RCQ-GA: RDF Chain Query Optimization Using Genetic Algorithms
NASA Astrophysics Data System (ADS)
Hogenboom, Alexander; Milea, Viorel; Frasincar, Flavius; Kaymak, Uzay
The application of Semantic Web technologies in an Electronic Commerce environment implies a need for good support tools. Fast query engines are needed for efficient querying of large amounts of data, usually represented using RDF. We focus on optimizing a special class of SPARQL queries, the so-called RDF chain queries. For this purpose, we devise a genetic algorithm called RCQ-GA that determines the order in which joins need to be performed for an efficient evaluation of RDF chain queries. The approach is benchmarked against a two-phase optimization algorithm, previously proposed in literature. The more complex a query is, the more RCQ-GA outperforms the benchmark in solution quality, execution time needed, and consistency of solution quality. When the algorithms are constrained by a time limit, the overall performance of RCQ-GA compared to the benchmark further improves.
Genetic Algorithm (GA)-Based Inclinometer Layout Optimization.
Liang, Weijie; Zhang, Ping; Chen, Xianping; Cai, Miao; Yang, Daoguo
2015-04-17
This paper presents numerical simulation results of an airflow inclinometer with sensitivity studies and thermal optimization of the printed circuit board (PCB) layout for an airflow inclinometer based on a genetic algorithm (GA). Due to the working principle of the gas sensor, the changes of the ambient temperature may cause dramatic voltage drifts of sensors. Therefore, eliminating the influence of the external environment for the airflow is essential for the performance and reliability of an airflow inclinometer. In this paper, the mechanism of an airflow inclinometer and the influence of different ambient temperatures on the sensitivity of the inclinometer will be examined by the ANSYS-FLOTRAN CFD program. The results show that with changes of the ambient temperature on the sensing element, the sensitivity of the airflow inclinometer is inversely proportional to the ambient temperature and decreases when the ambient temperature increases. GA is used to optimize the PCB thermal layout of the inclinometer. The finite-element simulation method (ANSYS) is introduced to simulate and verify the results of our optimal thermal layout, and the results indicate that the optimal PCB layout greatly improves (by more than 50%) the sensitivity of the inclinometer. The study may be useful in the design of PCB layouts that are related to sensitivity improvement of gas sensors.
Genetic Algorithm (GA)-Based Inclinometer Layout Optimization
Liang, Weijie; Zhang, Ping; Chen, Xianping; Cai, Miao; Yang, Daoguo
2015-01-01
This paper presents numerical simulation results of an airflow inclinometer with sensitivity studies and thermal optimization of the printed circuit board (PCB) layout for an airflow inclinometer based on a genetic algorithm (GA). Due to the working principle of the gas sensor, the changes of the ambient temperature may cause dramatic voltage drifts of sensors. Therefore, eliminating the influence of the external environment for the airflow is essential for the performance and reliability of an airflow inclinometer. In this paper, the mechanism of an airflow inclinometer and the influence of different ambient temperatures on the sensitivity of the inclinometer will be examined by the ANSYS-FLOTRAN CFD program. The results show that with changes of the ambient temperature on the sensing element, the sensitivity of the airflow inclinometer is inversely proportional to the ambient temperature and decreases when the ambient temperature increases. GA is used to optimize the PCB thermal layout of the inclinometer. The finite-element simulation method (ANSYS) is introduced to simulate and verify the results of our optimal thermal layout, and the results indicate that the optimal PCB layout greatly improves (by more than 50%) the sensitivity of the inclinometer. The study may be useful in the design of PCB layouts that are related to sensitivity improvement of gas sensors. PMID:25897500
Hybrid binary GA-EDA algorithms for complex “black-box” optimization problems
NASA Astrophysics Data System (ADS)
Sopov, E.
2017-02-01
Genetic Algorithms (GAs) have proved their efficiency solving many complex optimization problems. GAs can be also applied for “black-box” problems, because they realize the “blind” search and do not require any specific information about features of search space and objectives. It is clear that a GA uses the “Trial-and-Error” strategy to explorer search space, and collects some statistical information that is stored in the form of genes in the population. Estimation of Distribution Algorithms (EDA) have very similar realization as GAs, but use an explicit representation of search experience in the form of the statistical probabilities distribution. In this study we discus some approaches for improving the standard GA performance by combining the binary GA with EDA. Finally, a novel approach for the large-scale global optimization is proposed. The experimental results and comparison with some well-studied techniques are presented and discussed.
Saborido, Rubén; Ruiz, Ana B; Luque, Mariano
2016-02-08
In this article, we propose a new evolutionary algorithm for multiobjective optimization called Global WASF-GA (global weighting achievement scalarizing function genetic algorithm), which falls within the aggregation-based evolutionary algorithms. The main purpose of Global WASF-GA is to approximate the whole Pareto optimal front. Its fitness function is defined by an achievement scalarizing function (ASF) based on the Tchebychev distance, in which two reference points are considered (both utopian and nadir objective vectors) and the weight vector used is taken from a set of weight vectors whose inverses are well-distributed. At each iteration, all individuals are classified into different fronts. Each front is formed by the solutions with the lowest values of the ASF for the different weight vectors in the set, using the utopian vector and the nadir vector as reference points simultaneously. Varying the weight vector in the ASF while considering the utopian and the nadir vectors at the same time enables the algorithm to obtain a final set of nondominated solutions that approximate the whole Pareto optimal front. We compared Global WASF-GA to MOEA/D (different versions) and NSGA-II in two-, three-, and five-objective problems. The computational results obtained permit us to conclude that Global WASF-GA gets better performance, regarding the hypervolume metric and the epsilon indicator, than the other two algorithms in many cases, especially in three- and five-objective problems.
Fisz, Jacek J
2006-12-07
The optimization approach based on the genetic algorithm (GA) combined with multiple linear regression (MLR) method, is discussed. The GA-MLR optimizer is designed for the nonlinear least-squares problems in which the model functions are linear combinations of nonlinear functions. GA optimizes the nonlinear parameters, and the linear parameters are calculated from MLR. GA-MLR is an intuitive optimization approach and it exploits all advantages of the genetic algorithm technique. This optimization method results from an appropriate combination of two well-known optimization methods. The MLR method is embedded in the GA optimizer and linear and nonlinear model parameters are optimized in parallel. The MLR method is the only one strictly mathematical "tool" involved in GA-MLR. The GA-MLR approach simplifies and accelerates considerably the optimization process because the linear parameters are not the fitted ones. Its properties are exemplified by the analysis of the kinetic biexponential fluorescence decay surface corresponding to a two-excited-state interconversion process. A short discussion of the variable projection (VP) algorithm, designed for the same class of the optimization problems, is presented. VP is a very advanced mathematical formalism that involves the methods of nonlinear functionals, algebra of linear projectors, and the formalism of Fréchet derivatives and pseudo-inverses. Additional explanatory comments are added on the application of recently introduced the GA-NR optimizer to simultaneous recovery of linear and weakly nonlinear parameters occurring in the same optimization problem together with nonlinear parameters. The GA-NR optimizer combines the GA method with the NR method, in which the minimum-value condition for the quadratic approximation to chi(2), obtained from the Taylor series expansion of chi(2), is recovered by means of the Newton-Raphson algorithm. The application of the GA-NR optimizer to model functions which are multi
NASA Astrophysics Data System (ADS)
Djeffal, F.; Lakhdar, N.; Meguellati, M.; Benhaya, A.
2009-09-01
The analytical modeling of electron mobility in wurtzite Gallium Nitride (GaN) requires several simplifying assumptions, generally necessary to lead to compact expressions of electron transport characteristics for GaN-based devices. Further progress in the development, design and optimization of GaN-based devices necessarily requires new theory and modeling tools in order to improve the accuracy and the computational time of devices simulators. Recently, the evolutionary techniques, genetic algorithms ( GA) and particle swarm optimization ( PSO), have attracted considerable attention among various heuristic optimization techniques. In this paper, a particle swarm optimizer is implemented and compared to a genetic algorithm for modeling and optimization of new closed electron mobility model for GaN-based devices design. The performance of both optimization techniques in term of computational time and convergence rate is also compared. Further, our obtained results for both techniques ( PSO and GA) are tested and compared with numerical data (Monte Carlo simulations) where a good agreement has been found for wide range of temperature, doping and applied electric field. The developed analytical models can also be incorporated into the circuits simulators to study GaN-based devices without impact on the computational time and data storage.
Fernandez, Michael; Caballero, Julio; Fernandez, Leyden; Sarai, Akinori
2011-02-01
Many articles in "in silico" drug design implemented genetic algorithm (GA) for feature selection, model optimization, conformational search, or docking studies. Some of these articles described GA applications to quantitative structure-activity relationships (QSAR) modeling in combination with regression and/or classification techniques. We reviewed the implementation of GA in drug design QSAR and specifically its performance in the optimization of robust mathematical models such as Bayesian-regularized artificial neural networks (BRANNs) and support vector machines (SVMs) on different drug design problems. Modeled data sets encompassed ADMET and solubility properties, cancer target inhibitors, acetylcholinesterase inhibitors, HIV-1 protease inhibitors, ion-channel and calcium entry blockers, and antiprotozoan compounds as well as protein classes, functional, and conformational stability data. The GA-optimized predictors were often more accurate and robust than previous published models on the same data sets and explained more than 65% of data variances in validation experiments. In addition, feature selection over large pools of molecular descriptors provided insights into the structural and atomic properties ruling ligand-target interactions.
Silva, Leonardo W T; Barros, Vitor F; Silva, Sandro G
2014-08-18
In launching operations, Rocket Tracking Systems (RTS) process the trajectory data obtained by radar sensors. In order to improve functionality and maintenance, radars can be upgraded by replacing antennas with parabolic reflectors (PRs) with phased arrays (PAs). These arrays enable the electronic control of the radiation pattern by adjusting the signal supplied to each radiating element. However, in projects of phased array radars (PARs), the modeling of the problem is subject to various combinations of excitation signals producing a complex optimization problem. In this case, it is possible to calculate the problem solutions with optimization methods such as genetic algorithms (GAs). For this, the Genetic Algorithm with Maximum-Minimum Crossover (GA-MMC) method was developed to control the radiation pattern of PAs. The GA-MMC uses a reconfigurable algorithm with multiple objectives, differentiated coding and a new crossover genetic operator. This operator has a different approach from the conventional one, because it performs the crossover of the fittest individuals with the least fit individuals in order to enhance the genetic diversity. Thus, GA-MMC was successful in more than 90% of the tests for each application, increased the fitness of the final population by more than 20% and reduced the premature convergence.
Silva, Leonardo W. T.; Barros, Vitor F.; Silva, Sandro G.
2014-01-01
In launching operations, Rocket Tracking Systems (RTS) process the trajectory data obtained by radar sensors. In order to improve functionality and maintenance, radars can be upgraded by replacing antennas with parabolic reflectors (PRs) with phased arrays (PAs). These arrays enable the electronic control of the radiation pattern by adjusting the signal supplied to each radiating element. However, in projects of phased array radars (PARs), the modeling of the problem is subject to various combinations of excitation signals producing a complex optimization problem. In this case, it is possible to calculate the problem solutions with optimization methods such as genetic algorithms (GAs). For this, the Genetic Algorithm with Maximum-Minimum Crossover (GA-MMC) method was developed to control the radiation pattern of PAs. The GA-MMC uses a reconfigurable algorithm with multiple objectives, differentiated coding and a new crossover genetic operator. This operator has a different approach from the conventional one, because it performs the crossover of the fittest individuals with the least fit individuals in order to enhance the genetic diversity. Thus, GA-MMC was successful in more than 90% of the tests for each application, increased the fitness of the final population by more than 20% and reduced the premature convergence. PMID:25196013
Genetic Algorithm for Optimization: Preprocessor and Algorithm
NASA Technical Reports Server (NTRS)
Sen, S. K.; Shaykhian, Gholam A.
2006-01-01
Genetic algorithm (GA) inspired by Darwin's theory of evolution and employed to solve optimization problems - unconstrained or constrained - uses an evolutionary process. A GA has several parameters such the population size, search space, crossover and mutation probabilities, and fitness criterion. These parameters are not universally known/determined a priori for all problems. Depending on the problem at hand, these parameters need to be decided such that the resulting GA performs the best. We present here a preprocessor that achieves just that, i.e., it determines, for a specified problem, the foregoing parameters so that the consequent GA is a best for the problem. We stress also the need for such a preprocessor both for quality (error) and for cost (complexity) to produce the solution. The preprocessor includes, as its first step, making use of all the information such as that of nature/character of the function/system, search space, physical/laboratory experimentation (if already done/available), and the physical environment. It also includes the information that can be generated through any means - deterministic/nondeterministic/graphics. Instead of attempting a solution of the problem straightway through a GA without having/using the information/knowledge of the character of the system, we would do consciously a much better job of producing a solution by using the information generated/created in the very first step of the preprocessor. We, therefore, unstintingly advocate the use of a preprocessor to solve a real-world optimization problem including NP-complete ones before using the statistically most appropriate GA. We also include such a GA for unconstrained function optimization problems.
Castellano, T.; De Palma, L.; Laneve, D.; Strippoli, V.; Cuccovilllo, A.; Prudenzano, F.; Dimiccoli, V.; Losito, O.; Prisco, R.
2015-07-01
A homemade computer code for designing a Side- Coupled Linear Accelerator (SCL) is written. It integrates a simplified model of SCL tanks with the Particle Swarm Optimization (PSO) algorithm. The computer code main aim is to obtain useful guidelines for the design of Linear Accelerator (LINAC) resonant cavities. The design procedure, assisted via the aforesaid approach seems very promising, allowing future improvements towards the optimization of actual accelerating geometries. (authors)
Tumuluru, J.S.; Sokhansanj, Shahabaddine
2008-12-01
Abstract In the present study, response surface method (RSM) and genetic algorithm (GA) were used to study the effects of process variables like screw speed, rpm (x1), L/D ratio (x2), barrel temperature ( C; x3), and feed mix moisture content (%; x4), on flow rate of biomass during single-screw extrusion cooking. A second-order regression equation was developed for flow rate in terms of the process variables. The significance of the process variables based on Pareto chart indicated that screw speed and feed mix moisture content had the most influence followed by L/D ratio and barrel temperature on the flow rate. RSM analysis indicated that a screw speed>80 rpm, L/D ratio> 12, barrel temperature>80 C, and feed mix moisture content>20% resulted in maximum flow rate. Increase in screw speed and L/D ratio increased the drag flow and also the path of traverse of the feed mix inside the extruder resulting in more shear. The presence of lipids of about 35% in the biomass feed mix might have induced a lubrication effect and has significantly influenced the flow rate. The second-order regression equations were further used as the objective function for optimization using genetic algorithm. A population of 100 and iterations of 100 have successfully led to convergence the optimum. The maximum and minimum flow rates obtained using GA were 13.19 10 7 m3/s (x1=139.08 rpm, x2=15.90, x3=99.56 C, and x4=59.72%) and 0.53 10 7 m3/s (x1=59.65 rpm, x2= 11.93, x3=68.98 C, and x4=20.04%).
Combinatorial Multiobjective Optimization Using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Crossley, William A.; Martin. Eric T.
2002-01-01
The research proposed in this document investigated multiobjective optimization approaches based upon the Genetic Algorithm (GA). Several versions of the GA have been adopted for multiobjective design, but, prior to this research, there had not been significant comparisons of the most popular strategies. The research effort first generalized the two-branch tournament genetic algorithm in to an N-branch genetic algorithm, then the N-branch GA was compared with a version of the popular Multi-Objective Genetic Algorithm (MOGA). Because the genetic algorithm is well suited to combinatorial (mixed discrete / continuous) optimization problems, the GA can be used in the conceptual phase of design to combine selection (discrete variable) and sizing (continuous variable) tasks. Using a multiobjective formulation for the design of a 50-passenger aircraft to meet the competing objectives of minimizing takeoff gross weight and minimizing trip time, the GA generated a range of tradeoff designs that illustrate which aircraft features change from a low-weight, slow trip-time aircraft design to a heavy-weight, short trip-time aircraft design. Given the objective formulation and analysis methods used, the results of this study identify where turboprop-powered aircraft and turbofan-powered aircraft become more desirable for the 50 seat passenger application. This aircraft design application also begins to suggest how a combinatorial multiobjective optimization technique could be used to assist in the design of morphing aircraft.
GA-optimization for rapid prototype system demonstration
NASA Technical Reports Server (NTRS)
Kim, Jinwoo; Zeigler, Bernard P.
1994-01-01
An application of the Genetic Algorithm (GA) is discussed. A novel scheme of Hierarchical GA was developed to solve complicated engineering problems which require optimization of a large number of parameters with high precision. High level GAs search for few parameters which are much more sensitive to the system performance. Low level GAs search in more detail and employ a greater number of parameters for further optimization. Therefore, the complexity of the search is decreased and the computing resources are used more efficiently.
An Algorithmic Framework for Multiobjective Optimization
Ganesan, T.; Elamvazuthi, I.; Shaari, Ku Zilati Ku; Vasant, P.
2013-01-01
Multiobjective (MO) optimization is an emerging field which is increasingly being encountered in many fields globally. Various metaheuristic techniques such as differential evolution (DE), genetic algorithm (GA), gravitational search algorithm (GSA), and particle swarm optimization (PSO) have been used in conjunction with scalarization techniques such as weighted sum approach and the normal-boundary intersection (NBI) method to solve MO problems. Nevertheless, many challenges still arise especially when dealing with problems with multiple objectives (especially in cases more than two). In addition, problems with extensive computational overhead emerge when dealing with hybrid algorithms. This paper discusses these issues by proposing an alternative framework that utilizes algorithmic concepts related to the problem structure for generating efficient and effective algorithms. This paper proposes a framework to generate new high-performance algorithms with minimal computational overhead for MO optimization. PMID:24470795
A hybrid algorithm with GA and DAEM
NASA Astrophysics Data System (ADS)
Wan, HongJie; Deng, HaoJiang; Wang, XueWei
2013-03-01
Although the expectation-maximization (EM) algorithm has been widely used for finding maximum likelihood estimation of parameters in probabilistic models, it has the problem of trapping by local maxima. To overcome this problem, the deterministic annealing EM (DAEM) algorithm was once proposed and had achieved better performance than EM algorithm, but it is not very effective at avoiding local maxima. In this paper, a solution is proposed by integrating GA and DAEM into one procedure to further improve the solution quality. The population based search of genetic algorithm will produce different solutions and thus can increase the search space of DAEM. Therefore, the proposed algorithm will reach better solution than just using DAEM. The algorithm retains the property of DAEM and gets the better solution by genetic operation. Experiment results on Gaussian mixture model parameter estimation demonstrate that the proposed algorithm can achieve better performance.
Multidisciplinary design optimization using genetic algorithms
NASA Technical Reports Server (NTRS)
Unal, Resit
1994-01-01
Multidisciplinary design optimization (MDO) is an important step in the conceptual design and evaluation of launch vehicles since it can have a significant impact on performance and life cycle cost. The objective is to search the system design space to determine values of design variables that optimize the performance characteristic subject to system constraints. Gradient-based optimization routines have been used extensively for aerospace design optimization. However, one limitation of gradient based optimizers is their need for gradient information. Therefore, design problems which include discrete variables can not be studied. Such problems are common in launch vehicle design. For example, the number of engines and material choices must be integer values or assume only a few discrete values. In this study, genetic algorithms are investigated as an approach to MDO problems involving discrete variables and discontinuous domains. Optimization by genetic algorithms (GA) uses a search procedure which is fundamentally different from those gradient based methods. Genetic algorithms seek to find good solutions in an efficient and timely manner rather than finding the best solution. GA are designed to mimic evolutionary selection. A population of candidate designs is evaluated at each iteration, and each individual's probability of reproduction (existence in the next generation) depends on its fitness value (related to the value of the objective function). Progress toward the optimum is achieved by the crossover and mutation operations. GA is attractive since it uses only objective function values in the search process, so gradient calculations are avoided. Hence, GA are able to deal with discrete variables. Studies report success in the use of GA for aircraft design optimization studies, trajectory analysis, space structure design and control systems design. In these studies reliable convergence was achieved, but the number of function evaluations was large compared
Instrument design and optimization using genetic algorithms
Hoelzel, Robert; Bentley, Phillip M.; Fouquet, Peter
2006-10-15
This article describes the design of highly complex physical instruments by using a canonical genetic algorithm (GA). The procedure can be applied to all instrument designs where performance goals can be quantified. It is particularly suited to the optimization of instrument design where local optima in the performance figure of merit are prevalent. Here, a GA is used to evolve the design of the neutron spin-echo spectrometer WASP which is presently being constructed at the Institut Laue-Langevin, Grenoble, France. A comparison is made between this artificial intelligence approach and the traditional manual design methods. We demonstrate that the search of parameter space is more efficient when applying the genetic algorithm, and the GA produces a significantly better instrument design. Furthermore, it is found that the GA increases flexibility, by facilitating the reoptimization of the design after changes in boundary conditions during the design phase. The GA also allows the exploration of 'nonstandard' magnet coil geometries. We conclude that this technique constitutes a powerful complementary tool for the design and optimization of complex scientific apparatus, without replacing the careful thought processes employed in traditional design methods.
The performance improvement of SRAF placement rules using GA optimization
NASA Astrophysics Data System (ADS)
Xu, Yan; Zhang, Bidan; Wang, Changan; Wilkinson, William; Bolton, John
2016-10-01
In this paper, genetic algorithm (GA) method is applied to both positive and negative Sub Resolution Assist Features (SRAF) insertion rules. Simulation results and wafer data demonstrated that the optimized SRAF rules helped resolve the SRAF printing issues while dramatically improving the process window of the working layer. To find out the best practice to place the SRAF, model-based SRAF (MBSRAF), rule-based SRAF (RBSRAF) with pixelated OPC simulation and RBSRAF with GA method are thoroughly compared. The result shows the apparent advantage of RBSRAF with GA method.
OPTIMIZATION OF LONG RURAL FEEDERS USING A GENETIC ALGORITHM
Wishart, Michael; Ledwich, Gerard; Ghosh, Arindam; Ivanovich, Grujica
2010-06-15
This paper describes the optimization of conductor size and the voltage regulator location and magnitude of long rural distribution lines. The optimization minimizes the lifetime cost of the lines, including capital costs and losses while observing voltage drop and operational constraints using a Genetic Algorithm (GA). The GA optimization is applied to a real Single Wire Earth Return (SWER) network in regional Queensland and results are presented.
Optical flow optimization using parallel genetic algorithm
NASA Astrophysics Data System (ADS)
Zavala-Romero, Olmo; Botella, Guillermo; Meyer-Bäse, Anke; Meyer Base, Uwe
2011-06-01
A new approach to optimize the parameters of a gradient-based optical flow model using a parallel genetic algorithm (GA) is proposed. The main characteristics of the optical flow algorithm are its bio-inspiration and robustness against contrast, static patterns and noise, besides working consistently with several optical illusions where other algorithms fail. This model depends on many parameters which conform the number of channels, the orientations required, the length and shape of the kernel functions used in the convolution stage, among many more. The GA is used to find a set of parameters which improve the accuracy of the optical flow on inputs where the ground-truth data is available. This set of parameters helps to understand which of them are better suited for each type of inputs and can be used to estimate the parameters of the optical flow algorithm when used with videos that share similar characteristics. The proposed implementation takes into account the embarrassingly parallel nature of the GA and uses the OpenMP Application Programming Interface (API) to speedup the process of estimating an optimal set of parameters. The information obtained in this work can be used to dynamically reconfigure systems, with potential applications in robotics, medical imaging and tracking.
OPC recipe optimization using genetic algorithm
NASA Astrophysics Data System (ADS)
Asthana, Abhishek; Wilkinson, Bill; Power, Dave
2016-03-01
Optimization of OPC recipes is not trivial due to multiple parameters that need tuning and their correlation. Usually, no standard methodologies exist for choosing the initial recipe settings, and in the keyword development phase, parameters are chosen either based on previous learning, vendor recommendations, or to resolve specific problems on particular special constructs. Such approaches fail to holistically quantify the effects of parameters on other or possible new designs, and to an extent are based on the keyword developer's intuition. In addition, when a quick fix is needed for a new design, numerous customization statements are added to the recipe, which make it more complex. The present work demonstrates the application of Genetic Algorithm (GA) technique for optimizing OPC recipes. GA is a search technique that mimics Darwinian natural selection and has applications in various science and engineering disciplines. In this case, GA search heuristic is applied to two problems: (a) an overall OPC recipe optimization with respect to selected parameters and, (b) application of GA to improve printing and via coverage at line end geometries. As will be demonstrated, the optimized recipe significantly reduced the number of ORC violations for case (a). For case (b) line end for various features showed significant printing and filling improvement.
SFC Optimization for Aero Engine Based on Hybrid GA-SQP Method
NASA Astrophysics Data System (ADS)
Li, Jie; Fan, Ding; Sreeram, Victor
2013-12-01
This study focuses on on-line specific fuel consumption (SFC) optimization of aero engines. For solving this optimization problem, a nonlinear pneumatic and thermodynamics model of the aero engine is built and a hybrid optimization technique which is formed by combining the genetic algorithm (GA) and the sequential quadratic programming (SQP) is presented. The ability of standard GA and standard SQP in solving this type of problem is investigated. It has been found that, although the SQP is fast, very little SFC reductions can be obtained. The GA is able to solve the problem well but a lot of computational time is needed. The presented hybrid GA-SQP gives a good SFC optimization effect and saves 76.6% computational time when compared to the standard GA. It has been shown that the hybrid GA-SQP is a more effective and higher real-time method for SFC on-line optimization of the aero engine.
Algorithms for bilevel optimization
NASA Technical Reports Server (NTRS)
Alexandrov, Natalia; Dennis, J. E., Jr.
1994-01-01
General multilevel nonlinear optimization problems arise in design of complex systems and can be used as a means of regularization for multi-criteria optimization problems. Here, for clarity in displaying our ideas, we restrict ourselves to general bi-level optimization problems, and we present two solution approaches. Both approaches use a trust-region globalization strategy, and they can be easily extended to handle the general multilevel problem. We make no convexity assumptions, but we do assume that the problem has a nondegenerate feasible set. We consider necessary optimality conditions for the bi-level problem formulations and discuss results that can be extended to obtain multilevel optimization formulations with constraints at each level.
Truss Optimization for a Manned Nuclear Electric Space Vehicle using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Benford, Andrew; Tinker, Michael L.
2004-01-01
The purpose of this paper is to utilize the genetic algorithm (GA) optimization method for structural design of a nuclear propulsion vehicle. Genetic algorithms provide a guided, random search technique that mirrors biological adaptation. To verify the GA capabilities, other traditional optimization methods were used to generate results for comparison to the GA results, first for simple two-dimensional structures, and then for full-scale three-dimensional truss designs.
apGA: An adaptive parallel genetic algorithm
Liepins, G.E. ); Baluja, S. )
1991-01-01
We develop apGA, a parallel variant of the standard generational GA, that combines aggressive search with perpetual novelty, yet is able to preserve enough genetic structure to optimally solve variably scaled, non-uniform block deceptive and hierarchical deceptive problems. apGA combines elitism, adaptive mutation, adaptive exponential scaling, and temporal memory. We present empirical results for six classes of problems, including the DeJong test suite. Although we have not investigated hybrids, we note that apGA could be incorporated into other recent GA variants such as GENITOR, CHC, and the recombination stage of mGA. 12 refs., 2 figs., 2 tabs.
Improved hybrid optimization algorithm for 3D protein structure prediction.
Zhou, Changjun; Hou, Caixia; Wei, Xiaopeng; Zhang, Qiang
2014-07-01
A new improved hybrid optimization algorithm - PGATS algorithm, which is based on toy off-lattice model, is presented for dealing with three-dimensional protein structure prediction problems. The algorithm combines the particle swarm optimization (PSO), genetic algorithm (GA), and tabu search (TS) algorithms. Otherwise, we also take some different improved strategies. The factor of stochastic disturbance is joined in the particle swarm optimization to improve the search ability; the operations of crossover and mutation that are in the genetic algorithm are changed to a kind of random liner method; at last tabu search algorithm is improved by appending a mutation operator. Through the combination of a variety of strategies and algorithms, the protein structure prediction (PSP) in a 3D off-lattice model is achieved. The PSP problem is an NP-hard problem, but the problem can be attributed to a global optimization problem of multi-extremum and multi-parameters. This is the theoretical principle of the hybrid optimization algorithm that is proposed in this paper. The algorithm combines local search and global search, which overcomes the shortcoming of a single algorithm, giving full play to the advantage of each algorithm. In the current universal standard sequences, Fibonacci sequences and real protein sequences are certified. Experiments show that the proposed new method outperforms single algorithms on the accuracy of calculating the protein sequence energy value, which is proved to be an effective way to predict the structure of proteins.
Bell-Curve Based Evolutionary Optimization Algorithm
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, J.; Laba, K.; Kincaid, R.
1998-01-01
The paper presents an optimization algorithm that falls in the category of genetic, or evolutionary algorithms. While the bit exchange is the basis of most of the Genetic Algorithms (GA) in research and applications in America, some alternatives, also in the category of evolutionary algorithms, but use a direct, geometrical approach have gained popularity in Europe and Asia. The Bell-Curve Based Evolutionary Algorithm (BCB) is in this alternative category and is distinguished by the use of a combination of n-dimensional geometry and the normal distribution, the bell-curve, in the generation of the offspring. The tool for creating a child is a geometrical construct comprising a line connecting two parents and a weighted point on that line. The point that defines the child deviates from the weighted point in two directions: parallel and orthogonal to the connecting line, the deviation in each direction obeying a probabilistic distribution. Tests showed satisfactory performance of BCB. The principal advantage of BCB is its controllability via the normal distribution parameters and the geometrical construct variables.
Multilevel algorithms for nonlinear optimization
NASA Technical Reports Server (NTRS)
Alexandrov, Natalia; Dennis, J. E., Jr.
1994-01-01
Multidisciplinary design optimization (MDO) gives rise to nonlinear optimization problems characterized by a large number of constraints that naturally occur in blocks. We propose a class of multilevel optimization methods motivated by the structure and number of constraints and by the expense of the derivative computations for MDO. The algorithms are an extension to the nonlinear programming problem of the successful class of local Brown-Brent algorithms for nonlinear equations. Our extensions allow the user to partition constraints into arbitrary blocks to fit the application, and they separately process each block and the objective function, restricted to certain subspaces. The methods use trust regions as a globalization strategy, and they have been shown to be globally convergent under reasonable assumptions. The multilevel algorithms can be applied to all classes of MDO formulations. Multilevel algorithms for solving nonlinear systems of equations are a special case of the multilevel optimization methods. In this case, they can be viewed as a trust-region globalization of the Brown-Brent class.
Evaluation of a particle swarm algorithm for biomechanical optimization.
Schutte, Jaco F; Koh, Byung-Il; Reinbolt, Jeffrey A; Haftka, Raphael T; George, Alan D; Fregly, Benjamin J
2005-06-01
Optimization is frequently employed in biomechanics research to solve system identification problems, predict human movement, or estimate muscle or other internal forces that cannot be measured directly. Unfortunately, biomechanical optimization problems often possess multiple local minima, making it difficult to find the best solution. Furthermore, convergence in gradient-based algorithms can be affected by scaling to account for design variables with different length scales or units. In this study we evaluate a recently-developed version of the particle swarm optimization (PSO) algorithm to address these problems. The algorithm's global search capabilities were investigated using a suite of difficult analytical test problems, while its scale-independent nature was proven mathematically and verified using a biomechanical test problem. For comparison, all test problems were also solved with three off-the-shelf optimization algorithms--a global genetic algorithm (GA) and multistart gradient-based sequential quadratic programming (SQP) and quasi-Newton (BFGS) algorithms. For the analytical test problems, only the PSO algorithm was successful on the majority of the problems. When compared to previously published results for the same problems, PSO was more robust than a global simulated annealing algorithm but less robust than a different, more complex genetic algorithm. For the biomechanical test problem, only the PSO algorithm was insensitive to design variable scaling, with the GA algorithm being mildly sensitive and the SQP and BFGS algorithms being highly sensitive. The proposed PSO algorithm provides a new off-the-shelf global optimization option for difficult biomechanical problems, especially those utilizing design variables with different length scales or units.
Optimization of an antenna array using genetic algorithms
Kiehbadroudinezhad, Shahideh; Noordin, Nor Kamariah; Sali, A.; Abidin, Zamri Zainal
2014-06-01
An array of antennas is usually used in long distance communication. The observation of celestial objects necessitates a large array of antennas, such as the Giant Metrewave Radio Telescope (GMRT). Optimizing this kind of array is very important when observing a high performance system. The genetic algorithm (GA) is an optimization solution for these kinds of problems that reconfigures the position of antennas to increase the u-v coverage plane or decrease the sidelobe levels (SLLs). This paper presents how to optimize a correlator antenna array using the GA. A brief explanation about the GA and operators used in this paper (mutation and crossover) is provided. Then, the results of optimization are discussed. The results show that the GA provides efficient and optimum solutions among a pool of candidate solutions in order to achieve the desired array performance for the purposes of radio astronomy. The proposed algorithm is able to distribute the u-v plane more efficiently than GMRT with a more than 95% distribution ratio at snapshot, and to fill the u-v plane from a 20% to more than 68% filling ratio as the number of generations increases in the hour tracking observations. Finally, the algorithm is able to reduce the SLL to –21.75 dB.
Optimization of Power Coefficient of Wind Turbine Using Genetic Algorithm
NASA Astrophysics Data System (ADS)
Rajakumar, Sappani; Ravindran, Durairaj; Sivakumar, Mahalingam; Venkatachalam, Gopalan; Muthukumar, Shunmugavelu
2016-06-01
In the design of a wind turbine, the goal is to attain the highest possible power output under specified atmospheric conditions. The optimization of power coefficient of horizontal axis wind turbine has been carried out by integration of blade element momentum method and genetic algorithm (GA). The design variables considered are wind velocity, angle of attack and tip speed ratio. The objective function is power coefficient of wind turbine. The different combination of design variables are optimized using GA and then the Power coefficient is optimized. The optimized design variables are validated with the experimental results available in the literature. By this optimization work the optimum design variables of wind turbine can be found economically than experimental work. NACA44XX series airfoils are considered for this optimization work.
Algorithms for optimal redundancy allocation
Vandenkieboom, J.; Youngblood, R.
1993-01-01
Heuristic and exact methods for solving the redundancy allocation problem are compared to an approach based on genetic algorithms. The various methods are applied to the bridge problem, which has been used as a benchmark in earlier work on optimization methods. Comparisons are presented in terms of the best configuration found by each method, and the computation effort which was necessary in order to find it.
PDE Nozzle Optimization Using a Genetic Algorithm
NASA Technical Reports Server (NTRS)
Billings, Dana; Turner, James E. (Technical Monitor)
2000-01-01
Genetic algorithms, which simulate evolution in natural systems, have been used to find solutions to optimization problems that seem intractable to standard approaches. In this study, the feasibility of using a GA to find an optimum, fixed profile nozzle for a pulse detonation engine (PDE) is demonstrated. The objective was to maximize impulse during the detonation wave passage and blow-down phases of operation. Impulse of each profile variant was obtained by using the CFD code Mozart/2.0 to simulate the transient flow. After 7 generations, the method has identified a nozzle profile that certainly is a candidate for optimum solution. The constraints on the generality of this possible solution remain to be clarified.
Lunar Habitat Optimization Using Genetic Algorithms
NASA Technical Reports Server (NTRS)
SanScoucie, M. P.; Hull, P. V.; Tinker, M. L.; Dozier, G. V.
2007-01-01
Long-duration surface missions to the Moon and Mars will require bases to accommodate habitats for the astronauts. Transporting the materials and equipment required to build the necessary habitats is costly and difficult. The materials chosen for the habitat walls play a direct role in protection against each of the mentioned hazards. Choosing the best materials, their configuration, and the amount required is extremely difficult due to the immense size of the design region. Clearly, an optimization method is warranted for habitat wall design. Standard optimization techniques are not suitable for problems with such large search spaces; therefore, a habitat wall design tool utilizing genetic algorithms (GAs) has been developed. GAs use a "survival of the fittest" philosophy where the most fit individuals are more likely to survive and reproduce. This habitat design optimization tool is a multiobjective formulation of up-mass, heat loss, structural analysis, meteoroid impact protection, and radiation protection. This Technical Publication presents the research and development of this tool as well as a technique for finding the optimal GA search parameters.
Multi-objective Optimization on Helium Liquefier Using Genetic Algorithm
NASA Astrophysics Data System (ADS)
Wang, H. R.; Xiong, L. Y.; Peng, N.; Meng, Y. R.; Liu, L. Q.
2017-02-01
Research on optimization of helium liquefier is limited at home and abroad, and most of the optimization is single-objective based on Collins cycle. In this paper, a multi-objective optimization is conducted using genetic algorithm (GA) on the 40 L/h helium liquefier developed by Technical Institute of Physics and Chemistry of the Chinese Academy of Science (TIPC, CAS), steady solutions are obtained in the end. In addition, the exergy loss of the optimized system is studied in the case of with and without liquid nitrogen pre-cooling. The results have guiding significance for the future design of large helium liquefier.
A hybrid artificial bee colony algorithm for numerical function optimization
NASA Astrophysics Data System (ADS)
Alqattan, Zakaria N.; Abdullah, Rosni
2015-02-01
Artificial Bee Colony (ABC) algorithm is one of the swarm intelligence algorithms; it has been introduced by Karaboga in 2005. It is a meta-heuristic optimization search algorithm inspired from the intelligent foraging behavior of the honey bees in nature. Its unique search process made it as one of the most competitive algorithm with some other search algorithms in the area of optimization, such as Genetic algorithm (GA) and Particle Swarm Optimization (PSO). However, the ABC performance of the local search process and the bee movement or the solution improvement equation still has some weaknesses. The ABC is good in avoiding trapping at the local optimum but it spends its time searching around unpromising random selected solutions. Inspired by the PSO, we propose a Hybrid Particle-movement ABC algorithm called HPABC, which adapts the particle movement process to improve the exploration of the original ABC algorithm. Numerical benchmark functions were used in order to experimentally test the HPABC algorithm. The results illustrate that the HPABC algorithm can outperform the ABC algorithm in most of the experiments (75% better in accuracy and over 3 times faster).
Quadruped Robot Locomotion using a Global Optimization Stochastic Algorithm
NASA Astrophysics Data System (ADS)
Oliveira, Miguel; Santos, Cristina; Costa, Lino; Ferreira, Manuel
2011-09-01
The problem of tuning nonlinear dynamical systems parameters, such that the attained results are considered good ones, is a relevant one. This article describes the development of a gait optimization system that allows a fast but stable robot quadruped crawl gait. We combine bio-inspired Central Patterns Generators (CPGs) and Genetic Algorithms (GA). CPGs are modelled as autonomous differential equations, that generate the necessar y limb movement to perform the required walking gait. The GA finds parameterizations of the CPGs parameters which attain good gaits in terms of speed, vibration and stability. Moreover, two constraint handling techniques based on tournament selection and repairing mechanism are embedded in the GA to solve the proposed constrained optimization problem and make the search more efficient. The experimental results, performed on a simulated Aibo robot, demonstrate that our approach allows low vibration with a high velocity and wide stability margin for a quadruped slow crawl gait.
2015-01-01
Optimization and 2) hybrid metaheuristics algorithm comprising a combination of ACO, Genetic Algorithm (GA) and heuristics are proposed and tested on...Optimization, Split Delivery Vehicle Routing Problem, Genetic Algorithm 1. Introduction The Vehicle Routing Problem (VRP) is a prominent problem in the areas...several heuristic methods have been applied to solve the SDVRP, such as a construction heuristic (Wilck and Cavalier, 2012a), a genetic algorithm (Wilck
Genetic Algorithm Optimized Triply Compensated Pulses in NMR Spectroscopy
Manu, V. S.; Veglia, Gianluigi
2015-01-01
Sensitivity and resolution in NMR experiments are affected by magnetic field inhomogeneities (of both external and RF), errors in pulse calibration, and offset effects due to finite length of RF pulses. To remedy these problems, built-in compensation mechanisms for these experimental imperfections are often necessary. Here, we propose a new family of phase-modulated constant-amplitude broadband pulses with high compensation for RF inhomogeneity and heteronuclear coupling evolution. These pulses were optimized using a genetic algorithm (GA), which consists in a global optimization method inspired by Nature’s evolutionary processes. The newly designed π and π/2 pulses belong to the ‘Type A’ (or general rotors) symmetric composite pulses. These GA-optimized pulses are relatively short compared to other general rotors and can be used for excitation and inversion, as well as refocusing pulses in spin-echo experiments. The performance of the GA-optimized pulses was assessed in Magic Angle Spinning (MAS) solid-state NMR experiments using a crystalline U – 13C, 15N NAVL peptide as well as U – 13C, 15N microcrystalline ubiquitin. GA optimization of NMR pulse sequences opens a window for improving current experiments and designing new robust pulse sequences. PMID:26473327
Genetic algorithm optimized triply compensated pulses in NMR spectroscopy.
Manu, V S; Veglia, Gianluigi
2015-11-01
Sensitivity and resolution in NMR experiments are affected by magnetic field inhomogeneities (of both external and RF), errors in pulse calibration, and offset effects due to finite length of RF pulses. To remedy these problems, built-in compensation mechanisms for these experimental imperfections are often necessary. Here, we propose a new family of phase-modulated constant-amplitude broadband pulses with high compensation for RF inhomogeneity and heteronuclear coupling evolution. These pulses were optimized using a genetic algorithm (GA), which consists in a global optimization method inspired by Nature's evolutionary processes. The newly designed π and π/2 pulses belong to the 'type A' (or general rotors) symmetric composite pulses. These GA-optimized pulses are relatively short compared to other general rotors and can be used for excitation and inversion, as well as refocusing pulses in spin-echo experiments. The performance of the GA-optimized pulses was assessed in Magic Angle Spinning (MAS) solid-state NMR experiments using a crystalline U-(13)C, (15)N NAVL peptide as well as U-(13)C, (15)N microcrystalline ubiquitin. GA optimization of NMR pulse sequences opens a window for improving current experiments and designing new robust pulse sequences.
Application of fuzzy GA for optimal vibration control of smart cylindrical shells
NASA Astrophysics Data System (ADS)
Jin, Zhanli; Yang, Yaowen; Kiong Soh, Chee
2005-12-01
In this paper, a fuzzy-controlled genetic-based optimization technique for optimal vibration control of cylindrical shell structures incorporating piezoelectric sensor/actuators (S/As) is proposed. The geometric design variables of the piezoelectric patches, including the placement and sizing of the piezoelectric S/As, are processed using fuzzy set theory. The criterion based on the maximization of energy dissipation is adopted for the geometric optimization. A fuzzy-rule-based system (FRBS) representing expert knowledge and experience is incorporated in a modified genetic algorithm (GA) to control its search process. A fuzzy logic integrated GA is then developed and implemented. The results of three numerical examples, which include a simply supported plate, a simply supported cylindrical shell, and a clamped simply supported plate, provide some meaningful and heuristic conclusions for practical design. The results also show that the proposed fuzzy-controlled GA approach is more effective and efficient than the pure GA method.
Optimization of computer-generated binary holograms using genetic algorithms
NASA Astrophysics Data System (ADS)
Cojoc, Dan; Alexandrescu, Adrian
1999-11-01
The aim of this paper is to compare genetic algorithms against direct point oriented coding in the design of binary phase Fourier holograms, computer generated. These are used as fan-out elements for free space optical interconnection. Genetic algorithms are optimization methods which model the natural process of genetic evolution. The configuration of the hologram is encoded to form a chromosome. To start the optimization, a population of different chromosomes randomly generated is considered. The chromosomes compete, mate and mutate until the best chromosome is obtained according to a cost function. After explaining the operators that are used by genetic algorithms, this paper presents two examples with 32 X 32 genes in a chromosome. The crossover type and the number of mutations are shown to be important factors which influence the convergence of the algorithm. GA is demonstrated to be a useful tool to design namely binary phase holograms of complicate structures.
Comparing a Coevolutionary Genetic Algorithm for Multiobjective Optimization
NASA Technical Reports Server (NTRS)
Lohn, Jason D.; Kraus, William F.; Haith, Gary L.; Clancy, Daniel (Technical Monitor)
2002-01-01
We present results from a study comparing a recently developed coevolutionary genetic algorithm (CGA) against a set of evolutionary algorithms using a suite of multiobjective optimization benchmarks. The CGA embodies competitive coevolution and employs a simple, straightforward target population representation and fitness calculation based on developmental theory of learning. Because of these properties, setting up the additional population is trivial making implementation no more difficult than using a standard GA. Empirical results using a suite of two-objective test functions indicate that this CGA performs well at finding solutions on convex, nonconvex, discrete, and deceptive Pareto-optimal fronts, while giving respectable results on a nonuniform optimization. On a multimodal Pareto front, the CGA finds a solution that dominates solutions produced by eight other algorithms, yet the CGA has poor coverage across the Pareto front.
Optimal Multistage Algorithm for Adjoint Computation
Aupy, Guillaume; Herrmann, Julien; Hovland, Paul; Robert, Yves
2016-01-01
We reexamine the work of Stumm and Walther on multistage algorithms for adjoint computation. We provide an optimal algorithm for this problem when there are two levels of checkpoints, in memory and on disk. Previously, optimal algorithms for adjoint computations were known only for a single level of checkpoints with no writing and reading costs; a well-known example is the binomial checkpointing algorithm of Griewank and Walther. Stumm and Walther extended that binomial checkpointing algorithm to the case of two levels of checkpoints, but they did not provide any optimality results. We bridge the gap by designing the first optimal algorithm in this context. We experimentally compare our optimal algorithm with that of Stumm and Walther to assess the difference in performance.
Identification of handwriting by using the genetic algorithm (GA) and support vector machine (SVM)
NASA Astrophysics Data System (ADS)
Zhang, Qigui; Deng, Kai
2016-12-01
As portable digital camera and a camera phone comes more and more popular, and equally pressing is meeting the requirements of people to shoot at any time, to identify and storage handwritten character. In this paper, genetic algorithm(GA) and support vector machine(SVM)are used for identification of handwriting. Compare with parameters-optimized method, this technique overcomes two defects: first, it's easy to trap in the local optimum; second, finding the best parameters in the larger range will affects the efficiency of classification and prediction. As the experimental results suggest, GA-SVM has a higher recognition rate.
NASA Astrophysics Data System (ADS)
Yang, Huizhen; Li, Xinyang
2011-04-01
Optimizing the system performance metric directly is an important method for correcting wavefront aberrations in an adaptive optics (AO) system where wavefront sensing methods are unavailable or ineffective. An appropriate "Deformable Mirror" control algorithm is the key to successful wavefront correction. Based on several stochastic parallel optimization control algorithms, an adaptive optics system with a 61-element Deformable Mirror (DM) is simulated. Genetic Algorithm (GA), Stochastic Parallel Gradient Descent (SPGD), Simulated Annealing (SA) and Algorithm Of Pattern Extraction (Alopex) are compared in convergence speed and correction capability. The results show that all these algorithms have the ability to correct for atmospheric turbulence. Compared with least squares fitting, they almost obtain the best correction achievable for the 61-element DM. SA is the fastest and GA is the slowest in these algorithms. The number of perturbation by GA is almost 20 times larger than that of SA, 15 times larger than SPGD and 9 times larger than Alopex.
Parallel algorithms for unconstrained optimizations by multisplitting
He, Qing
1994-12-31
In this paper a new parallel iterative algorithm for unconstrained optimization using the idea of multisplitting is proposed. This algorithm uses the existing sequential algorithms without any parallelization. Some convergence and numerical results for this algorithm are presented. The experiments are performed on an Intel iPSC/860 Hyper Cube with 64 nodes. It is interesting that the sequential implementation on one node shows that if the problem is split properly, the algorithm converges much faster than one without splitting.
NASA Astrophysics Data System (ADS)
Igeta, Hideki; Hasegawa, Mikio
Chaotic dynamics have been effectively applied to improve various heuristic algorithms for combinatorial optimization problems in many studies. Currently, the most used chaotic optimization scheme is to drive heuristic solution search algorithms applicable to large-scale problems by chaotic neurodynamics including the tabu effect of the tabu search. Alternatively, meta-heuristic algorithms are used for combinatorial optimization by combining a neighboring solution search algorithm, such as tabu, gradient, or other search method, with a global search algorithm, such as genetic algorithms (GA), ant colony optimization (ACO), or others. In these hybrid approaches, the ACO has effectively optimized the solution of many benchmark problems in the quadratic assignment problem library. In this paper, we propose a novel hybrid method that combines the effective chaotic search algorithm that has better performance than the tabu search and global search algorithms such as ACO and GA. Our results show that the proposed chaotic hybrid algorithm has better performance than the conventional chaotic search and conventional hybrid algorithms. In addition, we show that chaotic search algorithm combined with ACO has better performance than when combined with GA.
Application of the gravity search algorithm to multi-reservoir operation optimization
NASA Astrophysics Data System (ADS)
Bozorg-Haddad, Omid; Janbaz, Mahdieh; Loáiciga, Hugo A.
2016-12-01
Complexities in river discharge, variable rainfall regime, and drought severity merit the use of advanced optimization tools in multi-reservoir operation. The gravity search algorithm (GSA) is an evolutionary optimization algorithm based on the law of gravity and mass interactions. This paper explores the GSA's efficacy for solving benchmark functions, single reservoir, and four-reservoir operation optimization problems. The GSA's solutions are compared with those of the well-known genetic algorithm (GA) in three optimization problems. The results show that the GSA's results are closer to the optimal solutions than the GA's results in minimizing the benchmark functions. The average values of the objective function equal 1.218 and 1.746 with the GSA and GA, respectively, in solving the single-reservoir hydropower operation problem. The global solution equals 1.213 for this same problem. The GSA converged to 99.97% of the global solution in its average-performing history, while the GA converged to 97% of the global solution of the four-reservoir problem. Requiring fewer parameters for algorithmic implementation and reaching the optimal solution in fewer number of functional evaluations are additional advantages of the GSA over the GA. The results of the three optimization problems demonstrate a superior performance of the GSA for optimizing general mathematical problems and the operation of reservoir systems.
Source mask optimization using real-coded genetic algorithms
NASA Astrophysics Data System (ADS)
Yang, Chaoxing; Wang, Xiangzhao; Li, Sikun; Erdmann, Andreas
2013-04-01
Source mask optimization (SMO) is considered to be one of the technologies to push conventional 193nm lithography to its ultimate limits. In comparison with other SMO methods that use an inverse problem formulation, SMO based on genetic algorithm (GA) requires very little knowledge of the process, and has the advantage of flexible problem formulation. Recent publications on SMO using a GA employ a binary-coded GA. In general, the performance of a GA depends not only on the merit or fitness function, but also on the parameters, operators and their algorithmic implementation. In this paper, we propose a SMO method using real-coded GA where the source and mask solutions are represented by floating point strings instead of bit strings. Besides from that, the selection, crossover, and mutation operators are replaced by corresponding floating-point versions. Both binary-coded and real-coded genetic algorithms were implemented in two versions of SMO and compared in numerical experiments, where the target patterns are staggered contact holes and a logic pattern with critical dimensions of 100 nm, respectively. The results demonstrate the performance improvement of the real-coded GA in comparison to the binary-coded version. Specifically, these improvements can be seen in a better convergence behavior. For example, the numerical experiments for the logic pattern showed that the average number of generations to converge to a proper fitness of 6.0 using the real-coded method is 61.8% (100 generations) less than that using binary-coded method.
Multidisciplinary Multiobjective Optimal Design for Turbomachinery Using Evolutionary Algorithm
NASA Technical Reports Server (NTRS)
2005-01-01
This report summarizes Dr. Lian s efforts toward developing a robust and efficient tool for multidisciplinary and multi-objective optimal design for turbomachinery using evolutionary algorithms. This work consisted of two stages. The first stage (from July 2003 to June 2004) Dr. Lian focused on building essential capabilities required for the project. More specifically, Dr. Lian worked on two subjects: an enhanced genetic algorithm (GA) and an integrated optimization system with a GA and a surrogate model. The second stage (from July 2004 to February 2005) Dr. Lian formulated aerodynamic optimization and structural optimization into a multi-objective optimization problem and performed multidisciplinary and multi-objective optimizations on a transonic compressor blade based on the proposed model. Dr. Lian s numerical results showed that the proposed approach can effectively reduce the blade weight and increase the stage pressure ratio in an efficient manner. In addition, the new design was structurally safer than the original design. Five conference papers and three journal papers were published on this topic by Dr. Lian.
Optimization of drilling characteristics for Al/SiCp composites using fuzzy/GA
NASA Astrophysics Data System (ADS)
Karthikeyan, R.; Jaiganesh, S.; Pai, B. C.
2002-04-01
In this paper an attempt has been made to optimize the drilling characteristics for Al/SiCp composites using fuzzy logic and genetic algorithms (GA). The drilling characteristics studied were drill wear, specific energy and surface roughness. The parameters considered for the study include volume fraction of SiC in the aluminium matrix, cutting speed and feed rate. The experimental data was trained and simulated using fuzzy logic and optimization of cutting conditions were performed using genetic algorithms. The optimized cutting conditions were validated using confirmation experiments.
An Optimal Class Association Rule Algorithm
NASA Astrophysics Data System (ADS)
Jean Claude, Turiho; Sheng, Yang; Chuang, Li; Kaia, Xie
Classification and association rule mining algorithms are two important aspects of data mining. Class association rule mining algorithm is a promising approach for it involves the use of association rule mining algorithm to discover classification rules. This paper introduces an optimal class association rule mining algorithm known as OCARA. It uses optimal association rule mining algorithm and the rule set is sorted by priority of rules resulting into a more accurate classifier. It outperforms the C4.5, CBA, RMR on UCI eight data sets, which is proved by experimental results.
Improved Fractal Space Filling Curves Hybrid Optimization Algorithm for Vehicle Routing Problem
Yue, Yi-xiang; Zhang, Tong; Yue, Qun-xing
2015-01-01
Vehicle Routing Problem (VRP) is one of the key issues in optimization of modern logistics system. In this paper, a modified VRP model with hard time window is established and a Hybrid Optimization Algorithm (HOA) based on Fractal Space Filling Curves (SFC) method and Genetic Algorithm (GA) is introduced. By incorporating the proposed algorithm, SFC method can find an initial and feasible solution very fast; GA is used to improve the initial solution. Thereafter, experimental software was developed and a large number of experimental computations from Solomon's benchmark have been studied. The experimental results demonstrate the feasibility and effectiveness of the HOA. PMID:26167171
Improved Fractal Space Filling Curves Hybrid Optimization Algorithm for Vehicle Routing Problem.
Yue, Yi-xiang; Zhang, Tong; Yue, Qun-xing
2015-01-01
Vehicle Routing Problem (VRP) is one of the key issues in optimization of modern logistics system. In this paper, a modified VRP model with hard time window is established and a Hybrid Optimization Algorithm (HOA) based on Fractal Space Filling Curves (SFC) method and Genetic Algorithm (GA) is introduced. By incorporating the proposed algorithm, SFC method can find an initial and feasible solution very fast; GA is used to improve the initial solution. Thereafter, experimental software was developed and a large number of experimental computations from Solomon's benchmark have been studied. The experimental results demonstrate the feasibility and effectiveness of the HOA.
Intelligent perturbation algorithms to space scheduling optimization
NASA Technical Reports Server (NTRS)
Kurtzman, Clifford R.
1991-01-01
The limited availability and high cost of crew time and scarce resources make optimization of space operations critical. Advances in computer technology coupled with new iterative search techniques permit the near optimization of complex scheduling problems that were previously considered computationally intractable. Described here is a class of search techniques called Intelligent Perturbation Algorithms. Several scheduling systems which use these algorithms to optimize the scheduling of space crew, payload, and resource operations are also discussed.
An optimal structural design algorithm using optimality criteria
NASA Technical Reports Server (NTRS)
Taylor, J. E.; Rossow, M. P.
1976-01-01
An algorithm for optimal design is given which incorporates several of the desirable features of both mathematical programming and optimality criteria, while avoiding some of the undesirable features. The algorithm proceeds by approaching the optimal solution through the solutions of an associated set of constrained optimal design problems. The solutions of the constrained problems are recognized at each stage through the application of optimality criteria based on energy concepts. Two examples are described in which the optimal member size and layout of a truss is predicted, given the joint locations and loads.
Optimizing remediation of an unconfined aquifer using a hybrid algorithm.
Hsiao, Chin-Tsai; Chang, Liang-Cheng
2005-01-01
We present a novel hybrid algorithm, integrating a genetic algorithm (GA) and constrained differential dynamic programming (CDDP), to achieve remediation planning for an unconfined aquifer. The objective function includes both fixed and dynamic operation costs. GA determines the primary structure of the proposed algorithm, and a chromosome therein implemented by a series of binary digits represents a potential network design. The time-varying optimal operation cost associated with the network design is computed by the CDDP, in which is embedded a numerical transport model. Several computational approaches, including a chromosome bookkeeping procedure, are implemented to alleviate computational loading. Additionally, case studies that involve fixed and time-varying operating costs for confined and unconfined aquifers, respectively, are discussed to elucidate the effectiveness of the proposed algorithm. Simulation results indicate that the fixed costs markedly affect the optimal design, including the number and locations of the wells. Furthermore, the solution obtained using the confined approximation for an unconfined aquifer may be infeasible, as determined by an unconfined simulation.
Optimizing SRF Gun Cavity Profiles in a Genetic Algorithm Framework
Alicia Hofler, Pavel Evtushenko, Frank Marhauser
2009-09-01
Automation of DC photoinjector designs using a genetic algorithm (GA) based optimization is an accepted practice in accelerator physics. Allowing the gun cavity field profile shape to be varied can extend the utility of this optimization methodology to superconducting and normal conducting radio frequency (SRF/RF) gun based injectors. Finding optimal field and cavity geometry configurations can provide guidance for cavity design choices and verify existing designs. We have considered two approaches for varying the electric field profile. The first is to determine the optimal field profile shape that should be used independent of the cavity geometry, and the other is to vary the geometry of the gun cavity structure to produce an optimal field profile. The first method can provide a theoretical optimal and can illuminate where possible gains can be made in field shaping. The second method can produce more realistically achievable designs that can be compared to existing designs. In this paper, we discuss the design and implementation for these two methods for generating field profiles for SRF/RF guns in a GA based injector optimization scheme and provide preliminary results.
Multiple sequence alignment using multi-objective based bacterial foraging optimization algorithm.
Rani, R Ranjani; Ramyachitra, D
2016-12-01
Multiple sequence alignment (MSA) is a widespread approach in computational biology and bioinformatics. MSA deals with how the sequences of nucleotides and amino acids are sequenced with possible alignment and minimum number of gaps between them, which directs to the functional, evolutionary and structural relationships among the sequences. Still the computation of MSA is a challenging task to provide an efficient accuracy and statistically significant results of alignments. In this work, the Bacterial Foraging Optimization Algorithm was employed to align the biological sequences which resulted in a non-dominated optimal solution. It employs Multi-objective, such as: Maximization of Similarity, Non-gap percentage, Conserved blocks and Minimization of gap penalty. BAliBASE 3.0 benchmark database was utilized to examine the proposed algorithm against other methods In this paper, two algorithms have been proposed: Hybrid Genetic Algorithm with Artificial Bee Colony (GA-ABC) and Bacterial Foraging Optimization Algorithm. It was found that Hybrid Genetic Algorithm with Artificial Bee Colony performed better than the existing optimization algorithms. But still the conserved blocks were not obtained using GA-ABC. Then BFO was used for the alignment and the conserved blocks were obtained. The proposed Multi-Objective Bacterial Foraging Optimization Algorithm (MO-BFO) was compared with widely used MSA methods Clustal Omega, Kalign, MUSCLE, MAFFT, Genetic Algorithm (GA), Ant Colony Optimization (ACO), Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO) and Hybrid Genetic Algorithm with Artificial Bee Colony (GA-ABC). The final results show that the proposed MO-BFO algorithm yields better alignment than most widely used methods.
A Comprehensive Review of Swarm Optimization Algorithms
2015-01-01
Many swarm optimization algorithms have been introduced since the early 60’s, Evolutionary Programming to the most recent, Grey Wolf Optimization. All of these algorithms have demonstrated their potential to solve many optimization problems. This paper provides an in-depth survey of well-known optimization algorithms. Selected algorithms are briefly explained and compared with each other comprehensively through experiments conducted using thirty well-known benchmark functions. Their advantages and disadvantages are also discussed. A number of statistical tests are then carried out to determine the significant performances. The results indicate the overall advantage of Differential Evolution (DE) and is closely followed by Particle Swarm Optimization (PSO), compared with other considered approaches. PMID:25992655
A comprehensive review of swarm optimization algorithms.
