NASA Astrophysics Data System (ADS)
Miao, J. C.; Zhu, P.; Shi, G. L.; Chen, G. L.
2008-01-01
Numerical stability is an important issue for any integral procedure. Since sub-cycling algorithm has been presented by Belytschko et al. (Comput Methods Appl Mech Eng 17/18: 259-275, 1979), various kinds of these integral procedures were developed in later 20 years and their stability were widely studied. However, on how to apply the sub-cycling to flexible multi-body dynamics (FMD) is still a lack of investigation up to now. A particular sub-cycling algorithm for the FMD based on the central difference method was introduced in detail in part I (Miao et al. in Comp Mech doi: 10.1007/s00466-007-0183-9) of this paper. Adopting an integral approximation operator method, stability of the presented algorithm is transformed to a generalized eigenvalue problem in the paper and is discussed by solving the problem later. Numerical examples are performed to verify the availability and efficiency of the algorithm further.
Practical algorithmic probability: an image inpainting example
NASA Astrophysics Data System (ADS)
Potapov, Alexey; Scherbakov, Oleg; Zhdanov, Innokentii
2013-12-01
Possibility of practical application of algorithmic probability is analyzed on an example of image inpainting problem that precisely corresponds to the prediction problem. Such consideration is fruitful both for the theory of universal prediction and practical image inpaiting methods. Efficient application of algorithmic probability implies that its computation is essentially optimized for some specific data representation. In this paper, we considered one image representation, namely spectral representation, for which an image inpainting algorithm is proposed based on the spectrum entropy criterion. This algorithm showed promising results in spite of very simple representation. The same approach can be used for introducing ALP-based criterion for more powerful image representations.
Stochastic Formal Correctness of Numerical Algorithms
NASA Technical Reports Server (NTRS)
Daumas, Marc; Lester, David; Martin-Dorel, Erik; Truffert, Annick
2009-01-01
We provide a framework to bound the probability that accumulated errors were never above a given threshold on numerical algorithms. Such algorithms are used for example in aircraft and nuclear power plants. This report contains simple formulas based on Levy's and Markov's inequalities and it presents a formal theory of random variables with a special focus on producing concrete results. We selected four very common applications that fit in our framework and cover the common practices of systems that evolve for a long time. We compute the number of bits that remain continuously significant in the first two applications with a probability of failure around one out of a billion, where worst case analysis considers that no significant bit remains. We are using PVS as such formal tools force explicit statement of all hypotheses and prevent incorrect uses of theorems.
Trees, bialgebras and intrinsic numerical algorithms
NASA Technical Reports Server (NTRS)
Crouch, Peter; Grossman, Robert; Larson, Richard
1990-01-01
Preliminary work about intrinsic numerical integrators evolving on groups is described. Fix a finite dimensional Lie group G; let g denote its Lie algebra, and let Y(sub 1),...,Y(sub N) denote a basis of g. A class of numerical algorithms is presented that approximate solutions to differential equations evolving on G of the form: dot-x(t) = F(x(t)), x(0) = p is an element of G. The algorithms depend upon constants c(sub i) and c(sub ij), for i = 1,...,k and j is less than i. The algorithms have the property that if the algorithm starts on the group, then it remains on the group. In addition, they also have the property that if G is the abelian group R(N), then the algorithm becomes the classical Runge-Kutta algorithm. The Cayley algebra generated by labeled, ordered trees is used to generate the equations that the coefficients c(sub i) and c(sub ij) must satisfy in order for the algorithm to yield an rth order numerical integrator and to analyze the resulting algorithms.
Numerical Algorithms Based on Biorthogonal Wavelets
NASA Technical Reports Server (NTRS)
Ponenti, Pj.; Liandrat, J.
1996-01-01
Wavelet bases are used to generate spaces of approximation for the resolution of bidimensional elliptic and parabolic problems. Under some specific hypotheses relating the properties of the wavelets to the order of the involved operators, it is shown that an approximate solution can be built. This approximation is then stable and converges towards the exact solution. It is designed such that fast algorithms involving biorthogonal multi resolution analyses can be used to resolve the corresponding numerical problems. Detailed algorithms are provided as well as the results of numerical tests on partial differential equations defined on the bidimensional torus.
Analyzing milestoning networks for molecular kinetics: Definitions, algorithms, and examples
NASA Astrophysics Data System (ADS)
Viswanath, Shruthi; Kreuzer, Steven M.; Cardenas, Alfredo E.; Elber, Ron
2013-11-01
Network representations are becoming increasingly popular for analyzing kinetic data from techniques like Milestoning, Markov State Models, and Transition Path Theory. Mapping continuous phase space trajectories into a relatively small number of discrete states helps in visualization of the data and in dissecting complex dynamics to concrete mechanisms. However, not only are molecular networks derived from molecular dynamics simulations growing in number, they are also getting increasingly complex, owing partly to the growth in computer power that allows us to generate longer and better converged trajectories. The increased complexity of the networks makes simple interpretation and qualitative insight of the molecular systems more difficult to achieve. In this paper, we focus on various network representations of kinetic data and algorithms to identify important edges and pathways in these networks. The kinetic data can be local and partial (such as the value of rate coefficients between states) or an exact solution to kinetic equations for the entire system (such as the stationary flux between vertices). In particular, we focus on the Milestoning method that provides fluxes as the main output. We proposed Global Maximum Weight Pathways as a useful tool for analyzing molecular mechanism in Milestoning networks. A closely related definition was made in the context of Transition Path Theory. We consider three algorithms to find Global Maximum Weight Pathways: Recursive Dijkstra's, Edge-Elimination, and Edge-List Bisection. The asymptotic efficiency of the algorithms is analyzed and numerical tests on finite networks show that Edge-List Bisection and Recursive Dijkstra's algorithms are most efficient for sparse and dense networks, respectively. Pathways are illustrated for two examples: helix unfolding and membrane permeation. Finally, we illustrate that networks based on local kinetic information can lead to incorrect interpretation of molecular mechanisms.
Adaptive Numerical Algorithms in Space Weather Modeling
NASA Technical Reports Server (NTRS)
Toth, Gabor; vanderHolst, Bart; Sokolov, Igor V.; DeZeeuw, Darren; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Nakib, Dalal; Powell, Kenneth G.; Stout, Quentin F.; Glocer, Alex; Ma, Ying-Juan; Opher, Merav
2010-01-01
Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different physics in different domains. A multi-physics system can be modeled by a software framework comprising of several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solar wind Roe Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamics (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit numerical
Adaptive numerical algorithms in space weather modeling
NASA Astrophysics Data System (ADS)
Tóth, Gábor; van der Holst, Bart; Sokolov, Igor V.; De Zeeuw, Darren L.; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Najib, Dalal; Powell, Kenneth G.; Stout, Quentin F.; Glocer, Alex; Ma, Ying-Juan; Opher, Merav
2012-02-01
Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different relevant physics in different domains. A multi-physics system can be modeled by a software framework comprising several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solarwind Roe-type Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamic (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit
Aquarius RFI Detection and Mitigation Algorithm: Assessment and Examples
NASA Technical Reports Server (NTRS)
Le Vine, David M.; De Matthaeis, P.; Ruf, Christopher S.; Chen, D. D.
2013-01-01
Aquarius is an L-band radiometer system designed to map sea surface salinity from space. This is a sensitive measurement, and protection from radio frequency interference (RFI) is important for success. An initial look at the performance of the Aquarius RFI detection and mitigation algorithm is reported together with examples of the global distribution of RFI at the L-band. To protect against RFI, Aquarius employs rapid sampling (10 ms) and a "glitch" detection algorithm that looks for outliers among the samples. Samples identified as RFI are removed, and the remainder is averaged to produce an RFI-free signal for the salinity retrieval algorithm. The RFI detection algorithm appears to work well over the ocean with modest rates for false alarms (5%) and missed detection. The global distribution of RFI coincides well with population centers and is consistent with observations reported by the Soil Moisture and Ocean Salinity mission.
Digital super-resolution microscopy using example-based algorithm
NASA Astrophysics Data System (ADS)
Ishikawa, Shinji; Hayasaki, Yoshio
2015-05-01
We propose a super-resolution microscopy with a confocal optical setup and an example-based algorithm. The example-based super-resolution algorithm was performed by an example database which is constructed by learning a lot of sets of a high-resolution patch and a low-resolution patch. The high-resolution patch is a part of the high-resolution image of an object model expressed in a computer, and the low-resolution patch is calculated from the high-resolution patch in consideration with a spatial property of an optical microscope. In the reconstruction process, a low-resolution image observed by the confocal optical setup with an image sensor is converted to the super-resolved high-resolution image selected by a pattern matching method from the example database. We demonstrate the adequate selection of the patch size and the weighting superposition method performs the super resolution with a low signal-to noise ratio.
Research on numerical algorithms for large space structures
NASA Technical Reports Server (NTRS)
Denman, E. D.
1982-01-01
Numerical algorithms for large space structures were investigated with particular emphasis on decoupling method for analysis and design. Numerous aspects of the analysis of large systems ranging from the algebraic theory to lambda matrices to identification algorithms were considered. A general treatment of the algebraic theory of lambda matrices is presented and the theory is applied to second order lambda matrices.
Numerical Algorithm for Delta of Asian Option
Zhang, Boxiang; Yu, Yang; Wang, Weiguo
2015-01-01
We study the numerical solution of the Greeks of Asian options. In particular, we derive a close form solution of Δ of Asian geometric option and use this analytical form as a control to numerically calculate Δ of Asian arithmetic option, which is known to have no explicit close form solution. We implement our proposed numerical method and compare the standard error with other classical variance reduction methods. Our method provides an efficient solution to the hedging strategy with Asian options. PMID:26266271
Numerical Algorithm for Delta of Asian Option.
Zhang, Boxiang; Yu, Yang; Wang, Weiguo
2015-01-01
We study the numerical solution of the Greeks of Asian options. In particular, we derive a close form solution of Δ of Asian geometric option and use this analytical form as a control to numerically calculate Δ of Asian arithmetic option, which is known to have no explicit close form solution. We implement our proposed numerical method and compare the standard error with other classical variance reduction methods. Our method provides an efficient solution to the hedging strategy with Asian options. PMID:26266271
A Polynomial Time, Numerically Stable Integer Relation Algorithm
NASA Technical Reports Server (NTRS)
Ferguson, Helaman R. P.; Bailey, Daivd H.; Kutler, Paul (Technical Monitor)
1998-01-01
Let x = (x1, x2...,xn be a vector of real numbers. X is said to possess an integer relation if there exist integers a(sub i) not all zero such that a1x1 + a2x2 + ... a(sub n)Xn = 0. Beginning in 1977 several algorithms (with proofs) have been discovered to recover the a(sub i) given x. The most efficient of these existing integer relation algorithms (in terms of run time and the precision required of the input) has the drawback of being very unstable numerically. It often requires a numeric precision level in the thousands of digits to reliably recover relations in modest-sized test problems. We present here a new algorithm for finding integer relations, which we have named the "PSLQ" algorithm. It is proved in this paper that the PSLQ algorithm terminates with a relation in a number of iterations that is bounded by a polynomial in it. Because this algorithm employs a numerically stable matrix reduction procedure, it is free from the numerical difficulties, that plague other integer relation algorithms. Furthermore, its stability admits an efficient implementation with lower run times oil average than other algorithms currently in Use. Finally, this stability can be used to prove that relation bounds obtained from computer runs using this algorithm are numerically accurate.
A Numerical Instability in an ADI Algorithm for Gyrokinetics
E.A. Belli; G.W. Hammett
2004-12-17
We explore the implementation of an Alternating Direction Implicit (ADI) algorithm for a gyrokinetic plasma problem and its resulting numerical stability properties. This algorithm, which uses a standard ADI scheme to divide the field solve from the particle distribution function advance, has previously been found to work well for certain plasma kinetic problems involving one spatial and two velocity dimensions, including collisions and an electric field. However, for the gyrokinetic problem we find a severe stability restriction on the time step. Furthermore, we find that this numerical instability limitation also affects some other algorithms, such as a partially implicit Adams-Bashforth algorithm, where the parallel motion operator v{sub {parallel}} {partial_derivative}/{partial_derivative}z is treated implicitly and the field terms are treated with an Adams-Bashforth explicit scheme. Fully explicit algorithms applied to all terms can be better at long wavelengths than these ADI or partially implicit algorithms.
Research on numerical algorithms for large space structures
NASA Technical Reports Server (NTRS)
Denman, E. D.
1981-01-01
Numerical algorithms for analysis and design of large space structures are investigated. The sign algorithm and its application to decoupling of differential equations are presented. The generalized sign algorithm is given and its application to several problems discussed. The Laplace transforms of matrix functions and the diagonalization procedure for a finite element equation are discussed. The diagonalization of matrix polynomials is considered. The quadrature method and Laplace transforms is discussed and the identification of linear systems by the quadrature method investigated.
A Numerical Algorithm for the Solution of a Phase-Field Model of Polycrystalline Materials
Dorr, M R; Fattebert, J; Wickett, M E; Belak, J F; Turchi, P A
2008-12-04
We describe an algorithm for the numerical solution of a phase-field model (PFM) of microstructure evolution in polycrystalline materials. The PFM system of equations includes a local order parameter, a quaternion representation of local orientation and a species composition parameter. The algorithm is based on the implicit integration of a semidiscretization of the PFM system using a backward difference formula (BDF) temporal discretization combined with a Newton-Krylov algorithm to solve the nonlinear system at each time step. The BDF algorithm is combined with a coordinate projection method to maintain quaternion unit length, which is related to an important solution invariant. A key element of the Newton-Krylov algorithm is the selection of a preconditioner to accelerate the convergence of the Generalized Minimum Residual algorithm used to solve the Jacobian linear system in each Newton step. Results are presented for the application of the algorithm to 2D and 3D examples.
Technical Report: Scalable Parallel Algorithms for High Dimensional Numerical Integration
Masalma, Yahya; Jiao, Yu
2010-10-01
We implemented a scalable parallel quasi-Monte Carlo numerical high-dimensional integration for tera-scale data points. The implemented algorithm uses the Sobol s quasi-sequences to generate random samples. Sobol s sequence was used to avoid clustering effects in the generated random samples and to produce low-discrepancy random samples which cover the entire integration domain. The performance of the algorithm was tested. Obtained results prove the scalability and accuracy of the implemented algorithms. The implemented algorithm could be used in different applications where a huge data volume is generated and numerical integration is required. We suggest using the hyprid MPI and OpenMP programming model to improve the performance of the algorithms. If the mixed model is used, attention should be paid to the scalability and accuracy.
A hybrid artificial bee colony algorithm for numerical function optimization
NASA Astrophysics Data System (ADS)
Alqattan, Zakaria N.; Abdullah, Rosni
2015-02-01
Artificial Bee Colony (ABC) algorithm is one of the swarm intelligence algorithms; it has been introduced by Karaboga in 2005. It is a meta-heuristic optimization search algorithm inspired from the intelligent foraging behavior of the honey bees in nature. Its unique search process made it as one of the most competitive algorithm with some other search algorithms in the area of optimization, such as Genetic algorithm (GA) and Particle Swarm Optimization (PSO). However, the ABC performance of the local search process and the bee movement or the solution improvement equation still has some weaknesses. The ABC is good in avoiding trapping at the local optimum but it spends its time searching around unpromising random selected solutions. Inspired by the PSO, we propose a Hybrid Particle-movement ABC algorithm called HPABC, which adapts the particle movement process to improve the exploration of the original ABC algorithm. Numerical benchmark functions were used in order to experimentally test the HPABC algorithm. The results illustrate that the HPABC algorithm can outperform the ABC algorithm in most of the experiments (75% better in accuracy and over 3 times faster).
An efficient cuckoo search algorithm for numerical function optimization
NASA Astrophysics Data System (ADS)
Ong, Pauline; Zainuddin, Zarita
2013-04-01
Cuckoo search algorithm which reproduces the breeding strategy of the best known brood parasitic bird, the cuckoos has demonstrated its superiority in obtaining the global solution for numerical optimization problems. However, the involvement of fixed step approach in its exploration and exploitation behavior might slow down the search process considerably. In this regards, an improved cuckoo search algorithm with adaptive step size adjustment is introduced and its feasibility on a variety of benchmarks is validated. The obtained results show that the proposed scheme outperforms the standard cuckoo search algorithm in terms of convergence characteristic while preserving the fascinating features of the original method.
Multiresolution representation and numerical algorithms: A brief review
NASA Technical Reports Server (NTRS)
Harten, Amiram
1994-01-01
In this paper we review recent developments in techniques to represent data in terms of its local scale components. These techniques enable us to obtain data compression by eliminating scale-coefficients which are sufficiently small. This capability for data compression can be used to reduce the cost of many numerical solution algorithms by either applying it to the numerical solution operator in order to get an approximate sparse representation, or by applying it to the numerical solution itself in order to reduce the number of quantities that need to be computed.
Fast Quantum Algorithms for Numerical Integrals and Stochastic Processes
NASA Technical Reports Server (NTRS)
Abrams, D.; Williams, C.
1999-01-01
We discuss quantum algorithms that calculate numerical integrals and descriptive statistics of stochastic processes. With either of two distinct approaches, one obtains an exponential speed increase in comparison to the fastest known classical deterministic algotithms and a quadratic speed increase incomparison to classical Monte Carlo methods.
A novel bee swarm optimization algorithm for numerical function optimization
NASA Astrophysics Data System (ADS)
Akbari, Reza; Mohammadi, Alireza; Ziarati, Koorush
2010-10-01
The optimization algorithms which are inspired from intelligent behavior of honey bees are among the most recently introduced population based techniques. In this paper, a novel algorithm called bee swarm optimization, or BSO, and its two extensions for improving its performance are presented. The BSO is a population based optimization technique which is inspired from foraging behavior of honey bees. The proposed approach provides different patterns which are used by the bees to adjust their flying trajectories. As the first extension, the BSO algorithm introduces different approaches such as repulsion factor and penalizing fitness (RP) to mitigate the stagnation problem. Second, to maintain efficiently the balance between exploration and exploitation, time-varying weights (TVW) are introduced into the BSO algorithm. The proposed algorithm (BSO) and its two extensions (BSO-RP and BSO-RPTVW) are compared with existing algorithms which are based on intelligent behavior of honey bees, on a set of well known numerical test functions. The experimental results show that the BSO algorithms are effective and robust; produce excellent results, and outperform other algorithms investigated in this consideration.
Experimentally constructing finite difference algorithms in numerical relativity
NASA Astrophysics Data System (ADS)
Anderson, Matthew; Neilsen, David; Matzner, Richard
2002-04-01
Computational studies of gravitational waves require numerical algorithms with long-term stability (necessary for convergence). However, constructing stable finite difference algorithms (FDA) for the ADM formulation of the Einstein equations, especially in multiple dimensions, has proven difficult. Most FDA's are constructed using rules of thumb gained from experience with simple model equations. To search for FDA's with improved stability, we adopt a brute-force approach, where we systematically test thousands of numerical schemes. We sort the spatial derivatives of the Einstein equations into groups, and parameterize each group by finite difference type (centered or upwind) and order. Furthermore, terms proportional to the constraints are added to the evolution equations with additional parameters. A spherically symmetric, excised Schwarzschild black hole (one dimension) and linearized waves in multiple dimensions are used as model systems to evaluate the different numerical schemes.
Numerical Laplace Transform Inversion Employing the Gaver-Stehfest Algorithm.
ERIC Educational Resources Information Center
Jacquot, Raymond G.; And Others
1985-01-01
Presents a technique for the numerical inversion of Laplace Transforms and several examples employing this technique. Limitations of the method in terms of available computer word length and the effects of these limitations on approximate inverse functions are also discussed. (JN)
Determining the Numerical Stability of Quantum Chemistry Algorithms.
Knizia, Gerald; Li, Wenbin; Simon, Sven; Werner, Hans-Joachim
2011-08-01
We present a simple, broadly applicable method for determining the numerical properties of quantum chemistry algorithms. The method deliberately introduces random numerical noise into computations, which is of the same order of magnitude as the floating point precision. Accordingly, repeated runs of an algorithm give slightly different results, which can be analyzed statistically to obtain precise estimates of its numerical stability. This noise is produced by automatic code injection into regular compiler output, so that no substantial programming effort is required, only a recompilation of the affected program sections. The method is applied to investigate: (i) the numerical stability of the three-center Obara-Saika integral evaluation scheme for high angular momenta, (ii) if coupled cluster perturbative triples can be evaluated with single precision arithmetic, (iii) how to implement the density fitting approximation in Møller-Plesset perturbation theory (MP2) most accurately, and (iv) which parts of density fitted MP2 can be safely evaluated with single precision arithmetic. In the integral case, we find a numerical instability in an equation that is used in almost all integral programs. Due to the results of (ii) and (iv), we conjecture that single precision arithmetic can be applied whenever a calculation is done in an orthogonal basis set and excessively long linear sums are avoided. PMID:26606614
Computational Fluid Dynamics. [numerical methods and algorithm development
NASA Technical Reports Server (NTRS)
1992-01-01
This collection of papers was presented at the Computational Fluid Dynamics (CFD) Conference held at Ames Research Center in California on March 12 through 14, 1991. It is an overview of CFD activities at NASA Lewis Research Center. The main thrust of computational work at Lewis is aimed at propulsion systems. Specific issues related to propulsion CFD and associated modeling will also be presented. Examples of results obtained with the most recent algorithm development will also be presented.
An algorithm for the numerical solution of linear differential games
Polovinkin, E S; Ivanov, G E; Balashov, M V; Konstantinov, R V; Khorev, A V
2001-10-31
A numerical algorithm for the construction of stable Krasovskii bridges, Pontryagin alternating sets, and also of piecewise program strategies solving two-person linear differential (pursuit or evasion) games on a fixed time interval is developed on the basis of a general theory. The aim of the first player (the pursuer) is to hit a prescribed target (terminal) set by the phase vector of the control system at the prescribed time. The aim of the second player (the evader) is the opposite. A description of numerical algorithms used in the solution of differential games of the type under consideration is presented and estimates of the errors resulting from the approximation of the game sets by polyhedra are presented.
A numerical algorithm for magnetohydrodynamics of ablated materials.
Lu, Tianshi; Du, Jian; Samulyak, Roman
2008-07-01
A numerical algorithm for the simulation of magnetohydrodynamics in partially ionized ablated material is described. For the hydro part, the hyperbolic conservation laws with electromagnetic terms is solved using techniques developed for free surface flows; for the electromagnetic part, the electrostatic approximation is applied and an elliptic equation for electric potential is solved. The algorithm has been implemented in the frame of front tracking, which explicitly tracks geometrically complex evolving interfaces. An elliptic solver based on the embedded boundary method were implemented for both two- and three-dimensional simulations. A surface model on the interface between the solid target and the ablated vapor has also been developed as well as a numerical model for the equation of state which accounts for atomic processes in the ablated material. The code has been applied to simulations of the pellet ablation in a magnetically confined plasma and the laser-ablated plasma plume expansion in magnetic fields. PMID:19051925
Algorithms for the Fractional Calculus: A Selection of Numerical Methods
NASA Technical Reports Server (NTRS)
Diethelm, K.; Ford, N. J.; Freed, A. D.; Luchko, Yu.
2003-01-01
Many recently developed models in areas like viscoelasticity, electrochemistry, diffusion processes, etc. are formulated in terms of derivatives (and integrals) of fractional (non-integer) order. In this paper we present a collection of numerical algorithms for the solution of the various problems arising in this context. We believe that this will give the engineer the necessary tools required to work with fractional models in an efficient way.
The Structure-Mapping Engine: Algorithm and Examples.
ERIC Educational Resources Information Center
Falkenhainer, Brian; And Others
This description of the Structure-Mapping Engine (SME), a flexible, cognitive simulation program for studying analogical processing which is based on Gentner's Structure-Mapping theory of analogy, points out that the SME provides a "tool kit" for constructing matching algorithms consistent with this theory. This report provides: (1) a review of…
Predictive Lateral Logic for Numerical Entry Guidance Algorithms
NASA Technical Reports Server (NTRS)
Smith, Kelly M.
2016-01-01
Recent entry guidance algorithm development123 has tended to focus on numerical integration of trajectories onboard in order to evaluate candidate bank profiles. Such methods enjoy benefits such as flexibility to varying mission profiles and improved robustness to large dispersions. A common element across many of these modern entry guidance algorithms is a reliance upon the concept of Apollo heritage lateral error (or azimuth error) deadbands in which the number of bank reversals to be performed is non-deterministic. This paper presents a closed-loop bank reversal method that operates with a fixed number of bank reversals defined prior to flight. However, this number of bank reversals can be modified at any point, including in flight, based on contingencies such as fuel leaks where propellant usage must be minimized.
Improvements in algorithms for phenotype inference: the NAT2 example.
