Grant No. 61334009), the National High Technology Research and Development Program of China (Grant Nos. 2015AA03A101 and 2014BAK02B08), China International Science and Technology Cooperation Program (Grant No. 2014DFG62280), the “Import Outstanding Technical Talent Plan” and “Youth Innovation Promotion Association Program” of the Chinese Academy of Sciences.
Flexible Phrase Based Query Handling Algorithms.
ERIC Educational Resources Information Center
Wilbur, W. John; Kim, Won
2001-01-01
Flexibility in query handling can be important if one types a search engine query that is misspelled, contains terms not in the database, or requires knowledge of a controlled vocabulary. Presents results of experiments that suggest the optimal form of similarity functions that are applicable to the task of phrase based retrieval to find either…
SnO2-gated AlGaN/GaN high electron mobility transistors based oxygen sensors
Hung, S.T.; Chung, Chi-Jung; Chen, Chin Ching; Lo, C. F.; Ren, F.; Pearton, S. J.; Kravchenko, Ivan I
2012-01-01
Hydrothermally grown SnO2 was integrated with AlGaN/GaN high electron mobility transistor (HEMT) sensor as the gate electrode for oxygen detection. The crystalline of the SnO2 was improved after annealing at 400 C. The grain growth kinetics of the SnO2 nanomaterials, together with the O2 gas sensing properties and sensing mechanism of the SnO2 gated HEMT sensors were investigated. Detection of 1% oxygen in nitrogen at 100 C was possible. A low operation temperature and low power consumption oxygen sensor can be achieved by combining the SnO2 films with the AlGaN/GaN HEMT structure
Validation of genetic algorithm-based optimal sampling for ocean data assimilation
NASA Astrophysics Data System (ADS)
Heaney, Kevin D.; Lermusiaux, Pierre F. J.; Duda, Timothy F.; Haley, Patrick J.
2016-10-01
Regional ocean models are capable of forecasting conditions for usefully long intervals of time (days) provided that initial and ongoing conditions can be measured. In resource-limited circumstances, the placement of sensors in optimal locations is essential. Here, a nonlinear optimization approach to determine optimal adaptive sampling that uses the genetic algorithm (GA) method is presented. The method determines sampling strategies that minimize a user-defined physics-based cost function. The method is evaluated using identical twin experiments, comparing hindcasts from an ensemble of simulations that assimilate data selected using the GA adaptive sampling and other methods. For skill metrics, we employ the reduction of the ensemble root mean square error (RMSE) between the "true" data-assimilative ocean simulation and the different ensembles of data-assimilative hindcasts. A five-glider optimal sampling study is set up for a 400 km × 400 km domain in the Middle Atlantic Bight region, along the New Jersey shelf-break. Results are compared for several ocean and atmospheric forcing conditions.
A Turn-Projected State-Based Conflict Resolution Algorithm
NASA Technical Reports Server (NTRS)
Butler, Ricky W.; Lewis, Timothy A.
2013-01-01
State-based conflict detection and resolution (CD&R) algorithms detect conflicts and resolve them on the basis on current state information without the use of additional intent information from aircraft flight plans. Therefore, the prediction of the trajectory of aircraft is based solely upon the position and velocity vectors of the traffic aircraft. Most CD&R algorithms project the traffic state using only the current state vectors. However, the past state vectors can be used to make a better prediction of the future trajectory of the traffic aircraft. This paper explores the idea of using past state vectors to detect traffic turns and resolve conflicts caused by these turns using a non-linear projection of the traffic state. A new algorithm based on this idea is presented and validated using a fast-time simulator developed for this study.
Template based illumination compensation algorithm for multiview video coding
NASA Astrophysics Data System (ADS)
Li, Xiaoming; Jiang, Lianlian; Ma, Siwei; Zhao, Debin; Gao, Wen
2010-07-01
Recently multiview video coding (MVC) standard has been finalized as an extension of H.264/AVC by Joint Video Team (JVT). In the project Joint Multiview Video Model (JMVM) for the standardization, illumination compensation (IC) is adopted as a useful tool. In this paper, a novel illumination compensation algorithm based on template is proposed. The basic idea of the algorithm is that the illumination of the current block has a strong correlation with its adjacent template. Based on this idea, firstly a template based illumination compensation method is presented, and then a template models selection strategy is devised to improve the illumination compensation performance. The experimental results show that the proposed algorithm can improve the coding efficiency significantly.
Based on Multi-sensor Information Fusion Algorithm of TPMS Research
NASA Astrophysics Data System (ADS)
Yulan, Zhou; Yanhong, Zang; Yahong, Lin
In the paper are presented algorithms of TPMS (Tire Pressure Monitoring System) based on multi-sensor information fusion. A Unified mathematical models of information fusion are constructed and three algorithms are used to deal with, which include algorithm based on Bayesian, algorithm based on the relative distance (an improved algorithm of bayesian theory of evidence), algorithm based on multi-sensor weighted fusion. The calculating results shows that the algorithm based on d-s evidence theory of multisensor fusion method better than the algorithm the based on information fusion method or the bayesian method.
NASA Astrophysics Data System (ADS)
Yi, Xinyan; Sun, Huiqing; Sun, Jie; Yang, Xian; Fan, Xuancong; Zhang, Zhuding; Guo, Zhiyou
2017-04-01
AlxGa1-xN/Al0.6Ga0.4N graded superlattice hole blocking layers (GSL-HBLs) and AlxGa1-xN/Al0.6Ga0.4N graded superlattice electron blocking layers (GSL-EBLs) are applied to the traditional AlGaN-based ultraviolet light-emitting diodes (UVLEDs). This can obtain much higher internal quantum efficiency (IQE) and output power. In order to reveal the underlying physical mechanism of this unique structure, we have studied it numerically by APSYS simulation programs. We find that GSL-EBLs can obviously increase the electron potential height and reduce the hole potential height, produce less electron leakage and more hole injection, leading to higher carrier contration. GSL-HBLs can obviously reduce the hole leakage, reduce the thermal velocity and correspondingly the mean free path of the hot electrons, and increase the electron injection. This enhanced the electron capture efficiency of the multiple quantum wells, which can also help to reduce electron leakage.
NASA Astrophysics Data System (ADS)
Pawłowski, M.; Zabierowski, P.; Bacewicz, R.; Barreau, N.
2013-05-01
One of the consequences of the deposition of Cu(In,Ga)Se-2 (CIGSe) absorber by a three stage process is a non-uniform Ga distribution. It takes the form of the so-called Ga-notch and is considered to be crucial for achieving highly efficient CIGSe solar cells. However, the influence of this sequential element co-evaporation on defect related properties of the absorber is not fully understood. In this paper, we use voltage dependent photoluminescence (PLV) to investigate the impact of a different Ga-notch position on recombination processes in CIGSe-based solar cells. The most striking difference between investigated samples is the increased sensitivity of the photoluminescence signal to blue light, as the position of the Ga-notch moves away from the CdS/CIGSe interface. Such metastable behavior of PLV characteristics and its close correlation with changes observed in capacitance-voltage curves suggest an increased concentration of deep defects in the top CIGSe layer. We propose that the observed changes of PLV characteristics can be explained by electrical field redistribution within the junction due to charging of deep metastable defects.
NASA Astrophysics Data System (ADS)
Krause, Thilo; Hanke, Michael; Nicolai, Lars; Cheng, Zongzhe; Niehle, Michael; Trampert, Achim; Kahnt, Maik; Falkenberg, Gerald; Schroer, Christian G.; Hartmann, Jana; Zhou, Hao; Wehmann, Hergo-Heinrich; Waag, Andreas
2017-02-01
Nanofocus x-ray diffraction is used to investigate the structure and local strain field of an isolated (In ,Ga )N /GaN core-shell microrod. Because the high spatial resolution of the x-ray beam is only 80 ×90 nm2, we are able to investigate several distinct volumes on one individual side facet. Here, we find a drastic increase in thickness of the outer GaN shell along the rod height. Additionally, we performed high-angle annular dark-field scanning-transmission-electron-microscopy measurements on several rods from the same sample showing that (In,Ga)N double-quantum-well and GaN barrier thicknesses also increase strongly along the height. Moreover, plastic relaxation is observed in the top part of the rod. Based on the experimentally obtained structural parameters, we simulate the strain-induced deformation using the finite-element method, which serves as the input for subsequent kinematic scattering simulations. The simulations reveal a significant increase of elastic in-plane relaxation along the rod height. However, at a certain height, the occurrence of plastic relaxation yields a decrease of the elastic strain. Because of the experimentally obtained structural input for the finite-element simulations, we can exclude unknown structural influences on the strain distribution, and we are able to translate the elastic relaxation into an indium concentration which increases by a factor of 4 from the bottom to the height where plastic relaxation occurs.
TMAH-based wet surface pre-treatment for reduction of leakage current in AlGaN/GaN MIS-HEMTs
NASA Astrophysics Data System (ADS)
Yoon, Young Jun; Seo, Jae Hwa; Cho, Min Su; Kang, Hee-Sung; Won, Chul-Ho; Kang, In Man; Lee, Jung-Hee
2016-10-01
The pre-passivation surface treatment process with tetramethylammonium hydroxide (TMAH)-based wet solution was proposed for the minimization of the leakage current (Ileak) in AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors (MIS-HEMTs). This process step contributes to the simultaneous decrease of the surface current (Isurf) in the active region of device and mesa-isolated region by removing the surface states and traps related to nitrogen (N) vacancy, Ga-oxide, and dangling bonds. Using the surface treatment, the fabricated device achieves a lower off-state current (Ioff) of ∼10-12 A/mm, a higher on/off current ratio (Ion/Ioff) of ∼1011, a small subthreshold swing (SS) of 68.4 mV/dec. The reduced Ileak also improves breakdown voltage (BV). In addition, the interface trap density (Dit) between the SiN layer and the AlGaN surface was extracted to evaluate the quality of the SiN/GaN interface, which showed that the treatment decreases the Dit with reduction of the surface defects.
MnGa-based fully perpendicular magnetic tunnel junctions with ultrathin Co2MnSi interlayers
Mao, Siwei; Lu, Jun; Zhao, Xupeng; Wang, Xiaolei; Wei, Dahai; Liu, Jian; Xia, Jianbai; Zhao, Jianhua
2017-01-01
Because tetragonal structured MnGa alloy has intrinsic (not interface induced) giant perpendicular magnetic anisotropy (PMA), ultra-low damping constant and high spin polarization, it is predicted to be a kind of suitable magnetic electrode candidate in the perpendicular magnetic tunnel junction (p-MTJ) for high density spin transfer torque magnetic random access memory (STT-MRAM) applications. However, p-MTJs with both bottom and top MnGa electrodes have not been achieved yet, since high quality perpendicular magnetic MnGa films can hardly be obtained on the MgO barrier due to large lattice mismatch and surface energy difference between them. Here, a MnGa-based fully p-MTJ with the structure of MnGa/Co2MnSi/MgO/Co2MnSi/MnGa is investigated. As a result, the multilayer is with high crystalline quality, and both the top and bottom MnGa electrodes show well PMA. Meanwhile, a distinct tunneling magnetoresistance (TMR) ratio of 65% at 10 K is achieved. Ultrathin Co2MnSi films are used to optimize the interface quality between MnGa and MgO barrier. A strong antiferromagnetic coupling in MnGa/Co2MnSi bilayer is confirmed with the interfacial exchange coupling constant of −5erg/cm2. This work proposes a novel p-MTJ structure for the future STT-MRAM progress. PMID:28233780
MnGa-based fully perpendicular magnetic tunnel junctions with ultrathin Co2MnSi interlayers
NASA Astrophysics Data System (ADS)
Mao, Siwei; Lu, Jun; Zhao, Xupeng; Wang, Xiaolei; Wei, Dahai; Liu, Jian; Xia, Jianbai; Zhao, Jianhua
2017-02-01
Because tetragonal structured MnGa alloy has intrinsic (not interface induced) giant perpendicular magnetic anisotropy (PMA), ultra-low damping constant and high spin polarization, it is predicted to be a kind of suitable magnetic electrode candidate in the perpendicular magnetic tunnel junction (p-MTJ) for high density spin transfer torque magnetic random access memory (STT-MRAM) applications. However, p-MTJs with both bottom and top MnGa electrodes have not been achieved yet, since high quality perpendicular magnetic MnGa films can hardly be obtained on the MgO barrier due to large lattice mismatch and surface energy difference between them. Here, a MnGa-based fully p-MTJ with the structure of MnGa/Co2MnSi/MgO/Co2MnSi/MnGa is investigated. As a result, the multilayer is with high crystalline quality, and both the top and bottom MnGa electrodes show well PMA. Meanwhile, a distinct tunneling magnetoresistance (TMR) ratio of 65% at 10 K is achieved. Ultrathin Co2MnSi films are used to optimize the interface quality between MnGa and MgO barrier. A strong antiferromagnetic coupling in MnGa/Co2MnSi bilayer is confirmed with the interfacial exchange coupling constant of ‑5erg/cm2. This work proposes a novel p-MTJ structure for the future STT-MRAM progress.
MnGa-based fully perpendicular magnetic tunnel junctions with ultrathin Co2MnSi interlayers.
Mao, Siwei; Lu, Jun; Zhao, Xupeng; Wang, Xiaolei; Wei, Dahai; Liu, Jian; Xia, Jianbai; Zhao, Jianhua
2017-02-24
Because tetragonal structured MnGa alloy has intrinsic (not interface induced) giant perpendicular magnetic anisotropy (PMA), ultra-low damping constant and high spin polarization, it is predicted to be a kind of suitable magnetic electrode candidate in the perpendicular magnetic tunnel junction (p-MTJ) for high density spin transfer torque magnetic random access memory (STT-MRAM) applications. However, p-MTJs with both bottom and top MnGa electrodes have not been achieved yet, since high quality perpendicular magnetic MnGa films can hardly be obtained on the MgO barrier due to large lattice mismatch and surface energy difference between them. Here, a MnGa-based fully p-MTJ with the structure of MnGa/Co2MnSi/MgO/Co2MnSi/MnGa is investigated. As a result, the multilayer is with high crystalline quality, and both the top and bottom MnGa electrodes show well PMA. Meanwhile, a distinct tunneling magnetoresistance (TMR) ratio of 65% at 10 K is achieved. Ultrathin Co2MnSi films are used to optimize the interface quality between MnGa and MgO barrier. A strong antiferromagnetic coupling in MnGa/Co2MnSi bilayer is confirmed with the interfacial exchange coupling constant of -5erg/cm(2). This work proposes a novel p-MTJ structure for the future STT-MRAM progress.
Shon, Jeong Woo; Ohta, Jitsuo; Ueno, Kohei; Kobayashi, Atsushi; Fujioka, Hiroshi
2014-06-23
InGaN-based light-emitting diodes (LEDs) have been widely accepted as highly efficient light sources capable of replacing incandescent bulbs. However, applications of InGaN LEDs are limited to small devices because their fabrication process involves expensive epitaxial growth of InGaN by metalorganic vapor phase epitaxy on single-crystal wafers. If we can utilize a low-cost epitaxial growth process, such as sputtering on large-area substrates, we can fabricate large-area InGaN light-emitting displays. Here, we report the growth of GaN (0001) and InGaN (0001) films on amorphous SiO2 by pulsed sputtering deposition. We found that using multilayer graphene buffer layers allows the growth of highly c-axis-oriented GaN films even on amorphous substrates. We fabricated red, green, and blue InGaN LEDs and confirmed their successful operation. This successful fabrication of full-color InGaN LEDs on amorphous substrates by sputtering indicates that the technique is quite promising for future large-area light-emitting displays on amorphous substrates.
Enhancement of external quantum efficiency in GaN based LEDs
NASA Astrophysics Data System (ADS)
Son, Jun Ho; Lee, Jong-Lam
2011-02-01
We present a review of the recent developments to enhance the external quantum efficiency (EQE) in GaN based vertical light-emitting diodes (V-LEDs). The combined use of quasi-photonic crystal and photochemical etching significantly improved the light extraction efficiency (LEE) of V-LEDs by a factor of 5. The enhancement of light output power by the nanotexturing of n-face n-GaN was remarkably influenced by reflectance of the p-contact. The enhanced LEE was also demonstrated by depositing a spontaneously formed MgO nano-pyramids and ZnO refractive-index modulation layer on the surface of V-LEDs, resulting in the increase of output power by 49 %, comparing with the V-LEDs with a flat n-GaN surface. The thermal stability of Ag-based p-type ohmic contact was siginficantly enhanced by addition of Cu, In, and Mg atoms to Ag layer, leading to high light reflectance and low contact resisitivity. Finally, we present a method of increasing light output power and suppressing efficiency droop in V-LEDs without modifying the epitaxial layers. These improvements are achieved by reducing the quantum-confined Stark effect by reducing piezoelectric polarization that results from compressive stress in GaN epilayer. This compressive stress is relaxed due to the external stress induced by an electro-plated Ni metal substrate.