Ab Wahab, Mohd Nadhir; Nefti-Meziani, Samia; Atyabi, Adham
2015-01-01
Many swarm optimization algorithms have been introduced since the early 60's, Evolutionary Programming to the most recent, Grey Wolf Optimization. All of these algorithms have demonstrated their potential to solve many optimization problems. This paper provides an in-depth survey of well-known optimization algorithms. Selected algorithms are briefly explained and compared with each other comprehensively through experiments conducted using thirty well-known benchmark functions. Their advantages and disadvantages are also discussed. A number of statistical tests are then carried out to determine the significant performances. The results indicate the overall advantage of Differential Evolution (DE) and is closely followed by Particle Swarm Optimization (PSO), compared with other considered approaches.
Smell Detection Agent Based Optimization Algorithm
NASA Astrophysics Data System (ADS)
Vinod Chandra, S. S.
2016-09-01
In this paper, a novel nature-inspired optimization algorithm has been employed and the trained behaviour of dogs in detecting smell trails is adapted into computational agents for problem solving. The algorithm involves creation of a surface with smell trails and subsequent iteration of the agents in resolving a path. This algorithm can be applied in different computational constraints that incorporate path-based problems. Implementation of the algorithm can be treated as a shortest path problem for a variety of datasets. The simulated agents have been used to evolve the shortest path between two nodes in a graph. This algorithm is useful to solve NP-hard problems that are related to path discovery. This algorithm is also useful to solve many practical optimization problems. The extensive derivation of the algorithm can be enabled to solve shortest path problems.
The mGA1.0: A common LISP implementation of a messy genetic algorithm
NASA Technical Reports Server (NTRS)
Goldberg, David E.; Kerzic, Travis
1990-01-01
Genetic algorithms (GAs) are finding increased application in difficult search, optimization, and machine learning problems in science and engineering. Increasing demands are being placed on algorithm performance, and the remaining challenges of genetic algorithm theory and practice are becoming increasingly unavoidable. Perhaps the most difficult of these challenges is the so-called linkage problem. Messy GAs were created to overcome the linkage problem of simple genetic algorithms by combining variable-length strings, gene expression, messy operators, and a nonhomogeneous phasing of evolutionary processing. Results on a number of difficult deceptive test functions are encouraging with the mGA always finding global optima in a polynomial number of function evaluations. Theoretical and empirical studies are continuing, and a first version of a messy GA is ready for testing by others. A Common LISP implementation called mGA1.0 is documented and related to the basic principles and operators developed by Goldberg et. al. (1989, 1990). Although the code was prepared with care, it is not a general-purpose code, only a research version. Important data structures and global variations are described. Thereafter brief function descriptions are given, and sample input data are presented together with sample program output. A source listing with comments is also included.
NASA Astrophysics Data System (ADS)
Southall, Hugh L.; O'Donnell, Teresa H.; Derov, John S.
2010-04-01
EGO is an evolutionary, data-adaptive algorithm which can be useful for optimization problems with expensive cost functions. Many antenna design problems qualify since complex computational electromagnetics (CEM) simulations can take significant resources. This makes evolutionary algorithms such as genetic algorithms (GA) or particle swarm optimization (PSO) problematic since iterations of large populations are required. In this paper we discuss multiparameter optimization of a wideband, single-element antenna over a metamaterial ground plane and the interfacing of EGO (optimization) with a full-wave CEM simulation (cost function evaluation).
A simple algorithm for optimization and model fitting: AGA (asexual genetic algorithm)
NASA Astrophysics Data System (ADS)
Cantó, J.; Curiel, S.; Martínez-Gómez, E.
2009-07-01
Context: Mathematical optimization can be used as a computational tool to obtain the optimal solution to a given problem in a systematic and efficient way. For example, in twice-differentiable functions and problems with no constraints, the optimization consists of finding the points where the gradient of the objective function is zero and using the Hessian matrix to classify the type of each point. Sometimes, however it is impossible to compute these derivatives and other type of techniques must be employed such as the steepest descent/ascent method and more sophisticated methods such as those based on the evolutionary algorithms. Aims: We present a simple algorithm based on the idea of genetic algorithms (GA) for optimization. We refer to this algorithm as AGA (asexual genetic algorithm) and apply it to two kinds of problems: the maximization of a function where classical methods fail and model fitting in astronomy. For the latter case, we minimize the chi-square function to estimate the parameters in two examples: the orbits of exoplanets by taking a set of radial velocity data, and the spectral energy distribution (SED) observed towards a YSO (Young Stellar Object). Methods: The algorithm AGA may also be called genetic, although it differs from standard genetic algorithms in two main aspects: a) the initial population is not encoded; and b) the new generations are constructed by asexual reproduction. Results: Applying our algorithm in optimizing some complicated functions, we find the global maxima within a few iterations. For model fitting to the orbits of exoplanets and the SED of a YSO, we estimate the parameters and their associated errors.
ASMiGA: an archive-based steady-state micro genetic algorithm.
Nag, Kaustuv; Pal, Tandra; Pal, Nikhil R
2015-01-01
We propose a new archive-based steady-state micro genetic algorithm (ASMiGA). In this context, a new archive maintenance strategy is proposed, which maintains a set of nondominated solutions in the archive unless the archive size falls below a minimum allowable size. It makes the archive size adaptive and dynamic. We have proposed a new environmental selection strategy and a new mating selection strategy. The environmental selection strategy reduces the exploration in less probable objective spaces. The mating selection increases searching in more probable search regions by enhancing the exploitation of existing solutions. A new crossover strategy DE-3 is proposed here. ASMiGA is compared with five well-known multiobjective optimization algorithms of different types-generational evolutionary algorithms (SPEA2 and NSGA-II), archive-based hybrid scatter search, decomposition-based evolutionary approach, and archive-based micro genetic algorithm. For comparison purposes, four performance measures (HV, GD, IGD, and GS) are used on 33 test problems, of which seven problems are constrained. The proposed algorithm outperforms the other five algorithms.
Spaceborne SAR Imaging Algorithm for Coherence Optimized
Qiu, Zhiwei; Yue, Jianping; Wang, Xueqin; Yue, Shun
2016-01-01
This paper proposes SAR imaging algorithm with largest coherence based on the existing SAR imaging algorithm. The basic idea of SAR imaging algorithm in imaging processing is that output signal can have maximum signal-to-noise ratio (SNR) by using the optimal imaging parameters. Traditional imaging algorithm can acquire the best focusing effect, but would bring the decoherence phenomenon in subsequent interference process. Algorithm proposed in this paper is that SAR echo adopts consistent imaging parameters in focusing processing. Although the SNR of the output signal is reduced slightly, their coherence is ensured greatly, and finally the interferogram with high quality is obtained. In this paper, two scenes of Envisat ASAR data in Zhangbei are employed to conduct experiment for this algorithm. Compared with the interferogram from the traditional algorithm, the results show that this algorithm is more suitable for SAR interferometry (InSAR) research and application. PMID:26871446
Aerodynamic Shape Optimization using an Evolutionary Algorithm
NASA Technical Reports Server (NTRS)
Hoist, Terry L.; Pulliam, Thomas H.
2003-01-01
A method for aerodynamic shape optimization based on an evolutionary algorithm approach is presented and demonstrated. Results are presented for a number of model problems to access the effect of algorithm parameters on convergence efficiency and reliability. A transonic viscous airfoil optimization problem-both single and two-objective variations is used as the basis for a preliminary comparison with an adjoint-gradient optimizer. The evolutionary algorithm is coupled with a transonic full potential flow solver and is used to optimize the inviscid flow about transonic wings including multi-objective and multi-discipline solutions that lead to the generation of pareto fronts. The results indicate that the evolutionary algorithm approach is easy to implement, flexible in application and extremely reliable.
Aerodynamic Shape Optimization using an Evolutionary Algorithm
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Pulliam, Thomas H.; Kwak, Dochan (Technical Monitor)
2003-01-01
A method for aerodynamic shape optimization based on an evolutionary algorithm approach is presented and demonstrated. Results are presented for a number of model problems to access the effect of algorithm parameters on convergence efficiency and reliability. A transonic viscous airfoil optimization problem, both single and two-objective variations, is used as the basis for a preliminary comparison with an adjoint-gradient optimizer. The evolutionary algorithm is coupled with a transonic full potential flow solver and is used to optimize the inviscid flow about transonic wings including multi-objective and multi-discipline solutions that lead to the generation of pareto fronts. The results indicate that the evolutionary algorithm approach is easy to implement, flexible in application and extremely reliable.
NASA Astrophysics Data System (ADS)
Wang, Xuewu; Shi, Yingpan; Ding, Dongyan; Gu, Xingsheng
2016-02-01
Spot-welding robots have a wide range of applications in manufacturing industries. There are usually many weld joints in a welding task, and a reasonable welding path to traverse these weld joints has a significant impact on welding efficiency. Traditional manual path planning techniques can handle a few weld joints effectively, but when the number of weld joints is large, it is difficult to obtain the optimal path. The traditional manual path planning method is also time consuming and inefficient, and cannot guarantee optimality. Double global optimum genetic algorithm-particle swarm optimization (GA-PSO) based on the GA and PSO algorithms is proposed to solve the welding robot path planning problem, where the shortest collision-free paths are used as the criteria to optimize the welding path. Besides algorithm effectiveness analysis and verification, the simulation results indicate that the algorithm has strong searching ability and practicality, and is suitable for welding robot path planning.
Adaptive Cuckoo Search Algorithm for Unconstrained Optimization
2014-01-01
Modification of the intensification and diversification approaches in the recently developed cuckoo search algorithm (CSA) is performed. The alteration involves the implementation of adaptive step size adjustment strategy, and thus enabling faster convergence to the global optimal solutions. The feasibility of the proposed algorithm is validated against benchmark optimization functions, where the obtained results demonstrate a marked improvement over the standard CSA, in all the cases. PMID:25298971
Adaptive cuckoo search algorithm for unconstrained optimization.
Ong, Pauline
2014-01-01
Modification of the intensification and diversification approaches in the recently developed cuckoo search algorithm (CSA) is performed. The alteration involves the implementation of adaptive step size adjustment strategy, and thus enabling faster convergence to the global optimal solutions. The feasibility of the proposed algorithm is validated against benchmark optimization functions, where the obtained results demonstrate a marked improvement over the standard CSA, in all the cases.
Angelic Hierarchical Planning: Optimal and Online Algorithms
2008-12-06
describe an alternative “satisficing” algorithm, AHSS . 4.1 Abstract Lookahead Trees Our ALT data structures support our search algorithms by efficiently...Angelic Hierarchical Satisficing Search ( AHSS ), which at- tempts to find a plan that reaches the goal with at most some pre-specified cost α. AHSS can be...much more efficient than AHA*, since it can commit to a plan without first proving its optimality. At each step, AHSS (see Algorithm 3) begins by
NASA Astrophysics Data System (ADS)
Dao, Son Duy; Abhary, Kazem; Marian, Romeo
2017-01-01
Integration of production planning and scheduling is a class of problems commonly found in manufacturing industry. This class of problems associated with precedence constraint has been previously modeled and optimized by the authors, in which, it requires a multidimensional optimization at the same time: what to make, how many to make, where to make and the order to make. It is a combinatorial, NP-hard problem, for which no polynomial time algorithm is known to produce an optimal result on a random graph. In this paper, the further development of Genetic Algorithm (GA) for this integrated optimization is presented. Because of the dynamic nature of the problem, the size of its solution is variable. To deal with this variability and find an optimal solution to the problem, GA with new features in chromosome encoding, crossover, mutation, selection as well as algorithm structure is developed herein. With the proposed structure, the proposed GA is able to "learn" from its experience. Robustness of the proposed GA is demonstrated by a complex numerical example in which performance of the proposed GA is compared with those of three commercial optimization solvers.
Chiral metamaterial design using optimized pixelated inclusions with genetic algorithm
NASA Astrophysics Data System (ADS)
Akturk, Cemal; Karaaslan, Muharrem; Ozdemir, Ersin; Ozkaner, Vedat; Dincer, Furkan; Bakir, Mehmet; Ozer, Zafer
2015-03-01
Chiral metamaterials have been a research area for many researchers due to their polarization rotation properties on electromagnetic waves. However, most of the proposed chiral metamaterials are designed depending on experience or time-consuming inefficient simulations. A method is investigated for designing a chiral metamaterial with a strong and natural chirality admittance by optimizing a grid of metallic pixels through both sides of a dielectric sheet placed perpendicular to the incident wave by using a genetic algorithm (GA) technique based on finite element method solver. The effective medium parameters are obtained by using constitutive equations and S parameters. The proposed methodology is very efficient for designing a chiral metamaterial with the desired effective medium parameters. By using GA-based topology, it is proven that a chiral metamaterial can be designed and manufactured more easily and with a low cost.
Belief Propagation Algorithm for Portfolio Optimization Problems.
Shinzato, Takashi; Yasuda, Muneki
2015-01-01
The typical behavior of optimal solutions to portfolio optimization problems with absolute deviation and expected shortfall models using replica analysis was pioneeringly estimated by S. Ciliberti et al. [Eur. Phys. B. 57, 175 (2007)]; however, they have not yet developed an approximate derivation method for finding the optimal portfolio with respect to a given return set. In this study, an approximation algorithm based on belief propagation for the portfolio optimization problem is presented using the Bethe free energy formalism, and the consistency of the numerical experimental results of the proposed algorithm with those of replica analysis is confirmed. Furthermore, the conjecture of H. Konno and H. Yamazaki, that the optimal solutions with the absolute deviation model and with the mean-variance model have the same typical behavior, is verified using replica analysis and the belief propagation algorithm.
Optimizing connected component labeling algorithms
NASA Astrophysics Data System (ADS)
Wu, Kesheng; Otoo, Ekow; Shoshani, Arie
2005-04-01
This paper presents two new strategies that can be used to greatly improve the speed of connected component labeling algorithms. To assign a label to a new object, most connected component labeling algorithms use a scanning step that examines some of its neighbors. The first strategy exploits the dependencies among them to reduce the number of neighbors examined. When considering 8-connected components in a 2D image, this can reduce the number of neighbors examined from four to one in many cases. The second strategy uses an array to store the equivalence information among the labels. This replaces the pointer based rooted trees used to store the same equivalence information. It reduces the memory required and also produces consecutive final labels. Using an array instead of the pointer based rooted trees speeds up the connected component labeling algorithms by a factor of 5 ~ 100 in our tests on random binary images.
NASA Astrophysics Data System (ADS)
Ogren, Ryan M.
For this work, Hybrid PSO-GA and Artificial Bee Colony Optimization (ABC) algorithms are applied to the optimization of experimental diesel engine performance, to meet Environmental Protection Agency, off-road, diesel engine standards. This work is the first to apply ABC optimization to experimental engine testing. All trials were conducted at partial load on a four-cylinder, turbocharged, John Deere engine using neat-Biodiesel for PSO-GA and regular pump diesel for ABC. Key variables were altered throughout the experiments, including, fuel pressure, intake gas temperature, exhaust gas recirculation flow, fuel injection quantity for two injections, pilot injection timing and main injection timing. Both forms of optimization proved effective for optimizing engine operation. The PSO-GA hybrid was able to find a superior solution to that of ABC within fewer engine runs. Both solutions call for high exhaust gas recirculation to reduce oxide of nitrogen (NOx) emissions while also moving pilot and main fuel injections to near top dead center for improved tradeoffs between NOx and particulate matter.
Optimization of Straight Cylindrical Turning Using Artificial Bee Colony (ABC) Algorithm
NASA Astrophysics Data System (ADS)
Prasanth, Rajanampalli Seshasai Srinivasa; Hans Raj, Kandikonda
2016-06-01
Artificial bee colony (ABC) algorithm, that mimics the intelligent foraging behavior of honey bees, is increasingly gaining acceptance in the field of process optimization, as it is capable of handling nonlinearity, complexity and uncertainty. Straight cylindrical turning is a complex and nonlinear machining process which involves the selection of appropriate cutting parameters that affect the quality of the workpiece. This paper presents the estimation of optimal cutting parameters of the straight cylindrical turning process using the ABC algorithm. The ABC algorithm is first tested on four benchmark problems of numerical optimization and its performance is compared with genetic algorithm (GA) and ant colony optimization (ACO) algorithm. Results indicate that, the rate of convergence of ABC algorithm is better than GA and ACO. Then, the ABC algorithm is used to predict optimal cutting parameters such as cutting speed, feed rate, depth of cut and tool nose radius to achieve good surface finish. Results indicate that, the ABC algorithm estimated a comparable surface finish when compared with real coded genetic algorithm and differential evolution algorithm.
An algorithm for online optimization of accelerators
Huang, Xiaobiao; Corbett, Jeff; Safranek, James; Wu, Juhao
2013-10-01
We developed a general algorithm for online optimization of accelerator performance, i.e., online tuning, using the performance measure as the objective function. This method, named robust conjugate direction search (RCDS), combines the conjugate direction set approach of Powell's method with a robust line optimizer which considers the random noise in bracketing the minimum and uses parabolic fit of data points that uniformly sample the bracketed zone. Moreover, it is much more robust against noise than traditional algorithms and is therefore suitable for online application. Simulation and experimental studies have been carried out to demonstrate the strength of the new algorithm.
Algorithms for optimal dyadic decision trees
Hush, Don; Porter, Reid
2009-01-01
A new algorithm for constructing optimal dyadic decision trees was recently introduced, analyzed, and shown to be very effective for low dimensional data sets. This paper enhances and extends this algorithm by: introducing an adaptive grid search for the regularization parameter that guarantees optimal solutions for all relevant trees sizes, revising the core tree-building algorithm so that its run time is substantially smaller for most regularization parameter values on the grid, and incorporating new data structures and data pre-processing steps that provide significant run time enhancement in practice.
Social Emotional Optimization Algorithm for Nonlinear Constrained Optimization Problems
NASA Astrophysics Data System (ADS)
Xu, Yuechun; Cui, Zhihua; Zeng, Jianchao
Nonlinear programming problem is one important branch in operational research, and has been successfully applied to various real-life problems. In this paper, a new approach called Social emotional optimization algorithm (SEOA) is used to solve this problem which is a new swarm intelligent technique by simulating the human behavior guided by emotion. Simulation results show that the social emotional optimization algorithm proposed in this paper is effective and efficiency for the nonlinear constrained programming problems.
Optimization of warfarin dose by population-specific pharmacogenomic algorithm.
Pavani, A; Naushad, S M; Rupasree, Y; Kumar, T R; Malempati, A R; Pinjala, R K; Mishra, R C; Kutala, V K
2012-08-01
To optimize the warfarin dose, a population-specific pharmacogenomic algorithm was developed using multiple linear regression model with vitamin K intake and cytochrome P450 IIC polypeptide9 (CYP2C9(*)2 and (*)3), vitamin K epoxide reductase complex 1 (VKORC1(*)3, (*)4, D36Y and -1639 G>A) polymorphism profile of subjects who attained therapeutic international normalized ratio as predictors. New algorithm was validated by correlating with Wadelius, International Warfarin Pharmacogenetics Consortium and Gage algorithms; and with the therapeutic dose (r=0.64, P<0.0001). New algorithm was more accurate (Overall: 0.89 vs 0.51, warfarin resistant: 0.96 vs 0.77 and warfarin sensitive: 0.80 vs 0.24), more sensitive (0.87 vs 0.52) and specific (0.93 vs 0.50) compared with clinical data. It has significantly reduced the rate of overestimation (0.06 vs 0.50) and underestimation (0.13 vs 0.48). To conclude, this population-specific algorithm has greater clinical utility in optimizing the warfarin dose, thereby decreasing the adverse effects of suboptimal dose.
Optimal Hops-Based Adaptive Clustering Algorithm
NASA Astrophysics Data System (ADS)
Xuan, Xin; Chen, Jian; Zhen, Shanshan; Kuo, Yonghong
This paper proposes an optimal hops-based adaptive clustering algorithm (OHACA). The algorithm sets an energy selection threshold before the cluster forms so that the nodes with less energy are more likely to go to sleep immediately. In setup phase, OHACA introduces an adaptive mechanism to adjust cluster head and load balance. And the optimal distance theory is applied to discover the practical optimal routing path to minimize the total energy for transmission. Simulation results show that OHACA prolongs the life of network, improves utilizing rate and transmits more data because of energy balance.
An algorithm for LQ optimal actuator location
NASA Astrophysics Data System (ADS)
Darivandi, Neda; Morris, Kirsten; Khajepour, Amir
2013-03-01
The locations of the control hardware are typically a design variable in controller design for distributed parameter systems. In order to obtain the most efficient control system, the locations of control hardware as well as the feedback gain should be optimized. These optimization problems are generally non-convex. In addition, the models for these systems typically have a large number of degrees of freedom. Consequently, existing optimization schemes for optimal actuator placement may be inaccurate or computationally impractical. In this paper, the feedback control is chosen to be an optimal linear quadratic regulator. The optimal actuator location problem is reformulated as a convex optimization problem. A subgradient-based optimization scheme which leads to the global solution of the problem is used to optimize actuator locations. The optimization algorithm is applied to optimize the placement of piezoelectric actuators in vibration control of flexible structures. This method is compared with a genetic algorithm, and is observed to be faster and more accurate. Experiments are performed to verify the efficacy of optimal actuator placement.
Facial Skin Segmentation Using Bacterial Foraging Optimization Algorithm
Bakhshali, Mohamad Amin; Shamsi, Mousa
2012-01-01
Nowadays, analyzing human facial image has gained an ever-increasing importance due to its various applications. Image segmentation is required as a very important and fundamental operation for significant analysis and interpretation of images. Among the segmentation methods, image thresholding technique is one of the most well-known methods due to its simplicity, robustness, and high precision. Thresholding based on optimization of the objective function is among the best methods. Numerous methods exist for the optimization process and bacterial foraging optimization (BFO) is among the most efficient and novel ones. Using this method, optimal threshold is extracted and then segmentation of facial skin is performed. In the proposed method, first, the color facial image is converted from RGB color space to Improved Hue-Luminance-Saturation (IHLS) color space, because IHLS has a great mapping of the skin color. To perform thresholding, the entropy-based method is applied. In order to find the optimum threshold, BFO is used. In order to analyze the proposed algorithm, color images of the database of Sahand University of Technology of Tabriz, Iran were used. Then, using Otsu and Kapur methods, thresholding was performed. In order to have a better understanding from the proposed algorithm; genetic algorithm (GA) is also used for finding the optimum threshold. The proposed method shows the better results than other thresholding methods. These results include misclassification error accuracy (88%), non-uniformity accuracy (89%), and the accuracy of region's area error (89%). PMID:23724370
Facial skin segmentation using bacterial foraging optimization algorithm.
Bakhshali, Mohamad Amin; Shamsi, Mousa
2012-10-01
Nowadays, analyzing human facial image has gained an ever-increasing importance due to its various applications. Image segmentation is required as a very important and fundamental operation for significant analysis and interpretation of images. Among the segmentation methods, image thresholding technique is one of the most well-known methods due to its simplicity, robustness, and high precision. Thresholding based on optimization of the objective function is among the best methods. Numerous methods exist for the optimization process and bacterial foraging optimization (BFO) is among the most efficient and novel ones. Using this method, optimal threshold is extracted and then segmentation of facial skin is performed. In the proposed method, first, the color facial image is converted from RGB color space to Improved Hue-Luminance-Saturation (IHLS) color space, because IHLS has a great mapping of the skin color. To perform thresholding, the entropy-based method is applied. In order to find the optimum threshold, BFO is used. In order to analyze the proposed algorithm, color images of the database of Sahand University of Technology of Tabriz, Iran were used. Then, using Otsu and Kapur methods, thresholding was performed. In order to have a better understanding from the proposed algorithm; genetic algorithm (GA) is also used for finding the optimum threshold. The proposed method shows the better results than other thresholding methods. These results include misclassification error accuracy (88%), non-uniformity accuracy (89%), and the accuracy of region's area error (89%).
Aerodynamics Design and Genetic Algorithms for Optimization of Airship Bodies
NASA Astrophysics Data System (ADS)
Nejati, Vahid; Matsuuchi, Kazuo
A special and effective aerodynamics calculation method has been applied for the flow field around a body of revolution to find the drag coefficient for a wide range of Reynolds numbers. The body profile is described by a first order continuous axial singularity distribution. The solution of the direct problem then gives the radius and inviscid velocity distribution. Viscous effects are considered by means of an integral boundary layer procedure, and for determination of the transition location the forced transition criterion is applied. By avoiding those profiles, which result in the separation of the boundary layer, the drag can be calculated at the end of the body by using Young's formula. In this study, a powerful optimization procedure known as a Genetic Algorithms (GA) is used for the first time in the shape optimization of airship hulls. GA represents a particular artificial intelligence technique for large spaces, striking a remarkable balance between exploration and exploitation of search space. This method could reach to minimum objective function through a better path, and also could minimize the drag coefficient faster for different Reynolds number regimes. It was found that GA is a powerful method for such multi-dimensional, multi-modal and nonlinear objective function.
A Genetic Algorithm Approach to InGaP/GaAs HBT Parameter Extraction and RF Characterization
NASA Astrophysics Data System (ADS)
Li, Yiming; Cho, Yen-Yu; Wang, Chuan-Sheng; Huang, Kuen-Yu
2003-04-01
In this paper, a computational intelligence technique is applied to extract and simulate the stationary and high-frequency properties of heterojunction bipolar transistors (HBTs). A set of HBT circuit equations formulated with the Gummel-Poon model in time domain is solved with (1) the waveform relaxation (WR), (2) monotone iterative (MI) method, and (3) genetic algorithm (GA) with floating-point operators. The coupled nonlinear equations are decoupled and solved with the WR and MI methods in time domain, and the results obtained are used for the optimization of the characteristics with the GA method. The iteration can be terminated when the final convergent global solution is obtained. The time domain result is used in analyzing the property of the output third-order intercept point (OIP3) with the fast Fourier transform (FFT). Compared with the SPICE result, our simulation results demonstrate that this method is accurate and stable in high frequency simulation. This approach has practical applications in HBT characterization and radio frequency (RF) circuit optimal design.
A novel bee swarm optimization algorithm for numerical function optimization
NASA Astrophysics Data System (ADS)
Akbari, Reza; Mohammadi, Alireza; Ziarati, Koorush
2010-10-01
The optimization algorithms which are inspired from intelligent behavior of honey bees are among the most recently introduced population based techniques. In this paper, a novel algorithm called bee swarm optimization, or BSO, and its two extensions for improving its performance are presented. The BSO is a population based optimization technique which is inspired from foraging behavior of honey bees. The proposed approach provides different patterns which are used by the bees to adjust their flying trajectories. As the first extension, the BSO algorithm introduces different approaches such as repulsion factor and penalizing fitness (RP) to mitigate the stagnation problem. Second, to maintain efficiently the balance between exploration and exploitation, time-varying weights (TVW) are introduced into the BSO algorithm. The proposed algorithm (BSO) and its two extensions (BSO-RP and BSO-RPTVW) are compared with existing algorithms which are based on intelligent behavior of honey bees, on a set of well known numerical test functions. The experimental results show that the BSO algorithms are effective and robust; produce excellent results, and outperform other algorithms investigated in this consideration.
An Efficient Chemical Reaction Optimization Algorithm for Multiobjective Optimization.
Bechikh, Slim; Chaabani, Abir; Ben Said, Lamjed
2015-10-01
Recently, a new metaheuristic called chemical reaction optimization was proposed. This search algorithm, inspired by chemical reactions launched during collisions, inherits several features from other metaheuristics such as simulated annealing and particle swarm optimization. This fact has made it, nowadays, one of the most powerful search algorithms in solving mono-objective optimization problems. In this paper, we propose a multiobjective variant of chemical reaction optimization, called nondominated sorting chemical reaction optimization, in an attempt to exploit chemical reaction optimization features in tackling problems involving multiple conflicting criteria. Since our approach is based on nondominated sorting, one of the main contributions of this paper is the proposal of a new quasi-linear average time complexity quick nondominated sorting algorithm; thereby making our multiobjective algorithm efficient from a computational cost viewpoint. The experimental comparisons against several other multiobjective algorithms on a variety of benchmark problems involving various difficulties show the effectiveness and the efficiency of this multiobjective version in providing a well-converged and well-diversified approximation of the Pareto front.
A Cuckoo Search Algorithm for Multimodal Optimization
2014-01-01
Interest in multimodal optimization is expanding rapidly, since many practical engineering problems demand the localization of multiple optima within a search space. On the other hand, the cuckoo search (CS) algorithm is a simple and effective global optimization algorithm which can not be directly applied to solve multimodal optimization problems. This paper proposes a new multimodal optimization algorithm called the multimodal cuckoo search (MCS). Under MCS, the original CS is enhanced with multimodal capacities by means of (1) the incorporation of a memory mechanism to efficiently register potential local optima according to their fitness value and the distance to other potential solutions, (2) the modification of the original CS individual selection strategy to accelerate the detection process of new local minima, and (3) the inclusion of a depuration procedure to cyclically eliminate duplicated memory elements. The performance of the proposed approach is compared to several state-of-the-art multimodal optimization algorithms considering a benchmark suite of fourteen multimodal problems. Experimental results indicate that the proposed strategy is capable of providing better and even a more consistent performance over existing well-known multimodal algorithms for the majority of test problems yet avoiding any serious computational deterioration. PMID:25147850
A cuckoo search algorithm for multimodal optimization.
Cuevas, Erik; Reyna-Orta, Adolfo
2014-01-01
Interest in multimodal optimization is expanding rapidly, since many practical engineering problems demand the localization of multiple optima within a search space. On the other hand, the cuckoo search (CS) algorithm is a simple and effective global optimization algorithm which can not be directly applied to solve multimodal optimization problems. This paper proposes a new multimodal optimization algorithm called the multimodal cuckoo search (MCS). Under MCS, the original CS is enhanced with multimodal capacities by means of (1) the incorporation of a memory mechanism to efficiently register potential local optima according to their fitness value and the distance to other potential solutions, (2) the modification of the original CS individual selection strategy to accelerate the detection process of new local minima, and (3) the inclusion of a depuration procedure to cyclically eliminate duplicated memory elements. The performance of the proposed approach is compared to several state-of-the-art multimodal optimization algorithms considering a benchmark suite of fourteen multimodal problems. Experimental results indicate that the proposed strategy is capable of providing better and even a more consistent performance over existing well-known multimodal algorithms for the majority of test problems yet avoiding any serious computational deterioration.
Use of Algorithm of Changes for Optimal Design of Heat Exchanger
NASA Astrophysics Data System (ADS)
Tam, S. C.; Tam, H. K.; Chio, C. H.; Tam, L. M.
2010-05-01
For economic reasons, the optimal design of heat exchanger is required. Design of heat exchanger is usually based on the iterative process. The design conditions, equipment geometries, the heat transfer and friction factor correlations are totally involved in the process. Using the traditional iterative method, many trials are needed for satisfying the compromise between the heat exchange performance and the cost consideration. The process is cumbersome and the optimal design is often depending on the design engineer's experience. Therefore, in the recent studies, many researchers, reviewed in [1], applied the genetic algorithm (GA) [2] for designing the heat exchanger. The results outperformed the traditional method. In this study, the alternative approach, algorithm of changes, is proposed for optimal design of shell-tube heat exchanger [3]. This new method, algorithm of changes based on I Ching (???), is developed originality by the author. In the algorithms, the hexagram operations in I Ching has been generalized to binary string case and the iterative procedure which imitates the I Ching inference is also defined. On the basis of [3], the shell inside diameter, tube outside diameter, and baffles spacing were treated as the design (or optimized) variables. The cost of the heat exchanger was arranged as the objective function. Through the case study, the results show that the algorithm of changes is comparable to the GA method. Both of method can find the optimal solution in a short time. However, without interchanging information between binary strings, the algorithm of changes has advantage on parallel computation over GA.
Efficient use of hybrid Genetic Algorithms in the gain optimization of distributed Raman amplifiers.
Neto, B; Teixeira, A L J; Wada, N; André, P S
2007-12-24
In this paper, we propose an efficient and accurate method that combines the Genetic Algorithm (GA) with the Nelder-Mead method in order to obtain the gain optimization of distributed Raman amplifiers. By using these two methods together, the advantages of both are combined: the convergence of the GA and the high accuracy of the Nelder-Mead. To enhance the convergence of the GA, several features were examined and correlated with fitting errors. It is also shown that when the right moment to switch between methods is chosen, the computation time can be reduced by a factor of two.
Chen, Bor-Sen; Chen, Po-Wei
2010-01-01
In the past decade, the development of synthetic gene networks has attracted much attention from many researchers. In particular, the genetic oscillator known as the repressilator has become a paradigm for how to design a gene network with a desired dynamic behaviour. Even though the repressilator can show oscillatory properties in its protein concentrations, their amplitudes, frequencies and phases are perturbed by the kinetic parametric fluctuations (intrinsic molecular perturbations) and external disturbances (extrinsic molecular noises) of the environment. Therefore, how to design a robust genetic oscillator with desired amplitude, frequency and phase under stochastic intrinsic and extrinsic molecular noises is an important topic for synthetic biology. In this study, based on periodic reference signals with arbitrary amplitudes, frequencies and phases, a robust synthetic gene oscillator is designed by tuning the kinetic parameters of repressilator via a genetic algorithm (GA) so that the protein concentrations can track the desired periodic reference signals under intrinsic and extrinsic molecular noises. GA is a stochastic optimization algorithm which was inspired by the mechanisms of natural selection and evolution genetics. By the proposed GA-based design algorithm, the repressilator can track the desired amplitude, frequency and phase of oscillation under intrinsic and extrinsic noises through the optimization of fitness function. The proposed GA-based design algorithm can mimic the natural selection in evolutionary process to select adequate kinetic parameters for robust genetic oscillators. The design method can be easily extended to any synthetic gene network design with prescribed behaviours. PMID:20535234
Protein structure optimization with a "Lamarckian" ant colony algorithm.
Oakley, Mark T; Richardson, E Grace; Carr, Harriet; Johnston, Roy L
2013-01-01
We describe the LamarckiAnt algorithm: a search algorithm that combines the features of a "Lamarckian" genetic algorithm and ant colony optimization. We have implemented this algorithm for the optimization of BLN model proteins, which have frustrated energy landscapes and represent a challenge for global optimization algorithms. We demonstrate that LamarckiAnt performs competitively with other state-of-the-art optimization algorithms.
Algorithm Optimally Allocates Actuation of a Spacecraft
NASA Technical Reports Server (NTRS)
Motaghedi, Shi
2007-01-01
A report presents an algorithm that solves the following problem: Allocate the force and/or torque to be exerted by each thruster and reaction-wheel assembly on a spacecraft for best performance, defined as minimizing the error between (1) the total force and torque commanded by the spacecraft control system and (2) the total of forces and torques actually exerted by all the thrusters and reaction wheels. The algorithm incorporates the matrix vector relationship between (1) the total applied force and torque and (2) the individual actuator force and torque values. It takes account of such constraints as lower and upper limits on the force or torque that can be applied by a given actuator. The algorithm divides the aforementioned problem into two optimization problems that it solves sequentially. These problems are of a type, known in the art as semi-definite programming problems, that involve linear matrix inequalities. The algorithm incorporates, as sub-algorithms, prior algorithms that solve such optimization problems very efficiently. The algorithm affords the additional advantage that the solution requires the minimum rate of consumption of fuel for the given best performance.
A novel metaheuristic for continuous optimization problems: Virus optimization algorithm
NASA Astrophysics Data System (ADS)
Liang, Yun-Chia; Rodolfo Cuevas Juarez, Josue
2016-01-01
A novel metaheuristic for continuous optimization problems, named the virus optimization algorithm (VOA), is introduced and investigated. VOA is an iteratively population-based method that imitates the behaviour of viruses attacking a living cell. The number of viruses grows at each replication and is controlled by an immune system (a so-called 'antivirus') to prevent the explosive growth of the virus population. The viruses are divided into two classes (strong and common) to balance the exploitation and exploration effects. The performance of the VOA is validated through a set of eight benchmark functions, which are also subject to rotation and shifting effects to test its robustness. Extensive comparisons were conducted with over 40 well-known metaheuristic algorithms and their variations, such as artificial bee colony, artificial immune system, differential evolution, evolutionary programming, evolutionary strategy, genetic algorithm, harmony search, invasive weed optimization, memetic algorithm, particle swarm optimization and simulated annealing. The results showed that the VOA is a viable solution for continuous optimization.
GRAVITATIONAL LENS MODELING WITH GENETIC ALGORITHMS AND PARTICLE SWARM OPTIMIZERS
Rogers, Adam; Fiege, Jason D.
2011-02-01
Strong gravitational lensing of an extended object is described by a mapping from source to image coordinates that is nonlinear and cannot generally be inverted analytically. Determining the structure of the source intensity distribution also requires a description of the blurring effect due to a point-spread function. This initial study uses an iterative gravitational lens modeling scheme based on the semilinear method to determine the linear parameters (source intensity profile) of a strongly lensed system. Our 'matrix-free' approach avoids construction of the lens and blurring operators while retaining the least-squares formulation of the problem. The parameters of an analytical lens model are found through nonlinear optimization by an advanced genetic algorithm (GA) and particle swarm optimizer (PSO). These global optimization routines are designed to explore the parameter space thoroughly, mapping model degeneracies in detail. We develop a novel method that determines the L-curve for each solution automatically, which represents the trade-off between the image {chi}{sup 2} and regularization effects, and allows an estimate of the optimally regularized solution for each lens parameter set. In the final step of the optimization procedure, the lens model with the lowest {chi}{sup 2} is used while the global optimizer solves for the source intensity distribution directly. This allows us to accurately determine the number of degrees of freedom in the problem to facilitate comparison between lens models and enforce positivity on the source profile. In practice, we find that the GA conducts a more thorough search of the parameter space than the PSO.
Long, Yi; Du, Zhi-jiang; Wang, Wei-dong; Dong, Wei
2016-01-01
A lower limb assistive exoskeleton is designed to help operators walk or carry payloads. The exoskeleton is required to shadow human motion intent accurately and compliantly to prevent incoordination. If the user's intention is estimated accurately, a precise position control strategy will improve collaboration between the user and the exoskeleton. In this paper, a hybrid position control scheme, combining sliding mode control (SMC) with a cerebellar model articulation controller (CMAC) neural network, is proposed to control the exoskeleton to react appropriately to human motion intent. A genetic algorithm (GA) is utilized to determine the optimal sliding surface and the sliding control law to improve performance of SMC. The proposed control strategy (SMC_GA_CMAC) is compared with three other types of approaches, that is, conventional SMC without optimization, optimal SMC with GA (SMC_GA), and SMC with CMAC compensation (SMC_CMAC), all of which are employed to track the desired joint angular position which is deduced from Clinical Gait Analysis (CGA) data. Position tracking performance is investigated with cosimulation using ADAMS and MATLAB/SIMULINK in two cases, of which the first case is without disturbances while the second case is with a bounded disturbance. The cosimulation results show the effectiveness of the proposed control strategy which can be employed in similar exoskeleton systems. PMID:27069353
Long, Yi; Du, Zhi-Jiang; Wang, Wei-Dong; Dong, Wei
2016-01-01
A lower limb assistive exoskeleton is designed to help operators walk or carry payloads. The exoskeleton is required to shadow human motion intent accurately and compliantly to prevent incoordination. If the user's intention is estimated accurately, a precise position control strategy will improve collaboration between the user and the exoskeleton. In this paper, a hybrid position control scheme, combining sliding mode control (SMC) with a cerebellar model articulation controller (CMAC) neural network, is proposed to control the exoskeleton to react appropriately to human motion intent. A genetic algorithm (GA) is utilized to determine the optimal sliding surface and the sliding control law to improve performance of SMC. The proposed control strategy (SMC_GA_CMAC) is compared with three other types of approaches, that is, conventional SMC without optimization, optimal SMC with GA (SMC_GA), and SMC with CMAC compensation (SMC_CMAC), all of which are employed to track the desired joint angular position which is deduced from Clinical Gait Analysis (CGA) data. Position tracking performance is investigated with cosimulation using ADAMS and MATLAB/SIMULINK in two cases, of which the first case is without disturbances while the second case is with a bounded disturbance. The cosimulation results show the effectiveness of the proposed control strategy which can be employed in similar exoskeleton systems.
Optimized TRIAD Algorithm for Attitude Determination
NASA Technical Reports Server (NTRS)
Bar-Itzhack, Itzhack Y.; Harman, Richard R.
1996-01-01
TRIAD is a well known simple algorithm that generates the attitude matrix between two coordinate systems when the components of two abstract vectors are given in the two systems. TRIAD however, is sensitive to the order in which the algorithm handles the vectors, such that the resulting attitude matrix is influenced more by the vector processed first. In this work we present a new algorithm, which we call Optimized TRIAD, that blends in a specified manner the two matrices generated by TRIAD when processing one vector first, and then when processing the other vector first. On the average, Optimized TRIAD yields a matrix which is better than either one of the two matrices in that is ti the closest to the correct matrix. This result is demonstrated through simulation.
Algorithm for fixed-range optimal trajectories
NASA Technical Reports Server (NTRS)
Lee, H. Q.; Erzberger, H.
1980-01-01
An algorithm for synthesizing optimal aircraft trajectories for specified range was developed and implemented in a computer program written in FORTRAN IV. The algorithm, its computer implementation, and a set of example optimum trajectories for the Boeing 727-100 aircraft are described. The algorithm optimizes trajectories with respect to a cost function that is the weighted sum of fuel cost and time cost. The optimum trajectory consists at most of a three segments: climb, cruise, and descent. The climb and descent profiles are generated by integrating a simplified set of kinematic and dynamic equations wherein the total energy of the aircraft is the independent or time like variable. At each energy level the optimum airspeeds and thrust settings are obtained as the values that minimize the variational Hamiltonian. Although the emphasis is on an off-line, open-loop computation, eventually the most important application will be in an on-board flight management system.
An efficient algorithm for numerical airfoil optimization
NASA Technical Reports Server (NTRS)
Vanderplaats, G. N.
1979-01-01
A new optimization algorithm is presented. The method is based on sequential application of a second-order Taylor's series approximation to the airfoil characteristics. Compared to previous methods, design efficiency improvements of more than a factor of 2 are demonstrated. If multiple optimizations are performed, the efficiency improvements are more dramatic due to the ability of the technique to utilize existing data. The method is demonstrated by application to subsonic and transonic airfoil design but is a general optimization technique and is not limited to a particular application or aerodynamic analysis.
Optimization Algorithms in Optimal Predictions of Atomistic Properties by Kriging.
Di Pasquale, Nicodemo; Davie, Stuart J; Popelier, Paul L A
2016-04-12
The machine learning method kriging is an attractive tool to construct next-generation force fields. Kriging can accurately predict atomistic properties, which involves optimization of the so-called concentrated log-likelihood function (i.e., fitness function). The difficulty of this optimization problem quickly escalates in response to an increase in either the number of dimensions of the system considered or the size of the training set. In this article, we demonstrate and compare the use of two search algorithms, namely, particle swarm optimization (PSO) and differential evolution (DE), to rapidly obtain the maximum of this fitness function. The ability of these two algorithms to find a stationary point is assessed by using the first derivative of the fitness function. Finally, the converged position obtained by PSO and DE is refined through the limited-memory Broyden-Fletcher-Goldfarb-Shanno bounded (L-BFGS-B) algorithm, which belongs to the class of quasi-Newton algorithms. We show that both PSO and DE are able to come close to the stationary point, even in high-dimensional problems. They do so in a reasonable amount of time, compared to that with the Newton and quasi-Newton algorithms, regardless of the starting position in the search space of kriging hyperparameters. The refinement through L-BFGS-B is able to give the position of the maximum with whichever precision is desired.
BMI optimization by using parallel UNDX real-coded genetic algorithm with Beowulf cluster
NASA Astrophysics Data System (ADS)
Handa, Masaya; Kawanishi, Michihiro; Kanki, Hiroshi
2007-12-01
This paper deals with the global optimization algorithm of the Bilinear Matrix Inequalities (BMIs) based on the Unimodal Normal Distribution Crossover (UNDX) GA. First, analyzing the structure of the BMIs, the existence of the typical difficult structures is confirmed. Then, in order to improve the performance of algorithm, based on results of the problem structures analysis and consideration of BMIs characteristic properties, we proposed the algorithm using primary search direction with relaxed Linear Matrix Inequality (LMI) convex estimation. Moreover, in these algorithms, we propose two types of evaluation methods for GA individuals based on LMI calculation considering BMI characteristic properties more. In addition, in order to reduce computational time, we proposed parallelization of RCGA algorithm, Master-Worker paradigm with cluster computing technique.
Optimizing coherent anti-Stokes Raman scattering by genetic algorithm controlled pulse shaping
NASA Astrophysics Data System (ADS)
Yang, Wenlong; Sokolov, Alexei
2010-10-01
The hybrid coherent anti-Stokes Raman scattering (CARS) has been successful applied to fast chemical sensitive detections. As the development of femto-second pulse shaping techniques, it is of great interest to find the optimum pulse shapes for CARS. The optimum pulse shapes should minimize the non-resonant four wave mixing (NRFWM) background and maximize the CARS signal. A genetic algorithm (GA) is developed to make a heuristic searching for optimized pulse shapes, which give the best signal the background ratio. The GA is shown to be able to rediscover the hybrid CARS scheme and find optimized pulse shapes for customized applications by itself.
Genetic Algorithm for Optimization: Preprocessing with n Dimensional Bisection and Error Estimation
NASA Technical Reports Server (NTRS)
Sen, S. K.; Shaykhian, Gholam Ali
2006-01-01
A knowledge of the appropriate values of the parameters of a genetic algorithm (GA) such as the population size, the shrunk search space containing the solution, crossover and mutation probabilities is not available a priori for a general optimization problem. Recommended here is a polynomial-time preprocessing scheme that includes an n-dimensional bisection and that determines the foregoing parameters before deciding upon an appropriate GA for all problems of similar nature and type. Such a preprocessing is not only fast but also enables us to get the global optimal solution and its reasonably narrow error bounds with a high degree of confidence.
NASA Astrophysics Data System (ADS)
Mousavi, Seyed Hosein; Nazemi, Ali; Hafezalkotob, Ashkan
2015-12-01
With the formation of the competitive electricity markets in the world, optimization of bidding strategies has become one of the main discussions in studies related to market designing. Market design is challenged by multiple objectives that need to be satisfied. The solution of those multi-objective problems is searched often over the combined strategy space, and thus requires the simultaneous optimization of multiple parameters. The problem is formulated analytically using the Nash equilibrium concept for games composed of large numbers of players having discrete and large strategy spaces. The solution methodology is based on a characterization of Nash equilibrium in terms of minima of a function and relies on a metaheuristic optimization approach to find these minima. This paper presents some metaheuristic algorithms to simulate how generators bid in the spot electricity market viewpoint of their profit maximization according to the other generators' strategies, such as genetic algorithm (GA), simulated annealing (SA) and hybrid simulated annealing genetic algorithm (HSAGA) and compares their results. As both GA and SA are generic search methods, HSAGA is also a generic search method. The model based on the actual data is implemented in a peak hour of Tehran's wholesale spot market in 2012. The results of the simulations show that GA outperforms SA and HSAGA on computing time, number of function evaluation and computing stability, as well as the results of calculated Nash equilibriums by GA are less various and different from each other than the other algorithms.
Optimization of Boiling Water Reactor Loading Pattern Using Two-Stage Genetic Algorithm
Kobayashi, Yoko; Aiyoshi, Eitaro
2002-10-15
A new two-stage optimization method based on genetic algorithms (GAs) using an if-then heuristic rule was developed to generate optimized boiling water reactor (BWR) loading patterns (LPs). In the first stage, the LP is optimized using an improved GA operator. In the second stage, an exposure-dependent control rod pattern (CRP) is sought using GA with an if-then heuristic rule. The procedure of the improved GA is based on deterministic operators that consist of crossover, mutation, and selection. The handling of the encoding technique and constraint conditions by that GA reflects the peculiar characteristics of the BWR. In addition, strategies such as elitism and self-reproduction are effectively used in order to improve the search speed. The LP evaluations were performed with a three-dimensional diffusion code that coupled neutronic and thermal-hydraulic models. Strong axial heterogeneities and constraints dependent on three dimensions have always necessitated the use of three-dimensional core simulators for BWRs, so that optimization of computational efficiency is required. The proposed algorithm is demonstrated by successfully generating LPs for an actual BWR plant in two phases. One phase is only LP optimization applying the Haling technique. The other phase is an LP optimization that considers the CRP during reactor operation. In test calculations, candidates that shuffled fresh and burned fuel assemblies within a reasonable computation time were obtained.
A reliable algorithm for optimal control synthesis
NASA Technical Reports Server (NTRS)
Vansteenwyk, Brett; Ly, Uy-Loi
1992-01-01
In recent years, powerful design tools for linear time-invariant multivariable control systems have been developed based on direct parameter optimization. In this report, an algorithm for reliable optimal control synthesis using parameter optimization is presented. Specifically, a robust numerical algorithm is developed for the evaluation of the H(sup 2)-like cost functional and its gradients with respect to the controller design parameters. The method is specifically designed to handle defective degenerate systems and is based on the well-known Pade series approximation of the matrix exponential. Numerical test problems in control synthesis for simple mechanical systems and for a flexible structure with densely packed modes illustrate positively the reliability of this method when compared to a method based on diagonalization. Several types of cost functions have been considered: a cost function for robust control consisting of a linear combination of quadratic objectives for deterministic and random disturbances, and one representing an upper bound on the quadratic objective for worst case initial conditions. Finally, a framework for multivariable control synthesis has been developed combining the concept of closed-loop transfer recovery with numerical parameter optimization. The procedure enables designers to synthesize not only observer-based controllers but also controllers of arbitrary order and structure. Numerical design solutions rely heavily on the robust algorithm due to the high order of the synthesis model and the presence of near-overlapping modes. The design approach is successfully applied to the design of a high-bandwidth control system for a rotorcraft.
Tahriri, Farzad; Dawal, Siti Zawiah Md; Taha, Zahari
2014-01-01
A new multiobjective dynamic fuzzy genetic algorithm is applied to solve a fuzzy mixed-model assembly line sequencing problem in which the primary goals are to minimize the total make-span and minimize the setup number simultaneously. Trapezoidal fuzzy numbers are implemented for variables such as operation and travelling time in order to generate results with higher accuracy and representative of real-case data. An improved genetic algorithm called fuzzy adaptive genetic algorithm (FAGA) is proposed in order to solve this optimization model. In establishing the FAGA, five dynamic fuzzy parameter controllers are devised in which fuzzy expert experience controller (FEEC) is integrated with automatic learning dynamic fuzzy controller (ALDFC) technique. The enhanced algorithm dynamically adjusts the population size, number of generations, tournament candidate, crossover rate, and mutation rate compared with using fixed control parameters. The main idea is to improve the performance and effectiveness of existing GAs by dynamic adjustment and control of the five parameters. Verification and validation of the dynamic fuzzy GA are carried out by developing test-beds and testing using a multiobjective fuzzy mixed production assembly line sequencing optimization problem. The simulation results highlight that the performance and efficacy of the proposed novel optimization algorithm are more efficient than the performance of the standard genetic algorithm in mixed assembly line sequencing model. PMID:24982962
Tahriri, Farzad; Dawal, Siti Zawiah Md; Taha, Zahari
2014-01-01
A new multiobjective dynamic fuzzy genetic algorithm is applied to solve a fuzzy mixed-model assembly line sequencing problem in which the primary goals are to minimize the total make-span and minimize the setup number simultaneously. Trapezoidal fuzzy numbers are implemented for variables such as operation and travelling time in order to generate results with higher accuracy and representative of real-case data. An improved genetic algorithm called fuzzy adaptive genetic algorithm (FAGA) is proposed in order to solve this optimization model. In establishing the FAGA, five dynamic fuzzy parameter controllers are devised in which fuzzy expert experience controller (FEEC) is integrated with automatic learning dynamic fuzzy controller (ALDFC) technique. The enhanced algorithm dynamically adjusts the population size, number of generations, tournament candidate, crossover rate, and mutation rate compared with using fixed control parameters. The main idea is to improve the performance and effectiveness of existing GAs by dynamic adjustment and control of the five parameters. Verification and validation of the dynamic fuzzy GA are carried out by developing test-beds and testing using a multiobjective fuzzy mixed production assembly line sequencing optimization problem. The simulation results highlight that the performance and efficacy of the proposed novel optimization algorithm are more efficient than the performance of the standard genetic algorithm in mixed assembly line sequencing model.
A guided search genetic algorithm using mined rules for optimal affective product design
NASA Astrophysics Data System (ADS)
Fung, Chris K. Y.; Kwong, C. K.; Chan, Kit Yan; Jiang, H.
2014-08-01
Affective design is an important aspect of new product development, especially for consumer products, to achieve a competitive edge in the marketplace. It can help companies to develop new products that can better satisfy the emotional needs of customers. However, product designers usually encounter difficulties in determining the optimal settings of the design attributes for affective design. In this article, a novel guided search genetic algorithm (GA) approach is proposed to determine the optimal design attribute settings for affective design. The optimization model formulated based on the proposed approach applied constraints and guided search operators, which were formulated based on mined rules, to guide the GA search and to achieve desirable solutions. A case study on the affective design of mobile phones was conducted to illustrate the proposed approach and validate its effectiveness. Validation tests were conducted, and the results show that the guided search GA approach outperforms the GA approach without the guided search strategy in terms of GA convergence and computational time. In addition, the guided search optimization model is capable of improving GA to generate good solutions for affective design.
Wind farm optimization using evolutionary algorithms
NASA Astrophysics Data System (ADS)
Ituarte-Villarreal, Carlos M.
In recent years, the wind power industry has focused its efforts on solving the Wind Farm Layout Optimization (WFLO) problem. Wind resource assessment is a pivotal step in optimizing the wind-farm design and siting and, in determining whether a project is economically feasible or not. In the present work, three (3) different optimization methods are proposed for the solution of the WFLO: (i) A modified Viral System Algorithm applied to the optimization of the proper location of the components in a wind-farm to maximize the energy output given a stated wind environment of the site. The optimization problem is formulated as the minimization of energy cost per unit produced and applies a penalization for the lack of system reliability. The viral system algorithm utilized in this research solves three (3) well-known problems in the wind-energy literature; (ii) a new multiple objective evolutionary algorithm to obtain optimal placement of wind turbines while considering the power output, cost, and reliability of the system. The algorithm presented is based on evolutionary computation and the objective functions considered are the maximization of power output, the minimization of wind farm cost and the maximization of system reliability. The final solution to this multiple objective problem is presented as a set of Pareto solutions and, (iii) A hybrid viral-based optimization algorithm adapted to find the proper component configuration for a wind farm with the introduction of the universal generating function (UGF) analytical approach to discretize the different operating or mechanical levels of the wind turbines in addition to the various wind speed states. The proposed methodology considers the specific probability functions of the wind resource to describe their proper behaviors to account for the stochastic comportment of the renewable energy components, aiming to increase their power output and the reliability of these systems. The developed heuristic considers a
Optimized dynamical decoupling via genetic algorithms
NASA Astrophysics Data System (ADS)
Quiroz, Gregory; Lidar, Daniel A.
2013-11-01
We utilize genetic algorithms aided by simulated annealing to find optimal dynamical decoupling (DD) sequences for a single-qubit system subjected to a general decoherence model under a variety of control pulse conditions. We focus on the case of sequences with equal pulse intervals and perform the optimization with respect to pulse type and order. In this manner, we obtain robust DD sequences, first in the limit of ideal pulses, then when including pulse imperfections such as finite-pulse duration and qubit rotation (flip-angle) errors. Although our optimization is numerical, we identify a deterministic structure that underlies the top-performing sequences. We use this structure to devise DD sequences which outperform previously designed concatenated DD (CDD) and quadratic DD (QDD) sequences in the presence of pulse errors. We explain our findings using time-dependent perturbation theory and provide a detailed scaling analysis of the optimal sequences.
Genetics algorithm optimization of DWT-DCT based image Watermarking
NASA Astrophysics Data System (ADS)
Budiman, Gelar; Novamizanti, Ledya; Iwut, Iwan
2017-01-01
Data hiding in an image content is mandatory for setting the ownership of the image. Two dimensions discrete wavelet transform (DWT) and discrete cosine transform (DCT) are proposed as transform method in this paper. First, the host image in RGB color space is converted to selected color space. We also can select the layer where the watermark is embedded. Next, 2D-DWT transforms the selected layer obtaining 4 subband. We select only one subband. And then block-based 2D-DCT transforms the selected subband. Binary-based watermark is embedded on the AC coefficients of each block after zigzag movement and range based pixel selection. Delta parameter replacing pixels in each range represents embedded bit. +Delta represents bit “1” and –delta represents bit “0”. Several parameters to be optimized by Genetics Algorithm (GA) are selected color space, layer, selected subband of DWT decomposition, block size, embedding range, and delta. The result of simulation performs that GA is able to determine the exact parameters obtaining optimum imperceptibility and robustness, in any watermarked image condition, either it is not attacked or attacked. DWT process in DCT based image watermarking optimized by GA has improved the performance of image watermarking. By five attacks: JPEG 50%, resize 50%, histogram equalization, salt-pepper and additive noise with variance 0.01, robustness in the proposed method has reached perfect watermark quality with BER=0. And the watermarked image quality by PSNR parameter is also increased about 5 dB than the watermarked image quality from previous method.
Polynomial Local Improvement Algorithms in Combinatorial Optimization.
1981-11-01
NUMBER SOL 81- 21 IIS -J O 15 14. TITLE (am#Su&Utl & YEO RPR ERO OEE Polynomial Local Improvement Algorithms in TcnclRpr Combinatorial Optimization 6...Stanford, CA 94305 II . CONTROLLING OFFICE NAME AND ADDRESS It. REPORT DATE Office of Naval Research - Dept. of the Navy November 1981 800 N. Qu~incy Street...corresponds to a node of the tree. ii ) The father of a vertex is its optimal adjacent vertex; if a vertex is a local optimum, it has no father. The tree is
Mohamed, Ahmed F; Elarini, Mahdi M; Othman, Ahmed M
2014-05-01
One of the most recent optimization techniques applied to the optimal design of photovoltaic system to supply an isolated load demand is the Artificial Bee Colony Algorithm (ABC). The proposed methodology is applied to optimize the cost of the PV system including photovoltaic, a battery bank, a battery charger controller, and inverter. Two objective functions are proposed: the first one is the PV module output power which is to be maximized and the second one is the life cycle cost (LCC) which is to be minimized. The analysis is performed based on measured solar radiation and ambient temperature measured at Helwan city, Egypt. A comparison between ABC algorithm and Genetic Algorithm (GA) optimal results is done. Another location is selected which is Zagazig city to check the validity of ABC algorithm in any location. The ABC is more optimal than GA. The results encouraged the use of the PV systems to electrify the rural sites of Egypt.
FOGSAA: Fast Optimal Global Sequence Alignment Algorithm
NASA Astrophysics Data System (ADS)
Chakraborty, Angana; Bandyopadhyay, Sanghamitra
2013-04-01
In this article we propose a Fast Optimal Global Sequence Alignment Algorithm, FOGSAA, which aligns a pair of nucleotide/protein sequences faster than any optimal global alignment method including the widely used Needleman-Wunsch (NW) algorithm. FOGSAA is applicable for all types of sequences, with any scoring scheme, and with or without affine gap penalty. Compared to NW, FOGSAA achieves a time gain of (70-90)% for highly similar nucleotide sequences (> 80% similarity), and (54-70)% for sequences having (30-80)% similarity. For other sequences, it terminates with an approximate score. For protein sequences, the average time gain is between (25-40)%. Compared to three heuristic global alignment methods, the quality of alignment is improved by about 23%-53%. FOGSAA is, in general, suitable for aligning any two sequences defined over a finite alphabet set, where the quality of the global alignment is of supreme importance.
Intelligent perturbation algorithms for space scheduling optimization
NASA Technical Reports Server (NTRS)
Kurtzman, Clifford R.
1990-01-01
The optimization of space operations is examined in the light of optimization heuristics for computer algorithms and iterative search techniques. Specific attention is given to the search concepts known collectively as intelligent perturbation algorithms (IPAs) and their application to crew/resource allocation problems. IPAs iteratively examine successive schedules which become progressively more efficient, and the characteristics of good perturbation operators are listed. IPAs can be applied to aerospace systems to efficiently utilize crews, payloads, and resources in the context of systems such as Space-Station scheduling. A program is presented called the MFIVE Space Station Scheduling Worksheet which generates task assignments and resource usage structures. The IPAs can be used to develop flexible manifesting and scheduling for the Industrial Space Facility.