Selinski, Silvia; Blaszkewicz, Meinolf; Ickstadt, Katja; Hengstler, Jan G; Golka, Klaus
2014-02-01
Numerous studies have analyzed the impact of N-acetyltransferase 2 (NAT2) polymorphisms on drug efficacy, side effects as well as cancer risk. Here, we present the state of the art of deriving haplotypes from polymorphisms and discuss the available software. PHASE v2.1 is currently considered a gold standard for NAT2 haplotype assignment. In vitro studies have shown that some slow acetylation genotypes confer reduced protein stability. This has been observed particularly for G191A, T341C and G590A. Substantial ethnic variations of the acetylation status have been described. Probably, upcoming agriculture and the resulting change in diet caused a selection pressure for slow acetylation. In recent years much research has been done to reduce the complexity of NAT2 genotyping. Deriving the haplotype from seven SNPs is still considered a gold standard. However, meanwhile several studies have shown that a two-SNP combination, C282T and T341C, results in a similarly good distinction in Caucasians. However, attempts to further reduce complexity to only one 'tagging SNP' (rs1495741) may lead to wrong predictions where phenotypically slow acetylators were genotyped as intermediate or rapid. Numerous studies have shown that slow NAT2 haplotypes are associated with increased urinary bladder cancer risk and increased risk of anti-tuberculosis drug-induced hepatotoxicity. A drawback of the current practice of solely discriminating slow, intermediate and rapid genotypes for phenotype inference is limited resolution of differences between slow acetylators. Future developments to differentiate between slow and ultra-slow genotypes may further improve individualized drug dosing and epidemiological studies of cancer risk. PMID:24524665
Verifying Algorithms for Autonomous Aircraft by Simulation Generalities and Example
NASA Technical Reports Server (NTRS)
White, Allan L.
2010-01-01
An open question in Air Traffic Management is what procedures can be validated by simulation where the simulation shows that the probability of undesirable events is below the required level at some confidence level. The problem is including enough realism to be convincing while retaining enough efficiency to run the large number of trials needed for high confidence. The paper first examines the probabilistic interpretation of a typical requirement by a regulatory agency and computes the number of trials needed to establish the requirement at an equivalent confidence level. Since any simulation is likely to consider only one type of event and there are several types of events, the paper examines under what conditions this separate consideration is valid. The paper establishes a separation algorithm at the required confidence level where the aircraft operates under feedback control as is subject to perturbations. There is a discussion where it is shown that a scenario three of four orders of magnitude more complex is feasible. The question of what can be validated by simulation remains open, but there is reason to be optimistic.
Algorithm-Based Fault Tolerance for Numerical Subroutines
NASA Technical Reports Server (NTRS)
Tumon, Michael; Granat, Robert; Lou, John
2007-01-01
A software library implements a new methodology of detecting faults in numerical subroutines, thus enabling application programs that contain the subroutines to recover transparently from single-event upsets. The software library in question is fault-detecting middleware that is wrapped around the numericalsubroutines. Conventional serial versions (based on LAPACK and FFTW) and a parallel version (based on ScaLAPACK) exist. The source code of the application program that contains the numerical subroutines is not modified, and the middleware is transparent to the user. The methodology used is a type of algorithm- based fault tolerance (ABFT). In ABFT, a checksum is computed before a computation and compared with the checksum of the computational result; an error is declared if the difference between the checksums exceeds some threshold. Novel normalization methods are used in the checksum comparison to ensure correct fault detections independent of algorithm inputs. In tests of this software reported in the peer-reviewed literature, this library was shown to enable detection of 99.9 percent of significant faults while generating no false alarms.
Particle-In-Cell Multi-Algorithm Numerical Test-Bed
NASA Astrophysics Data System (ADS)
Meyers, M. D.; Yu, P.; Tableman, A.; Decyk, V. K.; Mori, W. B.
2015-11-01
We describe a numerical test-bed that allows for the direct comparison of different numerical simulation schemes using only a single code. It is built from the UPIC Framework, which is a set of codes and modules for constructing parallel PIC codes. In this test-bed code, Maxwell's equations are solved in Fourier space in two dimensions. One can readily examine the numerical properties of a real space finite difference scheme by including its operators' Fourier space representations in the Maxwell solver. The fields can be defined at the same location in a simulation cell or can be offset appropriately by half-cells, as in the Yee finite difference time domain scheme. This allows for the accurate comparison of numerical properties (dispersion relations, numerical stability, etc.) across finite difference schemes, or against the original spectral scheme. We have also included different options for the charge and current deposits, including a strict charge conserving current deposit. The test-bed also includes options for studying the analytic time domain scheme, which eliminates numerical dispersion errors in vacuum. We will show examples from the test-bed that illustrate how the properties of some numerical instabilities vary between different PIC algorithms. Work supported by the NSF grant ACI 1339893 and DOE grant DE-SC0008491.
Understanding disordered systems through numerical simulation and algorithm development
NASA Astrophysics Data System (ADS)
Sweeney, Sean Michael
Disordered systems arise in many physical contexts. Not all matter is uniform, and impurities or heterogeneities can be modeled by fixed random disorder. Numerous complex networks also possess fixed disorder, leading to applications in transportation systems, telecommunications, social networks, and epidemic modeling, to name a few. Due to their random nature and power law critical behavior, disordered systems are difficult to study analytically. Numerical simulation can help overcome this hurdle by allowing for the rapid computation of system states. In order to get precise statistics and extrapolate to the thermodynamic limit, large systems must be studied over many realizations. Thus, innovative algorithm development is essential in order reduce memory or running time requirements of simulations. This thesis presents a review of disordered systems, as well as a thorough study of two particular systems through numerical simulation, algorithm development and optimization, and careful statistical analysis of scaling properties. Chapter 1 provides a thorough overview of disordered systems, the history of their study in the physics community, and the development of techniques used to study them. Topics of quenched disorder, phase transitions, the renormalization group, criticality, and scale invariance are discussed. Several prominent models of disordered systems are also explained. Lastly, analysis techniques used in studying disordered systems are covered. In Chapter 2, minimal spanning trees on critical percolation clusters are studied, motivated in part by an analytic perturbation expansion by Jackson and Read that I check against numerical calculations. This system has a direct mapping to the ground state of the strongly disordered spin glass. We compute the path length fractal dimension of these trees in dimensions d = {2, 3, 4, 5} and find our results to be compatible with the analytic results suggested by Jackson and Read. In Chapter 3, the random bond Ising
Numerical algorithms for computations of feedback laws arising in control of flexible systems
NASA Technical Reports Server (NTRS)
Lasiecka, Irena
1989-01-01
Several continuous models will be examined, which describe flexible structures with boundary or point control/observation. Issues related to the computation of feedback laws are examined (particularly stabilizing feedbacks) with sensors and actuators located either on the boundary or at specific point locations of the structure. One of the main difficulties is due to the great sensitivity of the system (hyperbolic systems with unbounded control actions), with respect to perturbations caused either by uncertainty of the model or by the errors introduced in implementing numerical algorithms. Thus, special care must be taken in the choice of the appropriate numerical schemes which eventually lead to implementable finite dimensional solutions. Finite dimensional algorithms are constructed on a basis of a priority analysis of the properties of the original, continuous (infinite diversional) systems with the following criteria in mind: (1) convergence and stability of the algorithms and (2) robustness (reasonable insensitivity with respect to the unknown parameters of the systems). Examples with mixed finite element methods and spectral methods are provided.
Linsen, Sarah; Torbeyns, Joke; Verschaffel, Lieven; Reynvoet, Bert; De Smedt, Bert
2016-03-01
There are two well-known computation methods for solving multi-digit subtraction items, namely mental and algorithmic computation. It has been contended that mental and algorithmic computation differentially rely on numerical magnitude processing, an assumption that has already been examined in children, but not yet in adults. Therefore, in this study, we examined how numerical magnitude processing was associated with mental and algorithmic computation, and whether this association with numerical magnitude processing was different for mental versus algorithmic computation. We also investigated whether the association between numerical magnitude processing and mental and algorithmic computation differed for measures of symbolic versus nonsymbolic numerical magnitude processing. Results showed that symbolic, and not nonsymbolic, numerical magnitude processing was associated with mental computation, but not with algorithmic computation. Additional analyses showed, however, that the size of this association with symbolic numerical magnitude processing was not significantly different for mental and algorithmic computation. We also tried to further clarify the association between numerical magnitude processing and complex calculation by also including relevant arithmetical subskills, i.e. arithmetic facts, needed for complex calculation that are also known to be dependent on numerical magnitude processing. Results showed that the associations between symbolic numerical magnitude processing and mental and algorithmic computation were fully explained by individual differences in elementary arithmetic fact knowledge. PMID:26914586
A stable and efficient numerical algorithm for unconfined aquifer analysis.
Keating, Elizabeth; Zyvoloski, George
2009-01-01
The nonlinearity of equations governing flow in unconfined aquifers poses challenges for numerical models, particularly in field-scale applications. Existing methods are often unstable, do not converge, or require extremely fine grids and small time steps. Standard modeling procedures such as automated model calibration and Monte Carlo uncertainty analysis typically require thousands of model runs. Stable and efficient model performance is essential to these analyses. We propose a new method that offers improvements in stability and efficiency and is relatively tolerant of coarse grids. It applies a strategy similar to that in the MODFLOW code to the solution of Richard's equation with a grid-dependent pressure/saturation relationship. The method imposes a contrast between horizontal and vertical permeability in gridblocks containing the water table, does not require "dry" cells to convert to inactive cells, and allows recharge to flow through relatively dry cells to the water table. We establish the accuracy of the method by comparison to an analytical solution for radial flow to a well in an unconfined aquifer with delayed yield. Using a suite of test problems, we demonstrate the efficiencies gained in speed and accuracy over two-phase simulations, and improved stability when compared to MODFLOW. The advantages for applications to transient unconfined aquifer analysis are clearly demonstrated by our examples. We also demonstrate applicability to mixed vadose zone/saturated zone applications, including transport, and find that the method shows great promise for these types of problem as well. PMID:19341374
A stable and efficient numerical algorithm for unconfined aquifer analysis
Keating, Elizabeth; Zyvoloski, George
2008-01-01
The non-linearity of equations governing flow in unconfined aquifers poses challenges for numerical models, particularly in field-scale applications. Existing methods are often unstable, do not converge, or require extremely fine grids and small time steps. Standard modeling procedures such as automated model calibration and Monte Carlo uncertainty analysis typically require thousands of forward model runs. Stable and efficient model performance is essential to these analyses. We propose a new method that offers improvements in stability and efficiency, and is relatively tolerant of coarse grids. It applies a strategy similar to that in the MODFLOW code to solution of Richard's Equation with a grid-dependent pressure/saturation relationship. The method imposes a contrast between horizontal and vertical permeability in gridblocks containing the water table. We establish the accuracy of the method by comparison to an analytical solution for radial flow to a well in an unconfined aquifer with delayed yield. Using a suite of test problems, we demonstrate the efficiencies gained in speed and accuracy over two-phase simulations, and improved stability when compared to MODFLOW. The advantages for applications to transient unconfined aquifer analysis are clearly demonstrated by our examples. We also demonstrate applicability to mixed vadose zone/saturated zone applications, including transport, and find that the method shows great promise for these types of problem, as well.
NASA Astrophysics Data System (ADS)
Acebrón, Juan A.; Rodríguez-Rozas, Ángel
2013-10-01
An efficient numerical method based on a probabilistic representation for the Vlasov-Poisson system of equations in the Fourier space has been derived. This has been done theoretically for arbitrary dimensional problems, and particularized to unidimensional problems for numerical purposes. Such a representation has been validated theoretically in the linear regime comparing the solution obtained with the classical results of the linear Landau damping. The numerical strategy followed requires generating suitable random trees combined with a Padé approximant for approximating accurately a given divergent series. Such series are obtained by summing the partial contributions to the solution coming from trees with arbitrary number of branches. These contributions, coming in general from multi-dimensional definite integrals, are efficiently computed by a quasi-Monte Carlo method. It is shown how the accuracy of the method can be effectively increased by considering more terms of the series. The new representation was used successfully to develop a Probabilistic Domain Decomposition method suited for massively parallel computers, which improves the scalability found in classical methods. Finally, a few numerical examples based on classical phenomena such as the non-linear Landau damping, and the two streaming instability are given, illustrating the remarkable performance of the algorithm, when compared the results with those obtained using a classical method.
A fast algorithm for numerical solutions to Fortet's equation
NASA Astrophysics Data System (ADS)
Brumen, Gorazd
2008-10-01
A fast algorithm for computation of default times of multiple firms in a structural model is presented. The algorithm uses a multivariate extension of the Fortet's equation and the structure of Toeplitz matrices to significantly improve the computation time. In a financial market consisting of M[not double greater-than sign]1 firms and N discretization points in every dimension the algorithm uses O(nlogn·M·M!·NM(M-1)/2) operations, where n is the number of discretization points in the time domain. The algorithm is applied to firm survival probability computation and zero coupon bond pricing.
NASA Astrophysics Data System (ADS)
Mattei, D.; Smith, I.; Ferrari, A.; Carbillet, M.
2010-10-01
Post-processing for exoplanet detection using direct imaging requires large data cubes and/or sophisticated signal processing technics. For alt-azimuthal mounts, a projection effect called field rotation makes the potential planet rotate in a known manner on the set of images. For ground based telescopes that use extreme adaptive optics and advanced coronagraphy, technics based on field rotation are already broadly used and still under progress. In most such technics, for a given initial position of the planet the planet intensity estimate is a linear function of the set of images. However, due to field rotation the modified instrumental response applied is not shift invariant like usual linear filters. Testing all possible initial positions is therefore very time-consuming. To reduce the time process, we propose to deal with each subset of initial positions computed on a different machine using parallelization programming. In particular, the MOODS algorithm dedicated to the VLT-SPHERE instrument, that estimates jointly the light contributions of the star and the potential exoplanet, is parallelized on the Observatoire de la Cote d'Azur cluster. Different parallelization methods (OpenMP, MPI, Jobs Array) have been elaborated for the initial MOODS code and compared to each other. The one finally chosen splits the initial positions on the processors available by accounting at best for the different constraints of the cluster structure: memory, job submission queues, number of available CPUs, cluster average load. At the end, a standard set of images is satisfactorily processed in a few hours instead of a few days.
Numerical analysis of EPR spectra. 7. The simplex algorithm
NASA Astrophysics Data System (ADS)
Beckwith, Athelstan L. J.; Brumby, Steven
The Simplex algorithm is well suited to the least-squares analysis of highly complex EPR spectra. The application of the algorithm to the analysis of the spectra of benzo[ a]pyrenyl-6-oxy, chloro(methoxycarbonyl)methyl, and cyano(methoxy)methyl free radicals is described.
A numerical comparison of discrete Kalman filtering algorithms: An orbit determination case study
NASA Technical Reports Server (NTRS)
Thornton, C. L.; Bierman, G. J.
1976-01-01
The numerical stability and accuracy of various Kalman filter algorithms are thoroughly studied. Numerical results and conclusions are based on a realistic planetary approach orbit determination study. The case study results of this report highlight the numerical instability of the conventional and stabilized Kalman algorithms. Numerical errors associated with these algorithms can be so large as to obscure important mismodeling effects and thus give misleading estimates of filter accuracy. The positive result of this study is that the Bierman-Thornton U-D covariance factorization algorithm is computationally efficient, with CPU costs that differ negligibly from the conventional Kalman costs. In addition, accuracy of the U-D filter using single-precision arithmetic consistently matches the double-precision reference results. Numerical stability of the U-D filter is further demonstrated by its insensitivity of variations in the a priori statistics.
An Example-Based Super-Resolution Algorithm for Selfie Images
William, Jino Hans; Venkateswaran, N.; Narayanan, Srinath; Ramachandran, Sandeep
2016-01-01
A selfie is typically a self-portrait captured using the front camera of a smartphone. Most state-of-the-art smartphones are equipped with a high-resolution (HR) rear camera and a low-resolution (LR) front camera. As selfies are captured by front camera with limited pixel resolution, the fine details in it are explicitly missed. This paper aims to improve the resolution of selfies by exploiting the fine details in HR images captured by rear camera using an example-based super-resolution (SR) algorithm. HR images captured by rear camera carry significant fine details and are used as an exemplar to train an optimal matrix-value regression (MVR) operator. The MVR operator serves as an image-pair priori which learns the correspondence between the LR-HR patch-pairs and is effectively used to super-resolve LR selfie images. The proposed MVR algorithm avoids vectorization of image patch-pairs and preserves image-level information during both learning and recovering process. The proposed algorithm is evaluated for its efficiency and effectiveness both qualitatively and quantitatively with other state-of-the-art SR algorithms. The results validate that the proposed algorithm is efficient as it requires less than 3 seconds to super-resolve LR selfie and is effective as it preserves sharp details without introducing any counterfeit fine details. PMID:27064500
An Example-Based Super-Resolution Algorithm for Selfie Images.
William, Jino Hans; Venkateswaran, N; Narayanan, Srinath; Ramachandran, Sandeep
2016-01-01
A selfie is typically a self-portrait captured using the front camera of a smartphone. Most state-of-the-art smartphones are equipped with a high-resolution (HR) rear camera and a low-resolution (LR) front camera. As selfies are captured by front camera with limited pixel resolution, the fine details in it are explicitly missed. This paper aims to improve the resolution of selfies by exploiting the fine details in HR images captured by rear camera using an example-based super-resolution (SR) algorithm. HR images captured by rear camera carry significant fine details and are used as an exemplar to train an optimal matrix-value regression (MVR) operator. The MVR operator serves as an image-pair priori which learns the correspondence between the LR-HR patch-pairs and is effectively used to super-resolve LR selfie images. The proposed MVR algorithm avoids vectorization of image patch-pairs and preserves image-level information during both learning and recovering process. The proposed algorithm is evaluated for its efficiency and effectiveness both qualitatively and quantitatively with other state-of-the-art SR algorithms. The results validate that the proposed algorithm is efficient as it requires less than 3 seconds to super-resolve LR selfie and is effective as it preserves sharp details without introducing any counterfeit fine details. PMID:27064500
Numerical Optimization Algorithms and Software for Systems Biology
Saunders, Michael
2013-02-02
The basic aims of this work are: to develop reliable algorithms for solving optimization problems involving large stoi- chiometric matrices; to investigate cyclic dependency between metabolic and macromolecular biosynthetic networks; and to quantify the significance of thermodynamic constraints on prokaryotic metabolism.
On vortex loops and filaments: three examples of numerical predictions of flows containing vortices.
Krause, Egon
2003-01-01
Vortex motion plays a dominant role in many flow problems. This article aims at demonstrating some of the characteristic features of vortices with the aid of numerical solutions of the governing equations of fluid mechanics, the Navier-Stokes equations. Their discretized forms will first be reviewed briefly. Thereafter three problems of fluid flow involving vortex loops and filaments are discussed. In the first, the time-dependent motion and the mutual interaction of two colliding vortex rings are discussed, predicted in good agreement with experimental observations. The second example shows how vortex rings are generated, move, and interact with each other during the suction stroke in the cylinder of an automotive engine. The numerical results, validated with experimental data, suggest that vortex rings can be used to influence the spreading of the fuel droplets prior to ignition and reduce the fuel consumption. In the third example, it is shown that vortices can also occur in aerodynamic flows over delta wings at angle of attack as well as pipe flows: of particular interest for technical applications of these flows is the situation in which the vortex cores are destroyed, usually referred to as vortex breakdown or bursting. Although reliable breakdown criteria could not be established as yet, the numerical predictions obtained so far are found to agree well with the few experimental data available in the recent literature. PMID:12545239
A bibliography on parallel and vector numerical algorithms
NASA Technical Reports Server (NTRS)
Ortega, James M.; Voigt, Robert G.; Romine, Charles H.
1988-01-01
This is a bibliography on numerical methods. It also includes a number of other references on machine architecture, programming language, and other topics of interest to scientific computing. Certain conference proceedings and anthologies which have been published in book form are also listed.
A bibliography on parallel and vector numerical algorithms
NASA Technical Reports Server (NTRS)
Ortega, J. M.; Voigt, R. G.
1987-01-01
This is a bibliography of numerical methods. It also includes a number of other references on machine architecture, programming language, and other topics of interest to scientific computing. Certain conference proceedings and anthologies which have been published in book form are listed also.
Numerical stability analysis of the pseudo-spectral analytical time-domain PIC algorithm
Godfrey, Brendan B.; Vay, Jean-Luc; Haber, Irving
2014-02-01
The pseudo-spectral analytical time-domain (PSATD) particle-in-cell (PIC) algorithm solves the vacuum Maxwell's equations exactly, has no Courant time-step limit (as conventionally defined), and offers substantial flexibility in plasma and particle beam simulations. It is, however, not free of the usual numerical instabilities, including the numerical Cherenkov instability, when applied to relativistic beam simulations. This paper derives and solves the numerical dispersion relation for the PSATD algorithm and compares the results with corresponding behavior of the more conventional pseudo-spectral time-domain (PSTD) and finite difference time-domain (FDTD) algorithms. In general, PSATD offers superior stability properties over a reasonable range of time steps. More importantly, one version of the PSATD algorithm, when combined with digital filtering, is almost completely free of the numerical Cherenkov instability for time steps (scaled to the speed of light) comparable to or smaller than the axial cell size.
Structural algorithm to reservoir reconstruction using passive seismic data (synthetic example)
Smaglichenko, Tatyana A.; Volodin, Igor A.; Lukyanitsa, Andrei A.; Smaglichenko, Alexander V.; Sayankina, Maria K.
2012-09-26
Using of passive seismic observations to detect a reservoir is a new direction of prospecting and exploration of hydrocarbons. In order to identify thin reservoir model we applied the modification of Gaussian elimination method in conditions of incomplete synthetic data. Because of the singularity of a matrix conventional method does not work. Therefore structural algorithm has been developed by analyzing the given model as a complex model. Numerical results demonstrate of its advantage compared with usual way of solution. We conclude that the gas reservoir is reconstructed by retrieving of the image of encasing shale beneath it.
Stochastic algorithms for the analysis of numerical flame simulations
Bell, John B.; Day, Marcus S.; Grcar, Joseph F.; Lijewski, Michael J.
2004-04-26
Recent progress in simulation methodologies and high-performance parallel computers have made it is possible to perform detailed simulations of multidimensional reacting flow phenomena using comprehensive kinetics mechanisms. As simulations become larger and more complex, it becomes increasingly difficult to extract useful information from the numerical solution, particularly regarding the interactions of the chemical reaction and diffusion processes. In this paper we present a new diagnostic tool for analysis of numerical simulations of reacting flow. Our approach is based on recasting an Eulerian flow solution in a Lagrangian frame. Unlike a conventional Lagrangian view point that follows the evolution of a volume of the fluid, we instead follow specific chemical elements, e.g., carbon, nitrogen, etc., as they move through the system . From this perspective an ''atom'' is part of some molecule of a species that is transported through the domain by advection and diffusion. Reactions cause the atom to shift from one chemical host species to another and the subsequent transport of the atom is given by the movement of the new species. We represent these processes using a stochastic particle formulation that treats advection deterministically and models diffusion and chemistry as stochastic processes. In this paper, we discuss the numerical issues in detail and demonstrate that an ensemble of stochastic trajectories can accurately capture key features of the continuum solution. The capabilities of this diagnostic are then demonstrated by applications to study the modulation of carbon chemistry during a vortex-flame interaction, and the role of cyano chemistry in rm NO{sub x} production for a steady diffusion flame.
Thrombosis modeling in intracranial aneurysms: a lattice Boltzmann numerical algorithm
NASA Astrophysics Data System (ADS)
Ouared, R.; Chopard, B.; Stahl, B.; Rüfenacht, D. A.; Yilmaz, H.; Courbebaisse, G.
2008-07-01
The lattice Boltzmann numerical method is applied to model blood flow (plasma and platelets) and clotting in intracranial aneurysms at a mesoscopic level. The dynamics of blood clotting (thrombosis) is governed by mechanical variations of shear stress near wall that influence platelets-wall interactions. Thrombosis starts and grows below a shear rate threshold, and stops above it. Within this assumption, it is possible to account qualitatively well for partial, full or no occlusion of the aneurysm, and to explain why spontaneous thrombosis is more likely to occur in giant aneurysms than in small or medium sized aneurysms.
Copps, Kevin D.; Carnes, Brian R.
2008-04-01
We examine algorithms for the finite element approximation of thermal contact models. We focus on the implementation of thermal contact algorithms in SIERRA Mechanics. Following the mathematical formulation of models for tied contact and resistance contact, we present three numerical algorithms: (1) the multi-point constraint (MPC) algorithm, (2) a resistance algorithm, and (3) a new generalized algorithm. We compare and contrast both the correctness and performance of the algorithms in three test problems. We tabulate the convergence rates of global norms of the temperature solution on sequentially refined meshes. We present the results of a parameter study of the effect of contact search tolerances. We outline best practices in using the software for predictive simulations, and suggest future improvements to the implementation.