A Fast Multi-Object Extraction Algorithm Based on Cell-Based Connected Components Labeling
NASA Astrophysics Data System (ADS)
Gu, Qingyi; Takaki, Takeshi; Ishii, Idaku
We describe a cell-based connected component labeling algorithm to calculate the 0th and 1st moment features as the attributes for labeled regions. These can be used to indicate their sizes and positions for multi-object extraction. Based on the additivity in moment features, the cell-based labeling algorithm can label divided cells of a certain size in an image by scanning the image only once to obtain the moment features of the labeled regions with remarkably reduced computational complexity and memory consumption for labeling. Our algorithm is a simple-one-time-scan cell-based labeling algorithm, which is suitable for hardware and parallel implementation. We also compared it with conventional labeling algorithms. The experimental results showed that our algorithm is faster than conventional raster-scan labeling algorithms.
Apiratikul, P.; He, L.; Richardson, C. J. K.
2013-06-10
We report a type-I GaSb-based laterally coupled distributed-feedback (DFB) laser grown on a GaAs substrate operating continuous wave at room temperature. The laser structure was designed to operate near a wavelength of 2 {mu}m and was grown metamorphically with solid-source molecular beam epitaxy. The device was fabricated using a 6th-order deep etch grating structure as part of the sidewalls of the narrow ridge waveguide. The DFB laser emits total output power of up to 40 mW in a single longitudinal mode operation at a heat-sink temperature of 20 Degree-Sign C.
Hofstetter, Daniel; Bour, David P.; Kirste, Lutz
2014-06-16
We present electro-modulated absorption and electro-luminescence measurements on chirped AlGaN/GaN-based multi-quantum well inter-subband structures grown by metal-organic vapour phase epitaxy. The absorption signal is a TM-polarized, 70 meV wide feature centred at 230 meV. At medium injection current, a 58 meV wide luminescence peak corresponding to an inter-subband transition at 1450 cm{sup −1} (180 meV) is observed. Under high injection current, we measured a 4 meV wide structure peaking at 92.5 meV in the luminescence spectrum. The energy location of this peak is exactly at the longitudinal optical phonon of GaN.
van der Lee, J H; Svrcek, W Y; Young, B R
2008-01-01
Model Predictive Control is a valuable tool for the process control engineer in a wide variety of applications. Because of this the structure of an MPC can vary dramatically from application to application. There have been a number of works dedicated to MPC tuning for specific cases. Since MPCs can differ significantly, this means that these tuning methods become inapplicable and a trial and error tuning approach must be used. This can be quite time consuming and can result in non-optimum tuning. In an attempt to resolve this, a generalized automated tuning algorithm for MPCs was developed. This approach is numerically based and combines a genetic algorithm with multi-objective fuzzy decision-making. The key advantages to this approach are that genetic algorithms are not problem specific and only need to be adapted to account for the number and ranges of tuning parameters for a given MPC. As well, multi-objective fuzzy decision-making can handle qualitative statements of what optimum control is, in addition to being able to use multiple inputs to determine tuning parameters that best match the desired results. This is particularly useful for multi-input, multi-output (MIMO) cases where the definition of "optimum" control is subject to the opinion of the control engineer tuning the system. A case study will be presented in order to illustrate the use of the tuning algorithm. This will include how different definitions of "optimum" control can arise, and how they are accounted for in the multi-objective decision making algorithm. The resulting tuning parameters from each of the definition sets will be compared, and in doing so show that the tuning parameters vary in order to meet each definition of optimum control, thus showing the generalized automated tuning algorithm approach for tuning MPCs is feasible.
A new root-based direction-finding algorithm
NASA Astrophysics Data System (ADS)
Wasylkiwskyj, Wasyl; Kopriva, Ivica; DoroslovačKi, Miloš; Zaghloul, Amir I.
2007-04-01
Polynomial rooting direction-finding (DF) algorithms are a computationally efficient alternative to search-based DF algorithms and are particularly suitable for uniform linear arrays of physically identical elements provided that mutual interaction among the array elements can be either neglected or compensated for. A popular algorithm in such situations is Root Multiple Signal Classification (Root MUSIC (RM)), wherein the estimation of the directions of arrivals (DOA) requires the computation of the roots of a (2N - 2) -order polynomial, where N represents number of array elements. The DOA are estimated from the L pairs of roots closest to the unit circle, where L represents number of sources. In this paper we derive a modified root polynomial (MRP) algorithm requiring the calculation of only L roots in order to estimate the L DOA. We evaluate the performance of the MRP algorithm numerically and show that it is as accurate as the RM algorithm but with a significantly simpler algebraic structure. In order to demonstrate that the theoretically predicted performance can be achieved in an experimental setting, a decoupled array is emulated in hardware using phase shifters. The results are in excellent agreement with theory.
High spectral response of self-driven GaN-based detectors by controlling the contact barrier height
NASA Astrophysics Data System (ADS)
Sun, Xiaojuan; Li, Dabing; Li, Zhiming; Song, Hang; Jiang, Hong; Chen, Yiren; Miao, Guoqing; Zhang, Zhiwei
2015-11-01
High spectral response of self-driven GaN-based ultraviolet detectors with interdigitated finger geometries were realized using interdigitated Schottky and near-ohmic contacts. Ni/GaN/Cr, Ni/GaN/Ag, and Ni/GaN/Ti/Al detectors were designed with zero bias responsivities proportional to the Schottky barrier difference between the interdigitated contacts of 0.037 A/W, 0.083 A/W, and 0.104 A/W, respectively. Voltage-dependent photocurrent was studied, showing high gain under forward bias. Differences between the electron and hole mobility model and the hole trapping model were considered to be the main photocurrent gain mechanism. These detectors operate in photoconductive mode with large photocurrent gain and depletion mode with high speed, and can extend GaN-based metal-semiconductor-metal detector applications.
High spectral response of self-driven GaN-based detectors by controlling the contact barrier height
Sun, Xiaojuan; Li, Dabing; Li, Zhiming; Song, Hang; Jiang, Hong; Chen, Yiren; Miao, Guoqing; Zhang, Zhiwei
2015-01-01
High spectral response of self-driven GaN-based ultraviolet detectors with interdigitated finger geometries were realized using interdigitated Schottky and near-ohmic contacts. Ni/GaN/Cr, Ni/GaN/Ag, and Ni/GaN/Ti/Al detectors were designed with zero bias responsivities proportional to the Schottky barrier difference between the interdigitated contacts of 0.037 A/W, 0.083 A/W, and 0.104 A/W, respectively. Voltage-dependent photocurrent was studied, showing high gain under forward bias. Differences between the electron and hole mobility model and the hole trapping model were considered to be the main photocurrent gain mechanism. These detectors operate in photoconductive mode with large photocurrent gain and depletion mode with high speed, and can extend GaN-based metal-semiconductor-metal detector applications.
Fernandez-Lozano, C; Canto, C; Gestal, M; Andrade-Garda, J M; Rabuñal, J R; Dorado, J; Pazos, A
2013-01-01
Given the background of the use of Neural Networks in problems of apple juice classification, this paper aim at implementing a newly developed method in the field of machine learning: the Support Vector Machines (SVM). Therefore, a hybrid model that combines genetic algorithms and support vector machines is suggested in such a way that, when using SVM as a fitness function of the Genetic Algorithm (GA), the most representative variables for a specific classification problem can be selected.
Fernandez-Lozano, C.; Canto, C.; Gestal, M.; Andrade-Garda, J. M.; Rabuñal, J. R.; Dorado, J.; Pazos, A.
2013-01-01
Given the background of the use of Neural Networks in problems of apple juice classification, this paper aim at implementing a newly developed method in the field of machine learning: the Support Vector Machines (SVM). Therefore, a hybrid model that combines genetic algorithms and support vector machines is suggested in such a way that, when using SVM as a fitness function of the Genetic Algorithm (GA), the most representative variables for a specific classification problem can be selected. PMID:24453933
Model updating based on an affine scaling interior optimization algorithm
NASA Astrophysics Data System (ADS)
Zhang, Y. X.; Jia, C. X.; Li, Jian; Spencer, B. F.
2013-11-01
Finite element model updating is usually considered as an optimization process. Affine scaling interior algorithms are powerful optimization algorithms that have been developed over the past few years. A new finite element model updating method based on an affine scaling interior algorithm and a minimization of modal residuals is proposed in this article, and a general finite element model updating program is developed based on the proposed method. The performance of the proposed method is studied through numerical simulation and experimental investigation using the developed program. The results of the numerical simulation verified the validity of the method. Subsequently, the natural frequencies obtained experimentally from a three-dimensional truss model were used to update a finite element model using the developed program. After updating, the natural frequencies of the truss and finite element model matched well.
LAHS: A novel harmony search algorithm based on learning automata
NASA Astrophysics Data System (ADS)
Enayatifar, Rasul; Yousefi, Moslem; Abdullah, Abdul Hanan; Darus, Amer Nordin
2013-12-01
This study presents a learning automata-based harmony search (LAHS) for unconstrained optimization of continuous problems. The harmony search (HS) algorithm performance strongly depends on the fine tuning of its parameters, including the harmony consideration rate (HMCR), pitch adjustment rate (PAR) and bandwidth (bw). Inspired by the spur-in-time responses in the musical improvisation process, learning capabilities are employed in the HS to select these parameters based on spontaneous reactions. An extensive numerical investigation is conducted on several well-known test functions, and the results are compared with the HS algorithm and its prominent variants, including the improved harmony search (IHS), global-best harmony search (GHS) and self-adaptive global-best harmony search (SGHS). The numerical results indicate that the LAHS is more efficient in finding optimum solutions and outperforms the existing HS algorithm variants.
The PCNN adaptive segmentation algorithm based on visual perception
NASA Astrophysics Data System (ADS)
Zhao, Yanming
To solve network adaptive parameter determination problem of the pulse coupled neural network (PCNN), and improve the image segmentation results in image segmentation. The PCNN adaptive segmentation algorithm based on visual perception of information is proposed. Based on the image information of visual perception and Gabor mathematical model of Optic nerve cells receptive field, the algorithm determines adaptively the receptive field of each pixel of the image. And determines adaptively the network parameters W, M, and β of PCNN by the Gabor mathematical model, which can overcome the problem of traditional PCNN parameter determination in the field of image segmentation. Experimental results show that the proposed algorithm can improve the region connectivity and edge regularity of segmentation image. And also show the PCNN of visual perception information for segmentation image of advantage.
A Graph Based Backtracking Algorithm for Solving General CSPs
NASA Technical Reports Server (NTRS)
Pang, Wanlin; Goodwin, Scott D.
2003-01-01
Many AI tasks can be formalized as constraint satisfaction problems (CSPs), which involve finding values for variables subject to constraints. While solving a CSP is an NP-complete task in general, tractable classes of CSPs have been identified based on the structure of the underlying constraint graphs. Much effort has been spent on exploiting structural properties of the constraint graph to improve the efficiency of finding a solution. These efforts contributed to development of a class of CSP solving algorithms called decomposition algorithms. The strength of CSP decomposition is that its worst-case complexity depends on the structural properties of the constraint graph and is usually better than the worst-case complexity of search methods. Its practical application is limited, however, since it cannot be applied if the CSP is not decomposable. In this paper, we propose a graph based backtracking algorithm called omega-CDBT, which shares merits and overcomes the weaknesses of both decomposition and search approaches.
An improved FCM medical image segmentation algorithm based on MMTD.
Zhou, Ningning; Yang, Tingting; Zhang, Shaobai
2014-01-01
Image segmentation plays an important role in medical image processing. Fuzzy c-means (FCM) is one of the popular clustering algorithms for medical image segmentation. But FCM is highly vulnerable to noise due to not considering the spatial information in image segmentation. This paper introduces medium mathematics system which is employed to process fuzzy information for image segmentation. It establishes the medium similarity measure based on the measure of medium truth degree (MMTD) and uses the correlation of the pixel and its neighbors to define the medium membership function. An improved FCM medical image segmentation algorithm based on MMTD which takes some spatial features into account is proposed in this paper. The experimental results show that the proposed algorithm is more antinoise than the standard FCM, with more certainty and less fuzziness. This will lead to its practicable and effective applications in medical image segmentation.
A fast image encryption algorithm based on chaotic map
NASA Astrophysics Data System (ADS)
Liu, Wenhao; Sun, Kehui; Zhu, Congxu
2016-09-01
Derived from Sine map and iterative chaotic map with infinite collapse (ICMIC), a new two-dimensional Sine ICMIC modulation map (2D-SIMM) is proposed based on a close-loop modulation coupling (CMC) model, and its chaotic performance is analyzed by means of phase diagram, Lyapunov exponent spectrum and complexity. It shows that this map has good ergodicity, hyperchaotic behavior, large maximum Lyapunov exponent and high complexity. Based on this map, a fast image encryption algorithm is proposed. In this algorithm, the confusion and diffusion processes are combined for one stage. Chaotic shift transform (CST) is proposed to efficiently change the image pixel positions, and the row and column substitutions are applied to scramble the pixel values simultaneously. The simulation and analysis results show that this algorithm has high security, low time complexity, and the abilities of resisting statistical analysis, differential, brute-force, known-plaintext and chosen-plaintext attacks.
Stress-induced piezoelectric field in GaN-based 450-nm light-emitting diodes
Tawfik, Wael Z.; Hyeon, Gil Yong; Lee, June Key
2014-10-28
We investigated the influence of the built-in piezoelectric field induced by compressive stress on the characteristics of GaN-based 450-nm light-emitting diodes (LEDs) prepared on sapphire substrates of different thicknesses. As the sapphire substrate thickness was reduced, the compressive stress in the GaN layer was released, resulting in wafer bowing. The wafer bowing-induced mechanical stress altered the piezoelectric field, which in turn reduced the quantum confined Stark effect in the InGaN/GaN active region of the LED. The flat-band voltage was estimated by measuring the applied bias voltage that induced a 180° phase shift in the electro-reflectance (ER) spectrum. The piezoelectric field estimated by the ER spectra changed by ∼110 kV/cm. The electroluminescence spectral peak wavelength was blue-shifted, and the internal quantum efficiency was improved by about 22% at a high injection current of 100 mA. The LED on the 60-μm-thick sapphire substrate exhibited the highest light output power of ∼59 mW at an injection current of 100 mA, with the operating voltage unchanged.
Characterization of GaAs:Cr-based Timepix detector using synchrotron radiation and charged particles
NASA Astrophysics Data System (ADS)
Smolyanskiy, P.; Chelkov, G.; Guskov, A.; Dedovich, D.; Kozhevnikov, D.; Kruchonak, U.; Leyva Fabelo, A.; Zhemchugov, A.
2016-12-01
The interest in the use of high resistivity gallium arsenide compensated by chromium (GaAs:Cr) for photon detection has been growing steadily due to its numerous advantages over silicon. At the same time, the prospects of this material as a sensor for pixel detectors in nuclear and high energy physics are much less studied. In this paper we report the results of characterization of the Timepix detectors hybridized with GaAs:Cr sensors of various thickness using synchrotron radiation and various charged particles, including alphas and heavy ions. The energy and spatial resolution have been determined. Interesting features of GaAs:Cr specific to the detector response to an extremely dense energy deposit by heavy ions have been observed for the first time. The long-term stability of the detector has been evaluated based on the measurements performed over one year. Possible limitation of GaAs:Cr as a sensor for high flux X-ray imaging is discussed.
Status of AlGaN based focal plane arrays for UV solar blind detection
NASA Astrophysics Data System (ADS)
Reverchon, Jean-Luc; Mazzeo, Giovanni; Dussaigne, Amélie; Duboz, Jean-Yves
2005-10-01
The fast development of nitrides has given the opportunity to investigate AlGaN as a material for ultraviolet solar blind detection in competition with technologies based on photocathodes, MCP intensifiers, back thinned CCD or hybrid CMOS focal plane arrays. All of the them must be associated to UV blocking filters. These new detectors present both an intrinsic spectral selectivity and an extremely low dark current at room temperature. First we will present the ultimate properties of the AlGaN based devices. These spectral properties are analysed in regards to the sharp cut off required for solar blind detection around 280nm, and we will quantify how the stringent difficulties to achieve solar blind filters can be reduced. We also investigated the electrical capabilities of Schottky diodes or Metal-Semiconductor-Metal (MSM) technologies to detect extremely low UV signal. We will especially present results from a linear array based on a CCD readout multiplexor.
Specific of a photocurrent in GaN-based photoelectrochemical cell
NASA Astrophysics Data System (ADS)
Marchenko, O. N.; Ermakov, I. A.; Puzyk, M. V.; Kovalev, D. S.; Ivanova, S. A.; Papchenko, B. P.; Usikov, A. S.; Chernyakov, A. E.