Optimization of heterogeneous Bin packing using adaptive genetic algorithm
NASA Astrophysics Data System (ADS)
Sridhar, R.; Chandrasekaran, M.; Sriramya, C.; Page, Tom
2017-03-01
This research is concentrates on a very interesting work, the bin packing using hybrid genetic approach. The optimal and feasible packing of goods for transportation and distribution to various locations by satisfying the practical constraints are the key points in this project work. As the number of boxes for packing can not be predicted in advance and the boxes may not be of same category always. It also involves many practical constraints that are why the optimal packing makes much importance to the industries. This work presents a combinational of heuristic Genetic Algorithm (HGA) for solving Three Dimensional (3D) Single container arbitrary sized rectangular prismatic bin packing optimization problem by considering most of the practical constraints facing in logistic industries. This goal was achieved in this research by optimizing the empty volume inside the container using genetic approach. Feasible packing pattern was achieved by satisfying various practical constraints like box orientation, stack priority, container stability, weight constraint, overlapping constraint, shipment placement constraint. 3D bin packing problem consists of ‘n’ number of boxes being to be packed in to a container of standard dimension in such a way to maximize the volume utilization and in-turn profit. Furthermore, Boxes to be packed may be of arbitrary sizes. The user input data are the number of bins, its size, shape, weight, and constraints if any along with standard container dimension. This user input were stored in the database and encoded to string (chromosomes) format which were normally acceptable by GA. GA operators were allowed to act over these encoded strings for finding the best solution.
High-resistivity GaN buffer templates and their optimization for GaN-based HFETs
NASA Astrophysics Data System (ADS)
Hubbard, S. M.; Zhao, G.; Pavlidis, D.; Sutton, W.; Cho, E.
2005-11-01
High-resistance (HR) GaN templates for AlGaN/GaN heterojunction field effect transistor (HFET) applications were grown using organometallic vapor phase epitaxy. The GaN sheet resistance was tuned using final nucleation layer (NL) annealing temperature and NL thickness. Using an annealing temperature of 1033 °C and NL thickness of 26 nm, GaN with sheet resistance of 10 10 Ω/sq was achieved, comparable to that of Fe-doped GaN. Material characterization results show that the high-resistance GaN is achieved due to compensating acceptor levels that may be introduced through edge-type threading dislocations. Optimization of annealing temperature and NL thickness provided a means to maximize GaN sheet resistance without significantly degrading material quality. In situ laser reflectance was used to correlate the NL properties to sheet resistance and material quality, providing a figure of merit for expected sheet resistance. AlGaN/GaN HFET layers grown using HR GaN templates with R of 10 10 Ω/sq gave surface and interface roughness of 14 and 7 Å, respectively. The 2DEG Hall mobility and sheet charge of HFETs grown using HR GaN templates was comparable to similar layers grown using unintentionally doped (UID) GaN templates.
Algorithms for optimizing CT fluence control
NASA Astrophysics Data System (ADS)
Hsieh, Scott S.; Pelc, Norbert J.
2014-03-01
The ability to customize the incident x-ray fluence in CT via beam-shaping filters or mA modulation is known to improve image quality and/or reduce radiation dose. Previous work has shown that complete control of x-ray fluence (ray-by-ray fluence modulation) would further improve dose efficiency. While complete control of fluence is not currently possible, emerging concepts such as dynamic attenuators and inverse-geometry CT allow nearly complete control to be realized. Optimally using ray-by-ray fluence modulation requires solving a very high-dimensional optimization problem. Most optimization techniques fail or only provide approximate solutions. We present efficient algorithms for minimizing mean or peak variance given a fixed dose limit. The reductions in variance can easily be translated to reduction in dose, if the original variance met image quality requirements. For mean variance, a closed form solution is derived. The peak variance problem is recast as iterated, weighted mean variance minimization, and at each iteration it is possible to bound the distance to the optimal solution. We apply our algorithms in simulations of scans of the thorax and abdomen. Peak variance reductions of 45% and 65% are demonstrated in the abdomen and thorax, respectively, compared to a bowtie filter alone. Mean variance shows smaller gains (about 15%).
Optimal band selection for high dimensional remote sensing data using genetic algorithm
NASA Astrophysics Data System (ADS)
Zhang, Xianfeng; Sun, Quan; Li, Jonathan
2009-06-01
A 'fused' method may not be suitable for reducing the dimensionality of data and a band/feature selection method needs to be used for selecting an optimal subset of original data bands. This study examined the efficiency of GA in band selection for remote sensing classification. A GA-based algorithm for band selection was designed deliberately in which a Bhattacharyya distance index that indicates separability between classes of interest is used as fitness function. A binary string chromosome is designed in which each gene location has a value of 1 representing a feature being included or 0 representing a band being not included. The algorithm was implemented in MATLAB programming environment, and a band selection task for lithologic classification in the Chocolate Mountain area (California) was used to test the proposed algorithm. The proposed feature selection algorithm can be useful in multi-source remote sensing data preprocessing, especially in hyperspectral dimensionality reduction.
NASA Technical Reports Server (NTRS)
Tinker, Michael L.; Steincamp, James W.; Stewart, Eric T.; Patton, Bruce W.; Pannell, William P.; Newby, Ronald L.; Coffman, Mark E.; Qualls, A. L.; Bancroft, S.; Molvik, Greg
2003-01-01
The Nuclear Electric Vehicle Optimization Toolset (NEVOT) optimizes the design of all major Nuclear Electric Propulsion (NEP) vehicle subsystems for a defined mission within constraints and optimization parameters chosen by a user. The tool uses a Genetic Algorithm (GA) search technique to combine subsystem designs and evaluate the fitness of the integrated design to fulfill a mission. The fitness of an individual is used within the GA to determine its probability of survival through successive generations in which the designs with low fitness are eliminated and replaced with combinations or mutations of designs with higher fitness. The program can find optimal solutions for different sets of fitness metrics without modification and can create and evaluate vehicle designs that might never be conceived of through traditional design techniques. It is anticipated that the flexible optimization methodology will expand present knowledge of the design trade-offs inherent in designing nuclear powered space vehicles and lead to improved NEP designs.
NASA Astrophysics Data System (ADS)
Wu, Qiong; Wang, Jihua; Wang, Cheng; Xu, Tongyu
2016-09-01
Genetic algorithm (GA) has a significant effect in the band optimization selection of Partial Least Squares (PLS) correction model. Application of genetic algorithm in selection of characteristic bands can achieve the optimal solution more rapidly, effectively improve measurement accuracy and reduce variables used for modeling. In this study, genetic algorithm as a module conducted band selection for the application of hyperspectral imaging in nondestructive testing of corn seedling leaves, and GA-PLS model was established. In addition, PLS quantitative model of full spectrum and experienced-spectrum region were established in order to suggest the feasibility of genetic algorithm optimizing wave bands, and model robustness was evaluated. There were 12 characteristic bands selected by genetic algorithm. With reflectance values of corn seedling component information at spectral characteristic wavelengths corresponding to 12 characteristic bands as variables, a model about SPAD values of corn leaves acquired was established by PLS, and modeling results showed r = 0.7825. The model results were better than those of PLS model established in full spectrum and experience-based selected bands. The results suggested that genetic algorithm can be used for data optimization and screening before establishing the corn seedling component information model by PLS method and effectively increase measurement accuracy and greatly reduce variables used for modeling.
Radosavljević, S.; Radovanović, J. Milanović, V.; Tomić, S.
2014-07-21
We have described a method for structural parameters optimization of GaN/AlGaN multiple quantum well based up-converter for silicon solar cells. It involves a systematic tuning of individual step quantum wells by use of the genetic algorithm for global optimization. In quantum well structures, the up-conversion process can be achieved by utilizing nonlinear optical effects based on intersubband transitions. Both single and double step quantum wells have been tested in order to maximize the second order susceptibility derived from the density matrix formalism. The results obtained for single step wells proved slightly better and have been further pursued to obtain a more complex design, optimized for conversion of an entire range of incident photon energies.
Optimal fractional delay-IIR filter design using cuckoo search algorithm.
Kumar, Manjeet; Rawat, Tarun Kumar
2015-11-01
This paper applied a novel global meta-heuristic optimization algorithm, cuckoo search algorithm (CSA) to determine optimal coefficients of a fractional delay-infinite impulse response (FD-IIR) filter and trying to meet the ideal frequency response characteristics. Since fractional delay-IIR filter design is a multi-modal optimization problem, it cannot be computed efficiently using conventional gradient based optimization techniques. A weighted least square (WLS) based fitness function is used to improve the performance to a great extent. FD-IIR filters of different orders have been designed using the CSA. The simulation results of the proposed CSA based approach have been compared to those of well accepted evolutionary algorithms like Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The performance of the CSA based FD-IIR filter is superior to those obtained by GA and PSO. The simulation and statistical results affirm that the proposed approach using CSA outperforms GA and PSO, not only in the convergence rate but also in optimal performance of the designed FD-IIR filter (i.e., smaller magnitude error, smaller phase error, higher percentage improvement in magnitude and phase error, fast convergence rate). The absolute magnitude and phase error obtained for the designed 5th order FD-IIR filter are as low as 0.0037 and 0.0046, respectively. The percentage improvement in magnitude error for CSA based 5th order FD-IIR design with respect to GA and PSO are 80.93% and 74.83% respectively, and phase error are 76.04% and 71.25%, respectively.
Strain relief and growth optimization of GaSb on GaP by molecular beam epitaxy.
Wang, Y; Ruterana, P; Chen, J; Desplanque, L; El Kazzi, S; Wallart, X
2012-08-22
In this paper, the impact of growth parameters on the strain relaxation of highly lattice mismatched (11.8%) GaSb grown on GaP substrate by molecular beam epitaxy has been investigated. The surface morphology, misfit dislocation and strain relaxation of the GaSb islands are shown to be highly related to the initial surface treatment, growth rate and temperature. More specifically, Sb-rich surface treatment is shown to promote the formation of Lomer misfit dislocations. Analysis of the misfit dislocation and strain relaxation as functions of the growth temperature and rate led to an optimal growth window for a high quality GaSb epitaxial layer on (001) GaP. With this demonstrated optimized growth, a high mobility (25,500 cm(2) V (-1) s(-1) at room temperature) AlSb/InAs heterostructure on a semi-insulating (001) GaP substrate has been achieved.
Unification of algorithms for minimum mode optimization
NASA Astrophysics Data System (ADS)
Zeng, Yi; Xiao, Penghao; Henkelman, Graeme
2014-01-01
Minimum mode following algorithms are widely used for saddle point searching in chemical and material systems. Common to these algorithms is a component to find the minimum curvature mode of the second derivative, or Hessian matrix. Several methods, including Lanczos, dimer, Rayleigh-Ritz minimization, shifted power iteration, and locally optimal block preconditioned conjugate gradient, have been proposed for this purpose. Each of these methods finds the lowest curvature mode iteratively without calculating the Hessian matrix, since the full matrix calculation is prohibitively expensive in the high dimensional spaces of interest. Here we unify these iterative methods in the same theoretical framework using the concept of the Krylov subspace. The Lanczos method finds the lowest eigenvalue in a Krylov subspace of increasing size, while the other methods search in a smaller subspace spanned by the set of previous search directions. We show that these smaller subspaces are contained within the Krylov space for which the Lanczos method explicitly finds the lowest curvature mode, and hence the theoretical efficiency of the minimum mode finding methods are bounded by the Lanczos method. Numerical tests demonstrate that the dimer method combined with second-order optimizers approaches but does not exceed the efficiency of the Lanczos method for minimum mode optimization.
Unification of algorithms for minimum mode optimization.
Zeng, Yi; Xiao, Penghao; Henkelman, Graeme
2014-01-28
Minimum mode following algorithms are widely used for saddle point searching in chemical and material systems. Common to these algorithms is a component to find the minimum curvature mode of the second derivative, or Hessian matrix. Several methods, including Lanczos, dimer, Rayleigh-Ritz minimization, shifted power iteration, and locally optimal block preconditioned conjugate gradient, have been proposed for this purpose. Each of these methods finds the lowest curvature mode iteratively without calculating the Hessian matrix, since the full matrix calculation is prohibitively expensive in the high dimensional spaces of interest. Here we unify these iterative methods in the same theoretical framework using the concept of the Krylov subspace. The Lanczos method finds the lowest eigenvalue in a Krylov subspace of increasing size, while the other methods search in a smaller subspace spanned by the set of previous search directions. We show that these smaller subspaces are contained within the Krylov space for which the Lanczos method explicitly finds the lowest curvature mode, and hence the theoretical efficiency of the minimum mode finding methods are bounded by the Lanczos method. Numerical tests demonstrate that the dimer method combined with second-order optimizers approaches but does not exceed the efficiency of the Lanczos method for minimum mode optimization.
Intervals in evolutionary algorithms for global optimization
Patil, R.B.
1995-05-01
Optimization is of central concern to a number of disciplines. Interval Arithmetic methods for global optimization provide us with (guaranteed) verified results. These methods are mainly restricted to the classes of objective functions that are twice differentiable and use a simple strategy of eliminating a splitting larger regions of search space in the global optimization process. An efficient approach that combines the efficient strategy from Interval Global Optimization Methods and robustness of the Evolutionary Algorithms is proposed. In the proposed approach, search begins with randomly created interval vectors with interval widths equal to the whole domain. Before the beginning of the evolutionary process, fitness of these interval parameter vectors is defined by evaluating the objective function at the center of the initial interval vectors. In the subsequent evolutionary process the local optimization process returns an estimate of the bounds of the objective function over the interval vectors. Though these bounds may not be correct at the beginning due to large interval widths and complicated function properties, the process of reducing interval widths over time and a selection approach similar to simulated annealing helps in estimating reasonably correct bounds as the population evolves. The interval parameter vectors at these estimated bounds (local optima) are then subjected to crossover and mutation operators. This evolutionary process continues for predetermined number of generations in the search of the global optimum.
Exemplar-Based Policy with Selectable Strategies and its Optimization Using GA
NASA Astrophysics Data System (ADS)
Ikeda, Kokolo; Kobayashi, Shigenobu; Kita, Hajime
As an approach for dynamic control problems and decision making problems, usually formulated as Markov Decision Processes (MDPs), we focus direct policy search (DPS), where a policy is represented by a model with parameters, and the parameters are optimized so as to maximize the evaluation function by applying the parameterized policy to the problem. In this paper, a novel framework for DPS, an exemplar-based policy optimization using genetic algorithm (EBP-GA) is presented and analyzed. In this approach, the policy is composed of a set of virtual exemplars and a case-based action selector, and the set of exemplars are selected and evolved by a genetic algorithm. Here, an exemplar is a real or virtual, free-styled and suggestive information such as ``take the action A at the state S'' or ``the state S1 is better to attain than S2''. One advantage of EBP-GA is the generalization and localization ability for policy expression, based on case-based reasoning methods. Another advantage is that both the introduction of prior knowledge and the extraction of knowledge after optimization are relatively straightforward. These advantages are confirmed through the proposal of two new policy expressions, experiments on two different problems and their analysis.
NASA Astrophysics Data System (ADS)
Feng, Wen; Yang, Sen
2016-12-01
Thermomechanical processing has an important effect on the grain boundary character distribution. To obtain the optimal thermomechanical processing parameters is the key of grain boundary engineering. In this study, genetic algorithm (GA) based on artificial neural network model was proposed to optimize the thermomechanical processing parameters. In this model, a back-propagation neural network (BPNN) was established to map the relationship between thermomechanical processing parameters and the fraction of low-Σ CSL boundaries, and GA integrated with BPNN (BPNN/GA) was applied to optimize the thermomechanical processing parameters. The validation of the optimal thermomechanical processing parameters was verified by an experiment. Moreover, the microstructures and the intergranular corrosion resistance of the base material (BM) and the materials produced by the optimal thermomechanical processing parameters (termed as the GBEM) were studied. Compared to the BM specimen, the fraction of low-Σ CSL boundaries was increased from 56.8 to 77.9% and the random boundary network was interrupted by the low-Σ CSL boundaries, and the intergranular corrosion resistance was improved in the GBEM specimen. The results indicated that the BPNN/GA model was an effective and reliable means for the thermomechanical processing parameters optimization, which resulted in improving the intergranular corrosion resistance in 304 austenitic stainless steel.
A genetic algorithm for first principles global structure optimization of supported nano structures
Vilhelmsen, Lasse B.; Hammer, Bjørk
2014-07-28
We present a newly developed publicly available genetic algorithm (GA) for global structure optimisation within atomic scale modeling. The GA is focused on optimizations using first principles calculations, but it works equally well with empirical potentials. The implementation is described and benchmarked through a detailed statistical analysis employing averages across many independent runs of the GA. This analysis focuses on the practical use of GA’s with a description of optimal parameters to use. New results for the adsorption of M{sub 8} clusters (M = Ru, Rh, Pd, Ag, Pt, Au) on the stoichiometric rutile TiO{sub 2}(110) surface are presented showing the power of automated structure prediction and highlighting the diversity of metal cluster geometries at the atomic scale.
Theoretical study on optimization of high efficiency GaInP/GaInAs/Ge tandem solar cells
NASA Astrophysics Data System (ADS)
Lin, Gui Jiang; Huang, Sheng Rong; Wu, Jyh Chiarng; Huang, Mei Chun
2009-08-01
This paper investigates which dopping concentration or layer thickness should be used to design practical GaInP/GaInAs/Ge triple-junction cells in order to optimize their performance. A rigorous model includes optical and electrical modules is developed to simulate the external quantumn efficiency, photocurrent and photovoltage of the GaInP/GaInAs/Ge tandem solar cells. It is found that cell efficiency strongly dependend on the top cell thickness and doping concentration at base and emitter layers. Proper structures of the tandem cell operating under AM0 ("air mass zero") illumination are suggested to obtain high efficiency.
Lu, Zhenming; He, Zhe; Xu, Hongyu; Shi, Jinsong; Xu, Zhenghong
2011-12-01
To illustrate the complex fermentation process of submerged culture of Antrodia camphorata ATCC 200183, we observed the morphology change of this filamentous fungus. Then we used two optimization models namely response surface methodology (RSM) and artificial neural network (ANN) to model the fermentation process of Antrodia camphorata. By genetic algorithm (GA), we optimized the inoculum size and medium components for Antrodia camphorata production. The results show that fitness and prediction accuracy of ANN model was higher when compared to those of RSM model. Using GA, we optimized the input space of ANN model, and obtained maximum biomass of 6.2 g/L at the GA-optimized concentrations of spore (1.76x 10(5) /mL) and medium components (glucose, 29.1 g/L; peptone, 9.3 g/L; and soybean flour, 2.8 g/L). The biomass obtained using the ANN-GA designed medium was (6.1+/-0.2) g/L which was in good agreement with the predicted value. The same optimization process may be used to improve the production of mycelia and bioactive metabolites from potent medicinal fungi by changing the fermentation parameters.
Land cover classification using random forest with genetic algorithm-based parameter optimization
NASA Astrophysics Data System (ADS)
Ming, Dongping; Zhou, Tianning; Wang, Min; Tan, Tian
2016-07-01
Land cover classification based on remote sensing imagery is an important means to monitor, evaluate, and manage land resources. However, it requires robust classification methods that allow accurate mapping of complex land cover categories. Random forest (RF) is a powerful machine-learning classifier that can be used in land remote sensing. However, two important parameters of RF classification, namely, the number of trees and the number of variables tried at each split, affect classification accuracy. Thus, optimal parameter selection is an inevitable problem in RF-based image classification. This study uses the genetic algorithm (GA) to optimize the two parameters of RF to produce optimal land cover classification accuracy. HJ-1B CCD2 image data are used to classify six different land cover categories in Changping, Beijing, China. Experimental results show that GA-RF can avoid arbitrariness in the selection of parameters. The experiments also compare land cover classification results by using GA-RF method, traditional RF method (with default parameters), and support vector machine method. When the GA-RF method is used, classification accuracies, respectively, improved by 1.02% and 6.64%. The comparison results show that GA-RF is a feasible solution for land cover classification without compromising accuracy or incurring excessive time.
Optimization of lamp arrangement in a closed-conduit UV reactor based on a genetic algorithm.
Sultan, Tipu; Ahmad, Zeshan; Cho, Jinsoo
2016-01-01
The choice for the arrangement of the UV lamps in a closed-conduit ultraviolet (CCUV) reactor significantly affects the performance. However, a systematic methodology for the optimal lamp arrangement within the chamber of the CCUV reactor is not well established in the literature. In this research work, we propose a viable systematic methodology for the lamp arrangement based on a genetic algorithm (GA). In addition, we analyze the impacts of the diameter, angle, and symmetry of the lamp arrangement on the reduction equivalent dose (RED). The results are compared based on the simulated RED values and evaluated using the computational fluid dynamics simulations software ANSYS FLUENT. The fluence rate was calculated using commercial software UVCalc3D, and the GA-based lamp arrangement optimization was achieved using MATLAB. The simulation results provide detailed information about the GA-based methodology for the lamp arrangement, the pathogen transport, and the simulated RED values. A significant increase in the RED values was achieved by using the GA-based lamp arrangement methodology. This increase in RED value was highest for the asymmetric lamp arrangement within the chamber of the CCUV reactor. These results demonstrate that the proposed GA-based methodology for symmetric and asymmetric lamp arrangement provides a viable technical solution to the design and optimization of the CCUV reactor.
NASA Astrophysics Data System (ADS)
Soh, C. B.; Hartono, H.; Chow, S. Y.; Chua, S. J.; Fitzgerald, E. A.
2007-01-01
Nanoporous GaN template has been fabricated by electrochemical etching to give hexagonal pits with nanoscale pores of size 20-50nm in the underlying grains. The effect of GaN buffer layer grown at various temperatures from 650to1015°C on these as-fabricated nanopores templates is investigated by transmission electron microscopy. The buffer layer grown at the optimized temperature of 850°C partially fill up the pores and voids with annihilation of threading dislocations, serving as an excellent template for high-quality GaN growth. This phenomenon is, however, not observed for the samples grown with other temperature buffer layers. Micro-Raman measurements show significant strain relaxation and improvement in the crystal quality of the overgrown GaN layer on nanoporous GaN template as compared to overgrown on conventional GaN template.
Li, Yongjie; Yao, Dezhong; Yao, Jonathan; Chen, Wufan
2005-08-07
Automatic beam angle selection is an important but challenging problem for intensity-modulated radiation therapy (IMRT) planning. Though many efforts have been made, it is still not very satisfactory in clinical IMRT practice because of overextensive computation of the inverse problem. In this paper, a new technique named BASPSO (Beam Angle Selection with a Particle Swarm Optimization algorithm) is presented to improve the efficiency of the beam angle optimization problem. Originally developed as a tool for simulating social behaviour, the particle swarm optimization (PSO) algorithm is a relatively new population-based evolutionary optimization technique first introduced by Kennedy and Eberhart in 1995. In the proposed BASPSO, the beam angles are optimized using PSO by treating each beam configuration as a particle (individual), and the beam intensity maps for each beam configuration are optimized using the conjugate gradient (CG) algorithm. These two optimization processes are implemented iteratively. The performance of each individual is evaluated by a fitness value calculated with a physical objective function. A population of these individuals is evolved by cooperation and competition among the individuals themselves through generations. The optimization results of a simulated case with known optimal beam angles and two clinical cases (a prostate case and a head-and-neck case) show that PSO is valid and efficient and can speed up the beam angle optimization process. Furthermore, the performance comparisons based on the preliminary results indicate that, as a whole, the PSO-based algorithm seems to outperform, or at least compete with, the GA-based algorithm in computation time and robustness. In conclusion, the reported work suggested that the introduced PSO algorithm could act as a new promising solution to the beam angle optimization problem and potentially other optimization problems in IMRT, though further studies need to be investigated.
NASA Astrophysics Data System (ADS)
Khehra, Baljit Singh; Pharwaha, Amar Partap Singh
2016-06-01
Ductal carcinoma in situ (DCIS) is one type of breast cancer. Clusters of microcalcifications (MCCs) are symptoms of DCIS that are recognized by mammography. Selection of robust features vector is the process of selecting an optimal subset of features from a large number of available features in a given problem domain after the feature extraction and before any classification scheme. Feature selection reduces the feature space that improves the performance of classifier and decreases the computational burden imposed by using many features on classifier. Selection of an optimal subset of features from a large number of available features in a given problem domain is a difficult search problem. For n features, the total numbers of possible subsets of features are 2n. Thus, selection of an optimal subset of features problem belongs to the category of NP-hard problems. In this paper, an attempt is made to find the optimal subset of MCCs features from all possible subsets of features using genetic algorithm (GA), particle swarm optimization (PSO) and biogeography-based optimization (BBO). For simulation, a total of 380 benign and malignant MCCs samples have been selected from mammogram images of DDSM database. A total of 50 features extracted from benign and malignant MCCs samples are used in this study. In these algorithms, fitness function is correct classification rate of classifier. Support vector machine is used as a classifier. From experimental results, it is also observed that the performance of PSO-based and BBO-based algorithms to select an optimal subset of features for classifying MCCs as benign or malignant is better as compared to GA-based algorithm.
Expedite Particle Swarm Optimization Algorithm (EPSO) for Optimization of MSA
NASA Astrophysics Data System (ADS)
Rathi, Amit; Vijay, Ritu
This paper presents a new designing method of Rectangular patch Microstrip Antenna using an Artificial searches Algorithm with some constraints. It requires two stages for designing. In first stage, bandwidth of MSA is modeled using bench Mark function. In second stage, output of first stage give to modified Artificial search Algorithm which is Particle Swarm Algorithm (PSO) as input and get output in the form of five parameter- dimensions width, frequency range, dielectric loss tangent, length over a ground plane with a substrate thickness and electrical thickness. In PSO Cognition, factor and Social learning Factor give very important effect on balancing the local search and global search in PSO. Basing the modification of cognition factor and social learning factor, this paper presents the strategy that at the starting process cognition-learning factor has more effect then social learning factor. Gradually social learning factor has more impact after learning cognition factor for find out global best. The aim is to find out under above circumstances these modifications in PSO can give better result for optimization of microstrip Antenna (MSA).
Yap, Hwa Jen; Musa, Siti Nurmaya; Tahriri, Farzad; Md Dawal, Siti Zawiah
2017-01-01
Flexible manufacturing system (FMS) enhances the firm’s flexibility and responsiveness to the ever-changing customer demand by providing a fast product diversification capability. Performance of an FMS is highly dependent upon the accuracy of scheduling policy for the components of the system, such as automated guided vehicles (AGVs). An AGV as a mobile robot provides remarkable industrial capabilities for material and goods transportation within a manufacturing facility or a warehouse. Allocating AGVs to tasks, while considering the cost and time of operations, defines the AGV scheduling process. Multi-objective scheduling of AGVs, unlike single objective practices, is a complex and combinatorial process. In the main draw of the research, a mathematical model was developed and integrated with evolutionary algorithms (genetic algorithm (GA), particle swarm optimization (PSO), and hybrid GA-PSO) to optimize the task scheduling of AGVs with the objectives of minimizing makespan and number of AGVs while considering the AGVs’ battery charge. Assessment of the numerical examples’ scheduling before and after the optimization proved the applicability of all the three algorithms in decreasing the makespan and AGV numbers. The hybrid GA-PSO produced the optimum result and outperformed the other two algorithms, in which the mean of AGVs operation efficiency was found to be 69.4, 74, and 79.8 percent in PSO, GA, and hybrid GA-PSO, respectively. Evaluation and validation of the model was performed by simulation via Flexsim software. PMID:28263994
Mousavi, Maryam; Yap, Hwa Jen; Musa, Siti Nurmaya; Tahriri, Farzad; Md Dawal, Siti Zawiah
2017-01-01
Flexible manufacturing system (FMS) enhances the firm's flexibility and responsiveness to the ever-changing customer demand by providing a fast product diversification capability. Performance of an FMS is highly dependent upon the accuracy of scheduling policy for the components of the system, such as automated guided vehicles (AGVs). An AGV as a mobile robot provides remarkable industrial capabilities for material and goods transportation within a manufacturing facility or a warehouse. Allocating AGVs to tasks, while considering the cost and time of operations, defines the AGV scheduling process. Multi-objective scheduling of AGVs, unlike single objective practices, is a complex and combinatorial process. In the main draw of the research, a mathematical model was developed and integrated with evolutionary algorithms (genetic algorithm (GA), particle swarm optimization (PSO), and hybrid GA-PSO) to optimize the task scheduling of AGVs with the objectives of minimizing makespan and number of AGVs while considering the AGVs' battery charge. Assessment of the numerical examples' scheduling before and after the optimization proved the applicability of all the three algorithms in decreasing the makespan and AGV numbers. The hybrid GA-PSO produced the optimum result and outperformed the other two algorithms, in which the mean of AGVs operation efficiency was found to be 69.4, 74, and 79.8 percent in PSO, GA, and hybrid GA-PSO, respectively. Evaluation and validation of the model was performed by simulation via Flexsim software.
Computational identification of human long intergenic non-coding RNAs using a GA-SVM algorithm.
Wang, Yanqiu; Li, Yang; Wang, Qi; Lv, Yingli; Wang, Shiyuan; Chen, Xi; Yu, Xuexin; Jiang, Wei; Li, Xia
2014-01-01
Long intergenic non-coding RNAs (lincRNAs) are a new type of non-coding RNAs and are closely related with the occurrence and development of diseases. In previous studies, most lincRNAs have been identified through next-generation sequencing. Because lincRNAs exhibit tissue-specific expression, the reproducibility of lincRNA discovery in different studies is very poor. In this study, not including lincRNA expression, we used the sequence, structural and protein-coding potential features as potential features to construct a classifier that can be used to distinguish lincRNAs from non-lincRNAs. The GA-SVM algorithm was performed to extract the optimized feature subset. Compared with several feature subsets, the five-fold cross validation results showed that this optimized feature subset exhibited the best performance for the identification of human lincRNAs. Moreover, the LincRNA Classifier based on Selected Features (linc-SF) was constructed by support vector machine (SVM) based on the optimized feature subset. The performance of this classifier was further evaluated by predicting lincRNAs from two independent lincRNA sets. Because the recognition rates for the two lincRNA sets were 100% and 99.8%, the linc-SF was found to be effective for the prediction of human lincRNAs.
NASA Astrophysics Data System (ADS)
Siade, A. J.; Cheng, W.; Yeh, W. W.
2010-12-01
This study optimizes observation well locations and sampling frequencies for the purpose of estimating unknown groundwater extraction in an aquifer system. Proper orthogonal decomposition (POD) is used to reduce the groundwater flow model, thus reducing the computation burden and data storage space associated with solving this problem for heavily discretized models. This reduced model can store a significant amount of system information in a much smaller reduced state vector. Along with the sensitivity equation method, the proposed approach can efficiently compute the Jacobian matrix that forms the information matrix associated with the experimental design. The criterion adopted for experimental design is the maximization of the trace of the weighted information matrix. Under certain conditions, this is equivalent to the classical A-optimality criterion established in experimental design. A genetic algorithm (GA) is used to optimize the observation well locations and sampling frequencies for maximizing the collected information from the hydraulic head sampling at the observation wells. We applied the proposed approach to a hypothetical 30,000-node groundwater aquifer system. We studied the relationship among the number of observation wells, observation well locations, sampling frequencies, and the collected information for estimating unknown groundwater extraction.
Optimizing doped libraries by using genetic algorithms
NASA Astrophysics Data System (ADS)
Tomandl, Dirk; Schober, Andreas; Schwienhorst, Andreas
1997-01-01
The insertion of random sequences into protein-encoding genes in combination with biologicalselection techniques has become a valuable tool in the design of molecules that have usefuland possibly novel properties. By employing highly effective screening protocols, a functionaland unique structure that had not been anticipated can be distinguished among a hugecollection of inactive molecules that together represent all possible amino acid combinations.This technique is severely limited by its restriction to a library of manageable size. Oneapproach for limiting the size of a mutant library relies on `doping schemes', where subsetsof amino acids are generated that reveal only certain combinations of amino acids in a proteinsequence. Three mononucleotide mixtures for each codon concerned must be designed, suchthat the resulting codons that are assembled during chemical gene synthesis represent thedesired amino acid mixture on the level of the translated protein. In this paper we present adoping algorithm that `reverse translates' a desired mixture of certain amino acids into threemixtures of mononucleotides. The algorithm is designed to optimally bias these mixturestowards the codons of choice. This approach combines a genetic algorithm with localoptimization strategies based on the downhill simplex method. Disparate relativerepresentations of all amino acids (and stop codons) within a target set can be generated.Optional weighing factors are employed to emphasize the frequencies of certain amino acidsand their codon usage, and to compensate for reaction rates of different mononucleotidebuilding blocks (synthons) during chemical DNA synthesis. The effect of statistical errors thataccompany an experimental realization of calculated nucleotide mixtures on the generatedmixtures of amino acids is simulated. These simulations show that the robustness of differentoptima with respect to small deviations from calculated values depends on their concomitantfitness. Furthermore
NASA Astrophysics Data System (ADS)
Jude Hemanth, Duraisamy; Umamaheswari, Subramaniyan; Popescu, Daniela Elena; Naaji, Antoanela
2016-01-01
Image steganography is one of the ever growing computational approaches which has found its application in many fields. The frequency domain techniques are highly preferred for image steganography applications. However, there are significant drawbacks associated with these techniques. In transform based approaches, the secret data is embedded in random manner in the transform coefficients of the cover image. These transform coefficients may not be optimal in terms of the stego image quality and embedding capacity. In this work, the application of Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) have been explored in the context of determining the optimal coefficients in these transforms. Frequency domain transforms such as Bandelet Transform (BT) and Finite Ridgelet Transform (FRIT) are used in combination with GA and PSO to improve the efficiency of the image steganography system.
NASA Astrophysics Data System (ADS)
Gillet, Jean-Numa; Sheng, Yunlong
2003-07-01
Using a novel genetic algorithm (GA) with a Lamarckian search we optimize the polygonal layout of a new type of multiplexed computer-generated hologram (MCGH) with polygonal apertures. A period of the MCGH is divided into cells, and the cell is further divided into polygonal apertures according to a polygonal layout, which is to be optimized. Among an ensemble of 1.21 × 1024 possible polygonal layouts, we take a population of 102 solutions, which are coded as chromosomes of bits, and find the optimal solution with our GA. We introduce rank-based selection with cumulative normal distribution fitness, double crossover, exponentially decreasing mutation probability and Lamarckian downhill search with a small number of offspring chromosomes into our GA, which shows a rapid convergence to the global minimum of the cost function. In a second step of optimization the phase distributions over the subholograms in the MCGH are determined with our iterative subhologram design algorithm. Our MCGH designs show large-size reconstructed images with high diffraction efficiency and low reconstruction error.
Gillet, Jean-Numa; Sheng, Yunlong
2003-07-10
Using a novel genetic algorithm (GA) with a Lamarckian search we optimize the polygonal layout of a new type of multiplexed computer-generated hologram (MCGH) with polygonal apertures. A period ofthe MCGH is divided into cells, and the cell is further divided into polygonal apertures according to a polygonal layout, which is to be optimized. Among an ensemble of 1.21 x 10(24) possible polygonal layouts, we take a population of 102 solutions, which are coded as chromosomes of bits, and find the optimal solution with our GA. We introduce rank-based selection with cumulative normal distribution fitness, double crossover, exponentially decreasing mutation probability and Lamarckian downhill search with a small number of offspring chromosomes into our GA, which shows a rapid convergence to the global minimum of the cost function. In a second step of optimization the phase distributions over the subholograms in the MCGH are determined with our iterative subhologram design algorithm. Our MCGH designs show large-sie reconstructed images with high diffraction efficiency and low reconstruction error.
Watershed optimization of best management practices using AnnAGNPS and a genetic algorithm
NASA Astrophysics Data System (ADS)
Srivastava, P.; Hamlett, J. M.; Robillard, P. D.; Day, R. L.
2002-03-01
An optimization algorithm linked with a nonpoint source (NPS) pollution model can be used to optimize NPS pollution control strategies on a field-by-field basis in a watershed by maximizing NPS pollution reduction and net monetary return. In this paper a methodology is described which integrated a genetic algorithm (GA) (an optimization algorithm) with a continuous simulation, watershed-scale, NPS pollution model, Annualized Agricultural Non-Point Source Pollution model (AnnAGNPS) to optimize the selection of best management practices (BMP) on a field-by-field basis for an entire watershed. To test the methodology, optimization analysis was performed for a U.S. Department of Agriculture experimental watershed in Pennsylvania to identify BMPs that minimized long-term (over a 4-year period) water quality degradation and maximized net farm return on an annual basis. Results indicate that the GA was able to identify BMP schemes that reduced pollutant load by as much as 56% and increased net annual return by 109%.
Optimal Pid Controller Design Using Adaptive Vurpso Algorithm
NASA Astrophysics Data System (ADS)
Zirkohi, Majid Moradi
2015-04-01
The purpose of this paper is to improve theVelocity Update Relaxation Particle Swarm Optimization algorithm (VURPSO). The improved algorithm is called Adaptive VURPSO (AVURPSO) algorithm. Then, an optimal design of a Proportional-Integral-Derivative (PID) controller is obtained using the AVURPSO algorithm. An adaptive momentum factor is used to regulate a trade-off between the global and the local exploration abilities in the proposed algorithm. This operation helps the system to reach the optimal solution quickly and saves the computation time. Comparisons on the optimal PID controller design confirm the superiority of AVURPSO algorithm to the optimization algorithms mentioned in this paper namely the VURPSO algorithm, the Ant Colony algorithm, and the conventional approach. Comparisons on the speed of convergence confirm that the proposed algorithm has a faster convergence in a less computation time to yield a global optimum value. The proposed AVURPSO can be used in the diverse areas of optimization problems such as industrial planning, resource allocation, scheduling, decision making, pattern recognition and machine learning. The proposed AVURPSO algorithm is efficiently used to design an optimal PID controller.
Single-objective optimization of thermo-electric coolers using genetic algorithm
NASA Astrophysics Data System (ADS)
Khanh, Doan V. K.; Vasant, P.; Elamvazuthi, Irraivan; Dieu, Vo N.
2014-10-01
Thermo-electric Coolers (TECs) nowadays is applied in a wide range of thermal energy systems. This is due to its superior features where no refrigerant and dynamic parts are needed. TECs generate no electrical or acoustical noise and are environment friendly. Over the past decades, many researches were employed to improve the efficiency of TECs by enhancing the material parameters and design parameters. The material parameters are restricted by currently available materials and module fabricating technologies. Therefore, the main objective of TECs design is to determine a set of design parameters such as leg area, leg length and the number of legs. Two elements that play an important role when considering the suitability of TECs in applications are rated of refrigeration (ROR) and coefficient of performance (COP). In this paper, the review of some previous researches will be conducted to see the diversity of optimization in the design of TECs in enhancing the performance and efficiency. After that, single objective optimization problems (SOP) will be tested first by using Genetic Algorithm (GA) to optimize geometry properties so that TECs will operate at near optimal conditions. In the future works, multi-objective optimization problems (MOP) using hybrid GA with another optimization technique will be considered to give a better results and compare with previous research such as Non-Dominated Sorting Genetic Algorithm (NSGA-II) to see the advantages and disadvantages.
Algorithm for correcting optimization convergence errors in Eclipse.
Zacarias, Albert S; Mills, Michael D
2009-10-14
IMRT plans generated in Eclipse use a fast algorithm to evaluate dose for optimization and a more accurate algorithm for a final dose calculation, the Analytical Anisotropic Algorithm. The use of a fast optimization algorithm introduces optimization convergence errors into an IMRT plan. Eclipse has a feature where optimization may be performed on top of an existing base plan. This feature allows for the possibility of arriving at a recursive solution to optimization that relies on the accuracy of the final dose calculation algorithm and not the optimizer algorithm. When an IMRT plan is used as a base plan for a second optimization, the second optimization can compensate for heterogeneity and modulator errors in the original base plan. Plans with the same field arrangement as the initial base plan may be added together by adding the initial plan optimal fluence to the dose correcting plan optimal fluence.A simple procedure to correct for optimization errors is presented that may be implemented in the Eclipse treatment planning system, along with an Excel spreadsheet to add optimized fluence maps together.
Evaluation of Genetic Algorithm Concepts Using Model Problems. Part 2; Multi-Objective Optimization
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Pulliam, Thomas H.
2003-01-01
A genetic algorithm approach suitable for solving multi-objective optimization problems is described and evaluated using a series of simple model problems. Several new features including a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. Results indicate that the genetic algorithm optimization approach is flexible in application and extremely reliable, providing optimal results for all optimization problems attempted. The binning algorithm generally provides pareto front quality enhancements and moderate convergence efficiency improvements for most of the model problems. The gene-space transformation procedure provides a large convergence efficiency enhancement for problems with non-convoluted pareto fronts and a degradation in efficiency for problems with convoluted pareto fronts. The most difficult problems --multi-mode search spaces with a large number of genes and convoluted pareto fronts-- require a large number of function evaluations for GA convergence, but always converge.
NASA Astrophysics Data System (ADS)
Subramanian, Nithya
Optimization under uncertainty accounts for design variables and external parameters or factors with probabilistic distributions instead of fixed deterministic values; it enables problem formulations that might maximize or minimize an expected value while satisfying constraints using probabilities. For discrete optimization under uncertainty, a Monte Carlo Sampling (MCS) approach enables high-accuracy estimation of expectations but it also results in high computational expense. The Genetic Algorithm (GA) with a Population-Based Sampling (PBS) technique enables optimization under uncertainty with discrete variables at a lower computational expense than using Monte Carlo sampling for every fitness evaluation. Population-Based Sampling uses fewer samples in the exploratory phase of the GA and a larger number of samples when `good designs' start emerging over the generations. This sampling technique therefore reduces the computational effort spent on `poor designs' found in the initial phase of the algorithm. Parallel computation evaluates the expected value of the objective and constraints in parallel to facilitate reduced wall-clock time. A customized stopping criterion is also developed for the GA with Population-Based Sampling. The stopping criterion requires that the design with the minimum expected fitness value to have at least 99% constraint satisfaction and to have accumulated at least 10,000 samples. The average change in expected fitness values in the last ten consecutive generations is also monitored. The optimization of composite laminates using ply orientation angle as a discrete variable provides an example to demonstrate further developments of the GA with Population-Based Sampling for discrete optimization under uncertainty. The focus problem aims to reduce the expected weight of the composite laminate while treating the laminate's fiber volume fraction and externally applied loads as uncertain quantities following normal distributions. Construction of
Optimization on robot arm machining by using genetic algorithms
NASA Astrophysics Data System (ADS)
Liu, Tung-Kuan; Chen, Chiu-Hung; Tsai, Shang-En
2007-12-01
In this study, an optimization problem on the robot arm machining is formulated and solved by using genetic algorithms (GAs). The proposed approach adopts direct kinematics model and utilizes GA's global search ability to find the optimum solution. The direct kinematics equations of the robot arm are formulated and can be used to compute the end-effector coordinates. Based on these, the objective of optimum machining along a set of points can be evolutionarily evaluated with the distance between machining points and end-effector positions. Besides, a 3D CAD application, CATIA, is used to build up the 3D models of the robot arm, work-pieces and their components. A simulated experiment in CATIA is used to verify the computation results first and a practical control on the robot arm through the RS232 port is also performed. From the results, this approach is proved to be robust and can be suitable for most machining needs when robot arms are adopted as the machining tools.
Linear antenna array optimization using flower pollination algorithm.
Saxena, Prerna; Kothari, Ashwin
2016-01-01
Flower pollination algorithm (FPA) is a new nature-inspired evolutionary algorithm used to solve multi-objective optimization problems. The aim of this paper is to introduce FPA to the electromagnetics and antenna community for the optimization of linear antenna arrays. FPA is applied for the first time to linear array so as to obtain optimized antenna positions in order to achieve an array pattern with minimum side lobe level along with placement of deep nulls in desired directions. Various design examples are presented that illustrate the use of FPA for linear antenna array optimization, and subsequently the results are validated by benchmarking along with results obtained using other state-of-the-art, nature-inspired evolutionary algorithms such as particle swarm optimization, ant colony optimization and cat swarm optimization. The results suggest that in most cases, FPA outperforms the other evolutionary algorithms and at times it yields a similar performance.
Auto-score system to optimize OPC recipe parameters using genetic algorithm
NASA Astrophysics Data System (ADS)
Cao, Liang; Asthana, Abhishek; Ning, Guoxiang; Feng, Jui-Hsuan; Zhang, Jie; Wilkinson, William
2016-10-01
The ever increasing pattern densities and design complexities make the tuning of optical proximity correction (OPC) recipes more challenging. There are various recipe tuning methods to meet the challenge, such as genetic algorithm (GA), simulated annealing, and OPC software vendor provided recipe optimizers. However, these methodologies usually only consider edge placement errors (EPEs). Therefore, these techniques may not provide adequate freedom to solve unique problems at special geometries, for example bridge, pinch, and process variation band related violations at complex 2D geometries. This paper introduces a general methodology to fix specific problems identified at the OPC verification stage and demonstrates its successful application to two test-cases. The algorithm and method of the automatic scoring system is introduced in order to identify and prioritize the problems that need to be fixed based on severity, with the POR recipe score used as the baseline reference. A GA optimizer, whose objective function is based on the scoring system, is applied to tune the OPC recipe parameters to optimum condition after generations of selections. The GA optimized recipe would be compared to existing recipe to quantify the amount of improvement. This technique was subsequently applied to eliminate certain chronic OPC verification problems which were encountered in the past. Though the benefits have been demonstrated for limited test cases, employing this technique more universally will enable users to efficiently reduce the number of OPC verification violations and provide robust OPC solutions.
Zhukov, A. E.; Asryan, L. V.; Semenova, E. S.; Zubov, F. I.; Kryzhanovskaya, N. V.; Maximov, M. V.
2015-07-15
Band offsets at the heterointerface are calculated for various combinations of InAlGaAs/AlGaAs heteropairs that can be synthesized on GaAs substrates in the layer-by-layer pseudomorphic growth mode. Patterns which make it possible to obtain an asymmetric barrier layer providing the almost obstruction-free transport of holes and the highest possible barrier height for electrons are found. The optimal compositions of both compounds (In{sup 0.232}Al{sup 0.594}Ga{sup 0.174}As/Al{sup 0.355}Ga{sup 0.645}As) at which the flux of electrons across the barrier is at a minimum are determined with consideration for the critical thickness of the indium-containing quaternary solid solution.
Peng, Tingting; Jiang, Bo; Guo, Jiangfeng; Lu, Hongfei; Du, Liqun
2015-01-01
Temperature is a predominant environmental factor affecting grass germination and distribution. Various thermal-germination models for prediction of grass seed germination have been reported, in which the relationship between temperature and germination were defined with kernel functions, such as quadratic or quintic function. However, their prediction accuracies warrant further improvements. The purpose of this study is to evaluate the relative prediction accuracies of genetic algorithm (GA) models, which are automatically parameterized with observed germination data. The seeds of five P. pratensis (Kentucky bluegrass, KB) cultivars were germinated under 36 day/night temperature regimes ranging from 5/5 to 40/40°C with 5°C increments. Results showed that optimal germination percentages of all five tested KB cultivars were observed under a fluctuating temperature regime of 20/25°C. Meanwhile, the constant temperature regimes (e.g., 5/5, 10/10, 15/15°C, etc.) suppressed the germination of all five cultivars. Furthermore, the back propagation artificial neural network (BP-ANN) algorithm was integrated to optimize temperature-germination response models from these observed germination data. It was found that integrations of GA-BP-ANN (back propagation aided genetic algorithm artificial neural network) significantly reduced the Root Mean Square Error (RMSE) values from 0.21~0.23 to 0.02~0.09. In an effort to provide a more reliable prediction of optimum sowing time for the tested KB cultivars in various regions in the country, the optimized GA-BP-ANN models were applied to map spatial and temporal germination percentages of blue grass cultivars in China. Our results demonstrate that the GA-BP-ANN model is a convenient and reliable option for constructing thermal-germination response models since it automates model parameterization and has excellent prediction accuracy. PMID:26154163
HEURISTIC OPTIMIZATION AND ALGORITHM TUNING APPLIED TO SORPTIVE BARRIER DESIGN
While heuristic optimization is applied in environmental applications, ad-hoc algorithm configuration is typical. We use a multi-layer sorptive barrier design problem as a benchmark for an algorithm-tuning procedure, as applied to three heuristics (genetic algorithms, simulated ...
Applying fuzzy clustering optimization algorithm to extracting traffic spatial pattern
NASA Astrophysics Data System (ADS)
Hu, Chunchun; Shi, Wenzhong; Meng, Lingkui; Liu, Min
2009-10-01
Traditional analytical methods for traffic information can't meet to need of intelligent traffic system. Mining value-add information can deal with more traffic problems. The paper exploits a new clustering optimization algorithm to extract useful spatial clustered pattern for predicting long-term traffic flow from macroscopic view. Considering the sensitivity of initial parameters and easy falling into local extreme in FCM algorithm, the new algorithm applies Particle Swarm Optimization method, which can discovery the globe optimal result, to the FCM algorithm. And the algorithm exploits the union of the clustering validity index and objective function of the FCM algorithm as the fitness function of the PSO algorithm. The experimental result indicates that it is effective and efficient. For fuzzy clustering of road traffic data, it can produce useful spatial clustered pattern. And the clustered centers represent the locations which have heavy traffic flow. Moreover, the parameters of the patterns can provide intelligent traffic system with assistant decision support.
Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization
NASA Technical Reports Server (NTRS)
Holst, Terry L.
2004-01-01
A genetic algorithm approach suitable for solving multi-objective optimization problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.
Pan, Indranil; Das, Saptarshi; Gupta, Amitava
2011-01-01
An optimal PID and an optimal fuzzy PID have been tuned by minimizing the Integral of Time multiplied Absolute Error (ITAE) and squared controller output for a networked control system (NCS). The tuning is attempted for a higher order and a time delay system using two stochastic algorithms viz. the Genetic Algorithm (GA) and two variants of Particle Swarm Optimization (PSO) and the closed loop performances are compared. The paper shows that random variation in network delay can be handled efficiently with fuzzy logic based PID controllers over conventional PID controllers.
Genetic algorithm based design optimization of a permanent magnet brushless dc motor
NASA Astrophysics Data System (ADS)
Upadhyay, P. R.; Rajagopal, K. R.
2005-05-01
Genetic algorithm (GA) based design optimization of a permanent magnet brushless dc motor is presented in this paper. A 70 W, 350 rpm, ceiling fan motor with radial-filed configuration is designed by considering the efficiency as the objective function. Temperature-rise and motor weight are the constraints and the slot electric loading, magnet-fraction, slot-fraction, airgap, and airgap flux density are the design variables. The efficiency and the phase-inductance of the motor designed using the developed CAD program are improved by using the GA based optimization technique; from 84.75% and 5.55 mH to 86.06% and 2.4 mH, respectively.
FOX-GA: a genetic algorithm for generating and analyzing battlefield courses of action.
Schlabach, J L; Hayes, C C; Goldberg, D E
1999-01-01
This paper describes FOX-GA, a genetic algorithm (GA) that generates and evaluates plans in the complex domain of military maneuver planning. FOX-GA's contributions are to demonstrate an effective application of GA technology to a complex real world planning problem, and to provide an understanding of the properties needed in a GA solution to meet the challenges of decision support in complex domains. Previous obstacles to applying GA technology to maneuver planning include the lack of efficient algorithms for determining the fitness of plans. Detailed simulations would ideally be used to evaluate these plans, but most such simulations typically require several hours to assess a single plan. Since a GA needs to quickly generate and evaluate thousands of plans, these methods are too slow. To solve this problem we developed an efficient evaluator (wargamer) that uses course-grained representations of this problem domain to allow appropriate yet intelligent trade-offs between computational efficiency and accuracy. An additional challenge was that users needed a diverse set of significantly different plan options from which to choose. Typical GA's tend to develop a group of "best" solutions that may be very similar (or identical) to each other. This may not provide users with sufficient choice. We addressed this problem by adding a niching strategy to the selection mechanism to insure diversity in the solution set, providing users with a more satisfactory range of choices. FOX-GA's impact will be in providing decision support to time constrained and cognitively overloaded battlestaff to help them rapidly explore options, create plans, and better cope with the information demands of modern warfare.
Jiang, Wenjuan; Shi, Yunbo; Zhao, Wenjie; Wang, Xiangxin
2016-01-01
The main part of the magnetic fluxgate sensor is the magnetic core, the hysteresis characteristic of which affects the performance of the sensor. When the fluxgate sensors are modelled for design purposes, an accurate model of hysteresis characteristic of the cores is necessary to achieve good agreement between modelled and experimental data. The Jiles-Atherton model is simple and can reflect the hysteresis properties of the magnetic material precisely, which makes it widely used in hysteresis modelling and simulation of ferromagnetic materials. However, in practice, it is difficult to determine the parameters accurately owing to the sensitivity of the parameters. In this paper, the Biogeography-Based Optimization (BBO) algorithm is applied to identify the Jiles-Atherton model parameters. To enhance the performances of the BBO algorithm such as global search capability, search accuracy and convergence rate, an improved Biogeography-Based Optimization (IBBO) algorithm is put forward by using Arnold map and mutation strategy of Differential Evolution (DE) algorithm. Simulation results show that IBBO algorithm is superior to Genetic Algorithm (GA), Particle Swarm Optimization (PSO) algorithm, Differential Evolution algorithm and BBO algorithm in identification accuracy and convergence rate. The IBBO algorithm is applied to identify Jiles-Atherton model parameters of selected permalloy. The simulation hysteresis loop is in high agreement with experimental data. Using permalloy as core of fluxgate probe, the simulation output is consistent with experimental output. The IBBO algorithm can identify the parameters of Jiles-Atherton model accurately, which provides a basis for the precise analysis and design of instruments and equipment with magnetic core. PMID:27347974
Evaluation of Genetic Algorithm Concepts using Model Problems. Part 1; Single-Objective Optimization
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Pulliam, Thomas H.
2003-01-01
A genetic-algorithm-based optimization approach is described and evaluated using a simple hill-climbing model problem. The model problem utilized herein allows for the broad specification of a large number of search spaces including spaces with an arbitrary number of genes or decision variables and an arbitrary number hills or modes. In the present study, only single objective problems are considered. Results indicate that the genetic algorithm optimization approach is flexible in application and extremely reliable, providing optimal results for all problems attempted. The most difficult problems - those with large hyper-volumes and multi-mode search spaces containing a large number of genes - require a large number of function evaluations for GA convergence, but they always converge.
Transonic Wing Shape Optimization Using a Genetic Algorithm
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Pulliam, Thomas H.; Kwak, Dochan (Technical Monitor)
2002-01-01
A method for aerodynamic shape optimization based on a genetic algorithm approach is demonstrated. The algorithm is coupled with a transonic full potential flow solver and is used to optimize the flow about transonic wings including multi-objective solutions that lead to the generation of pareto fronts. The results indicate that the genetic algorithm is easy to implement, flexible in application and extremely reliable.
A Fast Elitism Gaussian Estimation of Distribution Algorithm and Application for PID Optimization
Xu, Qingyang; Zhang, Chengjin; Zhang, Li
2014-01-01
Estimation of distribution algorithm (EDA) is an intelligent optimization algorithm based on the probability statistics theory. A fast elitism Gaussian estimation of distribution algorithm (FEGEDA) is proposed in this paper. The Gaussian probability model is used to model the solution distribution. The parameters of Gaussian come from the statistical information of the best individuals by fast learning rule. A fast learning rule is used to enhance the efficiency of the algorithm, and an elitism strategy is used to maintain the convergent performance. The performances of the algorithm are examined based upon several benchmarks. In the simulations, a one-dimensional benchmark is used to visualize the optimization process and probability model learning process during the evolution, and several two-dimensional and higher dimensional benchmarks are used to testify the performance of FEGEDA. The experimental results indicate the capability of FEGEDA, especially in the higher dimensional problems, and the FEGEDA exhibits a better performance than some other algorithms and EDAs. Finally, FEGEDA is used in PID controller optimization of PMSM and compared with the classical-PID and GA. PMID:24892059
Abstract models for the synthesis of optimization algorithms.
NASA Technical Reports Server (NTRS)
Meyer, G. G. L.; Polak, E.
1971-01-01
Systematic approach to the problem of synthesis of optimization algorithms. Abstract models for algorithms are developed which guide the inventive process toward ?conceptual' algorithms which may consist of operations that are inadmissible in a practical method. Once the abstract models are established a set of methods for converting ?conceptual' algorithms falling into the class defined by the abstract models into ?implementable' iterative procedures is presented.
Genetic-Algorithm Tool For Search And Optimization
NASA Technical Reports Server (NTRS)
Wang, Lui; Bayer, Steven
1995-01-01
SPLICER computer program used to solve search and optimization problems. Genetic algorithms adaptive search procedures (i.e., problem-solving methods) based loosely on processes of natural selection and Darwinian "survival of fittest." Algorithms apply genetically inspired operators to populations of potential solutions in iterative fashion, creating new populations while searching for optimal or nearly optimal solution to problem at hand. Written in Think C.
Celik, Yuksel; Ulker, Erkan
2013-01-01
Marriage in honey bees optimization (MBO) is a metaheuristic optimization algorithm developed by inspiration of the mating and fertilization process of honey bees and is a kind of swarm intelligence optimizations. In this study we propose improved marriage in honey bees optimization (IMBO) by adding Levy flight algorithm for queen mating flight and neighboring for worker drone improving. The IMBO algorithm's performance and its success are tested on the well-known six unconstrained test functions and compared with other metaheuristic optimization algorithms. PMID:23935416
Heterostructure design optimization for laser cooling of GaAs
NASA Astrophysics Data System (ADS)
Imangholi, B.; Wang, C.; Soto, E.; Sheik-Bahae, M.; Stintz, A.; Malloy, K.; Nuntawong, N.; Epstein, R.
2007-02-01
Doping of the clad layers in thin GaAs/GaInP heterostructures, displaces the band energy discontinuity, modifies the carrier concentration in the active GaAs region and changes the quality of the hetero-interfaces. As a result, internal and consequently external quantum efficiencies in the double heterostructure are affected. In this paper, the interfacial quality of GaAs/GaInP heterostructure is systematically investigated by adjusting the doping level and type (n or p) of the cladding layer. An optimum structure for laser cooling applications is proposed.
Improving excitation and inversion accuracy by optimized RF pulse using genetic algorithm.
Pang, Yong; Shen, Gary X
2007-05-01
In this study, a Genetic Algorithm (GA) is introduced to optimize the multidimensional spatial selective RF pulse to reduce the passband and stopband errors of excitation profile while limiting the transition width. This method is also used to diminish the nonlinearity effect of the Bloch equation for large tip angle excitation pulse design. The RF pulse is first designed by the k-space method and then coded into float strings to form an initial population. GA operators are then applied to this population to perform evolution, which is an optimization process. In this process, an evaluation function defined as the sum of the reciprocal of passband and stopband errors is used to assess the fitness value of each individual, so as to find the best individual in current generation. It is possible to optimize the RF pulse after a number of iterations. Simulation results of the Bloch equation show that in a 90 degrees excitation pulse design, compared with the k-space method, a GA-optimized RF pulse can reduce the passband and stopband error by 12% and 3%, respectively, while maintaining the transition width within 2 cm (about 12% of the whole 32 cm FOV). In a 180 degrees inversion pulse design, the passband error can be reduced by 43%, while the transition is also kept at 2 cm in a whole 32 cm FOV.
Optimization of Blended Wing Body Composite Panels Using Both NASTRAN and Genetic Algorithm
NASA Technical Reports Server (NTRS)
Lovejoy, Andrew E.
2006-01-01
The blended wing body (BWB) is a concept that has been investigated for improving the performance of transport aircraft. A trade study was conducted by evaluating four regions from a BWB design characterized by three fuselage bays and a 400,000 lb. gross take-off weight (GTW). This report describes the structural optimization of these regions via computational analysis and compares them to the baseline designs of the same construction. The identified regions were simplified for use in the optimization. The regions were represented by flat panels having appropriate classical boundary conditions and uniform force resultants along the panel edges. Panel-edge tractions and internal pressure values applied during the study were those determined by nonlinear NASTRAN analyses. Only one load case was considered in the optimization analysis for each panel region. Optimization was accomplished using both NASTRAN solution 200 and Genetic Algorithm (GA), with constraints imposed on stress, buckling, and minimum thicknesses. The NASTRAN optimization analyses often resulted in infeasible solutions due to violation of the constraints, whereas the GA enforced satisfaction of the constraints and, therefore, always ensured a feasible solution. However, both optimization methods encountered difficulties when the number of design variables was increased. In general, the optimized panels weighed less than the comparable baseline panels.
The royal road for genetic algorithms: Fitness landscapes and GA performance
Mitchell, M.; Holland, J.H. ); Forrest, S. . Dept. of Computer Science)
1991-01-01
Genetic algorithms (GAs) play a major role in many artificial-life systems, but there is often little detailed understanding of why the GA performs as it does, and little theoretical basis on which to characterize the types of fitness landscapes that lead to successful GA performance. In this paper we propose a strategy for addressing these issues. Our strategy consists of defining a set of features of fitness landscapes that are particularly relevant to the GA, and experimentally studying how various configurations of these features affect the GA's performance along a number of dimensions. In this paper we informally describe an initial set of proposed feature classes, describe in detail one such class ( Royal Road'' functions), and present some initial experimental results concerning the role of crossover and building blocks'' on landscapes constructed from features of this class. 27 refs., 1 fig., 5 tabs.