NASA Astrophysics Data System (ADS)
Prather, M. J.; Zhu, X.
2003-12-01
Improved numerical methods for transport of trace species in the atmosphere and ocean continue to be developed. Typically, these algorithms are evaluated against existing methods using analytic or idealized test cases, but the NASA Global Modeling Initiative now provides a realistic framework for evaluating their accuracy in full chemistry-transport models (CTM). GMI's modular approach is combined with parallel simulations in the UCI CTM to quantify the differences between two relatively accurate tracer transport algorithms (Lin-Rood, Prather 2nd-order moments), including the impact of forcing a positive-definite, ripple-free tracer abundance. We use a range of simplified atmospheric chemical tracers (radon-lead, fossil-fuel CO2, industrial and biomass CO) with the meteorology from the Goddard Institute for Space Studies global climate model (4 deg by 5 deg with 23 layers) that includes three-hourly integrated winds, boundary-layer physics, entraining and non-entraining convection, large-scale and convective precipitation, updrafts and downdrafts. The relative accuracy of the different methods is considered in terms of forward and inverse calculations. We thank the entire GMI team, especially the researchers at LLNL and GSFC who have built and maintained the GMI modeling capability.
Numerical Algorithms for Precise and Efficient Orbit Propagation and Positioning
NASA Astrophysics Data System (ADS)
Bradley, Ben K.
Motivated by the growing space catalog and the demands for precise orbit determination with shorter latency for science and reconnaissance missions, this research improves the computational performance of orbit propagation through more efficient and precise numerical integration and frame transformation implementations. Propagation of satellite orbits is required for astrodynamics applications including mission design, orbit determination in support of operations and payload data analysis, and conjunction assessment. Each of these applications has somewhat different requirements in terms of accuracy, precision, latency, and computational load. This dissertation develops procedures to achieve various levels of accuracy while minimizing computational cost for diverse orbit determination applications. This is done by addressing two aspects of orbit determination: (1) numerical integration used for orbit propagation and (2) precise frame transformations necessary for force model evaluation and station coordinate rotations. This dissertation describes a recently developed method for numerical integration, dubbed Bandlimited Collocation Implicit Runge-Kutta (BLC-IRK), and compare its efficiency in propagating orbits to existing techniques commonly used in astrodynamics. The BLC-IRK scheme uses generalized Gaussian quadratures for bandlimited functions. It requires significantly fewer force function evaluations than explicit Runge-Kutta schemes and approaches the efficiency of the 8th-order Gauss-Jackson multistep method. Converting between the Geocentric Celestial Reference System (GCRS) and International Terrestrial Reference System (ITRS) is necessary for many applications in astrodynamics, such as orbit propagation, orbit determination, and analyzing geoscience data from satellite missions. This dissertation provides simplifications to the Celestial Intermediate Origin (CIO) transformation scheme and Earth orientation parameter (EOP) storage for use in positioning and
Comparison of Fully Numerical Predictor-Corrector and Apollo Skip Entry Guidance Algorithms
NASA Astrophysics Data System (ADS)
Brunner, Christopher W.; Lu, Ping
2012-09-01
The dramatic increase in computational power since the Apollo program has enabled the development of numerical predictor-corrector (NPC) entry guidance algorithms that allow on-board accurate determination of a vehicle's trajectory. These algorithms are sufficiently mature to be flown. They are highly adaptive, especially in the face of extreme dispersion and off-nominal situations compared with reference-trajectory following algorithms. The performance and reliability of entry guidance are critical to mission success. This paper compares the performance of a recently developed fully numerical predictor-corrector entry guidance (FNPEG) algorithm with that of the Apollo skip entry guidance. Through extensive dispersion testing, it is clearly demonstrated that the Apollo skip entry guidance algorithm would be inadequate in meeting the landing precision requirement for missions with medium (4000-7000 km) and long (>7000 km) downrange capability requirements under moderate dispersions chiefly due to poor modeling of atmospheric drag. In the presence of large dispersions, a significant number of failures occur even for short-range missions due to the deviation from planned reference trajectories. The FNPEG algorithm, on the other hand, is able to ensure high landing precision in all cases tested. All factors considered, a strong case is made for adopting fully numerical algorithms for future skip entry missions.
Variationally consistent discretization schemes and numerical algorithms for contact problems
NASA Astrophysics Data System (ADS)
Wohlmuth, Barbara
We consider variationally consistent discretization schemes for mechanical contact problems. Most of the results can also be applied to other variational inequalities, such as those for phase transition problems in porous media, for plasticity or for option pricing applications from finance. The starting point is to weakly incorporate the constraint into the setting and to reformulate the inequality in the displacement in terms of a saddle-point problem. Here, the Lagrange multiplier represents the surface forces, and the constraints are restricted to the boundary of the simulation domain. Having a uniform inf-sup bound, one can then establish optimal low-order a priori convergence rates for the discretization error in the primal and dual variables. In addition to the abstract framework of linear saddle-point theory, complementarity terms have to be taken into account. The resulting inequality system is solved by rewriting it equivalently by means of the non-linear complementarity function as a system of equations. Although it is not differentiable in the classical sense, semi-smooth Newton methods, yielding super-linear convergence rates, can be applied and easily implemented in terms of a primal-dual active set strategy. Quite often the solution of contact problems has a low regularity, and the efficiency of the approach can be improved by using adaptive refinement techniques. Different standard types, such as residual- and equilibrated-based a posteriori error estimators, can be designed based on the interpretation of the dual variable as Neumann boundary condition. For the fully dynamic setting it is of interest to apply energy-preserving time-integration schemes. However, the differential algebraic character of the system can result in high oscillations if standard methods are applied. A possible remedy is to modify the fully discretized system by a local redistribution of the mass. Numerical results in two and three dimensions illustrate the wide range of
NASARC - NUMERICAL ARC SEGMENTATION ALGORITHM FOR A RADIO CONFERENCE
NASA Technical Reports Server (NTRS)
Whyte, W. A.
1994-01-01
NASARC was developed from the general planning principles and decisions of both sessions of the World Administrative Radio Conference on the Use of the Geostationary Satellite Orbit and on the Planning of Space Services Utilizing It (WARC-85, WARC-88). NASARC was written to help countries satisfy requirements for nation-wide Fixed Satellite services from at least one orbital position within a predetermined arc. The NASARC-generated predetermined arcs are each based on a common arc segment visible to a group of compatible service areas, and provide a means of generating a highly flexible allotment plan with a reduced need for coordination among administrations. The selection of particular groupings of service areas and their associated predetermined arcs is made according to a heuristic approach using several figures of merit designed to confront the most difficult allotment problems. NASARC attempts to select groupings and predetermined arc sizes so that the requirements of all administrations are met before the available orbital arc is exhausted. The predetermined arcs allow considerable freedom of choice in the positioning of space stations for all members of any grouping. The approach to allotment planning for which NASARC was designed consists of two phases. The first is the use of NASARC to identify predetermined arc segments common to groups of administrations. Those administrations within a group and sharing a common predetermined arc segment would be able to position their individual space stations at any one of a number of orbital positions within the predetermined arc. The second phase involves the use of a plan synthesis program (such as the ORBIT program resident at the International Frequency Registration Board in Geneva, Switzerland) to identify example scenarios of specific space station placements. NASARC software is modular, and consists of several programs to be run in sequence. The grouping module, NASARC1, identifies compatible groups of several
NASA Astrophysics Data System (ADS)
Kim, J.; Sonnenthal, E. L.; Rutqvist, J.
2011-12-01
Rigorous modeling of coupling between fluid, heat, and geomechanics (thermo-poro-mechanics), in fractured porous media is one of the important and difficult topics in geothermal reservoir simulation, because the physics are highly nonlinear and strongly coupled. Coupled fluid/heat flow and geomechanics are investigated using the multiple interacting continua (MINC) method as applied to naturally fractured media. In this study, we generalize constitutive relations for the isothermal elastic dual porosity model proposed by Berryman (2002) to those for the non-isothermal elastic/elastoplastic multiple porosity model, and derive the coupling coefficients of coupled fluid/heat flow and geomechanics and constraints of the coefficients. When the off-diagonal terms of the total compressibility matrix for the flow problem are zero, the upscaled drained bulk modulus for geomechanics becomes the harmonic average of drained bulk moduli of the multiple continua. In this case, the drained elastic/elastoplastic moduli for mechanics are determined by a combination of the drained moduli and volume fractions in multiple porosity materials. We also determine a relation between local strains of all multiple porosity materials in a gridblock and the global strain of the gridblock, from which we can track local and global elastic/plastic variables. For elastoplasticity, the return mapping is performed for all multiple porosity materials in the gridblock. For numerical implementation, we employ and extend the fixed-stress sequential method of the single porosity model to coupled fluid/heat flow and geomechanics in multiple porosity systems, because it provides numerical stability and high accuracy. This sequential scheme can be easily implemented by using a porosity function and its corresponding porosity correction, making use of the existing robust flow and geomechanics simulators. We implemented the proposed modeling and numerical algorithm to the reaction transport simulator
A numerical comparison of discrete Kalman filtering algorithms - An orbit determination case study
NASA Technical Reports Server (NTRS)
Thornton, C. L.; Bierman, G. J.
1976-01-01
An improved Kalman filter algorithm based on a modified Givens matrix triangularization technique is proposed for solving a nonstationary discrete-time linear filtering problem. The proposed U-D covariance factorization filter uses orthogonal transformation technique; measurement and time updating of the U-D factors involve separate application of Gentleman's fast square-root-free Givens rotations. Numerical stability and accuracy of the algorithm are compared with those of the conventional and stabilized Kalman filters and the Potter-Schmidt square-root filter, by applying these techniques to a realistic planetary navigation problem (orbit determination for the Saturn approach phase of the Mariner Jupiter-Saturn Mission, 1977). The new algorithm is shown to combine the numerical precision of square root filtering with the efficiency of the original Kalman algorithm.
Numerical optimization algorithm for rotationally invariant multi-orbital slave-boson method
NASA Astrophysics Data System (ADS)
Quan, Ya-Min; Wang, Qing-wei; Liu, Da-Yong; Yu, Xiang-Long; Zou, Liang-Jian
2015-06-01
We develop a generalized numerical optimization algorithm for the rotationally invariant multi-orbital slave boson approach, which is applicable for arbitrary boundary constraints of high-dimensional objective function by combining several classical optimization techniques. After constructing the calculation architecture of rotationally invariant multi-orbital slave boson model, we apply this optimization algorithm to find the stable ground state and magnetic configuration of two-orbital Hubbard models. The numerical results are consistent with available solutions, confirming the correctness and accuracy of our present algorithm. Furthermore, we utilize it to explore the effects of the transverse Hund's coupling terms on metal-insulator transition, orbital selective Mott phase and magnetism. These results show the quick convergency and robust stable character of our algorithm in searching the optimized solution of strongly correlated electron systems.
Chen, Deng-kai; Gu, Rong; Gu, Yu-feng; Yu, Sui-huai
2016-01-01
Consumers' Kansei needs reflect their perception about a product and always consist of a large number of adjectives. Reducing the dimension complexity of these needs to extract primary words not only enables the target product to be explicitly positioned, but also provides a convenient design basis for designers engaging in design work. Accordingly, this study employs a numerical design structure matrix (NDSM) by parameterizing a conventional DSM and integrating genetic algorithms to find optimum Kansei clusters. A four-point scale method is applied to assign link weights of every two Kansei adjectives as values of cells when constructing an NDSM. Genetic algorithms are used to cluster the Kansei NDSM and find optimum clusters. Furthermore, the process of the proposed method is presented. The details of the proposed approach are illustrated using an example of electronic scooter for Kansei needs clustering. The case study reveals that the proposed method is promising for clustering Kansei needs adjectives in product emotional design.
NASA Astrophysics Data System (ADS)
Mikesell, T. Dylan; Malcolm, Alison E.; Yang, Di; Haney, Matthew M.
2015-07-01
Time-shift estimation between arrivals in two seismic traces before and after a velocity perturbation is a crucial step in many seismic methods. The accuracy of the estimated velocity perturbation location and amplitude depend on this time shift. Windowed cross-correlation and trace stretching are two techniques commonly used to estimate local time shifts in seismic signals. In the work presented here we implement Dynamic Time Warping (DTW) to estimate the warping function - a vector of local time shifts that globally minimizes the misfit between two seismic traces. We compare all three methods using acoustic numerical experiments. We show that DTW is comparable to or better than the other two methods when the velocity perturbation is homogeneous and the signal-to-noise ratio is high. When the signal-to-noise ratio is low, we find that DTW and windowed cross-correlation are more accurate than the stretching method. Finally, we show that the DTW algorithm has good time resolution when identifying small differences in the seismic traces for a model with an isolated velocity perturbation. These results impact current methods that utilize not only time shifts between (multiply) scattered waves, but also amplitude and decoherence measurements.
Wang, Peng; Zhu, Zhouquan; Huang, Shuai
2013-01-01
This paper presents a novel biologically inspired metaheuristic algorithm called seven-spot ladybird optimization (SLO). The SLO is inspired by recent discoveries on the foraging behavior of a seven-spot ladybird. In this paper, the performance of the SLO is compared with that of the genetic algorithm, particle swarm optimization, and artificial bee colony algorithms by using five numerical benchmark functions with multimodality. The results show that SLO has the ability to find the best solution with a comparatively small population size and is suitable for solving optimization problems with lower dimensions. PMID:24385879
On the impact of communication complexity in the design of parallel numerical algorithms
NASA Technical Reports Server (NTRS)
Gannon, D.; Vanrosendale, J.
1984-01-01
This paper describes two models of the cost of data movement in parallel numerical algorithms. One model is a generalization of an approach due to Hockney, and is suitable for shared memory multiprocessors where each processor has vector capabilities. The other model is applicable to highly parallel nonshared memory MIMD systems. In the second model, algorithm performance is characterized in terms of the communication network design. Techniques used in VLSI complexity theory are also brought in, and algorithm independent upper bounds on system performance are derived for several problems that are important to scientific computation.
Zhu, Zhouquan
2013-01-01
This paper presents a novel biologically inspired metaheuristic algorithm called seven-spot ladybird optimization (SLO). The SLO is inspired by recent discoveries on the foraging behavior of a seven-spot ladybird. In this paper, the performance of the SLO is compared with that of the genetic algorithm, particle swarm optimization, and artificial bee colony algorithms by using five numerical benchmark functions with multimodality. The results show that SLO has the ability to find the best solution with a comparatively small population size and is suitable for solving optimization problems with lower dimensions. PMID:24385879
NASA Astrophysics Data System (ADS)
Simpson, Matthew J.; Landman, Kerry A.; Newgreen, Donald F.
2006-08-01
A numerical algorithm to simulate chemotactic and/or diffusive migration on a one-dimensional growing domain is developed. The domain growth can be spatially nonuniform and the growth-derived advection term must be discretised. The hyperbolic terms in the conservation equations associated with chemotactic migration and domain growth are accurately discretised using an explicit central scheme. Generality of the algorithm is maintained using an operator split technique to simulate diffusive migration implicitly. The resulting algorithm is applicable for any combination of diffusive and/or chemotactic migration on a growing domain with a general growth-induced velocity field. The accuracy of the algorithm is demonstrated by testing the results against some simple analytical solutions and in an inter-code comparison. The new algorithm demonstrates that the form of nonuniform growth plays a critical role in determining whether a population of migratory cells is able to overcome the domain growth and fully colonise the domain.
Burtsev, S.; Camassa, R.; Timofeyev, I.
1998-11-20
The authors implement two different algorithms for computing numerically the direct Zakharov-Shabat eigenvalue problem on the infinite line. The first algorithm replaces the potential in the eigenvalue problem by a piecewise-constant approximation, which allows one to solve analytically the corresponding ordinary differential equation. The resulting algorithm is of second order in the step size. The second algorithm uses the fourth-order Runge-Kutta method. They test and compare the performance of these two algorithms on three exactly solvable potentials. They find that even though the Runge-Kutta method is of higher order, this extra accuracy can be lost because of the additional dependence of its numerical error on the eigenvalue. this limits the usefulness of the Runge-Kutta algorithm to a region inside the unit circle around the origin in the complex plane of the eigenvalues. For the computation of the continuous spectrum density, this limitation is particularly severe, as revealed by the spectral decomposition of the L{sup 2}-norm of a solution to the nonlinear Schroedinger equation. They show that no such limitations exist for the piecewise-constant algorithm. In particular, this scheme converges uniformly for both continuous and discrete spectrum components.
A Parallel Compact Multi-Dimensional Numerical Algorithm with Aeroacoustics Applications
NASA Technical Reports Server (NTRS)
Povitsky, Alex; Morris, Philip J.
1999-01-01
In this study we propose a novel method to parallelize high-order compact numerical algorithms for the solution of three-dimensional PDEs (Partial Differential Equations) in a space-time domain. For this numerical integration most of the computer time is spent in computation of spatial derivatives at each stage of the Runge-Kutta temporal update. The most efficient direct method to compute spatial derivatives on a serial computer is a version of Gaussian elimination for narrow linear banded systems known as the Thomas algorithm. In a straightforward pipelined implementation of the Thomas algorithm processors are idle due to the forward and backward recurrences of the Thomas algorithm. To utilize processors during this time, we propose to use them for either non-local data independent computations, solving lines in the next spatial direction, or local data-dependent computations by the Runge-Kutta method. To achieve this goal, control of processor communication and computations by a static schedule is adopted. Thus, our parallel code is driven by a communication and computation schedule instead of the usual "creative, programming" approach. The obtained parallelization speed-up of the novel algorithm is about twice as much as that for the standard pipelined algorithm and close to that for the explicit DRP algorithm.
Nguyen, Tam H.; Song, Junho; Paulino, Glaucio H.
2008-02-15
Probabilistic fracture analyses are performed for investigating uncertain fracture response of Functionally Graded Material (FGM) structures. The First-Order-Reliability-Method (FORM) is implemented into an existing Finite Element code for FGM (FE-FGM), which was previously developed at the University of Illinois at Urbana-Champaign. The computational simulation will be used in order to estimate the probability of crack initiation with uncertainties in the material properties only. The two-step probability analysis method proposed in the companion paper is illustrated by a numerical example of a composite strip with an edge crack. First, the reliability index of a crack initiation event is estimated as we vary the mean and standard deviation of the slope and the location of the inflection point of the spatial profile of Young's modulus. Secondly, the reliability index is estimated as we vary the standard deviation and the correlation length of the random field that characterize the random spatial fluctuation of Young's modulus. Also investigated is the relative importance of the uncertainties in the toughness compared to those in Young's modulus.
A numerical algorithm suggested by problems of transport in periodic media - The matrix case.
NASA Technical Reports Server (NTRS)
Allen, R. C., Jr.; Burgmeier, J. W.; Mundorff, P.; Wing, G. M.
1972-01-01
Extension of Allen and Wing's (1970) previous work on problems of transport in periodic media to the matrix case. A method in the form of a complete set of equations is presented that may be used without any further analytical work by investigators interested in computing solutions to problems of the type the method is designed to handle. All the formulas have been checked out numerically, and their effectiveness is demonstrated by numerical examples.
PolyPole-1: An accurate numerical algorithm for intra-granular fission gas release
NASA Astrophysics Data System (ADS)
Pizzocri, D.; Rabiti, C.; Luzzi, L.; Barani, T.; Van Uffelen, P.; Pastore, G.
2016-09-01
The transport of fission gas from within the fuel grains to the grain boundaries (intra-granular fission gas release) is a fundamental controlling mechanism of fission gas release and gaseous swelling in nuclear fuel. Hence, accurate numerical solution of the corresponding mathematical problem needs to be included in fission gas behaviour models used in fuel performance codes. Under the assumption of equilibrium between trapping and resolution, the process can be described mathematically by a single diffusion equation for the gas atom concentration in a grain. In this paper, we propose a new numerical algorithm (PolyPole-1) to efficiently solve the fission gas diffusion equation in time-varying conditions. The PolyPole-1 algorithm is based on the analytic modal solution of the diffusion equation for constant conditions, combined with polynomial corrective terms that embody the information on the deviation from constant conditions. The new algorithm is verified by comparing the results to a finite difference solution over a large number of randomly generated operation histories. Furthermore, comparison to state-of-the-art algorithms used in fuel performance codes demonstrates that the accuracy of PolyPole-1 is superior to other algorithms, with similar computational effort. Finally, the concept of PolyPole-1 may be extended to the solution of the general problem of intra-granular fission gas diffusion during non-equilibrium trapping and resolution, which will be the subject of future work.
A numerical algorithm for the explicit calculation of SU(N) and SL(N,C) Clebsch-Gordan coefficients
Alex, Arne; Delft, Jan von; Kalus, Matthias; Huckleberry, Alan
2011-02-15
We present an algorithm for the explicit numerical calculation of SU(N) and SL(N,C) Clebsch-Gordan coefficients, based on the Gelfand-Tsetlin pattern calculus. Our algorithm is well suited for numerical implementation; we include a computer code in an appendix. Our exposition presumes only familiarity with the representation theory of SU(2).
NASA Technical Reports Server (NTRS)
Nacozy, P. E.
1984-01-01
The equations of motion are developed for a perfectly flexible, inelastic tether with a satellite at its extremity. The tether is attached to a space vehicle in orbit. The tether is allowed to possess electrical conductivity. A numerical solution algorithm to provide the motion of the tether and satellite system is presented. The resulting differential equations can be solved by various existing standard numerical integration computer programs. The resulting differential equations allow the introduction of approximations that can lead to analytical, approximate general solutions. The differential equations allow more dynamical insight of the motion.
François, Marianne M.
2015-05-28
A review of recent advances made in numerical methods and algorithms within the volume tracking framework is presented. The volume tracking method, also known as the volume-of-fluid method has become an established numerical approach to model and simulate interfacial flows. Its advantage is its strict mass conservation. However, because the interface is not explicitly tracked but captured via the material volume fraction on a fixed mesh, accurate estimation of the interface position, its geometric properties and modeling of interfacial physics in the volume tracking framework remain difficult. Several improvements have been made over the last decade to address these challenges. In this study, the multimaterial interface reconstruction method via power diagram, curvature estimation via heights and mean values and the balanced-force algorithm for surface tension are highlighted.
François, Marianne M.
2015-05-28
A review of recent advances made in numerical methods and algorithms within the volume tracking framework is presented. The volume tracking method, also known as the volume-of-fluid method has become an established numerical approach to model and simulate interfacial flows. Its advantage is its strict mass conservation. However, because the interface is not explicitly tracked but captured via the material volume fraction on a fixed mesh, accurate estimation of the interface position, its geometric properties and modeling of interfacial physics in the volume tracking framework remain difficult. Several improvements have been made over the last decade to address these challenges.more » In this study, the multimaterial interface reconstruction method via power diagram, curvature estimation via heights and mean values and the balanced-force algorithm for surface tension are highlighted.« less
Analysis of V-cycle multigrid algorithms for forms defined by numerical quadrature
Bramble, J.H. . Dept. of Mathematics); Goldstein, C.I.; Pasciak, J.E. . Applied Mathematics Dept.)
1994-05-01
The authors describe and analyze certain V-cycle multigrid algorithms with forms defined by numerical quadrature applied to the approximation of symmetric second-order elliptic boundary value problems. This approach can be used for the efficient solution of finite element systems resulting from numerical quadrature as well as systems arising from finite difference discretizations. The results are based on a regularity free theory and hence apply to meshes with local grid refinement as well as the quasi-uniform case. It is shown that uniform (independent of the number of levels) convergence rates often hold for appropriately defined V-cycle algorithms with as few as one smoothing per grid. These results hold even on applications without full elliptic regularity, e.g., a domain in R[sup 2] with a crack.
Numerical advection algorithms and their role in atmospheric transport and chemistry models
NASA Technical Reports Server (NTRS)
Rood, Richard B.
1987-01-01
During the last 35 years, well over 100 algorithms for modeling advection processes have been described and tested. This review summarizes the development and improvements that have taken place. The nature of the errors caused by numerical approximation to the advection equation are highlighted. Then the particular devices that have been proposed to remedy these errors are discussed. The extensive literature comparing transport algorithms is reviewed. Although there is no clear cut 'best' algorithm, several conclusions can be made. Spectral and pseudospectral techniques consistently provide the highest degree of accuracy, but expense and difficulties assuring positive mixing ratios are serious drawbacks. Schemes which consider fluid slabs bounded by grid points (volume schemes), rather than the simple specification of constituent values at the grid points, provide accurate positive definite results.