2016-08-01
An influence of various parameters of a photoelectrochemical cell (PECC) having a GaN working electrode on the photocurrent was studied. Type of the aqua electrolyte (alkaline (KOH)-, neutral salt (Na2SO4)- and acid (H2SO4)- based electrolytes) influences on transient time for the photocurrent stabilization. A transient time for the photo current stabilization was observed under illumination by the UV LED light sources. The shortest transient time and the highest photocurrent were observed in the alkaline-based electrolyte (∼0.5M KOH) with n- GaN working electrodes (ND-NA =(3-5)×1016 cm-3). PECC with electrolytes based on sodium sulfate and sulfuric acid demonstrated longer transient time (up to ten minutes) for the photocurrent stabilization and smaller photocurrent.
Abedini, Mohammad; Moradi, Mohammad H; Hosseinian, S M
2016-03-01
This paper proposes a novel method to address reliability and technical problems of microgrids (MGs) based on designing a number of self-adequate autonomous sub-MGs via adopting MGs clustering thinking. In doing so, a multi-objective optimization problem is developed where power losses reduction, voltage profile improvement and reliability enhancement are considered as the objective functions. To solve the optimization problem a hybrid algorithm, named HS-GA, is provided, based on genetic and harmony search algorithms, and a load flow method is given to model different types of DGs as droop controller. The performance of the proposed method is evaluated in two case studies. The results provide support for the performance of the proposed method.
NASA Technical Reports Server (NTRS)
Gunapala, S.; Bandara, S. V.; Liu, J. K.; Hong, W.; Sundaram, M.; Maker, P. D.; Muller, R. E.
1997-01-01
In this paper, we discuss the development of this very sensitive long waelength infrared (LWIR) camera based on a GaAs/AlGaAs QWIP focal plane array (FPA) and its performance in quantum efficiency, NEAT, uniformity, and operability.
GA-ANFIS Expert System Prototype for Prediction of Dermatological Diseases.
Begic Fazlic, Lejla; Avdagic, Korana; Omanovic, Samir
2015-01-01
This paper presents novel GA-ANFIS expert system prototype for dermatological disease detection by using dermatological features and diagnoses collected in real conditions. Nine dermatological features are used as inputs to classifiers that are based on Adaptive Neuro-Fuzzy Inference Systems (ANFIS) for the first level of fuzzy model optimization. After that, they are used as inputs in Genetic Algorithm (GA) for the second level of fuzzy model optimization within GA-ANFIS system. GA-ANFIS system performs optimization in two steps. Modelling and validation of the novel GA-ANFIS system approach is performed in MATLAB environment by using validation set of data. Some conclusions concerning the impacts of features on the detection of dermatological diseases were obtained through analysis of the GA-ANFIS. We compared GA-ANFIS and ANFIS results. The results confirmed that the proposed GA-ANFIS model achieved accuracy rates which are higher than the ones we got by ANFIS model.
Creating IRT-Based Parallel Test Forms Using the Genetic Algorithm Method
ERIC Educational Resources Information Center
Sun, Koun-Tem; Chen, Yu-Jen; Tsai, Shu-Yen; Cheng, Chien-Fen
2008-01-01
In educational measurement, the construction of parallel test forms is often a combinatorial optimization problem that involves the time-consuming selection of items to construct tests having approximately the same test information functions (TIFs) and constraints. This article proposes a novel method, genetic algorithm (GA), to construct parallel…
A novel fingerprint recognition algorithm based on VK-LLE
NASA Astrophysics Data System (ADS)
Luo, Jing; Lin, Shu-zhong; Ni, Jian-yun; Song, Li-mei
2009-07-01
It is a challenging problem to overcome shift and rotation and nonlinearity in fingerprint images. By analyzing the shortcoming of fingerprint recognition algorithm on shift or rotation images at present, manifold learning algorithm is introduced. A fingerprint recognition algorithm has been proposed based on locally linear embedding of variable neighbourhood k (VK-LLE). Firstly, approximate geodesic distance between any two points is computed by ISOMAP ( isometric feature mapping) and then the neighborhood is determined for each point by the relationship between its local estimated geodesic distance matrix and local Euclidean distance matrix. Secondly, the dimension of fingerprint image is reduced by nonlinear dimension-reduction method. And the best projected features of original fingerprint data of large dimension are acquired. By analyzing the changes of recognition accuracy with the neighborhood and embedding dimension, the neighborhood and embedding dimension is determined at last. Finally, fingerprint recognition is accomplished by Euclidean distance Classifier. The experimental results based on standard fingerprint datasets have verified the proposed algorithm had a better robustness to those fingerprint images of shift or rotation or nonlinearity than the algorithm using LLE, thus this method has some values in practice.
A run-based two-scan labeling algorithm.
He, Lifeng; Chao, Yuyan; Suzuki, Kenji
2008-05-01
We present an efficient run-based two-scan algorithm for labeling connected components in a binary image. Unlike conventional label-equivalence-based algorithms, which resolve label equivalences between provisional labels, our algorithm resolves label equivalences between provisional label sets. At any time, all provisional labels that are assigned to a connected component are combined in a set, and the smallest label is used as the representative label. The corresponding relation of a provisional label and its representative label is recorded in a table. Whenever different connected components are found to be connected, all provisional label sets concerned with these connected components are merged together, and the smallest provisional label is taken as the representative label. When the first scan is finished, all provisional labels that were assigned to each connected component in the given image will have a unique representative label. During the second scan, we need only to replace each provisional label by its representative label. Experimental results on various types of images demonstrate that our algorithm outperforms all conventional labeling algorithms.
NASA Astrophysics Data System (ADS)
Khehra, Baljit Singh; Pharwaha, Amar Partap Singh
2016-06-01
Ductal carcinoma in situ (DCIS) is one type of breast cancer. Clusters of microcalcifications (MCCs) are symptoms of DCIS that are recognized by mammography. Selection of robust features vector is the process of selecting an optimal subset of features from a large number of available features in a given problem domain after the feature extraction and before any classification scheme. Feature selection reduces the feature space that improves the performance of classifier and decreases the computational burden imposed by using many features on classifier. Selection of an optimal subset of features from a large number of available features in a given problem domain is a difficult search problem. For n features, the total numbers of possible subsets of features are 2n. Thus, selection of an optimal subset of features problem belongs to the category of NP-hard problems. In this paper, an attempt is made to find the optimal subset of MCCs features from all possible subsets of features using genetic algorithm (GA), particle swarm optimization (PSO) and biogeography-based optimization (BBO). For simulation, a total of 380 benign and malignant MCCs samples have been selected from mammogram images of DDSM database. A total of 50 features extracted from benign and malignant MCCs samples are used in this study. In these algorithms, fitness function is correct classification rate of classifier. Support vector machine is used as a classifier. From experimental results, it is also observed that the performance of PSO-based and BBO-based algorithms to select an optimal subset of features for classifying MCCs as benign or malignant is better as compared to GA-based algorithm.
Optimal fractional order PID design via Tabu Search based algorithm.
Ateş, Abdullah; Yeroglu, Celaleddin
2016-01-01
This paper presents an optimization method based on the Tabu Search Algorithm (TSA) to design a Fractional-Order Proportional-Integral-Derivative (FOPID) controller. All parameter computations of the FOPID employ random initial conditions, using the proposed optimization method. Illustrative examples demonstrate the performance of the proposed FOPID controller design method.
An Efficient 16-Bit Multiplier based on Booth Algorithm
NASA Astrophysics Data System (ADS)
Khan, M. Zamin Ali; Saleem, Hussain; Afzal, Shiraz; Naseem, Jawed
2012-11-01
Multipliers are key components of many high performance systems such as microprocessors, digital signal processors, etc. Optimizing the speed and area of the multiplier is major design issue which is usually conflicting constraint so that improving speed results mostly in bigger areas. A VHDL designed architecture based on booth multiplication algorithm is proposed which not only optimize speed but also efficient on energy use.
Density shrinking algorithm for community detection with path based similarity
NASA Astrophysics Data System (ADS)
Wu, Jianshe; Hou, Yunting; Jiao, Yang; Li, Yong; Li, Xiaoxiao; Jiao, Licheng
2015-09-01
Community structure is ubiquitous in real world complex networks. Finding the communities is the key to understand the functions of those networks. A lot of works have been done in designing algorithms for community detection, but it remains a challenge in the field. Traditional modularity optimization suffers from the resolution limit problem. Recent researches show that combining the density based technique with the modularity optimization can overcome the resolution limit and an efficient algorithm named DenShrink was provided. The main procedure of DenShrink is repeatedly finding and merging micro-communities (broad sense) into super nodes until they cannot merge. Analyses in this paper show that if the procedure is replaced by finding and merging only dense pairs, both of the detection accuracy and runtime can be obviously improved. Thus an improved density-based algorithm: ImDS is provided. Since the time complexity, path based similarity indexes are difficult to be applied in community detection for high performance. In this paper, the path based Katz index is simplified and used in the ImDS algorithm.
Measuring Disorientation Based on the Needleman-Wunsch Algorithm
ERIC Educational Resources Information Center
Güyer, Tolga; Atasoy, Bilal; Somyürek, Sibel
2015-01-01
This study offers a new method to measure navigation disorientation in web based systems which is powerful learning medium for distance and open education. The Needleman-Wunsch algorithm is used to measure disorientation in a more precise manner. The process combines theoretical and applied knowledge from two previously distinct research areas,…
SPRITE: Sparsity-based super-resolution algorithm
NASA Astrophysics Data System (ADS)
Ngolè Mboula, F. M.; Starck, J.-L.; Ronayette, S.; Okumura, K.; Amiaux, J.
2015-06-01
SPRITE (Sparse Recovery of InstrumenTal rEsponse) computes a well-resolved compact source image from several undersampled and noisy observations. The algorithm is based on sparse regularization; adding a sparse penalty in the recovery leads to far better accuracy in terms of ellipticity error, especially at low S/N.
SFM signal parameter estimation based on an enhanced DSFMT algorithm
NASA Astrophysics Data System (ADS)
Chen, Lei; Li, Xingguang; Chen, Dianren
2017-01-01
It is proposed a SFM signal parameter estimation method based on the Enhanced DSFMT(EDSFMT) algorithm and provided the derivation of transformation formulas in this paper .Analysis and simulations were performed, which proved its capability of arbitrary multi-component SFM signal parameter estimation.
Multiple Lookup Table-Based AES Encryption Algorithm Implementation
NASA Astrophysics Data System (ADS)
Gong, Jin; Liu, Wenyi; Zhang, Huixin
Anew AES (Advanced Encryption Standard) encryption algorithm implementation was proposed in this paper. It is based on five lookup tables, which are generated from S-box(the substitution table in AES). The obvious advantages are reducing the code-size, improving the implementation efficiency, and helping new learners to understand the AES encryption algorithm and GF(28) multiplication which are necessary to correctly implement AES[1]. This method can be applied on processors with word length 32 or above, FPGA and others. And correspondingly we can implement it by VHDL, Verilog, VB and other languages.
An Optimal Seed Based Compression Algorithm for DNA Sequences
Gopalakrishnan, Gopakumar; Karunakaran, Muralikrishnan
2016-01-01
This paper proposes a seed based lossless compression algorithm to compress a DNA sequence which uses a substitution method that is similar to the LempelZiv compression scheme. The proposed method exploits the repetition structures that are inherent in DNA sequences by creating an offline dictionary which contains all such repeats along with the details of mismatches. By ensuring that only promising mismatches are allowed, the method achieves a compression ratio that is at par or better than the existing lossless DNA sequence compression algorithms. PMID:27555868
Nano-light-emitting-diodes based on InGaN mesoscopic structures for energy saving optoelectronics
NASA Astrophysics Data System (ADS)
Mikulics, M.; Winden, A.; Marso, M.; Moonshiram, A.; Lüth, H.; Grützmacher, D.; Hardtdegen, H.
2016-07-01
Vertically integrated III-nitride based nano-LEDs (light emitting diodes) were designed and fabricated for operation in the telecommunication wavelength range in the (p-GaN/InGaN/n-GaN/sapphire) material system. The band edge luminescence energy of the nano-LEDs could be engineered by tuning the composition and size of the InGaN mesoscopic structures. Narrow band edge photoluminescence and electroluminescence were observed. Our mesoscopic InGaN structures (depending on diameter) feature a very low power consumption in the range between 2 nW and 30 nW. The suitability of the technological process for the long-term operation of LEDs is demonstrated by reliability measurements. The optical and electrical characterization presented show strong potential for future low energy consumption optoelectronics.
NASA Astrophysics Data System (ADS)
Kao, Chen-Kai
The research in this dissertation addressed the development of ultraviolet (UV) electroabsorption modulators and ultraviolet light emitting diodes (UV-LEDs), covering the spectral range from 360 to 265 nm. The materials system for both types of devices is the AlGaN alloys, either in bulk or quantum well (QW) form, grown by plasma-assisted molecular beam epitaxy (MBE). Potential applications of these devices either individually or in combination include UV non-line-of-sight free-space-optical communications, UV sensing and spectroscopic systems, Q-switched pulsed lasers, water/air purification and various medical applications. Optical modulators based on cubic III-V semiconductors have been the subject of extensive research over the past several years. Such devices are typically based on the quantum-confined Stark effect to modify the absorption spectrum of multiple-quantum-well active regions. On the other hand, in wurtzite III-Nitride semiconductors, strong electric fields are already present in the quantum wells due to intrinsic and piezoelectric polarizations; as a result, an even greater change in absorption is achievable, especially if the internal fields are compensated by the external bias so that the net field in the quantum wells is reduced. A number of UV electroabsorption modulators based on Schottky barriers on bulk GaN and GaN /AlGaN multiple quantum wells (MQWs) were designed, fabricated and characterized. Record modulation ratio of 30 % was obtained from bulk GaN Schottky barrier modulators at the excitonic resonant energy of 3.45 eV (360 nm) upon the application of 12 V reverse bias. Similarly, record modulation ratio of 43% was obtained from GaN / AlGaN MQWs Schottky barrier modulators at the excitonic resonant energy of 3.48 eV (356 nm) upon the application of 17 V reverse bias. The external quantum efficiency (EQE) of AlGaN based deep UV LEDS is relatively low (˜1% at 270 nm). This is generally attributed to the poor internal quantum efficiency
Devices based on InGaN/GaN multiple quantum well for scintillator and detector applications
NASA Astrophysics Data System (ADS)
Hospodková, Alice; Pangrác, Jiří; Kuldová, Karla; Nikl, Martin; Pacherová, Oliva; Oswald, Jiří; Hubáček, Tomáš; Zíková, Markéta; Brůža, Petr; Pánek, Dalibor; Blažek, Karel; Ledoux, Gilles; Dujardin, Christophe; Heuken, Michael; Hulicius, Eduard
2016-02-01
Fast scintillators are necessary for electron microscopes, as well as in many other application fields like medical diagnostics and therapy and fundamental science. InGaN/GaN multiple quantum well structures (QW) are perspective candidates due to strong exciton binding energy, high quantum efficiency, short decay time in order of ns and good radiation resistance. The aim of our work is to prepare scintillator structure with fast luminescence response and high intensity of light. InGaN/GaN multiple QW structures described here were prepared by metal-organic vapour phase epitaxy and characterized by high resolution X-ray diffraction measurements. We demonstrate structure suitability for scintillator application including a unique measurement of wavelength-resolved scintillation response under nanosecond pulse soft X-ray source in extended dynamical and time scales. The photo-, radio- and cathodo-luminescence (PL, RL, CL) were measured. We observed double peak luminescence governed by different recombination mechanisms: i) exciton in QW and ii) related to defects. We have shown that for obtaining fast and intensive luminescence response proper structure design is required. The radioluminescence decay time of QW exciton maximum decreased 4 times from 16 ns to 4 ns when the QW thickness was decreased from 2.4 nm to 2 nm. We have proved suitability of InGaN/GaN structures for fast scintillator application for electron or other particle radiation detection. For x-ray detection the fast scintillation response would be hard to achieve due to the dominant slow defect luminescence maximum.
Degradation and corresponding failure mechanism for GaN-based LEDs
NASA Astrophysics Data System (ADS)
Fu, Jiajia; Zhao, Lixia; Cao, Haicheng; Sun, Xuejiao; Sun, Baojuan; Wang, Junxi; Li, Jinmin
2016-05-01
The degradation behaviors of high power GaN-based vertical blue LEDs on Si substrates were measured using in-situ accelerated life test. The results show that the dominant failure mechanism would be different during the operation. Besides that, the corresponding associated failure mechanisms were investigated systematically by using different analysis technologies, such as Scan Electron Microscopy, Reflectivity spectroscopy, Transient Thermal Analysis, Raman Spectra, etc. It is shown that initially, the failure modes were mainly originated from the semiconductor die and interconnect, while afterwards, the following serious deterioration of the radiant fluxes was attributed to the package. The interface material and quality, such as die attach and frame, play an important role in determining the thermal performance and reliability. In addition, the heating effect during the operation will also release the compressive strain in the chip. These findings will help to improve the reliability of GaN-based LEDs, especially for the LEDs with vertical structure.
GaAs-based air-slot photonic crystal nanocavity for optomechanical oscillators.