DeMAID/GA USER'S GUIDE Design Manager's Aid for Intelligent Decomposition with a Genetic Algorithm
NASA Technical Reports Server (NTRS)
Rogers, James L.
1996-01-01
Many companies are looking for new tools and techniques to aid a design manager in making decisions that can reduce the time and cost of a design cycle. One tool that is available to aid in this decision making process is the Design Manager's Aid for Intelligent Decomposition (DeMAID). Since the initial release of DEMAID in 1989, numerous enhancements have been added to aid the design manager in saving both cost and time in a design cycle. The key enhancement is a genetic algorithm (GA) and the enhanced version is called DeMAID/GA. The GA orders the sequence of design processes to minimize the cost and time to converge to a solution. These enhancements as well as the existing features of the original version of DEMAID are described. Two sample problems are used to show how these enhancements can be applied to improve the design cycle. This report serves as a user's guide for DeMAID/GA.
Iterative phase retrieval algorithms. I: optimization.
Guo, Changliang; Liu, Shi; Sheridan, John T
2015-05-20
Two modified Gerchberg-Saxton (GS) iterative phase retrieval algorithms are proposed. The first we refer to as the spatial phase perturbation GS algorithm (SPP GSA). The second is a combined GS hybrid input-output algorithm (GS/HIOA). In this paper (Part I), it is demonstrated that the SPP GS and GS/HIO algorithms are both much better at avoiding stagnation during phase retrieval, allowing them to successfully locate superior solutions compared with either the GS or the HIO algorithms. The performances of the SPP GS and GS/HIO algorithms are also compared. Then, the error reduction (ER) algorithm is combined with the HIO algorithm (ER/HIOA) to retrieve the input object image and the phase, given only some knowledge of its extent and the amplitude in the Fourier domain. In Part II, the algorithms developed here are applied to carry out known plaintext and ciphertext attacks on amplitude encoding and phase encoding double random phase encryption systems. Significantly, ER/HIOA is then used to carry out a ciphertext-only attack on AE DRPE systems.
Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization
NASA Technical Reports Server (NTRS)
Holst, Terry L.
2005-01-01
A genetic algorithm approach suitable for solving multi-objective problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding Pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the Pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide Pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.
A Danger-Theory-Based Immune Network Optimization Algorithm
Li, Tao; Xiao, Xin; Shi, Yuanquan
2013-01-01
Existing artificial immune optimization algorithms reflect a number of shortcomings, such as premature convergence and poor local search ability. This paper proposes a danger-theory-based immune network optimization algorithm, named dt-aiNet. The danger theory emphasizes that danger signals generated from changes of environments will guide different levels of immune responses, and the areas around danger signals are called danger zones. By defining the danger zone to calculate danger signals for each antibody, the algorithm adjusts antibodies' concentrations through its own danger signals and then triggers immune responses of self-regulation. So the population diversity can be maintained. Experimental results show that the algorithm has more advantages in the solution quality and diversity of the population. Compared with influential optimization algorithms, CLONALG, opt-aiNet, and dopt-aiNet, the algorithm has smaller error values and higher success rates and can find solutions to meet the accuracies within the specified function evaluation times. PMID:23483853
Optimal control of FES-assisted standing up in paraplegia using genetic algorithms.
Davoodi, R; Andrews, B J
1999-11-01
A practical system for Functional Electrical Stimulation (FES) assisted standing up in paraplegia should involve only a minimum of manual set up and tuning. An improved tuning method, using a genetic algorithm (GA) is proposed and demonstrated using computer simulation. Specifically, the GA adjusts the parameters of fuzzy logic (FL) and gain-scheduling proportional integral derivative (GS-PID) controllers that electrically stimulate the hip and knee musculature during the sit-stand maneuver. These new GA designed controllers were found to be effective in coordinating volitional and FES control according to formulated criteria. The latter was based on the deviations from a desired trajectory of the knee and hip joints and the magnitude of the voluntary upper body forces. The magnitude of the average arm forces were slightly higher when compared with the open-loop maximal stimulation of the hip and knee musculature; however, the terminal knee velocities were significantly reduced to less than 10 degrees /s. For practical implementation, the number of trials required to optimize the FL and GS-PID controllers can be reduced by a proposed pre-training procedure using a computer model scaled to the individual. The GA designed controllers remain near optimal provided the model-subject mismatch is small.
Genetic algorithm for the optimization of features and neural networks in ECG signals classification
NASA Astrophysics Data System (ADS)
Li, Hongqiang; Yuan, Danyang; Ma, Xiangdong; Cui, Dianyin; Cao, Lu
2017-01-01
Feature extraction and classification of electrocardiogram (ECG) signals are necessary for the automatic diagnosis of cardiac diseases. In this study, a novel method based on genetic algorithm-back propagation neural network (GA-BPNN) for classifying ECG signals with feature extraction using wavelet packet decomposition (WPD) is proposed. WPD combined with the statistical method is utilized to extract the effective features of ECG signals. The statistical features of the wavelet packet coefficients are calculated as the feature sets. GA is employed to decrease the dimensions of the feature sets and to optimize the weights and biases of the back propagation neural network (BPNN). Thereafter, the optimized BPNN classifier is applied to classify six types of ECG signals. In addition, an experimental platform is constructed for ECG signal acquisition to supply the ECG data for verifying the effectiveness of the proposed method. The GA-BPNN method with the MIT-BIH arrhythmia database achieved a dimension reduction of nearly 50% and produced good classification results with an accuracy of 97.78%. The experimental results based on the established acquisition platform indicated that the GA-BPNN method achieved a high classification accuracy of 99.33% and could be efficiently applied in the automatic identification of cardiac arrhythmias.
Genetic algorithm for the optimization of features and neural networks in ECG signals classification
Li, Hongqiang; Yuan, Danyang; Ma, Xiangdong; Cui, Dianyin; Cao, Lu
2017-01-01
Feature extraction and classification of electrocardiogram (ECG) signals are necessary for the automatic diagnosis of cardiac diseases. In this study, a novel method based on genetic algorithm-back propagation neural network (GA-BPNN) for classifying ECG signals with feature extraction using wavelet packet decomposition (WPD) is proposed. WPD combined with the statistical method is utilized to extract the effective features of ECG signals. The statistical features of the wavelet packet coefficients are calculated as the feature sets. GA is employed to decrease the dimensions of the feature sets and to optimize the weights and biases of the back propagation neural network (BPNN). Thereafter, the optimized BPNN classifier is applied to classify six types of ECG signals. In addition, an experimental platform is constructed for ECG signal acquisition to supply the ECG data for verifying the effectiveness of the proposed method. The GA-BPNN method with the MIT-BIH arrhythmia database achieved a dimension reduction of nearly 50% and produced good classification results with an accuracy of 97.78%. The experimental results based on the established acquisition platform indicated that the GA-BPNN method achieved a high classification accuracy of 99.33% and could be efficiently applied in the automatic identification of cardiac arrhythmias. PMID:28139677
NASA Astrophysics Data System (ADS)
Islam, Sirajul; Talukdar, Bipul
2016-09-01
A Linked Simulation-Optimization (LSO) model based on a Clonal Selection Algorithm (CSA) was formulated for application in conjunctive irrigation management. A series of measures were considered for reducing the computational burden associated with the LSO approach. Certain modifications were incurred to the formulated CSA, so as to decrease the number of function evaluations. In addition, a simple problem specific code for a two dimensional groundwater flow simulation model was developed. The flow model was further simplified by a novel approach of area reduction, in order to save computational time in simulation. The LSO model was applied in the irrigation command of the Pagladiya Dam Project in Assam, India. With a view to evaluate the performance of the CSA, a Genetic Algorithm (GA) was used as a comparison base. The results from the CSA compared well with those from the GA. In fact, the CSA was found to consume less computational time than the GA while converging to the optimal solution, due to the modifications incurred in it.
A Novel, Real-Valued Genetic Algorithm for Optimizing Radar Absorbing Materials
NASA Technical Reports Server (NTRS)
Hall, John Michael
2004-01-01
A novel, real-valued Genetic Algorithm (GA) was designed and implemented to minimize the reflectivity and/or transmissivity of an arbitrary number of homogeneous, lossy dielectric or magnetic layers of arbitrary thickness positioned at either the center of an infinitely long rectangular waveguide, or adjacent to the perfectly conducting backplate of a semi-infinite, shorted-out rectangular waveguide. Evolutionary processes extract the optimal physioelectric constants falling within specified constraints which minimize reflection and/or transmission over the frequency band of interest. This GA extracted the unphysical dielectric and magnetic constants of three layers of fictitious material placed adjacent to the conducting backplate of a shorted-out waveguide such that the reflectivity of the configuration was 55 dB or less over the entire X-band. Examples of the optimization of realistic multi-layer absorbers are also presented. Although typical Genetic Algorithms require populations of many thousands in order to function properly and obtain correct results, verified correct results were obtained for all test cases using this GA with a population of only four.
NASA Astrophysics Data System (ADS)
Song, Kaishan; Li, Lin; Li, Shuai; Tedesco, Lenore; Hall, Bob; Li, Zuchuan
2012-08-01
Eagle Creek, Morse and Geist reservoirs, drinking water supply sources for the Indianapolis, Indiana, USA metropolitan region, are experiencing nuisance cyanobacterial blooms. Hyperspectral remote sensing has been proven to be an effective tool for phycocyanin (C-PC) concentration retrieval, a proxy pigment unique to cyanobacteria in freshwater ecosystems. An adaptive model based on genetic algorithm and partial least squares (GA-PLS), together with three-band algorithm (TBA) and other band ratio algorithms were applied to hyperspectral data acquired from in situ (ASD spectrometer) and airborne (AISA sensor) platforms. The results indicated that GA-PLS achieved high correlation between measured and estimated C-PC for GR (RMSE = 16.3 μg/L, RMSE% = 18.2; range (R): 2.6-185.1 μg/L), MR (RMSE = 8.7 μg/L, RMSE% = 15.6; R: 3.3-371.0 μg/L) and ECR (RMSE = 19.3 μg/L, RMSE% = 26.4; R: 0.7-245.0 μg/L) for the in situ datasets. TBA also performed well compared to other band ratio algorithms due to its optimal band tuning process and the reduction of backscattering effects through the third band. GA-PLS (GR: RMSE = 24.1 μg/L, RMSE% = 25.2, R: 25.2-185.1 μg/L; MR: RMSE = 15.7 μg/L, RMSE% = 37.4, R: 2.0-135.1 μg/L) and TBA (GR: RMSE = 28.3 μg/L, RMSE% = 30.1; MR: RMSE = 17.7 μg/L, RMSE% = 41.9) methods results in somewhat lower accuracy using AISA imagery data, which is likely due to atmospheric correction or radiometric resolution. GA-PLS (TBA) obtained an RMSE of 24.82 μg/L (35.8 μg/L), and RMSE% of 31.24 (43.5) between measured and estimated C-PC for aggregated datasets. C-PC maps were generated through GA-PLS using AISA imagery data. The C-PC concentration had an average value of 67.31 ± 44.23 μg/L in MR with a large range of concentration, while the GR had a higher average value 103.17 ± 33.45 μg/L.
A hybrid of genetic algorithm and particle swarm optimization for recurrent network design.
Juang, Chia-Feng
2004-04-01
An evolutionary recurrent network which automates the design of recurrent neural/fuzzy networks using a new evolutionary learning algorithm is proposed in this paper. This new evolutionary learning algorithm is based on a hybrid of genetic algorithm (GA) and particle swarm optimization (PSO), and is thus called HGAPSO. In HGAPSO, individuals in a new generation are created, not only by crossover and mutation operation as in GA, but also by PSO. The concept of elite strategy is adopted in HGAPSO, where the upper-half of the best-performing individuals in a population are regarded as elites. However, instead of being reproduced directly to the next generation, these elites are first enhanced. The group constituted by the elites is regarded as a swarm, and each elite corresponds to a particle within it. In this regard, the elites are enhanced by PSO, an operation which mimics the maturing phenomenon in nature. These enhanced elites constitute half of the population in the new generation, whereas the other half is generated by performing crossover and mutation operation on these enhanced elites. HGAPSO is applied to recurrent neural/fuzzy network design as follows. For recurrent neural network, a fully connected recurrent neural network is designed and applied to a temporal sequence production problem. For recurrent fuzzy network design, a Takagi-Sugeno-Kang-type recurrent fuzzy network is designed and applied to dynamic plant control. The performance of HGAPSO is compared to both GA and PSO in these recurrent networks design problems, demonstrating its superiority.
Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models.
Yuan, Gonglin; Duan, Xiabin; Liu, Wenjie; Wang, Xiaoliang; Cui, Zengru; Sheng, Zhou
2015-01-01
Two new PRP conjugate Algorithms are proposed in this paper based on two modified PRP conjugate gradient methods: the first algorithm is proposed for solving unconstrained optimization problems, and the second algorithm is proposed for solving nonlinear equations. The first method contains two aspects of information: function value and gradient value. The two methods both possess some good properties, as follows: 1) βk ≥ 0 2) the search direction has the trust region property without the use of any line search method 3) the search direction has sufficient descent property without the use of any line search method. Under some suitable conditions, we establish the global convergence of the two algorithms. We conduct numerical experiments to evaluate our algorithms. The numerical results indicate that the first algorithm is effective and competitive for solving unconstrained optimization problems and that the second algorithm is effective for solving large-scale nonlinear equations.
An Adaptive Unified Differential Evolution Algorithm for Global Optimization
Qiang, Ji; Mitchell, Chad
2014-11-03
In this paper, we propose a new adaptive unified differential evolution algorithm for single-objective global optimization. Instead of the multiple mutation strate- gies proposed in conventional differential evolution algorithms, this algorithm employs a single equation unifying multiple strategies into one expression. It has the virtue of mathematical simplicity and also provides users the flexibility for broader exploration of the space of mutation operators. By making all control parameters in the proposed algorithm self-adaptively evolve during the process of optimization, it frees the application users from the burden of choosing appro- priate control parameters and also improves the performance of the algorithm. In numerical tests using thirteen basic unimodal and multimodal functions, the proposed adaptive unified algorithm shows promising performance in compari- son to several conventional differential evolution algorithms.
Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models
Yuan, Gonglin; Duan, Xiabin; Liu, Wenjie; Wang, Xiaoliang; Cui, Zengru; Sheng, Zhou
2015-01-01
Two new PRP conjugate Algorithms are proposed in this paper based on two modified PRP conjugate gradient methods: the first algorithm is proposed for solving unconstrained optimization problems, and the second algorithm is proposed for solving nonlinear equations. The first method contains two aspects of information: function value and gradient value. The two methods both possess some good properties, as follows: 1)βk ≥ 0 2) the search direction has the trust region property without the use of any line search method 3) the search direction has sufficient descent property without the use of any line search method. Under some suitable conditions, we establish the global convergence of the two algorithms. We conduct numerical experiments to evaluate our algorithms. The numerical results indicate that the first algorithm is effective and competitive for solving unconstrained optimization problems and that the second algorithm is effective for solving large-scale nonlinear equations. PMID:26502409
A parallel Jacobson-Oksman optimization algorithm. [parallel processing (computers)
NASA Technical Reports Server (NTRS)
Straeter, T. A.; Markos, A. T.
1975-01-01
A gradient-dependent optimization technique which exploits the vector-streaming or parallel-computing capabilities of some modern computers is presented. The algorithm, derived by assuming that the function to be minimized is homogeneous, is a modification of the Jacobson-Oksman serial minimization method. In addition to describing the algorithm, conditions insuring the convergence of the iterates of the algorithm and the results of numerical experiments on a group of sample test functions are presented. The results of these experiments indicate that this algorithm will solve optimization problems in less computing time than conventional serial methods on machines having vector-streaming or parallel-computing capabilities.
Genetic algorithms - What fitness scaling is optimal?
NASA Technical Reports Server (NTRS)
Kreinovich, Vladik; Quintana, Chris; Fuentes, Olac
1993-01-01
A problem of choosing the best scaling function as a mathematical optimization problem is formulated and solved under different optimality criteria. A list of functions which are optimal under different criteria is presented which includes both the best functions empirically proved and new functions that may be worth trying.
Flower pollination algorithm: A novel approach for multiobjective optimization
NASA Astrophysics Data System (ADS)
Yang, Xin-She; Karamanoglu, Mehmet; He, Xingshi
2014-09-01
Multiobjective design optimization problems require multiobjective optimization techniques to solve, and it is often very challenging to obtain high-quality Pareto fronts accurately. In this article, the recently developed flower pollination algorithm (FPA) is extended to solve multiobjective optimization problems. The proposed method is used to solve a set of multiobjective test functions and two bi-objective design benchmarks, and a comparison of the proposed algorithm with other algorithms has been made, which shows that the FPA is efficient with a good convergence rate. Finally, the importance for further parametric studies and theoretical analysis is highlighted and discussed.
Optimization of Water Distribution and Water Quality by Genetic Algorithm and Nonlinear Programming
NASA Astrophysics Data System (ADS)
Tu, M.; Tsai, F. T.; Yeh, W. W.
2001-12-01
When managing a regional water distribution system, it is not only important to optimize water allocation but also to meet the desired water quality requirements. This paper develops a multicommodity flow model that can be used to optimize water distribution and water quality in a regional water supply system. Waters from different sources with different quality are considered as distinct commodities, which concurrently share a single water distribution system. Volumetric water blend is used to represent water quality in the proposed model. The multicommodity model is capable of handling two-way flow pipes, as represented undirectional arcs, and the perfect mixing condition. Additionally, blending requirements are specified at certain control nodes within the water distribution system to ensure that downstream users receive the desired water quality. The developed multicommodity flow model is imbedded in a nonlinear optimization model. To reduce nonlinearity and to improve convergence, GA is combined with a gradient-based-algorithm to solve the nonlinearly constrained optimization model in that GA is used to search for the optimal direction for all undirectional arcs in the system and iteratively linked with a nonlinear programming solver. The proposed methodology was first tested and verified on a simplified hypothetical system and then applied to the regional water distribution system of the Metropolitan Water District of Southern California. The results obtained indicate that the optimization model can efficiently allocate waters from different sources with different quality to satisfy the blending requirements, the perfect mixing and two-way flow conditions.
NASA Astrophysics Data System (ADS)
Wu, Dongjun
Network industries have technologies characterized by a spatial hierarchy, the "network," with capital-intensive interconnections and time-dependent, capacity-limited flows of products and services through the network to customers. This dissertation studies service pricing, investment and business operating strategies for the electric power network. First-best solutions for a variety of pricing and investment problems have been studied. The evaluation of genetic algorithms (GA, which are methods based on the idea of natural evolution) as a primary means of solving complicated network problems, both w.r.t. pricing: as well as w.r.t. investment and other operating decisions, has been conducted. New constraint-handling techniques in GAs have been studied and tested. The actual application of such constraint-handling techniques in solving practical non-linear optimization problems has been tested on several complex network design problems with encouraging initial results. Genetic algorithms provide solutions that are feasible and close to optimal when the optimal solution is know; in some instances, the near-optimal solutions for small problems by the proposed GA approach can only be tested by pushing the limits of currently available non-linear optimization software. The performance is far better than several commercially available GA programs, which are generally inadequate in solving any of the problems studied in this dissertation, primarily because of their poor handling of constraints. Genetic algorithms, if carefully designed, seem very promising in solving difficult problems which are intractable by traditional analytic methods.
A Unified Differential Evolution Algorithm for Global Optimization
Qiang, Ji; Mitchell, Chad
2014-06-24
Abstract?In this paper, we propose a new unified differential evolution (uDE) algorithm for single objective global optimization. Instead of selecting among multiple mutation strategies as in the conventional differential evolution algorithm, this algorithm employs a single equation as the mutation strategy. It has the virtue of mathematical simplicity and also provides users the flexbility for broader exploration of different mutation strategies. Numerical tests using twelve basic unimodal and multimodal functions show promising performance of the proposed algorithm in comparison to convential differential evolution algorithms.
A parallel variable metric optimization algorithm
NASA Technical Reports Server (NTRS)
Straeter, T. A.
1973-01-01
An algorithm, designed to exploit the parallel computing or vector streaming (pipeline) capabilities of computers is presented. When p is the degree of parallelism, then one cycle of the parallel variable metric algorithm is defined as follows: first, the function and its gradient are computed in parallel at p different values of the independent variable; then the metric is modified by p rank-one corrections; and finally, a single univariant minimization is carried out in the Newton-like direction. Several properties of this algorithm are established. The convergence of the iterates to the solution is proved for a quadratic functional on a real separable Hilbert space. For a finite-dimensional space the convergence is in one cycle when p equals the dimension of the space. Results of numerical experiments indicate that the new algorithm will exploit parallel or pipeline computing capabilities to effect faster convergence than serial techniques.
Harmonic Optimization in Voltage Source Inverter for PV Application using Heuristic Algorithms
NASA Astrophysics Data System (ADS)
Kandil, Shaimaa A.; Ali, A. A.; El Samahy, Adel; Wasfi, Sherif M.; Malik, O. P.
2016-12-01
Selective Harmonic Elimination (SHE) technique is the fundamental switching frequency scheme that is used to eliminate specific order harmonics. Its application to minimize low order harmonics in a three level inverter is proposed in this paper. The modulation strategy used here is SHEPWM and the nonlinear equations, that characterize the low order harmonics, are solved using Harmony Search Algorithm (HSA) to obtain the optimal switching angles that minimize the required harmonics and maintain the fundamental at the desired value. Total Harmonic Distortion (THD) of the output voltage is minimized maintaining selected harmonics within allowable limits. A comparison has been drawn between HSA, Genetic Algorithm (GA) and Newton Raphson (NR) technique using MATLAB software to determine the effectiveness of getting optimized switching angles.
Kidney-inspired algorithm for optimization problems
NASA Astrophysics Data System (ADS)
Jaddi, Najmeh Sadat; Alvankarian, Jafar; Abdullah, Salwani
2017-01-01
In this paper, a population-based algorithm inspired by the kidney process in the human body is proposed. In this algorithm the solutions are filtered in a rate that is calculated based on the mean of objective functions of all solutions in the current population of each iteration. The filtered solutions as the better solutions are moved to filtered blood and the rest are transferred to waste representing the worse solutions. This is a simulation of the glomerular filtration process in the kidney. The waste solutions are reconsidered in the iterations if after applying a defined movement operator they satisfy the filtration rate, otherwise it is expelled from the waste solutions, simulating the reabsorption and excretion functions of the kidney. In addition, a solution assigned as better solution is secreted if it is not better than the worst solutions simulating the secreting process of blood in the kidney. After placement of all the solutions in the population, the best of them is ranked, the waste and filtered blood are merged to become a new population and the filtration rate is updated. Filtration provides the required exploitation while generating a new solution and reabsorption gives the necessary exploration for the algorithm. The algorithm is assessed by applying it on eight well-known benchmark test functions and compares the results with other algorithms in the literature. The performance of the proposed algorithm is better on seven out of eight test functions when it is compared with the most recent researches in literature. The proposed kidney-inspired algorithm is able to find the global optimum with less function evaluations on six out of eight test functions. A statistical analysis further confirms the ability of this algorithm to produce good-quality results.
Fast-convergence superpixel algorithm via an approximate optimization
NASA Astrophysics Data System (ADS)
Nakamura, Kensuke; Hong, Byung-Woo
2016-09-01
We propose an optimization scheme that achieves fast yet accurate computation of superpixels from an image. Our optimization is designed to improve the efficiency and robustness for the minimization of a composite energy functional in the expectation-minimization (EM) framework where we restrict the update of an estimate to avoid redundant computations. We consider a superpixel energy formulation that consists of L2-norm for the spatial regularity and L1-norm for the data fidelity in the demonstration of the robustness of the proposed algorithm. The quantitative and qualitative evaluations indicate that our superpixel algorithm outperforms SLIC and SEEDS algorithms. It is also demonstrated that our algorithm guarantees the convergence with less computational cost by up to 89% on average compared to the SLIC algorithm while preserving the accuracy. Our optimization scheme can be easily extended to other applications in which the alternating minimization is applicable in the EM framework.
Artificial bee colony algorithm for constrained possibilistic portfolio optimization problem
NASA Astrophysics Data System (ADS)
Chen, Wei
2015-07-01
In this paper, we discuss the portfolio optimization problem with real-world constraints under the assumption that the returns of risky assets are fuzzy numbers. A new possibilistic mean-semiabsolute deviation model is proposed, in which transaction costs, cardinality and quantity constraints are considered. Due to such constraints the proposed model becomes a mixed integer nonlinear programming problem and traditional optimization methods fail to find the optimal solution efficiently. Thus, a modified artificial bee colony (MABC) algorithm is developed to solve the corresponding optimization problem. Finally, a numerical example is given to illustrate the effectiveness of the proposed model and the corresponding algorithm.
Path Optimization for Single and Multiple Searchers: Models and Algorithms
2008-09-01
the k-th it- eration of Algorithm 11, the master problem MP4 (k) defined below is solved. The optimal value and optimal solution of MP4 (k) are denoted z...k) and y(k), respectively. In each iteration of Algorithm 11, U cuts are generated at once. Formulation of Master problem : MP4 (k) min z = ∑U u=1...master problem MP4 (k), and obtain its optimal value z(k) and optimal solution y(k). If z(k) > q, then q = z(k). Step 3. Calculate fu(y (k)) and fu(y (k
An algorithm for the systematic disturbance of optimal rotational solutions
NASA Technical Reports Server (NTRS)
Grunwald, Arthur J.; Kaiser, Mary K.
1989-01-01
An algorithm for introducing a systematic rotational disturbance into an optimal (i.e., single axis) rotational trajectory is described. This disturbance introduces a motion vector orthogonal to the quaternion-defined optimal rotation axis. By altering the magnitude of this vector, the degree of non-optimality can be controlled. The metric properties of the distortion parameter are described, with analogies to two-dimensional translational motion. This algorithm was implemented in a motion-control program on a three-dimensional graphic workstation. It supports a series of human performance studies on the detectability of rotational trajectory optimality by naive observers.
NASA Astrophysics Data System (ADS)
Manu, V. S.; Veglia, Gianluigi
2016-12-01
Identity operation in the form of π pulses is widely used in NMR spectroscopy. For an isolated single spin system, a sequence of even number of π pulses performs an identity operation, leaving the spin state essentially unaltered. For multi-spin systems, trains of π pulses with appropriate phases and time delays modulate the spin Hamiltonian to perform operations such as decoupling and recoupling. However, experimental imperfections often jeopardize the outcome, leading to severe losses in sensitivity. Here, we demonstrate that a newly designed Genetic Algorithm (GA) is able to optimize a train of π pulses, resulting in a robust identity operation. As proof-of-concept, we optimized the recoupling sequence in the transferred-echo double-resonance (TEDOR) pulse sequence, a key experiment in biological magic angle spinning (MAS) solid-state NMR for measuring multiple carbon-nitrogen distances. The GA modified TEDOR (GMO-TEDOR) experiment with improved recoupling efficiency results in a net gain of sensitivity up to 28% as tested on a uniformly 13C, 15N labeled microcrystalline ubiquitin sample. The robust identity operation achieved via GA paves the way for the optimization of several other pulse sequences used for both solid- and liquid-state NMR used for decoupling, recoupling, and relaxation experiments.
Salcedo-Sanz, S; Del Ser, J; Landa-Torres, I; Gil-López, S; Portilla-Figueras, J A
2014-01-01
This paper presents a novel bioinspired algorithm to tackle complex optimization problems: the coral reefs optimization (CRO) algorithm. The CRO algorithm artificially simulates a coral reef, where different corals (namely, solutions to the optimization problem considered) grow and reproduce in coral colonies, fighting by choking out other corals for space in the reef. This fight for space, along with the specific characteristics of the corals' reproduction, produces a robust metaheuristic algorithm shown to be powerful for solving hard optimization problems. In this research the CRO algorithm is tested in several continuous and discrete benchmark problems, as well as in practical application scenarios (i.e., optimum mobile network deployment and off-shore wind farm design). The obtained results confirm the excellent performance of the proposed algorithm and open line of research for further application of the algorithm to real-world problems.
Salcedo-Sanz, S.; Del Ser, J.; Landa-Torres, I.; Gil-López, S.; Portilla-Figueras, J. A.
2014-01-01
This paper presents a novel bioinspired algorithm to tackle complex optimization problems: the coral reefs optimization (CRO) algorithm. The CRO algorithm artificially simulates a coral reef, where different corals (namely, solutions to the optimization problem considered) grow and reproduce in coral colonies, fighting by choking out other corals for space in the reef. This fight for space, along with the specific characteristics of the corals' reproduction, produces a robust metaheuristic algorithm shown to be powerful for solving hard optimization problems. In this research the CRO algorithm is tested in several continuous and discrete benchmark problems, as well as in practical application scenarios (i.e., optimum mobile network deployment and off-shore wind farm design). The obtained results confirm the excellent performance of the proposed algorithm and open line of research for further application of the algorithm to real-world problems. PMID:25147860
Research on particle swarm optimization algorithm based on optimal movement probability
NASA Astrophysics Data System (ADS)
Ma, Jianhong; Zhang, Han; He, Baofeng
2017-01-01
The particle swarm optimization algorithm to improve the control precision, and has great application value training neural network and fuzzy system control fields etc.The traditional particle swarm algorithm is used for the training of feed forward neural networks,the search efficiency is low, and easy to fall into local convergence.An improved particle swarm optimization algorithm is proposed based on error back propagation gradient descent. Particle swarm optimization for Solving Least Squares Problems to meme group, the particles in the fitness ranking, optimization problem of the overall consideration, the error back propagation gradient descent training BP neural network, particle to update the velocity and position according to their individual optimal and global optimization, make the particles more to the social optimal learning and less to its optimal learning, it can avoid the particles fall into local optimum, by using gradient information can accelerate the PSO local search ability, improve the multi beam particle swarm depth zero less trajectory information search efficiency, the realization of improved particle swarm optimization algorithm. Simulation results show that the algorithm in the initial stage of rapid convergence to the global optimal solution can be near to the global optimal solution and keep close to the trend, the algorithm has faster convergence speed and search performance in the same running time, it can improve the convergence speed of the algorithm, especially the later search efficiency.
PCB Drill Path Optimization by Combinatorial Cuckoo Search Algorithm
Lim, Wei Chen Esmonde; Kanagaraj, G.; Ponnambalam, S. G.
2014-01-01
Optimization of drill path can lead to significant reduction in machining time which directly improves productivity of manufacturing systems. In a batch production of a large number of items to be drilled such as printed circuit boards (PCB), the travel time of the drilling device is a significant portion of the overall manufacturing process. To increase PCB manufacturing productivity and to reduce production costs, a good option is to minimize the drill path route using an optimization algorithm. This paper reports a combinatorial cuckoo search algorithm for solving drill path optimization problem. The performance of the proposed algorithm is tested and verified with three case studies from the literature. The computational experience conducted in this research indicates that the proposed algorithm is capable of efficiently finding the optimal path for PCB holes drilling process. PMID:24707198
PCB drill path optimization by combinatorial cuckoo search algorithm.
Lim, Wei Chen Esmonde; Kanagaraj, G; Ponnambalam, S G
2014-01-01
Optimization of drill path can lead to significant reduction in machining time which directly improves productivity of manufacturing systems. In a batch production of a large number of items to be drilled such as printed circuit boards (PCB), the travel time of the drilling device is a significant portion of the overall manufacturing process. To increase PCB manufacturing productivity and to reduce production costs, a good option is to minimize the drill path route using an optimization algorithm. This paper reports a combinatorial cuckoo search algorithm for solving drill path optimization problem. The performance of the proposed algorithm is tested and verified with three case studies from the literature. The computational experience conducted in this research indicates that the proposed algorithm is capable of efficiently finding the optimal path for PCB holes drilling process.
Shape Optimization of Cochlear Implant Electrode Array Using Genetic Algorithms
2007-11-02
Shape Optimization of Cochlear Implant Electrode Array using Genetic Algorithms Charles T.M. Choi, Ph.D., senior member, IEEE Department of...c.t.choi@ieee.org Abstract−Finite element analysis is used to compute the current distribution of the human cochlea during cochlear implant electrical...stimulation. Genetic algorithms are then applied in conjunction with the finite element analysis to optimize the shape of cochlear implant electrode array
Superscattering of light optimized by a genetic algorithm
Mirzaei, Ali Miroshnichenko, Andrey E.; Shadrivov, Ilya V.; Kivshar, Yuri S.
2014-07-07
We analyse scattering of light from multi-layer plasmonic nanowires and employ a genetic algorithm for optimizing the scattering cross section. We apply the mode-expansion method using experimental data for material parameters to demonstrate that our genetic algorithm allows designing realistic core-shell nanostructures with the superscattering effect achieved at any desired wavelength. This approach can be employed for optimizing both superscattering and cloaking at different wavelengths in the visible spectral range.
Advanced optimization of permanent magnet wigglers using a genetic algorithm
Hajima, Ryoichi
1995-12-31
In permanent magnet wigglers, magnetic imperfection of each magnet piece causes field error. This field error can be reduced or compensated by sorting magnet pieces in proper order. We showed a genetic algorithm has good property for this sorting scheme. In this paper, this optimization scheme is applied to the case of permanent magnets which have errors in the direction of field. The result shows the genetic algorithm is superior to other algorithms.
Differential evolution algorithm for global optimizations in nuclear physics
NASA Astrophysics Data System (ADS)
Qi, Chong
2017-04-01
We explore the applicability of the differential evolution algorithm in finding the global minima of three typical nuclear structure physics problems: the global deformation minimum in the nuclear potential energy surface, the optimization of mass model parameters and the lowest eigenvalue of a nuclear Hamiltonian. The algorithm works very effectively and efficiently in identifying the minima in all problems we have tested. We also show that the algorithm can be parallelized in a straightforward way.
NASA Astrophysics Data System (ADS)
Huang, Biqing; Li, Chenghai; Tao, Fei
2014-07-01
This article investigates the problem of cloud service composition optimal-selection (CSCOS) in cloud manufacturing (CMfg). The categories of cloud services and their QoS (quality of service) indexes are established. From the perspective of QoS indexes, the relationship among QoS key factors for different kinds of cloud services are analysed and elaborated, and the corresponding objective functions and constraints of CSCOS are proposed. A new chaos control optimal algorithm (CCOA) is designed to address the CSCOS problem, and the simulation results demonstrate that the proposed algorithm can search better solutions with less time-consumption than widely used algorithms such as genetic algorithm (GA) and typical chaotic genetic algorithm (CGA).
Chen, Tinggui; Xiao, Renbin
2014-01-01
Artificial bee colony (ABC) algorithm, inspired by the intelligent foraging behavior of honey bees, was proposed by Karaboga. It has been shown to be superior to some conventional intelligent algorithms such as genetic algorithm (GA), artificial colony optimization (ACO), and particle swarm optimization (PSO). However, the ABC still has some limitations. For example, ABC can easily get trapped in the local optimum when handing in functions that have a narrow curving valley, a high eccentric ellipse, or complex multimodal functions. As a result, we proposed an enhanced ABC algorithm called EABC by introducing self-adaptive searching strategy and artificial immune network operators to improve the exploitation and exploration. The simulation results tested on a suite of unimodal or multimodal benchmark functions illustrate that the EABC algorithm outperforms ACO, PSO, and the basic ABC in most of the experiments. PMID:24772023
Parallel optimization algorithms and their implementation in VLSI design
NASA Technical Reports Server (NTRS)
Lee, G.; Feeley, J. J.
1991-01-01
Two new parallel optimization algorithms based on the simplex method are described. They may be executed by a SIMD parallel processor architecture and be implemented in VLSI design. Several VLSI design implementations are introduced. An application example is reported to demonstrate that the algorithms are effective.
Relaxed controls and the convergence of optimal control algorithms
NASA Technical Reports Server (NTRS)
Williamson, L. J.; Polak, E.
1976-01-01
This paper presents a framework for the study of the convergence properties of optimal control algorithms and illustrates its use by means of two examples. The framework consists of an algorithm prototype with a convergence theorem, together with some results in relaxed controls theory.
Optimal groundwater remediation using artificial neural networks and the genetic algorithm
Rogers, Leah L.
1992-08-01
An innovative computational approach for the optimization of groundwater remediation is presented which uses artificial neural networks (ANNs) and the genetic algorithm (GA). In this approach, the ANN is trained to predict an aspect of the outcome of a flow and transport simulation. Then the GA searches through realizations or patterns of pumping and uses the trained network to predict the outcome of the realizations. This approach has advantages of parallel processing of the groundwater simulations and the ability to ``recycle`` or reuse the base of knowledge formed by these simulations. These advantages offer reduction of computational burden of the groundwater simulations relative to a more conventional approach which uses nonlinear programming (NLP) with a quasi-newtonian search. Also the modular nature of this approach facilitates substitution of different groundwater simulation models.
Applying new optimization algorithms to more predictive control
Wright, S.J.
1996-03-01
The connections between optimization and control theory have been explored by many researchers and optimization algorithms have been applied with success to optimal control. The rapid pace of developments in model predictive control has given rise to a host of new problems to which optimization has yet to be applied. Concurrently, developments in optimization, and especially in interior-point methods, have produced a new set of algorithms that may be especially helpful in this context. In this paper, we reexamine the relatively simple problem of control of linear processes subject to quadratic objectives and general linear constraints. We show how new algorithms for quadratic programming can be applied efficiently to this problem. The approach extends to several more general problems in straightforward ways.
Genetic algorithm optimization of point charges in force field development: challenges and insights.
Ivanov, Maxim V; Talipov, Marat R; Timerghazin, Qadir K
2015-02-26
Evolutionary methods, such as genetic algorithms (GAs), provide powerful tools for optimization of the force field parameters, especially in the case of simultaneous fitting of the force field terms against extensive reference data. However, GA fitting of the nonbonded interaction parameters that includes point charges has not been explored in the literature, likely due to numerous difficulties with even a simpler problem of the least-squares fitting of the atomic point charges against a reference molecular electrostatic potential (MEP), which often demonstrates an unusually high variation of the fitted charges on buried atoms. Here, we examine the performance of the GA approach for the least-squares MEP point charge fitting, and show that the GA optimizations suffer from a magnified version of the classical buried atom effect, producing highly scattered yet correlated solutions. This effect can be understood in terms of the linearly independent, natural coordinates of the MEP fitting problem defined by the eigenvectors of the least-squares sum Hessian matrix, which are also equivalent to the eigenvectors of the covariance matrix evaluated for the scattered GA solutions. GAs quickly converge with respect to the high-curvature coordinates defined by the eigenvectors related to the leading terms of the multipole expansion, but have difficulty converging with respect to the low-curvature coordinates that mostly depend on the buried atom charges. The performance of the evolutionary techniques dramatically improves when the point charge optimization is performed using the Hessian or covariance matrix eigenvectors, an approach with a significant potential for the evolutionary optimization of the fixed-charge biomolecular force fields.
Genetic algorithm for neural networks optimization
NASA Astrophysics Data System (ADS)
Setyawati, Bina R.; Creese, Robert C.; Sahirman, Sidharta
2004-11-01
This paper examines the forecasting performance of multi-layer feed forward neural networks in modeling a particular foreign exchange rates, i.e. Japanese Yen/US Dollar. The effects of two learning methods, Back Propagation and Genetic Algorithm, in which the neural network topology and other parameters fixed, were investigated. The early results indicate that the application of this hybrid system seems to be well suited for the forecasting of foreign exchange rates. The Neural Networks and Genetic Algorithm were programmed using MATLAB«.
NASA Astrophysics Data System (ADS)
Wang, Fang; Li, Xia; Zhuo, Li; Tao, Haiyan; Xia, Lihua
2008-10-01
The development of bio-energy intensive utilization of farmland is to solve China's emerging issues related to energy and environment in an important way. Given the spatial distribution of bio-energy is scattered, not continuous, the intensive utilization of farmland bio-energy is different from that of the traditional energy, i.e. coal, oil, natural gas, etc.. The estimation of biomass, the spatial distribution and the space optimization study are the key for practical applications to develop bio-energy intensive utilization. Based on a case study conducted in Guangdong province, China, this paper provides a framework that estimates available biomass and analyzes its distribution pattern in the established NPP model quickly; it also builds the primary collection ranges by Thiessen polygon in different scales. The application of Genetic Algorithms (GA) to the optimization and space decision of bio-energy intensive utilization is one of the key deliveries. The result shows that GA and GIS integration model for resolving domain-point supply and field demand has obvious advantages. A key finding presents that the model simulation results have enormous impact by the MUAP. When Thiessen polygon scale with 10 KM proximal threshold is established as the primary collecting scope of bioenergy, the fitness value can be maximized in the optimized process. In short, the optimized model can provide an effective solution to farmland bio-energy spatial optimization.
Optimization of composite structures by estimation of distribution algorithms
NASA Astrophysics Data System (ADS)
Grosset, Laurent
The design of high performance composite laminates, such as those used in aerospace structures, leads to complex combinatorial optimization problems that cannot be addressed by conventional methods. These problems are typically solved by stochastic algorithms, such as evolutionary algorithms. This dissertation proposes a new evolutionary algorithm for composite laminate optimization, named Double-Distribution Optimization Algorithm (DDOA). DDOA belongs to the family of estimation of distributions algorithms (EDA) that build a statistical model of promising regions of the design space based on sets of good points, and use it to guide the search. A generic framework for introducing statistical variable dependencies by making use of the physics of the problem is proposed. The algorithm uses two distributions simultaneously: the marginal distributions of the design variables, complemented by the distribution of auxiliary variables. The combination of the two generates complex distributions at a low computational cost. The dissertation demonstrates the efficiency of DDOA for several laminate optimization problems where the design variables are the fiber angles and the auxiliary variables are the lamination parameters. The results show that its reliability in finding the optima is greater than that of a simple EDA and of a standard genetic algorithm, and that its advantage increases with the problem dimension. A continuous version of the algorithm is presented and applied to a constrained quadratic problem. Finally, a modification of the algorithm incorporating probabilistic and directional search mechanisms is proposed. The algorithm exhibits a faster convergence to the optimum and opens the way for a unified framework for stochastic and directional optimization.
Genetic algorithm optimization for focusing through turbid media in noisy environments.
Conkey, Donald B; Brown, Albert N; Caravaca-Aguirre, Antonio M; Piestun, Rafael
2012-02-27
We introduce genetic algorithms (GA) for wavefront control to focus light through highly scattering media. We theoretically and experimentally compare GAs to existing phase control algorithms and show that GAs are particularly advantageous in low signal-to-noise environments.
Global search algorithm for optimal control
NASA Technical Reports Server (NTRS)
Brocker, D. H.; Kavanaugh, W. P.; Stewart, E. C.
1970-01-01
Random-search algorithm employs local and global properties to solve two-point boundary value problem in Pontryagin maximum principle for either fixed or variable end-time problems. Mixed boundary value problem is transformed to an initial value problem. Mapping between initial and terminal values utilizes hybrid computer.
Optimization of deep learning algorithms for object classification
NASA Astrophysics Data System (ADS)
Horváth, András.
2017-02-01
Deep learning is currently the state of the art algorithm for image classification. The complexity of these feedforward neural networks have overcome a critical point, resulting algorithmic breakthroughs in various fields. On the other hand their complexity makes them executable in tasks, where High-throughput computing powers are available. The optimization of these networks -considering computational complexity and applicability on embedded systems- has not yet been studied and investigated in details. In this paper I show some examples how this algorithms can be optimized and accelerated on embedded systems.
Optimal sensor placement for time-domain identification using a wavelet-based genetic algorithm
NASA Astrophysics Data System (ADS)
Mahdavi, Seyed Hossein; Razak, Hashim Abdul
2016-06-01
This paper presents a wavelet-based genetic algorithm strategy for optimal sensor placement (OSP) effective for time-domain structural identification. Initially, the GA-based fitness evaluation is significantly improved by using adaptive wavelet functions. Later, a multi-species decimal GA coding system is modified to be suitable for an efficient search around the local optima. In this regard, a local operation of mutation is introduced in addition with regeneration and reintroduction operators. It is concluded that different characteristics of applied force influence the features of structural responses, and therefore the accuracy of time-domain structural identification is directly affected. Thus, the reliable OSP strategy prior to the time-domain identification will be achieved by those methods dealing with minimizing the distance of simulated responses for the entire system and condensed system considering the force effects. The numerical and experimental verification on the effectiveness of the proposed strategy demonstrates the considerably high computational performance of the proposed OSP strategy, in terms of computational cost and the accuracy of identification. It is deduced that the robustness of the proposed OSP algorithm lies in the precise and fast fitness evaluation at larger sampling rates which result in the optimum evaluation of the GA-based exploration and exploitation phases towards the global optimum solution.
Optimal fractional order PID design via Tabu Search based algorithm.
Ateş, Abdullah; Yeroglu, Celaleddin
2016-01-01
This paper presents an optimization method based on the Tabu Search Algorithm (TSA) to design a Fractional-Order Proportional-Integral-Derivative (FOPID) controller. All parameter computations of the FOPID employ random initial conditions, using the proposed optimization method. Illustrative examples demonstrate the performance of the proposed FOPID controller design method.
Model Specification Searches Using Ant Colony Optimization Algorithms
ERIC Educational Resources Information Center
Marcoulides, George A.; Drezner, Zvi
2003-01-01
Ant colony optimization is a recently proposed heuristic procedure inspired by the behavior of real ants. This article applies the procedure to model specification searches in structural equation modeling and reports the results. The results demonstrate the capabilities of ant colony optimization algorithms for conducting automated searches.
NASA Astrophysics Data System (ADS)
Kerkhoff, A.; Ling, H.
2009-12-01
We apply Pareto genetic algorithm (GA) optimization to the design of antenna elements for use in the Long Wavelength Array (LWA), a large, low-frequency radio telescope currently under development. By manipulating antenna geometry, the Pareto GA simultaneously optimizes the received Galactic background or “sky” noise level and radiation patterns of the antenna over all frequencies. Geometrical constraints are handled explicitly in the GA in order to guarantee the realizability, and to impart control over the monetary cost of the generated designs. The antenna elements considered are broadband planar dipoles arranged horizontally over the ground. It is demonstrated that the Pareto GA approach generates a set of designs, which exhibit a wide range of trade-offs between the two design objectives, and satisfy all constraints. Multiple GA executions are performed to determine how antenna performance trade-offs are affected by different geometrical constraint values, feed impedance values, radiating element shapes and orientations, and ground conditions. Two different planar dipole antenna designs are constructed, and antenna input impedance and sky noise drift scan measurements are performed to validate the results of the GA.
Chiang, Tzu-An; Che, Z. H.
2014-01-01
This study designed a cross-stage reverse logistics course for defective products so that damaged products generated in downstream partners can be directly returned to upstream partners throughout the stages of a supply chain for rework and maintenance. To solve this reverse supply chain design problem, an optimal cross-stage reverse logistics mathematical model was developed. In addition, we developed a genetic algorithm (GA) and three particle swarm optimization (PSO) algorithms: the inertia weight method (PSOA_IWM), VMax method (PSOA_VMM), and constriction factor method (PSOA_CFM), which we employed to find solutions to support this mathematical model. Finally, a real case and five simulative cases with different scopes were used to compare the execution times, convergence times, and objective function values of the four algorithms used to validate the model proposed in this study. Regarding system execution time, the GA consumed more time than the other three PSOs did. Regarding objective function value, the GA, PSOA_IWM, and PSOA_CFM could obtain a lower convergence value than PSOA_VMM could. Finally, PSOA_IWM demonstrated a faster convergence speed than PSOA_VMM, PSOA_CFM, and the GA did. PMID:24772026
Chiang, Tzu-An; Che, Z H; Cui, Zhihua
2014-01-01
This study designed a cross-stage reverse logistics course for defective products so that damaged products generated in downstream partners can be directly returned to upstream partners throughout the stages of a supply chain for rework and maintenance. To solve this reverse supply chain design problem, an optimal cross-stage reverse logistics mathematical model was developed. In addition, we developed a genetic algorithm (GA) and three particle swarm optimization (PSO) algorithms: the inertia weight method (PSOA_IWM), V(Max) method (PSOA_VMM), and constriction factor method (PSOA_CFM), which we employed to find solutions to support this mathematical model. Finally, a real case and five simulative cases with different scopes were used to compare the execution times, convergence times, and objective function values of the four algorithms used to validate the model proposed in this study. Regarding system execution time, the GA consumed more time than the other three PSOs did. Regarding objective function value, the GA, PSOA_IWM, and PSOA_CFM could obtain a lower convergence value than PSOA_VMM could. Finally, PSOA_IWM demonstrated a faster convergence speed than PSOA_VMM, PSOA_CFM, and the GA did.
PCNN document segmentation method based on bacterial foraging optimization algorithm
NASA Astrophysics Data System (ADS)
Liao, Yanping; Zhang, Peng; Guo, Qiang; Wan, Jian
2014-04-01
Pulse Coupled Neural Network(PCNN) is widely used in the field of image processing, but it is a difficult task to define the relative parameters properly in the research of the applications of PCNN. So far the determination of parameters of its model needs a lot of experiments. To deal with the above problem, a document segmentation based on the improved PCNN is proposed. It uses the maximum entropy function as the fitness function of bacterial foraging optimization algorithm, adopts bacterial foraging optimization algorithm to search the optimal parameters, and eliminates the trouble of manually set the experiment parameters. Experimental results show that the proposed algorithm can effectively complete document segmentation. And result of the segmentation is better than the contrast algorithms.
A Novel Hybrid Firefly Algorithm for Global Optimization
Zhang, Lina; Liu, Liqiang; Yang, Xin-She; Dai, Yuntao
2016-01-01
Global optimization is challenging to solve due to its nonlinearity and multimodality. Traditional algorithms such as the gradient-based methods often struggle to deal with such problems and one of the current trends is to use metaheuristic algorithms. In this paper, a novel hybrid population-based global optimization algorithm, called hybrid firefly algorithm (HFA), is proposed by combining the advantages of both the firefly algorithm (FA) and differential evolution (DE). FA and DE are executed in parallel to promote information sharing among the population and thus enhance searching efficiency. In order to evaluate the performance and efficiency of the proposed algorithm, a diverse set of selected benchmark functions are employed and these functions fall into two groups: unimodal and multimodal. The experimental results show better performance of the proposed algorithm compared to the original version of the firefly algorithm (FA), differential evolution (DE) and particle swarm optimization (PSO) in the sense of avoiding local minima and increasing the convergence rate. PMID:27685869
A Discrete Lagrangian Algorithm for Optimal Routing Problems
Kosmas, O. T.; Vlachos, D. S.; Simos, T. E.
2008-11-06
The ideas of discrete Lagrangian methods for conservative systems are exploited for the construction of algorithms applicable in optimal ship routing problems. The algorithm presented here is based on the discretisation of Hamilton's principle of stationary action Lagrangian and specifically on the direct discretization of the Lagrange-Hamilton principle for a conservative system. Since, in contrast to the differential equations, the discrete Euler-Lagrange equations serve as constrains for the optimization of a given cost functional, in the present work we utilize this feature in order to minimize the cost function for optimal ship routing.
Optimal Configuration of a Square Array Group Testing Algorithm
Hudgens, Michael G.; Kim, Hae-Young
2009-01-01
We consider the optimal configuration of a square array group testing algorithm (denoted A2) to minimize the expected number of tests per specimen. For prevalence greater than 0.2498, individual testing is shown to be more efficient than A2. For prevalence less than 0.2498, closed form lower and upper bounds on the optimal group sizes for A2 are given. Arrays of dimension 2 × 2, 3 × 3, and 4 × 4 are shown to never be optimal. The results are illustrated by considering the design of a specimen pooling algorithm for detection of recent HIV infections in Malawi. PMID:21218195
Air data system optimization using a genetic algorithm
NASA Technical Reports Server (NTRS)
Deshpande, Samir M.; Kumar, Renjith R.; Seywald, Hans; Siemers, Paul M., III
1992-01-01
An optimization method for flush-orifice air data system design has been developed using the Genetic Algorithm approach. The optimization of the orifice array minimizes the effect of normally distributed random noise in the pressure readings on the calculation of air data parameters, namely, angle of attack, sideslip angle and freestream dynamic pressure. The optimization method is applied to the design of Pressure Distribution/Air Data System experiment (PD/ADS) proposed for inclusion in the Aeroassist Flight Experiment (AFE). Results obtained by the Genetic Algorithm method are compared to the results obtained by conventional gradient search method.
Multidisciplinary Optimization of Airborne Radome Using Genetic Algorithm
NASA Astrophysics Data System (ADS)
Tang, Xinggang; Zhang, Weihong; Zhu, Jihong
A multidisciplinary optimization scheme of airborne radome is proposed. The optimization procedure takes into account the structural and the electromagnetic responses simultaneously. The structural analysis is performed with the finite element method using Patran/Nastran, while the electromagnetic analysis is carried out using the Plane Wave Spectrum and Surface Integration technique. The genetic algorithm is employed for the multidisciplinary optimization process. The thicknesses of multilayer radome wall are optimized to maximize the overall transmission coefficient of the antenna-radome system under the constraint of the structural failure criteria. The proposed scheme and the optimization approach are successfully assessed with an illustrative numerical example.
DFT algorithms for bit-serial GaAs array processor architectures
NASA Technical Reports Server (NTRS)
Mcmillan, Gary B.
1988-01-01
Systems and Processes Engineering Corporation (SPEC) has developed an innovative array processor architecture for computing Fourier transforms and other commonly used signal processing algorithms. This architecture is designed to extract the highest possible array performance from state-of-the-art GaAs technology. SPEC's architectural design includes a high performance RISC processor implemented in GaAs, along with a Floating Point Coprocessor and a unique Array Communications Coprocessor, also implemented in GaAs technology. Together, these data processors represent the latest in technology, both from an architectural and implementation viewpoint. SPEC has examined numerous algorithms and parallel processing architectures to determine the optimum array processor architecture. SPEC has developed an array processor architecture with integral communications ability to provide maximum node connectivity. The Array Communications Coprocessor embeds communications operations directly in the core of the processor architecture. A Floating Point Coprocessor architecture has been defined that utilizes Bit-Serial arithmetic units, operating at very high frequency, to perform floating point operations. These Bit-Serial devices reduce the device integration level and complexity to a level compatible with state-of-the-art GaAs device technology.
Sequential Quadratic Programming Algorithms for Optimization
1989-08-01
brief history of the evolution of SQP algorithms. Surveys for this area can be found in [GMWSl]. (Po831 or fGNISW ,] for example. The origins Ihe...0) S (TnI(P(O) K __jnfl’flj)j 2 < 0. lhe adjust uncut of thleslack variables. s in step (Ii) oft he algorith (-ii a ii only lvad to a fu rt her red
Optimal recombination in genetic algorithms for flowshop scheduling problems
NASA Astrophysics Data System (ADS)
Kovalenko, Julia
2016-10-01
The optimal recombination problem consists in finding the best possible offspring as a result of a recombination operator in a genetic algorithm, given two parent solutions. We prove NP-hardness of the optimal recombination for various variants of the flowshop scheduling problem with makespan criterion and criterion of maximum lateness. An algorithm for solving the optimal recombination problem for permutation flowshop problems is built, using enumeration of prefect matchings in a special bipartite graph. The algorithm is adopted for the classical flowshop scheduling problem and for the no-wait flowshop problem. It is shown that the optimal recombination problem for the permutation flowshop scheduling problem is solvable in polynomial time for almost all pairs of parent solutions as the number of jobs tends to infinity.
Comparison of evolutionary algorithms for LPDA antenna optimization
NASA Astrophysics Data System (ADS)
Lazaridis, Pavlos I.; Tziris, Emmanouil N.; Zaharis, Zaharias D.; Xenos, Thomas D.; Cosmas, John P.; Gallion, Philippe B.; Holmes, Violeta; Glover, Ian A.
2016-08-01
A novel approach to broadband log-periodic antenna design is presented, where some of the most powerful evolutionary algorithms are applied and compared for the optimal design of wire log-periodic dipole arrays (LPDA) using Numerical Electromagnetics Code. The target is to achieve an optimal antenna design with respect to maximum gain, gain flatness, front-to-rear ratio (F/R) and standing wave ratio. The parameters of the LPDA optimized are the dipole lengths, the spacing between the dipoles, and the dipole wire diameters. The evolutionary algorithms compared are the Differential Evolution (DE), Particle Swarm (PSO), Taguchi, Invasive Weed (IWO), and Adaptive Invasive Weed Optimization (ADIWO). Superior performance is achieved by the IWO (best results) and PSO (fast convergence) algorithms.
A Hybrid Ant Colony Algorithm for Loading Pattern Optimization
NASA Astrophysics Data System (ADS)
Hoareau, F.
2014-06-01
Electricité de France (EDF) operates 58 nuclear power plant (NPP), of the Pressurized Water Reactor (PWR) type. The loading pattern (LP) optimization of these NPP is currently done by EDF expert engineers. Within this framework, EDF R&D has developed automatic optimization tools that assist the experts. The latter can resort, for instance, to a loading pattern optimization software based on ant colony algorithm. This paper presents an analysis of the search space of a few realistic loading pattern optimization problems. This analysis leads us to introduce a hybrid algorithm based on ant colony and a local search method. We then show that this new algorithm is able to generate loading patterns of good quality.
Validation of genetic algorithm-based optimal sampling for ocean data assimilation
NASA Astrophysics Data System (ADS)
Heaney, Kevin D.; Lermusiaux, Pierre F. J.; Duda, Timothy F.; Haley, Patrick J.
2016-10-01
Regional ocean models are capable of forecasting conditions for usefully long intervals of time (days) provided that initial and ongoing conditions can be measured. In resource-limited circumstances, the placement of sensors in optimal locations is essential. Here, a nonlinear optimization approach to determine optimal adaptive sampling that uses the genetic algorithm (GA) method is presented. The method determines sampling strategies that minimize a user-defined physics-based cost function. The method is evaluated using identical twin experiments, comparing hindcasts from an ensemble of simulations that assimilate data selected using the GA adaptive sampling and other methods. For skill metrics, we employ the reduction of the ensemble root mean square error (RMSE) between the "true" data-assimilative ocean simulation and the different ensembles of data-assimilative hindcasts. A five-glider optimal sampling study is set up for a 400 km × 400 km domain in the Middle Atlantic Bight region, along the New Jersey shelf-break. Results are compared for several ocean and atmospheric forcing conditions.
Optimal Sensor Placement for Leak Location in Water Distribution Networks Using Genetic Algorithms
Casillas, Myrna V.; Puig, Vicenç; Garza-Castañón, Luis E.; Rosich, Albert
2013-01-01
This paper proposes a new sensor placement approach for leak location in water distribution networks (WDNs). The sensor placement problem is formulated as an integer optimization problem. The optimization criterion consists in minimizing the number of non-isolable leaks according to the isolability criteria introduced. Because of the large size and non-linear integer nature of the resulting optimization problem, genetic algorithms (GAs) are used as the solution approach. The obtained results are compared with a semi-exhaustive search method with higher computational effort, proving that GA allows one to find near-optimal solutions with less computational load. Moreover, three ways of increasing the robustness of the GA-based sensor placement method have been proposed using a time horizon analysis, a distance-based scoring and considering different leaks sizes. A great advantage of the proposed methodology is that it does not depend on the isolation method chosen by the user, as long as it is based on leak sensitivity analysis. Experiments in two networks allow us to evaluate the performance of the proposed approach. PMID:24193099
Moghri, Mehdi; Omidi, Mostafa; Farahnakian, Masoud
2014-01-01
During the past decade, polymer nanocomposites attracted considerable investment in research and development worldwide. One of the key factors that affect the quality of polymer nanocomposite products in machining is surface roughness. To obtain high quality products and reduce machining costs it is very important to determine the optimal machining conditions so as to achieve enhanced machining performance. The objective of this paper is to develop a predictive model using a combined design of experiments and artificial intelligence approach for optimization of surface roughness in milling of polyamide-6 (PA-6) nanocomposites. A surface roughness predictive model was developed in terms of milling parameters (spindle speed and feed rate) and nanoclay (NC) content using artificial neural network (ANN). As the present study deals with relatively small number of data obtained from full factorial design, application of genetic algorithm (GA) for ANN training is thought to be an appropriate approach for the purpose of developing accurate and robust ANN model. In the optimization phase, a GA is considered in conjunction with the explicit nonlinear function derived from the ANN to determine the optimal milling parameters for minimization of surface roughness for each PA-6 nanocomposite. PMID:24578636
Performance optimization of lateral AlGaN/GaN HEMTs with cap gate on 150-mm silicon substrate
NASA Astrophysics Data System (ADS)
Sun, Hui; Liu, Meihua; Liu, Peng; Lin, Xinnan; Cui, Xiaole; Chen, Jianguo; Chen, Dongmin
2017-04-01
A further leakage reduction of AlGaN/GaN HEMTs with cap gate (CG-HEMTs) has been achieved by optimizing the gate structure and the gate etching process. The optimized CG-HEMTs single finger power HEMTs deliver IDSmax = 533 mA/mm at least with gate length of 0.5um and show a median gate leakage current of 20 nA/mm 25 °C measured at a drain voltage of 200 V. The breakdown voltage (BV) of CG-HEMTs was evaluated by the variation of drain-to-gate spacing (LDG) larger than 8 μm. Furthermore, we show that the forward voltage of CG-HEMTs can be improved by shrinking the lateral dimension of the edge termination due to reduced series resistance.