Hu, Shaoxing; Xu, Shike; Wang, Duhu; Zhang, Aiwu
2015-01-01
Aiming at addressing the problem of high computational cost of the traditional Kalman filter in SINS/GPS, a practical optimization algorithm with offline-derivation and parallel processing methods based on the numerical characteristics of the system is presented in this paper. The algorithm exploits the sparseness and/or symmetry of matrices to simplify the computational procedure. Thus plenty of invalid operations can be avoided by offline derivation using a block matrix technique. For enhanced efficiency, a new parallel computational mechanism is established by subdividing and restructuring calculation processes after analyzing the extracted “useful” data. As a result, the algorithm saves about 90% of the CPU processing time and 66% of the memory usage needed in a classical Kalman filter. Meanwhile, the method as a numerical approach needs no precise-loss transformation/approximation of system modules and the accuracy suffers little in comparison with the filter before computational optimization. Furthermore, since no complicated matrix theories are needed, the algorithm can be easily transplanted into other modified filters as a secondary optimization method to achieve further efficiency. PMID:26569247
Hu, Shaoxing; Xu, Shike; Wang, Duhu; Zhang, Aiwu
2015-01-01
Aiming at addressing the problem of high computational cost of the traditional Kalman filter in SINS/GPS, a practical optimization algorithm with offline-derivation and parallel processing methods based on the numerical characteristics of the system is presented in this paper. The algorithm exploits the sparseness and/or symmetry of matrices to simplify the computational procedure. Thus plenty of invalid operations can be avoided by offline derivation using a block matrix technique. For enhanced efficiency, a new parallel computational mechanism is established by subdividing and restructuring calculation processes after analyzing the extracted "useful" data. As a result, the algorithm saves about 90% of the CPU processing time and 66% of the memory usage needed in a classical Kalman filter. Meanwhile, the method as a numerical approach needs no precise-loss transformation/approximation of system modules and the accuracy suffers little in comparison with the filter before computational optimization. Furthermore, since no complicated matrix theories are needed, the algorithm can be easily transplanted into other modified filters as a secondary optimization method to achieve further efficiency. PMID:26569247
NASA Astrophysics Data System (ADS)
Alfonso, Lester; Zamora, Jose; Cruz, Pedro
2015-04-01
The stochastic approach to coagulation considers the coalescence process going in a system of a finite number of particles enclosed in a finite volume. Within this approach, the full description of the system can be obtained from the solution of the multivariate master equation, which models the evolution of the probability distribution of the state vector for the number of particles of a given mass. Unfortunately, due to its complexity, only limited results were obtained for certain type of kernels and monodisperse initial conditions. In this work, a novel numerical algorithm for the solution of the multivariate master equation for stochastic coalescence that works for any type of kernels and initial conditions is introduced. The performance of the method was checked by comparing the numerically calculated particle mass spectrum with analytical solutions obtained for the constant and sum kernels, with an excellent correspondence between the analytical and numerical solutions. In order to increase the speedup of the algorithm, software parallelization techniques with OpenMP standard were used, along with an implementation in order to take advantage of new accelerator technologies. Simulations results show an important speedup of the parallelized algorithms. This study was funded by a grant from Consejo Nacional de Ciencia y Tecnologia de Mexico SEP-CONACYT CB-131879. The authors also thanks LUFAC® Computacion SA de CV for CPU time and all the support provided.
Numerical algorithms for steady and unsteady incompressible Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Hafez, Mohammed; Dacles, Jennifer
1989-01-01
The numerical analysis of the incompressible Navier-Stokes equations are becoming important tools in the understanding of some fluid flow problems which are encountered in research as well as in industry. With the advent of the supercomputers, more realistic problems can be studied with a wider choice of numerical algorithms. An alternative formulation is presented for viscous incompressible flows. The incompressible Navier-Stokes equations are cast in a velocity/vorticity formulation. This formulation consists of solving the Poisson equations for the velocity components and the vorticity transport equation. Two numerical algorithms for the steady two-dimensional laminar flows are presented. The first method is based on the actual partial differential equations. This uses a finite-difference approximation of the governing equations on a staggered grid. The second method uses a finite element discretization with the vorticity transport equation approximated using a Galerkin approximation and the Poisson equations are obtained using a least squares method. The equations are solved efficiently using Newton's method and a banded direct matrix solver (LINPACK). The method is extended to steady three-dimensional laminar flows and applied to a cubic driven cavity using finite difference schemes and a staggered grid arrangement on a Cartesian mesh. The equations are solved iteratively using a plane zebra relaxation scheme. Currently, a two-dimensional, unsteady algorithm is being developed using a generalized coordinate system. The equations are discretized using a finite-volume approach. This work will then be extended to three-dimensional flows.
NASA Technical Reports Server (NTRS)
Daso, E. O.
1986-01-01
An implicit approximate factorization algorithm is employed to quantify the parametric effects of Courant number and artificial smoothing on numerical solutions of the unsteady 3-D Euler equations for a windmilling propeller (low speed) flow field. The results show that propeller global or performance chracteristics vary strongly with Courant number and artificial dissipation parameters, though the variation is such less severe at high Courant numbers. Candidate sets of Courant number and dissipation parameters could result in parameter-dependent solutions. Parameter-independent numerical solutions can be obtained if low values of the dissipation parameter-time step ratio are used in the computations. Furthermore, it is realized that too much artificial damping can degrade numerical stability. Finally, it is demonstrated that highly resolved meshes may, in some cases, delay convergence, thereby suggesting some optimum cell size for a given flow solution. It is suspected that improper boundary treatment may account for the cell size constraint.
NASA Astrophysics Data System (ADS)
Degtyarev, Alexander; Khramushin, Vasily
2016-02-01
The paper deals with the computer implementation of direct computational experiments in fluid mechanics, constructed on the basis of the approach developed by the authors. The proposed approach allows the use of explicit numerical scheme, which is an important condition for increasing the effciency of the algorithms developed by numerical procedures with natural parallelism. The paper examines the main objects and operations that let you manage computational experiments and monitor the status of the computation process. Special attention is given to a) realization of tensor representations of numerical schemes for direct simulation; b) realization of representation of large particles of a continuous medium motion in two coordinate systems (global and mobile); c) computing operations in the projections of coordinate systems, direct and inverse transformation in these systems. Particular attention is paid to the use of hardware and software of modern computer systems.
Cloud classification from satellite data using a fuzzy sets algorithm - A polar example
NASA Technical Reports Server (NTRS)
Key, J. R.; Maslanik, J. A.; Barry, R. G.
1989-01-01
Where spatial boundaries between phenomena are diffuse, classification methods which construct mutually exclusive clusters seem inappropriate. The Fuzzy c-means (FCM) algorithm assigns each observation to all clusters, with membership values as a function of distance to the cluster center. The FCM algorithm is applied to AVHRR data for the purpose of classifying polar clouds and surfaces. Careful analysis of the fuzzy sets can provide information on which spectral channels are best suited to the classification of particular features, and can help determine like areas of misclassification. General agreement in the resulting classes and cloud fraction was found between the FCM algorithm, a manual classification, and an unsupervised maximum likelihood classifier.
Cloud classification from satellite data using a fuzzy sets algorithm: A polar example
NASA Technical Reports Server (NTRS)
Key, J. R.; Maslanik, J. A.; Barry, R. G.
1988-01-01
Where spatial boundaries between phenomena are diffuse, classification methods which construct mutually exclusive clusters seem inappropriate. The Fuzzy c-means (FCM) algorithm assigns each observation to all clusters, with membership values as a function of distance to the cluster center. The FCM algorithm is applied to AVHRR data for the purpose of classifying polar clouds and surfaces. Careful analysis of the fuzzy sets can provide information on which spectral channels are best suited to the classification of particular features, and can help determine likely areas of misclassification. General agreement in the resulting classes and cloud fraction was found between the FCM algorithm, a manual classification, and an unsupervised maximum likelihood classifier.
Godfrey, Brendan B.; Vay, Jean-Luc
2013-09-01
Rapidly growing numerical instabilities routinely occur in multidimensional particle-in-cell computer simulations of plasma-based particle accelerators, astrophysical phenomena, and relativistic charged particle beams. Reducing instability growth to acceptable levels has necessitated higher resolution grids, high-order field solvers, current filtering, etc. except for certain ratios of the time step to the axial cell size, for which numerical growth rates and saturation levels are reduced substantially. This paper derives and solves the cold beam dispersion relation for numerical instabilities in multidimensional, relativistic, electromagnetic particle-in-cell programs employing either the standard or the Cole–Karkkainnen finite difference field solver on a staggered mesh and the common Esirkepov current-gathering algorithm. Good overall agreement is achieved with previously reported results of the WARP code. In particular, the existence of select time steps for which instabilities are minimized is explained. Additionally, an alternative field interpolation algorithm is proposed for which instabilities are almost completely eliminated for a particular time step in ultra-relativistic simulations.
A Novel Quantum-Behaved Bat Algorithm with Mean Best Position Directed for Numerical Optimization
Zhu, Wenyong; Liu, Zijuan; Duan, Qingyan; Cao, Long
2016-01-01
This paper proposes a novel quantum-behaved bat algorithm with the direction of mean best position (QMBA). In QMBA, the position of each bat is mainly updated by the current optimal solution in the early stage of searching and in the late search it also depends on the mean best position which can enhance the convergence speed of the algorithm. During the process of searching, quantum behavior of bats is introduced which is beneficial to jump out of local optimal solution and make the quantum-behaved bats not easily fall into local optimal solution, and it has better ability to adapt complex environment. Meanwhile, QMBA makes good use of statistical information of best position which bats had experienced to generate better quality solutions. This approach not only inherits the characteristic of quick convergence, simplicity, and easy implementation of original bat algorithm, but also increases the diversity of population and improves the accuracy of solution. Twenty-four benchmark test functions are tested and compared with other variant bat algorithms for numerical optimization the simulation results show that this approach is simple and efficient and can achieve a more accurate solution. PMID:27293424
A Novel Quantum-Behaved Bat Algorithm with Mean Best Position Directed for Numerical Optimization.
Zhu, Binglian; Zhu, Wenyong; Liu, Zijuan; Duan, Qingyan; Cao, Long
2016-01-01
This paper proposes a novel quantum-behaved bat algorithm with the direction of mean best position (QMBA). In QMBA, the position of each bat is mainly updated by the current optimal solution in the early stage of searching and in the late search it also depends on the mean best position which can enhance the convergence speed of the algorithm. During the process of searching, quantum behavior of bats is introduced which is beneficial to jump out of local optimal solution and make the quantum-behaved bats not easily fall into local optimal solution, and it has better ability to adapt complex environment. Meanwhile, QMBA makes good use of statistical information of best position which bats had experienced to generate better quality solutions. This approach not only inherits the characteristic of quick convergence, simplicity, and easy implementation of original bat algorithm, but also increases the diversity of population and improves the accuracy of solution. Twenty-four benchmark test functions are tested and compared with other variant bat algorithms for numerical optimization the simulation results show that this approach is simple and efficient and can achieve a more accurate solution. PMID:27293424
NASA Astrophysics Data System (ADS)
Feng, Kunpeng; Zhou, Tong; Cui, Jiwen; Tan, Jiubin
2014-11-01
This paper presents a novel example-based super-resolution (SR) algorithm with improved k-means cluster. In this algorithm, genetic k-means (GKM) with hybrid particle swarm optimization (HPSO) is employed to improve the reconstruction of high-resolution (HR) images, and a pre-processing of classification in frequency is used to accelerate the procedure. Self-redundancy across different scales of a natural image is also utilized to build attached training set to expand example-based information. Meanwhile, a reconstruction algorithm based on hybrid supervise locally linear embedding (HSLLE) is proposed which uses training sets, high-resolution images and self-redundancy across different scales of a natural image. Experimental results show that patches are classified rapidly in training set processing session and the runtime of reconstruction is half of traditional algorithm at least in super-resolution session. And clustering and attached training set lead to a better recovery of low-resolution (LR) image.
Comparative Study of Algorithms for the Numerical Simulation of Lattice QCD
Luz, Fernando H. P.; Mendes, Tereza
2010-11-12
Large-scale numerical simulations are the prime method for a nonperturbative study of QCD from first principles. Although the lattice simulation of the pure-gauge (or quenched-QCD) case may be performed very efficiently on parallel machines, there are several additional difficulties in the simulation of the full-QCD case, i.e. when dynamical quark effects are taken into account. We discuss the main aspects of full-QCD simulations, describing the most common algorithms. We present a comparative analysis of performance for two versions of the hybrid Monte Carlo method (the so-called R and RHMC algorithms), as provided in the MILC software package. We consider two degenerate flavors of light quarks in the staggered formulation, having in mind the case of finite-temperature QCD.
A semi-numerical algorithm for instability of compressible multilayered structures
NASA Astrophysics Data System (ADS)
Tang, Shan; Yang, Yang; Peng, Xiang He; Liu, Wing Kam; Huang, Xiao Xu; Elkhodary, Khalil
2015-07-01
A computational method is proposed for the analysis and prediction of instability (wrinkling or necking) of multilayered compressible plates and sheets made by metals or polymers under plane strain conditions. In previous works, a basic assumption (or a physical argument) that has been frequently made is that materials are incompressible to simplify mathematical derivations. To account for the compressibility of metals and polymers (the lower Poisson's ratio leads to the more compressible material), we propose a combined semi-numerical algorithm and finite element method for instability analysis. Our proposed algorithm is herein verified by comparing its predictions with published results in literature for thin films with polymer/metal substrates and for polymer/metal systems. The new combined method is then used to predict the effects of compressibility on instability behaviors. Results suggest potential utility for compressibility in the design of multilayered structures.
Localized vortices in a nonlinear shallow water model: examples and numerical experiments
NASA Astrophysics Data System (ADS)
Beisel, S. A.; Tolchennikov, A. A.
2016-06-01
Exact solutions of the system of nonlinear shallow water equations on paraboloid are constructed by the method of group analysis. These solutions describe fast wave motion of the fluid layer and slow evolution of symmetric localized vortices. Explicit formulae are obtained for asymptotic solution related to the linear shallow water approximation. Numerical methods are used by the modeling the trajectory of the vortex center in the case of asymmetric vortices.
NASA Technical Reports Server (NTRS)
Gunzburger, M. D.; Nicolaides, R. A.
1986-01-01
Substructuring methods are in common use in mechanics problems where typically the associated linear systems of algebraic equations are positive definite. Here these methods are extended to problems which lead to nonpositive definite, nonsymmetric matrices. The extension is based on an algorithm which carries out the block Gauss elimination procedure without the need for interchanges even when a pivot matrix is singular. Examples are provided wherein the method is used in connection with finite element solutions of the stationary Stokes equations and the Helmholtz equation, and dual methods for second-order elliptic equations.
Bu, Sunyoung; Huang, Jingfang; Boyer, Treavor H.; Miller, Cass T.
2010-01-01
The focus of this work is on the modeling of an ion exchange process that occurs in drinking water treatment applications. The model formulation consists of a two-scale model in which a set of microscale diffusion equations representing ion exchange resin particles that vary in size and age are coupled through a boundary condition with a macroscopic ordinary differential equation (ODE), which represents the concentration of a species in a well-mixed reactor. We introduce a new age-averaged model (AAM) that averages all ion exchange particle ages for a given size particle to avoid the expensive Monte-Carlo simulation associated with previous modeling applications. We discuss two different numerical schemes to approximate both the original Monte Carlo algorithm and the new AAM for this two-scale problem. The first scheme is based on the finite element formulation in space coupled with an existing backward-difference-formula-based ODE solver in time. The second scheme uses an integral equation based Krylov deferred correction (KDC) method and a fast elliptic solver (FES) for the resulting elliptic equations. Numerical results are presented to validate the new AAM algorithm, which is also shown to be more computationally efficient than the original Monte Carlo algorithm. We also demonstrate that the higher order KDC scheme is more efficient than the traditional finite element solution approach and this advantage becomes increasingly important as the desired accuracy of the solution increases. We also discuss issues of smoothness, which affect the efficiency of the KDC-FES approach, and outline additional algorithmic changes that would further improve the efficiency of these developing methods for a wide range of applications. PMID:20577570
NASA Astrophysics Data System (ADS)
Bu, Sunyoung; Huang, Jingfang; Boyer, Treavor H.; Miller, Cass T.
2010-07-01
The focus of this work is on the modeling of an ion exchange process that occurs in drinking water treatment applications. The model formulation consists of a two-scale model in which a set of microscale diffusion equations representing ion exchange resin particles that vary in size and age are coupled through a boundary condition with a macroscopic ordinary differential equation (ODE), which represents the concentration of a species in a well-mixed reactor. We introduce a new age-averaged model (AAM) that averages all ion exchange particle ages for a given size particle to avoid the expensive Monte-Carlo simulation associated with previous modeling applications. We discuss two different numerical schemes to approximate both the original Monte-Carlo algorithm and the new AAM for this two-scale problem. The first scheme is based on the finite element formulation in space coupled with an existing backward difference formula-based ODE solver in time. The second scheme uses an integral equation based Krylov deferred correction (KDC) method and a fast elliptic solver (FES) for the resulting elliptic equations. Numerical results are presented to validate the new AAM algorithm, which is also shown to be more computationally efficient than the original Monte-Carlo algorithm. We also demonstrate that the higher order KDC scheme is more efficient than the traditional finite element solution approach and this advantage becomes increasingly important as the desired accuracy of the solution increases. We also discuss issues of smoothness, which affect the efficiency of the KDC-FES approach, and outline additional algorithmic changes that would further improve the efficiency of these developing methods for a wide range of applications.
New Concepts in Breast Cancer Emerge from Analyzing Clinical Data Using Numerical Algorithms
Retsky, Michael
2009-01-01
A small international group has recently challenged fundamental concepts in breast cancer. As a guiding principle in therapy, it has long been assumed that breast cancer growth is continuous. However, this group suggests tumor growth commonly includes extended periods of quasi-stable dormancy. Furthermore, surgery to remove the primary tumor often awakens distant dormant micrometastases. Accordingly, over half of all relapses in breast cancer are accelerated in this manner. This paper describes how a numerical algorithm was used to come to these conclusions. Based on these findings, a dormancy preservation therapy is proposed. PMID:19440287
NASA Technical Reports Server (NTRS)
Whyte, W. A.; Heyward, A. O.; Ponchak, D. S.; Spence, R. L.; Zuzek, J. E.
1988-01-01
A detailed description of a Numerical Arc Segmentation Algorithm for a Radio Conference (NASARC) software package for communication satellite systems planning is presented. This software provides a method of generating predetermined arc segments for use in the development of an allotment planning procedure to be carried out at the 1988 World Administrative Radio Conference (WARC - 88) on the use of the GEO and the planning of space services utilizing GEO. The features of the NASARC software package are described, and detailed information is given about the function of each of the four NASARC program modules. The results of a sample world scenario are presented and discussed.
NASA Technical Reports Server (NTRS)
Shia, Run-Lie; Ha, Yuk Lung; Wen, Jun-Shan; Yung, Yuk L.
1990-01-01
Extensive testing of the advective scheme proposed by Prather (1986) has been carried out in support of the California Institute of Technology-Jet Propulsion Laboratory two-dimensional model of the middle atmosphere. The original scheme is generalized to include higher-order moments. In addition, it is shown how well the scheme works in the presence of chemistry as well as eddy diffusion. Six types of numerical experiments including simple clock motion and pure advection in two dimensions have been investigated in detail. By comparison with analytic solutions, it is shown that the new algorithm can faithfully preserve concentration profiles, has essentially no numerical diffusion, and is superior to a typical fourth-order finite difference scheme.
Shock focusing flow field simulated by a high-resolution numerical algorithm
NASA Astrophysics Data System (ADS)
Jung, Y. G.; Chang, K. S.
2012-11-01
Shock-focusing concave reflector is a very simple and effective tool to obtain a high-pressure pulse wave near the physical focal point. In the past, many optical images were obtained through experimental studies. However, measurement of field variables is not easy because the phenomenon is of short duration and the magnitude of shock waves is varied from pulse to pulse due to poor reproducibility. Using a wave propagation algorithm and the Cartesian embedded boundary method, we have successfully obtained numerical schlieren images that resemble the experimental results. By the numerical results, various field variables, such as pressure, density and vorticity, become available for the better understanding and design of shock focusing devices.
A Numerical Algorithm for Complex Biological Flow in Irregular Microdevice Geometries
Nonaka, A; Miller, G H; Marshall, T; Liepmann, D; Gulati, S; Trebotich, D; Colella, P
2003-12-15
We present a numerical algorithm to simulate non-Newtonian flow in complex microdevice components. The model consists of continuum viscoelastic incompressible flow in irregular microscale geometries. Our numerical approach is the projection method of Bell, Colella and Glaz (BCG) to impose the incompressibility constraint coupled with the polymeric stress splitting discretization of Trebotich, Colella and Miller (TCM). In this approach we exploit the hyperbolic structure of the equations of motion to achieve higher resolution in the presence of strong gradients and to gain an order of magnitude in the timestep. We also extend BCG and TCM to an embedded boundary method to treat irregular domain geometries which exist in microdevices. Our method allows for particle representation in a continuum fluid. We present preliminary results for incompressible viscous flow with comparison to flow of DNA and simulants in microchannels and other components used in chem/bio microdevices.
Recent examples of mesoscale numerical forecasts of severe weather events along the east coast
NASA Technical Reports Server (NTRS)
Kocin, P. J.; Uccellini, L. W.; Zack, J. W.; Kaplan, M. L.
1984-01-01
Mesoscale numerical forecasts utilizing the Mesoscale Atmospheric Simulation System (MASS) are documented for two East Coast severe weather events. The two events are the thunderstorm and heavy snow bursts in the Washington, D.C. - Baltimore, MD region on 8 March 1984 and the devastating tornado outbreak across North and South Carolina on 28 March 1984. The forecasts are presented to demonstrate the ability of the model to simulate dynamical interactions and diabatic processes and to note some of the problems encountered when using mesoscale models for day-to-day forecasting.
NASA Astrophysics Data System (ADS)
García, Hermes A.; Guerrero-Bolaño, Francisco J.; Obregón-Neira, Nelson
2010-05-01
Due to both mathematical tractability and efficiency on computational resources, it is very common to find in the realm of numerical modeling in hydro-engineering that regular linearization techniques have been applied to nonlinear partial differential equations properly obtained in environmental flow studies. Sometimes this simplification is also made along with omission of nonlinear terms involved in such equations which in turn diminishes the performance of any implemented approach. This is the case for example, for contaminant transport modeling in streams. Nowadays, a traditional and one of the most common used water quality model such as QUAL2k, preserves its original algorithm, which omits nonlinear terms through linearization techniques, in spite of the continuous algorithmic development and computer power enhancement. For that reason, the main objective of this research was to generate a flexible tool for non-linear water quality modeling. The solution implemented here was based on two genetic algorithms, used in a nested way in order to find two different types of solutions sets: the first set is composed by the concentrations of the physical-chemical variables used in the modeling approach (16 variables), which satisfies the non-linear equation system. The second set, is the typical solution of the inverse problem, the parameters and constants values for the model when it is applied to a particular stream. From a total of sixteen (16) variables, thirteen (13) was modeled by using non-linear coupled equation systems and three (3) was modeled in an independent way. The model used here had a requirement of fifty (50) parameters. The nested genetic algorithm used for the numerical solution of a non-linear equation system proved to serve as a flexible tool to handle with the intrinsic non-linearity that emerges from the interactions occurring between multiple variables involved in water quality studies. However because there is a strong data limitation in
González, J M; Whitman, W B; Hodson, R E; Moran, M A
1996-01-01
Culturable bacteria that were numerically important members of a marine enrichment community were identified and characterized phylogenetically. Selective and nonselective isolation methods were used to obtain 133 culturable bacterial isolates from model marine communities enriched with the high-molecular-weight (lignin-rich) fraction of pulp mill effluent. The culture collection was screened against community DNA from the lignin enrichments by whole-genome hybridization methods, and three marine bacterial isolates were identified as being numerically important in the communities. One isolate was in the alpha-subclass of Proteobacteria, and the other two were in the gamma-subclass of Proteobacteria. Isolate-specific 16S rRNA oligonucleotide probes designed to precisely quantify the isolates in the lignin enrichment communities indicated contributions ranging from 2 to 32% of enrichment DNA, values nearly identical to those originally obtained by the simpler whole-genome hybridization method. Two 16S rRNA sequences closely related to that of one of the isolates, although not identical, were amplified via PCR from the seawater sample originally used to inoculate the enrichment medium. Partial sequences of 14 other isolates revealed significant phylogenetic diversity and unusual sequences among the culturable lignin enrichment bacteria, with the Proteobacteria, Cytophaga-Flavobacterium, and gram-positive groups represented. PMID:8953714
NASA Astrophysics Data System (ADS)
Dong, Suchuan
2015-11-01
This talk focuses on simulating the motion of a mixture of N (N>=2) immiscible incompressible fluids with given densities, dynamic viscosities and pairwise surface tensions. We present an N-phase formulation within the phase field framework that is thermodynamically consistent, in the sense that the formulation satisfies the conservations of mass/momentum, the second law of thermodynamics and Galilean invariance. We also present an efficient algorithm for numerically simulating the N-phase system. The algorithm has overcome the issues caused by the variable coefficient matrices associated with the variable mixture density/viscosity and the couplings among the (N-1) phase field variables and the flow variables. We compare simulation results with the Langmuir-de Gennes theory to demonstrate that the presented method produces physically accurate results for multiple fluid phases. Numerical experiments will be presented for several problems involving multiple fluid phases, large density contrasts and large viscosity contrasts to demonstrate the capabilities of the method for studying the interactions among multiple types of fluid interfaces. Support from NSF and ONR is gratefully acknowledged.