Nomura, Masahiro
2012-02-27
We theoretically investigate an optomechanical structure consisting of two parallel GaAs membranes with an air-slot type photonic crystal nanocavity. The optical cavity has a quality factor of 4.8 × 10^{6} at 1.52 μm and an extremely small modal volume of 0.015 of a cubic wavelength for the fundamental mode in a vacuum. The localized electric field near the air/dielectric-object boundary provides a large optomechanical coupling factor of ~990 GHz/nm. The fundamental mechanical mode resonance is 95 MHz and a quality factor is 83,800 at room temperature, nearly seven times higher than that for a similar Si-based structure. This high mechanical quality factor of a GaAs-based structure stems from low thermoelastic loss and leads to more effective optical control of nanomechanical oscillators.
Performance and applications of GaAs:Cr-based Medipix detector in X-ray CT
NASA Astrophysics Data System (ADS)
Kozhevnikov, D.; Chelkov, G.; Demichev, M.; Gridin, A.; Smolyanskiy, P.; Zhemchugov, A.
2017-01-01
In the recent years, the method of single photon counting X-ray μ-CT is being actively developed and applied in various fields. Results of our studies carried out using the MARS μ-CT scanner equipped with GaAs Medipix-based camera are presented. The procedure of mechanical alignment of the scanner is described, including direct and indirect measurements of the spatial resolution. The software chain for data processing and reconstruction has been developed and reported. We demonstrate the possibility to apply the scanner for research in geology and medicine and provide demo images of geological samples (chrome spinellids, titanium magnetite ore) and medical samples (atherosclerotic plaque, abdominal aortic aneurysm). The first results of multi-energy scans using GaAs:Cr-based camera are shown.
Uplink Scheduling of Navigation Constellation Based on Immune Genetic Algorithm
Tang, Yinyin; Wang, Yueke; Chen, Jianyun; Li, Xianbin
2016-01-01
The uplink of navigation data as satellite ephemeris is a complex satellite range scheduling problem. Large–scale optimal problems cannot be tackled using traditional heuristic methods, and the efficiency of standard genetic algorithm is unsatisfactory. We propose a multi-objective immune genetic algorithm (IGA) for uplink scheduling of navigation constellation. The method focuses on balance traffic and maximum task objects based on satellite-ground index encoding method, individual diversity evaluation and memory library. Numerical results show that the multi–hierarchical encoding method can improve the computation efficiency, the fuzzy deviation toleration method can speed up convergence, and the method can achieve the balance target with a negligible loss in task number (approximately 2.98%). The proposed algorithm is a general method and thus can be used in similar problems. PMID:27736986
A Multi-Scale Settlement Matching Algorithm Based on ARG
NASA Astrophysics Data System (ADS)
Yue, Han; Zhu, Xinyan; Chen, Di; Liu, Lingjia
2016-06-01
Homonymous entity matching is an important part of multi-source spatial data integration, automatic updating and change detection. Considering the low accuracy of existing matching methods in dealing with matching multi-scale settlement data, an algorithm based on Attributed Relational Graph (ARG) is proposed. The algorithm firstly divides two settlement scenes at different scales into blocks by small-scale road network and constructs local ARGs in each block. Then, ascertains candidate sets by merging procedures and obtains the optimal matching pairs by comparing the similarity of ARGs iteratively. Finally, the corresponding relations between settlements at large and small scales are identified. At the end of this article, a demonstration is presented and the results indicate that the proposed algorithm is capable of handling sophisticated cases.
An ordinary differential equation based solution path algorithm.
Wu, Yichao
2011-01-01
Efron, Hastie, Johnstone and Tibshirani (2004) proposed Least Angle Regression (LAR), a solution path algorithm for the least squares regression. They pointed out that a slight modification of the LAR gives the LASSO (Tibshirani, 1996) solution path. However it is largely unknown how to extend this solution path algorithm to models beyond the least squares regression. In this work, we propose an extension of the LAR for generalized linear models and the quasi-likelihood model by showing that the corresponding solution path is piecewise given by solutions of ordinary differential equation systems. Our contribution is twofold. First, we provide a theoretical understanding on how the corresponding solution path propagates. Second, we propose an ordinary differential equation based algorithm to obtain the whole solution path.
A novel spatial clustering algorithm based on Delaunay triangulation
NASA Astrophysics Data System (ADS)
Yang, Xiankun; Cui, Weihong
2008-12-01
Exploratory data analysis is increasingly more necessary as larger spatial data is managed in electro-magnetic media. Spatial clustering is one of the very important spatial data mining techniques. So far, a lot of spatial clustering algorithms have been proposed. In this paper we propose a robust spatial clustering algorithm named SCABDT (Spatial Clustering Algorithm Based on Delaunay Triangulation). SCABDT demonstrates important advantages over the previous works. First, it discovers even arbitrary shape of cluster distribution. Second, in order to execute SCABDT, we do not need to know any priori nature of distribution. Third, like DBSCAN, Experiments show that SCABDT does not require so much CPU processing time. Finally it handles efficiently outliers.
A morphology-based algorithm for label location and identification
NASA Astrophysics Data System (ADS)
Nie, Zhengang; Zhang, Xiaolin; Yang, Xinxin
2005-07-01
Label location and recognition has become a crucial task for today"s Unmanned Aerial Vehicles. We proposed a morphology-based algorithm to locate and recognize labels. This algorithm is insensitive to scaling and rotation, and able to work at low resolution. The label positioning and recognition strategy we designed is divided into two steps. First, at the altitude of 10m or so, we apply dilation processing and edge detection on the images sent back by UAV. Then combining the current heading information of the vehicle, we are able to give the topology map of all labels. After that the vehicle is lowered to about 5m and we apply erosion processing on the returned image and then recognize each label using image measurement and image analysis methods. The validity of this algorithm is well verified at ARCC 2004.
Uplink Scheduling of Navigation Constellation Based on Immune Genetic Algorithm.
Tang, Yinyin; Wang, Yueke; Chen, Jianyun; Li, Xianbin
2016-01-01
The uplink of navigation data as satellite ephemeris is a complex satellite range scheduling problem. Large-scale optimal problems cannot be tackled using traditional heuristic methods, and the efficiency of standard genetic algorithm is unsatisfactory. We propose a multi-objective immune genetic algorithm (IGA) for uplink scheduling of navigation constellation. The method focuses on balance traffic and maximum task objects based on satellite-ground index encoding method, individual diversity evaluation and memory library. Numerical results show that the multi-hierarchical encoding method can improve the computation efficiency, the fuzzy deviation toleration method can speed up convergence, and the method can achieve the balance target with a negligible loss in task number (approximately 2.98%). The proposed algorithm is a general method and thus can be used in similar problems.
Full-Scale Self-Emissive Blue and Green Microdisplays Based on GaN Micro-LED Arrays
2012-01-01
example, InGaN -based white emitters have achieved a luminous efficacy of more than 150 lm/W, which is much higher than those of other self-emissive...as a promising technology for a wide range of applications. If InGaN μ LED arrays can be integrated on to Si complementary metal?oxide...Full-Scale Self-Emissive Blue and Green Microdisplays Based on GaN Micro- LED Arrays J. Day1 J. Li2, D. Y. C. Lie1, C. Bradford3, J. Y
NASA Astrophysics Data System (ADS)
Yasuda, H.; Kubis, T.; Hosako, I.; Hirakawa, K.
2012-04-01
We theoretically investigated GaN-based resonant phonon terahertz-quantum cascade laser (QCL) structures for possible high-temperature operation by using the non-equilibrium Green's function method. It was found that the GaN-based THz-QCL structures do not necessarily have a gain sufficient for lasing, even though the thermal backfilling and the thermally activated phonon scattering are effectively suppressed. The main reason for this is the broadening of the subband levels caused by a very strong interaction between electrons and longitudinal optical (LO) phonons in GaN.
Fast Outlier Detection Using a Grid-Based Algorithm.
Lee, Jihwan; Cho, Nam-Wook
2016-01-01
As one of data mining techniques, outlier detection aims to discover outlying observations that deviate substantially from the reminder of the data. Recently, the Local Outlier Factor (LOF) algorithm has been successfully applied to outlier detection. However, due to the computational complexity of the LOF algorithm, its application to large data with high dimension has been limited. The aim of this paper is to propose grid-based algorithm that reduces the computation time required by the LOF algorithm to determine the k-nearest neighbors. The algorithm divides the data spaces in to a smaller number of regions, called as a "grid", and calculates the LOF value of each grid. To examine the effectiveness of the proposed method, several experiments incorporating different parameters were conducted. The proposed method demonstrated a significant computation time reduction with predictable and acceptable trade-off errors. Then, the proposed methodology was successfully applied to real database transaction logs of Korea Atomic Energy Research Institute. As a result, we show that for a very large dataset, the grid-LOF can be considered as an acceptable approximation for the original LOF. Moreover, it can also be effectively used for real-time outlier detection.
Quantum-based algorithm for optimizing artificial neural networks.
Tzyy-Chyang Lu; Gwo-Ruey Yu; Jyh-Ching Juang
2013-08-01
This paper presents a quantum-based algorithm for evolving artificial neural networks (ANNs). The aim is to design an ANN with few connections and high classification performance by simultaneously optimizing the network structure and the connection weights. Unlike most previous studies, the proposed algorithm uses quantum bit representation to codify the network. As a result, the connectivity bits do not indicate the actual links but the probability of the existence of the connections, thus alleviating mapping problems and reducing the risk of throwing away a potential candidate. In addition, in the proposed model, each weight space is decomposed into subspaces in terms of quantum bits. Thus, the algorithm performs a region by region exploration, and evolves gradually to find promising subspaces for further exploitation. This is helpful to provide a set of appropriate weights when evolving the network structure and to alleviate the noisy fitness evaluation problem. The proposed model is tested on four benchmark problems, namely breast cancer and iris, heart, and diabetes problems. The experimental results show that the proposed algorithm can produce compact ANN structures with good generalization ability compared to other algorithms.
A novel image fusion algorithm based on human vision system
NASA Astrophysics Data System (ADS)
Miao, Qiguang; Wang, Baoshu
2006-04-01
The proposed new fusion algorithm is based on the improved pulse coupled neural network(PCNN) model, the fundamental characteristics of images and the properties of human vision system. Compared with the traditional algorithm where the linking strength of each neuron is the same and its value is chosen through experimentation, this algorithm uses the contrast of each pixel as its value, so that the linking strength of each pixel can be chosen adaptively. After the processing of PCNN with the adaptive linking strength, new fire mapping images are obtained for each image taking part in the fusion. The clear objects of each original image are decided by the compare-selection operator with the fire mapping images pixel by pixel and then all of them are merged into a new clear image. Furthermore, by this algorithm, other parameters, for example, Δ, the threshold adjusting constant, only have a slight effect on the new fused image. It therefore overcomes the difficulty in adjusting parameters in PCNN. Experiments show that the proposed algorithm works better in preserving the edge and texture information than the wavelet transform method and the Laplacian pyramid method do image fusion.
Localized Ambient Solidity Separation Algorithm Based Computer User Segmentation.
Sun, Xiao; Zhang, Tongda; Chai, Yueting; Liu, Yi
2015-01-01
Most of popular clustering methods typically have some strong assumptions of the dataset. For example, the k-means implicitly assumes that all clusters come from spherical Gaussian distributions which have different means but the same covariance. However, when dealing with datasets that have diverse distribution shapes or high dimensionality, these assumptions might not be valid anymore. In order to overcome this weakness, we proposed a new clustering algorithm named localized ambient solidity separation (LASS) algorithm, using a new isolation criterion called centroid distance. Compared with other density based isolation criteria, our proposed centroid distance isolation criterion addresses the problem caused by high dimensionality and varying density. The experiment on a designed two-dimensional benchmark dataset shows that our proposed LASS algorithm not only inherits the advantage of the original dissimilarity increments clustering method to separate naturally isolated clusters but also can identify the clusters which are adjacent, overlapping, and under background noise. Finally, we compared our LASS algorithm with the dissimilarity increments clustering method on a massive computer user dataset with over two million records that contains demographic and behaviors information. The results show that LASS algorithm works extremely well on this computer user dataset and can gain more knowledge from it.
Object tracking algorithm based on contextual visual saliency
NASA Astrophysics Data System (ADS)
Fu, Bao; Peng, XianRong
2016-09-01
As to object tracking, the local context surrounding of the target could provide much effective information for getting a robust tracker. The spatial-temporal context (STC) learning algorithm proposed recently considers the information of the dense context around the target and has achieved a better performance. However STC only used image intensity as the object appearance model. But this appearance model not enough to deal with complicated tracking scenarios. In this paper, we propose a novel object appearance model learning algorithm. Our approach formulates the spatial-temporal relationships between the object of interest and its local context based on a Bayesian framework, which models the statistical correlation between high-level features (Circular-Multi-Block Local Binary Pattern) from the target and its surrounding regions. The tracking problem is posed by computing a visual saliency map, and obtaining the best target location by maximizing an object location likelihood function. Extensive experimental results on public benchmark databases show that our algorithm outperforms the original STC algorithm and other state-of-the-art tracking algorithms.
Sublingual vein extraction algorithm based on hyperspectral tongue imaging technology.
Li, Qingli; Wang, Yiting; Liu, Hongying; Guan, Yana; Xu, Liang
2011-04-01
Among the parts of the human tongue surface, the sublingual vein is one of the most important ones which may have pathological relationship with some diseases. To analyze this information quantitatively, one primitive work is to extract sublingual veins accurately from tongue body. In this paper, a hyperspectral tongue imaging system instead of a digital camera is used to capture sublingual images. A hidden Markov model approach is presented to extract the sublingual veins from the hyperspectral sublingual images. This approach characterizes the spectral correlation and the band-to-band variability using a hidden Markov process, where the model parameters are estimated by the spectra of the pixel vectors forming the observation sequences. The proposed algorithm, the pixel-based sublingual vein segmentation algorithm, and the spectral angle mapper algorithm are tested on a total of 150 scenes of hyperspectral sublingual veins images to evaluate the performance of the new method. The experimental results demonstrate that the proposed algorithm can extract the sublingual veins more accurately than the traditional algorithms and can perform well even in a noisy environment.
Localized Ambient Solidity Separation Algorithm Based Computer User Segmentation
Sun, Xiao; Zhang, Tongda; Chai, Yueting; Liu, Yi
2015-01-01
Most of popular clustering methods typically have some strong assumptions of the dataset. For example, the k-means implicitly assumes that all clusters come from spherical Gaussian distributions which have different means but the same covariance. However, when dealing with datasets that have diverse distribution shapes or high dimensionality, these assumptions might not be valid anymore. In order to overcome this weakness, we proposed a new clustering algorithm named localized ambient solidity separation (LASS) algorithm, using a new isolation criterion called centroid distance. Compared with other density based isolation criteria, our proposed centroid distance isolation criterion addresses the problem caused by high dimensionality and varying density. The experiment on a designed two-dimensional benchmark dataset shows that our proposed LASS algorithm not only inherits the advantage of the original dissimilarity increments clustering method to separate naturally isolated clusters but also can identify the clusters which are adjacent, overlapping, and under background noise. Finally, we compared our LASS algorithm with the dissimilarity increments clustering method on a massive computer user dataset with over two million records that contains demographic and behaviors information. The results show that LASS algorithm works extremely well on this computer user dataset and can gain more knowledge from it. PMID:26221133
Investigation of rapid degradation in GaN-based blue laser diodes
NASA Astrophysics Data System (ADS)
Wen, Pengyan; Zhang, Shuming; Li, Deyao; Liu, Jianping; Zhang, Liqun; Shi, Dong; Zhou, Kun; Tian, Aiqin; Feng, Shiwei; Yang, Hui
2016-11-01
Investigation of the degradation modes in GaN-based blue laser diodes grown by metal organic chemical vapor deposition (MOCVD) is carried out. Early failure of the LDs happened at the initial stage of the aging. After analysis of the electrical and thermal characteristics, local degradation of the active region is observed. Further investigation on the microstructures of the local regions shows that the early failure of the LDs is due to the local structure damage with the formation of gallium metal.
Temporal superresolution based on a localization microscopy algorithm.
Yaron, Tomer; Klein, Avi; Duadi, Hamootal; Fridman, Moti
2017-03-20
We investigate the resolution limits of time lenses based on a four-wave mixing process and present a superresolution technique in the time domain based on a localization microscopy algorithm. Our temporal superresolution technique retrieves features shorter by a factor of 2 than the resolution limit of the system. We present both measured and calculated results of the superresolution scheme and present calculated superresolution of input signals with higher complexity.
Genetic algorithms with permutation coding for multiple sequence alignment.