A Solution Quality Assessment Method for Swarm Intelligence Optimization Algorithms
Wang, Gai-Ge; Zou, Kuansheng; Zhang, Jianhua
2014-01-01
Nowadays, swarm intelligence optimization has become an important optimization tool and wildly used in many fields of application. In contrast to many successful applications, the theoretical foundation is rather weak. Therefore, there are still many problems to be solved. One problem is how to quantify the performance of algorithm in finite time, that is, how to evaluate the solution quality got by algorithm for practical problems. It greatly limits the application in practical problems. A solution quality assessment method for intelligent optimization is proposed in this paper. It is an experimental analysis method based on the analysis of search space and characteristic of algorithm itself. Instead of “value performance,” the “ordinal performance” is used as evaluation criteria in this method. The feasible solutions were clustered according to distance to divide solution samples into several parts. Then, solution space and “good enough” set can be decomposed based on the clustering results. Last, using relative knowledge of statistics, the evaluation result can be got. To validate the proposed method, some intelligent algorithms such as ant colony optimization (ACO), particle swarm optimization (PSO), and artificial fish swarm algorithm (AFS) were taken to solve traveling salesman problem. Computational results indicate the feasibility of proposed method. PMID:25013845
A solution quality assessment method for swarm intelligence optimization algorithms.
Zhang, Zhaojun; Wang, Gai-Ge; Zou, Kuansheng; Zhang, Jianhua
2014-01-01
Nowadays, swarm intelligence optimization has become an important optimization tool and wildly used in many fields of application. In contrast to many successful applications, the theoretical foundation is rather weak. Therefore, there are still many problems to be solved. One problem is how to quantify the performance of algorithm in finite time, that is, how to evaluate the solution quality got by algorithm for practical problems. It greatly limits the application in practical problems. A solution quality assessment method for intelligent optimization is proposed in this paper. It is an experimental analysis method based on the analysis of search space and characteristic of algorithm itself. Instead of "value performance," the "ordinal performance" is used as evaluation criteria in this method. The feasible solutions were clustered according to distance to divide solution samples into several parts. Then, solution space and "good enough" set can be decomposed based on the clustering results. Last, using relative knowledge of statistics, the evaluation result can be got. To validate the proposed method, some intelligent algorithms such as ant colony optimization (ACO), particle swarm optimization (PSO), and artificial fish swarm algorithm (AFS) were taken to solve traveling salesman problem. Computational results indicate the feasibility of proposed method.
NASA Astrophysics Data System (ADS)
Jokar, Ali; Godarzi, Ali Abbasi; Saber, Mohammad; Shafii, Mohammad Behshad
2016-11-01
In this paper, a novel approach has been presented to simulate and optimize the pulsating heat pipes (PHPs). The used pulsating heat pipe setup was designed and constructed for this study. Due to the lack of a general mathematical model for exact analysis of the PHPs, a method has been applied for simulation and optimization using the natural algorithms. In this way, the simulator consists of a kind of multilayer perceptron neural network, which is trained by experimental results obtained from our PHP setup. The results show that the complex behavior of PHPs can be successfully described by the non-linear structure of this simulator. The input variables of the neural network are input heat flux to evaporator (q″), filling ratio (FR) and inclined angle (IA) and its output is thermal resistance of PHP. Finally, based upon the simulation results and considering the heat pipe's operating constraints, the optimum operating point of the system is obtained by using genetic algorithm (GA). The experimental results show that the optimum FR (38.25 %), input heat flux to evaporator (39.93 W) and IA (55°) that obtained from GA are acceptable.
Sequential unconstrained minimization algorithms for constrained optimization
NASA Astrophysics Data System (ADS)
Byrne, Charles
2008-02-01
The problem of minimizing a function f(x):RJ → R, subject to constraints on the vector variable x, occurs frequently in inverse problems. Even without constraints, finding a minimizer of f(x) may require iterative methods. We consider here a general class of iterative algorithms that find a solution to the constrained minimization problem as the limit of a sequence of vectors, each solving an unconstrained minimization problem. Our sequential unconstrained minimization algorithm (SUMMA) is an iterative procedure for constrained minimization. At the kth step we minimize the function G_k(x)=f(x)+g_k(x), to obtain xk. The auxiliary functions gk(x):D ⊆ RJ → R+ are nonnegative on the set D, each xk is assumed to lie within D, and the objective is to minimize the continuous function f:RJ → R over x in the set C=\\overline D , the closure of D. We assume that such minimizers exist, and denote one such by \\hat x . We assume that the functions gk(x) satisfy the inequalities 0\\leq g_k(x)\\leq G_{k-1}(x)-G_{k-1}(x^{k-1}), for k = 2, 3, .... Using this assumption, we show that the sequence {f(xk)} is decreasing and converges to f({\\hat x}) . If the restriction of f(x) to D has bounded level sets, which happens if \\hat x is unique and f(x) is closed, proper and convex, then the sequence {xk} is bounded, and f(x^*)=f({\\hat x}) , for any cluster point x*. Therefore, if \\hat x is unique, x^*={\\hat x} and \\{x^k\\}\\rightarrow {\\hat x} . When \\hat x is not unique, convergence can still be obtained, in particular cases. The SUMMA includes, as particular cases, the well-known barrier- and penalty-function methods, the simultaneous multiplicative algebraic reconstruction technique (SMART), the proximal minimization algorithm of Censor and Zenios, the entropic proximal methods of Teboulle, as well as certain cases of gradient descent and the Newton-Raphson method. The proof techniques used for SUMMA can be extended to obtain related results for the induced proximal
Jin, Junchen
2016-01-01
The shunting schedule of electric multiple units depot (SSED) is one of the essential plans for high-speed train maintenance activities. This paper presents a 0-1 programming model to address the problem of determining an optimal SSED through automatic computing. The objective of the model is to minimize the number of shunting movements and the constraints include track occupation conflicts, shunting routes conflicts, time durations of maintenance processes, and shunting running time. An enhanced particle swarm optimization (EPSO) algorithm is proposed to solve the optimization problem. Finally, an empirical study from Shanghai South EMU Depot is carried out to illustrate the model and EPSO algorithm. The optimization results indicate that the proposed method is valid for the SSED problem and that the EPSO algorithm outperforms the traditional PSO algorithm on the aspect of optimality. PMID:27436998
Wang, Jiaxi; Lin, Boliang; Jin, Junchen
2016-01-01
The shunting schedule of electric multiple units depot (SSED) is one of the essential plans for high-speed train maintenance activities. This paper presents a 0-1 programming model to address the problem of determining an optimal SSED through automatic computing. The objective of the model is to minimize the number of shunting movements and the constraints include track occupation conflicts, shunting routes conflicts, time durations of maintenance processes, and shunting running time. An enhanced particle swarm optimization (EPSO) algorithm is proposed to solve the optimization problem. Finally, an empirical study from Shanghai South EMU Depot is carried out to illustrate the model and EPSO algorithm. The optimization results indicate that the proposed method is valid for the SSED problem and that the EPSO algorithm outperforms the traditional PSO algorithm on the aspect of optimality.
Performance Trend of Different Algorithms for Structural Design Optimization
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Coroneos, Rula M.; Guptill, James D.; Hopkins, Dale A.
1996-01-01
Nonlinear programming algorithms play an important role in structural design optimization. Fortunately, several algorithms with computer codes are available. At NASA Lewis Research Center, a project was initiated to assess performance of different optimizers through the development of a computer code CometBoards. This paper summarizes the conclusions of that research. CometBoards was employed to solve sets of small, medium and large structural problems, using different optimizers on a Cray-YMP8E/8128 computer. The reliability and efficiency of the optimizers were determined from the performance of these problems. For small problems, the performance of most of the optimizers could be considered adequate. For large problems however, three optimizers (two sequential quadratic programming routines, DNCONG of IMSL and SQP of IDESIGN, along with the sequential unconstrained minimizations technique SUMT) outperformed others. At optimum, most optimizers captured an identical number of active displacement and frequency constraints but the number of active stress constraints differed among the optimizers. This discrepancy can be attributed to singularity conditions in the optimization and the alleviation of this discrepancy can improve the efficiency of optimizers.
Comparative Evaluation of Different Optimization Algorithms for Structural Design Applications
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Coroneos, Rula M.; Guptill, James D.; Hopkins, Dale A.
1996-01-01
Non-linear programming algorithms play an important role in structural design optimization. Fortunately, several algorithms with computer codes are available. At NASA Lewis Research Centre, a project was initiated to assess the performance of eight different optimizers through the development of a computer code CometBoards. This paper summarizes the conclusions of that research. CometBoards was employed to solve sets of small, medium and large structural problems, using the eight different optimizers on a Cray-YMP8E/8128 computer. The reliability and efficiency of the optimizers were determined from the performance of these problems. For small problems, the performance of most of the optimizers could be considered adequate. For large problems, however, three optimizers (two sequential quadratic programming routines, DNCONG of IMSL and SQP of IDESIGN, along with Sequential Unconstrained Minimizations Technique SUMT) outperformed others. At optimum, most optimizers captured an identical number of active displacement and frequency constraints but the number of active stress constraints differed among the optimizers. This discrepancy can be attributed to singularity conditions in the optimization and the alleviation of this discrepancy can improve the efficiency of optimizers.
Optimal field-scale groundwater remediation using neural networks and the genetic algorithm
Rogers, L.L.; Dowla, F.U.; Johnson, V.M.
1993-05-01
We present a new approach for field-scale nonlinear management of groundwater remediation. First, an artificial neural network (ANN) is trained to predict the outcome of a groundwater transport simulation. Then a genetic algorithm (GA) searches through possible pumping realizations, evaluating the fitness of each with a prediction from the trained ANN. Traditional approaches rely on optimization algorithms requiring sequential calls of the groundwater transport simulation. Our approach processes the transport simulations in parallel and ``recycles`` the knowledge base of these simulations, greatly reducing the computational and real-time burden, often the primary impediment to developing field-scale management models. We present results from a Superfund site suggesting that such management techniques can reduce cleanup costs by over a hundred million dollars.
Optimized Algorithms for Prediction within Robotic Tele-Operative Interfaces
NASA Technical Reports Server (NTRS)
Martin, Rodney A.; Wheeler, Kevin R.; SunSpiral, Vytas; Allan, Mark B.
2006-01-01
Robonaut, the humanoid robot developed at the Dexterous Robotics Laboratory at NASA Johnson Space Center serves as a testbed for human-robot collaboration research and development efforts. One of the primary efforts investigates how adjustable autonomy can provide for a safe and more effective completion of manipulation-based tasks. A predictive algorithm developed in previous work was deployed as part of a software interface that can be used for long-distance tele-operation. In this paper we provide the details of this algorithm, how to improve upon the methods via optimization, and also present viable alternatives to the original algorithmic approach. We show that all of the algorithms presented can be optimized to meet the specifications of the metrics shown as being useful for measuring the performance of the predictive methods. Judicious feature selection also plays a significant role in the conclusions drawn.
Two hybrid compaction algorithms for the layout optimization problem.
Xiao, Ren-Bin; Xu, Yi-Chun; Amos, Martyn
2007-01-01
In this paper we present two new algorithms for the layout optimization problem: this concerns the placement of circular, weighted objects inside a circular container, the two objectives being to minimize imbalance of mass and to minimize the radius of the container. This problem carries real practical significance in industrial applications (such as the design of satellites), as well as being of significant theoretical interest. We present two nature-inspired algorithms for this problem, the first based on simulated annealing, and the second on particle swarm optimization. We compare our algorithms with the existing best-known algorithm, and show that our approaches out-perform it in terms of both solution quality and execution time.
Optimizing back surface field for improving V oc of (Al)GaInP solar cell
NASA Astrophysics Data System (ADS)
Hongbo, Lu; Xinyi, Li; Wei, Zhang; Dayong, Zhou; Lijie, Sun; Kaijian, Chen
2016-10-01
GaInP and AlGaInP solar cells were grown by metal organic chemical vapor deposition (MOCVD), and theoretical analysis demonstrated that hetero-interface recombination velocity plays an important role in the optimizing of cell performance, especially the interface between base layer and back surface field (BSF). Measurements including lattice-matched growth and pseudo-BSF were taken to optimize BSF design. Significant improvement of V oc in GaInP and AlGaInP solar cells imply that the measures we took are effective and promising for performance improvement in the next generation high efficiency solar cells. Project supported by the National Natural Science Foundation of China (No. 61474076).
Swarm algorithms with chaotic jumps for optimization of multimodal functions
NASA Astrophysics Data System (ADS)
Krohling, Renato A.; Mendel, Eduardo; Campos, Mauro
2011-11-01
In this article, the use of some well-known versions of particle swarm optimization (PSO) namely the canonical PSO, the bare bones PSO (BBPSO) and the fully informed particle swarm (FIPS) is investigated on multimodal optimization problems. A hybrid approach which consists of swarm algorithms combined with a jump strategy in order to escape from local optima is developed and tested. The jump strategy is based on the chaotic logistic map. The hybrid algorithm was tested for all three versions of PSO and simulation results show that the addition of the jump strategy improves the performance of swarm algorithms for most of the investigated optimization problems. Comparison with the off-the-shelf PSO with local topology (l best model) has also been performed and indicates the superior performance of the standard PSO with chaotic jump over the standard both using local topology (l best model).
Study of genetic direct search algorithms for function optimization
NASA Technical Reports Server (NTRS)
Zeigler, B. P.
1974-01-01
The results are presented of a study to determine the performance of genetic direct search algorithms in solving function optimization problems arising in the optimal and adaptive control areas. The findings indicate that: (1) genetic algorithms can outperform standard algorithms in multimodal and/or noisy optimization situations, but suffer from lack of gradient exploitation facilities when gradient information can be utilized to guide the search. (2) For large populations, or low dimensional function spaces, mutation is a sufficient operator. However for small populations or high dimensional functions, crossover applied in about equal frequency with mutation is an optimum combination. (3) Complexity, in terms of storage space and running time, is significantly increased when population size is increased or the inversion operator, or the second level adaptation routine is added to the basic structure.
An algorithm for optimal structural design with frequency constraints
NASA Technical Reports Server (NTRS)
Kiusalaas, J.; Shaw, R. C. J.
1978-01-01
The paper presents a finite element method for minimum weight design of structures with lower-bound constraints on the natural frequencies, and upper and lower bounds on the design variables. The design algorithm is essentially an iterative solution of the Kuhn-Tucker optimality criterion. The three most important features of the algorithm are: (1) a small number of design iterations are needed to reach optimal or near-optimal design, (2) structural elements with a wide variety of size-stiffness may be used, the only significant restriction being the exclusion of curved beam and shell elements, and (3) the algorithm will work for multiple as well as single frequency constraints. The design procedure is illustrated with three simple problems.
Benchmarking derivative-free optimization algorithms.
More', J. J.; Wild, S. M.; Mathematics and Computer Science; Cornell Univ.
2009-01-01
We propose data profiles as a tool for analyzing the performance of derivative-free optimization solvers when there are constraints on the computational budget. We use performance and data profiles, together with a convergence test that measures the decrease in function value, to analyze the performance of three solvers on sets of smooth, noisy, and piecewise-smooth problems. Our results provide estimates for the performance difference between these solvers, and show that on these problems, the model-based solver tested performs better than the two direct search solvers tested.
2013-09-01
Optimization of the Nonradiative Lifetime of Molecular- Beam-Epitaxy (MBE)-Grown Undoped GaAs/AlGaAs Double Heterostructures (DH) by P...it to the originator. Army Research Laboratory Adelphi, MD 20783-1197 ARL-TR-6660 September 2013 Optimization of the Nonradiative ...REPORT TYPE Final 3. DATES COVERED (From - To) FY2013 4. TITLE AND SUBTITLE Optimization of the Nonradiative Lifetime of Molecular-Beam-Epitaxy
Bayesian Optimization Algorithm, Population Sizing, and Time to Convergence
Pelikan, M.; Goldberg, D.E.; Cantu-Paz, E.
2000-01-19
This paper analyzes convergence properties of the Bayesian optimization algorithm (BOA). It settles the BOA into the framework of problem decomposition used frequently in order to model and understand the behavior of simple genetic algorithms. The growth of the population size and the number of generations until convergence with respect to the size of a problem is theoretically analyzed. The theoretical results are supported by a number of experiments.
A limited-memory algorithm for bound-constrained optimization
Byrd, R.H.; Peihuang, L.; Nocedal, J. |
1996-03-01
An algorithm for solving large nonlinear optimization problems with simple bounds is described. It is based on the gradient projection method and uses a limited-memory BFGS matrix to approximate the Hessian of the objective function. We show how to take advantage of the form of the limited-memory approximation to implement the algorithm efficiently. The results of numerical tests on a set of large problems are reported.
Genetic Algorithm Optimizes Q-LAW Control Parameters
NASA Technical Reports Server (NTRS)
Lee, Seungwon; von Allmen, Paul; Petropoulos, Anastassios; Terrile, Richard
2008-01-01
A document discusses a multi-objective, genetic algorithm designed to optimize Lyapunov feedback control law (Q-law) parameters in order to efficiently find Pareto-optimal solutions for low-thrust trajectories for electronic propulsion systems. These would be propellant-optimal solutions for a given flight time, or flight time optimal solutions for a given propellant requirement. The approximate solutions are used as good initial solutions for high-fidelity optimization tools. When the good initial solutions are used, the high-fidelity optimization tools quickly converge to a locally optimal solution near the initial solution. Q-law control parameters are represented as real-valued genes in the genetic algorithm. The performances of the Q-law control parameters are evaluated in the multi-objective space (flight time vs. propellant mass) and sorted by the non-dominated sorting method that assigns a better fitness value to the solutions that are dominated by a fewer number of other solutions. With the ranking result, the genetic algorithm encourages the solutions with higher fitness values to participate in the reproduction process, improving the solutions in the evolution process. The population of solutions converges to the Pareto front that is permitted within the Q-law control parameter space.
An Optimal Density Functional Theory Method for GaN and ZnO
Yu, H.G.
2011-08-25
We report an optimal DFT method (bBLYP) for studying the GaN and ZnO systems. It is developed by modifying the exchange functional in the hybrid BLYP method in order to overcome the flaw of traditional DFT that often predict a rather small band gap for those semiconductors. Results show that the bBLYP method can describe not only correct band gaps of both GaN and ZnO wurtzite crystals, but also accurate properties of relevant small molecules. The application study of crystal-cut nanoparticles and nanowires reveals a new mechanism for band gap narrowing in GaN/ZnO.
A Parallel Particle Swarm Optimization Algorithm Accelerated by Asynchronous Evaluations
NASA Technical Reports Server (NTRS)
Venter, Gerhard; Sobieszczanski-Sobieski, Jaroslaw
2005-01-01
A parallel Particle Swarm Optimization (PSO) algorithm is presented. Particle swarm optimization is a fairly recent addition to the family of non-gradient based, probabilistic search algorithms that is based on a simplified social model and is closely tied to swarming theory. Although PSO algorithms present several attractive properties to the designer, they are plagued by high computational cost as measured by elapsed time. One approach to reduce the elapsed time is to make use of coarse-grained parallelization to evaluate the design points. Previous parallel PSO algorithms were mostly implemented in a synchronous manner, where all design points within a design iteration are evaluated before the next iteration is started. This approach leads to poor parallel speedup in cases where a heterogeneous parallel environment is used and/or where the analysis time depends on the design point being analyzed. This paper introduces an asynchronous parallel PSO algorithm that greatly improves the parallel e ciency. The asynchronous algorithm is benchmarked on a cluster assembled of Apple Macintosh G5 desktop computers, using the multi-disciplinary optimization of a typical transport aircraft wing as an example.
On the optimality of the neighbor-joining algorithm
Eickmeyer, Kord; Huggins, Peter; Pachter, Lior; Yoshida, Ruriko
2008-01-01
The popular neighbor-joining (NJ) algorithm used in phylogenetics is a greedy algorithm for finding the balanced minimum evolution (BME) tree associated to a dissimilarity map. From this point of view, NJ is "optimal" when the algorithm outputs the tree which minimizes the balanced minimum evolution criterion. We use the fact that the NJ tree topology and the BME tree topology are determined by polyhedral subdivisions of the spaces of dissimilarity maps R+(n2) to study the optimality of the neighbor-joining algorithm. In particular, we investigate and compare the polyhedral subdivisions for n ≤ 8. This requires the measurement of volumes of spherical polytopes in high dimension, which we obtain using a combination of Monte Carlo methods and polyhedral algorithms. Our results include a demonstration that highly unrelated trees can be co-optimal in BME reconstruction, and that NJ regions are not convex. We obtain the l2 radius for neighbor-joining for n = 5 and we conjecture that the ability of the neighbor-joining algorithm to recover the BME tree depends on the diameter of the BME tree. PMID:18447942
Khan, Naveed; McClean, Sally; Zhang, Shuai; Nugent, Chris
2016-01-01
In recent years, smart phones with inbuilt sensors have become popular devices to facilitate activity recognition. The sensors capture a large amount of data, containing meaningful events, in a short period of time. The change points in this data are used to specify transitions to distinct events and can be used in various scenarios such as identifying change in a patient’s vital signs in the medical domain or requesting activity labels for generating real-world labeled activity datasets. Our work focuses on change-point detection to identify a transition from one activity to another. Within this paper, we extend our previous work on multivariate exponentially weighted moving average (MEWMA) algorithm by using a genetic algorithm (GA) to identify the optimal set of parameters for online change-point detection. The proposed technique finds the maximum accuracy and F_measure by optimizing the different parameters of the MEWMA, which subsequently identifies the exact location of the change point from an existing activity to a new one. Optimal parameter selection facilitates an algorithm to detect accurate change points and minimize false alarms. Results have been evaluated based on two real datasets of accelerometer data collected from a set of different activities from two users, with a high degree of accuracy from 99.4% to 99.8% and F_measure of up to 66.7%. PMID:27792177
NASA Astrophysics Data System (ADS)
Önol, Can; Alkış, Sena; Gökçe, Özer; Ergül, Özgür
2016-07-01
We consider fast and efficient optimizations of arrays involving three-dimensional antennas with arbitrary shapes and geometries. Heuristic algorithms, particularly genetic algorithms, are used for optimizations, while the required solutions are carried out accurately and efficiently via the multilevel fast multipole algorithm (MLFMA). The superposition principle is employed to reduce the number of MLFMA solutions to the number of array elements per frequency. The developed mechanism is used to optimize arrays for multifrequency and/or multidirection operations, i.e., to find the most suitable set of antenna excitations for desired radiation characteristics simultaneously at different frequencies and/or directions. The capabilities of the optimization environment are demonstrated on arrays of bowtie and Vivaldi antennas.
Parameters Optimization for Operational Storm Surge/Tide Forecast Model using a Genetic Algorithm
NASA Astrophysics Data System (ADS)
Lee, W.; You, S.; Ryoo, S.; Global Environment System Research Laboratory
2010-12-01
Typhoons generated in northwestern Pacific Ocean annually affect the Korean Peninsula and storm surges generated by strong low pressure and sea winds often cause serious damage to property in the coastal region. To predict storm surges, a lot of researches have been conducted by using numerical models for many years. Various parameters used for calculation of physics process are used in numerical models based on laws of physics, but they are not accurate values. Because those parameters affect to the model performance, these uncertain values can sensitively operate results of the model. Therefore, optimization of these parameters used in numerical model is essential for accurate storm surge predictions. A genetic algorithm (GA) is recently used to estimate optimized values of these parameters. The GA is a stochastic exploration modeling natural phenomenon named genetic heritance and competition for survival. To realize breeding of species and selection, the groups which may be harmed are kept and use genetic operators such as inheritance, mutation, selection and crossover. In this study, we have improved operational storm surge/tide forecast model(STORM) of NIMR/KMA (National Institute of Meteorological Research/Korea Meteorological Administration) that covers 115E - 150E, 20N - 52N based on POM (Princeton Ocean Model) with 8km horizontal resolutions using the GA. Optimized values have been estimated about main 4 parameters which are bottom drag coefficient, background horizontal diffusivity coefficient, Smagoranski’s horizontal viscosity coefficient and sea level pressure scaling coefficient within STORM. These optimized parameters were estimated on typhoon MAEMI in 2003 and 9 typhoons which have affected to Korea peninsula from 2005 to 2007. The 4 estimated parameters were also used to compare one-month predictions in February and August 2008. During the 48h forecast time, the mean and median model accuracies improved by 25 and 51%, respectively.
New near-optimal feedback guidance algorithms for space missions
NASA Astrophysics Data System (ADS)
Hawkins, Matthew Jay
This dissertation describes several different spacecraft guidance algorithms, with applications including asteroid intercept and rendezvous, planetary landing, and orbital transfer. A comprehensive review of spacecraft guidance algorithms for asteroid intercept and rendezvous. Zero-Effort-Miss/Zero-Effort-Velocity (ZEM/ZEV) guidance is introduced and applied to asteroid intercept and rendezvous, and to a wealth of different example problems, including missile intercept, planetary landing, and orbital transfer. It is seen that the ZEM/ZEV guidance law can be used in many different scenarios, and that it provides near-optimal performance where an analytical optimal guidance law does not exist, such as in a non-linear gravity field.
An efficient cuckoo search algorithm for numerical function optimization
NASA Astrophysics Data System (ADS)
Ong, Pauline; Zainuddin, Zarita
2013-04-01
Cuckoo search algorithm which reproduces the breeding strategy of the best known brood parasitic bird, the cuckoos has demonstrated its superiority in obtaining the global solution for numerical optimization problems. However, the involvement of fixed step approach in its exploration and exploitation behavior might slow down the search process considerably. In this regards, an improved cuckoo search algorithm with adaptive step size adjustment is introduced and its feasibility on a variety of benchmarks is validated. The obtained results show that the proposed scheme outperforms the standard cuckoo search algorithm in terms of convergence characteristic while preserving the fascinating features of the original method.
Effective and efficient algorithm for multiobjective optimization of hydrologic models
NASA Astrophysics Data System (ADS)
Vrugt, Jasper A.; Gupta, Hoshin V.; Bastidas, Luis A.; Bouten, Willem; Sorooshian, Soroosh
2003-08-01
Practical experience with the calibration of hydrologic models suggests that any single-objective function, no matter how carefully chosen, is often inadequate to properly measure all of the characteristics of the observed data deemed to be important. One strategy to circumvent this problem is to define several optimization criteria (objective functions) that measure different (complementary) aspects of the system behavior and to use multicriteria optimization to identify the set of nondominated, efficient, or Pareto optimal solutions. In this paper, we present an efficient and effective Markov Chain Monte Carlo sampler, entitled the Multiobjective Shuffled Complex Evolution Metropolis (MOSCEM) algorithm, which is capable of solving the multiobjective optimization problem for hydrologic models. MOSCEM is an improvement over the Shuffled Complex Evolution Metropolis (SCEM-UA) global optimization algorithm, using the concept of Pareto dominance (rather than direct single-objective function evaluation) to evolve the initial population of points toward a set of solutions stemming from a stable distribution (Pareto set). The efficacy of the MOSCEM-UA algorithm is compared with the original MOCOM-UA algorithm for three hydrologic modeling case studies of increasing complexity.
An Efficient Globally Optimal Algorithm for Asymmetric Point Matching.
Lian, Wei; Zhang, Lei; Yang, Ming-Hsuan
2016-08-29
Although the robust point matching algorithm has been demonstrated to be effective for non-rigid registration, there are several issues with the adopted deterministic annealing optimization technique. First, it is not globally optimal and regularization on the spatial transformation is needed for good matching results. Second, it tends to align the mass centers of two point sets. To address these issues, we propose a globally optimal algorithm for the robust point matching problem where each model point has a counterpart in scene set. By eliminating the transformation variables, we show that the original matching problem is reduced to a concave quadratic assignment problem where the objective function has a low rank Hessian matrix. This facilitates the use of large scale global optimization techniques. We propose a branch-and-bound algorithm based on rectangular subdivision where in each iteration, multiple rectangles are used to increase the chances of subdividing the one containing the global optimal solution. In addition, we present an efficient lower bounding scheme which has a linear assignment formulation and can be efficiently solved. Extensive experiments on synthetic and real datasets demonstrate the proposed algorithm performs favorably against the state-of-the-art methods in terms of robustness to outliers, matching accuracy, and run-time.
Optimization Algorithm for the Generation of ONCV Pseudopotentials
NASA Astrophysics Data System (ADS)
Schlipf, Martin; Gygi, Francois
2015-03-01
We present an optimization algorithm to construct pseudopotentials and use it to generate a set of Optimized Norm-Conserving Vanderbilt (ONCV) pseudopotentials for elements up to Z=83 (Bi) (excluding Lanthanides). We introduce a quality function that assesses the agreement of a pseudopotential calculation with all-electron FLAPW results, and the necessary plane-wave energy cutoff. This quality function allows us to use a Nelder-Mead optimization algorithm on a training set of materials to optimize the input parameters of the pseudopotential construction for most of the periodic table. We control the accuracy of the resulting pseudopotentials on a test set of materials independent of the training set. We find that the automatically constructed pseudopotentials provide a good agreement with the all-electron results obtained using the FLEUR code with a plane-wave energy cutoff of approximately 60 Ry. Supported by DOE/BES Grant DE-SC0008938.
Optimization algorithm for the generation of ONCV pseudopotentials
NASA Astrophysics Data System (ADS)
Schlipf, Martin; Gygi, François
2015-11-01
We present an optimization algorithm to construct pseudopotentials and use it to generate a set of Optimized Norm-Conserving Vanderbilt (ONCV) pseudopotentials for elements up to Z = 83 (Bi) (excluding Lanthanides). We introduce a quality function that assesses the agreement of a pseudopotential calculation with all-electron FLAPW results, and the necessary plane-wave energy cutoff. This quality function allows us to use a Nelder-Mead optimization algorithm on a training set of materials to optimize the input parameters of the pseudopotential construction for most of the periodic table. We control the accuracy of the resulting pseudopotentials on a test set of materials independent of the training set. We find that the automatically constructed pseudopotentials
Calibration of neural networks using genetic algorithms, with application to optimal path planning
NASA Technical Reports Server (NTRS)
Smith, Terence R.; Pitney, Gilbert A.; Greenwood, Daniel
1987-01-01
Genetic algorithms (GA) are used to search the synaptic weight space of artificial neural systems (ANS) for weight vectors that optimize some network performance function. GAs do not suffer from some of the architectural constraints involved with other techniques and it is straightforward to incorporate terms into the performance function concerning the metastructure of the ANS. Hence GAs offer a remarkably general approach to calibrating ANS. GAs are applied to the problem of calibrating an ANS that finds optimal paths over a given surface. This problem involves training an ANS on a relatively small set of paths and then examining whether the calibrated ANS is able to find good paths between arbitrary start and end points on the surface.
Meta-Heuristics in Short Scale Construction: Ant Colony Optimization and Genetic Algorithm
Schroeders, Ulrich; Wilhelm, Oliver; Olaru, Gabriel
2016-01-01
The advent of large-scale assessment, but also the more frequent use of longitudinal and multivariate approaches to measurement in psychological, educational, and sociological research, caused an increased demand for psychometrically sound short scales. Shortening scales economizes on valuable administration time, but might result in inadequate measures because reducing an item set could: a) change the internal structure of the measure, b) result in poorer reliability and measurement precision, c) deliver measures that cannot effectively discriminate between persons on the intended ability spectrum, and d) reduce test-criterion relations. Different approaches to abbreviate measures fare differently with respect to the above-mentioned problems. Therefore, we compare the quality and efficiency of three item selection strategies to derive short scales from an existing long version: a Stepwise COnfirmatory Factor Analytical approach (SCOFA) that maximizes factor loadings and two metaheuristics, specifically an Ant Colony Optimization (ACO) with a tailored user-defined optimization function and a Genetic Algorithm (GA) with an unspecific cost-reduction function. SCOFA compiled short versions were highly reliable, but had poor validity. In contrast, both metaheuristics outperformed SCOFA and produced efficient and psychometrically sound short versions (unidimensional, reliable, sensitive, and valid). We discuss under which circumstances ACO and GA produce equivalent results and provide recommendations for conditions in which it is advisable to use a metaheuristic with an unspecific out-of-the-box optimization function. PMID:27893845
NASA Astrophysics Data System (ADS)
Helou, E. S.; Zibetti, M. V. W.; Miqueles, E. X.
2017-04-01
We propose the superiorization of incremental algorithms for tomographic image reconstruction. The resulting methods follow a better path in its way to finding the optimal solution for the maximum likelihood problem in the sense that they are closer to the Pareto optimal curve than the non-superiorized techniques. A new scaled gradient iteration is proposed and three superiorization schemes are evaluated. Theoretical analysis of the methods as well as computational experiments with both synthetic and real data are provided.
Control optimization, stabilization and computer algorithms for aircraft applications
NASA Technical Reports Server (NTRS)
1975-01-01
Research related to reliable aircraft design is summarized. Topics discussed include systems reliability optimization, failure detection algorithms, analysis of nonlinear filters, design of compensators incorporating time delays, digital compensator design, estimation for systems with echoes, low-order compensator design, descent-phase controller for 4-D navigation, infinite dimensional mathematical programming problems and optimal control problems with constraints, robust compensator design, numerical methods for the Lyapunov equations, and perturbation methods in linear filtering and control.
A Global Optimization Algorithm Using Stochastic Differential Equations.
1985-02-01
Bari (Italy).2Istituto di Fisica , 2 UniversitA di Roma "Tor Vergata", Via Orazio Raimondo, 00173 (La Romanina) Roma (Italy). 3Istituto di Matematica ...accompanying Algorithm. lDipartininto di Matematica , Universita di Bari, 70125 Bar (Italy). Istituto di Fisica , 2a UniversitA di Roim ’"Tor Vergata", Via...Optimization, Stochastic Differential Equations Work Unit Number 5 (Optimization and Large Scale Systems) 6Dipartimento di Matematica , Universita di Bari, 70125
A new efficient optimal path planner for mobile robot based on Invasive Weed Optimization algorithm
NASA Astrophysics Data System (ADS)
Mohanty, Prases K.; Parhi, Dayal R.
2014-12-01
Planning of the shortest/optimal route is essential for efficient operation of autonomous mobile robot or vehicle. In this paper Invasive Weed Optimization (IWO), a new meta-heuristic algorithm, has been implemented for solving the path planning problem of mobile robot in partially or totally unknown environments. This meta-heuristic optimization is based on the colonizing property of weeds. First we have framed an objective function that satisfied the conditions of obstacle avoidance and target seeking behavior of robot in partially or completely unknown environments. Depending upon the value of objective function of each weed in colony, the robot avoids obstacles and proceeds towards destination. The optimal trajectory is generated with this navigational algorithm when robot reaches its destination. The effectiveness, feasibility, and robustness of the proposed algorithm has been demonstrated through series of simulation and experimental results. Finally, it has been found that the developed path planning algorithm can be effectively applied to any kinds of complex situation.
A Matrix-Free Algorithm for Multidisciplinary Design Optimization
NASA Astrophysics Data System (ADS)
Lambe, Andrew Borean
Multidisciplinary design optimization (MDO) is an approach to engineering design that exploits the coupling between components or knowledge disciplines in a complex system to improve the final product. In aircraft design, MDO methods can be used to simultaneously design the outer shape of the aircraft and the internal structure, taking into account the complex interaction between the aerodynamic forces and the structural flexibility. Efficient strategies are needed to solve such design optimization problems and guarantee convergence to an optimal design. This work begins with a comprehensive review of MDO problem formulations and solution algorithms. First, a fundamental MDO problem formulation is defined from which other formulations may be obtained through simple transformations. Using these fundamental problem formulations, decomposition methods from the literature are reviewed and classified. All MDO methods are presented in a unified mathematical notation to facilitate greater understanding. In addition, a novel set of diagrams, called extended design structure matrices, are used to simultaneously visualize both data communication and process flow between the many software components of each method. For aerostructural design optimization, modern decomposition-based MDO methods cannot efficiently handle the tight coupling between the aerodynamic and structural states. This fact motivates the exploration of methods that can reduce the computational cost. A particular structure in the direct and adjoint methods for gradient computation. motivates the idea of a matrix-free optimization method. A simple matrix-free optimizer is developed based on the augmented Lagrangian algorithm. This new matrix-free optimizer is tested on two structural optimization problems and one aerostructural optimization problem. The results indicate that the matrix-free optimizer is able to efficiently solve structural and multidisciplinary design problems with thousands of variables and
A Matrix-Free Algorithm for Multidisciplinary Design Optimization
NASA Astrophysics Data System (ADS)
Lambe, Andrew Borean
Multidisciplinary design optimization (MDO) is an approach to engineering design that exploits the coupling between components or knowledge disciplines in a complex system to improve the final product. In aircraft design, MDO methods can be used to simultaneously design the outer shape of the aircraft and the internal structure, taking into account the complex interaction between the aerodynamic forces and the structural flexibility. Efficient strategies are needed to solve such design optimization problems and guarantee convergence to an optimal design. This work begins with a comprehensive review of MDO problem formulations and solution algorithms. First, a fundamental MDO problem formulation is defined from which other formulations may be obtained through simple transformations. Using these fundamental problem formulations, decomposition methods from the literature are reviewed and classified. All MDO methods are presented in a unified mathematical notation to facilitate greater understanding. In addition, a novel set of diagrams, called extended design structure matrices, are used to simultaneously visualize both data communication and process flow between the many software components of each method. For aerostructural design optimization, modern decomposition-based MDO methods cannot efficiently handle the tight coupling between the aerodynamic and structural states. This fact motivates the exploration of methods that can reduce the computational cost. A particular structure in the direct and adjoint methods for gradient computation motivates the idea of a matrix-free optimization method. A simple matrix-free optimizer is developed based on the augmented Lagrangian algorithm. This new matrix-free optimizer is tested on two structural optimization problems and one aerostructural optimization problem. The results indicate that the matrix-free optimizer is able to efficiently solve structural and multidisciplinary design problems with thousands of variables and
Genetic Algorithms for an Optimal Line Balancing Problem with Workers of Different Skill Levels
NASA Astrophysics Data System (ADS)
Iima, Hitoshi; Karuno, Yoshiyuki; Kise, Hiroshi
This paper discusses a new combinatorial optimization problem which occurs in line balancing for real assembly lines demanding skilled operations. On the contrast with conventional assembly lines such as automotive in which each operation is associated with a standard processing time, it is assumed that each operation time depends on assigned worker's skill and there exists an upper bound on the number of operations to be assigned to each worker. Three genetic algorithms (GAs) which have different genotypes and different decoding procedures are discussed for this problem. The genotype in the first GA is expressed by sequencing the operation numbers, and an effective heuristic rule is introduced into the decoding procedure. In the second GA, the genotype is expressed by sequencing the sets of operations to be assigned to each worker. In the third GA, the genotype is expressed by sequencing the worker numbers executing each operation in the order of operation numbers. These GAs are compared by numerical experiment based on real conditions.
Environmental Optimization Using the WAste Reduction Algorithm (WAR)
Traditionally chemical process designs were optimized using purely economic measures such as rate of return. EPA scientists developed the WAste Reduction algorithm (WAR) so that environmental impacts of designs could easily be evaluated. The goal of WAR is to reduce environme...
Attitude determination using vector observations - A fast optimal matrix algorithm
NASA Technical Reports Server (NTRS)
Markley, F. L.
1993-01-01
The attitude matrix minimizing Wahba's loss function is computed directly by a method that is competitive with the fastest known algorithm for finding this optimal estimate. The method also provides an estimate of the attitude error covariance matrix. Analysis of the special case of two vector observations identifies those cases for which the TRIAD or algebraic method minimizes Wahba's loss function.
Attitude determination using vector observations: A fast optimal matrix algorithm
NASA Technical Reports Server (NTRS)
Markley, F. Landis
1993-01-01
The attitude matrix minimizing Wahba's loss function is computed directly by a method that is competitive with the fastest known algorithm for finding this optimal estimate. The method also provides an estimate of the attitude error covariance matrix. Analysis of the special case of two vector observations identifies those cases for which the TRIAD or algebraic method minimizes Wahba's loss function.
Optimal pulse shaping for coherent control by the penalty algorithm
NASA Astrophysics Data System (ADS)
Shen, Hai; Dussault, Jean-Pièrre; Bandrauk, André D.
1994-04-01
We use penalty methods coupled with unitary exponential operator methods to solve the optimal control problem for molecular time-dependent Schrödinger equations involving laser pulse excitations. A stable numerical algorithm is presented which propagates directly from initial states to given final states. Results are reported for an analytically solvable model for the complete inversion of a three-state system.
Numerical Optimization Algorithms and Software for Systems Biology
Saunders, Michael
2013-02-02
The basic aims of this work are: to develop reliable algorithms for solving optimization problems involving large stoi- chiometric matrices; to investigate cyclic dependency between metabolic and macromolecular biosynthetic networks; and to quantify the significance of thermodynamic constraints on prokaryotic metabolism.
Experimental implementation of an adiabatic quantum optimization algorithm
NASA Astrophysics Data System (ADS)
Steffen, Matthias; van Dam, Wim; Hogg, Tad; Breyta, Greg; Chuang, Isaac
2003-03-01
A novel quantum algorithm using adiabatic evolution was recently presented by Ed Farhi [1] and Tad Hogg [2]. This algorithm represents a remarkable discovery because it offers new insights into the usefulness of quantum resources. An experimental demonstration of an adiabatic algorithm has remained beyond reach because it requires an experimentally accessible Hamiltonian which encodes the problem and which must also be smoothly varied over time. We present tools to overcome these difficulties by discretizing the algorithm and extending average Hamiltonian techniques [3]. We used these techniques in the first experimental demonstration of an adiabatic optimization algorithm: solving an instance of the MAXCUT problem using three qubits and nuclear magnetic resonance techniques. We show that there exists an optimal run-time of the algorithm which can be predicted using a previously developed decoherence model. [1] E. Farhi et al., quant-ph/0001106 (2000) [2] T. Hogg, PRA, 61, 052311 (2000) [3] W. Rhim, A. Pines, J. Waugh, PRL, 24,218 (1970)
Optimization algorithms for large-scale multireservoir hydropower systems
Hiew, K.L.
1987-01-01
Five optimization algorithms were vigorously evaluated based on applications on a hypothetical five-reservoir hydropower system. These algorithms are incremental dynamic programming (IDP), successive linear programing (SLP), feasible direction method (FDM), optimal control theory (OCT) and objective-space dynamic programming (OSDP). The performance of these algorithms were comparatively evaluated using unbiased, objective criteria which include accuracy of results, rate of convergence, smoothness of resulting storage and release trajectories, computer time and memory requirements, robustness and other pertinent secondary considerations. Results have shown that all the algorithms, with the exception of OSDP converge to optimum objective values within 1.0% difference from one another. The highest objective value is obtained by IDP, followed closely by OCT. Computer time required by these algorithms, however, differ by more than two orders of magnitude, ranging from 10 seconds in the case of OCT to a maximum of about 2000 seconds for IDP. With a well-designed penalty scheme to deal with state-space constraints, OCT proves to be the most-efficient algorithm based on its overall performance. SLP, FDM, and OCT were applied to the case study of Mahaweli project, a ten-powerplant system in Sri Lanka.
Model updating based on an affine scaling interior optimization algorithm
NASA Astrophysics Data System (ADS)
Zhang, Y. X.; Jia, C. X.; Li, Jian; Spencer, B. F.
2013-11-01
Finite element model updating is usually considered as an optimization process. Affine scaling interior algorithms are powerful optimization algorithms that have been developed over the past few years. A new finite element model updating method based on an affine scaling interior algorithm and a minimization of modal residuals is proposed in this article, and a general finite element model updating program is developed based on the proposed method. The performance of the proposed method is studied through numerical simulation and experimental investigation using the developed program. The results of the numerical simulation verified the validity of the method. Subsequently, the natural frequencies obtained experimentally from a three-dimensional truss model were used to update a finite element model using the developed program. After updating, the natural frequencies of the truss and finite element model matched well.
An improved particle swarm optimization algorithm for reliability problems.
Wu, Peifeng; Gao, Liqun; Zou, Dexuan; Li, Steven
2011-01-01
An improved particle swarm optimization (IPSO) algorithm is proposed to solve reliability problems in this paper. The IPSO designs two position updating strategies: In the early iterations, each particle flies and searches according to its own best experience with a large probability; in the late iterations, each particle flies and searches according to the fling experience of the most successful particle with a large probability. In addition, the IPSO introduces a mutation operator after position updating, which can not only prevent the IPSO from trapping into the local optimum, but also enhances its space developing ability. Experimental results show that the proposed algorithm has stronger convergence and stability than the other four particle swarm optimization algorithms on solving reliability problems, and that the solutions obtained by the IPSO are better than the previously reported best-known solutions in the recent literature.
Endgame implementations for the Efficient Global Optimization (EGO) algorithm
NASA Astrophysics Data System (ADS)
Southall, Hugh L.; O'Donnell, Teresa H.; Kaanta, Bryan
2009-05-01
Efficient Global Optimization (EGO) is a competent evolutionary algorithm which can be useful for problems with expensive cost functions [1,2,3,4,5]. The goal is to find the global minimum using as few function evaluations as possible. Our research indicates that EGO requires far fewer evaluations than genetic algorithms (GAs). However, both algorithms do not always drill down to the absolute minimum, therefore the addition of a final local search technique is indicated. In this paper, we introduce three "endgame" techniques. The techniques can improve optimization efficiency (fewer cost function evaluations) and, if required, they can provide very accurate estimates of the global minimum. We also report results using a different cost function than the one previously used [2,3].
A genetic algorithm approach in interface and surface structure optimization
Zhang, Jian
2010-01-01
The thesis is divided into two parts. In the first part a global optimization method is developed for the interface and surface structures optimization. Two prototype systems are chosen to be studied. One is Si[001] symmetric tilted grain boundaries and the other is Ag/Au induced Si(111) surface. It is found that Genetic Algorithm is very efficient in finding lowest energy structures in both cases. Not only existing structures in the experiments can be reproduced, but also many new structures can be predicted using Genetic Algorithm. Thus it is shown that Genetic Algorithm is a extremely powerful tool for the material structures predictions. The second part of the thesis is devoted to the explanation of an experimental observation of thermal radiation from three-dimensional tungsten photonic crystal structures. The experimental results seems astounding and confusing, yet the theoretical models in the paper revealed the physics insight behind the phenomena and can well reproduced the experimental results.
Optimal brushless DC motor design using genetic algorithms
NASA Astrophysics Data System (ADS)
Rahideh, A.; Korakianitis, T.; Ruiz, P.; Keeble, T.; Rothman, M. T.
2010-11-01
This paper presents a method for the optimal design of a slotless permanent magnet brushless DC (BLDC) motor with surface mounted magnets using a genetic algorithm. Characteristics of the motor are expressed as functions of motor geometries. The objective function is a combination of losses, volume and cost to be minimized simultaneously. Electrical and mechanical requirements (i.e. voltage, torque and speed) and other limitations (e.g. upper and lower limits of the motor geometries) are cast into constraints of the optimization problem. One sample case is used to illustrate the design and optimization technique.
Optimal reservoir operation policies using novel nested algorithms
NASA Astrophysics Data System (ADS)
Delipetrev, Blagoj; Jonoski, Andreja; Solomatine, Dimitri
2015-04-01
Historically, the two most widely practiced methods for optimal reservoir operation have been dynamic programming (DP) and stochastic dynamic programming (SDP). These two methods suffer from the so called "dual curse" which prevents them to be used in reasonably complex water systems. The first one is the "curse of dimensionality" that denotes an exponential growth of the computational complexity with the state - decision space dimension. The second one is the "curse of modelling" that requires an explicit model of each component of the water system to anticipate the effect of each system's transition. We address the problem of optimal reservoir operation concerning multiple objectives that are related to 1) reservoir releases to satisfy several downstream users competing for water with dynamically varying demands, 2) deviations from the target minimum and maximum reservoir water levels and 3) hydropower production that is a combination of the reservoir water level and the reservoir releases. Addressing such a problem with classical methods (DP and SDP) requires a reasonably high level of discretization of the reservoir storage volume, which in combination with the required releases discretization for meeting the demands of downstream users leads to computationally expensive formulations and causes the curse of dimensionality. We present a novel approach, named "nested" that is implemented in DP, SDP and reinforcement learning (RL) and correspondingly three new algorithms are developed named nested DP (nDP), nested SDP (nSDP) and nested RL (nRL). The nested algorithms are composed from two algorithms: 1) DP, SDP or RL and 2) nested optimization algorithm. Depending on the way we formulate the objective function related to deficits in the allocation problem in the nested optimization, two methods are implemented: 1) Simplex for linear allocation problems, and 2) quadratic Knapsack method in the case of nonlinear problems. The novel idea is to include the nested
Optimization of GaN MOVPE growth on patterned Si substrates using spectroscopic in situ reflectance
NASA Astrophysics Data System (ADS)
Strittmatter, A.; Reißmann, L.; Trepk, T.; Pohl, U. W.; Bimberg, D.; Zettler, J.-T.
2004-12-01
In real-time monitoring of III-Nitride growth on patterned and masked substrates by spectroscopic reflectance, a characteristic interference pattern generated by the superposition of wave-fronts reflected at different μm-sized structures at the sample surface is measured. Up to now this time- and wavelength-dependent pattern was used only for empirical fingerprint-evaluation of III-Nitride growth processes which employ patterning or masking for bulk defect reduction. In this paper, we report on the analysis of real-time spectroscopic reflectance data measured in the range 1.65-4.5 eV during the epitaxial growth of GaN layers on structured Si(1 1 1) substrates. The successful implementation of a two-dimensional interference model into conventional thin-film analysis algorithms enables the quantitative analysis of characteristic vertical and lateral growth rates and overgrowth mechanisms involved. The new method is applied to optimize III-Nitride growth processes on patterned silicon substrates used for subsequent III-Nitride device growth.
Modified Discrete Grey Wolf Optimizer Algorithm for Multilevel Image Thresholding
Sun, Lijuan; Guo, Jian; Xu, Bin; Li, Shujing
2017-01-01
The computation of image segmentation has become more complicated with the increasing number of thresholds, and the option and application of the thresholds in image thresholding fields have become an NP problem at the same time. The paper puts forward the modified discrete grey wolf optimizer algorithm (MDGWO), which improves on the optimal solution updating mechanism of the search agent by the weights. Taking Kapur's entropy as the optimized function and based on the discreteness of threshold in image segmentation, the paper firstly discretizes the grey wolf optimizer (GWO) and then proposes a new attack strategy by using the weight coefficient to replace the search formula for optimal solution used in the original algorithm. The experimental results show that MDGWO can search out the optimal thresholds efficiently and precisely, which are very close to the result examined by exhaustive searches. In comparison with the electromagnetism optimization (EMO), the differential evolution (DE), the Artifical Bee Colony (ABC), and the classical GWO, it is concluded that MDGWO has advantages over the latter four in terms of image segmentation quality and objective function values and their stability. PMID:28127305
Modified Discrete Grey Wolf Optimizer Algorithm for Multilevel Image Thresholding.
Li, Linguo; Sun, Lijuan; Guo, Jian; Qi, Jin; Xu, Bin; Li, Shujing
2017-01-01
The computation of image segmentation has become more complicated with the increasing number of thresholds, and the option and application of the thresholds in image thresholding fields have become an NP problem at the same time. The paper puts forward the modified discrete grey wolf optimizer algorithm (MDGWO), which improves on the optimal solution updating mechanism of the search agent by the weights. Taking Kapur's entropy as the optimized function and based on the discreteness of threshold in image segmentation, the paper firstly discretizes the grey wolf optimizer (GWO) and then proposes a new attack strategy by using the weight coefficient to replace the search formula for optimal solution used in the original algorithm. The experimental results show that MDGWO can search out the optimal thresholds efficiently and precisely, which are very close to the result examined by exhaustive searches. In comparison with the electromagnetism optimization (EMO), the differential evolution (DE), the Artifical Bee Colony (ABC), and the classical GWO, it is concluded that MDGWO has advantages over the latter four in terms of image segmentation quality and objective function values and their stability.
On the physical operation and optimization of the p-GaN gate in normally-off GaN HEMT devices
NASA Astrophysics Data System (ADS)
Efthymiou, L.; Longobardi, G.; Camuso, G.; Chien, T.; Chen, M.; Udrea, F.
2017-03-01
In this study, an investigation is undertaken to determine the effect of gate design parameters on the on-state characteristics (threshold voltage and gate turn-on voltage) of pGaN/AlGaN/GaN high electron mobility transistors (HEMTs). Design parameters considered are pGaN doping and gate metal work function. The analysis considers the effects of variations on these parameters using a TCAD model matched with experimental results. A better understanding of the underlying physics governing the operation of these devices is achieved with a view to enable better optimization of such gate designs.
NASA Technical Reports Server (NTRS)
Rajkumar, T.; Bardina, Jorge; Clancy, Daniel (Technical Monitor)
2002-01-01
Wind tunnels use scale models to characterize aerodynamic coefficients, Wind tunnel testing can be slow and costly due to high personnel overhead and intensive power utilization. Although manual curve fitting can be done, it is highly efficient to use a neural network to define the complex relationship between variables. Numerical simulation of complex vehicles on the wide range of conditions required for flight simulation requires static and dynamic data. Static data at low Mach numbers and angles of attack may be obtained with simpler Euler codes. Static data of stalled vehicles where zones of flow separation are usually present at higher angles of attack require Navier-Stokes simulations which are costly due to the large processing time required to attain convergence. Preliminary dynamic data may be obtained with simpler methods based on correlations and vortex methods; however, accurate prediction of the dynamic coefficients requires complex and costly numerical simulations. A reliable and fast method of predicting complex aerodynamic coefficients for flight simulation I'S presented using a neural network. The training data for the neural network are derived from numerical simulations and wind-tunnel experiments. The aerodynamic coefficients are modeled as functions of the flow characteristics and the control surfaces of the vehicle. The basic coefficients of lift, drag and pitching moment are expressed as functions of angles of attack and Mach number. The modeled and training aerodynamic coefficients show good agreement. This method shows excellent potential for rapid development of aerodynamic models for flight simulation. Genetic Algorithms (GA) are used to optimize a previously built Artificial Neural Network (ANN) that reliably predicts aerodynamic coefficients. Results indicate that the GA provided an efficient method of optimizing the ANN model to predict aerodynamic coefficients. The reliability of the ANN using the GA includes prediction of aerodynamic
An active set algorithm for treatment planning optimization.
Hristov, D H; Fallone, B G
1997-09-01
An active set algorithm for optimization of radiation therapy dose planning by intensity modulated beams has been developed. The algorithm employs a conjugate-gradient routine for subspace minimization in order to achieve a higher rate of convergence than the widely used constrained steepest-descent method at the expense of a negligible amount of overhead calculations. The performance of the new algorithm has been compared to that of the constrained steepest-descent method for various treatment geometries and two different objectives. The active set algorithm is found to be superior to the constrained steepest descent, both in terms of its convergence properties and the residual value of the cost functions at termination. Its use can significantly accelerate the design of conformal plans with intensity modulated beams by decreasing the number of time-consuming dose calculations.
Optimization of circuits using a constructive learning algorithm
Beiu, V.
1997-05-01
The paper presents an application of a constructive learning algorithm to optimization of circuits. For a given Boolean function f. a fresh constructive learning algorithm builds circuits belonging to the smallest F{sub n,m} class of functions (n inputs and having m groups of ones in their truth table). The constructive proofs, which show how arbitrary Boolean functions can be implemented by this algorithm, are shortly enumerated An interesting aspect is that the algorithm can be used for generating both classical Boolean circuits and threshold gate circuits (i.e. analogue inputs and digital outputs), or a mixture of them, thus taking advantage of mixed analogue/digital technologies. One illustrative example is detailed The size and the area of the different circuits are compared (special cost functions can be used to closer estimate the area and the delay of VLSI implementations). Conclusions and further directions of research are ending the paper.
Multiobjective Optimization of Rocket Engine Pumps Using Evolutionary Algorithm
NASA Technical Reports Server (NTRS)
Oyama, Akira; Liou, Meng-Sing
2001-01-01
A design optimization method for turbopumps of cryogenic rocket engines has been developed. Multiobjective Evolutionary Algorithm (MOEA) is used for multiobjective pump design optimizations. Performances of design candidates are evaluated by using the meanline pump flow modeling method based on the Euler turbine equation coupled with empirical correlations for rotor efficiency. To demonstrate the feasibility of the present approach, a single stage centrifugal pump design and multistage pump design optimizations are presented. In both cases, the present method obtains very reasonable Pareto-optimal solutions that include some designs outperforming the original design in total head while reducing input power by one percent. Detailed observation of the design results also reveals some important design criteria for turbopumps in cryogenic rocket engines. These results demonstrate the feasibility of the EA-based design optimization method in this field.
Optimization of image processing algorithms on mobile platforms
NASA Astrophysics Data System (ADS)
Poudel, Pramod; Shirvaikar, Mukul
2011-03-01
This work presents a technique to optimize popular image processing algorithms on mobile platforms such as cell phones, net-books and personal digital assistants (PDAs). The increasing demand for video applications like context-aware computing on mobile embedded systems requires the use of computationally intensive image processing algorithms. The system engineer has a mandate to optimize them so as to meet real-time deadlines. A methodology to take advantage of the asymmetric dual-core processor, which includes an ARM and a DSP core supported by shared memory, is presented with implementation details. The target platform chosen is the popular OMAP 3530 processor for embedded media systems. It has an asymmetric dual-core architecture with an ARM Cortex-A8 and a TMS320C64x Digital Signal Processor (DSP). The development platform was the BeagleBoard with 256 MB of NAND RAM and 256 MB SDRAM memory. The basic image correlation algorithm is chosen for benchmarking as it finds widespread application for various template matching tasks such as face-recognition. The basic algorithm prototypes conform to OpenCV, a popular computer vision library. OpenCV algorithms can be easily ported to the ARM core which runs a popular operating system such as Linux or Windows CE. However, the DSP is architecturally more efficient at handling DFT algorithms. The algorithms are tested on a variety of images and performance results are presented measuring the speedup obtained due to dual-core implementation. A major advantage of this approach is that it allows the ARM processor to perform important real-time tasks, while the DSP addresses performance-hungry algorithms.
Raghunathan, Shriram; Gupta, Sumeet K; Markandeya, Himanshu S; Roy, Kaushik; Irazoqui, Pedro P
2010-10-30
Implantable neural prostheses that deliver focal electrical stimulation upon demand are rapidly emerging as an alternate therapy for roughly a third of the epileptic patient population that is medically refractory. Seizure detection algorithms enable feedback mechanisms to provide focally and temporally specific intervention. Real-time feasibility and computational complexity often limit most reported detection algorithms to implementations using computers for bedside monitoring or external devices communicating with the implanted electrodes. A comparison of algorithms based on detection efficacy does not present a complete picture of the feasibility of the algorithm with limited computational power, as is the case with most battery-powered applications. We present a two-dimensional design optimization approach that takes into account both detection efficacy and hardware cost in evaluating algorithms for their feasibility in an implantable application. Detection features are first compared for their ability to detect electrographic seizures from micro-electrode data recorded from kainate-treated rats. Circuit models are then used to estimate the dynamic and leakage power consumption of the compared features. A score is assigned based on detection efficacy and the hardware cost for each of the features, then plotted on a two-dimensional design space. An optimal combination of compared features is used to construct an algorithm that provides maximal detection efficacy per unit hardware cost. The methods presented in this paper would facilitate the development of a common platform to benchmark seizure detection algorithms for comparison and feasibility analysis in the next generation of implantable neuroprosthetic devices to treat epilepsy.
Optimal control of switched linear systems based on Migrant Particle Swarm Optimization algorithm
NASA Astrophysics Data System (ADS)
Xie, Fuqiang; Wang, Yongji; Zheng, Zongzhun; Li, Chuanfeng
2009-10-01
The optimal control problem for switched linear systems with internally forced switching has more constraints than with externally forced switching. Heavy computations and slow convergence in solving this problem is a major obstacle. In this paper we describe a new approach for solving this problem, which is called Migrant Particle Swarm Optimization (Migrant PSO). Imitating the behavior of a flock of migrant birds, the Migrant PSO applies naturally to both continuous and discrete spaces, in which definitive optimization algorithm and stochastic search method are combined. The efficacy of the proposed algorithm is illustrated via a numerical example.
Designing Artificial Neural Networks Using Particle Swarm Optimization Algorithms.