Forsström, J
1992-01-01
The ID3 algorithm for inductive learning was tested using preclassified material for patients suspected to have a thyroid illness. Classification followed a rule-based expert system for the diagnosis of thyroid function. Thus, the knowledge to be learned was limited to the rules existing in the knowledge base of that expert system. The learning capability of the ID3 algorithm was tested with an unselected learning material (with some inherent missing data) and with a selected learning material (no missing data). The selected learning material was a subgroup which formed a part of the unselected learning material. When the number of learning cases was increased, the accuracy of the program improved. When the learning material was large enough, an increase in the learning material did not improve the results further. A better learning result was achieved with the selected learning material not including missing data as compared to unselected learning material. With this material we demonstrate a weakness in the ID3 algorithm: it can not find available information from good example cases if we add poor examples to the data. PMID:1551737
Numerical modelling of agricultural products on the example of bean and yellow lupine seeds
NASA Astrophysics Data System (ADS)
Anders, Andrzej; Kaliniewicz, Zdzisław; Markowski, Piotr
2015-10-01
Numerical models of bean seeds cv. Złota Saxa and yellow lupine seeds cv. Juno were generated with the use of a 3D scanner, the geometric parameters of seeds were determined based on the models developed, and compared with the results of digital image analysis and micrometer measurements. Measurements of seed length, width and thickness performed with the use of a micrometer, 3D scanner and digital image analysis produced similar results that did not differ significantly at α = 0.05. The micrometer delivered the simplest and fastest measurements. The mean surface area of bean seeds cv. Złota Saxa and yellow lupine seeds cv. Juno, calculated with the use of mathematical formulas based on the results of micrometer measurements and digital image analysis, differed significantly from the mean surface area determined with a 3D scanner. No significant differences in seed volume were observed when this parameter was measured with a 3D scanner and determined with the use of mathematical formulas based on the results of digital image analysis and micrometer measurements. The only differences were noted when the volume of yellow lupine seeds cv. Juno was measured in a 25 ml liquid pycnometer.
Anor, Tomer; Madsen, Joseph R; Dupont, Pierre
2011-05-01
We propose a novel systematic approach to optimizing the design of concentric tube robots for neurosurgical procedures. These procedures require that the robot approach specified target sites while navigating and operating within an anatomically constrained work space. The availability of preoperative imaging makes our approach particularly suited for neurosurgery, and we illustrate the method with the example of endoscopic choroid plexus ablation. A novel parameterization of the robot characteristics is used in conjunction with a global pattern search optimization method. The formulation returns the design of the least-complex robot capable of reaching single or multiple target points in a confined space with constrained optimization metrics. A particular advantage of this approach is that it identifies the need for either fixed-curvature versus variable-curvature sections. We demonstrate the performance of the method in four clinically relevant examples. PMID:22270831
Anor, Tomer; Madsen, Joseph R.; Dupont, Pierre
2011-01-01
We propose a novel systematic approach to optimizing the design of concentric tube robots for neurosurgical procedures. These procedures require that the robot approach specified target sites while navigating and operating within an anatomically constrained work space. The availability of preoperative imaging makes our approach particularly suited for neurosurgery, and we illustrate the method with the example of endoscopic choroid plexus ablation. A novel parameterization of the robot characteristics is used in conjunction with a global pattern search optimization method. The formulation returns the design of the least-complex robot capable of reaching single or multiple target points in a confined space with constrained optimization metrics. A particular advantage of this approach is that it identifies the need for either fixed-curvature versus variable-curvature sections. We demonstrate the performance of the method in four clinically relevant examples. PMID:22270831
Fast numerical algorithms for fitting multiresolution hybrid shape models to brain MRI.
Vemuri, B C; Guo, Y; Lai, S H; Leonard, C M
1997-09-01
In this paper, we present new and fast numerical algorithms for shape recovery from brain MRI using multiresolution hybrid shape models. In this modeling framework, shapes are represented by a core rigid shape characterized by a superquadric function and a superimposed displacement function which is characterized by a membrane spline discretized using the finite-element method. Fitting the model to brain MRI data is cast as an energy minimization problem which is solved numerically. We present three new computational methods for model fitting to data. These methods involve novel mathematical derivations that lead to efficient numerical solutions of the model fitting problem. The first method involves using the nonlinear conjugate gradient technique with a diagonal Hessian preconditioner. The second method involves the nonlinear conjugate gradient in the outer loop for solving global parameters of the model and a preconditioned conjugate gradient scheme for solving the local parameters of the model. The third method involves the nonlinear conjugate gradient in the outer loop for solving the global parameters and a combination of the Schur complement formula and the alternating direction-implicit method for solving the local parameters of the model. We demonstrate the efficiency of our model fitting methods via experiments on several MR brain scans. PMID:9873915
NASA Astrophysics Data System (ADS)
Platnick, S.; Wind, G.; Zhang, Z.; Ackerman, S. A.; Maddux, B. C.
2012-12-01
The optical and microphysical structure of warm boundary layer marine clouds is of fundamental importance for understanding a variety of cloud radiation and precipitation processes. With the advent of MODIS (Moderate Resolution Imaging Spectroradiometer) on the NASA EOS Terra and Aqua platforms, simultaneous global/daily 1km retrievals of cloud optical thickness and effective particle size are provided, as well as the derived water path. In addition, the cloud product (MOD06/MYD06 for MODIS Terra and Aqua, respectively) provides separate effective radii results using the 1.6, 2.1, and 3.7 μm spectral channels. Cloud retrieval statistics are highly sensitive to how a pixel identified as being "not-clear" by a cloud mask (e.g., the MOD35/MYD35 product) is determined to be useful for an optical retrieval based on a 1-D cloud model. The Collection 5 MODIS retrieval algorithm removed pixels associated with cloud edges (defined by immediate adjacency to "clear" MOD/MYD35 pixels) as well as ocean pixels with partly cloudy elements in the 250m MODIS cloud mask - part of the so-called Clear Sky Restoral (CSR) algorithm. Collection 6 attempts retrievals for those two pixel populations, but allows a user to isolate or filter out the populations via CSR pixel-level Quality Assessment (QA) assignments. In this paper, using the preliminary Collection 6 MOD06 product, we present global and regional statistical results of marine warm cloud retrieval sensitivities to the cloud edge and 250m partly cloudy pixel populations. As expected, retrievals for these pixels are generally consistent with a breakdown of the 1D cloud model. While optical thickness for these suspect pixel populations may have some utility for radiative studies, the retrievals should be used with extreme caution for process and microphysical studies.
NASA Technical Reports Server (NTRS)
Platnick, Steven; Wind, Galina; Zhang, Zhibo; Ackerman, Steven A.; Maddux, Brent
2012-01-01
The optical and microphysical structure of warm boundary layer marine clouds is of fundamental importance for understanding a variety of cloud radiation and precipitation processes. With the advent of MODIS (Moderate Resolution Imaging Spectroradiometer) on the NASA EOS Terra and Aqua platforms, simultaneous global/daily 1km retrievals of cloud optical thickness and effective particle size are provided, as well as the derived water path. In addition, the cloud product (MOD06/MYD06 for MODIS Terra and Aqua, respectively) provides separate effective radii results using the l.6, 2.1, and 3.7 m spectral channels. Cloud retrieval statistics are highly sensitive to how a pixel identified as being "notclear" by a cloud mask (e.g., the MOD35/MYD35 product) is determined to be useful for an optical retrieval based on a 1-D cloud model. The Collection 5 MODIS retrieval algorithm removed pixels associated with cloud'edges as well as ocean pixels with partly cloudy elements in the 250m MODIS cloud mask - part of the so-called Clear Sky Restoral (CSR) algorithm. Collection 6 attempts retrievals for those two pixel populations, but allows a user to isolate or filter out the populations via CSR pixel-level Quality Assessment (QA) assignments. In this paper, using the preliminary Collection 6 MOD06 product, we present global and regional statistical results of marine warm cloud retrieval sensitivities to the cloud edge and 250m partly cloudy pixel populations. As expected, retrievals for these pixels are generally consistent with a breakdown of the ID cloud model. While optical thickness for these suspect pixel populations may have some utility for radiative studies, the retrievals should be used with extreme caution for process and microphysical studies.
A new free-surface stabilization algorithm for geodynamical modelling: Theory and numerical tests
NASA Astrophysics Data System (ADS)
Andrés-Martínez, Miguel; Morgan, Jason P.; Pérez-Gussinyé, Marta; Rüpke, Lars
2015-09-01
The surface of the solid Earth is effectively stress free in its subaerial portions, and hydrostatic beneath the oceans. Unfortunately, this type of boundary condition is difficult to treat computationally, and for computational convenience, numerical models have often used simpler approximations that do not involve a normal stress-loaded, shear-stress free top surface that is free to move. Viscous flow models with a computational free surface typically confront stability problems when the time step is bigger than the viscous relaxation time. The small time step required for stability (< 2 Kyr) makes this type of model computationally intensive, so there remains a need to develop strategies that mitigate the stability problem by making larger (at least ∼10 Kyr) time steps stable and accurate. Here we present a new free-surface stabilization algorithm for finite element codes which solves the stability problem by adding to the Stokes formulation an intrinsic penalization term equivalent to a portion of the future load at the surface nodes. Our algorithm is straightforward to implement and can be used with both Eulerian or Lagrangian grids. It includes α and β parameters to respectively control both the vertical and the horizontal slope-dependent penalization terms, and uses Uzawa-like iterations to solve the resulting system at a cost comparable to a non-stress free surface formulation. Four tests were carried out in order to study the accuracy and the stability of the algorithm: (1) a decaying first-order sinusoidal topography test, (2) a decaying high-order sinusoidal topography test, (3) a Rayleigh-Taylor instability test, and (4) a steep-slope test. For these tests, we investigate which α and β parameters give the best results in terms of both accuracy and stability. We also compare the accuracy and the stability of our algorithm with a similar implicit approach recently developed by Kaus et al. (2010). We find that our algorithm is slightly more accurate
NASA Astrophysics Data System (ADS)
Li, Yiming
2007-12-01
This symposium is an open forum for discussion on the current trends and future directions of physical modeling, mathematical theory, and numerical algorithm in electrical and electronic engineering. The goal is for computational scientists and engineers, computer scientists, applied mathematicians, physicists, and researchers to present their recent advances and exchange experience. We welcome contributions from researchers of academia and industry. All papers to be presented in this symposium have carefully been reviewed and selected. They include semiconductor devices, circuit theory, statistical signal processing, design optimization, network design, intelligent transportation system, and wireless communication. Welcome to this interdisciplinary symposium in International Conference of Computational Methods in Sciences and Engineering (ICCMSE 2007). Look forward to seeing you in Corfu, Greece!
Dong, S.
2015-02-15
We present a family of physical formulations, and a numerical algorithm, based on a class of general order parameters for simulating the motion of a mixture of N (N⩾2) immiscible incompressible fluids with given densities, dynamic viscosities, and pairwise surface tensions. The N-phase formulations stem from a phase field model we developed in a recent work based on the conservations of mass/momentum, and the second law of thermodynamics. The introduction of general order parameters leads to an extremely strongly-coupled system of (N−1) phase field equations. On the other hand, the general form enables one to compute the N-phase mixing energy density coefficients in an explicit fashion in terms of the pairwise surface tensions. We show that the increased complexity in the form of the phase field equations associated with general order parameters in actuality does not cause essential computational difficulties. Our numerical algorithm reformulates the (N−1) strongly-coupled phase field equations for general order parameters into 2(N−1) Helmholtz-type equations that are completely de-coupled from one another. This leads to a computational complexity comparable to that for the simplified phase field equations associated with certain special choice of the order parameters. We demonstrate the capabilities of the method developed herein using several test problems involving multiple fluid phases and large contrasts in densities and viscosities among the multitude of fluids. In particular, by comparing simulation results with the Langmuir–de Gennes theory of floating liquid lenses we show that the method using general order parameters produces physically accurate results for multiple fluid phases.
Numerical Arc Segmentation Algorithm for a Radio Conference (NASARC), version 4.0: User's manual
NASA Technical Reports Server (NTRS)
Whyte, Wayne A., Jr.; Heyward, Ann O.; Ponchak, Denise S.; Spence, Rodney L.; Zuzek, John E.
1988-01-01
The information in the NASARC (Version 4.0) Technical Manual (NASA-TM-101453) and NASARC (Version 4.0) User's Manual (NASA-TM-101454) relates to the state of Numerical Arc Segmentation Algorithm for a Radio Conference (NASARC) software development through November 1, 1988. The Technical Manual describes the NASARC concept and the algorithms used to implement the concept. The User's Manual provides information on computer system considerations, installation instructions, description of input files, and program operation instructions. Significant revisions were incorporated in the Version 4.0 software over prior versions. These revisions have further enhanced the modeling capabilities of the NASARC procedure and provide improved arrangements of predetermined arcs within the geostationary orbit. Array dimensions within the software were structured to fit within the currently available 12-megabyte memory capacity of the International Frequency Registration Board (IFRB) computer facility. A piecewise approach to predetermined arc generation in NASARC (Version 4.) allows worldwide planning problem scenarios to be accommodated within computer run time and memory constraints with enhanced likelihood and ease of solution.
Numerical Arc Segmentation Algorithm for a Radio Conference-NASARC (version 4.0) technical manual
NASA Technical Reports Server (NTRS)
Whyte, Wayne A., Jr.; Heyward, Ann O.; Ponchak, Denise S.; Spence, Rodney L.; Zuzek, John E.
1988-01-01
The information contained in the NASARC (Version 4.0) Technical Manual and NASARC (Version 4.0) User's Manual relates to the Numerical Arc Segmentation Algorithm for a Radio Conference (NASARC) software development through November 1, 1988. The Technical Manual describes the NASARC concept and the algorithms used to implement the concept. The User's Manual provides information on computer system considerations, installation instructions, description of input files, and program operation instructions. Significant revisions were incorporated in the Version 4.0 software over prior versions. These revisions have further enhanced the modeling capabilities of the NASARC procedure and provide improved arrangements of predetermined arcs within the geostationary orbits. Array dimensions within the software were structured to fit within the currently available 12 megabyte memory capacity of the International Frequency Registration Board (IFRB) computer facility. A piecewise approach to predetermined arc generation in NASARC (Version 4.0) allows worldwide planning problem scenarios to be accommodated within computer run time and memory constraints with enhanced likelihood and ease of solution.
Numerical Arc Segmentation Algorithm for a Radio Conference-NASARC, Version 2.0: User's Manual
NASA Technical Reports Server (NTRS)
Whyte, Wayne A., Jr.; Heyward, Ann O.; Ponchak, Denise S.; Spence, Rodney L.; Zuzek, John E.
1987-01-01
The information contained in the NASARC (Version 2.0) Technical Manual (NASA TM-100160) and the NASARC (Version 2.0) User's Manual (NASA TM-100161) relates to the state of the Numerical Arc Segmentation Algorithm for a Radio Conference (NASARC) software development through October 16, 1987. The technical manual describes the NASARC concept and the algorithms which are used to implement it. The User's Manual provides information on computer system considerations, installation instructions, description of input files, and program operation instructions. Significant revisions have been incorporated in the Version 2.0 software over prior versions. These revisions have enhanced the modeling capabilities of the NASARC procedure while greatly reducing the computer run time and memory requirements. Array dimensions within the software have been structured to fit into the currently available 6-megabyte memory capacity of the International Frequency Registration Board (IFRB) computer facility. A piecewise approach to predetermined arc generation in NASARC (Version 2.0) allows worldwide scenarios to be accommodated within these memory constraints while at the same time reducing computer run time.
Numerical arc segmentation algorithm for a radio conference-NASARC (version 2.0) technical manual
NASA Technical Reports Server (NTRS)
Whyte, Wayne A., Jr.; Heyward, Ann O.; Ponchak, Denise S.; Spence, Rodney L.; Zuzek, John E.
1987-01-01
The information contained in the NASARC (Version 2.0) Technical Manual (NASA TM-100160) and NASARC (Version 2.0) User's Manual (NASA TM-100161) relates to the state of NASARC software development through October 16, 1987. The Technical Manual describes the Numerical Arc Segmentation Algorithm for a Radio Conference (NASARC) concept and the algorithms used to implement the concept. The User's Manual provides information on computer system considerations, installation instructions, description of input files, and program operating instructions. Significant revisions have been incorporated in the Version 2.0 software. These revisions have enhanced the modeling capabilities of the NASARC procedure while greatly reducing the computer run time and memory requirements. Array dimensions within the software have been structured to fit within the currently available 6-megabyte memory capacity of the International Frequency Registration Board (IFRB) computer facility. A piecewise approach to predetermined arc generation in NASARC (Version 2.0) allows worldwide scenarios to be accommodated within these memory constraints while at the same time effecting an overall reduction in computer run time.
NASA Technical Reports Server (NTRS)
Barth, Timothy J.; Lomax, Harvard
1987-01-01
The past decade has seen considerable activity in algorithm development for the Navier-Stokes equations. This has resulted in a wide variety of useful new techniques. Some examples for the numerical solution of the Navier-Stokes equations are presented, divided into two parts. One is devoted to the incompressible Navier-Stokes equations, and the other to the compressible form.
NASA Astrophysics Data System (ADS)
Kitaura, F. S.; Enßlin, T. A.
2008-09-01
We address the inverse problem of cosmic large-scale structure reconstruction from a Bayesian perspective. For a linear data model, a number of known and novel reconstruction schemes, which differ in terms of the underlying signal prior, data likelihood and numerical inverse extraregularization schemes are derived and classified. The Bayesian methodology presented in this paper tries to unify and extend the following methods: Wiener filtering, Tikhonov regularization, ridge regression, maximum entropy and inverse regularization techniques. The inverse techniques considered here are the asymptotic regularization, the Jacobi, Steepest Descent, Newton-Raphson, Landweber-Fridman and both linear and non-linear Krylov methods based on Fletcher-Reeves, Polak-Ribière and Hestenes-Stiefel conjugate gradients. The structures of the up-to-date highest performing algorithms are presented, based on an operator scheme, which permits one to exploit the power of fast Fourier transforms. Using such an implementation of the generalized Wiener filter in the novel ARGO software package, the different numerical schemes are benchmarked with one-, two- and three-dimensional problems including structured white and Poissonian noise, data windowing and blurring effects. A novel numerical Krylov scheme is shown to be superior in terms of performance and fidelity. These fast inverse methods ultimately will enable the application of sampling techniques to explore complex joint posterior distributions. We outline how the space of the dark matter density field, the peculiar velocity field and the power spectrum can jointly be investigated by a Gibbs-sampling process. Such a method can be applied for the redshift distortions correction of the observed galaxies and for time-reversal reconstructions of the initial density field.
2010-01-01
Background Ambulance response time is a crucial factor in patient survival. The number of emergency cases (EMS cases) requiring an ambulance is increasing due to changes in population demographics. This is decreasing ambulance response times to the emergency scene. This paper predicts EMS cases for 5-year intervals from 2020, to 2050 by correlating current EMS cases with demographic factors at the level of the census area and predicted population changes. It then applies a modified grouping genetic algorithm to compare current and future optimal locations and numbers of ambulances. Sets of potential locations were evaluated in terms of the (current and predicted) EMS case distances to those locations. Results Future EMS demands were predicted to increase by 2030 using the model (R2 = 0.71). The optimal locations of ambulances based on future EMS cases were compared with current locations and with optimal locations modelled on current EMS case data. Optimising the location of ambulance stations locations reduced the average response times by 57 seconds. Current and predicted future EMS demand at modelled locations were calculated and compared. Conclusions The reallocation of ambulances to optimal locations improved response times and could contribute to higher survival rates from life-threatening medical events. Modelling EMS case 'demand' over census areas allows the data to be correlated to population characteristics and optimal 'supply' locations to be identified. Comparing current and future optimal scenarios allows more nuanced planning decisions to be made. This is a generic methodology that could be used to provide evidence in support of public health planning and decision making. PMID:20109172
Hard Data Analytics Problems Make for Better Data Analysis Algorithms: Bioinformatics as an Example
Widera, Paweł; Lazzarini, Nicola; Krasnogor, Natalio
2014-01-01
Abstract Data mining and knowledge discovery techniques have greatly progressed in the last decade. They are now able to handle larger and larger datasets, process heterogeneous information, integrate complex metadata, and extract and visualize new knowledge. Often these advances were driven by new challenges arising from real-world domains, with biology and biotechnology a prime source of diverse and hard (e.g., high volume, high throughput, high variety, and high noise) data analytics problems. The aim of this article is to show the broad spectrum of data mining tasks and challenges present in biological data, and how these challenges have driven us over the years to design new data mining and knowledge discovery procedures for biodata. This is illustrated with the help of two kinds of case studies. The first kind is focused on the field of protein structure prediction, where we have contributed in several areas: by designing, through regression, functions that can distinguish between good and bad models of a protein's predicted structure; by creating new measures to characterize aspects of a protein's structure associated with individual positions in a protein's sequence, measures containing information that might be useful for protein structure prediction; and by creating accurate estimators of these structural aspects. The second kind of case study is focused on omics data analytics, a class of biological data characterized for having extremely high dimensionalities. Our methods were able not only to generate very accurate classification models, but also to discover new biological knowledge that was later ratified by experimentalists. Finally, we describe several strategies to tightly integrate knowledge extraction and data mining in order to create a new class of biodata mining algorithms that can natively embrace the complexity of biological data, efficiently generate accurate information in the form of classification/regression models, and extract valuable
NASA Astrophysics Data System (ADS)
Holm, D. D.; Ivanov, R. I.
2010-12-01
The Lax pair formulation of the two-component Camassa-Holm equation (CH2) is generalized to produce an integrable multi-component family, CH(n, k), of equations with n components and 1 <= |k| <= n velocities. All of the members of the CH(n, k) family show fluid-dynamics properties with coherent solitons following particle characteristics. We determine their Lie-Poisson Hamiltonian structures and give numerical examples of their soliton solution behaviour. We concentrate on the CH(2, k) family with one or two velocities, including the CH(2, -1) equation in the Dym position of the CH2 hierarchy. A brief discussion of the CH(3, 1) system reveals the underlying graded Lie-algebraic structure of the Hamiltonian formulation for CH(n, k) when n >= 3. Fondly recalling our late friend Jerry Marsden.
Biphasic indentation of articular cartilage--II. A numerical algorithm and an experimental study.
Mow, V C; Gibbs, M C; Lai, W M; Zhu, W B; Athanasiou, K A
1989-01-01
Part I (Mak et al., 1987, J. Biomechanics 20, 703-714) presented the theoretical solutions for the biphasic indentation of articular cartilage under creep and stress-relaxation conditions. In this study, using the creep solution, we developed an efficient numerical algorithm to compute all three material coefficients of cartilage in situ on the joint surface from the indentation creep experiment. With this method we determined the average values of the aggregate modulus. Poisson's ratio and permeability for young bovine femoral condylar cartilage in situ to be HA = 0.90 MPa, vs = 0.39 and k = 0.44 x 10(-15) m4/Ns respectively, and those for patellar groove cartilage to be HA = 0.47 MPa, vs = 0.24, k = 1.42 x 10(-15) m4/Ns. One surprising finding from this study is that the in situ Poisson's ratio of cartilage (0.13-0.45) may be much less than those determined from measurements performed on excised osteochondral plugs (0.40-0.49) reported in the literature. We also found the permeability of patellar groove cartilage to be several times higher than femoral condyle cartilage. These findings may have important implications on understanding the functional behavior of cartilage in situ and on methods used to determine the elastic moduli of cartilage using the indentation experiments. PMID:2613721
NASA Technical Reports Server (NTRS)
Whyte, W. A.; Heyward, A. O.; Ponchak, D. S.; Spence, R. L.; Zuzek, J. E.