Ben Othman, Mohamed Tahar; Abdel-Azim, Gamil
2013-08-01
Multiple sequence alignment (MSA) is one of the topics of bio informatics that has seriously been researched. It is known as NP-complete problem. It is also considered as one of the most important and daunting tasks in computational biology. Concerning this a wide number of heuristic algorithms have been proposed to find optimal alignment. Among these heuristic algorithms are genetic algorithms (GA). The GA has mainly two major weaknesses: it is time consuming and can cause local minima. One of the significant aspects in the GA process in MSA is to maximize the similarities between sequences by adding and shuffling the gaps of Solution Coding (SC). Several ways for SC have been introduced. One of them is the Permutation Coding (PC). We propose a hybrid algorithm based on genetic algorithms (GAs) with a PC and 2-opt algorithm. The PC helps to code the MSA solution which maximizes the gain of resources, reliability and diversity of GA. The use of the PC opens the area by applying all functions over permutations for MSA. Thus, we suggest an algorithm to calculate the scoring function for multiple alignments based on PC, which is used as fitness function. The time complexity of the GA is reduced by using this algorithm. Our GA is implemented with different selections strategies and different crossovers. The probability of crossover and mutation is set as one strategy. Relevant patents have been probed in the topic.
Wu, Jianfa; Peng, Dahao; Li, Zhuping; Zhao, Li; Ling, Huanzhang
2015-01-01
To effectively and accurately detect and classify network intrusion data, this paper introduces a general regression neural network (GRNN) based on the artificial immune algorithm with elitist strategies (AIAE). The elitist archive and elitist crossover were combined with the artificial immune algorithm (AIA) to produce the AIAE-GRNN algorithm, with the aim of improving its adaptivity and accuracy. In this paper, the mean square errors (MSEs) were considered the affinity function. The AIAE was used to optimize the smooth factors of the GRNN; then, the optimal smooth factor was solved and substituted into the trained GRNN. Thus, the intrusive data were classified. The paper selected a GRNN that was separately optimized using a genetic algorithm (GA), particle swarm optimization (PSO), and fuzzy C-mean clustering (FCM) to enable a comparison of these approaches. As shown in the results, the AIAE-GRNN achieves a higher classification accuracy than PSO-GRNN, but the running time of AIAE-GRNN is long, which was proved first. FCM and GA-GRNN were eliminated because of their deficiencies in terms of accuracy and convergence. To improve the running speed, the paper adopted principal component analysis (PCA) to reduce the dimensions of the intrusive data. With the reduction in dimensionality, the PCA-AIAE-GRNN decreases in accuracy less and has better convergence than the PCA-PSO-GRNN, and the running speed of the PCA-AIAE-GRNN was relatively improved. The experimental results show that the AIAE-GRNN has a higher robustness and accuracy than the other algorithms considered and can thus be used to classify the intrusive data. PMID:25807466
Wu, Jianfa; Peng, Dahao; Li, Zhuping; Zhao, Li; Ling, Huanzhang
2015-01-01
To effectively and accurately detect and classify network intrusion data, this paper introduces a general regression neural network (GRNN) based on the artificial immune algorithm with elitist strategies (AIAE). The elitist archive and elitist crossover were combined with the artificial immune algorithm (AIA) to produce the AIAE-GRNN algorithm, with the aim of improving its adaptivity and accuracy. In this paper, the mean square errors (MSEs) were considered the affinity function. The AIAE was used to optimize the smooth factors of the GRNN; then, the optimal smooth factor was solved and substituted into the trained GRNN. Thus, the intrusive data were classified. The paper selected a GRNN that was separately optimized using a genetic algorithm (GA), particle swarm optimization (PSO), and fuzzy C-mean clustering (FCM) to enable a comparison of these approaches. As shown in the results, the AIAE-GRNN achieves a higher classification accuracy than PSO-GRNN, but the running time of AIAE-GRNN is long, which was proved first. FCM and GA-GRNN were eliminated because of their deficiencies in terms of accuracy and convergence. To improve the running speed, the paper adopted principal component analysis (PCA) to reduce the dimensions of the intrusive data. With the reduction in dimensionality, the PCA-AIAE-GRNN decreases in accuracy less and has better convergence than the PCA-PSO-GRNN, and the running speed of the PCA-AIAE-GRNN was relatively improved. The experimental results show that the AIAE-GRNN has a higher robustness and accuracy than the other algorithms considered and can thus be used to classify the intrusive data.
NASA Astrophysics Data System (ADS)
Rajan, C. Christober Asir
2010-10-01
The objective of this paper is to find the generation scheduling such that the total operating cost can be minimized, when subjected to a variety of constraints. This also means that it is desirable to find the optimal generating unit commitment in the power system for the next H hours. Genetic Algorithms (GA's) are general-purpose optimization techniques based on principles inspired from the biological evolution using metaphors of mechanisms such as neural section, genetic recombination and survival of the fittest. In this, the unit commitment schedule is coded as a string of symbols. An initial population of parent solutions is generated at random. Here, each schedule is formed by committing all the units according to their initial status ("flat start"). Here the parents are obtained from a pre-defined set of solution's i.e. each and every solution is adjusted to meet the requirements. Then, a random recommitment is carried out with respect to the unit's minimum down times. And SA improves the status. A 66-bus utility power system with twelve generating units in India demonstrates the effectiveness of the proposed approach. Numerical results are shown comparing the cost solutions and computation time obtained by using the Genetic Algorithm method and other conventional methods.
High-Efficiency Non-Polar GaN-Based LEDs
Paul Fini
2010-11-30
Inlustra Technologies with subcontractor U.C. Santa Barbara conducted a project with the principle goal of demonstrating high internal quantum efficiency blue (430 nm) and green (540nm) light emitting diodes (LEDs) on low-defect density non-polar GaN wafers. Inlustra pursued the fabrication of smooth thick a-plane and m-plane GaN films, as well as defect reduction techniques such as lateral epitaxial overgrowth (LEO) to uniformly lower dislocation density in these films. Limited free-standing wafers were produced as well. By the end of the reporting period, Inlustra had met its milestone of dislocation reduction to < 5 x 10{sup 6} cm{sup -2}. Stacking faults were still present in appreciable density ({approx} 1 x 10{sup 5} cm{sup -1}), but were not the primary focus of defect reduction since there have been no published studies establishing their detrimental effects on LED performance. Inlustra's LEO progress built a solid foundation upon which further commercial development of GaN substrates will occur. UCSB encountered multiple delays in its LED growth and fabrication efforts due to unavoidable facilities outages imposed by ongoing construction in an area adjacent to the metalorganic chemical vapor deposition (MOCVD) laboratory. This, combined with the large amount of ab initio optimization required for the MOCVD system used during the project, resulted in unsatisfactory LED progress. Although numerous blue-green photoluminescence results were obtained, only a few LED structures exhibited electroluminescence at appreciable levels. UCSB also conducting extensive modeling (led by Prof. Van de Walle) on the problem of non-radiative Auger recombination in GaN-based LED structures, which has been posited to contribute to LED efficiency 'droop' at elevated current density. Unlike previous modeling efforts, UCSB's approach was truly a first-principles ab initio methodology. Building on solid numerical foundations, the Auger recombination rates of In{sub x}Ga{sub 1-x
Optimal design of GaAs-based concentrator space solar cells for 100 AMO, 80 deg C operation
NASA Technical Reports Server (NTRS)
Goradia, C.; Ghalla-Goradia, M.; Curtis, H.
1984-01-01
Using a detailed computer code and reasonable values of electrical and optical material parameters from current published literature, parameter optimization studies were performed on three configurations of GaAs-based concentrator solar cells for 100 AMO, 80 C operation. These studies show the possibility of designing GaAs-based solar cells with efficiencies exceeding 22% at 100 AMO 80 C and probable efficiency degradation of less than 15% after a 70% reduction in diffusion length in each cell region.
Peng, Mingzeng; Zhang, Yan; Liu, Yudong; Song, Ming; Zhai, Junyi; Wang, Zhong Lin
2014-10-22
A multi-field coupling structure is designed and investigated, which combines GaN-based optoelectronic devices and Terfenol-D. The abundant coupling effects and multifunctionalities among magnetics, mechanics, electrics, and optics are investigated by a combination of non-magnetic GaN-based piezoelectronic optoelectronic characteristics and the giant magnetomechanical properties of Terfenol-D. A few potential new areas of studies are proposed.
High power GaN-based LEDs with nano-structured Ga-doped ZnO (GZO) transparent conductive layer (TCL)
NASA Astrophysics Data System (ADS)
Jia, Weiqing; Fan, Bingfeng; Jiang, Hao; Liu, Yang; Zhang, Baijun; Xian, Yulun; Huang, Shanjing; Zheng, Zhiyuan; Wu, Zhisheng; Tong, Keny; Wong, Raymond; Wang, Gang
2010-12-01
High power GaN-based LEDs with nano-structured Ga-doped ZnO (GZO) transparent conductive layer (TCL) were fabricated by using metal-organic chemical vapor deposition (MOCVD) method. Compared with the conventional LED with Ni/Au or ITO process, the saturation current in the LEDs with GZO TCL approximately increased up to more than 14 % and 13 %, and the light output intensity up to 57.5 % and 30.1 %, respectively. This improvement was attributed to the high carrier concentration of GZO TCL and the planar structure at the TCL bottom, which improved the electrical conductivity, and therefore promoted current spreading. The refractive index of GZO is similar to GaN (n ~ 2) and thereby results in the reduction of the reflection loss between GaN and TCL interface. In addition, the nano-structure of GZO TCL increased the light output critical angle and enhanced surface light emitting while reducing the lateral light loss and consequently improved light extraction efficiency of LEDs.
A vertical handoff decision algorithm based on ARMA prediction model
NASA Astrophysics Data System (ADS)
Li, Ru; Shen, Jiao; Chen, Jun; Liu, Qiuhuan
2011-12-01
With the development of computer technology and the increasing demand for mobile communications, the next generation wireless networks will be composed of various wireless networks (e.g., WiMAX and WiFi). Vertical handoff is a key technology of next generation wireless networks. During the vertical handoff procedure, handoff decision is a crucial issue for an efficient mobility. Based on auto regression moving average (ARMA) prediction model, we propose a vertical handoff decision algorithm, which aims to improve the performance of vertical handoff and avoid unnecessary handoff. Based on the current received signal strength (RSS) and the previous RSS, the proposed approach adopt ARMA model to predict the next RSS. And then according to the predicted RSS to determine whether trigger the link layer triggering event and complete vertical handoff. The simulation results indicate that the proposed algorithm outperforms the RSS-based scheme with a threshold in the performance of handoff and the number of handoff.
A vertical handoff decision algorithm based on ARMA prediction model
NASA Astrophysics Data System (ADS)
Li, Ru; Shen, Jiao; Chen, Jun; Liu, Qiuhuan
2012-01-01
With the development of computer technology and the increasing demand for mobile communications, the next generation wireless networks will be composed of various wireless networks (e.g., WiMAX and WiFi). Vertical handoff is a key technology of next generation wireless networks. During the vertical handoff procedure, handoff decision is a crucial issue for an efficient mobility. Based on auto regression moving average (ARMA) prediction model, we propose a vertical handoff decision algorithm, which aims to improve the performance of vertical handoff and avoid unnecessary handoff. Based on the current received signal strength (RSS) and the previous RSS, the proposed approach adopt ARMA model to predict the next RSS. And then according to the predicted RSS to determine whether trigger the link layer triggering event and complete vertical handoff. The simulation results indicate that the proposed algorithm outperforms the RSS-based scheme with a threshold in the performance of handoff and the number of handoff.
Entropy-Based Search Algorithm for Experimental Design
NASA Astrophysics Data System (ADS)
Malakar, N. K.; Knuth, K. H.
2011-03-01
The scientific method relies on the iterated processes of inference and inquiry. The inference phase consists of selecting the most probable models based on the available data; whereas the inquiry phase consists of using what is known about the models to select the most relevant experiment. Optimizing inquiry involves searching the parameterized space of experiments to select the experiment that promises, on average, to be maximally informative. In the case where it is important to learn about each of the model parameters, the relevance of an experiment is quantified by Shannon entropy of the distribution of experimental outcomes predicted by a probable set of models. If the set of potential experiments is described by many parameters, we must search this high-dimensional entropy space. Brute force search methods will be slow and computationally expensive. We present an entropy-based search algorithm, called nested entropy sampling, to select the most informative experiment for efficient experimental design. This algorithm is inspired by Skilling's nested sampling algorithm used in inference and borrows the concept of a rising threshold while a set of experiment samples are maintained. We demonstrate that this algorithm not only selects highly relevant experiments, but also is more efficient than brute force search. Such entropic search techniques promise to greatly benefit autonomous experimental design.
Development of antibiotic regimens using graph based evolutionary algorithms.
Corns, Steven M; Ashlock, Daniel A; Bryden, Kenneth M
2013-12-01
This paper examines the use of evolutionary algorithms in the development of antibiotic regimens given to production animals. A model is constructed that combines the lifespan of the animal and the bacteria living in the animal's gastro-intestinal tract from the early finishing stage until the animal reaches market weight. This model is used as the fitness evaluation for a set of graph based evolutionary algorithms to assess the impact of diversity control on the evolving antibiotic regimens. The graph based evolutionary algorithms have two objectives: to find an antibiotic treatment regimen that maintains the weight gain and health benefits of antibiotic use and to reduce the risk of spreading antibiotic resistant bacteria. This study examines different regimens of tylosin phosphate use on bacteria populations divided into Gram positive and Gram negative types, with a focus on Campylobacter spp. Treatment regimens were found that provided decreased antibiotic resistance relative to conventional methods while providing nearly the same benefits as conventional antibiotic regimes. By using a graph to control the information flow in the evolutionary algorithm, a variety of solutions along the Pareto front can be found automatically for this and other multi-objective problems.
Task-Based Flocking Algorithm for Mobile Robot Cooperation
NASA Astrophysics Data System (ADS)
He, Hongsheng; Ge, Shuzhi Sam; Tong, Guofeng
In this paper, one task-based flocking algorithm that coordinates a swarm of robots is presented and evaluated based on the standard simulation platform. Task-based flocking algorithm(TFA) is an effective framework for mobile robots cooperation. Flocking behaviors are integrated into the cooperation of the multi-robot system to organize a robot team to achieve a common goal. The goal of the whole team is obtained through the collaboration of the individual robot’s task. The flocking model is presented, and the flocking energy function is defined based on that model to analyze the stability of the flocking and the task switching criterion. The simulation study is conducted in a five-versus-five soccer game, where the each robot dynamically selects its task in accordance with status and the whole robot team behaves as a flocking. Through simulation results and experiments, it is proved that the task-based flocking algorithm can effectively coordinate and control the robot flock to achieve the goal.
GA-based optimum design of a shape memory alloy device for seismic response mitigation
NASA Astrophysics Data System (ADS)
Ozbulut, O. E.; Roschke, P. N.; Y Lin, P.; Loh, C. H.
2010-06-01
Damping systems discussed in this work are optimized so that a three-story steel frame structure and its shape memory alloy (SMA) bracing system minimize response metrics due to a custom-tailored earthquake excitation. Multiple-objective numerical optimization that simultaneously minimizes displacements and accelerations of the structure is carried out with a genetic algorithm (GA) in order to optimize SMA bracing elements within the structure. After design of an optimal SMA damping system is complete, full-scale experimental shake table tests are conducted on a large-scale steel frame that is equipped with the optimal SMA devices. A fuzzy inference system is developed from data collected during the testing to simulate the dynamic material response of the SMA bracing subcomponents. Finally, nonlinear analyses of a three-story braced frame are carried out to evaluate the performance of comparable SMA and commonly used steel braces under dynamic loading conditions and to assess the effectiveness of GA-optimized SMA bracing design as compared to alternative designs of SMA braces. It is shown that peak displacement of a structure can be reduced without causing significant acceleration response amplification through a judicious selection of physical characteristics of the SMA devices. Also, SMA devices provide a recentering mechanism for the structure to return to its original position after a seismic event.
Dichromatic color tuning with InGaN-based light-emitting diodes
NASA Astrophysics Data System (ADS)
Fellows, Natalie N.; Sato, Hitoshi; Lin, You-da; Chung, Roy B.; DenBaars, Steven P.; Nakamura, Shuji
2008-09-01
Color tuning GaN based light-emitting diodes (LEDs) both electrically and optically was investigated. Color mixing of two LED dies, one nonpolar (λp=467 nm) and one semipolar (λp=574 nm), produced white light. Electrically, the correct current was supplied to each die in order to change its correlated color temperature and Commission Internationale de l'Eclairage (CIE) chromaticity coordinates from 3287 K and (0.425, 0.413) to 7242 K and (0.303, 0.315). The optical polarization anisotropy inherent in nonpolar and semipolar wurtzite GaN allowed color tuning optically with the use of a polarizer. Several regions of the CIE diagram were explored using this method and are discussed.