Garro, Beatriz A; Vázquez, Roberto A
2015-01-01
Artificial Neural Network (ANN) design is a complex task because its performance depends on the architecture, the selected transfer function, and the learning algorithm used to train the set of synaptic weights. In this paper we present a methodology that automatically designs an ANN using particle swarm optimization algorithms such as Basic Particle Swarm Optimization (PSO), Second Generation of Particle Swarm Optimization (SGPSO), and a New Model of PSO called NMPSO. The aim of these algorithms is to evolve, at the same time, the three principal components of an ANN: the set of synaptic weights, the connections or architecture, and the transfer functions for each neuron. Eight different fitness functions were proposed to evaluate the fitness of each solution and find the best design. These functions are based on the mean square error (MSE) and the classification error (CER) and implement a strategy to avoid overtraining and to reduce the number of connections in the ANN. In addition, the ANN designed with the proposed methodology is compared with those designed manually using the well-known Back-Propagation and Levenberg-Marquardt Learning Algorithms. Finally, the accuracy of the method is tested with different nonlinear pattern classification problems.
Fine-Tuning ADAS Algorithm Parameters for Optimizing Traffic ...
With the development of the Connected Vehicle technology that facilitates wirelessly communication among vehicles and road-side infrastructure, the Advanced Driver Assistance Systems (ADAS) can be adopted as an effective tool for accelerating traffic safety and mobility optimization at various highway facilities. To this end, the traffic management centers identify the optimal ADAS algorithm parameter set that enables the maximum improvement of the traffic safety and mobility performance, and broadcast the optimal parameter set wirelessly to individual ADAS-equipped vehicles. After adopting the optimal parameter set, the ADAS-equipped drivers become active agents in the traffic stream that work collectively and consistently to prevent traffic conflicts, lower the intensity of traffic disturbances, and suppress the development of traffic oscillations into heavy traffic jams. Successful implementation of this objective requires the analysis capability of capturing the impact of the ADAS on driving behaviors, and measuring traffic safety and mobility performance under the influence of the ADAS. To address this challenge, this research proposes a synthetic methodology that incorporates the ADAS-affected driving behavior modeling and state-of-the-art microscopic traffic flow modeling into a virtually simulated environment. Building on such an environment, the optimal ADAS algorithm parameter set is identified through an optimization programming framework to enable th
Harmony search algorithm: application to the redundancy optimization problem
NASA Astrophysics Data System (ADS)
Nahas, Nabil; Thien-My, Dao
2010-09-01
The redundancy optimization problem is a well known NP-hard problem which involves the selection of elements and redundancy levels to maximize system performance, given different system-level constraints. This article presents an efficient algorithm based on the harmony search algorithm (HSA) to solve this optimization problem. The HSA is a new nature-inspired algorithm which mimics the improvization process of music players. Two kinds of problems are considered in testing the proposed algorithm, with the first limited to the binary series-parallel system, where the problem consists of a selection of elements and redundancy levels used to maximize the system reliability given various system-level constraints; the second problem for its part concerns the multi-state series-parallel systems with performance levels ranging from perfect operation to complete failure, and in which identical redundant elements are included in order to achieve a desirable level of availability. Numerical results for test problems from previous research are reported and compared. The results of HSA showed that this algorithm could provide very good solutions when compared to those obtained through other approaches.
Gajić, A.; Radovanović, J. Milanović, V.; Indjin, D.; Ikonić, Z.
2014-02-07
A computational model for the optimization of the second order optical nonlinearities in GaInAs/AlInAs quantum cascade laser structures is presented. The set of structure parameters that lead to improved device performance was obtained through the implementation of the Genetic Algorithm. In the following step, the linear and second harmonic generation power were calculated by self-consistently solving the system of rate equations for carriers and photons. This rate equation system included both stimulated and simultaneous double photon absorption processes that occur between the levels relevant for second harmonic generation, and material-dependent effective mass, as well as band nonparabolicity, were taken into account. The developed method is general, in the sense that it can be applied to any higher order effect, which requires the photon density equation to be included. Specifically, we have addressed the optimization of the active region of a double quantum well In{sub 0.53}Ga{sub 0.47}As/Al{sub 0.48}In{sub 0.52}As structure and presented its output characteristics.
Controlling chaos with weak periodic signals optimized by a genetic algorithm.
Soong, C Y; Huang, W T; Lin, F P; Tzeng, P Y
2004-01-01
In the present study we develop a relatively novel and effective chaos control approach with a multimode periodic disturbance applied as a control signal and perform an in-depth analysis on this nonfeedback chaos control strategy. Different from previous chaos control schemes, the present method is of two characteristic features: (1) the parameters of the controlling signal are optimized by a genetic algorithm (GA) with the largest Lyapunov exponent used as an index of the stability, and (2) the optimization is justified by a fitness function defined with the target Lyapunov exponent and the controlling power. This novel method is then tested on the noted Rössler and Lorenz systems with and without the presence of noise. The results disclosed that, compared to the existing chaos control methods, the present GA-based control needs only significantly reduced signal power and a shorter transient stage to achieve the preset control goal. The switching control ability and the robustness of the proposed method for cases with sudden change in a system parameter and/or with the presence of noise environment are also demonstrated.
Study of sequential optimal control algorithm smart isolation structure based on Simulink-S function
NASA Astrophysics Data System (ADS)
Liu, Xiaohuan; Liu, Yanhui
2017-01-01
The study of this paper focuses on smart isolation structure, a method for realizing structural vibration control by using Simulink simulation is proposed according to the proposed sequential optimal control algorithm. In the Simulink simulation environment, A smart isolation structure is used to compare the control effect of three algorithms, i.e., classical optimal control algorithm, linear quadratic gaussian control algorithm and sequential optimal control algorithm under the condition of sensor contaminated with noise. Simulation results show that this method can be applied to the simulation of sequential optimal control algorithm and the proposed sequential optimal control algorithm has a good ability of resisting the noise and better control efficiency.
Optimization of Circular Ring Microstrip Antenna Using Genetic Algorithm
NASA Astrophysics Data System (ADS)
Sathi, V.; Ghobadi, Ch.; Nourinia, J.
2008-10-01
Circular ring microstrip antennas have several interesting properties that make it attractive in wireless applications. Although several analysis techniques such as cavity model, generalized transmission line model, Fourier-Hankel transform domain and the method of matched asymptotic expansion have been studied by researchers, there is no efficient design tool that has been incorporated with a suitable optimization algorithm. In this paper, the cavity model analysis along with the genetic optimization algorithm is presented for the design of circular ring microstrip antennas. The method studied here is based on the well-known cavity model and the optimization of the dimensions and feed point location of the circular ring antenna is performed via the genetic optimization algorithm, to achieve an acceptable antenna operation around a desired resonance frequency. The antennas designed by this efficient design procedure were realized experimentally, and the results are compared. In addition, these results are also compared to the results obtained by the commercial electromagnetic simulation tool, the FEM based software, HFSS by ANSOFT.
A Degree Distribution Optimization Algorithm for Image Transmission
NASA Astrophysics Data System (ADS)
Jiang, Wei; Yang, Junjie
2016-09-01
Luby Transform (LT) code is the first practical implementation of digital fountain code. The coding behavior of LT code is mainly decided by the degree distribution which determines the relationship between source data and codewords. Two degree distributions are suggested by Luby. They work well in typical situations but not optimally in case of finite encoding symbols. In this work, the degree distribution optimization algorithm is proposed to explore the potential of LT code. Firstly selection scheme of sparse degrees for LT codes is introduced. Then probability distribution is optimized according to the selected degrees. In image transmission, bit stream is sensitive to the channel noise and even a single bit error may cause the loss of synchronization between the encoder and the decoder. Therefore the proposed algorithm is designed for image transmission situation. Moreover, optimal class partition is studied for image transmission with unequal error protection. The experimental results are quite promising. Compared with LT code with robust soliton distribution, the proposed algorithm improves the final quality of recovered images obviously with the same overhead.
Hierarchical artificial bee colony algorithm for RFID network planning optimization.
Ma, Lianbo; Chen, Hanning; Hu, Kunyuan; Zhu, Yunlong
2014-01-01
This paper presents a novel optimization algorithm, namely, hierarchical artificial bee colony optimization, called HABC, to tackle the radio frequency identification network planning (RNP) problem. In the proposed multilevel model, the higher-level species can be aggregated by the subpopulations from lower level. In the bottom level, each subpopulation employing the canonical ABC method searches the part-dimensional optimum in parallel, which can be constructed into a complete solution for the upper level. At the same time, the comprehensive learning method with crossover and mutation operators is applied to enhance the global search ability between species. Experiments are conducted on a set of 10 benchmark optimization problems. The results demonstrate that the proposed HABC obtains remarkable performance on most chosen benchmark functions when compared to several successful swarm intelligence and evolutionary algorithms. Then HABC is used for solving the real-world RNP problem on two instances with different scales. Simulation results show that the proposed algorithm is superior for solving RNP, in terms of optimization accuracy and computation robustness.
Preliminary flight evaluation of an engine performance optimization algorithm
NASA Technical Reports Server (NTRS)
Lambert, H. H.; Gilyard, G. B.; Chisholm, J. D.; Kerr, L. J.
1991-01-01
A performance seeking control (PSC) algorithm has undergone initial flight test evaluation in subsonic operation of a PW 1128 engined F-15. This algorithm is designed to optimize the quasi-steady performance of an engine for three primary modes: (1) minimum fuel consumption; (2) minimum fan turbine inlet temperature (FTIT); and (3) maximum thrust. The flight test results have verified a thrust specific fuel consumption reduction of 1 pct., up to 100 R decreases in FTIT, and increases of as much as 12 pct. in maximum thrust. PSC technology promises to be of value in next generation tactical and transport aircraft.
Acceleration of quantum optimal control theory algorithms with mixing strategies.
Castro, Alberto; Gross, E K U
2009-05-01
We propose the use of mixing strategies to accelerate the convergence of the common iterative algorithms utilized in quantum optimal control theory (QOCT). We show how the nonlinear equations of QOCT can be viewed as a "fixed-point" nonlinear problem. The iterative algorithms for this class of problems may benefit from mixing strategies, as it happens, e.g., in the quest for the ground-state density in Kohn-Sham density-functional theory. We demonstrate, with some numerical examples, how the same mixing schemes utilized in this latter nonlinear problem may significantly accelerate the QOCT iterative procedures.
Optimization of multicast optical networks with genetic algorithm
NASA Astrophysics Data System (ADS)
Lv, Bo; Mao, Xiangqiao; Zhang, Feng; Qin, Xi; Lu, Dan; Chen, Ming; Chen, Yong; Cao, Jihong; Jian, Shuisheng
2007-11-01
In this letter, aiming to obtain the best multicast performance of optical network in which the video conference information is carried by specified wavelength, we extend the solutions of matrix games with the network coding theory and devise a new method to solve the complex problems of multicast network switching. In addition, an experimental optical network has been testified with best switching strategies by employing the novel numerical solution designed with an effective way of genetic algorithm. The result shows that optimal solutions with genetic algorithm are accordance with the ones with the traditional fictitious play method.
Global structual optimizations of surface systems with a genetic algorithm
Chuang, Feng-Chuan
2005-01-01
Global structural optimizations with a genetic algorithm were performed for atomic cluster and surface systems including aluminum atomic clusters, Si magic clusters on the Si(111) 7 x 7 surface, silicon high-index surfaces, and Ag-induced Si(111) reconstructions. First, the global structural optimizations of neutral aluminum clusters Al_{n} algorithm in combination with tight-binding and first-principles calculations were performed to study the structures of magic clusters on the Si(111) 7 x 7 surface. Extensive calculations show that the magic cluster observed in scanning tunneling microscopy (STM) experiments consist of eight Si atoms. Simulated STM images of the Si magic cluster exhibit a ring-like feature similar to STM experiments. Third, a genetic algorithm coupled with a highly optimized empirical potential were used to determine the lowest energy structure of high-index semiconductor surfaces. The lowest energy structures of Si(105) and Si(114) were determined successfully. The results of Si(105) and Si(114) are reported within the framework of highly optimized empirical potential and first-principles calculations. Finally, a genetic algorithm coupled with Si and Ag tight-binding potentials were used to search for Ag-induced Si(111) reconstructions at various Ag and Si coverages. The optimized structural models of √3 x √3, 3 x 1, and 5 x 2 phases were reported using first-principles calculations. A novel model is found to have lower surface energy than the proposed double-honeycomb chained (DHC) model both for Au/Si(111) 5 x 2 and Ag/Si(111) 5 x 2 systems.
Multi-objective nested algorithms for optimal reservoir operation
NASA Astrophysics Data System (ADS)
Delipetrev, Blagoj; Solomatine, Dimitri
2016-04-01
The optimal reservoir operation is in general a multi-objective problem, meaning that multiple objectives are to be considered at the same time. For solving multi-objective optimization problems there exist a large number of optimization algorithms - which result in a generation of a Pareto set of optimal solutions (typically containing a large number of them), or more precisely, its approximation. At the same time, due to the complexity and computational costs of solving full-fledge multi-objective optimization problems some authors use a simplified approach which is generically called "scalarization". Scalarization transforms the multi-objective optimization problem to a single-objective optimization problem (or several of them), for example by (a) single objective aggregated weighted functions, or (b) formulating some objectives as constraints. We are using the approach (a). A user can decide how many multi-objective single search solutions will generate, depending on the practical problem at hand and by choosing a particular number of the weight vectors that are used to weigh the objectives. It is not guaranteed that these solutions are Pareto optimal, but they can be treated as a reasonably good and practically useful approximation of a Pareto set, albeit small. It has to be mentioned that the weighted-sum approach has its known shortcomings because the linear scalar weights will fail to find Pareto-optimal policies that lie in the concave region of the Pareto front. In this context the considered approach is implemented as follows: there are m sets of weights {w1i, …wni} (i starts from 1 to m), and n objectives applied to single objective aggregated weighted sum functions of nested dynamic programming (nDP), nested stochastic dynamic programming (nSDP) and nested reinforcement learning (nRL). By employing the multi-objective optimization by a sequence of single-objective optimization searches approach, these algorithms acquire the multi-objective properties
Integer programming model for optimizing bus timetable using genetic algorithm
NASA Astrophysics Data System (ADS)
Wihartiko, F. D.; Buono, A.; Silalahi, B. P.
2017-01-01
Bus timetable gave an information for passengers to ensure the availability of bus services. Timetable optimal condition happened when bus trips frequency could adapt and suit with passenger demand. In the peak time, the number of bus trips would be larger than the off-peak time. If the number of bus trips were more frequent than the optimal condition, it would make a high operating cost for bus operator. Conversely, if the number of trip was less than optimal condition, it would make a bad quality service for passengers. In this paper, the bus timetabling problem would be solved by integer programming model with modified genetic algorithm. Modification was placed in the chromosomes design, initial population recovery technique, chromosomes reconstruction and chromosomes extermination on specific generation. The result of this model gave the optimal solution with accuracy 99.1%.
All-Optical Implementation of the Ant Colony Optimization Algorithm
Hu, Wenchao; Wu, Kan; Shum, Perry Ping; Zheludev, Nikolay I.; Soci, Cesare
2016-01-01
We report all-optical implementation of the optimization algorithm for the famous “ant colony” problem. Ant colonies progressively optimize pathway to food discovered by one of the ants through identifying the discovered route with volatile chemicals (pheromones) secreted on the way back from the food deposit. Mathematically this is an important example of graph optimization problem with dynamically changing parameters. Using an optical network with nonlinear waveguides to represent the graph and a feedback loop, we experimentally show that photons traveling through the network behave like ants that dynamically modify the environment to find the shortest pathway to any chosen point in the graph. This proof-of-principle demonstration illustrates how transient nonlinearity in the optical system can be exploited to tackle complex optimization problems directly, on the hardware level, which may be used for self-routing of optical signals in transparent communication networks and energy flow in photonic systems. PMID:27222098
All-Optical Implementation of the Ant Colony Optimization Algorithm
NASA Astrophysics Data System (ADS)
Hu, Wenchao; Wu, Kan; Shum, Perry Ping; Zheludev, Nikolay I.; Soci, Cesare
2016-05-01
We report all-optical implementation of the optimization algorithm for the famous “ant colony” problem. Ant colonies progressively optimize pathway to food discovered by one of the ants through identifying the discovered route with volatile chemicals (pheromones) secreted on the way back from the food deposit. Mathematically this is an important example of graph optimization problem with dynamically changing parameters. Using an optical network with nonlinear waveguides to represent the graph and a feedback loop, we experimentally show that photons traveling through the network behave like ants that dynamically modify the environment to find the shortest pathway to any chosen point in the graph. This proof-of-principle demonstration illustrates how transient nonlinearity in the optical system can be exploited to tackle complex optimization problems directly, on the hardware level, which may be used for self-routing of optical signals in transparent communication networks and energy flow in photonic systems.
CACONET: Ant Colony Optimization (ACO) Based Clustering Algorithm for VANET
Bajwa, Khalid Bashir; Khan, Salabat; Chaudary, Nadeem Majeed; Akram, Adeel
2016-01-01
A vehicular ad hoc network (VANET) is a wirelessly connected network of vehicular nodes. A number of techniques, such as message ferrying, data aggregation, and vehicular node clustering aim to improve communication efficiency in VANETs. Cluster heads (CHs), selected in the process of clustering, manage inter-cluster and intra-cluster communication. The lifetime of clusters and number of CHs determines the efficiency of network. In this paper a Clustering algorithm based on Ant Colony Optimization (ACO) for VANETs (CACONET) is proposed. CACONET forms optimized clusters for robust communication. CACONET is compared empirically with state-of-the-art baseline techniques like Multi-Objective Particle Swarm Optimization (MOPSO) and Comprehensive Learning Particle Swarm Optimization (CLPSO). Experiments varying the grid size of the network, the transmission range of nodes, and number of nodes in the network were performed to evaluate the comparative effectiveness of these algorithms. For optimized clustering, the parameters considered are the transmission range, direction and speed of the nodes. The results indicate that CACONET significantly outperforms MOPSO and CLPSO. PMID:27149517
CACONET: Ant Colony Optimization (ACO) Based Clustering Algorithm for VANET.
Aadil, Farhan; Bajwa, Khalid Bashir; Khan, Salabat; Chaudary, Nadeem Majeed; Akram, Adeel
2016-01-01
A vehicular ad hoc network (VANET) is a wirelessly connected network of vehicular nodes. A number of techniques, such as message ferrying, data aggregation, and vehicular node clustering aim to improve communication efficiency in VANETs. Cluster heads (CHs), selected in the process of clustering, manage inter-cluster and intra-cluster communication. The lifetime of clusters and number of CHs determines the efficiency of network. In this paper a Clustering algorithm based on Ant Colony Optimization (ACO) for VANETs (CACONET) is proposed. CACONET forms optimized clusters for robust communication. CACONET is compared empirically with state-of-the-art baseline techniques like Multi-Objective Particle Swarm Optimization (MOPSO) and Comprehensive Learning Particle Swarm Optimization (CLPSO). Experiments varying the grid size of the network, the transmission range of nodes, and number of nodes in the network were performed to evaluate the comparative effectiveness of these algorithms. For optimized clustering, the parameters considered are the transmission range, direction and speed of the nodes. The results indicate that CACONET significantly outperforms MOPSO and CLPSO.
Random search optimization based on genetic algorithm and discriminant function
NASA Technical Reports Server (NTRS)
Kiciman, M. O.; Akgul, M.; Erarslanoglu, G.
1990-01-01
The general problem of optimization with arbitrary merit and constraint functions, which could be convex, concave, monotonic, or non-monotonic, is treated using stochastic methods. To improve the efficiency of the random search methods, a genetic algorithm for the search phase and a discriminant function for the constraint-control phase were utilized. The validity of the technique is demonstrated by comparing the results to published test problem results. Numerical experimentation indicated that for cases where a quick near optimum solution is desired, a general, user-friendly optimization code can be developed without serious penalties in both total computer time and accuracy.
Optimization of broadband semiconductor chirped mirrors with genetic algorithm
NASA Astrophysics Data System (ADS)
Dems, Maciej; Wnuk, Paweł; Wasylczyk, Piotr; Zinkiewicz, Łukasz; Wójcik-Jedlińska, Anna; Regiński, Kazimierz; Hejduk, Krzysztof; Jasik, Agata
2016-10-01
Genetic algorithm was applied for optimization of dispersion properties in semiconductor Bragg reflectors for applications in femtosecond lasers. Broadband, large negative group-delay dispersion was achieved in the optimized design: The group-delay dispersion (GDD) as large as -3500 fs2 was theoretically obtained over a 10-nm bandwidth. The designed structure was manufactured and tested, providing GDD -3320 fs2 over a 7-nm bandwidth. The mirror performance was verified in semiconductor structures grown with molecular beam epitaxy. The mirror was tested in a passively mode-locked Yb:KYW laser.
An adaptive penalty method for DIRECT algorithm in engineering optimization
NASA Astrophysics Data System (ADS)
Vilaça, Rita; Rocha, Ana Maria A. C.
2012-09-01
The most common approach for solving constrained optimization problems is based on penalty functions, where the constrained problem is transformed into a sequence of unconstrained problem by penalizing the objective function when constraints are violated. In this paper, we analyze the implementation of an adaptive penalty method, within the DIRECT algorithm, in which the constraints that are more difficult to be satisfied will have relatively higher penalty values. In order to assess the applicability and performance of the proposed method, some benchmark problems from engineering design optimization are considered.
Genetic Algorithm Application in Optimization of Wireless Sensor Networks
Norouzi, Ali; Zaim, A. Halim
2014-01-01
There are several applications known for wireless sensor networks (WSN), and such variety demands improvement of the currently available protocols and the specific parameters. Some notable parameters are lifetime of network and energy consumption for routing which play key role in every application. Genetic algorithm is one of the nonlinear optimization methods and relatively better option thanks to its efficiency for large scale applications and that the final formula can be modified by operators. The present survey tries to exert a comprehensive improvement in all operational stages of a WSN including node placement, network coverage, clustering, and data aggregation and achieve an ideal set of parameters of routing and application based WSN. Using genetic algorithm and based on the results of simulations in NS, a specific fitness function was achieved, optimized, and customized for all the operational stages of WSNs. PMID:24693235
Implementation and Optimization of Image Processing Algorithms on Embedded GPU
NASA Astrophysics Data System (ADS)
Singhal, Nitin; Yoo, Jin Woo; Choi, Ho Yeol; Park, In Kyu
In this paper, we analyze the key factors underlying the implementation, evaluation, and optimization of image processing and computer vision algorithms on embedded GPU using OpenGL ES 2.0 shader model. First, we present the characteristics of the embedded GPU and its inherent advantage when compared to embedded CPU. Additionally, we propose techniques to achieve increased performance with optimized shader design. To show the effectiveness of the proposed techniques, we employ cartoon-style non-photorealistic rendering (NPR), speeded-up robust feature (SURF) detection, and stereo matching as our example algorithms. Performance is evaluated in terms of the execution time and speed-up achieved in comparison with the implementation on embedded CPU.
Parallel Algorithms for Graph Optimization using Tree Decompositions
Sullivan, Blair D; Weerapurage, Dinesh P; Groer, Christopher S
2012-06-01
Although many $\\cal{NP}$-hard graph optimization problems can be solved in polynomial time on graphs of bounded tree-width, the adoption of these techniques into mainstream scientific computation has been limited due to the high memory requirements of the necessary dynamic programming tables and excessive runtimes of sequential implementations. This work addresses both challenges by proposing a set of new parallel algorithms for all steps of a tree decomposition-based approach to solve the maximum weighted independent set problem. A hybrid OpenMP/MPI implementation includes a highly scalable parallel dynamic programming algorithm leveraging the MADNESS task-based runtime, and computational results demonstrate scaling. This work enables a significant expansion of the scale of graphs on which exact solutions to maximum weighted independent set can be obtained, and forms a framework for solving additional graph optimization problems with similar techniques.
Quantum algorithm for molecular properties and geometry optimization.
Kassal, Ivan; Aspuru-Guzik, Alán
2009-12-14
Quantum computers, if available, could substantially accelerate quantum simulations. We extend this result to show that the computation of molecular properties (energy derivatives) could also be sped up using quantum computers. We provide a quantum algorithm for the numerical evaluation of molecular properties, whose time cost is a constant multiple of the time needed to compute the molecular energy, regardless of the size of the system. Molecular properties computed with the proposed approach could also be used for the optimization of molecular geometries or other properties. For that purpose, we discuss the benefits of quantum techniques for Newton's method and Householder methods. Finally, global minima for the proposed optimizations can be found using the quantum basin hopper algorithm, which offers an additional quadratic reduction in cost over classical multi-start techniques.
Theoretical modeling and optimization of III-V GaInP/GaAs/Ge monolithic triple-junction solar cells
NASA Astrophysics Data System (ADS)
Leem, Jung Woo; Yu, Jae Su; Kim, Jong Nam; Noh, Sam Kyu
2014-05-01
We design and optimize monolithic III-V GaInP/GaAs/Ge triple-junction (TJ) solar cells by using a commercial software Silvaco ATLAS simulator to obtain the maximum short-circuit current density J sc . The maximum J sc , which is a current matching value between the GaInP top and GaAs middle subcells, can be determined by varying the base thicknesses of the GaInP top and GaAs middle subcells. From the numerical simulation results, a matched maximum J sc value of 13.92 mA/cm2 is obtained at base thicknesses of 0.57 μm and 3 μm for the GaInP top and GaAs middle subcells, respectively, under 1-sun air mass 1.5 global spectrum illumination, leading to a high power conversion efficiency of 30.72%. The open-circuit voltage and the fill factor are 2.55 V and 86.55%, respectively. For the optimized cell structure, the external quantum efficiency and the photogeneration rate distributions are also investigated. To obtain efficient antireflection coatings (ARCs), we perform optical reflectance calculations by using a rigorous coupled-wave analysis method. For this, a silicon oxide/titanium oxide double-layer is used as an ARC on the TJ solar cell.
A hierarchical evolutionary algorithm for multiobjective optimization in IMRT
Holdsworth, Clay; Kim, Minsun; Liao, Jay; Phillips, Mark H.
2010-01-01
Purpose: The current inverse planning methods for intensity modulated radiation therapy (IMRT) are limited because they are not designed to explore the trade-offs between the competing objectives of tumor and normal tissues. The goal was to develop an efficient multiobjective optimization algorithm that was flexible enough to handle any form of objective function and that resulted in a set of Pareto optimal plans. Methods: A hierarchical evolutionary multiobjective algorithm designed to quickly generate a small diverse Pareto optimal set of IMRT plans that meet all clinical constraints and reflect the optimal trade-offs in any radiation therapy plan was developed. The top level of the hierarchical algorithm is a multiobjective evolutionary algorithm (MOEA). The genes of the individuals generated in the MOEA are the parameters that define the penalty function minimized during an accelerated deterministic IMRT optimization that represents the bottom level of the hierarchy. The MOEA incorporates clinical criteria to restrict the search space through protocol objectives and then uses Pareto optimality among the fitness objectives to select individuals. The population size is not fixed, but a specialized niche effect, domination advantage, is used to control the population and plan diversity. The number of fitness objectives is kept to a minimum for greater selective pressure, but the number of genes is expanded for flexibility that allows a better approximation of the Pareto front. Results: The MOEA improvements were evaluated for two example prostate cases with one target and two organs at risk (OARs). The population of plans generated by the modified MOEA was closer to the Pareto front than populations of plans generated using a standard genetic algorithm package. Statistical significance of the method was established by compiling the results of 25 multiobjective optimizations using each method. From these sets of 12–15 plans, any random plan selected from a MOEA
Optimizing phase-estimation algorithms for diamond spin magnetometry
NASA Astrophysics Data System (ADS)
Nusran, N. M.; Dutt, M. V. Gurudev
2014-07-01
We present a detailed theoretical and numerical study discussing the application and optimization of phase-estimation algorithms (PEAs) to diamond spin magnetometry. We compare standard Ramsey magnetometry, the nonadaptive PEA (NAPEA), and quantum PEA (QPEA) incorporating error checking. Our results show that the NAPEA requires lower measurement fidelity, has better dynamic range, and greater consistency in sensitivity. We elucidate the importance of dynamic range to Ramsey magnetic imaging with diamond spins, and introduce the application of PEAs to time-dependent magnetometry.
NASA Astrophysics Data System (ADS)
Johar, F. M.; Azmin, F. A.; Shibghatullah, A. S.; Suaidi, M. K.; Ahmad, B. H.; Abd Aziz, M. Z. A.; Salleh, S. N.; Shukor, M. Md
2014-04-01
Attenuation of GSM, GPS and personal communication signal leads to poor communication inside the building using regular shapes of energy saving glass coating. Thus, the transmission is very low. A brand new type of band pass frequency selective surface (FSS) for energy saving glass application is presented in this paper for one unit cell. Numerical Periodic Method of Moment approach according to a previous study has been applied to determine the new optimum design of one unit cell energy saving glass coating structure. Optimization technique based on the Genetic Algorithm (GA) is used to obtain an improved in return loss and transmission signal. The unit cell of FSS is designed and simulated using the CST Microwave Studio software at based on industrial, scientific and medical bands (ISM). A unique and irregular shape of an energy saving glass coating structure is obtained with lower return loss and improved transmission coefficient.
Managing and learning with multiple models: Objectives and optimization algorithms
Probert, William J. M.; Hauser, C.E.; McDonald-Madden, E.; Runge, M.C.; Baxter, P.W.J.; Possingham, H.P.
2011-01-01
The quality of environmental decisions should be gauged according to managers' objectives. Management objectives generally seek to maximize quantifiable measures of system benefit, for instance population growth rate. Reaching these goals often requires a certain degree of learning about the system. Learning can occur by using management action in combination with a monitoring system. Furthermore, actions can be chosen strategically to obtain specific kinds of information. Formal decision making tools can choose actions to favor such learning in two ways: implicitly via the optimization algorithm that is used when there is a management objective (for instance, when using adaptive management), or explicitly by quantifying knowledge and using it as the fundamental project objective, an approach new to conservation.This paper outlines three conservation project objectives - a pure management objective, a pure learning objective, and an objective that is a weighted mixture of these two. We use eight optimization algorithms to choose actions that meet project objectives and illustrate them in a simulated conservation project. The algorithms provide a taxonomy of decision making tools in conservation management when there is uncertainty surrounding competing models of system function. The algorithms build upon each other such that their differences are highlighted and practitioners may see where their decision making tools can be improved. ?? 2010 Elsevier Ltd.
Wu, Jianfa; Peng, Dahao; Li, Zhuping; Zhao, Li; Ling, Huanzhang
2015-01-01
To effectively and accurately detect and classify network intrusion data, this paper introduces a general regression neural network (GRNN) based on the artificial immune algorithm with elitist strategies (AIAE). The elitist archive and elitist crossover were combined with the artificial immune algorithm (AIA) to produce the AIAE-GRNN algorithm, with the aim of improving its adaptivity and accuracy. In this paper, the mean square errors (MSEs) were considered the affinity function. The AIAE was used to optimize the smooth factors of the GRNN; then, the optimal smooth factor was solved and substituted into the trained GRNN. Thus, the intrusive data were classified. The paper selected a GRNN that was separately optimized using a genetic algorithm (GA), particle swarm optimization (PSO), and fuzzy C-mean clustering (FCM) to enable a comparison of these approaches. As shown in the results, the AIAE-GRNN achieves a higher classification accuracy than PSO-GRNN, but the running time of AIAE-GRNN is long, which was proved first. FCM and GA-GRNN were eliminated because of their deficiencies in terms of accuracy and convergence. To improve the running speed, the paper adopted principal component analysis (PCA) to reduce the dimensions of the intrusive data. With the reduction in dimensionality, the PCA-AIAE-GRNN decreases in accuracy less and has better convergence than the PCA-PSO-GRNN, and the running speed of the PCA-AIAE-GRNN was relatively improved. The experimental results show that the AIAE-GRNN has a higher robustness and accuracy than the other algorithms considered and can thus be used to classify the intrusive data. PMID:25807466
Wu, Jianfa; Peng, Dahao; Li, Zhuping; Zhao, Li; Ling, Huanzhang
2015-01-01
To effectively and accurately detect and classify network intrusion data, this paper introduces a general regression neural network (GRNN) based on the artificial immune algorithm with elitist strategies (AIAE). The elitist archive and elitist crossover were combined with the artificial immune algorithm (AIA) to produce the AIAE-GRNN algorithm, with the aim of improving its adaptivity and accuracy. In this paper, the mean square errors (MSEs) were considered the affinity function. The AIAE was used to optimize the smooth factors of the GRNN; then, the optimal smooth factor was solved and substituted into the trained GRNN. Thus, the intrusive data were classified. The paper selected a GRNN that was separately optimized using a genetic algorithm (GA), particle swarm optimization (PSO), and fuzzy C-mean clustering (FCM) to enable a comparison of these approaches. As shown in the results, the AIAE-GRNN achieves a higher classification accuracy than PSO-GRNN, but the running time of AIAE-GRNN is long, which was proved first. FCM and GA-GRNN were eliminated because of their deficiencies in terms of accuracy and convergence. To improve the running speed, the paper adopted principal component analysis (PCA) to reduce the dimensions of the intrusive data. With the reduction in dimensionality, the PCA-AIAE-GRNN decreases in accuracy less and has better convergence than the PCA-PSO-GRNN, and the running speed of the PCA-AIAE-GRNN was relatively improved. The experimental results show that the AIAE-GRNN has a higher robustness and accuracy than the other algorithms considered and can thus be used to classify the intrusive data.
Algorithm Optimally Orders Forward-Chaining Inference Rules
NASA Technical Reports Server (NTRS)
James, Mark
2008-01-01
People typically develop knowledge bases in a somewhat ad hoc manner by incrementally adding rules with no specific organization. This often results in a very inefficient execution of those rules since they are so often order sensitive. This is relevant to tasks like Deep Space Network in that it allows the knowledge base to be incrementally developed and have it automatically ordered for efficiency. Although data flow analysis was first developed for use in compilers for producing optimal code sequences, its usefulness is now recognized in many software systems including knowledge-based systems. However, this approach for exhaustively computing data-flow information cannot directly be applied to inference systems because of the ubiquitous execution of the rules. An algorithm is presented that efficiently performs a complete producer/consumer analysis for each antecedent and consequence clause in a knowledge base to optimally order the rules to minimize inference cycles. An algorithm was developed that optimally orders a knowledge base composed of forwarding chaining inference rules such that independent inference cycle executions are minimized, thus, resulting in significantly faster execution. This algorithm was integrated into the JPL tool Spacecraft Health Inference Engine (SHINE) for verification and it resulted in a significant reduction in inference cycles for what was previously considered an ordered knowledge base. For a knowledge base that is completely unordered, then the improvement is much greater.
Threshold matrix for digital halftoning by genetic algorithm optimization
NASA Astrophysics Data System (ADS)
Alander, Jarmo T.; Mantere, Timo J.; Pyylampi, Tero
1998-10-01
Digital halftoning is used both in low and high resolution high quality printing technologies. Our method is designed to be mainly used for low resolution ink jet marking machines to produce both gray tone and color images. The main problem with digital halftoning is pink noise caused by the human eye's visual transfer function. To compensate for this the random dot patterns used are optimized to contain more blue than pink noise. Several such dot pattern generator threshold matrices have been created automatically by using genetic algorithm optimization, a non-deterministic global optimization method imitating natural evolution and genetics. A hybrid of genetic algorithm with a search method based on local backtracking was developed together with several fitness functions evaluating dot patterns for rectangular grids. By modifying the fitness function, a family of dot generators results, each with its particular statistical features. Several versions of genetic algorithms, backtracking and fitness functions were tested to find a reasonable combination. The generated threshold matrices have been tested by simulating a set of test images using the Khoros image processing system. Even though the work was focused on developing low resolution marking technology, the resulting family of dot generators can be applied also in other halftoning application areas including high resolution printing technology.
Novel meta-surface design synthesis via nature-inspired optimization algorithms
NASA Astrophysics Data System (ADS)
Bayraktar, Zikri
Heuristic numerical optimization algorithms have been gaining interest over the years as the computational power of the digital computers increases at an unprecedented level every year. While mature techniques such as the Genetic Algorithm increase their application areas, researchers also try to come up with new algorithms by simply observing the highly tuned processes provided by the nature. In this dissertation, the well-known Genetic Algorithm (GA) will be utilized to tackle various novel electromagnetic optimization problems, along with parallel implementation of the Clonal Selection Algorithm (CLONALG) and newly introduced the Wind Driven Optimization (WDO) technique. The utility of the CLONALG parallelization and the efficiency of the WDO will be illustrated by applying them to multi-dimensional and multi-modal electromagnetics problems such as antenna design and metamaterial surface synthesis. One of the metamaterial application areas is the design synthesis of 90 degrees rotationally symmetric ultra-small unit cell artificial magnetic conducting (AMC) surfaces. AMCs are composite metallo-dielectric structures designed to behave as perfect magnetic conductors (PMC) over a certain frequency range, those exhibit a reflection coefficient magnitude of unity with an phase angle of zero degrees at the center of the band. The proposed designs consist of ultra small sized frequency selective surface (FSS) unit cells that are tightly packed and highly intertwined, yet achieve remarkable AMC band performance and field of view when compared to current state-of-the-art AMCs. In addition, planar double-sided AMC (DSAMC) structures are introduced and optimized as AMC ground planes for low profile antennas in composite platforms and separator slabs for vertical antenna applications. The proposed designs do not possess complete metallic ground planes, which makes them ideal for composite and multi-antenna systems. The versatility of the DSAMC slabs is also illustrated
A genetic algorithm based multi-objective shape optimization scheme for cementless femoral implant.
Chanda, Souptick; Gupta, Sanjay; Kumar Pratihar, Dilip
2015-03-01
The shape and geometry of femoral implant influence implant-induced periprosthetic bone resorption and implant-bone interface stresses, which are potential causes of aseptic loosening in cementless total hip arthroplasty (THA). Development of a shape optimization scheme is necessary to achieve a trade-off between these two conflicting objectives. The objective of this study was to develop a novel multi-objective custom-based shape optimization scheme for cementless femoral implant by integrating finite element (FE) analysis and a multi-objective genetic algorithm (GA). The FE model of a proximal femur was based on a subject-specific CT-scan dataset. Eighteen parameters describing the nature of four key sections of the implant were identified as design variables. Two objective functions, one based on implant-bone interface failure criterion, and the other based on resorbed proximal bone mass fraction (BMF), were formulated. The results predicted by the two objective functions were found to be contradictory; a reduction in the proximal bone resorption was accompanied by a greater chance of interface failure. The resorbed proximal BMF was found to be between 23% and 27% for the trade-off geometries as compared to ∼39% for a generic implant. Moreover, the overall chances of interface failure have been minimized for the optimal designs, compared to the generic implant. The adaptive bone remodeling was also found to be minimal for the optimally designed implants and, further with remodeling, the chances of interface debonding increased only marginally.
Quantum-based algorithm for optimizing artificial neural networks.
Tzyy-Chyang Lu; Gwo-Ruey Yu; Jyh-Ching Juang
2013-08-01
This paper presents a quantum-based algorithm for evolving artificial neural networks (ANNs). The aim is to design an ANN with few connections and high classification performance by simultaneously optimizing the network structure and the connection weights. Unlike most previous studies, the proposed algorithm uses quantum bit representation to codify the network. As a result, the connectivity bits do not indicate the actual links but the probability of the existence of the connections, thus alleviating mapping problems and reducing the risk of throwing away a potential candidate. In addition, in the proposed model, each weight space is decomposed into subspaces in terms of quantum bits. Thus, the algorithm performs a region by region exploration, and evolves gradually to find promising subspaces for further exploitation. This is helpful to provide a set of appropriate weights when evolving the network structure and to alleviate the noisy fitness evaluation problem. The proposed model is tested on four benchmark problems, namely breast cancer and iris, heart, and diabetes problems. The experimental results show that the proposed algorithm can produce compact ANN structures with good generalization ability compared to other algorithms.
NASA Astrophysics Data System (ADS)
López-Medina, Mario E.; Vázquez-Montiel, Sergio; Herrera-Vázquez, Joel
2008-04-01
The Genetic Algorithms, GAs, are a method of global optimization that we use in the stage of optimization in the design of optical systems. In the case of optical design and optimization, the efficiency and convergence speed of GAs are related with merit function, crossover operator, and mutation operator. In this study we present a comparison between several genetic algorithms implementations using different optical systems, like achromatic cemented doublet, air spaced doublet and telescopes. We do the comparison varying the type of design parameters and the number of parameters to be optimized. We also implement the GAs using discreet parameters with binary chains and with continuous parameter using real numbers in the chromosome; analyzing the differences in the time taken to find the solution and the precision in the results between discreet and continuous parameters. Additionally, we use different merit function to optimize the same optical system. We present the obtained results in tables, graphics and a detailed example; and of the comparison we conclude which is the best way to implement GAs for design and optimization optical system. The programs developed for this work were made using the C programming language and OSLO for the simulation of the optical systems.
Tian, H; Liu, C; Gao, X D; Yao, W B
2013-03-01
Granulocyte colony-stimulating factor (G-CSF) is a cytokine widely used in cancer patients receiving high doses of chemotherapeutic drugs to prevent the chemotherapy-induced suppression of white blood cells. The production of recombinant G-CSF should be increased to meet the increasing market demand. This study aims to model and optimize the carbon source of auto-induction medium to enhance G-CSF production using artificial neural networks coupled with genetic algorithm. In this approach, artificial neural networks served as bioprocess modeling tools, and genetic algorithm (GA) was applied to optimize the established artificial neural network models. Two artificial neural network models were constructed: the back-propagation (BP) network and the radial basis function (RBF) network. The root mean square error, coefficient of determination, and standard error of prediction of the BP model were 0.0375, 0.959, and 8.49 %, respectively, whereas those of the RBF model were 0.0257, 0.980, and 5.82 %, respectively. These values indicated that the RBF model possessed higher fitness and prediction accuracy than the BP model. Under the optimized auto-induction medium, the predicted maximum G-CSF yield by the BP-GA approach was 71.66 %, whereas that by the RBF-GA approach was 75.17 %. These predicted values are in agreement with the experimental results, with 72.4 and 76.014 % for the BP-GA and RBF-GA models, respectively. These results suggest that RBF-GA is superior to BP-GA. The developed approach in this study may be helpful in modeling and optimizing other multivariable, non-linear, and time-variant bioprocesses.
Chaos Time Series Prediction Based on Membrane Optimization Algorithms
Li, Meng; Yi, Liangzhong; Pei, Zheng; Gao, Zhisheng
2015-01-01
This paper puts forward a prediction model based on membrane computing optimization algorithm for chaos time series; the model optimizes simultaneously the parameters of phase space reconstruction (τ, m) and least squares support vector machine (LS-SVM) (γ, σ) by using membrane computing optimization algorithm. It is an important basis for spectrum management to predict accurately the change trend of parameters in the electromagnetic environment, which can help decision makers to adopt an optimal action. Then, the model presented in this paper is used to forecast band occupancy rate of frequency modulation (FM) broadcasting band and interphone band. To show the applicability and superiority of the proposed model, this paper will compare the forecast model presented in it with conventional similar models. The experimental results show that whether single-step prediction or multistep prediction, the proposed model performs best based on three error measures, namely, normalized mean square error (NMSE), root mean square error (RMSE), and mean absolute percentage error (MAPE). PMID:25874249
Optimal robust motion controller design using multiobjective genetic algorithm.
Sarjaš, Andrej; Svečko, Rajko; Chowdhury, Amor
2014-01-01
This paper describes the use of a multiobjective genetic algorithm for robust motion controller design. Motion controller structure is based on a disturbance observer in an RIC framework. The RIC approach is presented in the form with internal and external feedback loops, in which an internal disturbance rejection controller and an external performance controller must be synthesised. This paper involves novel objectives for robustness and performance assessments for such an approach. Objective functions for the robustness property of RIC are based on simple even polynomials with nonnegativity conditions. Regional pole placement method is presented with the aims of controllers' structures simplification and their additional arbitrary selection. Regional pole placement involves arbitrary selection of central polynomials for both loops, with additional admissible region of the optimized pole location. Polynomial deviation between selected and optimized polynomials is measured with derived performance objective functions. A multiobjective function is composed of different unrelated criteria such as robust stability, controllers' stability, and time-performance indexes of closed loops. The design of controllers and multiobjective optimization procedure involve a set of the objectives, which are optimized simultaneously with a genetic algorithm-differential evolution.
Zhang, Zili; Gao, Chao; Liu, Yuxin; Qian, Tao
2014-09-01
Ant colony optimization (ACO) algorithms often fall into the local optimal solution and have lower search efficiency for solving the travelling salesman problem (TSP). According to these shortcomings, this paper proposes a universal optimization strategy for updating the pheromone matrix in the ACO algorithms. The new optimization strategy takes advantages of the unique feature of critical paths reserved in the process of evolving adaptive networks of the Physarum-inspired mathematical model (PMM). The optimized algorithms, denoted as PMACO algorithms, can enhance the amount of pheromone in the critical paths and promote the exploitation of the optimal solution. Experimental results in synthetic and real networks show that the PMACO algorithms are more efficient and robust than the traditional ACO algorithms, which are adaptable to solve the TSP with single or multiple objectives. Meanwhile, we further analyse the influence of parameters on the performance of the PMACO algorithms. Based on these analyses, the best values of these parameters are worked out for the TSP.
NASA Astrophysics Data System (ADS)
Wei, Qiu-lin; Guo, Zuo-xing; Zhao, Lei; Zhao, Liang; Yuan, De-zeng; Miao, Guo-qing; Xia, Mao-sheng
2016-11-01
Microstructure and misfit dislocation behavior in In x Ga1- x As/InP heteroepitaxial materials grown by low pressure metal organic chemical vapor deposition (LP-MOCVD) were analyzed by high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy and Hall effect measurements. To optimize the structure of In0.82Ga0.18As/InP heterostructure, the In x Ga1- x As buffer layer was grown. The residual strain of the In0.82Ga0.18As epitaxial layer was calculated. Further, the periodic growth pattern of the misfit dislocation at the interface was discovered and verified. Then the effects of misfit dislocation on the surface morphology and microstructure of the material were studied. It is found that the misfit dislocation of high indium (In) content In0.82Ga0.82As epitaxial layer has significant influence on the carrier concentration.
Resistive Network Optimal Power Flow: Uniqueness and Algorithms
Tan, CW; Cai, DWH; Lou, X
2015-01-01
The optimal power flow (OPF) problem minimizes the power loss in an electrical network by optimizing the voltage and power delivered at the network buses, and is a nonconvex problem that is generally hard to solve. By leveraging a recent development on the zero duality gap of OPF, we propose a second-order cone programming convex relaxation of the resistive network OPF, and study the uniqueness of the optimal solution using differential topology, especially the Poincare-Hopf Index Theorem. We characterize the global uniqueness for different network topologies, e.g., line, radial, and mesh networks. This serves as a starting point to design distributed local algorithms with global behaviors that have low complexity, are computationally fast, and can run under synchronous and asynchronous settings in practical power grids.
Coil optimization for electromagnetic levitation using a genetic like algorithm
NASA Astrophysics Data System (ADS)
Royer, Z. L.; Tackes, C.; LeSar, R.; Napolitano, R. E.
2013-06-01
The technique of electromagnetic levitation (EML) provides a means for thermally processing an electrically conductive specimen in a containerless manner. For the investigation of metallic liquids and related melting or freezing transformations, the elimination of substrate-induced nucleation affords access to much higher undercooling than otherwise attainable. With heating and levitation both arising from the currents induced by the coil, the performance of any EML system depends on controlling the balance between lifting forces and heating effects, as influenced by the levitation coil geometry. In this work, a genetic algorithm is developed and utilized to optimize the design of electromagnetic levitation coils. The optimization is targeted specifically to reduce the steady-state temperature of the stably levitated metallic specimen. Reductions in temperature of nominally 70 K relative to that obtained with the initial design are achieved through coil optimization, and the results are compared with experiments for aluminum. Additionally, the optimization method is shown to be robust, generating a small range of converged results from a variety of initial starting conditions. While our optimization criterion was set to achieve the lowest possible sample temperature, the method is general and can be used to optimize for other criteria as well.
A heterogeneous algorithm for PDT dose optimization for prostate
NASA Astrophysics Data System (ADS)
Altschuler, Martin D.; Zhu, Timothy C.; Hu, Yida; Finlay, Jarod C.; Dimofte, Andreea; Wang, Ken; Li, Jun; Cengel, Keith; Malkowicz, S. B.; Hahn, Stephen M.
2009-02-01
The object of this study is to develop optimization procedures that account for both the optical heterogeneity as well as photosensitizer (PS) drug distribution of the patient prostate and thereby enable delivery of uniform photodynamic dose to that gland. We use the heterogeneous optical properties measured for a patient prostate to calculate a light fluence kernel (table). PS distribution is then multiplied with the light fluence kernel to form the PDT dose kernel. The Cimmino feasibility algorithm, which is fast, linear, and always converges reliably, is applied as a search tool to choose the weights of the light sources to optimize PDT dose. Maximum and minimum PDT dose limits chosen for sample points in the prostate constrain the solution for the source strengths of the cylindrical diffuser fibers (CDF). We tested the Cimmino optimization procedures using the light fluence kernel generated for heterogeneous optical properties, and compared the optimized treatment plans with those obtained using homogeneous optical properties. To study how different photosensitizer distributions in the prostate affect optimization, comparisons of light fluence rate and PDT dose distributions were made with three distributions of photosensitizer: uniform, linear spatial distribution, and the measured PS distribution. The study shows that optimization of individual light source positions and intensities are feasible for the heterogeneous prostate during PDT.
A heterogeneous algorithm for PDT dose optimization for prostate
Altschuler, Martin D.; Zhu, Timothy C.; Hu, Yida; Finlay, Jarod C.; Dimofte, Andreea; Wang, Ken; Li, Jun; Cengel, Keith; Malkowicz, S.B.; Hahn, Stephen M.
2015-01-01
The object of this study is to develop optimization procedures that account for both the optical heterogeneity as well as photosensitizer (PS) drug distribution of the patient prostate and thereby enable delivery of uniform photodynamic dose to that gland. We use the heterogeneous optical properties measured for a patient prostate to calculate a light fluence kernel (table). PS distribution is then multiplied with the light fluence kernel to form the PDT dose kernel. The Cimmino feasibility algorithm, which is fast, linear, and always converges reliably, is applied as a search tool to choose the weights of the light sources to optimize PDT dose. Maximum and minimum PDT dose limits chosen for sample points in the prostate constrain the solution for the source strengths of the cylindrical diffuser fibers (CDF). We tested the Cimmino optimization procedures using the light fluence kernel generated for heterogeneous optical properties, and compared the optimized treatment plans with those obtained using homogeneous optical properties. To study how different photosensitizer distributions in the prostate affect optimization, comparisons of light fluence rate and PDT dose distributions were made with three distributions of photosensitizer: uniform, linear spatial distribution, and the measured PS distribution. The study shows that optimization of individual light source positions and intensities are feasible for the heterogeneous prostate during PDT. PMID:25914793
SPLICER - A GENETIC ALGORITHM TOOL FOR SEARCH AND OPTIMIZATION, VERSION 1.0 (MACINTOSH VERSION)
NASA Technical Reports Server (NTRS)
Wang, L.
1994-01-01
SPLICER is a genetic algorithm tool which can be used to solve search and optimization problems. Genetic algorithms are adaptive search procedures (i.e. problem solving methods) based loosely on the processes of natural selection and Darwinian "survival of the fittest." SPLICER provides the underlying framework and structure for building a genetic algorithm application. These algorithms apply genetically-inspired operators to populations of potential solutions in an iterative fashion, creating new populations while searching for an optimal or near-optimal solution to the problem at hand. SPLICER 1.0 was created using a modular architecture that includes a Genetic Algorithm Kernel, interchangeable Representation Libraries, Fitness Modules and User Interface Libraries, and well-defined interfaces between these components. The architecture supports portability, flexibility, and extensibility. SPLICER comes with all source code and several examples. For instance, a "traveling salesperson" example searches for the minimum distance through a number of cities visiting each city only once. Stand-alone SPLICER applications can be used without any programming knowledge. However, to fully utilize SPLICER within new problem domains, familiarity with C language programming is essential. SPLICER's genetic algorithm (GA) kernel was developed independent of representation (i.e. problem encoding), fitness function or user interface type. The GA kernel comprises all functions necessary for the manipulation of populations. These functions include the creation of populations and population members, the iterative population model, fitness scaling, parent selection and sampling, and the generation of population statistics. In addition, miscellaneous functions are included in the kernel (e.g., random number generators). Different problem-encoding schemes and functions are defined and stored in interchangeable representation libraries. This allows the GA kernel to be used with any
Zhang, Yan-jun; Zhang, Shu-guo; Fu, Guang-wei; Li, Da; Liu, Yin; Bi, Wei-hong
2012-04-01
This paper presents a novel algorithm which blends optimize particle swarm optimization (PSO) algorithm and Levenberg-Marquardt (LM) algorithm according to the probability. This novel algorithm can be used for Pseudo-Voigt type of Brillouin scattering spectrum to improve the degree of fitting and precision of shift extraction. This algorithm uses PSO algorithm as the main frame. First, PSO algorithm is used in global search, after a certain number of optimization every time there generates a random probability rand (0, 1). If rand (0, 1) is less than or equal to the predetermined probability P, the optimal solution obtained by PSO algorithm will be used as the initial value of LM algorithm. Then LM algorithm is used in local depth search and the solution of LM algorithm is used to replace the previous PSO algorithm for optimal solutions. Again the PSO algorithm is used for global search. If rand (0, 1) was greater than P, PSO algorithm is still used in search, waiting the next optimization to generate random probability rand (0, 1) to judge. Two kinds of algorithms are alternatively used to obtain ideal global optimal solution. Simulation analysis and experimental results show that the new algorithm overcomes the shortcomings of single algorithm and improves the degree of fitting and precision of frequency shift extraction in Brillouin scattering spectrum, and fully prove that the new method is practical and feasible.
An implementable algorithm for the optimal design centering, tolerancing, and tuning problem
Polak, E.
1982-05-01
An implementable master algorithm for solving optimal design centering, tolerancing, and tuning problems is presented. This master algorithm decomposes the original nondifferentiable optimization problem into a sequence of ordinary nonlinear programming problems. The master algorithm generates sequences with accumulation points that are feasible and satisfy a new optimality condition, which is shown to be stronger than the one previously used for these problems.
Efficiency Improvements to the Displacement Based Multilevel Structural Optimization Algorithm
NASA Technical Reports Server (NTRS)
Plunkett, C. L.; Striz, A. G.; Sobieszczanski-Sobieski, J.
2001-01-01
subsystems level, where the derivative verification feature of the optimizer NPSOL had been utilized in the optimizations. This resulted in large runtimes. In this paper, the optimizations were repeated without using the derivative verification, and the results are compared to those from the previous work. Also, the optimizations were run on both, a network of SUN workstations using the MPICH implementation of the Message Passing Interface (MPI) and on the faster Beowulf cluster at ICASE, NASA Langley Research Center, using the LAM implementation of UP]. The results on both systems were consistent and showed that it is not necessary to verify the derivatives and that this gives a large increase in efficiency of the DMSO algorithm.
Abedini, Mohammad; Moradi, Mohammad H; Hosseinian, S M
2016-03-01
This paper proposes a novel method to address reliability and technical problems of microgrids (MGs) based on designing a number of self-adequate autonomous sub-MGs via adopting MGs clustering thinking. In doing so, a multi-objective optimization problem is developed where power losses reduction, voltage profile improvement and reliability enhancement are considered as the objective functions. To solve the optimization problem a hybrid algorithm, named HS-GA, is provided, based on genetic and harmony search algorithms, and a load flow method is given to model different types of DGs as droop controller. The performance of the proposed method is evaluated in two case studies. The results provide support for the performance of the proposed method.
NASA Astrophysics Data System (ADS)
Srinuandee, Panithan; Satirapod, Chalermchon; Ogaja, Clement; Lee, Hung-Kyu
2012-01-01
The basis of high precision relative positioning is the use of carrier phase measurements. Data differencing techniques are one of the keys to achieving high precision positioning results as they can significantly reduce a variety of errors or biases in the observations and models. Since GPS observations are usually contaminated by many errors such as the atmospheric biases, the receiver clock bias, the satellite clock bias, and so on, it is impossible to model all systematic errors in the functional model. Although the data differencing techniques are widely used for constructing the functional model, some un-modeled systematic biases still remain in the GPS observations following such differencing. Another key to achieving high precision positioning results is to fix the initial carrier phase ambiguities to their theoretical integer values. To obtain a high percentage of successful ambiguity-fixed rates, noisy GPS satellites have to be identified and removed from the data processing step. This paper introduces a new method using genetic algorithm (GA) to optimize the best combination of GPS satellites which yields the highest number of successful ambiguity-fixed solutions in kinematic positioning mode. The results indicate that the use of GA can produce higher number of ambiguity-fixed solutions than the standard data processing technique.
Efficient and scalable Pareto optimization by evolutionary local selection algorithms.
Menczer, F; Degeratu, M; Street, W N
2000-01-01
Local selection is a simple selection scheme in evolutionary computation. Individual fitnesses are accumulated over time and compared to a fixed threshold, rather than to each other, to decide who gets to reproduce. Local selection, coupled with fitness functions stemming from the consumption of finite shared environmental resources, maintains diversity in a way similar to fitness sharing. However, it is more efficient than fitness sharing and lends itself to parallel implementations for distributed tasks. While local selection is not prone to premature convergence, it applies minimal selection pressure to the population. Local selection is, therefore, particularly suited to Pareto optimization or problem classes where diverse solutions must be covered. This paper introduces ELSA, an evolutionary algorithm employing local selection and outlines three experiments in which ELSA is applied to multiobjective problems: a multimodal graph search problem, and two Pareto optimization problems. In all these experiments, ELSA significantly outperforms other well-known evolutionary algorithms. The paper also discusses scalability, parameter dependence, and the potential distributed applications of the algorithm.
Optimized Algorithms for Prediction Within Robotic Tele-Operative Interfaces
NASA Technical Reports Server (NTRS)
Martin, Rodney A.; Wheeler, Kevin R.; Allan, Mark B.; SunSpiral, Vytas
2010-01-01
Robonaut, the humanoid robot developed at the Dexterous Robotics Labo ratory at NASA Johnson Space Center serves as a testbed for human-rob ot collaboration research and development efforts. One of the recent efforts investigates how adjustable autonomy can provide for a safe a nd more effective completion of manipulation-based tasks. A predictiv e algorithm developed in previous work was deployed as part of a soft ware interface that can be used for long-distance tele-operation. In this work, Hidden Markov Models (HMM?s) were trained on data recorded during tele-operation of basic tasks. In this paper we provide the d etails of this algorithm, how to improve upon the methods via optimization, and also present viable alternatives to the original algorithmi c approach. We show that all of the algorithms presented can be optim ized to meet the specifications of the metrics shown as being useful for measuring the performance of the predictive methods. 1
Scope of Gradient and Genetic Algorithms in Multivariable Function Optimization
NASA Technical Reports Server (NTRS)
Shaykhian, Gholam Ali; Sen, S. K.
2007-01-01
Global optimization of a multivariable function - constrained by bounds specified on each variable and also unconstrained - is an important problem with several real world applications. Deterministic methods such as the gradient algorithms as well as the randomized methods such as the genetic algorithms may be employed to solve these problems. In fact, there are optimization problems where a genetic algorithm/an evolutionary approach is preferable at least from the quality (accuracy) of the results point of view. From cost (complexity) point of view, both gradient and genetic approaches are usually polynomial-time; there are no serious differences in this regard, i.e., the computational complexity point of view. However, for certain types of problems, such as those with unacceptably erroneous numerical partial derivatives and those with physically amplified analytical partial derivatives whose numerical evaluation involves undesirable errors and/or is messy, a genetic (stochastic) approach should be a better choice. We have presented here the pros and cons of both the approaches so that the concerned reader/user can decide which approach is most suited for the problem at hand. Also for the function which is known in a tabular form, instead of an analytical form, as is often the case in an experimental environment, we attempt to provide an insight into the approaches focusing our attention toward accuracy. Such an insight will help one to decide which method, out of several available methods, should be employed to obtain the best (least error) output. *
Device and Design Optimization for AlGaN/GaN X-Band-Power-Amplifiers with High Efficiency
NASA Astrophysics Data System (ADS)
Kühn, Jutta; van Raay, Friedbert; Quay, Rüdiger; Kiefer, Rudolf; Mikulla, Michael; Seelmann-Eggebert, Matthias; Bronner, Wolfgang; Schlechtweg, Michael; Ambacher, Oliver; Thumm, Manfred
2010-03-01
The design, realization and characterization of dual-stage X-band high-power and highly-efficient monolithic microwave integrated circuit (MMIC) power amplifiers (PAs) with AlGaN/GaN high electronic mobility transistors (HEMTs) is presented. These high power amplifiers (HPAs) are based on a precise investigation of circuit-relevant HEMT behavior using two different field-plate variants and its effects on PA performance as well as optimization of HPA driver stage size which also has a deep impact on the entire HPA. Two broadband (3 GHz) MMICs with different field-plate variants and two narrowband (1 GHz) PAs with different driver- to final-stage gate-width ratio are realized with a maximum output power of 19-23 W, a maximum power-added efficiency (PAE) of ≥40%, and an associated power gain of 17 dB at X-band. Furthermore, two 1 mm test transistors of the same technology with the mentioned field-plate variants and a 1 mm test MMIC support VSWR-ratio tests of 6:1 and 4:1, respectively.