1988-01-01
The Numerical Arc Segmentation Algorithm for a Radio Conference (NASARC) provides a method of generating predetermined arc segments for use in the development of an allotment planning procedure to be carried out at the 1988 World Administrative Radio Conference (WARC) on the Use of the Geostationary Satellite Orbit and the Planning of Space Services Utilizing It. Through careful selection of the predetermined arc (PDA) for each administration, flexibility can be increased in terms of choice of system technical characteristics and specific orbit location while reducing the need for coordination among administrations. The NASARC software determines pairwise compatibility between all possible service areas at discrete arc locations. NASARC then exhaustively enumerates groups of administrations whose satellites can be closely located in orbit, and finds the arc segment over which each such compatible group exists. From the set of all possible compatible groupings, groups and their associated arc segments are selected using a heuristic procedure such that a PDA is identified for each administration. Various aspects of the NASARC concept and how the software accomplishes specific features of allotment planning are discussed.
ERIC Educational Resources Information Center
Gonzalez-Vega, Laureano
1999-01-01
Using a Computer Algebra System (CAS) to help with the teaching of an elementary course in linear algebra can be one way to introduce computer algebra, numerical analysis, data structures, and algorithms. Highlights the advantages and disadvantages of this approach to the teaching of linear algebra. (Author/MM)
NASA Astrophysics Data System (ADS)
Korneev, Boris; Levchenko, Vadim
2016-02-01
Interaction between a shock wave and an inhomogeneity in fluid has complicated behavior, including vortex and turbulence generating, mixing, shock wave scattering and reflection. In the present paper we deal with the numerical simulation of the considered process. The Euler equations of unsteady inviscid compressible three-dimensional flow are used into the four-equation model of multicomponent flow. These equations are discretized using the RKDG numerical method. It is implemented with the help of the DiamondTorre algorithm, so the effective GPGPU solver is obtained having outstanding computing properties. With its use we carry out several sets of numerical experiments of shock-bubble interaction problem. The bubble deformation and mixture formation is observed.
NASA Technical Reports Server (NTRS)
Spratlin, Kenneth Milton
1987-01-01
An adaptive numeric predictor-corrector guidance is developed for atmospheric entry vehicles which utilize lift to achieve maximum footprint capability. Applicability of the guidance design to vehicles with a wide range of performance capabilities is desired so as to reduce the need for algorithm redesign with each new vehicle. Adaptability is desired to minimize mission-specific analysis and planning. The guidance algorithm motivation and design are presented. Performance is assessed for application of the algorithm to the NASA Entry Research Vehicle (ERV). The dispersions the guidance must be designed to handle are presented. The achievable operational footprint for expected worst-case dispersions is presented. The algorithm performs excellently for the expected dispersions and captures most of the achievable footprint.
Developmental Algorithms Have Meaning!
ERIC Educational Resources Information Center
Green, John
1997-01-01
Adapts Stanic and McKillip's ideas for the use of developmental algorithms to propose that the present emphasis on symbolic manipulation should be tempered with an emphasis on the conceptual understanding of the mathematics underlying the algorithm. Uses examples from the areas of numeric computation, algebraic manipulation, and equation solving…
NASA Astrophysics Data System (ADS)
Bhrawy, A. H.; Doha, E. H.; Baleanu, D.; Ezz-Eldien, S. S.
2015-07-01
In this paper, an efficient and accurate spectral numerical method is presented for solving second-, fourth-order fractional diffusion-wave equations and fractional wave equations with damping. The proposed method is based on Jacobi tau spectral procedure together with the Jacobi operational matrix for fractional integrals, described in the Riemann-Liouville sense. The main characteristic behind this approach is to reduce such problems to those of solving systems of algebraic equations in the unknown expansion coefficients of the sought-for spectral approximations. The validity and effectiveness of the method are demonstrated by solving five numerical examples. Numerical examples are presented in the form of tables and graphs to make comparisons with the results obtained by other methods and with the exact solutions more easier.
Numerical Study of Three-Dimensional Flows Using Unfactored Upwind-Relaxation Sweeping Algorithm
NASA Astrophysics Data System (ADS)
Zha, G.-C.; Bilgen, E.
1996-05-01
The linear stability analysis of the unfactored upwind relaxation-sweeping (URS) algorithm for 3D flow field calculations has been carried out and it is shown that the URS algorithm is unconditionally stable. The algorithm is independent of the global sweeping direction selection. However, choosing the direction with relatively low variable gradient as the global sweeping direction results in a higher degree of stability. Three-dimensional compressible Euler equations are solved by using the implicit URS algorithm to study internal flows of a non-axisymmetric nozzle with a circular-to-rectangular transition duct and complex shock wave structures for a 3D channel flow. The efficiency and robustness of the URS algorithm has been demonstrated.
BLUM,T.
1999-09-14
The RIKEN BNL Research Center hosted its 19th workshop April 27th through May 1, 1999. The topic was Numerical Algorithms at Non-Zero Chemical Potential. QCD at a non-zero chemical potential (non-zero density) poses a long-standing unsolved challenge for lattice gauge theory. Indeed, it is the primary unresolved issue in the fundamental formulation of lattice gauge theory. The chemical potential renders conventional lattice actions complex, practically excluding the usual Monte Carlo techniques which rely on a positive definite measure for the partition function. This ''sign'' problem appears in a wide range of physical systems, ranging from strongly coupled electronic systems to QCD. The lack of a viable numerical technique at non-zero density is particularly acute since new exotic ''color superconducting'' phases of quark matter have recently been predicted in model calculations. A first principles confirmation of the phase diagram is desirable since experimental verification is not expected soon. At the workshop several proposals for new algorithms were made: cluster algorithms, direct simulation of Grassman variables, and a bosonization of the fermion determinant. All generated considerable discussion and seem worthy of continued investigation. Several interesting results using conventional algorithms were also presented: condensates in four fermion models, SU(2) gauge theory in fundamental and adjoint representations, and lessons learned from strong; coupling, non-zero temperature and heavy quarks applied to non-zero density simulations.
Zhu, Xinjun; Chen, Zhanqing; Tang, Chen; Mi, Qinghua; Yan, Xiusheng
2013-03-20
In this paper, we are concerned with denoising in experimentally obtained electronic speckle pattern interferometry (ESPI) speckle fringe patterns with poor quality. We extend the application of two existing oriented partial differential equation (PDE) filters, including the second-order single oriented PDE filter and the double oriented PDE filter, to two experimentally obtained ESPI speckle fringe patterns with very poor quality, and compare them with other efficient filtering methods, including the adaptive weighted filter, the improved nonlinear complex diffusion PDE, and the windowed Fourier transform method. All of the five filters have been illustrated to be efficient denoising methods through previous comparative analyses in published papers. The experimental results have demonstrated that the two oriented PDE models are applicable to low-quality ESPI speckle fringe patterns. Then for solving the main shortcoming of the two oriented PDE models, we develop the numerically fast algorithms based on Gauss-Seidel strategy for the two oriented PDE models. The proposed numerical algorithms are capable of accelerating the convergence greatly, and perform significantly better in terms of computational efficiency. Our numerically fast algorithms are extended automatically to some other PDE filtering models. PMID:23518722
NASA Astrophysics Data System (ADS)
Tang, Yu-Hang; Karniadakis, George Em
2014-11-01
We present a scalable dissipative particle dynamics simulation code, fully implemented on the Graphics Processing Units (GPUs) using a hybrid CUDA/MPI programming model, which achieves 10-30 times speedup on a single GPU over 16 CPU cores and almost linear weak scaling across a thousand nodes. A unified framework is developed within which the efficient generation of the neighbor list and maintaining particle data locality are addressed. Our algorithm generates strictly ordered neighbor lists in parallel, while the construction is deterministic and makes no use of atomic operations or sorting. Such neighbor list leads to optimal data loading efficiency when combined with a two-level particle reordering scheme. A faster in situ generation scheme for Gaussian random numbers is proposed using precomputed binary signatures. We designed custom transcendental functions that are fast and accurate for evaluating the pairwise interaction. The correctness and accuracy of the code is verified through a set of test cases simulating Poiseuille flow and spontaneous vesicle formation. Computer benchmarks demonstrate the speedup of our implementation over the CPU implementation as well as strong and weak scalability. A large-scale simulation of spontaneous vesicle formation consisting of 128 million particles was conducted to further illustrate the practicality of our code in real-world applications. Catalogue identifier: AETN_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETN_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 1 602 716 No. of bytes in distributed program, including test data, etc.: 26 489 166 Distribution format: tar.gz Programming language: C/C++, CUDA C/C++, MPI. Computer: Any computers having nVidia GPGPUs with compute capability 3.0. Operating system: Linux. Has the code been
Numerical Simulation of Turbulent MHD Flows Using an Iterative PNS Algorithm
NASA Technical Reports Server (NTRS)
Kato, Hiromasa; Tannehill, John C.; Mehta, Unmeel B.
2003-01-01
A new parabolized Navier-Stokes (PNS) algorithm has been developed to efficiently compute magnetohydrodynamic (MHD) flows in the low magnetic Reynolds number regime. In this regime, the electrical conductivity is low and the induced magnetic field is negligible compared to the applied magnetic field. The MHD effects are modeled by introducing source terms into the PNS equation which can then be solved in a very efficient manner. To account for upstream (elliptic) effects, the flowfields are computed using multiple streamwise sweeps with an iterated PNS algorithm. Turbulence has been included by modifying the Baldwin-Lomax turbulence model to account for MHD effects. The new algorithm has been used to compute both laminar and turbulent, supersonic, MHD flows over flat plates and supersonic viscous flows in a rectangular MHD accelerator. The present results are in excellent agreement with previous complete Navier-Stokes calculations.
Structure of the Gabor matrix and efficient numerical algorithms for discrete Gabor expansions
NASA Astrophysics Data System (ADS)
Qiu, Sigang; Feichtinger, Hans G.
1994-09-01
The standard way to obtain suitable coefficients for the (non-orthogonal) Gabor expansion of a general signal for a given Gabor atom g and a pair of lattice constants in the (discrete) time/frequency plane, requires to compute the dual Gabor window function g- first. In this paper, we present an explicit description of the sparsity, the block and banded structure of the Gabor frame matrix G. On this basis efficient algorithms are developed for computing g- by solving the linear equation g- * G equals g with the conjugate- gradients method. Using the dual Gabor wavelet, a fast Gabor reconstruction algorithm with very low computational complexity is proposed.
NASA Astrophysics Data System (ADS)
Bor, E.; Turduev, M.; Kurt, H.
2016-08-01
Photonic structure designs based on optimization algorithms provide superior properties compared to those using intuition-based approaches. In the present study, we numerically and experimentally demonstrate subwavelength focusing of light using wavelength scale absorption-free dielectric scattering objects embedded in an air background. An optimization algorithm based on differential evolution integrated into the finite-difference time-domain method was applied to determine the locations of each circular dielectric object with a constant radius and refractive index. The multiobjective cost function defined inside the algorithm ensures strong focusing of light with low intensity side lobes. The temporal and spectral responses of the designed compact photonic structure provided a beam spot size in air with a full width at half maximum value of 0.19λ, where λ is the wavelength of light. The experiments were carried out in the microwave region to verify numerical findings, and very good agreement between the two approaches was found. The subwavelength light focusing is associated with a strong interference effect due to nonuniformly arranged scatterers and an irregular index gradient. Improving the focusing capability of optical elements by surpassing the diffraction limit of light is of paramount importance in optical imaging, lithography, data storage, and strong light-matter interaction.
NASA Astrophysics Data System (ADS)
Wilkie, George J.; Dorland, William
2016-05-01
The δf particle-in-cell algorithm has been a useful tool in studying the physics of plasmas, particularly turbulent magnetized plasmas in the context of gyrokinetics. The reduction in noise due to not having to resolve the full distribution function indicates an efficiency advantage over the standard ("full-f") particle-in-cell. Despite its successes, the algorithm behaves strangely in some circumstances. In this work, we document a fully resolved numerical instability that occurs in the simplest of multiple-species test cases: the electrostatic ΩH mode. There is also a poorly understood numerical instability that occurs when one is under-resolved in particle number, which may require a prohibitively large number of particles to stabilize. Both of these are independent of the time-stepping scheme, and we conclude that they exist if the time advancement were exact. The exact analytic form of the algorithm is presented, and several schemes for mitigating these instabilities are also presented.
Bor, E; Turduev, M; Kurt, H
2016-01-01
Photonic structure designs based on optimization algorithms provide superior properties compared to those using intuition-based approaches. In the present study, we numerically and experimentally demonstrate subwavelength focusing of light using wavelength scale absorption-free dielectric scattering objects embedded in an air background. An optimization algorithm based on differential evolution integrated into the finite-difference time-domain method was applied to determine the locations of each circular dielectric object with a constant radius and refractive index. The multiobjective cost function defined inside the algorithm ensures strong focusing of light with low intensity side lobes. The temporal and spectral responses of the designed compact photonic structure provided a beam spot size in air with a full width at half maximum value of 0.19λ, where λ is the wavelength of light. The experiments were carried out in the microwave region to verify numerical findings, and very good agreement between the two approaches was found. The subwavelength light focusing is associated with a strong interference effect due to nonuniformly arranged scatterers and an irregular index gradient. Improving the focusing capability of optical elements by surpassing the diffraction limit of light is of paramount importance in optical imaging, lithography, data storage, and strong light-matter interaction. PMID:27477060
Bor, E.; Turduev, M.; Kurt, H.
2016-01-01
Photonic structure designs based on optimization algorithms provide superior properties compared to those using intuition-based approaches. In the present study, we numerically and experimentally demonstrate subwavelength focusing of light using wavelength scale absorption-free dielectric scattering objects embedded in an air background. An optimization algorithm based on differential evolution integrated into the finite-difference time-domain method was applied to determine the locations of each circular dielectric object with a constant radius and refractive index. The multiobjective cost function defined inside the algorithm ensures strong focusing of light with low intensity side lobes. The temporal and spectral responses of the designed compact photonic structure provided a beam spot size in air with a full width at half maximum value of 0.19λ, where λ is the wavelength of light. The experiments were carried out in the microwave region to verify numerical findings, and very good agreement between the two approaches was found. The subwavelength light focusing is associated with a strong interference effect due to nonuniformly arranged scatterers and an irregular index gradient. Improving the focusing capability of optical elements by surpassing the diffraction limit of light is of paramount importance in optical imaging, lithography, data storage, and strong light-matter interaction. PMID:27477060
Kisselev, V B; Roberti, L; Perona, G
1995-12-20
The recently developed finite-element method for solution of the radiative transfer equation has been extended to compute the full azimuthal dependence of the radiance in a vertically inhomogeneous plane-parallel medium. The physical processes that are included in the algorithm are multiple scattering and bottom boundary bidirectional reflectivity. The incident radiation is a parallel flux on the top boundary that is characteristic for illumination of the atmosphere by the Sun in the UV, visible, and near-infrared regions of the electromagnetic spectrum. The theoretical basis is presented together with a number of applications to realistic atmospheres. The method is shown to be accurate even with a low number of grid points for most of the considered situations. The FORTRAN code for this algorithm is developed and is available for applications. PMID:21068966
NASA Astrophysics Data System (ADS)
Kisselev, Viatcheslav B.; Roberti, Laura; Perona, Giovanni
1995-12-01
The recently developed finite-element method for solution of the radiative transfer equation has been extended to compute the full azimuthal dependence of the radiance in a vertically inhomogeneous plane-parallel medium. The physical processes that are included in the algorithm are multiple scattering and bottom boundary bidirectional reflectivity. The incident radiation is a parallel flux on the top boundary that is characteristic for illumination of the atmosphere by the Sun in the UV, visible, and near-infrared regions of the electromagnetic spectrum. The theoretical basis is presented together with a number of applications to realistic atmospheres. The method is shown to be accurate even with a low number of grid points for most of the considered situations. The fortran code for this algorithm is developed and is available for applications.
Parallel technology for numerical modeling of fluid dynamics problems by high-accuracy algorithms
NASA Astrophysics Data System (ADS)
Gorobets, A. V.
2015-04-01
A parallel computation technology for modeling fluid dynamics problems by finite-volume and finite-difference methods of high accuracy is presented. The development of an algorithm, the design of a software implementation, and the creation of parallel programs for computations on large-scale computing systems are considered. The presented parallel technology is based on a multilevel parallel model combining various types of parallelism: with shared and distributed memory and with multiple and single instruction streams to multiple data flows.
NASA Astrophysics Data System (ADS)
Ersoy, Ozlem; Dag, Idris
2015-12-01
The solutions of the reaction-diffusion system are given by method of collocation based on the exponential B-splines. Thus the reaction-diffusion systemturns into an iterative banded algebraic matrix equation. Solution of the matrix equation is carried out byway of Thomas algorithm. The present methods test on both linear and nonlinear problems. The results are documented to compare with some earlier studies by use of L∞ and relative error norm for problems respectively.
Scanning of wind turbine upwind conditions: numerical algorithm and first applications
NASA Astrophysics Data System (ADS)
Calaf, Marc; Cortina, Gerard; Sharma, Varun; Parlange, Marc B.
2014-11-01
Wind turbines still obtain in-situ meteorological information by means of traditional wind vane and cup anemometers installed at the turbine's nacelle, right behind the blades. This has two important drawbacks: 1-turbine misalignment with the mean wind direction is common and energy losses are experienced; 2-the near-blade monitoring does not provide any time to readjust the profile of the wind turbine to incoming turbulence gusts. A solution is to install wind Lidar devices on the turbine's nacelle. This technique is currently under development as an alternative to traditional in-situ wind anemometry because it can measure the wind vector at substantial distances upwind. However, at what upwind distance should they interrogate the atmosphere? A new flexible wind turbine algorithm for large eddy simulations of wind farms that allows answering this question, will be presented. The new wind turbine algorithm timely corrects the turbines' yaw misalignment with the changing wind. The upwind scanning flexibility of the algorithm also allows to track the wind vector and turbulent kinetic energy as they approach the wind turbine's rotor blades. Results will illustrate the spatiotemporal evolution of the wind vector and the turbulent kinetic energy as the incoming flow approaches the wind turbine under different atmospheric stability conditions. Results will also show that the available atmospheric wind power is larger during daytime periods at the cost of an increased variance.
Spouge, John L; Mariño-Ramírez, Leonardo; Sheetlin, Sergey L
2014-01-01
Some biological sequences contain subsequences of unusual composition; e.g. some proteins contain DNA binding domains, transmembrane regions and charged regions, and some DNA sequences contain repeats. The linear-time Ruzzo-Tompa (RT) algorithm finds subsequences of unusual composition, using a sequence of scores as input and the corresponding 'maximal segments' as output. In principle, permitting gaps in the output subsequences could improve sensitivity. Here, the input of the RT algorithm is generalised to a finite, totally ordered, weighted graph, so the algorithm locates paths of maximal weight through increasing but not necessarily adjacent vertices. By permitting the penalised deletion of unfavourable letters, the generalisation therefore includes gaps. The program RepWords, which finds inexact simple repeats in DNA, exemplifies the general concepts by out-performing a similar extant, ad hoc tool. With minimal programming effort, the generalised Ruzzo-Tompa algorithm could improve the performance of many programs for finding biological subsequences of unusual composition. PMID:24989859
AN ACCURATE AND EFFICIENT ALGORITHM FOR NUMERICAL SIMULATION OF CONDUCTION-TYPE PROBLEMS. (R824801)
A modification of the finite analytic numerical method for conduction-type (diffusion) problems is presented. The finite analytic discretization scheme is derived by means of the Fourier series expansion for the most general case of nonuniform grid and variabl...
NASA Astrophysics Data System (ADS)
Wang, Jiong; Steinmann, Paul
2016-05-01
This is part II of this series of papers. The aim of the current paper was to solve the governing PDE system derived in part I numerically, such that the procedure of variant reorientation in a magnetic shape memory alloy (MSMA) sample can be simulated. The sample to be considered in this paper has a 3D cuboid shape and is subject to typical magnetic and mechanical loading conditions. To investigate the demagnetization effect on the sample's response, the surrounding space of the sample is taken into account. By considering the different properties of the independent variables, an iterative numerical algorithm is proposed to solve the governing system. The related mathematical formulas and some techniques facilitating the numerical calculations are introduced. Based on the results of numerical simulations, the distributions of some important physical quantities (e.g., magnetization, demagnetization field, and mechanical stress) in the sample can be determined. Furthermore, the properties of configurational force on the twin interfaces are investigated. By virtue of the twin interface movement criteria derived in part I, the whole procedure of magnetic field- or stress-induced variant reorientations in the MSMA sample can be properly simulated.
NASA Astrophysics Data System (ADS)
Belov, V. V.; Tarasenkov, M. V.
2015-11-01
An algorithm for atmospheric correction of satellite images combining the consideration of the main factors influencing imaging and a number of techniques allowing the computational time to be decreased considerably is analyzed. On the example of a series of images of the South of the Tomsk Region recorded from 7/13/2013 to 7/17/2013 with the low atmospheric turbidity, a comparison of the results of atmospheric correction using the suggested algorithm with the results obtained using the NASA MOD09 algorithm is performed. The correction error is estimated under assumption of a linear change of the reflection coefficient from image to image. Our comparison demonstrates that the results of correction differ within the correction error.
NASA Technical Reports Server (NTRS)
Carter, Richard G.
1989-01-01
For optimization problems associated with engineering design, parameter estimation, image reconstruction, and other optimization/simulation applications, low accuracy function and gradient values are frequently much less expensive to obtain than high accuracy values. Here, researchers investigate the computational performance of trust region methods for nonlinear optimization when high accuracy evaluations are unavailable or prohibitively expensive, and confirm earlier theoretical predictions when the algorithm is convergent even with relative gradient errors of 0.5 or more. The proper choice of the amount of accuracy to use in function and gradient evaluations can result in orders-of-magnitude savings in computational cost.
An Effective Hybrid Firefly Algorithm with Harmony Search for Global Numerical Optimization
Guo, Lihong; Wang, Gai-Ge; Wang, Heqi; Wang, Dinan
2013-01-01
A hybrid metaheuristic approach by hybridizing harmony search (HS) and firefly algorithm (FA), namely, HS/FA, is proposed to solve function optimization. In HS/FA, the exploration of HS and the exploitation of FA are fully exerted, so HS/FA has a faster convergence speed than HS and FA. Also, top fireflies scheme is introduced to reduce running time, and HS is utilized to mutate between fireflies when updating fireflies. The HS/FA method is verified by various benchmarks. From the experiments, the implementation of HS/FA is better than the standard FA and other eight optimization methods. PMID:24348137
NASA Astrophysics Data System (ADS)
Hu, P.; Shi, D. Y.; Ying, L.; Shen, G. Z.; Chang, Y.; Liu, W. Q.
2013-05-01
Thermal-mechanical-transformation coupled theoretical model for hot stamping and rheological behavior of high strength steel at elevated temperatures were obtained through non-isothermal and isothermal tensile tests respectively in this work. The static explicit finite element equations for hot stamping were proposed based on thermal-mechanical-transformation coupled constitutive laws and nonlinear, large deformation analysis. According to these equations, the hot stamping module of KMAS (King Mesh Analysis System) was developed for the numerical simulation of sheet metal forming at elevated temperatures. Afterwards, the hot stamping simulation of a typical B-pillar conducted by the KMAS software was compared to the experiment. The comparison consists of the following sides: temperature distribution, thickness distribution and martensite fraction. The good agreement between numerical simulation and the experiment confirms that the multi-field coupled constitutive laws and the KMAS software can predict hot stamping process accurately.
Stamnes, K; Tsay, S C; Wiscombe, W; Jayaweera, K
1988-06-15
We summarize an advanced, thoroughly documented, and quite general purpose discrete ordinate algorithm for time-independent transfer calculations in vertically inhomogeneous, nonisothermal, plane-parallel media. Atmospheric applications ranging from the UV to the radar region of the electromagnetic spectrum are possible. The physical processes included are thermal emission, scattering, absorption, and bidirectional reflection and emission at the lower boundary. The medium may be forced at the top boundary by parallel or diffuse radiation and by internal and boundary thermal sources as well. We provide a brief account of the theoretical basis as well as a discussion of the numerical implementation of the theory. The recent advances made by ourselves and our collaborators-advances in both formulation and numerical solution-are all incorporated in the algorithm. Prominent among these advances are the complete conquest of two illconditioning problems which afflicted all previous discrete ordinate implementations: (1) the computation of eigenvalues and eigenvectors and (2) the inversion of the matrix determining the constants of integration. Copies of the FORTRAN program on microcomputer diskettes are available for interested users. PMID:20531783
NASA Astrophysics Data System (ADS)
Zhang, Lisha
We present fast and robust numerical algorithms for 3-D scattering from perfectly electrical conducting (PEC) and dielectric random rough surfaces in microwave remote sensing. The Coifman wavelets or Coiflets are employed to implement Galerkin's procedure in the method of moments (MoM). Due to the high-precision one-point quadrature, the Coiflets yield fast evaluations of the most off-diagonal entries, reducing the matrix fill effort from O(N2) to O( N). The orthogonality and Riesz basis of the Coiflets generate well conditioned impedance matrix, with rapid convergence for the conjugate gradient solver. The resulting impedance matrix is further sparsified by the matrix-formed standard fast wavelet transform (SFWT). By properly selecting multiresolution levels of the total transformation matrix, the solution precision can be enhanced while matrix sparsity and memory consumption have not been noticeably sacrificed. The unified fast scattering algorithm for dielectric random rough surfaces can asymptotically reduce to the PEC case when the loss tangent grows extremely large. Numerical results demonstrate that the reduced PEC model does not suffer from ill-posed problems. Compared with previous publications and laboratory measurements, good agreement is observed.