Modeling of InGaAsSb-Based Avalanche Photodetectors for 2-Micron Wavelengths
NASA Technical Reports Server (NTRS)
Joshi, Ravindra P.; Abedin, M. Nurul (Technical Monitor)
2002-01-01
The main focus of this research is to study and evaluate the potential of InGaAsSb-AlGaAsSb based 2 micron avalanche photo-detectors. The photodetector contains a separate absorption and multiplication region (SAM) structure. The analysis has mainly been done to understand the electrical response characteristics of the devices existing at NASA, and to evaluate alternate structures proposed. Calculating the current flow for the existing detector structure, on the basis of its energy band diagram, is important. This analysis also helps to find shortcomings in the existing detector structure. It is shown that, unfortunately, the existing structure cannot lead to strong multiplication or voltage dependent gain. Two alternate structures are suggested, that could overcome the inherent flaws, and help achieve improved performance. These devices are obtained through modifications of the original structure, which include varying the doping levels, and changing the thicknesses of detector sub-regions. The results of our study are presented and discussed.
Terahertz dual-wavelength quantum cascade laser based on GaN active region
NASA Astrophysics Data System (ADS)
Mirzaei, B.; Rostami, A.; Baghban, H.
2012-03-01
In this paper a novel terahertz (THz) quantum cascade laser (QCL) based on GaN/AlGaN quantum wells has been proposed, which emits at two widely separated wavelengths 33 and 52 μm simultaneously in a single active region. The large LO-phonon energy (˜90 meV), the ultrafast resonant phonon depopulation of the lower radiative levels, suppression of the electrons that escape to the continuum states and selective carrier injection and extraction all together lead to a considerable enhancement in the operating temperature of the structure. All calculations have been done at a temperature of 265 K. Moreover, similar behavior of the output optical powers is another remarkable feature, which makes both wavelengths useful for special applications.
Tunable room temperature terahertz sources based on two dimensional plasma instability in GaN HEMTs
NASA Astrophysics Data System (ADS)
El Fatimy, A.; Suemitsu, T.; Otsuji, T.; Dyakonova, N.; Knap, W.; Meziani, Y. M.; Vandenbrouk, S.; Madjour, K.; Théron, D.; Gaquiere, Ch; Prystawko, P.; Skierbiszewski, C.
2009-11-01
In this work, we report on room temperature terahertz radiation from sub-micron size GaN/AlGaN based high electron mobility transistors (HEMTs). They could successfully replace the standard Fourier Transform spectrometer source and were investigated with a standard Si-bolometer as a detector. The relatively broad (~1THz) emission line was observed. The maxima were found to be tunable by the gate voltage between 0.75 and 2.1 THz. The observed emission was interpreted as due to the current driven plasma waves instability in the two-dimensional electron gas. The emitted power from a single device reached 150 nW, showing possible application of these transistors as compact sources for terahertz spectroscopy and imaging.
NASA Astrophysics Data System (ADS)
Connors, Michael K.; Millsapp, Jamal E.; Turner, George W.
2016-06-01
The quality and yield of GaAs-based ridge waveguide devices fabricated at MIT Lincoln Laboratory were negatively impacted by the random lot-to-lot appearance of blisters in the front-side contact metal. The blisters signaled compromised adhesion between the front-side contact metal, underlying SiO2 dielectric coating, and semiconductor surface. A thermal-anneal procedure developed for the fabrication of GaAs slab coupled optical waveguide (SCOW) ridge waveguide devices stabilizes the SiO2 dielectric coating by means of outgassing and stress reduction. This process eliminates a primary source of adhesion loss, as well as blister generation, and thereby significantly improves device yield. Stoney's equation was used to analyze stress-induced bow in device wafers fabricated using this stabilization procedure. This analysis suggests that changes in wafer bow contribute to the incidence of metal blisters in SCOW devices.
Improved conversion efficiency of GaN-based solar cells with Mn-doped absorption layer
NASA Astrophysics Data System (ADS)
Sheu, Jinn-Kong; Huang, Feng-Wen; Lee, Chia-Hui; Lee, Ming-Lun; Yeh, Yu-Hsiang; Chen, Po-Cheng; Lai, Wei-Chih
2013-08-01
GaN-based solar cells with Mn-doped absorption layer grown by metal-organic vapor-phase epitaxy were investigated. The transmittance spectrum and the spectral response showed the presence of an Mn-related band absorption property. Power-dependent, dual-light excitation, and lock-in amplifier techniques were performed to confirm if the two-photon absorption process occurred in the solar cells with Mn-doped GaN absorption layer. Although a slight decrease in an open circuit voltage was observed, a prominent increase in the short circuit current density resulted in a significant enhancement of the overall conversion efficiency. Under one-sun air mass 1.5 G standard testing condition, the conversion efficiency of Mn-doped solar cells can be enhanced by a magnitude of 5 times compared with the cells without Mn-doped absorption layer.
Radial tunnel diodes based on InP/InGaAs core-shell nanowires
NASA Astrophysics Data System (ADS)
Tizno, Ofogh; Ganjipour, Bahram; Heurlin, Magnus; Thelander, Claes; Borgström, Magnus T.; Samuelson, Lars
2017-03-01
We report on the fabrication and characterization of radial tunnel diodes based on InP(n+)/InGaAs(p+) core-shell nanowires, where the effect of Zn-dopant precursor flow on the electrical properties of the devices is evaluated. Selective and local etching of the InGaAs shell is employed to access the nanowire core in the contact process. Devices with an n+-p doping profile show normal diode rectification, whereas n+-p+ junctions exhibit typical tunnel diode characteristics with peak-to-valley current ratios up to 14 at room temperature and 100 at 4.2 K. A maximum peak current density of 28 A/cm2 and a reverse current density of 7.3 kA/cm2 at VSD = -0.5 V are extracted at room temperature after normalization with the effective junction area.
Strained layer relaxation effect on current crowding and efficiency improvement of GaN based LED
NASA Astrophysics Data System (ADS)
Aurongzeb, Deeder
2012-02-01
Efficiency droop effect of GaN based LED at high power and high temperature is addressed by several groups based on career delocalization and photon recycling effect(radiative recombination). We extend the previous droop models to optical loss parameters. We correlate stained layer relaxation at high temperature and high current density to carrier delocalization. We propose a third order model and show that Shockley-Hall-Read and Auger recombination effect is not enough to account for the efficiency loss. Several strained layer modification scheme is proposed based on the model.
Belz, Jürgen; Beyer, Andreas; Torunski, Torsten; Stolz, Wolfgang; Volz, Kerstin
2016-04-01
The introduction of preparation artifacts is almost inevitable when producing samples for (scanning) transmission electron microscopy ((S)TEM). These artifacts can be divided in extrinsic artifacts like damage processes and intrinsic artifacts caused by the deviations from the volume strain state in thin elastically strained material systems. The reduction and estimation of those effects is of great importance for the quantitative analysis of (S)TEM images. Thus, optimized ion beam preparation conditions are investigated for high quality samples. Therefore, the surface topology is investigated directly with atomic force microscopy (AFM) on the actual TEM samples. Additionally, the sectioning of those samples by a focused ion beam (FIB) is used to investigate the damage depth profile directly in the TEM. The AFM measurements show good quantitative agreement of sample height modulation due to strain relaxation to finite elements simulations. Strong indications of (sub-) surface damage by ion beams are observed. Their influence on high angle annular dark field (HAADF) imaging is estimated with focus on thickness determination by absolute intensity methods. Data consolidation of AFM and TEM measurements reveals a 3.5nm surface amorphization, negligible surface roughness on the scale of angstroms and a sub-surface damage profile in the range of up to 8.0nm in crystalline gallium arsenide (GaAs) and GaAs-based ternary alloys. A correction scheme for thickness evaluation of absolute HAADF intensities is proposed and applied for GaAs based materials.
Challenges towards the simulation of GaN-based LEDs beyond the semiclassical framework
NASA Astrophysics Data System (ADS)
Goano, Michele; Bertazzi, Francesco; Zhou, Xiangyu; Mandurrino, Marco; Dominici, Stefano; Vallone, Marco; Ghione, Giovanni; Tibaldi, Alberto; Calciati, Marco; Debernardi, Pierluigi; Dolcini, Fabrizio; Rossi, Fausto; Verzellesi, Giovanni; Meneghini, Matteo; Trivellin, Nicola; De Santi, Carlo; Zanoni, Enrico; Bellotti, Enrico
2016-03-01
We discuss some of the key issues to be addressed along the way to complement, and possibly to replace, the standard semiclassical Boltzmann picture with genuine quantum approaches for the simulation of carrier transport and recombination in GaN-based LEDs, with the goal of gradually removing the fitting parameters presently required by semiempirical "quantum corrections" and to better understand the processes responsible for the efficiency droop. As examples of augmented semiclassical models, we present a three-step description of trap-assisted tunneling, especially relevant below the optical turn-on, and a carrier-density-dependent estimate of the phonon-assisted capture rate from bulk states to quantum wells (QWs). Moving to genuine quantum models, we solve the semiconductor Bloch equations to calculate the gain/absorption spectra of AlGaN/GaN QWs, and we discuss our first simulations of spatially and energetically resolved currents across the active region of a single-QW LED based on the nonequilibrium Green's function approach.
Passivation of defect states in Si-based and GaAs structures
NASA Astrophysics Data System (ADS)
Pinčík, E.; Kobayashi, H.; Brunner, R.; Takahashi, M.; Liu, Yueh-Ling; Ortega, L.; Imamura, K.; Jergel, M.; Rusnák, J.
2008-10-01
Formation of defect states on semiconductor surfaces, at its interfaces with thin films and in semiconductor volumes is usually predetermined by such parameters as semiconductor growth process, surface treatment procedures, passivation, thin film growth kinetics, etc. This paper presents relation between processes leading to formation of defect states and their passivation in Si and GaAs related semiconductors and structures. Special focus is on oxidation kinetics of yttrium stabilized zirconium/SiO 2/Si and Sm/GaAs structures. Plasma anodic oxidation of yttrium stabilized zirconium based structures reduced size of polycrystalline silicon blocks localised at thin film/Si interface. Samarium deposited before oxidation on GaAs surface led to elimination of EL2 and/or ELO defects in MOS structures. Consequently, results of successful passivation of deep traps of interface region by CN - atomic group using HCN solutions on oxynitride/Si and double oxide layer/Si structures are presented and discussed. By our knowledge, we are presenting for the first time the utilization of X-ray reflectivity method for determination of both density of SiO 2 based multilayer structure and corresponding roughnesses (interfaces and surfaces), respectively.
NASA Astrophysics Data System (ADS)
Qiu, Zhi-cheng; Shi, Ming-li; Wang, Bin; Xie, Zhuo-wei
2012-05-01
A rod cylinder based pneumatic driving scheme is proposed to suppress the vibration of a flexible smart beam. Pulse code modulation (PCM) method is employed to control the motion of the cylinder's piston rod for simultaneous positioning and vibration suppression. Firstly, the system dynamics model is derived using Hamilton principle. Its standard state-space representation is obtained for characteristic analysis, controller design, and simulation. Secondly, a genetic algorithm (GA) is applied to optimize and tune the control gain parameters adaptively based on the specific performance index. Numerical simulations are performed on the pneumatic driving elastic beam system, using the established model and controller with tuned gains by GA optimization process. Finally, an experimental setup for the flexible beam driven by a pneumatic rod cylinder is constructed. Experiments for suppressing vibrations of the flexible beam are conducted. Theoretical analysis, numerical simulation and experimental results demonstrate that the proposed pneumatic drive scheme and the adopted control algorithms are feasible. The large amplitude vibration of the first bending mode can be suppressed effectively.
Characteristics of InGaN-Based UV/Blue/Green/Amber/Red Light-Emitting Diodes
NASA Astrophysics Data System (ADS)
Mukai, Takashi; Yamada, Motokazu; ShujiNakamura, ShujiNakamura
1999-07-01
Highly efficient light-emitting diodes (LEDs) emitting ultraviolet (UV), blue, green, amber and red light have been obtained through the use of InGaN active layers instead of GaN active layers. Red LEDs with an emission wavelength of 675 nm, whose emission energy was almost equal to the band-gap energy of InN, were fabricated. The dependence of the emission wavelength of the red LED on the current (blue shift) is dominated by both the band-filling effect of the localized energy states and the screening effect of the piezoelectric field. In the red LEDs, a phase separation of the InGaN layer was clearly observed in the emission spectra, in which blue and red emission peaks appeared. In terms of the temperature dependence of the LEDs, InGaN LEDs are superior to the conventional red and amber LEDs due to a large band offset between the active and cladding layers. The localized energy states caused by In composition fluctuation in the InGaN active layer contribute to the high efficiency of the InGaN-based emitting devices, in spite of the large number of threading dislocations and a large effect of the piezoelectric field. The blue and green InGaN-based LEDs had the highest external quantum efficiencies of 18% and 20% at low currents of 0.6 mA and 0.1 mA, respectively.
Staff line detection and revision algorithm based on subsection projection and correlation algorithm
NASA Astrophysics Data System (ADS)
Yang, Yin-xian; Yang, Ding-li
2013-03-01
Staff line detection plays a key role in OMR technology, and is the precon-ditions of subsequent segmentation 1& recognition of music sheets. For the phenomena of horizontal inclination & curvature of staff lines and vertical inclination of image, which often occur in music scores, an improved approach based on subsection projection is put forward to realize the detection of original staff lines and revision in an effect to implement staff line detection more successfully. Experimental results show the presented algorithm can detect and revise staff lines fast and effectively.
The use of knowledge-based Genetic Algorithm for starting time optimisation in a lot-bucket MRP
NASA Astrophysics Data System (ADS)
Ridwan, Muhammad; Purnomo, Andi
2016-01-01
In production planning, Material Requirement Planning (MRP) is usually developed based on time-bucket system, a period in the MRP is representing the time and usually weekly. MRP has been successfully implemented in Make To Stock (MTS) manufacturing, where production activity must be started before customer demand is received. However, to be implemented successfully in Make To Order (MTO) manufacturing, a modification is required on the conventional MRP in order to make it in line with the real situation. In MTO manufacturing, delivery schedule to the customers is defined strictly and must be fulfilled in order to increase customer satisfaction. On the other hand, company prefers to keep constant number of workers, hence production lot size should be constant as well. Since a bucket in conventional MRP system is representing time and usually weekly, hence, strict delivery schedule could not be accommodated. Fortunately, there is a modified time-bucket MRP system, called as lot-bucket MRP system that proposed by Casimir in 1999. In the lot-bucket MRP system, a bucket is representing a lot, and the lot size is preferably constant. The time to finish every lot could be varying depends on due date of lot. Starting time of a lot must be determined so that every lot has reasonable production time. So far there is no formal method to determine optimum starting time in the lot-bucket MRP system. Trial and error process usually used for it but some time, it causes several lots have very short production time and the lot-bucket MRP would be infeasible to be executed. This paper presents the use of Genetic Algorithm (GA) for optimisation of starting time in a lot-bucket MRP system. Even though GA is well known as powerful searching algorithm, however, improvement is still required in order to increase possibility of GA in finding optimum solution in shorter time. A knowledge-based system has been embedded in the proposed GA as the improvement effort, and it is proven that the
Multi-Objective Community Detection Based on Memetic Algorithm
2015-01-01
Community detection has drawn a lot of attention as it can provide invaluable help in understanding the function and visualizing the structure of networks. Since single objective optimization methods have intrinsic drawbacks to identifying multiple significant community structures, some methods formulate the community detection as multi-objective problems and adopt population-based evolutionary algorithms to obtain multiple community structures. Evolutionary algorithms have strong global search ability, but have difficulty in locating local optima efficiently. In this study, in order to identify multiple significant community structures more effectively, a multi-objective memetic algorithm for community detection is proposed by combining multi-objective evolutionary algorithm with a local search procedure. The local search procedure is designed by addressing three issues. Firstly, nondominated solutions generated by evolutionary operations and solutions in dominant population are set as initial individuals for local search procedure. Then, a new direction vector named as pseudonormal vector is proposed to integrate two objective functions together to form a fitness function. Finally, a network specific local search strategy based on label propagation rule is expanded to search the local optimal solutions efficiently. The extensive experiments on both artificial and real-world networks evaluate the proposed method from three aspects. Firstly, experiments on influence of local search procedure demonstrate that the local search procedure can speed up the convergence to better partitions and make the algorithm more stable. Secondly, comparisons with a set of classic community detection methods illustrate the proposed method can find single partitions effectively. Finally, the method is applied to identify hierarchical structures of networks which are beneficial for analyzing networks in multi-resolution levels. PMID:25932646
A genetic algorithm based multi-objective shape optimization scheme for cementless femoral implant.
Chanda, Souptick; Gupta, Sanjay; Kumar Pratihar, Dilip
2015-03-01
The shape and geometry of femoral implant influence implant-induced periprosthetic bone resorption and implant-bone interface stresses, which are potential causes of aseptic loosening in cementless total hip arthroplasty (THA). Development of a shape optimization scheme is necessary to achieve a trade-off between these two conflicting objectives. The objective of this study was to develop a novel multi-objective custom-based shape optimization scheme for cementless femoral implant by integrating finite element (FE) analysis and a multi-objective genetic algorithm (GA). The FE model of a proximal femur was based on a subject-specific CT-scan dataset. Eighteen parameters describing the nature of four key sections of the implant were identified as design variables. Two objective functions, one based on implant-bone interface failure criterion, and the other based on resorbed proximal bone mass fraction (BMF), were formulated. The results predicted by the two objective functions were found to be contradictory; a reduction in the proximal bone resorption was accompanied by a greater chance of interface failure. The resorbed proximal BMF was found to be between 23% and 27% for the trade-off geometries as compared to ∼39% for a generic implant. Moreover, the overall chances of interface failure have been minimized for the optimal designs, compared to the generic implant. The adaptive bone remodeling was also found to be minimal for the optimally designed implants and, further with remodeling, the chances of interface debonding increased only marginally.