Nazareth, Daryl P; Brunner, Stephen; Jones, Matthew D; Malhotra, Harish K; Bakhtiari, Mohammad
2009-07-01
Planning intensity modulated radiation therapy (IMRT) treatment involves selection of several angle parameters as well as specification of structures and constraints employed in the optimization process. Including these parameters in the combinatorial search space vastly increases the computational burden, and therefore the parameter selection is normally performed manually by a clinician, based on clinical experience. We have investigated the use of a genetic algorithm (GA) and distributed-computing platform to optimize the gantry angle parameters and provide insight into additional structures, which may be necessary, in the dose optimization process to produce optimal IMRT treatment plans. For an IMRT prostate patient, we produced the first generation of 40 samples, each of five gantry angles, by selecting from a uniform random distribution, subject to certain adjacency and opposition constraints. Dose optimization was performed by distributing the 40-plan workload over several machines running a commercial treatment planning system. A score was assigned to each resulting plan, based on how well it satisfied clinically-relevant constraints. The second generation of 40 samples was produced by combining the highest-scoring samples using techniques of crossover and mutation. The process was repeated until the sixth generation, and the results compared with a clinical (equally-spaced) gantry angle configuration. In the sixth generation, 34 of the 40 GA samples achieved better scores than the clinical plan, with the best plan showing an improvement of 84%. Moreover, the resulting configuration of beam angles tended to cluster toward the patient's sides, indicating where the inclusion of additional structures in the dose optimization process may avoid dose hot spots. Additional parameter selection in IMRT leads to a large-scale computational problem. We have demonstrated that the GA combined with a distributed-computing platform can be applied to optimize gantry angle
Effective multi-objective optimization with the coral reefs optimization algorithm
NASA Astrophysics Data System (ADS)
Salcedo-Sanz, S.; Pastor-Sánchez, A.; Portilla-Figueras, J. A.; Prieto, L.
2016-06-01
In this article a new algorithm for multi-objective optimization is presented, the Multi-Objective Coral Reefs Optimization (MO-CRO) algorithm. The algorithm is based on the simulation of processes in coral reefs, such as corals' reproduction and fight for space in the reef. The adaptation to multi-objective problems is a process based on domination or non-domination during the process of fight for space in the reef. The final MO-CRO is an easily-implemented and fast algorithm, simple and robust, since it is able to keep diversity in the population of corals (solutions) in a natural way. The experimental evaluation of this new approach for multi-objective optimization problems is carried out on different multi-objective benchmark problems, where the MO-CRO has shown excellent performance in cases with limited computational resources, and in a real-world problem of wind speed prediction, where the MO-CRO algorithm is used to find the best set of features to predict the wind speed, taking into account two objective functions related to the performance of the prediction and the computation time of the regressor.
Multivariable optimization of liquid rocket engines using particle swarm algorithms
NASA Astrophysics Data System (ADS)
Jones, Daniel Ray
Liquid rocket engines are highly reliable, controllable, and efficient compared to other conventional forms of rocket propulsion. As such, they have seen wide use in the space industry and have become the standard propulsion system for launch vehicles, orbit insertion, and orbital maneuvering. Though these systems are well understood, historical optimization techniques are often inadequate due to the highly non-linear nature of the engine performance problem. In this thesis, a Particle Swarm Optimization (PSO) variant was applied to maximize the specific impulse of a finite-area combustion chamber (FAC) equilibrium flow rocket performance model by controlling the engine's oxidizer-to-fuel ratio and de Laval nozzle expansion and contraction ratios. In addition to the PSO-controlled parameters, engine performance was calculated based on propellant chemistry, combustion chamber pressure, and ambient pressure, which are provided as inputs to the program. The performance code was validated by comparison with NASA's Chemical Equilibrium with Applications (CEA) and the commercially available Rocket Propulsion Analysis (RPA) tool. Similarly, the PSO algorithm was validated by comparison with brute-force optimization, which calculates all possible solutions and subsequently determines which is the optimum. Particle Swarm Optimization was shown to be an effective optimizer capable of quick and reliable convergence for complex functions of multiple non-linear variables.
NASA Astrophysics Data System (ADS)
Patel, Sanjaykumar J.; Kheraj, Vipul
2015-07-01
This paper describes a systematic investigation on the use of the genetic algorithm (GA) to accomplish ultra-low reflective multilayer coating designs for optoelectronic device applications. The algorithm is implemented using LabVIEW as a programming tool. The effects of the genetic operators, such as the type of crossover and mutation, as well as algorithm parameters, such as population size and range of search space, on the convergence of design-solution were studied. Finally, the optimal design is obtained in terms of the thickness of each layer for the multilayer AR coating using optimized genetic operators and algorithm parameters. The program is successfully tested to design AR coating in NIR wavelength range to achieve average reflectivity (R) below 10-3 over the spectral bandwidth of 200 nm with different combinations of coating materials in the stack. The random-point crossover operator is found to exhibit a better convergence rate of the solution than single-point and double-point crossover. Periodically re-initializing the thickness value of a randomly selected layer from the stack effectively prevents the solution from becoming trapped in local minima and improves the convergence probability.
An optimal algorithm for computing all subtree repeats in trees
Flouri, T.; Kobert, K.; Pissis, S. P.; Stamatakis, A.
2014-01-01
Given a labelled tree T, our goal is to group repeating subtrees of T into equivalence classes with respect to their topologies and the node labels. We present an explicit, simple and time-optimal algorithm for solving this problem for unrooted unordered labelled trees and show that the running time of our method is linear with respect to the size of T. By unordered, we mean that the order of the adjacent nodes (children/neighbours) of any node of T is irrelevant. An unrooted tree T does not have a node that is designated as root and can also be referred to as an undirected tree. We show how the presented algorithm can easily be modified to operate on trees that do not satisfy some or any of the aforementioned assumptions on the tree structure; for instance, how it can be applied to rooted, ordered or unlabelled trees. PMID:24751873
Genetic algorithms in conceptual design of a light-weight, low-noise, tilt-rotor aircraft
NASA Technical Reports Server (NTRS)
Wells, Valana L.
1996-01-01
This report outlines research accomplishments in the area of using genetic algorithms (GA) for the design and optimization of rotorcraft. It discusses the genetic algorithm as a search and optimization tool, outlines a procedure for using the GA in the conceptual design of helicopters, and applies the GA method to the acoustic design of rotors.
The optimization on flow scheme of helium liquefier with genetic algorithm
NASA Astrophysics Data System (ADS)
Wang, H. R.; Xiong, L. Y.; Peng, N.; Liu, L. Q.
2017-01-01
There are several ways to organize the flow scheme of the helium liquefiers, such as arranging the expanders in parallel (reverse Brayton stage) or in series (modified Brayton stages). In this paper, the inlet mass flow and temperatures of expanders in Collins cycle are optimized using genetic algorithm (GA). Results show that maximum liquefaction rate can be obtained when the system is working at the optimal parameters. However, the reliability of the system is not well due to high wheel speed of the first turbine. Study shows that the scheme in which expanders are arranged in series with heat exchangers between them has higher operation reliability but lower plant efficiency when working at the same situation. Considering both liquefaction rate and system stability, another flow scheme is put forward hoping to solve the dilemma. The three configurations are compared from different aspects, they are respectively economic cost, heat exchanger size, system reliability and exergy efficiency. In addition, the effect of heat capacity ratio on heat transfer efficiency is discussed. A conclusion of choosing liquefier configuration is given in the end, which is meaningful for the optimal design of helium liquefier.
Robust Optimization Design Algorithm for High-Frequency TWTs
NASA Technical Reports Server (NTRS)
Wilson, Jeffrey D.; Chevalier, Christine T.
2010-01-01
Traveling-wave tubes (TWTs), such as the Ka-band (26-GHz) model recently developed for the Lunar Reconnaissance Orbiter, are essential as communication amplifiers in spacecraft for virtually all near- and deep-space missions. This innovation is a computational design algorithm that, for the first time, optimizes the efficiency and output power of a TWT while taking into account the effects of dimensional tolerance variations. Because they are primary power consumers and power generation is very expensive in space, much effort has been exerted over the last 30 years to increase the power efficiency of TWTs. However, at frequencies higher than about 60 GHz, efficiencies of TWTs are still quite low. A major reason is that at higher frequencies, dimensional tolerance variations from conventional micromachining techniques become relatively large with respect to the circuit dimensions. When this is the case, conventional design- optimization procedures, which ignore dimensional variations, provide inaccurate designs for which the actual amplifier performance substantially under-performs that of the design. Thus, this new, robust TWT optimization design algorithm was created to take account of and ameliorate the deleterious effects of dimensional variations and to increase efficiency, power, and yield of high-frequency TWTs. This design algorithm can help extend the use of TWTs into the terahertz frequency regime of 300-3000 GHz. Currently, these frequencies are under-utilized because of the lack of efficient amplifiers, thus this regime is known as the "terahertz gap." The development of an efficient terahertz TWT amplifier could enable breakthrough applications in space science molecular spectroscopy, remote sensing, nondestructive testing, high-resolution "through-the-wall" imaging, biomedical imaging, and detection of explosives and toxic biochemical agents.
Amaritsakul, Yongyut; Chao, Ching-Kong; Lin, Jinn
2013-01-01
Short-segment instrumentation for spine fractures is threatened by relatively high failure rates. Failure of the spinal pedicle screws including breakage and loosening may jeopardize the fixation integrity and lead to treatment failure. Two important design objectives, bending strength and pullout strength, may conflict with each other and warrant a multiobjective optimization study. In the present study using the three-dimensional finite element (FE) analytical results based on an L25 orthogonal array, bending and pullout objective functions were developed by an artificial neural network (ANN) algorithm, and the trade-off solutions known as Pareto optima were explored by a genetic algorithm (GA). The results showed that the knee solutions of the Pareto fronts with both high bending and pullout strength ranged from 92% to 94% of their maxima, respectively. In mechanical validation, the results of mathematical analyses were closely related to those of experimental tests with a correlation coefficient of -0.91 for bending and 0.93 for pullout (P < 0.01 for both). The optimal design had significantly higher fatigue life (P < 0.01) and comparable pullout strength as compared with commercial screws. Multiobjective optimization study of spinal pedicle screws using the hybrid of ANN and GA could achieve an ideal with high bending and pullout performances simultaneously.
Tauro, S; Razvi, M A N
2005-01-01
This paper presents the application of a genetic algorithm (GA) to optimize the operating parameters, namely pulse voltage and extraction delay time, when using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOFMS). Simulations predict the presence of several combinations of these parameters that give a local maximum. The aim is to locate the optimal combination (a global maximum) of pulse voltage and extraction time delay in order to focus the ions of a particular m/z value to achieve the best resolution in a given instrumental geometry. The GA locates the global maximum quickly. The results indicate that it may be possible to achieve very high resolving power by using delayed extraction (DE)-MALDI-TOFMS with parameters obtained from the GA.
Control optimization, stabilization and computer algorithms for aircraft applications
NASA Technical Reports Server (NTRS)
Athans, M. (Editor); Willsky, A. S. (Editor)
1982-01-01
The analysis and design of complex multivariable reliable control systems are considered. High performance and fault tolerant aircraft systems are the objectives. A preliminary feasibility study of the design of a lateral control system for a VTOL aircraft that is to land on a DD963 class destroyer under high sea state conditions is provided. Progress in the following areas is summarized: (1) VTOL control system design studies; (2) robust multivariable control system synthesis; (3) adaptive control systems; (4) failure detection algorithms; and (5) fault tolerant optimal control theory.
Li, Yongqiang; Abbaspour, Mohammadreza R; Grootendorst, Paul V; Rauth, Andrew M; Wu, Xiao Yu
2015-08-01
This study was performed to optimize the formulation of polymer-lipid hybrid nanoparticles (PLN) for the delivery of an ionic water-soluble drug, verapamil hydrochloride (VRP) and to investigate the roles of formulation factors. Modeling and optimization were conducted based on a spherical central composite design. Three formulation factors, i.e., weight ratio of drug to lipid (X1), and concentrations of Tween 80 (X2) and Pluronic F68 (X3), were chosen as independent variables. Drug loading efficiency (Y1) and mean particle size (Y2) of PLN were selected as dependent variables. The predictive performance of artificial neural networks (ANN) and the response surface methodology (RSM) were compared. As ANN was found to exhibit better recognition and generalization capability over RSM, multi-objective optimization of PLN was then conducted based upon the validated ANN models and continuous genetic algorithms (GA). The optimal PLN possess a high drug loading efficiency (92.4%, w/w) and a small mean particle size (∼100nm). The predicted response variables matched well with the observed results. The three formulation factors exhibited different effects on the properties of PLN. ANN in coordination with continuous GA represent an effective and efficient approach to optimize the PLN formulation of VRP with desired properties.
Pérez-Castillo, Yunierkis; Lazar, Cosmin; Taminau, Jonatan; Froeyen, Mathy; Cabrera-Pérez, Miguel Ángel; Nowé, Ann
2012-09-24
Computer-aided drug design has become an important component of the drug discovery process. Despite the advances in this field, there is not a unique modeling approach that can be successfully applied to solve the whole range of problems faced during QSAR modeling. Feature selection and ensemble modeling are active areas of research in ligand-based drug design. Here we introduce the GA(M)E-QSAR algorithm that combines the search and optimization capabilities of Genetic Algorithms with the simplicity of the Adaboost ensemble-based classification algorithm to solve binary classification problems. We also explore the usefulness of Meta-Ensembles trained with Adaboost and Voting schemes to further improve the accuracy, generalization, and robustness of the optimal Adaboost Single Ensemble derived from the Genetic Algorithm optimization. We evaluated the performance of our algorithm using five data sets from the literature and found that it is capable of yielding similar or better classification results to what has been reported for these data sets with a higher enrichment of active compounds relative to the whole actives subset when only the most active chemicals are considered. More important, we compared our methodology with state of the art feature selection and classification approaches and found that it can provide highly accurate, robust, and generalizable models. In the case of the Adaboost Ensembles derived from the Genetic Algorithm search, the final models are quite simple since they consist of a weighted sum of the output of single feature classifiers. Furthermore, the Adaboost scores can be used as ranking criterion to prioritize chemicals for synthesis and biological evaluation after virtual screening experiments.
Population Induced Instabilities in Genetic Algorithms for Constrained Optimization
NASA Astrophysics Data System (ADS)
Vlachos, D. S.; Parousis-Orthodoxou, K. J.
2013-02-01
Evolutionary computation techniques, like genetic algorithms, have received a lot of attention as optimization techniques but, although they exhibit a very promising potential in curing the problem, they have not produced a significant breakthrough in the area of systematic treatment of constraints. There are two mainly ways of handling the constraints: the first is to produce an infeasibility measure and add it to the general cost function (the well known penalty methods) and the other is to modify the mutation and crossover operation in a way that they only produce feasible members. Both methods have their drawbacks and are strongly correlated to the problem that they are applied. In this work, we propose a different treatment of the constraints: we induce instabilities in the evolving population, in a way that infeasible solution cannot survive as they are. Preliminary results are presented in a set of well known from the literature constrained optimization problems.
Genetic Algorithm Optimization of a Cost Competitive Hybrid Rocket Booster
NASA Technical Reports Server (NTRS)
Story, George
2014-01-01
Performance, reliability and cost have always been drivers in the rocket business. Hybrid rockets have been late entries into the launch business due to substantial early development work on liquid rockets and later on solid rockets. Slowly the technology readiness level of hybrids has been increasing due to various large scale testing and flight tests of hybrid rockets. A remaining issue is the cost of hybrids vs the existing launch propulsion systems. This paper will review the known state of the art hybrid development work to date and incorporate it into a genetic algorithm to optimize the configuration based on various parameters. A cost module will be incorporated to the code based on the weights of the components. The design will be optimized on meeting the performance requirements at the lowest cost.
Genetic Algorithm Optimization of a Cost Competitive Hybrid Rocket Booster
NASA Technical Reports Server (NTRS)
Story, George
2015-01-01
Performance, reliability and cost have always been drivers in the rocket business. Hybrid rockets have been late entries into the launch business due to substantial early development work on liquid rockets and solid rockets. Slowly the technology readiness level of hybrids has been increasing due to various large scale testing and flight tests of hybrid rockets. One remaining issue is the cost of hybrids versus the existing launch propulsion systems. This paper will review the known state-of-the-art hybrid development work to date and incorporate it into a genetic algorithm to optimize the configuration based on various parameters. A cost module will be incorporated to the code based on the weights of the components. The design will be optimized on meeting the performance requirements at the lowest cost.
An optimized efficient dual junction InGaN/CIGS solar cell: A numerical simulation
NASA Astrophysics Data System (ADS)
Farhadi, Bita; Naseri, Mosayeb
2016-08-01
The photovoltaic performance of an efficient double junction InGaN/CIGS solar cell including a CdS antireflector top cover layer is studied using Silvaco ATLAS software. In this study, to gain a desired structure, the different design parameters, including the CIGS various band gaps, the doping concentration and the thickness of CdS layer are optimized. The simulation indicates that under current matching condition, an optimum efficiency of 40.42% is achieved.
NASA Astrophysics Data System (ADS)
Singh, R.; Verma, H. K.
2013-12-01
This paper presents a teaching-learning-based optimization (TLBO) algorithm to solve parameter identification problems in the designing of digital infinite impulse response (IIR) filter. TLBO based filter modelling is applied to calculate the parameters of unknown plant in simulations. Unlike other heuristic search algorithms, TLBO algorithm is an algorithm-specific parameter-less algorithm. In this paper big bang-big crunch (BB-BC) optimization and PSO algorithms are also applied to filter design for comparison. Unknown filter parameters are considered as a vector to be optimized by these algorithms. MATLAB programming is used for implementation of proposed algorithms. Experimental results show that the TLBO is more accurate to estimate the filter parameters than the BB-BC optimization algorithm and has faster convergence rate when compared to PSO algorithm. TLBO is used where accuracy is more essential than the convergence speed.
Optimizing quantum gas production by an evolutionary algorithm
NASA Astrophysics Data System (ADS)
Lausch, T.; Hohmann, M.; Kindermann, F.; Mayer, D.; Schmidt, F.; Widera, A.
2016-05-01
We report on the application of an evolutionary algorithm (EA) to enhance performance of an ultra-cold quantum gas experiment. The production of a ^{87}rubidium Bose-Einstein condensate (BEC) can be divided into fundamental cooling steps, specifically magneto-optical trapping of cold atoms, loading of atoms to a far-detuned crossed dipole trap, and finally the process of evaporative cooling. The EA is applied separately for each of these steps with a particular definition for the feedback, the so-called fitness. We discuss the principles of an EA and implement an enhancement called differential evolution. Analyzing the reasons for the EA to improve, e.g., the atomic loading rates and increase the BEC phase-space density, yields an optimal parameter set for the BEC production and enables us to reduce the BEC production time significantly. Furthermore, we focus on how additional information about the experiment and optimization possibilities can be extracted and how the correlations revealed allow for further improvement. Our results illustrate that EAs are powerful optimization tools for complex experiments and exemplify that the application yields useful information on the dependence of these experiments on the optimized parameters.
Optimal Robust Motion Controller Design Using Multiobjective Genetic Algorithm
Svečko, Rajko
2014-01-01
This paper describes the use of a multiobjective genetic algorithm for robust motion controller design. Motion controller structure is based on a disturbance observer in an RIC framework. The RIC approach is presented in the form with internal and external feedback loops, in which an internal disturbance rejection controller and an external performance controller must be synthesised. This paper involves novel objectives for robustness and performance assessments for such an approach. Objective functions for the robustness property of RIC are based on simple even polynomials with nonnegativity conditions. Regional pole placement method is presented with the aims of controllers' structures simplification and their additional arbitrary selection. Regional pole placement involves arbitrary selection of central polynomials for both loops, with additional admissible region of the optimized pole location. Polynomial deviation between selected and optimized polynomials is measured with derived performance objective functions. A multiobjective function is composed of different unrelated criteria such as robust stability, controllers' stability, and time-performance indexes of closed loops. The design of controllers and multiobjective optimization procedure involve a set of the objectives, which are optimized simultaneously with a genetic algorithm—differential evolution. PMID:24987749
Bai, Mingsian R; Tung, Chih-Wei; Lee, Chih-Chung
2005-05-01
An optimal design technique of loudspeaker arrays for cross-talk cancellation with application in three-dimensional audio is presented. An array focusing scheme is presented on the basis of the inverse propagation that relates the transducers to a set of chosen control points. Tikhonov regularization is employed in designing the inverse cancellation filters. An extensive analysis is conducted to explore the cancellation performance and robustness issues. To best compromise the performance and robustness of the cross-talk cancellation system, optimal configurations are obtained with the aid of the Taguchi method and the genetic algorithm (GA). The proposed systems are further justified by physical as well as subjective experiments. The results reveal that large number of loudspeakers, closely spaced configuration, and optimal control point design all contribute to the robustness of cross-talk cancellation systems (CCS) against head misalignment.
2012-01-01
Background Multi-target therapeutics has been shown to be effective for treating complex diseases, and currently, it is a common practice to combine multiple drugs to treat such diseases to optimize the therapeutic outcomes. However, considering the huge number of possible ways to mix multiple drugs at different concentrations, it is practically difficult to identify the optimal drug combination through exhaustive testing. Results In this paper, we propose a novel stochastic search algorithm, called the adaptive reference update (ARU) algorithm, that can provide an efficient and systematic way for optimizing multi-drug cocktails. The ARU algorithm iteratively updates the drug combination to improve its response, where the update is made by comparing the response of the current combination with that of a reference combination, based on which the beneficial update direction is predicted. The reference combination is continuously updated based on the drug response values observed in the past, thereby adapting to the underlying drug response function. To demonstrate the effectiveness of the proposed algorithm, we evaluated its performance based on various multi-dimensional drug functions and compared it with existing algorithms. Conclusions Simulation results show that the ARU algorithm significantly outperforms existing stochastic search algorithms, including the Gur Game algorithm. In fact, the ARU algorithm can more effectively identify potent drug combinations and it typically spends fewer iterations for finding effective combinations. Furthermore, the ARU algorithm is robust to random fluctuations and noise in the measured drug response, which makes the algorithm well-suited for practical drug optimization applications. PMID:23134742
An adaptive /N-body algorithm of optimal order
NASA Astrophysics Data System (ADS)
Pruett, C. David; Rudmin, Joseph W.; Lacy, Justin M.
2003-05-01
Picard iteration is normally considered a theoretical tool whose primary utility is to establish the existence and uniqueness of solutions to first-order systems of ordinary differential equations (ODEs). However, in 1996, Parker and Sochacki [Neural, Parallel, Sci. Comput. 4 (1996)] published a practical numerical method for a certain class of ODEs, based upon modified Picard iteration, that generates the Maclaurin series of the solution to arbitrarily high order. The applicable class of ODEs consists of first-order, autonomous systems whose right-hand side functions (generators) are projectively polynomial; that is, they can be written as polynomials in the unknowns. The class is wider than might be expected. The method is ideally suited to the classical N-body problem, which is projectively polynomial. Here, we recast the N-body problem in polynomial form and develop a Picard-based algorithm for its solution. The algorithm is highly accurate, parameter-free, and simultaneously adaptive in time and order. Test cases for both benign and chaotic N-body systems reveal that optimal order is dynamic. That is, in addition to dependency upon N and the desired accuracy, optimal order depends upon the configuration of the bodies at any instant.
Constant-complexity stochastic simulation algorithm with optimal binning
Sanft, Kevin R.; Othmer, Hans G.
2015-08-21
At the molecular level, biochemical processes are governed by random interactions between reactant molecules, and the dynamics of such systems are inherently stochastic. When the copy numbers of reactants are large, a deterministic description is adequate, but when they are small, such systems are often modeled as continuous-time Markov jump processes that can be described by the chemical master equation. Gillespie’s Stochastic Simulation Algorithm (SSA) generates exact trajectories of these systems, but the amount of computational work required for each step of the original SSA is proportional to the number of reaction channels, leading to computational complexity that scales linearly with the problem size. The original SSA is therefore inefficient for large problems, which has prompted the development of several alternative formulations with improved scaling properties. We describe an exact SSA that uses a table data structure with event time binning to achieve constant computational complexity with respect to the number of reaction channels for weakly coupled reaction networks. We present a novel adaptive binning strategy and discuss optimal algorithm parameters. We compare the computational efficiency of the algorithm to existing methods and demonstrate excellent scaling for large problems. This method is well suited for generating exact trajectories of large weakly coupled models, including those that can be described by the reaction-diffusion master equation that arises from spatially discretized reaction-diffusion processes.
Quantum-inspired immune clonal algorithm for global optimization.
Jiao, Licheng; Li, Yangyang; Gong, Maoguo; Zhang, Xiangrong
2008-10-01
Based on the concepts and principles of quantum computing, a novel immune clonal algorithm, called a quantum-inspired immune clonal algorithm (QICA), is proposed to deal with the problem of global optimization. In QICA, the antibody is proliferated and divided into a set of subpopulation groups. The antibodies in a subpopulation group are represented by multistate gene quantum bits. In the antibody's updating, the general quantum rotation gate strategy and the dynamic adjusting angle mechanism are applied to accelerate convergence. The quantum not gate is used to realize quantum mutation to avoid premature convergences. The proposed quantum recombination realizes the information communication between subpopulation groups to improve the search efficiency. Theoretical analysis proves that QICA converges to the global optimum. In the first part of the experiments, 10 unconstrained and 13 constrained benchmark functions are used to test the performance of QICA. The results show that QICA performs much better than the other improved genetic algorithms in terms of the quality of solution and computational cost. In the second part of the experiments, QICA is applied to a practical problem (i.e., multiuser detection in direct-sequence code-division multiple-access systems) with a satisfying result.
Constant-complexity stochastic simulation algorithm with optimal binning.
Sanft, Kevin R; Othmer, Hans G
2015-08-21
At the molecular level, biochemical processes are governed by random interactions between reactant molecules, and the dynamics of such systems are inherently stochastic. When the copy numbers of reactants are large, a deterministic description is adequate, but when they are small, such systems are often modeled as continuous-time Markov jump processes that can be described by the chemical master equation. Gillespie's Stochastic Simulation Algorithm (SSA) generates exact trajectories of these systems, but the amount of computational work required for each step of the original SSA is proportional to the number of reaction channels, leading to computational complexity that scales linearly with the problem size. The original SSA is therefore inefficient for large problems, which has prompted the development of several alternative formulations with improved scaling properties. We describe an exact SSA that uses a table data structure with event time binning to achieve constant computational complexity with respect to the number of reaction channels for weakly coupled reaction networks. We present a novel adaptive binning strategy and discuss optimal algorithm parameters. We compare the computational efficiency of the algorithm to existing methods and demonstrate excellent scaling for large problems. This method is well suited for generating exact trajectories of large weakly coupled models, including those that can be described by the reaction-diffusion master equation that arises from spatially discretized reaction-diffusion processes.
GMG: A Guaranteed, Efficient Global Optimization Algorithm for Remote Sensing.
D'Helon, CD
2004-08-18
The monocular passive ranging (MPR) problem in remote sensing consists of identifying the precise range of an airborne target (missile, plane, etc.) from its observed radiance. This inverse problem may be set as a global optimization problem (GOP) whereby the difference between the observed and model predicted radiances is minimized over the possible ranges and atmospheric conditions. Using additional information about the error function between the predicted and observed radiances of the target, we developed GMG, a new algorithm to find the Global Minimum with a Guarantee. The new algorithm transforms the original continuous GOP into a discrete search problem, thereby guaranteeing to find the position of the global minimum in a reasonably short time. The algorithm is first applied to the golf course problem, which serves as a litmus test for its performance in the presence of both complete and degraded additional information. GMG is further assessed on a set of standard benchmark functions and then applied to various realizations of the MPR problem.
In-Space Radiator Shape Optimization using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Hull, Patrick V.; Kittredge, Ken; Tinker, Michael; SanSoucie, Michael
2006-01-01
Future space exploration missions will require the development of more advanced in-space radiators. These radiators should be highly efficient and lightweight, deployable heat rejection systems. Typical radiators for in-space heat mitigation commonly comprise a substantial portion of the total vehicle mass. A small mass savings of even 5-10% can greatly improve vehicle performance. The objective of this paper is to present the development of detailed tools for the analysis and design of in-space radiators using evolutionary computation techniques. The optimality criterion is defined as a two-dimensional radiator with a shape demonstrating the smallest mass for the greatest overall heat transfer, thus the end result is a set of highly functional radiator designs. This cross-disciplinary work combines topology optimization and thermal analysis design by means of a genetic algorithm The proposed design tool consists of the following steps; design parameterization based on the exterior boundary of the radiator, objective function definition (mass minimization and heat loss maximization), objective function evaluation via finite element analysis (thermal radiation analysis) and optimization based on evolutionary algorithms. The radiator design problem is defined as follows: the input force is a driving temperature and the output reaction is heat loss. Appropriate modeling of the space environment is added to capture its effect on the radiator. The design parameters chosen for this radiator shape optimization problem fall into two classes, variable height along the width of the radiator and a spline curve defining the -material boundary of the radiator. The implementation of multiple design parameter schemes allows the user to have more confidence in the radiator optimization tool upon demonstration of convergence between the two design parameter schemes. This tool easily allows the user to manipulate the driving temperature regions thus permitting detailed design of in
Optimization design on breakdown voltage of AlGaN/GaN high-electron mobility transistor
NASA Astrophysics Data System (ADS)
Yang, Liu; Changchun, Chai; Chunlei, Shi; Qingyang, Fan; Yuqian, Liu
2016-12-01
Simulations are carried out to explore the possibility of achieving high breakdown voltage of GaN HEMT (high-electron mobility transistor). GaN cap layers with gradual increase in the doping concentration from 2 × 1016 to 5 × 1019 cm-3 of N-type and P-type cap are investigated, respectively. Simulation results show that HEMT with P-doped GaN cap layer shows more potential to achieve higher breakdown voltage than N-doped GaN cap layer under the same doping concentration. This is because the ionized net negative space charges in P-GaN cap layer could modulate the surface electric field which makes more contribution to RESURF effect. Furthermore, a novel GaN/AlGaN/GaN HEMT with P-doped GaN buried layer in GaN buffer between gate and drain electrode is proposed. It shows enhanced performance. The breakdown voltage of the proposed structure is 640 V which is increased by 12% in comparison to UID (un-intentionally doped) GaN/AlGaN/GaN HEMT. We calculated and analyzed the distribution of electrons' density. It is found that the depleted region is wider and electric field maximum value is induced at the left edge of buried layer. So the novel structure with P-doped GaN buried layer embedded in GaN buffer has the better improving characteristics of the power devices. Project supported by the National Basic Research Program of China (No. 2014CB339900) and the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics (No. 2015-0214.XY.K).
Optimal sliding guidance algorithm for Mars powered descent phase
NASA Astrophysics Data System (ADS)
Wibben, Daniel R.; Furfaro, Roberto
2016-02-01
Landing on large planetary bodies (e.g. Mars) with pinpoint accuracy presents a set of new challenges that must be addressed. One such challenge is the development of new guidance algorithms that exhibit a higher degree of robustness and flexibility. In this paper, the Zero-Effort-Miss/Zero-Effort-Velocity (ZEM/ZEV) optimal sliding guidance (OSG) scheme is applied to the Mars powered descent phase. This guidance algorithm has been specifically designed to combine techniques from both optimal and sliding control theories to generate an acceleration command based purely on the current estimated spacecraft state and desired final target state. Consequently, OSG yields closed-loop trajectories that do not need a reference trajectory. The guidance algorithm has its roots in the generalized ZEM/ZEV feedback guidance and its mathematical equations are naturally derived by defining a non-linear sliding surface as a function of the terms Zero-Effort-Miss and Zero-Effort-Velocity. With the addition of the sliding mode and using Lyapunov theory for non-autonomous systems, one can formally prove that the developed OSG law is globally finite-time stable to unknown but bounded perturbations. Here, the focus is on comparing the generalized ZEM/ZEV feedback guidance with the OSG law to explicitly demonstrate the benefits of the sliding mode augmentation. Results show that the sliding guidance provides a more robust solution in off-nominal scenarios while providing similar fuel consumption when compared to the non-sliding guidance command. Further, a Monte Carlo analysis is performed to examine the performance of the OSG law under perturbed conditions.
Gholami-Boroujeny, Shiva; Bolic, Miodrag
2016-04-01
Fitting the measured bioimpedance spectroscopy (BIS) data to the Cole model and then extracting the Cole parameters is a common practice in BIS applications. The extracted Cole parameters then can be analysed as descriptors of tissue electrical properties. To have a better evaluation of physiological or pathological properties of biological tissue, accurate extraction of Cole parameters is of great importance. This paper proposes an improved Cole parameter extraction based on bacterial foraging optimization (BFO) algorithm. We employed simulated datasets to test the performance of the BFO fitting method regarding parameter extraction accuracy and noise sensitivity, and we compared the results with those of a least squares (LS) fitting method. The BFO method showed better robustness to the noise and higher accuracy in terms of extracted parameters. In addition, we applied our method to experimental data where bioimpedance measurements were obtained from forearm in three different positions of the arm. The goal of the experiment was to explore how robust Cole parameters are in classifying position of the arm for different people, and measured at different times. The extracted Cole parameters obtained by LS and BFO methods were applied to different classifiers. Two other evolutionary algorithms, GA and PSO were also used for comparison purpose. We showed that when the classifiers are fed with the extracted feature sets by BFO fitting method, higher accuracy is obtained both when applying on training data and test data.
NASA Astrophysics Data System (ADS)
Jang, Seon-Ho; Jo, Yong-Ryun; Lee, Young-Woong; Kim, Sei-Min; Kim, Bong-Joong; Bae, Jae-Hyun; An, Huei-Chun; Jang, Ja-Soon
2015-05-01
We report a highly transparent conducting electrode (TCE) scheme of MgxZn1-xO:Ga/Au/NiOx which was deposited on p-GaN by e-beam for GaN-based light emitting diodes (LEDs). The optical and electrical properties of the electrode were optimized by thermal annealing at 500°C for 1 minute in N2 + O2 (5:3) ambient. The light transmittance at the optimal condition increased up to 84-97% from the UV-A to yellow region. The specific contact resistance decreased to 4.3(±0.3) × 10-5 Ωcm2. The improved properties of the electrode were attributed to the directionally elongated crystalline nanostructures formed in the MgxZn1-xO:Ga layer which is compositionally uniform. Interestingly, the Au alloy nano-clusters created in the MgxZn1-xO:Ga layer during annealing at 500°C may also enhance the properties of the electrode by acting as a conducting bridge and a nano-sized mirror. Based on studies of the external quantum efficiency of blue LED devices, the proposed electrode scheme combined with an optimized annealing treatment suggests a potential alternative to ITO. [Figure not available: see fulltext.
Duan, Hai-Bin; Xu, Chun-Fang; Xing, Zhi-Hui
2010-02-01
In this paper, a novel hybrid Artificial Bee Colony (ABC) and Quantum Evolutionary Algorithm (QEA) is proposed for solving continuous optimization problems. ABC is adopted to increase the local search capacity as well as the randomness of the populations. In this way, the improved QEA can jump out of the premature convergence and find the optimal value. To show the performance of our proposed hybrid QEA with ABC, a number of experiments are carried out on a set of well-known Benchmark continuous optimization problems and the related results are compared with two other QEAs: the QEA with classical crossover operation, and the QEA with 2-crossover strategy. The experimental comparison results demonstrate that the proposed hybrid ABC and QEA approach is feasible and effective in solving complex continuous optimization problems.
Parallel global optimization with the particle swarm algorithm.
Schutte, J F; Reinbolt, J A; Fregly, B J; Haftka, R T; George, A D
2004-12-07
Present day engineering optimization problems often impose large computational demands, resulting in long solution times even on a modern high-end processor. To obtain enhanced computational throughput and global search capability, we detail the coarse-grained parallelization of an increasingly popular global search method, the particle swarm optimization (PSO) algorithm. Parallel PSO performance was evaluated using two categories of optimization problems possessing multiple local minima-large-scale analytical test problems with computationally cheap function evaluations and medium-scale biomechanical system identification problems with computationally expensive function evaluations. For load-balanced analytical test problems formulated using 128 design variables, speedup was close to ideal and parallel efficiency above 95% for up to 32 nodes on a Beowulf cluster. In contrast, for load-imbalanced biomechanical system identification problems with 12 design variables, speedup plateaued and parallel efficiency decreased almost linearly with increasing number of nodes. The primary factor affecting parallel performance was the synchronization requirement of the parallel algorithm, which dictated that each iteration must wait for completion of the slowest fitness evaluation. When the analytical problems were solved using a fixed number of swarm iterations, a single population of 128 particles produced a better convergence rate than did multiple independent runs performed using sub-populations (8 runs with 16 particles, 4 runs with 32 particles, or 2 runs with 64 particles). These results suggest that (1) parallel PSO exhibits excellent parallel performance under load-balanced conditions, (2) an asynchronous implementation would be valuable for real-life problems subject to load imbalance, and (3) larger population sizes should be considered when multiple processors are available.
InGaN/GaN multilayer quantum dots yellow-green light-emitting diode with optimized GaN barriers.
Lv, Wenbin; Wang, Lai; Wang, Jiaxing; Hao, Zhibiao; Luo, Yi
2012-11-07
InGaN/GaN multilayer quantum dot (QD) structure is a potential type of active regions for yellow-green light-emitting diodes (LEDs). The surface morphologies and crystalline quality of GaN barriers are critical to the uniformity of InGaN QD layers. While GaN barriers were grown in multi-QD layers, we used improved growth parameters by increasing the growth temperature and switching the carrier gas from N2 to H2 in the metal organic vapor phase epitaxy. As a result, a 10-layer InGaN/GaN QD LED is demonstrated successfully. The transmission electron microscopy image shows the uniform multilayer InGaN QDs clearly. As the injection current increases from 5 to 50 mA, the electroluminescence peak wavelength shifts from 574 to 537 nm.
A comparison of three optimization algorithms for intensity modulated radiation therapy.
Pflugfelder, Daniel; Wilkens, Jan J; Nill, Simeon; Oelfke, Uwe
2008-01-01
In intensity modulated treatment techniques, the modulation of each treatment field is obtained using an optimization algorithm. Multiple optimization algorithms have been proposed in the literature, e.g. steepest descent, conjugate gradient, quasi-Newton methods to name a few. The standard optimization algorithm in our in-house inverse planning tool KonRad is a quasi-Newton algorithm. Although this algorithm yields good results, it also has some drawbacks. Thus we implemented an improved optimization algorithm based on the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) routine. In this paper the improved optimization algorithm is described. To compare the two algorithms, several treatment plans are optimized using both algorithms. This included photon (IMRT) as well as proton (IMPT) intensity modulated therapy treatment plans. To present the results in a larger context the widely used conjugate gradient algorithm was also included into this comparison. On average, the improved optimization algorithm was six times faster to reach the same objective function value. However, it resulted not only in an acceleration of the optimization. Due to the faster convergence, the improved optimization algorithm usually terminates the optimization process at a lower objective function value. The average of the observed improvement in the objective function value was 37%. This improvement is clearly visible in the corresponding dose-volume-histograms. The benefit of the improved optimization algorithm is particularly pronounced in proton therapy plans. The conjugate gradient algorithm ranked in between the other two algorithms with an average speedup factor of two and an average improvement of the objective function value of 30%.
Yang, Jie; Zhang, Pengcheng; Zhang, Liyuan; Shu, Huazhong; Li, Baosheng; Gui, Zhiguo
2017-01-01
In inverse treatment planning of intensity-modulated radiation therapy (IMRT), the objective function is typically the sum of the weighted sub-scores, where the weights indicate the importance of the sub-scores. To obtain a high-quality treatment plan, the planner manually adjusts the objective weights using a trial-and-error procedure until an acceptable plan is reached. In this work, a new particle swarm optimization (PSO) method which can adjust the weighting factors automatically was investigated to overcome the requirement of manual adjustment, thereby reducing the workload of the human planner and contributing to the development of a fully automated planning process. The proposed optimization method consists of three steps. (i) First, a swarm of weighting factors (i.e., particles) is initialized randomly in the search space, where each particle corresponds to a global objective function. (ii) Then, a plan optimization solver is employed to obtain the optimal solution for each particle, and the values of the evaluation functions used to determine the particle's location and the population global location for the PSO are calculated based on these results. (iii) Next, the weighting factors are updated based on the particle's location and the population global location. Step (ii) is performed alternately with step (iii) until the termination condition is reached. In this method, the evaluation function is a combination of several key points on the dose volume histograms. Furthermore, a perturbation strategy - the crossover and mutation operator hybrid approach - is employed to enhance the population diversity, and two arguments are applied to the evaluation function to improve the flexibility of the algorithm. In this study, the proposed method was used to develop IMRT treatment plans involving five unequally spaced 6MV photon beams for 10 prostate cancer cases. The proposed optimization algorithm yielded high-quality plans for all of the cases, without human
Wang, Li; Jia, Pengfei; Huang, Tailai; Duan, Shukai; Yan, Jia; Wang, Lidan
2016-01-01
An electronic nose (E-nose) is an intelligent system that we will use in this paper to distinguish three indoor pollutant gases (benzene (C6H6), toluene (C7H8), formaldehyde (CH2O)) and carbon monoxide (CO). The algorithm is a key part of an E-nose system mainly composed of data processing and pattern recognition. In this paper, we employ support vector machine (SVM) to distinguish indoor pollutant gases and two of its parameters need to be optimized, so in order to improve the performance of SVM, in other words, to get a higher gas recognition rate, an effective enhanced krill herd algorithm (EKH) based on a novel decision weighting factor computing method is proposed to optimize the two SVM parameters. Krill herd (KH) is an effective method in practice, however, on occasion, it cannot avoid the influence of some local best solutions so it cannot always find the global optimization value. In addition its search ability relies fully on randomness, so it cannot always converge rapidly. To address these issues we propose an enhanced KH (EKH) to improve the global searching and convergence speed performance of KH. To obtain a more accurate model of the krill behavior, an updated crossover operator is added to the approach. We can guarantee the krill group are diversiform at the early stage of iterations, and have a good performance in local searching ability at the later stage of iterations. The recognition results of EKH are compared with those of other optimization algorithms (including KH, chaotic KH (CKH), quantum-behaved particle swarm optimization (QPSO), particle swarm optimization (PSO) and genetic algorithm (GA)), and we can find that EKH is better than the other considered methods. The research results verify that EKH not only significantly improves the performance of our E-nose system, but also provides a good beginning and theoretical basis for further study about other improved krill algorithms’ applications in all E-nose application areas. PMID
NASA Astrophysics Data System (ADS)
Keane, A. J.
1995-08-01
In the majority of aerospace structures, vibration transmission problems are dealt with by the application of heavy, viscoelastic damping materials. More recently, interest has focussed on using active vibration control methods to reduce noise transmission. This paper examines a third, and potentially much cheaper method: that of redesigning the load bearing structure so that it has intrinsic, passive noise filtration characteristics. It shows that very significant, broadband noise isolation characteristics (of around 60 dB over a 100 Hz band) can be achieved without compromising other aspects of the design. Here, the genetic algorithm (GA), which is one of a number of recently developed evolutionary computing methods, is employed to produce the desired designs. The problem is set up as one in multi-dimensional optimization where the geometric parameters of the design are the free variables and the band averaged noise transmission the objective function. The problem is then constrained by the need to maintain structural integrity. Set out in this way, even a simple structural problem has many tens of variables; a real structure would have many hundreds. Consequently, the optimization domain is very time consuming for traditional methods to deal with. This is where modern evolutionary techniques become so useful: their convergence rates are typically less rapidly worsened by increases in the number of variables than those of more traditional methods. Even so, they must be used with some care to gain the best results.
Optimal design of low-density SNP arrays for genomic prediction: algorithm and applications
Technology Transfer Automated Retrieval System (TEKTRAN)
Low-density (LD) single nucleotide polymorphism (SNP) arrays provide a cost-effective solution for genomic prediction and selection, but algorithms and computational tools are needed for their optimal design. A multiple-objective, local optimization (MOLO) algorithm was developed for design of optim...
Optimally doped hybridization gap semiconductor FeGa3 as potential thermoelectric alloy*
NASA Astrophysics Data System (ADS)
Ponnambalam, Vijayabarathi; Morelli, Donald T.
2014-03-01
FeGa3, a hybridization gap semiconductor with a band gap of ~ 0.5 eV can be a potential thermoelectric material if optimally doped. Due to the involvement of d-band in the transport, high Seebeck coefficient is a possibility. To achieve the optimum doping level, Mn, Co and Zn containing FeGa3 alloys are being prepared either via the flux or solid state reaction method. Phase characterization will be carried out. Electrical and transport properties including resistivity, Seebeck and Hall coefficients and thermal conductivity will be measured over a wide temperature range of 80- 1000 K. These results will be presented and the potential of these compositions as thermoelectrics will be discussed.
NASA Astrophysics Data System (ADS)
Wang, J.; Cai, X.
2007-12-01
A water resources system can be defined as a large-scale spatial system, within which distributed ecological system interacts with the stream network and ground water system. Water resources management, the causative factors and hence the solutions to be developed have a significant spatial dimension. This motivates a modeling analysis of water resources management within a spatial analytical framework, where data is usually geo- referenced and in the form of a map. One of the important functions of Geographic information systems (GIS) is to identify spatial patterns of environmental variables. The role of spatial patterns in water resources management has been well established in the literature particularly regarding how to design better spatial patterns for satisfying the designated objectives of water resources management. Evolutionary algorithms (EA) have been demonstrated to be successful in solving complex optimization models for water resources management due to its flexibility to incorporate complex simulation models in the optimal search procedure. The idea of combining GIS and EA motivates the development and application of spatial evolutionary algorithms (SEA). SEA assimilates spatial information into EA, and even changes the representation and operators of EA. In an EA used for water resources management, the mathematical optimization model should be modified to account the spatial patterns; however, spatial patterns are usually implicit, and it is difficult to impose appropriate patterns to spatial data. Also it is difficult to express complex spatial patterns by explicit constraints included in the EA. The GIS can help identify the spatial linkages and correlations based on the spatial knowledge of the problem. These linkages are incorporated in the fitness function for the preference of the compatible vegetation distribution. Unlike a regular GA for spatial models, the SEA employs a special hierarchical hyper-population and spatial genetic operators
GenMin: An enhanced genetic algorithm for global optimization
NASA Astrophysics Data System (ADS)
Tsoulos, Ioannis G.; Lagaris, I. E.
2008-06-01
A new method that employs grammatical evolution and a stopping rule for finding the global minimum of a continuous multidimensional, multimodal function is considered. The genetic algorithm used is a hybrid genetic algorithm in conjunction with a local search procedure. We list results from numerical experiments with a series of test functions and we compare with other established global optimization methods. The accompanying software accepts objective functions coded either in Fortran 77 or in C++. Program summaryProgram title: GenMin Catalogue identifier: AEAR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 35 810 No. of bytes in distributed program, including test data, etc.: 436 613 Distribution format: tar.gz Programming language: GNU-C++, GNU-C, GNU Fortran 77 Computer: The tool is designed to be portable in all systems running the GNU C++ compiler Operating system: The tool is designed to be portable in all systems running the GNU C++ compiler RAM: 200 KB Word size: 32 bits Classification: 4.9 Nature of problem: A multitude of problems in science and engineering are often reduced to minimizing a function of many variables. There are instances that a local optimum does not correspond to the desired physical solution and hence the search for a better solution is required. Local optimization techniques are frequently trapped in local minima. Global optimization is hence the appropriate tool. For example, solving a nonlinear system of equations via optimization, employing a least squares type of objective, one may encounter many local minima that do not correspond to solutions (i.e. they are far from zero). Solution method: Grammatical evolution and a stopping rule. Running time: Depending on the
An optimization-based iterative algorithm for recovering fluorophore location
NASA Astrophysics Data System (ADS)
Yi, Huangjian; Peng, Jinye; Jin, Chen; He, Xiaowei
2015-10-01
Fluorescence molecular tomography (FMT) is a non-invasive technique that allows three-dimensional visualization of fluorophore in vivo in small animals. In practical applications of FMT, however, there are challenges in the image reconstruction since it is a highly ill-posed problem due to the diffusive behaviour of light transportation in tissue and the limited measurement data. In this paper, we presented an iterative algorithm based on an optimization problem for three dimensional reconstruction of fluorescent target. This method alternates weighted algebraic reconstruction technique (WART) with steepest descent method (SDM) for image reconstruction. Numerical simulations experiments and physical phantom experiment are performed to validate our method. Furthermore, compared to conjugate gradient method, the proposed method provides a better three-dimensional (3D) localization of fluorescent target.
Liu, Liqiang; Dai, Yuntao; Gao, Jinyu
2014-01-01
Ant colony optimization algorithm for continuous domains is a major research direction for ant colony optimization algorithm. In this paper, we propose a distribution model of ant colony foraging, through analysis of the relationship between the position distribution and food source in the process of ant colony foraging. We design a continuous domain optimization algorithm based on the model and give the form of solution for the algorithm, the distribution model of pheromone, the update rules of ant colony position, and the processing method of constraint condition. Algorithm performance against a set of test trials was unconstrained optimization test functions and a set of optimization test functions, and test results of other algorithms are compared and analyzed to verify the correctness and effectiveness of the proposed algorithm.
Particle Swarm Optimization Toolbox
NASA Technical Reports Server (NTRS)
Grant, Michael J.
2010-01-01
The Particle Swarm Optimization Toolbox is a library of evolutionary optimization tools developed in the MATLAB environment. The algorithms contained in the library include a genetic algorithm (GA), a single-objective particle swarm optimizer (SOPSO), and a multi-objective particle swarm optimizer (MOPSO). Development focused on both the SOPSO and MOPSO. A GA was included mainly for comparison purposes, and the particle swarm optimizers appeared to perform better for a wide variety of optimization problems. All algorithms are capable of performing unconstrained and constrained optimization. The particle swarm optimizers are capable of performing single and multi-objective optimization. The SOPSO and MOPSO algorithms are based on swarming theory and bird-flocking patterns to search the trade space for the optimal solution or optimal trade in competing objectives. The MOPSO generates Pareto fronts for objectives that are in competition. A GA, based on Darwin evolutionary theory, is also included in the library. The GA consists of individuals that form a population in the design space. The population mates to form offspring at new locations in the design space. These offspring contain traits from both of the parents. The algorithm is based on this combination of traits from parents to hopefully provide an improved solution than either of the original parents. As the algorithm progresses, individuals that hold these optimal traits will emerge as the optimal solutions. Due to the generic design of all optimization algorithms, each algorithm interfaces with a user-supplied objective function. This function serves as a "black-box" to the optimizers in which the only purpose of this function is to evaluate solutions provided by the optimizers. Hence, the user-supplied function can be numerical simulations, analytical functions, etc., since the specific detail of this function is of no concern to the optimizer. These algorithms were originally developed to support entry
Guo, Liyong; Yan, Zhiqiang; Zheng, Xiliang; Hu, Liang; Yang, Yongliang; Wang, Jin
2014-07-01
In protein-ligand docking, an optimization algorithm is used to find the best binding pose of a ligand against a protein target. This algorithm plays a vital role in determining the docking accuracy. To evaluate the relative performance of different optimization algorithms and provide guidance for real applications, we performed a comparative study on six efficient optimization algorithms, containing two evolutionary algorithm (EA)-based optimizers (LGA, DockDE) and four particle swarm optimization (PSO)-based optimizers (SODock, varCPSO, varCPSO-ls, FIPSDock), which were implemented into the protein-ligand docking program AutoDock. We unified the objective functions by applying the same scoring function, and built a new fitness accuracy as the evaluation criterion that incorporates optimization accuracy, robustness, and efficiency. The varCPSO and varCPSO-ls algorithms show high efficiency with fast convergence speed. However, their accuracy is not optimal, as they cannot reach very low energies. SODock has the highest accuracy and robustness. In addition, SODock shows good performance in efficiency when optimizing drug-like ligands with less than ten rotatable bonds. FIPSDock shows excellent robustness and is close to SODock in accuracy and efficiency. In general, the four PSO-based algorithms show superior performance than the two EA-based algorithms, especially for highly flexible ligands. Our method can be regarded as a reference for the validation of new optimization algorithms in protein-ligand docking.
A Novel Flexible Inertia Weight Particle Swarm Optimization Algorithm.
Amoshahy, Mohammad Javad; Shamsi, Mousa; Sedaaghi, Mohammad Hossein
2016-01-01
Particle swarm optimization (PSO) is an evolutionary computing method based on intelligent collective behavior of some animals. It is easy to implement and there are few parameters to adjust. The performance of PSO algorithm depends greatly on the appropriate parameter selection strategies for fine tuning its parameters. Inertia weight (IW) is one of PSO's parameters used to bring about a balance between the exploration and exploitation characteristics of PSO. This paper proposes a new nonlinear strategy for selecting inertia weight which is named Flexible Exponential Inertia Weight (FEIW) strategy because according to each problem we can construct an increasing or decreasing inertia weight strategy with suitable parameters selection. The efficacy and efficiency of PSO algorithm with FEIW strategy (FEPSO) is validated on a suite of benchmark problems with different dimensions. Also FEIW is compared with best time-varying, adaptive, constant and random inertia weights. Experimental results and statistical analysis prove that FEIW improves the search performance in terms of solution quality as well as convergence rate.
A Novel Flexible Inertia Weight Particle Swarm Optimization Algorithm
Shamsi, Mousa; Sedaaghi, Mohammad Hossein
2016-01-01
Particle swarm optimization (PSO) is an evolutionary computing method based on intelligent collective behavior of some animals. It is easy to implement and there are few parameters to adjust. The performance of PSO algorithm depends greatly on the appropriate parameter selection strategies for fine tuning its parameters. Inertia weight (IW) is one of PSO’s parameters used to bring about a balance between the exploration and exploitation characteristics of PSO. This paper proposes a new nonlinear strategy for selecting inertia weight which is named Flexible Exponential Inertia Weight (FEIW) strategy because according to each problem we can construct an increasing or decreasing inertia weight strategy with suitable parameters selection. The efficacy and efficiency of PSO algorithm with FEIW strategy (FEPSO) is validated on a suite of benchmark problems with different dimensions. Also FEIW is compared with best time-varying, adaptive, constant and random inertia weights. Experimental results and statistical analysis prove that FEIW improves the search performance in terms of solution quality as well as convergence rate. PMID:27560945
New knowledge-based genetic algorithm for excavator boom structural optimization
NASA Astrophysics Data System (ADS)
Hua, Haiyan; Lin, Shuwen
2014-03-01
Due to the insufficiency of utilizing knowledge to guide the complex optimal searching, existing genetic algorithms fail to effectively solve excavator boom structural optimization problem. To improve the optimization efficiency and quality, a new knowledge-based real-coded genetic algorithm is proposed. A dual evolution mechanism combining knowledge evolution with genetic algorithm is established to extract, handle and utilize the shallow and deep implicit constraint knowledge to guide the optimal searching of genetic algorithm circularly. Based on this dual evolution mechanism, knowledge evolution and population evolution can be connected by knowledge influence operators to improve the configurability of knowledge and genetic operators. Then, the new knowledge-based selection operator, crossover operator and mutation operator are proposed to integrate the optimal process knowledge and domain culture to guide the excavator boom structural optimization. Eight kinds of testing algorithms, which include different genetic operators, are taken as examples to solve the structural optimization of a medium-sized excavator boom. By comparing the results of optimization, it is shown that the algorithm including all the new knowledge-based genetic operators can more remarkably improve the evolutionary rate and searching ability than other testing algorithms, which demonstrates the effectiveness of knowledge for guiding optimal searching. The proposed knowledge-based genetic algorithm by combining multi-level knowledge evolution with numerical optimization provides a new effective method for solving the complex engineering optimization problem.
NASA Astrophysics Data System (ADS)
Chiamsathit, C.; Adeloye, A. J.; Soudharajan, B.
2014-09-01
This study has developed optimal hedging policies for the multi-purpose Ubonratana Reservoir in northeastern Thailand based on its existing rule curves. The hedging policy was applied whenever the reservoir storage falls below a critical level for each month of the year. The decision variables, i.e. the set of monthly storages defining the critical rule curve that triggers rationing and the rationing ratio, were optimized by genetic algorithm (GA). Both single stage (i.e. with one critical rule curve and one rationing ratio) and two-stage (with two critical rule curves and ratios) of the hedging policy were considered in the optimization. To test the effect of the optimized hedging policies on reservoir performance, simulations were carried out, forced alternatively with the existing rule curves (i.e. without hedging) and the two optimized hedging policies. Performance was summarized in terms of reliability (time- and volume-based) and vulnerability. The results showed that the vulnerability was significantly reduced by using the optimized hedging rules. However, the number of water shortages increased with the optimized rules, causing the time-based reliability to worsen significantly. This should not be of concern since, although the number of shortages increased, the associated shortage quantities on most of these additional occasions were small, leaving the volumetric reliability largely unchanged.
NASA Astrophysics Data System (ADS)
Kanagaraj, G.; Ponnambalam, S. G.; Jawahar, N.; Mukund Nilakantan, J.
2014-10-01
This article presents an effective hybrid cuckoo search and genetic algorithm (HCSGA) for solving engineering design optimization problems involving problem-specific constraints and mixed variables such as integer, discrete and continuous variables. The proposed algorithm, HCSGA, is first applied to 13 standard benchmark constrained optimization functions and subsequently used to solve three well-known design problems reported in the literature. The numerical results obtained by HCSGA show competitive performance with respect to recent algorithms for constrained design optimization problems.
Stochastic optimization algorithm for inverse modeling of air pollution
NASA Astrophysics Data System (ADS)
Yeo, Kyongmin; Hwang, Youngdeok; Liu, Xiao; Kalagnanam, Jayant
2016-11-01
A stochastic optimization algorithm to estimate a smooth source function from a limited number of observations is proposed in the context of air pollution, where the source-receptor relation is given by an advection-diffusion equation. First, a smooth source function is approximated by a set of Gaussian kernels on a rectangular mesh system. Then, the generalized polynomial chaos (gPC) expansion is used to represent the model uncertainty due to the choice of the mesh system. It is shown that the convolution of gPC basis and the Gaussian kernel provides hierarchical basis functions for a spectral function estimation. The spectral inverse model is formulated as a stochastic optimization problem. We propose a regularization strategy based on the hierarchical nature of the basis polynomials. It is shown that the spectral inverse model is capable of providing a good estimate of the source function even when the number of unknown parameters (m) is much larger the number of data (n), m/n > 50.
NASA Astrophysics Data System (ADS)
Lu, Jun; Wang, Jian-Bo; Sun, Guan-Cheng
2009-04-01
Frequency selective surface (FSS) is a two-dimensional periodic structure which has prominent characteristics of bandpass or bandblock when interacting with electromagnetic waves. In this paper, the thickness, the dielectric constant, the element graph and the arrangement periodicity of an FSS medium are investigated by Genetic Algorithm (GA) when an electromagnetic wave is incident on the FSS at a wide angle, and an optimized FSS structure and transmission characteristics are obtained. The results show that the optimized structure has better stability in relation to incident angle of electromagnetic wave and preserves the stability of centre frequency even at an incident angle as large as 80°, thereby laying the foundation for the application of FSS to curved surfaces at wide angles.
Genetic algorithms for optimal reactive power compensation planning on the national grid system
NASA Astrophysics Data System (ADS)
Pilgrim, J. D.
This work investigates the use of Genetic Algorithms (GAs) for optimal Reactive power Compensation Planning (RCP) of practical power systems. In particular, RCP of the transmission system of England and Wales as owned and operated by National Grid is considered. The GA is used to simultaneously solve both the siting problem---optimisation of the installation of new devices---and the operational problem---optimisation of preventive transformer taps and the controller characteristics of dynamic compensation devices. A computer package called Genetic Compensation Placement (GCP) has been developed which uses an Integer coded GA (IGA) to solve the RCP problem. The RCP problem is implemented as a multi-objective optimisation: in the interests of security, the number of system and operational constraint violations and the deviation of the busbar voltages from the ideal are all minimised for the base (intact) case and the contingent cases. In the interests of cost reduction, the reactive power cost is minimised for the base case. The reactive power cost encompasses the costs incurred from the installation of reactive power sources and the utilisation of new and existing dynamic reactive power compensation devices. GCP is compared to SCORPION (a planning program currently being used by National Grid) which uses a combination of linear programming and heuristic back-tracking. Results are presented for a practical test system developed with the cooperation of National Grid, and it is found that GCP produces solutions that are cheaper than solutions found by SCORPION and perform extremely well: an improvement in voltage profiles, a decrease in complex power mismatches, and a reduction in MVolt Amps-reactive (VAr) utilisation were observed.