NASA Astrophysics Data System (ADS)
Harries, Tim J.
2015-04-01
We present a set of new numerical methods that are relevant to calculating radiation pressure terms in hydrodynamics calculations, with a particular focus on massive star formation. The radiation force is determined from a Monte Carlo estimator and enables a complete treatment of the detailed microphysics, including polychromatic radiation and anisotropic scattering, in both the free-streaming and optically thick limits. Since the new method is computationally demanding we have developed two new methods that speed up the algorithm. The first is a photon packet splitting algorithm that enables efficient treatment of the Monte Carlo process in very optically thick regions. The second is a parallelization method that distributes the Monte Carlo workload over many instances of the hydrodynamic domain, resulting in excellent scaling of the radiation step. We also describe the implementation of a sink particle method that enables us to follow the accretion on to, and the growth of, the protostars. We detail the results of extensive testing and benchmarking of the new algorithms.
Mariño-Ramírez, Leonardo; Sheetlin, Sergey L.
2014-01-01
Background Some biological sequences contain subsequences of unusual composition, e.g., some proteins contain DNA binding domains, transmembrane regions, and charged regions; and some DNA sequences contain repeats. Requiring time linear in the length of an input sequence, the Ruzzo-Tompa (RT) Algorithm finds subsequences of unusual composition, using a sequence of scores as input and the corresponding “maximal segments” as output. (Loosely, maximal segments are the contiguous subsequences having greatest total score.) Just as gaps improved the sensitivity of BLAST, in principle gaps could help tune other tools, to improve sensitivity when searching for subsequences of unusual composition. Results Call a graph whose vertices are totally ordered a “totally ordered graph”. In a totally ordered graph, call a path whose vertices are in increasing order an “increasing path”. The input of the RT Algorithm can be generalized to a finite, totally ordered, weighted graph, so the algorithm then locates maximal segments, corresponding to increasing paths of maximal weight. The generalization permits penalized deletion of unfavorable letters from contiguous subsequences, so the generalized Ruzzo-Tompa algorithm can find subsequences with greatest total gapped scores. The search for inexact simple repeats in DNA exemplifies some of the concepts. For some limited types of repeats, RepWords, a repeat-finding tool based on the principled use of the Ruzzo-Tompa algorithm, performed better than a similar extant tool. Conclusions With minimal programming effort, the generalization of the Ruzzo-Tompa algorithm given in this article could improve the performance of many programs for finding biological subsequences of unusual composition. PMID:24989859
Numerical Algorithm Based on Haar-Sinc Collocation Method for Solving the Hyperbolic PDEs
Javadi, H. H. S.; Navidi, H. R.
2014-01-01
The present study investigates the Haar-Sinc collocation method for the solution of the hyperbolic partial telegraph equations. The advantages of this technique are that not only is the convergence rate of Sinc approximation exponential but the computational speed also is high due to the use of the Haar operational matrices. This technique is used to convert the problem to the solution of linear algebraic equations via expanding the required approximation based on the elements of Sinc functions in space and Haar functions in time with unknown coefficients. To analyze the efficiency, precision, and performance of the proposed method, we presented four examples through which our claim was confirmed. PMID:25485295
NASA Astrophysics Data System (ADS)
Lakshminarayana, B.; Ho, Y.; Basson, A.
1993-07-01
The objective of this research is to simulate steady and unsteady viscous flows, including rotor/stator interaction and tip clearance effects in turbomachinery. The numerical formulation for steady flow developed here includes an efficient grid generation scheme, particularly suited to computational grids for the analysis of turbulent turbomachinery flows and tip clearance flows, and a semi-implicit, pressure-based computational fluid dynamics scheme that directly includes artificial dissipation, and is applicable to both viscous and inviscid flows. The values of these artificial dissipation is optimized to achieve accuracy and convergency in the solution. The numerical model is used to investigate the structure of tip clearance flows in a turbine nozzle. The structure of leakage flow is captured accurately, including blade-to-blade variation of all three velocity components, pitch and yaw angles, losses and blade static pressures in the tip clearance region. The simulation also includes evaluation of such quantities of leakage mass flow, vortex strength, losses, dominant leakage flow regions and the spanwise extent affected by the leakage flow. It is demonstrated, through optimization of grid size and artificial dissipation, that the tip clearance flow field can be captured accurately. The above numerical formulation was modified to incorporate time accurate solutions. An inner loop iteration scheme is used at each time step to account for the non-linear effects. The computation of unsteady flow through a flat plate cascade subjected to a transverse gust reveals that the choice of grid spacing and the amount of artificial dissipation is critical for accurate prediction of unsteady phenomena. The rotor-stator interaction problem is simulated by starting the computation upstream of the stator, and the upstream rotor wake is specified from the experimental data. The results show that the stator potential effects have appreciable influence on the upstream rotor wake
NASA Technical Reports Server (NTRS)
Lakshminarayana, B.; Ho, Y.; Basson, A.
1993-01-01
The objective of this research is to simulate steady and unsteady viscous flows, including rotor/stator interaction and tip clearance effects in turbomachinery. The numerical formulation for steady flow developed here includes an efficient grid generation scheme, particularly suited to computational grids for the analysis of turbulent turbomachinery flows and tip clearance flows, and a semi-implicit, pressure-based computational fluid dynamics scheme that directly includes artificial dissipation, and is applicable to both viscous and inviscid flows. The values of these artificial dissipation is optimized to achieve accuracy and convergency in the solution. The numerical model is used to investigate the structure of tip clearance flows in a turbine nozzle. The structure of leakage flow is captured accurately, including blade-to-blade variation of all three velocity components, pitch and yaw angles, losses and blade static pressures in the tip clearance region. The simulation also includes evaluation of such quantities of leakage mass flow, vortex strength, losses, dominant leakage flow regions and the spanwise extent affected by the leakage flow. It is demonstrated, through optimization of grid size and artificial dissipation, that the tip clearance flow field can be captured accurately. The above numerical formulation was modified to incorporate time accurate solutions. An inner loop iteration scheme is used at each time step to account for the non-linear effects. The computation of unsteady flow through a flat plate cascade subjected to a transverse gust reveals that the choice of grid spacing and the amount of artificial dissipation is critical for accurate prediction of unsteady phenomena. The rotor-stator interaction problem is simulated by starting the computation upstream of the stator, and the upstream rotor wake is specified from the experimental data. The results show that the stator potential effects have appreciable influence on the upstream rotor wake
NASA Astrophysics Data System (ADS)
Kuraz, Michal
2016-06-01
This paper presents pseudo-deterministic catchment runoff model based on the Richards equation model [1] - the governing equation for the subsurface flow. The subsurface flow in a catchment is described here by two-dimensional variably saturated flow (unsaturated and saturated). The governing equation is the Richards equation with a slight modification of the time derivative term as considered e.g. by Neuman [2]. The nonlinear nature of this problem appears in unsaturated zone only, however the delineation of the saturated zone boundary is a nonlinear computationally expensive issue. The simple one-dimensional Boussinesq equation was used here as a rough estimator of the saturated zone boundary. With this estimate the dd-adaptivity algorithm (see Kuraz et al. [4, 5, 6]) could always start with an optimal subdomain split, so it is now possible to avoid solutions of huge systems of linear equations in the initial iteration level of our Richards equation based runoff model.
An efficient algorithm for numerical computations of continuous densities of states
NASA Astrophysics Data System (ADS)
Langfeld, K.; Lucini, B.; Pellegrini, R.; Rago, A.
2016-06-01
In Wang-Landau type algorithms, Monte-Carlo updates are performed with respect to the density of states, which is iteratively refined during simulations. The partition function and thermodynamic observables are then obtained by standard integration. In this work, our recently introduced method in this class (the LLR approach) is analysed and further developed. Our approach is a histogram free method particularly suited for systems with continuous degrees of freedom giving rise to a continuum density of states, as it is commonly found in lattice gauge theories and in some statistical mechanics systems. We show that the method possesses an exponential error suppression that allows us to estimate the density of states over several orders of magnitude with nearly constant relative precision. We explain how ergodicity issues can be avoided and how expectation values of arbitrary observables can be obtained within this framework. We then demonstrate the method using compact U(1) lattice gauge theory as a show case. A thorough study of the algorithm parameter dependence of the results is performed and compared with the analytically expected behaviour. We obtain high precision values for the critical coupling for the phase transition and for the peak value of the specific heat for lattice sizes ranging from 8^4 to 20^4. Our results perfectly agree with the reference values reported in the literature, which covers lattice sizes up to 18^4. Robust results for the 20^4 volume are obtained for the first time. This latter investigation, which, due to strong metastabilities developed at the pseudo-critical coupling of the system, so far has been out of reach even on supercomputers with importance sampling approaches, has been performed to high accuracy with modest computational resources. This shows the potential of the method for studies of first order phase transitions. Other situations where the method is expected to be superior to importance sampling techniques are pointed
NASA Astrophysics Data System (ADS)
Angeli, D.; Stalio, E.; Corticelli, M. A.; Barozzi, G. S.
2015-11-01
A parallel algorithm is presented for the Direct Numerical Simulation of buoyancy- induced flows in open or partially confined periodic domains, containing immersed cylindrical bodies of arbitrary cross-section. The governing equations are discretized by means of the Finite Volume method on Cartesian grids. A semi-implicit scheme is employed for the diffusive terms, which are treated implicitly on the periodic plane and explicitly along the homogeneous direction, while all convective terms are explicit, via the second-order Adams-Bashfort scheme. The contemporary solution of velocity and pressure fields is achieved by means of a projection method. The numerical resolution of the set of linear equations resulting from discretization is carried out by means of efficient and highly parallel direct solvers. Verification and validation of the numerical procedure is reported in the paper, for the case of flow around an array of heated cylindrical rods arranged in a square lattice. Grid independence is assessed in laminar flow conditions, and DNS results in turbulent conditions are presented for two different grids and compared to available literature data, thus confirming the favorable qualities of the method.
NASA Astrophysics Data System (ADS)
Bouallegue, Kais; Chaari, Abdessattar
In this study, one propose to study a numeric type strategy permitting the generation of any shape of path in view of the scheduling of the trajectories for a car-like mobile robot where the planned motions considered are continuous sequences in the space of the robot. These paths are programmed in order to have some types of closed or open trajectories. One is interested in the motion control of the robot from an initial position to a final position while optimizing the consumed energy in its alternated circular motion on both sides of the segment joining these two points. In this study, one presents a new method based on a numeric approach conceived from the kinematics equations of the robot. This new technique of numeric, adaptive and dynamic control of the robot is implemented on DSP21065L of the SHARC family. This algorithm assures the robot control of an initial position of departure to a final position of arrival without the existence of obstacles.
NASA Technical Reports Server (NTRS)
Durisen, Richard H.; Murphy, Brian W.; Cramer, Nichael Lynn; Cuzzi, Jeffrey N.; Mullikin, Thomas L.
1989-01-01
Ballistic transport, defined as the net radial transport of mass and angular momentum due to exchanges of meteoroid hypersonic-impact ejecta by neighboring planetary ring regions on time-scales orders-of-magnitude shorter than the age of the solar system, is presently considered as a problem in mathematical physics. The preliminary results of a numerical scheme for following the combined effects of ballistic transport and viscous diffusion demonstrate that ballistic transport generates structure near sharp edges already present in the ring-mass distribution; the entire ring system ultimately develops an undulatory structure whose length scale is typically of the order of the radial excursion of the impact ejecta.
A critical evaluation of numerical algorithms and flow physics in complex supersonic flows
NASA Astrophysics Data System (ADS)
Aradag, Selin
In this research, two different complex supersonic flows are selected to apply CFD to Navier-Stokes simulations. First test case is "Supersonic Flow over an Open Rectangular Cavity". Open cavity flow fields are remarkably complicated with internal and external regions that are coupled via self-sustained shear layer oscillations. Supersonic flow past a cavity has numerous applications in store carriage and release. Internal carriage of stores, which can be modeled using a cavity configuration, is used for supersonic aircraft in order to reduce radar cross section, aerodynamic drag and aerodynamic heating. Supersonic, turbulent, three-dimensional unsteady flow past an open rectangular cavity is simulated, to understand the physics and three-dimensional nature of the cavity flow oscillations. Influences of numerical parameters such as numerical flux scheme, computation time and flux limiter on the computed flow are determined. Two dimensional simulations are also performed for comparison purposes. The next test case is "The Computational Design of Boeing/AFOSR Mach 6 Wind Tunnel". Due to huge differences between geometrical scales, this problem is both challenging and computationally intensive. It is believed that most of the experimental data obtained from conventional ground testing facilities are not reliable due to high levels of noise associated with the acoustic fluctuations from the turbulent boundary layers on the wind tunnel walls. Therefore, it is very important to have quiet testing facilities for hypersonic flow research. The Boeing/AFOSR Mach 6 Wind tunnel in Purdue University has been designed as a quiet tunnel for which the noise level is an order of magnitude lower than that in conventional wind tunnels. However, quiet flow is achieved in the Purdue Mach 6 tunnel for only low Reynolds numbers. Early transition of the nozzle wall boundary layer has been identified as the cause of the test section noise. Separation bubbles on the bleed lip and associated
Wan, Hui; Rasch, Philip J.; Zhang, Kai; Kazil, Jan; Leung, Lai-Yung R.
2013-06-26
The purpose of this paper is to draw attention to the need for appropriate numerical techniques to represent process interactions in climate models. In two versions of the ECHAM-HAM model, different time integration methods are used to solve the sulfuric acid (H2SO4) gas evolution equation, which lead to substantially different results in the H2SO4 gas concentration and the aerosol nucleation rate. Using convergence tests and sensitivity simulations performed with various time stepping schemes, it is confirmed that numerical errors in the second model version are significantly smaller than those in version one. The use of sequential operator splitting in combination with long time step is identified as the main reason for the large systematic biases in the old model. The remaining errors in version two in the nucleation rate, related to the competition between condensation and nucleation, have a clear impact on the simulated concentration of cloud condensation nuclei in the lower troposphere. These errors can be significantly reduced by employing an implicit solver that handles production, condensation and nucleation at the same time. Lessons learned in this work underline the need for more caution when treating multi-time-scale problems involving compensating and competing processes, a common occurrence in current climate models.
NASA Astrophysics Data System (ADS)
Wan, H.; Rasch, P. J.; Zhang, K.; Kazil, J.; Leung, L. R.
2013-01-01
The purpose of this paper is to draw attention to the need for appropriate numerical techniques to represent process interactions in climate models. In two versions of the ECHAM-HAM model, different time integration methods are used to solve the sulfuric acid (H2SO4) gas evolution equation, which lead to substantially different results in the H2SO4 gas concentration and the aerosol nucleation rate. Using convergence tests and sensitivity simulations performed with various time stepping schemes, it is confirmed that numerical errors in the second model version are significantly smaller than those in version one. The use of sequential operator splitting in combination with long time step is identified as the main reason for the large systematic biases in the old model. The remaining errors of nucleation rate in version two, related to the competition between condensation and nucleation, have a clear impact on the simulated concentration of cloud condensation nuclei (CCN) in the lower troposphere. These errors can be significantly reduced by employing an implicit solver that handles production, condensation and nucleation at the same time. Lessons learned in this work underline the need for more caution when treating multi-time-scale problems involving compensating and competing processes, a common occurrence in current climate models.
NASA Astrophysics Data System (ADS)
Wan, H.; Rasch, P. J.; Zhang, K.; Kazil, J.; Leung, L. R.
2013-06-01
The purpose of this paper is to draw attention to the need for appropriate numerical techniques to represent process interactions in climate models. In two versions of the ECHAM-HAM model, different time integration methods are used to solve the sulfuric acid (H2SO4) gas evolution equation, which lead to substantially different results in the H2SO4 gas concentration and the aerosol nucleation rate. Using convergence tests and sensitivity simulations performed with various time stepping schemes, it is confirmed that numerical errors in the second model version are significantly smaller than those in version one. The use of sequential operator splitting in combination with a long time step is identified as the main reason for the large systematic biases in the old model. The remaining errors of nucleation rate in version two, related to the competition between condensation and nucleation, have a clear impact on the simulated concentration of cloud condensation nuclei (CCN) in the lower troposphere. These errors can be significantly reduced by employing solvers that handle production, condensation and nucleation at the same time. Lessons learned in this work underline the need for more caution when treating multi-timescale problems involving compensating and competing processes, a common occurrence in current climate models.
NASA Astrophysics Data System (ADS)
Abrams, Daniel S.
This thesis describes several new quantum algorithms. These include a polynomial time algorithm that uses a quantum fast Fourier transform to find eigenvalues and eigenvectors of a Hamiltonian operator, and that can be applied in cases (commonly found in ab initio physics and chemistry problems) for which all known classical algorithms require exponential time. Fast algorithms for simulating many body Fermi systems are also provided in both first and second quantized descriptions. An efficient quantum algorithm for anti-symmetrization is given as well as a detailed discussion of a simulation of the Hubbard model. In addition, quantum algorithms that calculate numerical integrals and various characteristics of stochastic processes are described. Two techniques are given, both of which obtain an exponential speed increase in comparison to the fastest known classical deterministic algorithms and a quadratic speed increase in comparison to classical Monte Carlo (probabilistic) methods. I derive a simpler and slightly faster version of Grover's mean algorithm, show how to apply quantum counting to the problem, develop some variations of these algorithms, and show how both (apparently distinct) approaches can be understood from the same unified framework. Finally, the relationship between physics and computation is explored in some more depth, and it is shown that computational complexity theory depends very sensitively on physical laws. In particular, it is shown that nonlinear quantum mechanics allows for the polynomial time solution of NP-complete and #P oracle problems. Using the Weinberg model as a simple example, the explicit construction of the necessary gates is derived from the underlying physics. Nonlinear quantum algorithms are also presented using Polchinski type nonlinearities which do not allow for superluminal communication. (Copies available exclusively from MIT Libraries, Rm. 14- 0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)
NASA Astrophysics Data System (ADS)
Li, Cong; Lei, Jianshe
2014-10-01
In this paper, we focus on the influences of various parameters in the niching genetic algorithm inversion procedure on the results, such as various objective functions, the number of the models in each subpopulation, and the critical separation radius. The frequency-waveform integration (F-K) method is applied to synthesize three-component waveform data with noise in various epicentral distances and azimuths. Our results show that if we use a zero-th-lag cross-correlation function, then we will obtain the model with a faster convergence and a higher precision than other objective functions. The number of models in each subpopulation has a great influence on the rate of convergence and computation time, suggesting that it should be obtained through tests in practical problems. The critical separation radius should be determined carefully because it directly affects the multi-extreme values in the inversion. We also compare the inverted results from full-band waveform data and surface-wave frequency-band (0.02-0.1 Hz) data, and find that the latter is relatively poorer but still has a higher precision, suggesting that surface-wave frequency-band data can also be used to invert for the crustal structure.
NASA Astrophysics Data System (ADS)
Li, Cong; Lei, Jianshe
2014-09-01
In this paper, we focus on the influences of various parameters in the niching genetic algorithm inversion procedure on the results, such as various objective functions, the number of the models in each subpopulation, and the critical separation radius. The frequency-waveform integration (F-K) method is applied to synthesize three-component waveform data with noise in various epicentral distances and azimuths. Our results show that if we use a zero-th-lag cross-correlation function, then we will obtain the model with a faster convergence and a higher precision than other objective functions. The number of models in each subpopulation has a great influence on the rate of convergence and computation time, suggesting that it should be obtained through tests in practical problems. The critical separation radius should be determined carefully because it directly affects the multi-extreme values in the inversion. We also compare the inverted results from full-band waveform data and surface-wave frequency-band (0.02-0.1 Hz) data, and find that the latter is relatively poorer but still has a higher precision, suggesting that surface-wave frequency-band data can also be used to invert for the crustal structure.
Real-space, mean-field algorithm to numerically calculate long-range interactions
NASA Astrophysics Data System (ADS)
Cadilhe, A.; Costa, B. V.
2016-02-01
Long-range interactions are known to be of difficult treatment in statistical mechanics models. There are some approaches that introduce a cutoff in the interactions or make use of reaction field approaches. However, those treatments suffer the illness of being of limited use, in particular close to phase transitions. The use of open boundary conditions allows the sum of the long-range interactions over the entire system to be done, however, this approach demands a sum over all degrees of freedom in the system, which makes a numerical treatment prohibitive. Techniques like the Ewald summation or fast multipole expansion account for the exact interactions but are still limited to a few thousands of particles. In this paper we introduce a novel mean-field approach to treat long-range interactions. The method is based in the division of the system in cells. In the inner cell, that contains the particle in sight, the 'local' interactions are computed exactly, the 'far' contributions are then computed as the average over the particles inside a given cell with the particle in sight for each of the remaining cells. Using this approach, the large and small cells limits are exact. At a fixed cell size, the method also becomes exact in the limit of large lattices. We have applied the procedure to the two-dimensional anisotropic dipolar Heisenberg model. A detailed comparison between our method, the exact calculation and the cutoff radius approximation were done. Our results show that the cutoff-cell approach outperforms any cutoff radius approach as it maintains the long-range memory present in these interactions, contrary to the cutoff radius approximation. Besides that, we calculated the critical temperature and the critical behavior of the specific heat of the anisotropic Heisenberg model using our method. The results are in excellent agreement with extensive Monte Carlo simulations using Ewald summation.
NASA Astrophysics Data System (ADS)
Audet, Pascal
2016-06-01
The expanding fleet of broad-band ocean-bottom seismograph (OBS) stations is facilitating the study of the structure and seismicity of oceanic plates at regional scales. For continental studies, an important tool to characterize continental crust and mantle structure is the analysis of teleseismic P receiver functions. In the oceans, however, receiver functions potentially suffer from several limiting factors that are unique to ocean sites and plate structures. In this study, we model receiver functions for a variety of oceanic lithospheric structures to investigate the possibilities and limitations of receiver functions using OBS data. Several potentially contaminating effects are examined, including pressure reverberations from the water column for various ocean-floor depths and the effects of a layer of low-velocity marine sediments. These modelling results indicate that receiver functions from OBS data are difficult to interpret in the presence of marine sediments, but shallow-water sites in subduction zone forearcs may be suitable for constraining various crustal elements around the locked megathrust fault. We propose using a complementary approach based on transfer function modelling combined with a grid search approach that bypasses receiver functions altogether and estimates model properties directly from minimally processed waveforms. Using real data examples from the Cascadia Initiative, we show how receiver and transfer functions can be used to infer seismic properties of the oceanic plate in both shallow (Cascadia forearc) and deep (Juan de Fuca Ridge) ocean settings.
NASA Astrophysics Data System (ADS)
Audet, Pascal
2016-03-01
The expanding fleet of broadband ocean-bottom seismograph (OBS) stations is facilitating the study of the structure and seismicity of oceanic plates at regional scales. For continental studies, an important tool to characterize continental crust and mantle structure is the analysis of teleseismic P receiver functions. In the oceans, however, receiver functions potentially suffer from several limiting factors that are unique to ocean sites and plate structures. In this study we model receiver functions for a variety of oceanic lithospheric structures to investigate the possibilities and limitations of receiver functions using OBS data. Several potentially contaminating effects are examined, including pressure reverberations from the water column for various ocean-floor depths and the effects of a layer of low-velocity marine sediments. These modelling results indicate that receiver functions from OBS data are difficult to interpret in the presence of marine sediments, but shallow-water sites in subduction zone forearcs may be suitable for constraining various crustal elements around the locked megathrust fault. We propose using a complementary approach based on transfer function modelling combined with a grid search approach that bypasses receiver functions altogether and estimates model properties directly from minimally processed waveforms. Using real data examples from the Cascadia Initiative, we show how receiver and transfer functions can be used to infer seismic properties of the oceanic plate in both shallow (Cascadia forearc) and deep (Juan de Fuca Ridge) ocean settings.