Role of nanoscale AlN and InN for the microwave characteristics of AlGaN/(Al,In)N/GaN-based HEMT
Lenka, T. R. Panda, A. K.
2011-09-15
A new AlGaN/GaN-based high electron mobility transistor (HEMT) is proposed and its micro-wave characteristics are discussed by introducing a nanoscale AlN or InN layer to study the potential improvement in their high frequency performance. The 2DEG transport mechanism including various sub-band calculations for both (Al,In) N-based HEMTs are also discussed in the paper. Apart from direct current characteristics of the proposed HEMT, various microwave parameters such as transconductance, unit current gain (h{sub 21} = 1) cut-off frequency (f{sub t}), high power-gain frequency (f{sub max}). Masons available/stable gain and masons unilateral gain are also discussed for both devices to understand its suitable deployment in microwave frequency range.
Voronoi-based localisation algorithm for mobile sensor networks
NASA Astrophysics Data System (ADS)
Guan, Zixiao; Zhang, Yongtao; Zhang, Baihai; Dong, Lijing
2016-11-01
Localisation is an essential and important part in wireless sensor networks (WSNs). Many applications require location information. So far, there are less researchers studying on mobile sensor networks (MSNs) than static sensor networks (SSNs). However, MSNs are required in more and more areas such that the number of anchor nodes can be reduced and the location accuracy can be improved. In this paper, we firstly propose a range-free Voronoi-based Monte Carlo localisation algorithm (VMCL) for MSNs. We improve the localisation accuracy by making better use of the information that a sensor node gathers. Then, we propose an optimal region selection strategy of Voronoi diagram based on VMCL, called ORSS-VMCL, to increase the efficiency and accuracy for VMCL by adapting the size of Voronoi area during the filtering process. Simulation results show that the accuracy of these two algorithms, especially ORSS-VMCL, outperforms traditional MCL.
Manifold learning based registration algorithms applied to multimodal images.
Azampour, Mohammad Farid; Ghaffari, Aboozar; Hamidinekoo, Azam; Fatemizadeh, Emad
2014-01-01
Manifold learning algorithms are proposed to be used in image processing based on their ability in preserving data structures while reducing the dimension and the exposure of data structure in lower dimension. Multi-modal images have the same structure and can be registered together as monomodal images if only structural information is shown. As a result, manifold learning is able to transform multi-modal images to mono-modal ones and subsequently do the registration using mono-modal methods. Based on this application, in this paper novel similarity measures are proposed for multi-modal images in which Laplacian eigenmaps are employed as manifold learning algorithm and are tested against rigid registration of PET/MR images. Results show the feasibility of using manifold learning as a way of calculating the similarity between multimodal images.
Iris Segmentation and Normalization Algorithm Based on Zigzag Collarette
NASA Astrophysics Data System (ADS)
Rizky Faundra, M.; Ratna Sulistyaningrum, Dwi
2017-01-01
In this paper, we proposed iris segmentation and normalization algorithm based on the zigzag collarette. First of all, iris images are processed by using Canny Edge Detection to detect pupil edge, then finding the center and the radius of the pupil with the Hough Transform Circle. Next, isolate important part in iris based zigzag collarette area. Finally, Daugman Rubber Sheet Model applied to get the fixed dimensions or normalization iris by transforming cartesian into polar format and thresholding technique to remove eyelid and eyelash. This experiment will be conducted with a grayscale eye image data taken from a database of iris-Chinese Academy of Sciences Institute of Automation (CASIA). Data iris taken is the data reliable and widely used to study the iris biometrics. The result show that specific threshold level is 0.3 have better accuracy than other, so the present algorithm can be used to segmentation and normalization zigzag collarette with accuracy is 98.88%
A survey on evolutionary algorithm based hybrid intelligence in bioinformatics.
Li, Shan; Kang, Liying; Zhao, Xing-Ming
2014-01-01
With the rapid advance in genomics, proteomics, metabolomics, and other types of omics technologies during the past decades, a tremendous amount of data related to molecular biology has been produced. It is becoming a big challenge for the bioinformatists to analyze and interpret these data with conventional intelligent techniques, for example, support vector machines. Recently, the hybrid intelligent methods, which integrate several standard intelligent approaches, are becoming more and more popular due to their robustness and efficiency. Specifically, the hybrid intelligent approaches based on evolutionary algorithms (EAs) are widely used in various fields due to the efficiency and robustness of EAs. In this review, we give an introduction about the applications of hybrid intelligent methods, in particular those based on evolutionary algorithm, in bioinformatics. In particular, we focus on their applications to three common problems that arise in bioinformatics, that is, feature selection, parameter estimation, and reconstruction of biological networks.
A Survey on Evolutionary Algorithm Based Hybrid Intelligence in Bioinformatics
Li, Shan; Zhao, Xing-Ming
2014-01-01
With the rapid advance in genomics, proteomics, metabolomics, and other types of omics technologies during the past decades, a tremendous amount of data related to molecular biology has been produced. It is becoming a big challenge for the bioinformatists to analyze and interpret these data with conventional intelligent techniques, for example, support vector machines. Recently, the hybrid intelligent methods, which integrate several standard intelligent approaches, are becoming more and more popular due to their robustness and efficiency. Specifically, the hybrid intelligent approaches based on evolutionary algorithms (EAs) are widely used in various fields due to the efficiency and robustness of EAs. In this review, we give an introduction about the applications of hybrid intelligent methods, in particular those based on evolutionary algorithm, in bioinformatics. In particular, we focus on their applications to three common problems that arise in bioinformatics, that is, feature selection, parameter estimation, and reconstruction of biological networks. PMID:24729969
Shi, Bo-Lin; Qing, Zhao-Shen; Ji, Bao-Ping; Tu, Zhen-Hua; Zhu, Da-Zhou; Yin, Jing-Yuan
2009-03-01
In the present work, "Fuji" apples from Shandong Yantai were used to take the diffuse reflection spectra by FT-NIR PLS components (i.e., factors) were computed by nonlinear iterative partial least squares (NIPALS) and the number of latent factors (LV) was optimized by a leave-one-out cross-validation procedure on the calibration set. On the basis of partial least square (PLS) regression, the models for apples' firmness before and after peeling were compared. In order to eliminate the effect of apple peel on prediction, spectral pretreatments such as multiplicative scatter correction (MSC), derivative, direct orthogonal signal correction (DOSC) and wavelengths selection based on genetic algorithms (GA) were used. Finally, the results of different spectral treatments were compared. In conclusion, the RSDp of models for apples before and after peeling was 16.71% and 12.36%, respectively, suggesting that the apple peel played a negative role in constructing good predictive models. Moreover, the traditional spectral pretreatments (such as MSC, derivative) can hardly resolve the problem. In this research, GA-DOSC played an important role in reducing the interference of apple peel. It not only reduced the wavelength variables from 1480 to 36, but also reduced the latent variables from 5 to 1. The correlation coefficient (r) was improved from 0.753 to 0.805, and the RMSECV and RMESP were reduced from 1.019 kgf x cm(-2) and 1.197 kgf x cm(-2) to 0.919 kgf x cm(-2) and 0.924 kgf x cm(-2), respectively. Especially, the RSDp was decreased remarkably from 16.71% to 12.89%. The performance of the model after GA-DOSC treatment was similar to the model using spectra of apple flesh (12.36%). It was concluded that the prediction precision based on GA-DOSC satisfied the requirement of NIR non-destruction determination of apples firmness.
Historical feature pattern extraction based network attack situation sensing algorithm.
Zeng, Yong; Liu, Dacheng; Lei, Zhou
2014-01-01
The situation sequence contains a series of complicated and multivariate random trends, which are very sudden, uncertain, and difficult to recognize and describe its principle by traditional algorithms. To solve the above questions, estimating parameters of super long situation sequence is essential, but very difficult, so this paper proposes a situation prediction method based on historical feature pattern extraction (HFPE). First, HFPE algorithm seeks similar indications from the history situation sequence recorded and weighs the link intensity between occurred indication and subsequent effect. Then it calculates the probability that a certain effect reappears according to the current indication and makes a prediction after weighting. Meanwhile, HFPE method gives an evolution algorithm to derive the prediction deviation from the views of pattern and accuracy. This algorithm can continuously promote the adaptability of HFPE through gradual fine-tuning. The method preserves the rules in sequence at its best, does not need data preprocessing, and can track and adapt to the variation of situation sequence continuously.
An adaptive gyroscope-based algorithm for temporal gait analysis.
Greene, Barry R; McGrath, Denise; O'Neill, Ross; O'Donovan, Karol J; Burns, Adrian; Caulfield, Brian
2010-12-01
Body-worn kinematic sensors have been widely proposed as the optimal solution for portable, low cost, ambulatory monitoring of gait. This study aims to evaluate an adaptive gyroscope-based algorithm for automated temporal gait analysis using body-worn wireless gyroscopes. Gyroscope data from nine healthy adult subjects performing four walks at four different speeds were then compared against data acquired simultaneously using two force plates and an optical motion capture system. Data from a poliomyelitis patient, exhibiting pathological gait walking with and without the aid of a crutch, were also compared to the force plate. Results show that the mean true error between the adaptive gyroscope algorithm and force plate was -4.5 ± 14.4 ms and 43.4 ± 6.0 ms for IC and TC points, respectively, in healthy subjects. Similarly, the mean true error when data from the polio patient were compared against the force plate was -75.61 ± 27.53 ms and 99.20 ± 46.00 ms for IC and TC points, respectively. A comparison of the present algorithm against temporal gait parameters derived from an optical motion analysis system showed good agreement for nine healthy subjects at four speeds. These results show that the algorithm reported here could constitute the basis of a robust, portable, low-cost system for ambulatory monitoring of gait.
Single-Pass Clustering Algorithm Based on Storm
NASA Astrophysics Data System (ADS)
Fang, LI; Longlong, DAI; Zhiying, JIANG; Shunzi, LI
2017-02-01
The dramatically increasing volume of data makes the computational complexity of traditional clustering algorithm rise rapidly accordingly, which leads to the longer time. So as to improve the efficiency of the stream data clustering, a distributed real-time clustering algorithm (S-Single-Pass) based on the classic Single-Pass [1] algorithm and Storm [2] computation framework was designed in this paper. By employing this kind of method in the Topic Detection and Tracking (TDT) [3], the real-time performance of topic detection arises effectively. The proposed method splits the clustering process into two parts: one part is to form clusters for the multi-thread parallel clustering, the other part is to merge the generated clusters in the previous process and update the global clusters. Through the experimental results, the conclusion can be drawn that the proposed method have the nearly same clustering accuracy as the traditional Single-Pass algorithm and the clustering accuracy remains steady, computing rate increases linearly when increasing the number of cluster machines and nodes (processing threads).
A disturbance based control/structure design algorithm
NASA Technical Reports Server (NTRS)
Mclaren, Mark D.; Slater, Gary L.
1989-01-01
Some authors take a classical approach to the simultaneous structure/control optimization by attempting to simultaneously minimize the weighted sum of the total mass and a quadratic form, subject to all of the structural and control constraints. Here, the optimization will be based on the dynamic response of a structure to an external unknown stochastic disturbance environment. Such a response to excitation approach is common to both the structural and control design phases, and hence represents a more natural control/structure optimization strategy than relying on artificial and vague control penalties. The design objective is to find the structure and controller of minimum mass such that all the prescribed constraints are satisfied. Two alternative solution algorithms are presented which have been applied to this problem. Each algorithm handles the optimization strategy and the imposition of the nonlinear constraints in a different manner. Two controller methodologies, and their effect on the solution algorithm, will be considered. These are full state feedback and direct output feedback, although the problem formulation is not restricted solely to these forms of controller. In fact, although full state feedback is a popular choice among researchers in this field (for reasons that will become apparent), its practical application is severely limited. The controller/structure interaction is inserted by the imposition of appropriate closed-loop constraints, such as closed-loop output response and control effort constraints. Numerical results will be obtained for a representative flexible structure model to illustrate the effectiveness of the solution algorithms.
The performance improvement of SRAF placement rules using GA optimization
NASA Astrophysics Data System (ADS)
Xu, Yan; Zhang, Bidan; Wang, Changan; Wilkinson, William; Bolton, John
2016-10-01
In this paper, genetic algorithm (GA) method is applied to both positive and negative Sub Resolution Assist Features (SRAF) insertion rules. Simulation results and wafer data demonstrated that the optimized SRAF rules helped resolve the SRAF printing issues while dramatically improving the process window of the working layer. To find out the best practice to place the SRAF, model-based SRAF (MBSRAF), rule-based SRAF (RBSRAF) with pixelated OPC simulation and RBSRAF with GA method are thoroughly compared. The result shows the apparent advantage of RBSRAF with GA method.
Two Quantum Direct Communication Protocols Based on Quantum Search Algorithm
NASA Astrophysics Data System (ADS)
Xu, Shu-Jiang; Chen, Xiu-Bo; Wang, Lian-Hai; Niu, Xin-Xin; Yang, Yi-Xian
2015-07-01
Based on the properties of two-qubit Grover's quantum search algorithm, we propose two quantum direct communication protocols, including a deterministic secure quantum communication and a quantum secure direct communication protocol. Secret messages can be directly sent from the sender to the receiver by using two-qubit unitary operations and the single photon measurement with one of the proposed protocols. Theoretical analysis shows that the security of the proposed protocols can be highly ensured.
Incremental Window-based Protein Sequence Alignment Algorithms
2006-03-23
Huzefa Rangwala and George Karypis March 23, 2006 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of... Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Incremental Window-based Protein Sequence Alignment Algorithms Huzefa Rangwala and George Karypis...Then it per- forms a series of iterations in which it performs the following three steps: First, it extracts from ’ the residue-pair with the highest
DNA-based watermarks using the DNA-Crypt algorithm
Heider, Dominik; Barnekow, Angelika
2007-01-01
Background The aim of this paper is to demonstrate the application of watermarks based on DNA sequences to identify the unauthorized use of genetically modified organisms (GMOs) protected by patents. Predicted mutations in the genome can be corrected by the DNA-Crypt program leaving the encrypted information intact. Existing DNA cryptographic and steganographic algorithms use synthetic DNA sequences to store binary information however, although these sequences can be used for authentication, they may change the target DNA sequence when introduced into living organisms. Results The DNA-Crypt algorithm and image steganography are based on the same watermark-hiding principle, namely using the least significant base in case of DNA-Crypt and the least significant bit in case of the image steganography. It can be combined with binary encryption algorithms like AES, RSA or Blowfish. DNA-Crypt is able to correct mutations in the target DNA with several mutation correction codes such as the Hamming-code or the WDH-code. Mutations which can occur infrequently may destroy the encrypted information, however an integrated fuzzy controller decides on a set of heuristics based on three input dimensions, and recommends whether or not to use a correction code. These three input dimensions are the length of the sequence, the individual mutation rate and the stability over time, which is represented by the number of generations. In silico experiments using the Ypt7 in Saccharomyces cerevisiae shows that the DNA watermarks produced by DNA-Crypt do not alter the translation of mRNA into protein. Conclusion The program is able to store watermarks in living organisms and can maintain the original information by correcting mutations itself. Pairwise or multiple sequence alignments show that DNA-Crypt produces few mismatches between the sequences similar to all steganographic algorithms. PMID:17535434
Fast wavelet based algorithms for linear evolution equations
NASA Technical Reports Server (NTRS)
Engquist, Bjorn; Osher, Stanley; Zhong, Sifen
1992-01-01
A class was devised of fast wavelet based algorithms for linear evolution equations whose coefficients are time independent. The method draws on the work of Beylkin, Coifman, and Rokhlin which they applied to general Calderon-Zygmund type integral operators. A modification of their idea is applied to linear hyperbolic and parabolic equations, with spatially varying coefficients. A significant speedup over standard methods is obtained when applied to hyperbolic equations in one space dimension and parabolic equations in multidimensions.
Physics-based signal processing algorithms for micromachined cantilever arrays
Candy, James V; Clague, David S; Lee, Christopher L; Rudd, Robert E; Burnham, Alan K; Tringe, Joseph W
2013-11-19
A method of using physics-based signal processing algorithms for micromachined cantilever arrays. The methods utilize deflection of a micromachined cantilever that represents the chemical, biological, or physical element being detected. One embodiment of the method comprises the steps of modeling the deflection of the micromachined cantilever producing a deflection model, sensing the deflection of the micromachined cantilever and producing a signal representing the deflection, and comparing the signal representing the deflection with the deflection model.