Adams, Lucas J; Bello, Ghalib; Dumancas, Gerard G
2015-01-01
The problem of selecting important variables for predictive modeling of a specific outcome of interest using questionnaire data has rarely been addressed in clinical settings. In this study, we implemented a genetic algorithm (GA) technique to select optimal variables from questionnaire data for predicting a five-year mortality. We examined 123 questions (variables) answered by 5,444 individuals in the National Health and Nutrition Examination Survey. The GA iterations selected the top 24 variables, including questions related to stroke, emphysema, and general health problems requiring the use of special equipment, for use in predictive modeling by various parametric and nonparametric machine learning techniques. Using these top 24 variables, gradient boosting yielded the nominally highest performance (area under curve [AUC] = 0.7654), although there were other techniques with lower but not significantly different AUC. This study shows how GA in conjunction with various machine learning techniques could be used to examine questionnaire data to predict a binary outcome.
Optimizations Of Coat-Hanger Die, Using Constraint Optimization Algorithm And Taguchi Method
NASA Astrophysics Data System (ADS)
Lebaal, Nadhir; Schmidt, Fabrice; Puissant, Stephan
2007-05-01
Polymer extrusion is one of the most important manufacturing methods used today. A flat die, is commonly used to extrude thin thermoplastics sheets. If the channel geometry in a flat die is not designed properly, the velocity at the die exit may be perturbed, which can affect the thickness across the width of the die. The ultimate goal of this work is to optimize the die channel geometry in a way that a uniform velocity distribution is obtained at the die exit. While optimizing the exit velocity distribution, we have coupled three-dimensional extrusion simulation software Rem3D®, with an automatic constraint optimization algorithm to control the maximum allowable pressure drop in the die; according to this constraint we can control the pressure in the die (decrease the pressure while minimizing the velocity dispersion across the die exit). For this purpose, we investigate the effect of the design variables in the objective and constraint function by using Taguchi method. In the second study we use the global response surface method with Kriging interpolation to optimize flat die geometry. Two optimization results are presented according to the imposed constraint on the pressure. The optimum is obtained with a very fast convergence (2 iterations). To respect the constraint while ensuring a homogeneous distribution of velocity, the results with a less severe constraint offers the best minimum.
Optimal design of GaAs-based concentrator space solar cells for 100 AMO, 80 deg C operation
NASA Technical Reports Server (NTRS)
Goradia, C.; Ghalla-Goradia, M.; Curtis, H.
1984-01-01
Using a detailed computer code and reasonable values of electrical and optical material parameters from current published literature, parameter optimization studies were performed on three configurations of GaAs-based concentrator solar cells for 100 AMO, 80 C operation. These studies show the possibility of designing GaAs-based solar cells with efficiencies exceeding 22% at 100 AMO 80 C and probable efficiency degradation of less than 15% after a 70% reduction in diffusion length in each cell region.
Optimization of the double dosimetry algorithm for interventional cardiologists
NASA Astrophysics Data System (ADS)
Chumak, Vadim; Morgun, Artem; Bakhanova, Elena; Voloskiy, Vitalii; Borodynchik, Elena
2014-11-01
A double dosimetry method is recommended in interventional cardiology (IC) to assess occupational exposure; yet currently there is no common and universal algorithm for effective dose estimation. In this work, flexible and adaptive algorithm building methodology was developed and some specific algorithm applicable for typical irradiation conditions of IC procedures was obtained. It was shown that the obtained algorithm agrees well with experimental measurements and is less conservative compared to other known algorithms.
Ultra-fast fluence optimization for beam angle selection algorithms
NASA Astrophysics Data System (ADS)
Bangert, M.; Ziegenhein, P.; Oelfke, U.
2014-03-01
Beam angle selection (BAS) including fluence optimization (FO) is among the most extensive computational tasks in radiotherapy. Precomputed dose influence data (DID) of all considered beam orientations (up to 100 GB for complex cases) has to be handled in the main memory and repeated FOs are required for different beam ensembles. In this paper, the authors describe concepts accelerating FO for BAS algorithms using off-the-shelf multiprocessor workstations. The FO runtime is not dominated by the arithmetic load of the CPUs but by the transportation of DID from the RAM to the CPUs. On multiprocessor workstations, however, the speed of data transportation from the main memory to the CPUs is non-uniform across the RAM; every CPU has a dedicated memory location (node) with minimum access time. We apply a thread node binding strategy to ensure that CPUs only access DID from their preferred node. Ideal load balancing for arbitrary beam ensembles is guaranteed by distributing the DID of every candidate beam equally to all nodes. Furthermore we use a custom sorting scheme of the DID to minimize the overall data transportation. The framework is implemented on an AMD Opteron workstation. One FO iteration comprising dose, objective function, and gradient calculation takes between 0.010 s (9 beams, skull, 0.23 GB DID) and 0.070 s (9 beams, abdomen, 1.50 GB DID). Our overall FO time is < 1 s for small cases, larger cases take ~ 4 s. BAS runs including FOs for 1000 different beam ensembles take ~ 15-70 min, depending on the treatment site. This enables an efficient clinical evaluation of different BAS algorithms.
Optimized Uncertainty Quantification Algorithm Within a Dynamic Event Tree Framework
J. W. Nielsen; Akira Tokuhiro; Robert Hiromoto
2014-06-01
Methods for developing Phenomenological Identification and Ranking Tables (PIRT) for nuclear power plants have been a useful tool in providing insight into modelling aspects that are important to safety. These methods have involved expert knowledge with regards to reactor plant transients and thermal-hydraulic codes to identify are of highest importance. Quantified PIRT provides for rigorous method for quantifying the phenomena that can have the greatest impact. The transients that are evaluated and the timing of those events are typically developed in collaboration with the Probabilistic Risk Analysis. Though quite effective in evaluating risk, traditional PRA methods lack the capability to evaluate complex dynamic systems where end states may vary as a function of transition time from physical state to physical state . Dynamic PRA (DPRA) methods provide a more rigorous analysis of complex dynamic systems. A limitation of DPRA is its potential for state or combinatorial explosion that grows as a function of the number of components; as well as, the sampling of transition times from state-to-state of the entire system. This paper presents a method for performing QPIRT within a dynamic event tree framework such that timing events which result in the highest probabilities of failure are captured and a QPIRT is performed simultaneously while performing a discrete dynamic event tree evaluation. The resulting simulation results in a formal QPIRT for each end state. The use of dynamic event trees results in state explosion as the number of possible component states increases. This paper utilizes a branch and bound algorithm to optimize the solution of the dynamic event trees. The paper summarizes the methods used to implement the branch-and-bound algorithm in solving the discrete dynamic event trees.
The optimal extraction of feature algorithm based on KAZE
NASA Astrophysics Data System (ADS)
Yao, Zheyi; Gu, Guohua; Qian, Weixian; Wang, Pengcheng
2015-10-01
As a novel method of 2D features extraction algorithm over the nonlinear scale space, KAZE provide a special method. However, the computation of nonlinear scale space and the construction of KAZE feature vectors are more expensive than the SIFT and SURF significantly. In this paper, the given image is used to build the nonlinear space up to a maximum evolution time through the efficient Additive Operator Splitting (AOS) techniques and the variable conductance diffusion. Changing the parameter can improve the construction of nonlinear scale space and simplify the image conductivities for each dimension space, with the predigest computation. Then, the detection for points of interest can exhibit a maxima of the scale-normalized determinant with the Hessian response in the nonlinear scale space. At the same time, the detection of feature vectors is optimized by the Wavelet Transform method, which can avoid the second Gaussian smoothing in the KAZE Features and cut down the complexity of the algorithm distinctly in the building and describing vectors steps. In this way, the dominant orientation is obtained, similar to SURF, by summing the responses within a sliding circle segment covering an angle of π/3 in the circular area of radius 6σ with a sampling step of size σ one by one. Finally, the extraction in the multidimensional patch at the given scale, centered over the points of interest and rotated to align its dominant orientation to a canonical direction, is able to simplify the description of feature by reducing the description dimensions, just as the PCA-SIFT method. Even though the features are somewhat more expensive to compute than SIFT due to the construction of nonlinear scale space, but compared to SURF, the result revels a step forward in performance in detection, description and application against the previous ways by the following contrast experiments.
SOPRA: Scaffolding algorithm for paired reads via statistical optimization
2010-01-01
Background High throughput sequencing (HTS) platforms produce gigabases of short read (<100 bp) data per run. While these short reads are adequate for resequencing applications, de novo assembly of moderate size genomes from such reads remains a significant challenge. These limitations could be partially overcome by utilizing mate pair technology, which provides pairs of short reads separated by a known distance along the genome. Results We have developed SOPRA, a tool designed to exploit the mate pair/paired-end information for assembly of short reads. The main focus of the algorithm is selecting a sufficiently large subset of simultaneously satisfiable mate pair constraints to achieve a balance between the size and the quality of the output scaffolds. Scaffold assembly is presented as an optimization problem for variables associated with vertices and with edges of the contig connectivity graph. Vertices of this graph are individual contigs with edges drawn between contigs connected by mate pairs. Similar graph problems have been invoked in the context of shotgun sequencing and scaffold building for previous generation of sequencing projects. However, given the error-prone nature of HTS data and the fundamental limitations from the shortness of the reads, the ad hoc greedy algorithms used in the earlier studies are likely to lead to poor quality results in the current context. SOPRA circumvents this problem by treating all the constraints on equal footing for solving the optimization problem, the solution itself indicating the problematic constraints (chimeric/repetitive contigs, etc.) to be removed. The process of solving and removing of constraints is iterated till one reaches a core set of consistent constraints. For SOLiD sequencer data, SOPRA uses a dynamic programming approach to robustly translate the color-space assembly to base-space. For assessing the quality of an assembly, we report the no-match/mismatch error rate as well as the rates of various
Improved mine blast algorithm for optimal cost design of water distribution systems
NASA Astrophysics Data System (ADS)
Sadollah, Ali; Guen Yoo, Do; Kim, Joong Hoon
2015-12-01
The design of water distribution systems is a large class of combinatorial, nonlinear optimization problems with complex constraints such as conservation of mass and energy equations. Since feasible solutions are often extremely complex, traditional optimization techniques are insufficient. Recently, metaheuristic algorithms have been applied to this class of problems because they are highly efficient. In this article, a recently developed optimizer called the mine blast algorithm (MBA) is considered. The MBA is improved and coupled with the hydraulic simulator EPANET to find the optimal cost design for water distribution systems. The performance of the improved mine blast algorithm (IMBA) is demonstrated using the well-known Hanoi, New York tunnels and Balerma benchmark networks. Optimization results obtained using IMBA are compared to those using MBA and other optimizers in terms of their minimum construction costs and convergence rates. For the complex Balerma network, IMBA offers the cheapest network design compared to other optimization algorithms.
Performance optimization of Pnp InGaAs/InP heterojunction phototransistors
NASA Astrophysics Data System (ADS)
Chen, Jun; Zhu, Min
2016-12-01
Fabrication, physical simulation, and optimization of two-terminal Pnp heterojunction phototransistors (2T-HPTs) based on In0.53Ga0.47As/InP are reported. The parameters of fundamental models are determined by comparing the simulated current and response characteristics with the experimental results. To optimize the optical gain and device performance, the precise adjustment of the base doping level, base width, and compositional grading of base has been investigated. Properly reducing the base width or increasing the range of the compositional grading can greatly enhance the emitter injection efficiency. The effects of high-low doping in collector region and the insertion of a thin, undoped InGaAs layer in the base region of the HPT have also been investigated in detail. It is found the high-low doping in collector can form an electric field to aid carrier transport, and the intrinsic layer between emitter and base has functions of reducing knee voltage and the dark current of HPT.
Yang, Zhen-Lun; Wu, Angus; Min, Hua-Qing
2015-01-01
An improved quantum-behaved particle swarm optimization with elitist breeding (EB-QPSO) for unconstrained optimization is presented and empirically studied in this paper. In EB-QPSO, the novel elitist breeding strategy acts on the elitists of the swarm to escape from the likely local optima and guide the swarm to perform more efficient search. During the iterative optimization process of EB-QPSO, when criteria met, the personal best of each particle and the global best of the swarm are used to generate new diverse individuals through the transposon operators. The new generated individuals with better fitness are selected to be the new personal best particles and global best particle to guide the swarm for further solution exploration. A comprehensive simulation study is conducted on a set of twelve benchmark functions. Compared with five state-of-the-art quantum-behaved particle swarm optimization algorithms, the proposed EB-QPSO performs more competitively in all of the benchmark functions in terms of better global search capability and faster convergence rate.
Optimizing the lithography model calibration algorithms for NTD process
NASA Astrophysics Data System (ADS)
Hu, C. M.; Lo, Fred; Yang, Elvis; Yang, T. H.; Chen, K. C.
2016-03-01
As patterns shrink to the resolution limits of up-to-date ArF immersion lithography technology, negative tone development (NTD) process has been an increasingly adopted technique to get superior imaging quality through employing bright-field (BF) masks to print the critical dark-field (DF) metal and contact layers. However, from the fundamental materials and process interaction perspectives, several key differences inherently exist between NTD process and the traditional positive tone development (PTD) system, especially the horizontal/vertical resist shrinkage and developer depletion effects, hence the traditional resist parameters developed for the typical PTD process have no longer fit well in NTD process modeling. In order to cope with the inherent differences between PTD and NTD processes accordingly get improvement on NTD modeling accuracy, several NTD models with different combinations of complementary terms were built to account for the NTD-specific resist shrinkage, developer depletion and diffusion, and wafer CD jump induced by sub threshold assistance feature (SRAF) effects. Each new complementary NTD term has its definite aim to deal with the NTD-specific phenomena. In this study, the modeling accuracy is compared among different models for the specific patterning characteristics on various feature types. Multiple complementary NTD terms were finally proposed to address all the NTD-specific behaviors simultaneously and further optimize the NTD modeling accuracy. The new algorithm of multiple complementary NTD term tested on our critical dark-field layers demonstrates consistent model accuracy improvement for both calibration and verification.
Optimal placement of active material actuators using genetic algorithm
NASA Astrophysics Data System (ADS)
Johnson, Terrence; Frecker, Mary I.
2004-07-01
Actuators based on smart materials generally exhibit a tradeoff between force and stroke. Researchers have surrounded piezoelectric materials (PZT"s) with complaint structures to magnify either their geometric or mechanical advantage. Most of these designs are literally built around a particular piezoelectric device, so the design space consists of only the compliant mechanism. Materials scientists researchers have demonstrated the ability to pole a PZT in an arbitrary direction, and some engineers have taken advantage of this to build "shear mode" actuators. The goal of this work is to determine if the performance of compliant mechanisms improves by the inclusion of the piezoelectric polarization as a design variable. The polarization vector is varied via transformation matrixes, and the compliant actuator is modeled using the SIMP (Solid Isotropic Material with Penalization) or "power-law method." The concept of mutual potential energy is used to form an objective function to measure the piezoelectric actuator"s performance. The optimal topology of the compliant mechanism and orientation of the polarization method are determined using a sequential linear programming algorithm. This paper presents a demonstration problem that shows small changes in the polarization vector have a marginal effect on the optimum topology of the mechanism, but improves actuation.
ERIC Educational Resources Information Center
Tran, Huu-Khoa; Chiou, Juing -Shian; Peng, Shou-Tao
2016-01-01
In this paper, the feasibility of a Genetic Algorithm Optimization (GAO) education software based Fuzzy Logic Controller (GAO-FLC) for simulating the flight motion control of Unmanned Aerial Vehicles (UAVs) is designed. The generated flight trajectories integrate the optimized Scaling Factors (SF) fuzzy controller gains by using GAO algorithm. The…
2004-09-01
optimization problems with stochastic objective functions and a mixture of design variable types. The generalized pattern search (GPS) class of algorithms is...provide computational enhancements to the basic algorithm. Im- plementation alternatives include the use of modern R&S procedures designed to provide...83 vii Page 4.3 Termination Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.4 Algorithm Design
Discrete bat algorithm for optimal problem of permutation flow shop scheduling.
Luo, Qifang; Zhou, Yongquan; Xie, Jian; Ma, Mingzhi; Li, Liangliang
2014-01-01
A discrete bat algorithm (DBA) is proposed for optimal permutation flow shop scheduling problem (PFSP). Firstly, the discrete bat algorithm is constructed based on the idea of basic bat algorithm, which divide whole scheduling problem into many subscheduling problems and then NEH heuristic be introduced to solve subscheduling problem. Secondly, some subsequences are operated with certain probability in the pulse emission and loudness phases. An intensive virtual population neighborhood search is integrated into the discrete bat algorithm to further improve the performance. Finally, the experimental results show the suitability and efficiency of the present discrete bat algorithm for optimal permutation flow shop scheduling problem.
Duan, Qian-Qian; Yang, Gen-Ke; Pan, Chang-Chun
2014-01-01
A hybrid optimization algorithm combining finite state method (FSM) and genetic algorithm (GA) is proposed to solve the crude oil scheduling problem. The FSM and GA are combined to take the advantage of each method and compensate deficiencies of individual methods. In the proposed algorithm, the finite state method makes up for the weakness of GA which is poor at local searching ability. The heuristic returned by the FSM can guide the GA algorithm towards good solutions. The idea behind this is that we can generate promising substructure or partial solution by using FSM. Furthermore, the FSM can guarantee that the entire solution space is uniformly covered. Therefore, the combination of the two algorithms has better global performance than the existing GA or FSM which is operated individually. Finally, a real-life crude oil scheduling problem from the literature is used for conducting simulation. The experimental results validate that the proposed method outperforms the state-of-art GA method. PMID:24772031
Duan, Qian-Qian; Yang, Gen-Ke; Pan, Chang-Chun
2014-01-01
A hybrid optimization algorithm combining finite state method (FSM) and genetic algorithm (GA) is proposed to solve the crude oil scheduling problem. The FSM and GA are combined to take the advantage of each method and compensate deficiencies of individual methods. In the proposed algorithm, the finite state method makes up for the weakness of GA which is poor at local searching ability. The heuristic returned by the FSM can guide the GA algorithm towards good solutions. The idea behind this is that we can generate promising substructure or partial solution by using FSM. Furthermore, the FSM can guarantee that the entire solution space is uniformly covered. Therefore, the combination of the two algorithms has better global performance than the existing GA or FSM which is operated individually. Finally, a real-life crude oil scheduling problem from the literature is used for conducting simulation. The experimental results validate that the proposed method outperforms the state-of-art GA method.
A fast optimization algorithm for multicriteria intensity modulated proton therapy planning
Chen Wei; Craft, David; Madden, Thomas M.; Zhang, Kewu; Kooy, Hanne M.; Herman, Gabor T.
2010-09-15
Purpose: To describe a fast projection algorithm for optimizing intensity modulated proton therapy (IMPT) plans and to describe and demonstrate the use of this algorithm in multicriteria IMPT planning. Methods: The authors develop a projection-based solver for a class of convex optimization problems and apply it to IMPT treatment planning. The speed of the solver permits its use in multicriteria optimization, where several optimizations are performed which span the space of possible treatment plans. The authors describe a plan database generation procedure which is customized to the requirements of the solver. The optimality precision of the solver can be specified by the user. Results: The authors apply the algorithm to three clinical cases: A pancreas case, an esophagus case, and a tumor along the rib cage case. Detailed analysis of the pancreas case shows that the algorithm is orders of magnitude faster than industry-standard general purpose algorithms (MOSEK's interior point optimizer, primal simplex optimizer, and dual simplex optimizer). Additionally, the projection solver has almost no memory overhead. Conclusions: The speed and guaranteed accuracy of the algorithm make it suitable for use in multicriteria treatment planning, which requires the computation of several diverse treatment plans. Additionally, given the low memory overhead of the algorithm, the method can be extended to include multiple geometric instances and proton range possibilities, for robust optimization.
A new improved artificial bee colony algorithm for ship hull form optimization
NASA Astrophysics Data System (ADS)
Huang, Fuxin; Wang, Lijue; Yang, Chi
2016-04-01
The artificial bee colony (ABC) algorithm is a relatively new swarm intelligence-based optimization algorithm. Its simplicity of implementation, relatively few parameter settings and promising optimization capability make it widely used in different fields. However, it has problems of slow convergence due to its solution search equation. Here, a new solution search equation based on a combination of the elite solution pool and the block perturbation scheme is proposed to improve the performance of the algorithm. In addition, two different solution search equations are used by employed bees and onlooker bees to balance the exploration and exploitation of the algorithm. The developed algorithm is validated by a set of well-known numerical benchmark functions. It is then applied to optimize two ship hull forms with minimum resistance. The tested results show that the proposed new improved ABC algorithm can outperform the ABC algorithm in most of the tested problems.
NASA Astrophysics Data System (ADS)
Hou, Rui; Yu, Junle
2011-12-01
Optical burst switching (OBS) has been regarded as the next generation optical switching technology. In this paper, the routing problem based on particle swarm optimization (PSO) algorithm in OBS has been studies and analyzed. Simulation results indicate that, the PSO based routing algorithm will optimal than the conversional shortest path first algorithm in space cost and calculation cost. Conclusions have certain theoretical significances for the improvement of OBS routing protocols.
Multiple shooting algorithms for jump-discontinuous problems in optimal control and estimation
NASA Technical Reports Server (NTRS)
Mook, D. J.; Lew, Jiann-Shiun
1991-01-01
Multiple shooting algorithms are developed for jump-discontinuous two-point boundary value problems arising in optimal control and optimal estimation. Examples illustrating the origin of such problems are given to motivate the development of the solution algorithms. The algorithms convert the necessary conditions, consisting of differential equations and transversality conditions, into algebraic equations. The solution of the algebraic equations provides exact solutions for linear problems. The existence and uniqueness of the solution are proved.
NASA Astrophysics Data System (ADS)
Ghulam Saber, Md; Arif Shahriar, Kh; Ahmed, Ashik; Hasan Sagor, Rakibul
2016-10-01
Particle swarm optimization (PSO) and invasive weed optimization (IWO) algorithms are used for extracting the modeling parameters of materials useful for optics and photonics research community. These two bio-inspired algorithms are used here for the first time in this particular field to the best of our knowledge. The algorithms are used for modeling graphene oxide and the performances of the two are compared. Two objective functions are used for different boundary values. Root mean square (RMS) deviation is determined and compared.
Aerodynamic Shape Optimization Using A Real-Number-Encoded Genetic Algorithm
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Pulliam, Thomas H.
2001-01-01
A new method for aerodynamic shape optimization using a genetic algorithm with real number encoding is presented. The algorithm is used to optimize three different problems, a simple hill climbing problem, a quasi-one-dimensional nozzle problem using an Euler equation solver and a three-dimensional transonic wing problem using a nonlinear potential solver. Results indicate that the genetic algorithm is easy to implement and extremely reliable, being relatively insensitive to design space noise.
Yoshimaru, Eriko S; Randtke, Edward A; Pagel, Mark D; Cárdenas-Rodríguez, Julio
2016-02-01
Pulsed Chemical Exchange Saturation Transfer (CEST) MRI experimental parameters and RF saturation pulse shapes were optimized using a multiobjective genetic algorithm. The optimization was carried out for RF saturation duty cycles of 50% and 90%, and results were compared to continuous wave saturation and Gaussian waveform. In both simulation and phantom experiments, continuous wave saturation performed the best, followed by parameters and shapes optimized by the genetic algorithm and then followed by Gaussian waveform. We have successfully demonstrated that the genetic algorithm is able to optimize pulse CEST parameters and that the results are translatable to clinical scanners.
Yoshimaru, Eriko S.; Randtke, Edward A.; Pagel, Mark D.; Cárdenas-Rodríguez, Julio
2016-01-01
Pulsed Chemical Exchange Saturation Transfer (CEST) MRI experimental parameters and RF saturation pulse shapes were optimized using a multiobjective genetic algorithm. The optimization was carried out for RF saturation duty cycles of 50% and 90%, and results were compared to continuous wave saturation and Gaussian waveform. In both simulation and phantom experiments, continuous wave saturation performed the best, followed by parameters and shapes optimized by the genetic algorithm and then followed by Gaussian waveform. We have successfully demonstrated that the genetic algorithm is able to optimize pulse CEST parameters and that the results are translatable to clinical scanners. PMID:26778301
NASA Astrophysics Data System (ADS)
Yoshimaru, Eriko S.; Randtke, Edward A.; Pagel, Mark D.; Cárdenas-Rodríguez, Julio
2016-02-01
Pulsed Chemical Exchange Saturation Transfer (CEST) MRI experimental parameters and RF saturation pulse shapes were optimized using a multiobjective genetic algorithm. The optimization was carried out for RF saturation duty cycles of 50% and 90%, and results were compared to continuous wave saturation and Gaussian waveform. In both simulation and phantom experiments, continuous wave saturation performed the best, followed by parameters and shapes optimized by the genetic algorithm and then followed by Gaussian waveform. We have successfully demonstrated that the genetic algorithm is able to optimize pulse CEST parameters and that the results are translatable to clinical scanners.
ERIC Educational Resources Information Center
Robertson, Alexander M.; Willett, Peter
1996-01-01
Describes a genetic algorithm (GA) that assigns weights to query terms in a ranked-output document retrieval system. Experiments showed the GA often found weights slightly superior to those produced by deterministic weighting (F4). Many times, however, the two methods gave the same results and sometimes the F4 results were superior, indicating…
Deb, Suash; Yang, Xin-She
2014-01-01
Traditional K-means clustering algorithms have the drawback of getting stuck at local optima that depend on the random values of initial centroids. Optimization algorithms have their advantages in guiding iterative computation to search for global optima while avoiding local optima. The algorithms help speed up the clustering process by converging into a global optimum early with multiple search agents in action. Inspired by nature, some contemporary optimization algorithms which include Ant, Bat, Cuckoo, Firefly, and Wolf search algorithms mimic the swarming behavior allowing them to cooperatively steer towards an optimal objective within a reasonable time. It is known that these so-called nature-inspired optimization algorithms have their own characteristics as well as pros and cons in different applications. When these algorithms are combined with K-means clustering mechanism for the sake of enhancing its clustering quality by avoiding local optima and finding global optima, the new hybrids are anticipated to produce unprecedented performance. In this paper, we report the results of our evaluation experiments on the integration of nature-inspired optimization methods into K-means algorithms. In addition to the standard evaluation metrics in evaluating clustering quality, the extended K-means algorithms that are empowered by nature-inspired optimization methods are applied on image segmentation as a case study of application scenario. PMID:25202730
Fong, Simon; Deb, Suash; Yang, Xin-She; Zhuang, Yan
2014-01-01
Traditional K-means clustering algorithms have the drawback of getting stuck at local optima that depend on the random values of initial centroids. Optimization algorithms have their advantages in guiding iterative computation to search for global optima while avoiding local optima. The algorithms help speed up the clustering process by converging into a global optimum early with multiple search agents in action. Inspired by nature, some contemporary optimization algorithms which include Ant, Bat, Cuckoo, Firefly, and Wolf search algorithms mimic the swarming behavior allowing them to cooperatively steer towards an optimal objective within a reasonable time. It is known that these so-called nature-inspired optimization algorithms have their own characteristics as well as pros and cons in different applications. When these algorithms are combined with K-means clustering mechanism for the sake of enhancing its clustering quality by avoiding local optima and finding global optima, the new hybrids are anticipated to produce unprecedented performance. In this paper, we report the results of our evaluation experiments on the integration of nature-inspired optimization methods into K-means algorithms. In addition to the standard evaluation metrics in evaluating clustering quality, the extended K-means algorithms that are empowered by nature-inspired optimization methods are applied on image segmentation as a case study of application scenario.
Wang, Jun; Zhou, Bihua; Zhou, Shudao
2016-01-01
This paper proposes an improved cuckoo search (ICS) algorithm to establish the parameters of chaotic systems. In order to improve the optimization capability of the basic cuckoo search (CS) algorithm, the orthogonal design and simulated annealing operation are incorporated in the CS algorithm to enhance the exploitation search ability. Then the proposed algorithm is used to establish parameters of the Lorenz chaotic system and Chen chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the algorithm can estimate parameters with high accuracy and reliability. Finally, the results are compared with the CS algorithm, genetic algorithm, and particle swarm optimization algorithm, and the compared results demonstrate the method is energy-efficient and superior. PMID:26880874
Wang, Jun; Zhou, Bihua; Zhou, Shudao
2016-01-01
This paper proposes an improved cuckoo search (ICS) algorithm to establish the parameters of chaotic systems. In order to improve the optimization capability of the basic cuckoo search (CS) algorithm, the orthogonal design and simulated annealing operation are incorporated in the CS algorithm to enhance the exploitation search ability. Then the proposed algorithm is used to establish parameters of the Lorenz chaotic system and Chen chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the algorithm can estimate parameters with high accuracy and reliability. Finally, the results are compared with the CS algorithm, genetic algorithm, and particle swarm optimization algorithm, and the compared results demonstrate the method is energy-efficient and superior.
NASA Technical Reports Server (NTRS)
Hutchby, J. A.; Fudurich, R. L.
1976-01-01
A comprehensive theoretical model of the graded band-gap Al(x)Ga(1-x)As-GaAs solar cell is used to optimize the n-on-p cell. The model includes power losses due to surface, bulk, and junction minority-carrier recombination, series resistance, and photon reflection from an SiO antireflection coating of optimum thickness. The optimized cell has a junction depth/graded band-gap layer thickness of 1.0 micron, respective donor and acceptor concentrations of 4 x 10 to the 17th power and 2 x 10 to the 17th power per cu cm, and a surface AlAs mode fraction of x = 0.35. The optimized graded band-gap cell has an air-mass-zero efficiency of 17.7% (not corrected for a 13% front surface contact area) and is shown to be less sensitive than a similar n-on-p GaAs cell to material degradation in the form of decreased minority-carrier diffusion lengths and increased surface-recombination velocity
NASA Astrophysics Data System (ADS)
Rama Mohan Rao, A.; Sivasubramanian, K.
2008-03-01
Active control devices can be implemented on seismically excited high rise buildings using appropriate active control theory, to reduce structural responses to a desired level. Certain locations of the structure are advantageous for placement of actuators in the sense that these locations effectively reduce the structural responses. Hence, optimal placement of actuators at discrete locations is an important problem that will have significant impact on control of civil structures like high rise buildings, bridges, etc. This optimal placement problem leads to a combinatorial optimisation and is difficult to solve. This paper presents a multi-start meta-heuristic algorithm called multiple start guided neighbourhood search (MSGNS) algorithm, which makes use of the good features of guided local searches like simulated annealing (SA) and tabu search (TS). Four distinct design criteria which influence the active control design are considered in this paper to study the optimal actuator placement problem. The sensitivities of the four optimisation criteria with respect to different earthquake records are explored. Further, in this paper, we deviate from the usual practice of using shear building models (or simple lumped mass model) in active control research for finding optimal actuator locations. Instead, we use detailed finite element models and demonstrate through numerical examples their effectiveness in arriving at the optimal actuator locations. Finally, the superior performance of the proposed MSGNS algorithm over popular meta-heuristic algorithms like GA, SA and TS is demonstrated through numerical experiments.
Optimization and Improvement of FOA Corner Cube Algorithm
McClay, W A; Awwal, A S; Burkhart, S C; Candy, J V
2004-10-01
Alignment of laser beams based on video images is a crucial task necessary to automate operation of the 192 beams at the National Ignition Facility (NIF). The final optics assembly (FOA) is the optical element that aligns the beam into the target chamber. This work presents an algorithm for determining the position of a corner cube alignment image in the final optics assembly. The improved algorithm was compared to the existing FOA algorithm on 900 noise-simulated images. While the existing FOA algorithm based on correlation with a synthetic template has a radial standard deviation of 1 pixel, the new algorithm based on classical matched filtering (CMF) and polynomial fit to the correlation peak improves the radial standard deviation performance to less than 0.3 pixels. In the new algorithm the templates are designed from real data stored during a year of actual operation.
A new multiobjective performance criterion used in PID tuning optimization algorithms
Sahib, Mouayad A.; Ahmed, Bestoun S.
2015-01-01
In PID controller design, an optimization algorithm is commonly employed to search for the optimal controller parameters. The optimization algorithm is based on a specific performance criterion which is defined by an objective or cost function. To this end, different objective functions have been proposed in the literature to optimize the response of the controlled system. These functions include numerous weighted time and frequency domain variables. However, for an optimum desired response it is difficult to select the appropriate objective function or identify the best weight values required to optimize the PID controller design. This paper presents a new time domain performance criterion based on the multiobjective Pareto front solutions. The proposed objective function is tested in the PID controller design for an automatic voltage regulator system (AVR) application using particle swarm optimization algorithm. Simulation results show that the proposed performance criterion can highly improve the PID tuning optimization in comparison with traditional objective functions. PMID:26843978
Compact and efficient large cross-section SOI rib waveguide taper optimized by a genetic algorithm
NASA Astrophysics Data System (ADS)
Liu, Yujin; Wang, Xi; Dong, Ying; Wang, Xiaohao
2016-01-01
A genetic algorithm is applied to optimize a taper between a large cross-section silicon-on-insulator (SOI) rib waveguide and a single-mode fiber to achieve an ultra-compact and highly efficient coupling structure. The coupling efficiency is taken as the objective function of the genetic algorithm in the taper optimization process. To apply the optimization algorithm, the taper is segmented into several sections. Three encoding forms and a two-step optimization strategy are adopted in the optimization process, resulting in a 10μm long taper with a coupling efficiency of 93.30% in quasi-TE mode at 1550nm. The characteristics of the optimized taper including the field profile, spectrum and fabrication tolerances in both horizontal and vertical directions are investigated via a three dimensional eigenmode expansion (EME) method, indicating that the optimized taper is compatible with the prevailing integrated circuit (IC) processing technology.
A new multiobjective performance criterion used in PID tuning optimization algorithms.
Sahib, Mouayad A; Ahmed, Bestoun S
2016-01-01
In PID controller design, an optimization algorithm is commonly employed to search for the optimal controller parameters. The optimization algorithm is based on a specific performance criterion which is defined by an objective or cost function. To this end, different objective functions have been proposed in the literature to optimize the response of the controlled system. These functions include numerous weighted time and frequency domain variables. However, for an optimum desired response it is difficult to select the appropriate objective function or identify the best weight values required to optimize the PID controller design. This paper presents a new time domain performance criterion based on the multiobjective Pareto front solutions. The proposed objective function is tested in the PID controller design for an automatic voltage regulator system (AVR) application using particle swarm optimization algorithm. Simulation results show that the proposed performance criterion can highly improve the PID tuning optimization in comparison with traditional objective functions.
Dynamic topology multi force particle swarm optimization algorithm and its application
NASA Astrophysics Data System (ADS)
Chen, Dongning; Zhang, Ruixing; Yao, Chengyu; Zhao, Zheyu
2016-01-01
Particle swarm optimization (PSO) algorithm is an effective bio-inspired algorithm but it has shortage of premature convergence. Researchers have made some improvements especially in force rules and population topologies. However, the current algorithms only consider a single kind of force rules and lack consideration of comprehensive improvement in both multi force rules and population topologies. In this paper, a dynamic topology multi force particle swarm optimization (DTMFPSO) algorithm is proposed in order to get better search performance. First of all, the principle of the presented multi force particle swarm optimization (MFPSO) algorithm is that different force rules are used in different search stages, which can balance the ability of global and local search. Secondly, a fitness-driven edge-changing (FE) topology based on the probability selection mechanism of roulette method is designed to cut and add edges between the particles, and the DTMFPSO algorithm is proposed by combining the FE topology with the MFPSO algorithm through concurrent evolution of both algorithm and structure in order to further improve the search accuracy. Thirdly, Benchmark functions are employed to evaluate the performance of the DTMFPSO algorithm, and test results show that the proposed algorithm is better than the well-known PSO algorithms, such as µPSO, MPSO, and EPSO algorithms. Finally, the proposed algorithm is applied to optimize the process parameters for ultrasonic vibration cutting on SiC wafer, and the surface quality of the SiC wafer is improved by 12.8% compared with the PSO algorithm in Ref. [25]. This research proposes a DTMFPSO algorithm with multi force rules and dynamic population topologies evolved simultaneously, and it has better search performance.
Iterative optimization algorithm with parameter estimation for the ambulance location problem.
Kim, Sun Hoon; Lee, Young Hoon
2016-12-01
The emergency vehicle location problem to determine the number of ambulance vehicles and their locations satisfying a required reliability level is investigated in this study. This is a complex nonlinear issue involving critical decision making that has inherent stochastic characteristics. This paper studies an iterative optimization algorithm with parameter estimation to solve the emergency vehicle location problem. In the suggested algorithm, a linear model determines the locations of ambulances, while a hypercube simulation is used to estimate and provide parameters regarding ambulance locations. First, we suggest an iterative hypercube optimization algorithm in which interaction parameters and rules for the hypercube and optimization are identified. The interaction rules employed in this study enable our algorithm to always find the locations of ambulances satisfying the reliability requirement. We also propose an iterative simulation optimization algorithm in which the hypercube method is replaced by a simulation, to achieve computational efficiency. The computational experiments show that the iterative simulation optimization algorithm performs equivalently to the iterative hypercube optimization. The suggested algorithms are found to outperform existing algorithms suggested in the literature.
Optimization of meander line antennas for RFID applications by using genetic algorithm
NASA Astrophysics Data System (ADS)
Bucuci, Stefania C.; Anchidin, Liliana; Dumitrascu, Ana; Danisor, Alin; Berescu, Serban; Tamas, Razvan D.
2015-02-01
In this paper, we propose an approach of optimization of meander line antennas by using genetic algorithm. Such antennas are used in RFID applications. As opposed to other approaches for meander antennas, we propose the use of only two optimization objectives, i.e. gain and size. As an example, we have optimized a single meander dipole antenna, resonating at 869 MHz.
Mousavi, Seyed Mahmoud; Husseinzadeh, Danial; Alikhani, Sadegh
2014-04-01
Efficient models are required to predict the optimum values of ozone concentration in different levels of its precursors' concentrations and temperatures. A novel model based on the application of a genetic programming (GP) optimization is presented in this article. Ozone precursors' concentrations and run time average temperature have been chosen as model's parameters. Generalization performances of two different homemade models based on genetic programming and genetic algorithm (GA), which can be used for calculating theoretical ozone concentration, are compared with conventional semi-empirical model performance. Experimental data of Mashhad city ambient air have been employed to investigate the prediction ability of properly trained GP, GA, and conventional semi-empirical models. It is clearly demonstrated that the in-house algorithm which is used for the model based on GP, provides better generalization performance over the model optimized with GA and the conventional semi-empirical ones. The proposed model is found accurate enough and can be used for urban air ozone concentration prediction.
Optimized feed-forward neural-network algorithm trained for cyclotron-cavity modeling
NASA Astrophysics Data System (ADS)
Mohamadian, Masoumeh; Afarideh, Hossein; Ghergherehchi, Mitra
2017-01-01
The cyclotron cavity presented in this paper is modeled by a feed-forward neural network trained by the authors’ optimized back-propagation (BP) algorithm. The training samples were obtained from simulation results that are for a number of defined situations and parameters and were achieved parametrically using MWS CST software; furthermore, the conventional BP algorithm with different hidden-neuron numbers, structures, and other optimal parameters such as learning rate that are applied for our purpose was also used here. The present study shows that an optimized FFN can be used to estimate the cyclotron-model parameters with an acceptable error function. A neural network trained by an optimized algorithm therefore shows a proper approximation and an acceptable ability regarding the modeling of the proposed structure. The cyclotron-cavity parameter-modeling results demonstrate that an FNN that is trained by the optimized algorithm could be a suitable method for the estimation of the design parameters in this case.
NASA Astrophysics Data System (ADS)
Afshar, M. H.
2007-04-01
This paper exploits the unique feature of the Ant Colony Optimization Algorithm (ACOA), namely incremental solution building mechanism, to develop partially constraint ACO algorithms for the solution of optimization problems with explicit constraints. The method is based on the provision of a tabu list for each ant at each decision point of the problem so that some constraints of the problem are satisfied. The application of the method to the problem of storm water network design is formulated and presented. The network nodes are considered as the decision points and the nodal elevations of the network are used as the decision variables of the optimization problem. Two partially constrained ACO algorithms are formulated and applied to a benchmark example of storm water network design and the results are compared with those of the original unconstrained algorithm and existing methods. In the first algorithm the positive slope constraints are satisfied explicitly and the rest are satisfied by using the penalty method while in the second one the satisfaction of constraints regarding the maximum ratio of flow depth to the diameter are also achieved explicitly via the tabu list. The method is shown to be very effective and efficient in locating the optimal solutions and in terms of the convergence characteristics of the resulting ACO algorithms. The proposed algorithms are also shown to be relatively insensitive to the initial colony used compared to the original algorithm. Furthermore, the method proves itself capable of finding an optimal or near-optimal solution, independent of the discretisation level and the size of the colony used.
NASA Astrophysics Data System (ADS)
Gao, Zhongmei; Shao, Xinyu; Jiang, Ping; Cao, Longchao; Zhou, Qi; Yue, Chen; Liu, Yang; Wang, Chunming
2016-09-01
It is of great significance to select appropriate welding process parameters for obtaining optimal weld geometry in hybrid laser-arc welding. An integrated optimization approach by combining Kriging model and GA is proposed to optimize process parameters. A four-factor, five-level experiment using Taguchi L25 is conducted considering laser power (P), welding current (A), distance between laser and arc (D) and traveling speed (V). Kriging model is adopted to approximate the relationship between process parameters and weld geometry, namely depth of penetration (DP), bead width (BW) and bead reinforcement (BR). The constructed Kriging model was used for parameters optimization by GA to maximize DP, minimize BW and ensure BR at a desired value. The effects of process parameters on weld geometry are analyzed. Microstructure and micro-hardness are also discussed. Verification experiments demonstrate that the obtained optimum values are in good agreement with experimental results.
A multiobjective optimization algorithm is applied to a groundwater quality management problem involving remediation by pump-and-treat (PAT). The multiobjective optimization framework uses the niched Pareto genetic algorithm (NPGA) and is applied to simultaneously minimize the...
NASA Astrophysics Data System (ADS)
Panda, S.; Mishra, D.; Biswal, B. B.; Tripathy, M.
2014-02-01
Robotic manipulators with three-revolute (3R) motions to attain desired positional configurations are very common in industrial robots. The capability of these robots depends largely on the workspace of the manipulator in addition to other parameters. In this study, an evolutionary optimization algorithm based on the foraging behaviour of the Escherichia coli bacteria present in the human intestine is utilized to optimize the workspace volume of a 3R manipulator. The new optimization method is modified from the original algorithm for faster convergence. This method is also useful for optimization problems in a highly constrained environment, such as robot workspace optimization. The new approach for workspace optimization of 3R manipulators is tested using three cases. The test results are compared with standard results available using other optimization algorithms, i.e. the differential evolution algorithm, the genetic algorithm and the particle swarm optimization algorithm. The present method is found to be superior to the other methods in terms of computational efficiency.
Fast algorithm for optimal graph-Laplacian based 3D image segmentation
NASA Astrophysics Data System (ADS)
Harizanov, S.; Georgiev, I.
2016-10-01
In this paper we propose an iterative steepest-descent-type algorithm that is observed to converge towards the exact solution of the ℓ0 discrete optimization problem, related to graph-Laplacian based image segmentation. Such an algorithm allows for significant additional improvements on the segmentation quality once the minimizer of the associated relaxed ℓ1 continuous optimization problem is computed, unlike the standard strategy of simply hard-thresholding the latter. Convergence analysis of the algorithm is not a subject of this work. Instead, various numerical experiments, confirming the practical value of the algorithm, are documented.
Nonsmooth Optimization Algorithms, System Theory, and Software Tools
1993-04-13
Solving Optimal Control Problems with...and D. Q. Mayne, "A Method of Centers Based on Barrier Functions for Solving Optimal Control Problems with Continuum State and Con- trol Constraints...Barrier Functions for Solving Optimal Control Problems with Continuum State and Con- trol Constraints", SIAMJ. Control and Opt., Vol.31, No. 1. pp
NASA Astrophysics Data System (ADS)
Iwan Solihin, Mahmud; Fauzi Zanil, Mohd
2016-11-01
Cuckoo Search (CS) and Differential Evolution (DE) algorithms are considerably robust meta-heuristic algorithms to solve constrained optimization problems. In this study, the performance of CS and DE are compared in solving the constrained optimization problem from selected benchmark functions. Selection of the benchmark functions are based on active or inactive constraints and dimensionality of variables (i.e. number of solution variable). In addition, a specific constraint handling and stopping criterion technique are adopted in the optimization algorithm. The results show, CS approach outperforms DE in term of repeatability and the quality of the optimum solutions.
Al-Aqeeli, Yousif H; Lee, T S; Abd Aziz, S
2016-01-01
Achievement of the optimal hydropower generation from operation of water reservoirs, is a complex problems. The purpose of this study was to formulate and improve an approach of a genetic algorithm optimization model (GAOM) in order to increase the maximization of annual hydropower generation for a single reservoir. For this purpose, two simulation algorithms were drafted and applied independently in that GAOM during 20 scenarios (years) for operation of Mosul reservoir, northern Iraq. The first algorithm was based on the traditional simulation of reservoir operation, whilst the second algorithm (Salg) enhanced the GAOM by changing the population values of GA through a new simulation process of reservoir operation. The performances of these two algorithms were evaluated through the comparison of their optimal values of annual hydropower generation during the 20 scenarios of operating. The GAOM achieved an increase in hydropower generation in 17 scenarios using these two algorithms, with the Salg being superior in all scenarios. All of these were done prior adding the evaporation (Ev) and precipitation (Pr) to the water balance equation. Next, the GAOM using the Salg was applied by taking into consideration the volumes of these two parameters. In this case, the optimal values obtained from the GAOM were compared, firstly with their counterpart that found using the same algorithm without taking into consideration of Ev and Pr, secondly with the observed values. The first comparison showed that the optimal values obtained in this case decreased in all scenarios, whilst maintaining the good results compared with the observed in the second comparison. The results proved the effectiveness of the Salg in increasing the hydropower generation through the enhanced approach of the GAOM. In addition, the results indicated to the importance of taking into account the Ev and Pr in the modelling of reservoirs operation.
Zhang, Rong; Verkruysse, Wim; Choi, Bernard; Viator, John A; Jung, Byungjo; Svaasand, Lars O; Aguilar, Guillermo; Nelson, J Stuart
2005-01-01
We present an initial study on applying genetic algorithms (GA) to retrieve human skin optical properties using visual reflectance spectroscopy (VRS). A three-layered skin model consisting of 13 parameters is first used to simulate skin and, through an analytical model based on optical diffusion theory, we study their independent effects on the reflectance spectra. Based on a preliminary analysis, nine skin parameters are chosen to be fitted by GA. The fitting procedure is applied first on simulated reflectance spectra with added white noise, and then on measured spectra from normal and port wine stain (PWS) human skin. A normalized residue of less than 0.005 is achieved for simulated spectra. In the case of measured spectra from human skin, the normalized residue is less than 0.01. Comparisons between applying GA and manual iteration (MI) fitting show that GA performed much better than the MI fitting method and can easily distinguish melanin concentrations for different skin types. Furthermore, the GA approach can lead to a reasonable understanding of the blood volume fraction and other skin properties, provided that the applicability of the diffusion approximation is satisfied.
NASA Technical Reports Server (NTRS)
Hovel, H. J.; Woodall, J. M.
1976-01-01
The three types of solar cells investigated were: (1) one consisting of a nGaAs substrate, a Zn doped pGaAs region, and a Zn doped Ga(1-x)Al(x)As layer, (2) one consisting of an nGaAs substrate, a Ge doped pGaAs region, and a pGa(1-x)Al(x)As upper layer, and (3) one consisting of an n+GaAs substrate, an nGa(1-x)Al(X)As region, a pGa(1-x)Bl(X) As region, and a pGa(1-y)Al(y)As upper layer. In all three cases, the upper alloy layer is thin and of high Al composition in order to obtain high spectral response over the widest possible range of photon energies. Spectral response, capacitance-voltage, current-voltage, diffusion length, sunlight (or the equivalent)-efficiency, and efficiency-temperature measurements were made as a function of device parameters in order to analyze and optimize the solar cell behavior.
Matott, L Shawn; Bartelt-Hunt, Shannon L; Rabideau, Alan J; Fowler, K R
2006-10-15
Although heuristic optimization techniques are increasingly applied in environmental engineering applications, algorithm selection and configuration are often approached in an ad hoc fashion. In this study, the design of a multilayer sorptive barrier system served as a benchmark problem for evaluating several algorithm-tuning procedures, as applied to three global optimization techniques (genetic algorithms, simulated annealing, and particle swarm optimization). Each design problem was configured as a combinatorial optimization in which sorptive materials were selected for inclusion in a landfill liner to minimize the transport of three common organic contaminants. Relative to multilayer sorptive barrier design, study results indicate (i) the binary-coded genetic algorithm is highly efficient and requires minimal tuning, (ii) constraint violations must be carefully integrated to avoid poor algorithm convergence, and (iii) search algorithm performance is strongly influenced by the physical-chemical properties of the organic contaminants of concern. More generally, the results suggest that formal algorithm tuning, which has not been widely applied to environmental engineering optimization, can significantly improve algorithm performance and provide insight into the physical processes that control environmental systems.
Hybrid particle swarm global optimization algorithm for phase diversity phase retrieval.
Zhang, P G; Yang, C L; Xu, Z H; Cao, Z L; Mu, Q Q; Xuan, L
2016-10-31
The core problem of phase diversity phase retrieval (PDPR) is to find suitable optimization algorithms for wave-front sensing of different scales, especially for large-scale wavefront sensing. When dealing with large-scale wave-front sensing, existing gradient-based local optimization algorithms used in PDPR are easily trapped in local minimums near initial positions, and available global optimization algorithms possess low convergence efficiency. We construct a practicable optimization algorithm used in PDPR for large-scale wave-front sensing. This algorithm, named EPSO-BFGS, is a two-step hybrid global optimization algorithm based on the combination of evolutionary particle swarm optimization (EPSO) and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. Firstly, EPSO provides global search and obtains a rough global minimum position in limited search steps. Then, BFGS initialized by the rough global minimum position approaches the global minimum with high accuracy and fast convergence speed. Numerical examples testify to the feasibility and reliability of EPSO-BFGS for wave-front sensing of different scales. Two numerical cases also validate the ability of EPSO-BFGS for large-scale wave-front sensing. The effectiveness of EPSO-BFGS is further affirmed by performing a verification experiment.
A hybrid cuckoo search algorithm with Nelder Mead method for solving global optimization problems.
Ali, Ahmed F; Tawhid, Mohamed A
2016-01-01
Cuckoo search algorithm is a promising metaheuristic population based method. It has been applied to solve many real life problems. In this paper, we propose a new cuckoo search algorithm by combining the cuckoo search algorithm with the Nelder-Mead method in order to solve the integer and minimax optimization problems. We call the proposed algorithm by hybrid cuckoo search and Nelder-Mead method (HCSNM). HCSNM starts the search by applying the standard cuckoo search for number of iterations then the best obtained solution is passing to the Nelder-Mead algorithm as an intensification process in order to accelerate the search and overcome the slow convergence of the standard cuckoo search algorithm. The proposed algorithm is balancing between the global exploration of the Cuckoo search algorithm and the deep exploitation of the Nelder-Mead method. We test HCSNM algorithm on seven integer programming problems and ten minimax problems and compare against eight algorithms for solving integer programming problems and seven algorithms for solving minimax problems. The experiments results show the efficiency of the proposed algorithm and its ability to solve integer and minimax optimization problems in reasonable time.
A VLSI optimal constructive algorithm for classification problems
Beiu, V.; Draghici, S.; Sethi, I.K.
1997-10-01
If neural networks are to be used on a large scale, they have to be implemented in hardware. However, the cost of the hardware implementation is critically sensitive to factors like the precision used for the weights, the total number of bits of information and the maximum fan-in used in the network. This paper presents a version of the Constraint Based Decomposition training algorithm which is able to produce networks using limited precision integer weights and units with limited fan-in. The algorithm is tested on the 2-spiral problem and the results are compared with other existing algorithms.
Efficient Algorithm for Optimizing Adaptive Quantum Metrology Processes
NASA Astrophysics Data System (ADS)
Hentschel, Alexander; Sanders, Barry C.
2011-12-01
Quantum-enhanced metrology infers an unknown quantity with accuracy beyond the standard quantum limit (SQL). Feedback-based metrological techniques are promising for beating the SQL but devising the feedback procedures is difficult and inefficient. Here we introduce an efficient self-learning swarm-intelligence algorithm for devising feedback-based quantum metrological procedures. Our algorithm can be trained with simulated or real-world trials and accommodates experimental imperfections, losses, and decoherence.
Evolving a Nelder-Mead Algorithm for Optimization with Genetic Programming.
Fajfar, Iztok; Puhan, Janez; Bűrmen, Árpád
2016-01-25
We used genetic programming to evolve a direct search optimization algorithm, similar to that of the standard downhill simplex optimization method proposed by Nelder and Mead (1965). In the training process, we used several ten-dimensional quadratic functions with randomly displaced parameters and different randomly generated starting simplices. The genetically obtained optimization algorithm showed overall better performance than the original Nelder-Mead method on a standard set of test functions. We observed that many parts of the genetically produced algorithm were seldom or never executed, which allowed us to greatly simplify the algorithm by removing the redundant parts. The resulting algorithm turns out to be considerably simpler than the original Nelder-Mead method while still performing better than the original method.
A Guiding Evolutionary Algorithm with Greedy Strategy for Global Optimization Problems.
Cao, Leilei; Xu, Lihong; Goodman, Erik D
2016-01-01
A Guiding Evolutionary Algorithm (GEA) with greedy strategy for global optimization problems is proposed. Inspired by Particle Swarm Optimization, the Genetic Algorithm, and the Bat Algorithm, the GEA was designed to retain some advantages of each method while avoiding some disadvantages. In contrast to the usual Genetic Algorithm, each individual in GEA is crossed with the current global best one instead of a randomly selected individual. The current best individual served as a guide to attract offspring to its region of genotype space. Mutation was added to offspring according to a dynamic mutation probability. To increase the capability of exploitation, a local search mechanism was applied to new individuals according to a dynamic probability of local search. Experimental results show that GEA outperformed the other three typical global optimization algorithms with which it was compared.
NASA Astrophysics Data System (ADS)
Salcedo-Sanz, S.; Camacho-Gómez, C.; Magdaleno, A.; Pereira, E.; Lorenzana, A.
2017-04-01
In this paper we tackle a problem of optimal design and location of Tuned Mass Dampers (TMDs) for structures subjected to earthquake ground motions, using a novel meta-heuristic algorithm. Specifically, the Coral Reefs Optimization (CRO) with Substrate Layer (CRO-SL) is proposed as a competitive co-evolution algorithm with different exploration procedures within a single population of solutions. The proposed approach is able to solve the TMD design and location problem, by exploiting the combination of different types of searching mechanisms. This promotes a powerful evolutionary-like algorithm for optimization problems, which is shown to be very effective in this particular problem of TMDs tuning. The proposed algorithm's performance has been evaluated and compared with several reference algorithms in two building models with two and four floors, respectively.
A Guiding Evolutionary Algorithm with Greedy Strategy for Global Optimization Problems
Cao, Leilei; Xu, Lihong; Goodman, Erik D.
2016-01-01
A Guiding Evolutionary Algorithm (GEA) with greedy strategy for global optimization problems is proposed. Inspired by Particle Swarm Optimization, the Genetic Algorithm, and the Bat Algorithm, the GEA was designed to retain some advantages of each method while avoiding some disadvantages. In contrast to the usual Genetic Algorithm, each individual in GEA is crossed with the current global best one instead of a randomly selected individual. The current best individual served as a guide to attract offspring to its region of genotype space. Mutation was added to offspring according to a dynamic mutation probability. To increase the capability of exploitation, a local search mechanism was applied to new individuals according to a dynamic probability of local search. Experimental results show that GEA outperformed the other three typical global optimization algorithms with which it was compared. PMID:27293421
A global optimization algorithm for simulation-based problems via the extended DIRECT scheme
NASA Astrophysics Data System (ADS)
Liu, Haitao; Xu, Shengli; Wang, Xiaofang; Wu, Junnan; Song, Yang
2015-11-01
This article presents a global optimization algorithm via the extension of the DIviding RECTangles (DIRECT) scheme to handle problems with computationally expensive simulations efficiently. The new optimization strategy improves the regular partition scheme of DIRECT to a flexible irregular partition scheme in order to utilize information from irregular points. The metamodelling technique is introduced to work with the flexible partition scheme to speed up the convergence, which is meaningful for simulation-based problems. Comparative results on eight representative benchmark problems and an engineering application with some existing global optimization algorithms indicate that the proposed global optimization strategy is promising for simulation-based problems in terms of efficiency and accuracy.
NASA Astrophysics Data System (ADS)
Metcalfe, Travis S.
1999-05-01
I have developed a procedure utilizing a genetic-algorithm (GA) based optimization scheme to fit the observed light curves of an eclipsing binary star with a model produced by the Wilson-Devinney (W-D) code. The principal advantages of this approach are the global search capability and the objectivity of the final result. Although this method can be more efficient than some other comparably global search techniques, the computational requirements of the code are still considerable. I have applied this fitting procedure to my observations of the W UMa type eclipsing binary BH Cassiopeiae. An analysis of V-band CCD data obtained in 1994-1995 from Steward Observatory and U- and B-band photoelectric data obtained in 1996 from McDonald Observatory provided three complete light curves to constrain the fit. In addition, radial velocity curves obtained in 1997 from McDonald Observatory provided a direct measurement of the system mass ratio to restrict the search. The results of the GA-based fit are in excellent agreement with the final orbital solution obtained with the standard differential corrections procedure in the W-D code.
An evolutionary algorithm for global optimization based on self-organizing maps
NASA Astrophysics Data System (ADS)
Barmada, Sami; Raugi, Marco; Tucci, Mauro
2016-10-01
In this article, a new population-based algorithm for real-parameter global optimization is presented, which is denoted as self-organizing centroids optimization (SOC-opt). The proposed method uses a stochastic approach which is based on the sequential learning paradigm for self-organizing maps (SOMs). A modified version of the SOM is proposed where each cell contains an individual, which performs a search for a locally optimal solution and it is affected by the search for a global optimum. The movement of the individuals in the search space is based on a discrete-time dynamic filter, and various choices of this filter are possible to obtain different dynamics of the centroids. In this way, a general framework is defined where well-known algorithms represent a particular case. The proposed algorithm is validated through a set of problems, which include non-separable problems, and compared with state-of-the-art algorithms for global optimization.
Application of Particle Swarm Optimization Algorithm in the Heating System Planning Problem
Ma, Rong-Jiang; Yu, Nan-Yang; Hu, Jun-Yi
2013-01-01
Based on the life cycle cost (LCC) approach, this paper presents an integral mathematical model and particle swarm optimization (PSO) algorithm for the heating system planning (HSP) problem. The proposed mathematical model minimizes the cost of heating system as the objective for a given life cycle time. For the particularity of HSP problem, the general particle swarm optimization algorithm was improved. An actual case study was calculated to check its feasibility in practical use. The results show that the improved particle swarm optimization (IPSO) algorithm can more preferably solve the HSP problem than PSO algorithm. Moreover, the results also present the potential to provide useful information when making decisions in the practical planning process. Therefore, it is believed that if this approach is applied correctly and in combination with other elements, it can become a powerful and effective optimization tool for HSP problem. PMID:23935429
A near optimal guidance algorithm for aero-assisted orbit transfer
NASA Astrophysics Data System (ADS)
Calise, Anthony J.; Bae, Gyoung H.
The paper presents a near optimal guidance algorithm for aero-assited orbit plane change, based on minimizing the energy loss during the atmospheric portion of the maneuver. The guidance algorithm makes use of recent results obtained from energy state approximations and singular perturbation analysis of optimal heading change for a hypersonic gliding vehicle. This earlier work ignored the terminal constraint on altitude needed to insure that the vehicle exits that atmosphere. Thus, the resulting guidance algorithm was only appropriate for maneuvering reentry vehicle guidance. In the context of singular perturbation theory, a constraint on final altitude gives rise to a difficult terminal boundary layer problem, which cannot be solved in closed form. This paper will demonstrate the near optimality of a predictive/corrective guidance algorithm for the terminal maneuver. Comparisons are made to numerically optimized trajectories for a range or orbit plane angles.