Trust-based Anonymous Communication: Adversary Models and Routing Algorithms
2011-10-01
Trust-based Anonymous Communication: Adversary Models and Routing Algorithms Aaron Johnson ∗ Paul Syverson U.S. Naval Research Laboratory... anonymous communication, and in particular onion routing, although we expect the approach to apply more broadly. This paper provides two main...contributions. First, we present a novel model to consider the various security con- cerns for route selection in anonymity networks when users vary their trust
NCUBE - A clustering algorithm based on a discretized data space
NASA Technical Reports Server (NTRS)
Eigen, D. J.; Northouse, R. A.
1974-01-01
Cluster analysis involves the unsupervised grouping of data. The process provides an automatic procedure for generating known training samples for pattern classification. NCUBE, the clustering algorithm presented, is based upon the concept of imposing a gridwork on the data space. The NCUBE computer implementation of this concept provides an easily derived form of piecewise linear discrimination. This piecewise linear discrimination permits the separation of some types of data groups that are not linearly separable.
Terrestrial Concentrator PV Modules Based on GaInP/GaAs/Ge TJ Cells and Minilens Panels
Rumyantsev, V. D.; Sadchikov, N. A.; Chalov, A. E.; Ionova, E. A.; Friedman, D. J.; Glenn, G.
2006-01-01
This paper is a description of research activity in the field of cost-effective modules realizing the concept of very high solar concentration with small-aperture area Fresnel lenses and multijunction III-V cells. Structural simplicity and 'all-glass' design are the guiding principles of the corresponding development. The advanced concentrator modules are made with silicone Fresnel lens panels (from 8 up to 144 lenses, each lens is 4 times 4 cm{sup 2} in aperture area) with composite structure. GaInP/GaAs/Ge triple-junction cells with average efficiencies of 31.1 and 34.7% at 1000 suns were used for the modules. Conversion efficiency as high as 26.3% has been measured indoors in a test module using a newly developed large-area solar simulator.
Performance-limiting factors for GaAs-based single nanowire photovoltaics.
Wang, Xufeng; Khan, Mohammad Ryyan; Lundstrom, Mark; Bermel, Peter
2014-03-10
GaAs nanowires (NWs) offer the possibility of decoupling light absorption from charge transport for high-performance photovoltaic (PV) devices. However, it is still an open question as to whether these devices can exceed the Shockley-Queisser efficiency limit for single-junction PV. In this work, single standing GaAs-based nanowire solar cells in both radial and vertical junction configurations is analyzed and compared to a planar thin-film design. By using a self-consistent, electrical-optically coupled 3D simulator, we show the design principles for nanowire and planar solar cells are significantly different; nanowire solar cells are vulnerable to surface and contact recombination, while planar solar cells suffer significant losses due to imperfect backside mirror reflection. Overall, the ultimate efficiency of the GaAs nanowire solar cell with radial and vertical junction is not expected to exceed that of the thin-film design, with both staying below the Shockley-Queisser limit.
EUV detectors based on AlGaN-on-Si Schottky photodiodes
NASA Astrophysics Data System (ADS)
Malinowski, P. E.; Duboz, J.-Y.; De Moor, P.; Minoglou, K.; John, J.; Srivastava, P.; Semond, F.; Frayssinet, E.; BenMoussa, A.; Giordanengo, B.; Van Hoof, C.; Mertens, R.
2011-05-01
Photodetectors designed for the Extreme Ultraviolet (EUV) range with the Aluminum Gallium Nitride (AlGaN) active layer are reported. AlGaN layers were grown by Molecular Beam Epitaxy (MBE) on Si(111) wafers. Different device structures were designed and fabricated, including single pixel detectors and 2D detector arrays. Sensitivity in different configurations was demonstrated, including front- and backside illumination. The latter was possible after integration of the detector chips with dedicated Si-based readouts using high-density In bump arrays and flip-chip bonding. In order to avoid radiation absorption in silicon, the substrate was removed, leaving a submicron-thin membrane of AlGaN active layer suspended on top of an array of In bumps. Optoelectrical characterization was performed using different UV light sources, also in the synchrotron beamlines providing radiation down to the EUV range. The measured cut-off wavelength of the active layer used was 280 nm, with a rejection ratio of the visible radiation above 3 orders of magnitude. Spectral responsivity and quantum efficiency values
Three-dimensional cathodoluminescence characterization of a semipolar GaInN based LED sample
NASA Astrophysics Data System (ADS)
Hocker, Matthias; Maier, Pascal; Tischer, Ingo; Meisch, Tobias; Caliebe, Marian; Scholz, Ferdinand; Mundszinger, Manuel; Kaiser, Ute; Thonke, Klaus
2017-02-01
A semipolar GaInN based light-emitting diode (LED) sample is investigated by three-dimensionally resolved cathodoluminescence (CL) mapping. Similar to conventional depth-resolved CL spectroscopy (DRCLS), the spatial resolution perpendicular to the sample surface is obtained by calibration of the CL data with Monte-Carlo-simulations (MCSs) of the primary electron beam scattering. In addition to conventional MCSs, we take into account semiconductor-specific processes like exciton diffusion and the influence of the band gap energy. With this method, the structure of the LED sample under investigation can be analyzed without additional sample preparation, like cleaving of cross sections. The measurement yields the thickness of the p-type GaN layer, the vertical position of the quantum wells, and a defect analysis of the underlying n-type GaN, including the determination of the free charge carrier density. The layer arrangement reconstructed from the DRCLS data is in good agreement with the nominal parameters defined by the growth conditions.
Characterization of AlInGaN-based 405nm distributed feedback laser diodes
NASA Astrophysics Data System (ADS)
Masui, S.; Tsukayama, K.; Yanamoto, T.; Kozaki, T.; Nagahama, S.; Mukai, T.
2008-02-01
The first-order AlInGaN 405 nm distributed feed-back (DFB) laser diodes were grown on the low dislocation freestanding GaN substrates by a metal organic chemical vapor deposition method. The first-order diffractive grating whose period was 80 nm was formed into an n-type cladding layer. The fine tooth shape grating was obtained by the EB lithography and the dry etching. No additional threading dislocation could be found at the regrowth interface. As a result, we succeeded in demonstrating the first-order AlInGaN based 405 nm DFB laser diodes under cw operation. The threshold current and the slope efficiency were 22 mA and 1.44 W/A under continuous wave operation at 25 °C, respectively. The single longitudinal mode emission was maintained up to an output power of 60 mW. The fundamental transverse mode operation with a single longitudinal mode was observed in the temperature range from 15 °C to 85 °C at an output power of 30 mW. The lifetime was estimated to be 4000 h by the lifetime test which was carried out under the condition of a constant output power of 30mW at 25 °C for 1000 h. The single longitudinal mode emission was maintained for the life tested DFB laser diodes.
4-sq cm CuInGaSe2 based solar cells
NASA Astrophysics Data System (ADS)
Devaney, W. E.; Stewart, J. M.; Chen, W. S.
Polycrystalline thin-film solar cells with the structure ZnO/CdZnS/CuInGaSe2 have been fabricated with larger single-cell areas than have been previously reported. A cell with an area of 4 sq cm has been made with an AM1.5, 100 mW/sq cm total area conversion efficiency of 11.1 percent (12.0 percent active area) and an AM0 conversion efficiency of 10.0 percent (10.9 percent active area). The CuInGaSe2 layer had a gallium to indium ratio of 0.26:0.74 with a bandgap of approximately 1.15 eV. The cells use an isolated tab design for the negative (grid) contact, demonstrating the ability to pattern the semiconductor layers. Such CuInGaSe2-based cells may be suitable for large-area terrestrial applications and for single-junction space cell applications.
NASA Astrophysics Data System (ADS)
Hamaguchi, Tatsushi; Nakajima, Hiroshi; Ito, Masamichi; Mitomo, Jugo; Satou, Susumu; Fuutagawa, Noriyuki; Narui, Hironobu
2016-12-01
Boron ion implantation, which is used for confining carriers in gallium nitride (GaN)-based vertical-cavity surface-emitting laser diodes (VCSELs), was studied. Detailed analysis indicated that boron ion implantation of GaN increases GaN’s absorption coefficient from zero to 800 cm-1 and its refractive index from 2.45 to 2.51 at the surface of the wafer at a wavelength of 453 nm. The depth profile of boron obtained by secondary ion mass spectroscopy (SIMS) showed an exponential decrease toward the bottom of the wafer. Assuming that the changes in optical parameters caused by implantation are proportional to the concentration of boron in GaN, the boron ion implantation applied to GaN-VCSELs causes optical absorption of 0.04% per round trip in the cavity and extends the light path of the cavity by 2.2 nm, both of which apparently have negligible impact on the operation of GaN-VCSELs. The implanted boron ions pass through the active regions, introducing non-radiative recombination centers at the edges of those active regions made of InGaN multi-quantum wells, which, however, does not cause significant current injection loss.
Current spreading in GaN-based light-emitting diodes
NASA Astrophysics Data System (ADS)
Li, Qiang; Li, Yufeng; Zhang, Minyan; Ding, Wen; Yun, Feng
2016-11-01
We have investigated the factors affecting the current spreading length (CSL) in GaN-based light-emitting diodes (LEDs) by deriving theoretical expressions and performing simulations with APSYS. For mesa-structure LEDs, the effects of both indium tin oxide (ITO) and n-GaN are taken into account for the first time, and a new Q factor is introduced to explain the effects of different current flow paths on the CSL. The calculations and simulations show that the CSL can be enhanced by increasing the thickness of the ITO layer and resistivity of the n-GaN layer, or by reducing the resistivity of the ITO layer and thickness of the n-GaN layer. The results provide theoretical support for calculating the CSL clearly and directly. For vertical-structure LEDs, the effects of resistivity and thickness of the CSL on the internal quantum efficiency (IQE) have been analyzed. The theoretical expression relating current density and the parameters (resistivity and thickness) of the CSL is obtained, and the results are then verified by simulation. The IQE under different current injection conditions is discussed. The effects of CSL resistivity play a key role at high current injection, and there is an optimal thickness for the largest IQE only at a low current injection. Project supported by the National High Technology Research and Development Program of China (Grant No. 2014AA032608), the National Natural Science Foundation of China (Grant No. 61404101), and the China Postdoctoral Science Foundation (Grant No. 2014M562415).
Band structure calculation of GaSe-based nanostructures using empirical pseudopotential method
NASA Astrophysics Data System (ADS)
Osadchy, A. V.; Volotovskiy, S. G.; Obraztsova, E. D.; Savin, V. V.; Golovashkin, D. L.
2016-08-01
In this paper we present the results of band structure computer simulation of GaSe- based nanostructures using the empirical pseudopotential method. Calculations were performed using a specially developed software that allows performing simulations using cluster computing. Application of this method significantly reduces the demands on computing resources compared to traditional approaches based on ab-initio techniques and provides receiving the adequate comparable results. The use of cluster computing allows to obtain information for structures that require an explicit account of a significant number of atoms, such as quantum dots and quantum pillars.
Improved GaSb-based quantum well laser performance through metamorphic growth on GaAs substrates
Richardson, Christopher J. K. He, Lei; Apiratikul, Paveen; Siwak, Nathan P.; Leavitt, Richard P.
2015-03-09
The promise of the metamorphic growth paradigm is to enable design freedom of the substrate selection criteria beyond current choices that are limited by lattice matching requirements. A demonstration of this emerging degree of freedom is reported here by directly comparing identical laser structures grown both pseudomorphically on a GaSb substrate and metamorphically on a GaAs substrate. Improved thermal performance of the metamorphic laser material enables a higher output power before thermal roll-over begins. These performance gains are demonstrated in minimally processed gain-guided broad-area type-I lasers emitting close to 2-μm wavelengths and mounted p-side up. Continuous wave measurements at room temperature yield a T{sub 0} of 145 K and peak output power of 192 mW from metamorphic lasers, compared to a T{sub 0} of 96 K and peak output power of 164 mW from identical lasers grown pseudomorphically on GaSb.
Schmid, A. Schroeter, Ch.; Otto, R.; Heitmann, J.; Schuster, M.; Klemm, V.; Rafaja, D.
2015-02-02
Ohmic contacts with V/Al/Ni/Au and V/Ni/Au metalization schemes were deposited on AlGaN/GaN heterostructures. The dependence of the specific contact resistance on the annealing conditions and the V:Al thickness ratio was shown. For an optimized electrode stack, a low specific contact resistance of 8.9 × 10{sup −6} Ω cm{sup 2} was achieved at an annealing temperature of 650 °C. Compared to the conventional Ti/Al/Ni/Au contact, this is a reduction of 150 K. The microstructure and contact formation at the AlGaN/metal interface were investigated by transmission electron microscopy including high-resolution micrographs and energy dispersive X-ray analysis. It was shown that for low-resistive contacts, the resistivity of the metalization has to be taken into account. The V:Al thickness ratio has an impact on the formation of different intermetallic phases and thus is crucial for establishing ohmic contacts at reduced annealing temperatures.
Investigation of p-type depletion doping for InGaN/GaN-based light-emitting diodes
NASA Astrophysics Data System (ADS)
Zhang, Yiping; Zhang, Zi-Hui; Tan, Swee Tiam; Hernandez-Martinez, Pedro Ludwig; Zhu, Binbin; Lu, Shunpeng; Kang, Xue Jun; Sun, Xiao Wei; Demir, Hilmi Volkan
2017-01-01
Due to the limitation of the hole injection, p-type doping is essential to improve the performance of InGaN/GaN multiple quantum well light-emitting diodes (LEDs). In this work, we propose and show a depletion-region Mg-doping method. Here we systematically analyze the effectiveness of different Mg-doping profiles ranging from the electron blocking layer to the active region. Numerical computations show that the Mg-doping decreases the valence band barrier for holes and thus enhances the hole transportation. The proposed depletion-region Mg-doping approach also increases the barrier height for electrons, which leads to a reduced electron overflow, while increasing the hole concentration in the p-GaN layer. Experimentally measured external quantum efficiency indicates that Mg-doping position is vitally important. The doping in or adjacent to the quantum well degrades the LED performance due to Mg diffusion, increasing the corresponding nonradiative recombination, which is well supported by the measured carrier lifetimes. The experimental results are well numerically reproduced by modifying the nonradiative recombination lifetimes, which further validate the effectiveness of our approach.
NASA Astrophysics Data System (ADS)
Liou, Cheng-Dar; Hsieh, Yi-Chih; Chen, Yin-Yann
2013-01-01
This article investigates the two-machine flow-shop group scheduling problem (GSP) with sequence-dependent setup and removal times, and job transportation times between machines. The objective is to minimise the total completion time. As known, this problem is an NP-hard problem and generalises the typical two-machine GSPs. In this article, a new encoding scheme based on permutation representation is proposed to transform a random job permutation to a feasible permutation for GSPs. The proposed encoding scheme simultaneously determines both the sequence of jobs in each group and the sequence of groups. By reasonably combining particle swarm optimisation (PSO) and genetic algorithm (GA), we develop a fast and easily implemented hybrid algorithm (HA) for solving the considered problems. The effectiveness and efficiency of the proposed HA are demonstrated and compared with those of standard PSO and GA by numerical results of various tested instances with group numbers up to 20. In addition, three different lower bounds are developed to evaluate the solution quality of the HA. Limited numerical results indicate that the proposed HA is a viable and effective approach for the studied two-machine flow-shop group scheduling problem.
A three solar cell system based on a self-supporting, transparent AlGaAs top solar cell
NASA Technical Reports Server (NTRS)
Negley, Gerald H.; Rhoads, Sandra L.; Terranova, Nancy E.; Mcneely, James B.; Barnett, Allen M.
1989-01-01
Development of a three solar cell stack can lead to practical efficiencies greater than 30 percent (1x,AM0). A theoretical efficiency limitation of 43.7 percent at AM0 and one sun is predicted by this model. Including expected losses, a practical system efficiency of 36.8 percent is anticipated. These calculations are based on a 1.93eV/1.43eV/0.89eV energy band gap combination. AlGaAs/GaAs/GaInAsP materials can be used with a six-terminal wiring configuration. The key issues for multijunction solar cells are the top and middle solar cell performance and the sub-bandgap transparency. AstroPower has developed a technique to fabricate AlGaAs solar cells on rugged, self-supporting, transparent AlGaAs substrates. Top solar cell efficiencies greater than 11 percent AM0 have been achieved. State-of-the-art GaAs or InP devices will be used for the middle solar cell. GaInAsP will be used to fabricate the bottom solar cell. This material is lattice-matched to InP and offers a wide range of bandgaps for optimization of the three solar cell stack. Liquid phase epitaxy is being used to grow the quaternary material. Initial solar cells have shown open-circuit voltages of 462 mV for a bandgap of 0.92eV. Design rules for the multijunction three solar cell stack are discussed. The progress in the development of the self-supporting AlGaAs top solar cell and the GaInAsP bottom solar cell is presented.