Angus, Simon D.; Piotrowska, Monika Joanna
2014-01-01
Multi-dose radiotherapy protocols (fraction dose and timing) currently used in the clinic are the product of human selection based on habit, received wisdom, physician experience and intra-day patient timetabling. However, due to combinatorial considerations, the potential treatment protocol space for a given total dose or treatment length is enormous, even for relatively coarse search; well beyond the capacity of traditional in-vitro methods. In constrast, high fidelity numerical simulation of tumor development is well suited to the challenge. Building on our previous single-dose numerical simulation model of EMT6/Ro spheroids, a multi-dose irradiation response module is added and calibrated to the effective dose arising from 18 independent multi-dose treatment programs available in the experimental literature. With the developed model a constrained, non-linear, search for better performing cadidate protocols is conducted within the vicinity of two benchmarks by genetic algorithm (GA) techniques. After evaluating less than 0.01% of the potential benchmark protocol space, candidate protocols were identified by the GA which conferred an average of 9.4% (max benefit 16.5%) and 7.1% (13.3%) improvement (reduction) on tumour cell count compared to the two benchmarks, respectively. Noticing that a convergent phenomenon of the top performing protocols was their temporal synchronicity, a further series of numerical experiments was conducted with periodic time-gap protocols (10 h to 23 h), leading to the discovery that the performance of the GA search candidates could be replicated by 17–18 h periodic candidates. Further dynamic irradiation-response cell-phase analysis revealed that such periodicity cohered with latent EMT6/Ro cell-phase temporal patterning. Taken together, this study provides powerful evidence towards the hypothesis that even simple inter-fraction timing variations for a given fractional dose program may present a facile, and highly cost
NASA Astrophysics Data System (ADS)
Gasparini, N. M.; Whipple, K. X.; Willenbring, J.; Crosby, B. T.; Brocard, G. Y.
2013-12-01
Numerical landscape evolution models (LEMs) offer us the unique opportunity to watch a landscape evolve under any set of environmental forcings that we can quantify. The possibilities for using LEMs are infinite, but complications arise when trying to model a real landscape. Specifically, numerical models cannot recreate every aspect of a real landscape because exact initial conditions are unknown, there will always be gaps in the known tectonic and climatic history, and the geomorphic transport laws that govern redistribution of mass due to surface processes will always be a simplified representation of the actual process. Yet, even with these constraints, numerical models remain the only tool that offers us the potential to explore a limitless range of evolutionary scenarios, allowing us to, at the very least, identify possible drivers responsible for the morphology of the current landscape, and just as importantly, rule out others. Here we highlight two examples in which we use a numerical model to explore the signature of different forcings on landscape morphology and erosion patterns. In the first landscape, the Northern Bolivian Andes, the relative imprint of rock uplift and precipitation patterns on landscape morphology is widely contested. We use the CHILD LEM to systematically vary climate and tectonics and quantify their fingerprints on channel profiles across a steep mountain front. We find that rock uplift and precipitation patterns in this landscape and others can be teased out by examining channel profiles of variably sized catchments that drain different parts of the topography. In the second landscape, the South Fork Eel River (SFER), northern California, USA, the tectonic history is relatively well known; a wave of rock uplift swept through the watershed from headwaters to outlet, perturbing the landscape and sending a wave of bedrock incision upstream. Nine millennial-scale erosion rates from along the mainstem of the river illustrate a pattern of
A quadratic weight selection algorithm. [for optimal flight control
NASA Technical Reports Server (NTRS)
Broussard, J. R.
1981-01-01
A new numerical algorithm is presented which determines a positive semi-definite state weighting matrix in the linear-quadratic optimal control design problem. The algorithm chooses the weighting matrix by placing closed-loop eigenvalues and eigenvectors near desired locations using optimal feedback gains. A simplified flight control design example is used to illustrate the algorithms capabilities.
A Food Chain Algorithm for Capacitated Vehicle Routing Problem with Recycling in Reverse Logistics
NASA Astrophysics Data System (ADS)
Song, Qiang; Gao, Xuexia; Santos, Emmanuel T.
2015-12-01
This paper introduces the capacitated vehicle routing problem with recycling in reverse logistics, and designs a food chain algorithm for it. Some illustrative examples are selected to conduct simulation and comparison. Numerical results show that the performance of the food chain algorithm is better than the genetic algorithm, particle swarm optimization as well as quantum evolutionary algorithm.
Stability of Bareiss algorithm
NASA Astrophysics Data System (ADS)
Bojanczyk, Adam W.; Brent, Richard P.; de Hoog, F. R.
1991-12-01
In this paper, we present a numerical stability analysis of Bareiss algorithm for solving a symmetric positive definite Toeplitz system of linear equations. We also compare Bareiss algorithm with Levinson algorithm and conclude that the former has superior numerical properties.
NASA Technical Reports Server (NTRS)
Goodrich, John W.
1995-01-01
Two methods for developing high order single step explicit algorithms on symmetric stencils with data on only one time level are presented. Examples are given for the convection and linearized Euler equations with up to the eighth order accuracy in both space and time in one space dimension, and up to the sixth in two space dimensions. The method of characteristics is generalized to nondiagonalizable hyperbolic systems by using exact local polynominal solutions of the system, and the resulting exact propagator methods automatically incorporate the correct multidimensional wave propagation dynamics. Multivariate Taylor or Cauchy-Kowaleskaya expansions are also used to develop algorithms. Both of these methods can be applied to obtain algorithms of arbitrarily high order for hyperbolic systems in multiple space dimensions. Cross derivatives are included in the local approximations used to develop the algorithms in this paper in order to obtain high order accuracy, and improved isotropy and stability. Efficiency in meeting global error bounds is an important criterion for evaluating algorithms, and the higher order algorithms are shown to be up to several orders of magnitude more efficient even though they are more complex. Stable high order boundary conditions for the linearized Euler equations are developed in one space dimension, and demonstrated in two space dimensions.
NASA Technical Reports Server (NTRS)
Bui, Trong T.; Mankbadi, Reda R.
1995-01-01
Numerical simulation of a very small amplitude acoustic wave interacting with a shock wave in a quasi-1D convergent-divergent nozzle is performed using an unstructured finite volume algorithm with a piece-wise linear, least square reconstruction, Roe flux difference splitting, and second-order MacCormack time marching. First, the spatial accuracy of the algorithm is evaluated for steady flows with and without the normal shock by running the simulation with a sequence of successively finer meshes. Then the accuracy of the Roe flux difference splitting near the sonic transition point is examined for different reconstruction schemes. Finally, the unsteady numerical solutions with the acoustic perturbation are presented and compared with linear theory results.
Projector Method: theory and examples
Dahl, E.D.
1985-01-01
The Projector Method technique for numerically analyzing lattice gauge theories was developed to take advantage of certain simplifying features of gauge theory models. Starting from a very general notion of what the Projector Method is, the techniques are applied to several model problems. After these examples have traced the development of the actual algorithm from the general principles of the Projector Method, a direct comparison between the Projector and the Euclidean Monte Carlo is made, followed by a discussion of the application to Periodic Quantum Electrodynamics in two and three spatial dimensions. Some methods for improving the efficiency of the Projector in various circumstances are outlined. 10 refs., 7 figs. (LEW)
NASA Technical Reports Server (NTRS)
Yee, H. C.; Rai, Man Mohan (Technical Monitor)
1994-01-01
This lecture attempts to illustrate the basic ideas of how the recent advances in nonlinear dynamical systems theory (dynamics) can provide new insights into the understanding of numerical algorithms used in solving nonlinear differential equations (DEs). Examples will be given of the use of dynamics to explain unusual phenomena that occur in numerics. The inadequacy of the use of linearized analysis for the understanding of long time behavior of nonlinear problems will be illustrated, and the role of dynamics in studying the nonlinear stability, accuracy, convergence property and efficiency of using time- dependent approaches to obtaining steady-state numerical solutions in computational fluid dynamics (CFD) will briefly be explained.
Gurkiewicz, Meron; Korngreen, Alon
2007-01-01
The activity of trans-membrane proteins such as ion channels is the essence of neuronal transmission. The currently most accurate method for determining ion channel kinetic mechanisms is single-channel recording and analysis. Yet, the limitations and complexities in interpreting single-channel recordings discourage many physiologists from using them. Here we show that a genetic search algorithm in combination with a gradient descent algorithm can be used to fit whole-cell voltage-clamp data to kinetic models with a high degree of accuracy. Previously, ion channel stimulation traces were analyzed one at a time, the results of these analyses being combined to produce a picture of channel kinetics. Here the entire set of traces from all stimulation protocols are analysed simultaneously. The algorithm was initially tested on simulated current traces produced by several Hodgkin-Huxley–like and Markov chain models of voltage-gated potassium and sodium channels. Currents were also produced by simulating levels of noise expected from actual patch recordings. Finally, the algorithm was used for finding the kinetic parameters of several voltage-gated sodium and potassium channels models by matching its results to data recorded from layer 5 pyramidal neurons of the rat cortex in the nucleated outside-out patch configuration. The minimization scheme gives electrophysiologists a tool for reproducing and simulating voltage-gated ion channel kinetics at the cellular level. PMID:17784781
NASA Astrophysics Data System (ADS)
Gasparini, N. M.; Hobley, D. E. J.; Tucker, G. E.; Istanbulluoglu, E.; Adams, J. M.; Nudurupati, S. S.; Hutton, E. W. H.
2014-12-01
Computational models are important tools that can be used to quantitatively understand the evolution of real landscapes. Commonalities exist among most landscape evolution models, although they are also idiosyncratic, in that they are coded in different languages, require different input values, and are designed to tackle a unique set of questions. These differences can make applying a landscape evolution model challenging, especially for novice programmers. In this study, we compare and contrast two landscape evolution models that are designed to tackle similar questions, but the actual model designs are quite different. The first model, CHILD, is over a decade-old and is relatively well-tested, well-developed and well-used. It is coded in C++, operates on an irregular grid and was designed more with function rather than user-experience in mind. In contrast, the second model, Landlab, is relatively new and was designed to be accessible to a wide range of scientists, including those who have not previously used or developed a numerical model. Landlab is coded in Python, a relatively easy language for the non-proficient programmer, and has the ability to model landscapes described on both regular and irregular grids. We present landscape simulations from both modeling platforms. Our goal is to illustrate best practices for implementing a new process module in a landscape evolution model, and therefore the simulations are applicable regardless of the modeling platform. We contrast differences and highlight similarities between the use of the two models, including setting-up the model and input file for different evolutionary scenarios, computational time, and model output. Whenever possible, we compare model output with analytical solutions and illustrate the effects, or lack thereof, of a uniform vs. non-uniform grid. Our simulations focus on implementing a single process, including detachment-limited or transport-limited fluvial bedrock incision and linear or non
Performance-based seismic design of steel frames utilizing colliding bodies algorithm.
Veladi, H
2014-01-01
A pushover analysis method based on semirigid connection concept is developed and the colliding bodies optimization algorithm is employed to find optimum seismic design of frame structures. Two numerical examples from the literature are studied. The results of the new algorithm are compared to the conventional design methods to show the power or weakness of the algorithm. PMID:25202717
Performance-Based Seismic Design of Steel Frames Utilizing Colliding Bodies Algorithm
Veladi, H.
2014-01-01
A pushover analysis method based on semirigid connection concept is developed and the colliding bodies optimization algorithm is employed to find optimum seismic design of frame structures. Two numerical examples from the literature are studied. The results of the new algorithm are compared to the conventional design methods to show the power or weakness of the algorithm. PMID:25202717
NASA Technical Reports Server (NTRS)
Wehrbein, W. M.; Leovy, C. B.
1981-01-01
A Curtis matrix is used to compute cooling by the 15 micron and 10 micron bands of carbon dioxide. Escape of radiation to space and exchange the lower boundary are used for the 9.6 micron band of ozone. Voigt line shape, vibrational relaxation, line overlap, and the temperature dependence of line strength distributions and transmission functions are incorporated into the Curtis matrices. The distributions of the atmospheric constituents included in the algorithm, and the method used to compute the Curtis matrices are discussed as well as cooling or heating by the 9.6 micron band of ozone. The FORTRAN programs and subroutines that were developed are described and listed.
Sheng, I. C.; Kuan, C. K.; Chen, Y. T.; Yang, J. Y.; Hsiung, G. Y.; Chen, J. R.
2010-06-23
The pressure distribution is an important aspect of a UHV subsystem in either a storage ring or a front end. The design of the 3-GeV, 400-mA Taiwan Photon Source (TPS) foresees outgassing induced by photons and due to a bending magnet and an insertion device. An algorithm to calculate the photon-stimulated absorption (PSD) due to highly energetic radiation from a synchrotron source is presented. Several results using undulator sources such as IU20 are also presented, and the pressure distribution is illustrated.
NASA Astrophysics Data System (ADS)
Saito, Kyosuke; Tanabe, Tadao; Oyama, Yutaka
2016-04-01
We have presented a numerical analysis to describe the behavior of a second harmonic generation (SHG) in THz regime by taking into account for both linear and nonlinear optical susceptibility. We employed a nonlinear finite-difference-time-domain (nonlinear FDTD) method to simulate SHG output characteristics in THz photonic crystal waveguide based on semi insulating gallium phosphide crystal. Unique phase matching conditions originated from photonic band dispersions with low group velocity are appeared, resulting in SHG output characteristics. This numerical study provides spectral information of SHG output in THz PC waveguide. THz PC waveguides is one of the active nonlinear optical devices in THz regime, and nonlinear FDTD method is a powerful tool to design photonic nonlinear THz devices.
NASA Technical Reports Server (NTRS)
Stamnes, Knut; Tsay, S.-CHEE; Jayaweera, Kolf; Wiscombe, Warren
1988-01-01
The transfer of monochromatic radiation in a scattering, absorbing, and emitting plane-parallel medium with a specified bidirectional reflectivity at the lower boundary is considered. The equations and boundary conditions are summarized. The numerical implementation of the theory is discussed with attention given to the reliable and efficient computation of eigenvalues and eigenvectors. Ways of avoiding fatal overflows and ill-conditioning in the matrix inversion needed to determine the integration constants are also presented.
NASA Astrophysics Data System (ADS)
Stamnes, Knut; Tsay, S.-Chee; Jayaweera, Kolf; Wiscombe, Warren
1988-06-01
The transfer of monochromatic radiation in a scattering, absorbing, and emitting plane-parallel medium with a specified bidirectional reflectivity at the lower boundary is considered. The equations and boundary conditions are summarized. The numerical implementation of the theory is discussed with attention given to the reliable and efficient computation of eigenvalues and eigenvectors. Ways of avoiding fatal overflows and ill-conditioning in the matrix inversion needed to determine the integration constants are also presented.
3D-radiation hydro simulations of disk-planet interactions. I. Numerical algorithm and test cases
NASA Astrophysics Data System (ADS)
Klahr, H.; Kley, W.
2006-01-01
We study the evolution of an embedded protoplanet in a circumstellar disk using the 3D-Radiation Hydro code TRAMP, and treat the thermodynamics of the gas properly in three dimensions. The primary interest of this work lies in the demonstration and testing of the numerical method. We show how far numerical parameters can influence the simulations of gap opening. We study a standard reference model under various numerical approximations. Then we compare the commonly used locally isothermal approximation to the radiation hydro simulation using an equation for the internal energy. Models with different treatments of the mass accretion process are compared. Often mass accumulates in the Roche lobe of the planet creating a hydrostatic atmosphere around the planet. The gravitational torques induced by the spiral pattern of the disk onto the planet are not strongly affected in the average magnitude, but the short time scale fluctuations are stronger in the radiation hydro models. An interesting result of this work lies in the analysis of the temperature structure around the planet. The most striking effect of treating the thermodynamics properly is the formation of a hot pressure-supported bubble around the planet with a pressure scale height of H/R ≈ 0.5 rather than a thin Keplerian circumplanetary accretion disk.
NASA Astrophysics Data System (ADS)
Motheau, E.; Abraham, J.
2016-05-01
A novel and efficient algorithm is presented in this paper to deal with DNS of turbulent reacting flows under the low-Mach-number assumption, with detailed chemistry and a quasi-spectral accuracy. The temporal integration of the equations relies on an operating-split strategy, where chemical reactions are solved implicitly with a stiff solver and the convection-diffusion operators are solved with a Runge-Kutta-Chebyshev method. The spatial discretisation is performed with high-order compact schemes, and a FFT based constant-coefficient spectral solver is employed to solve a variable-coefficient Poisson equation. The numerical implementation takes advantage of the 2DECOMP&FFT libraries developed by [1], which are based on a pencil decomposition method of the domain and are proven to be computationally very efficient. An enhanced pressure-correction method is proposed to speed up the achievement of machine precision accuracy. It is demonstrated that a second-order accuracy is reached in time, while the spatial accuracy ranges from fourth-order to sixth-order depending on the set of imposed boundary conditions. The software developed to implement the present algorithm is called HOLOMAC, and its numerical efficiency opens the way to deal with DNS of reacting flows to understand complex turbulent and chemical phenomena in flames.
NASA Astrophysics Data System (ADS)
Sun, Guodong; Mu, Mu
2016-01-01
An important source of uncertainty, which causes further uncertainty in numerical simulations, is that residing in the parameters describing physical processes in numerical models. Therefore, finding a subset among numerous physical parameters in numerical models in the atmospheric and oceanic sciences, which are relatively more sensitive and important parameters, and reducing the errors in the physical parameters in this subset would be a far more efficient way to reduce the uncertainties involved in simulations. In this context, we present a new approach based on the conditional nonlinear optimal perturbation related to parameter (CNOP-P) method. The approach provides a framework to ascertain the subset of those relatively more sensitive and important parameters among the physical parameters. The Lund-Potsdam-Jena (LPJ) dynamical global vegetation model was utilized to test the validity of the new approach in China. The results imply that nonlinear interactions among parameters play a key role in the identification of sensitive parameters in arid and semi-arid regions of China compared to those in northern, northeastern, and southern China. The uncertainties in the numerical simulations were reduced considerably by reducing the errors of the subset of relatively more sensitive and important parameters. The results demonstrate that our approach not only offers a new route to identify relatively more sensitive and important physical parameters but also that it is viable to then apply "target observations" to reduce the uncertainties in model parameters.
NASA Astrophysics Data System (ADS)
Pearce, J. D.; Esler, J. G.
2010-10-01
A pseudo-spectral algorithm is presented for the solution of the rotating Green-Naghdi shallow water equations in two spatial dimensions. The equations are first written in vorticity-divergence form, in order to exploit the fact that time-derivatives then appear implicitly in the divergence equation only. A nonlinear equation must then be solved at each time-step in order to determine the divergence tendency. The nonlinear equation is solved by means of a simultaneous iteration in spectral space to determine each Fourier component. The key to the rapid convergence of the iteration is the use of a good initial guess for the divergence tendency, which is obtained from polynomial extrapolation of the solution obtained at previous time-levels. The algorithm is therefore best suited to be used with a standard multi-step time-stepping scheme (e.g. leap-frog). Two test cases are presented to validate the algorithm for initial value problems on a square periodic domain. The first test is to verify cnoidal wave speeds in one-dimension against analytical results. The second test is to ensure that the Miles-Salmon potential vorticity is advected as a parcel-wise conserved tracer throughout the nonlinear evolution of a perturbed jet subject to shear instability. The algorithm is demonstrated to perform well in each test. The resulting numerical model is expected to be of use in identifying paradigmatic behavior in mesoscale flows in the atmosphere and ocean in which both vortical, nonlinear and dispersive effects are important.
Numerical anomalies mimicking physical effects
NASA Astrophysics Data System (ADS)
Menikoff, R.
Numerical simulations of flows with shock waves typically use finite-difference shock-capturing algorithms. These algorithms give a shock a numerical width in order to generate the entropy increase that must occur across a shock wave. For algorithms in conservation form, steady-state shock waves are insensitive to the numerical dissipation because of the Hugoniot jump conditions. However, localized numerical errors occur when shock waves interact. Examples are the 'excess wall heating' in the Noh problem (shock reflected from rigid wall), errors when a shock impacts a material interface or an abrupt change in mesh spacing, and the start-up error from initializing a shock as a discontinuity. This class of anomalies can be explained by the entropy generation that occurs in the transient flow when a shock profile is formed or changed. The entropy error is localized spatially but under mesh refinement does not decrease in magnitude. Similar effects have been observed in shock tube experiments with partly dispersed shock waves. In this case, the shock has a physical width due to a relaxation process. An entropy anomaly from a transient shock interaction is inherent in the structure of the conservation equations for fluid flow. The anomaly can be expected to occur whenever heat conduction can be neglected and a shock wave has a non-zero width, whether the width is physical or numerical. Thus, the numerical anomaly from an artificial shock width mimics a real physical effect.
NASA Astrophysics Data System (ADS)
LeBlanc, J. P. F.; Antipov, Andrey E.; Becca, Federico; Bulik, Ireneusz W.; Chan, Garnet Kin-Lic; Chung, Chia-Min; Deng, Youjin; Ferrero, Michel; Henderson, Thomas M.; Jiménez-Hoyos, Carlos A.; Kozik, E.; Liu, Xuan-Wen; Millis, Andrew J.; Prokof'ev, N. V.; Qin, Mingpu; Scuseria, Gustavo E.; Shi, Hao; Svistunov, B. V.; Tocchio, Luca F.; Tupitsyn, I. S.; White, Steven R.; Zhang, Shiwei; Zheng, Bo-Xiao; Zhu, Zhenyue; Gull, Emanuel; Simons Collaboration on the Many-Electron Problem
2015-10-01
Numerical results for ground-state and excited-state properties (energies, double occupancies, and Matsubara-axis self-energies) of the single-orbital Hubbard model on a two-dimensional square lattice are presented, in order to provide an assessment of our ability to compute accurate results in the thermodynamic limit. Many methods are employed, including auxiliary-field quantum Monte Carlo, bare and bold-line diagrammatic Monte Carlo, method of dual fermions, density matrix embedding theory, density matrix renormalization group, dynamical cluster approximation, diffusion Monte Carlo within a fixed-node approximation, unrestricted coupled cluster theory, and multireference projected Hartree-Fock methods. Comparison of results obtained by different methods allows for the identification of uncertainties and systematic errors. The importance of extrapolation to converged thermodynamic-limit values is emphasized. Cases where agreement between different methods is obtained establish benchmark results that may be useful in the validation of new approaches and the improvement of existing methods.
Nourgaliev R.; Knoll D.; Mousseau V.; Berry R.
2007-04-01
The state-of-the-art for Direct Numerical Simulation (DNS) of boiling multiphase flows is reviewed, focussing on potential of available computational techniques, the level of current success for their applications to model several basic flow regimes (film, pool-nucleate and wall-nucleate boiling -- FB, PNB and WNB, respectively). Then, we discuss multiphysics and multiscale nature of practical boiling flows in LWR reactors, requiring high-fidelity treatment of interfacial dynamics, phase-change, hydrodynamics, compressibility, heat transfer, and non-equilibrium thermodynamics and chemistry of liquid/vapor and fluid/solid-wall interfaces. Finally, we outline the framework for the {\\sf Fervent} code, being developed at INL for DNS of reactor-relevant boiling multiphase flows, with the purpose of gaining insight into the physics of multiphase flow regimes, and generating a basis for effective-field modeling in terms of its formulation and closure laws.
A quasi-Monte Carlo Metropolis algorithm
Owen, Art B.; Tribble, Seth D.
2005-01-01
This work presents a version of the Metropolis–Hastings algorithm using quasi-Monte Carlo inputs. We prove that the method yields consistent estimates in some problems with finite state spaces and completely uniformly distributed inputs. In some numerical examples, the proposed method is much more accurate than ordinary Metropolis–Hastings sampling. PMID:15956207
LeBlanc, J. P. F.; Antipov, Andrey E.; Becca, Federico; Bulik, Ireneusz W.; Chan, Garnet Kin-Lic; Chung, Chia -Min; Deng, Youjin; Ferrero, Michel; Henderson, Thomas M.; Jiménez-Hoyos, Carlos A.; et al
2015-12-14
Numerical results for ground-state and excited-state properties (energies, double occupancies, and Matsubara-axis self-energies) of the single-orbital Hubbard model on a two-dimensional square lattice are presented, in order to provide an assessment of our ability to compute accurate results in the thermodynamic limit. Many methods are employed, including auxiliary-field quantum Monte Carlo, bare and bold-line diagrammatic Monte Carlo, method of dual fermions, density matrix embedding theory, density matrix renormalization group, dynamical cluster approximation, diffusion Monte Carlo within a fixed-node approximation, unrestricted coupled cluster theory, and multireference projected Hartree-Fock methods. Comparison of results obtained by different methods allows for the identification ofmore » uncertainties and systematic errors. The importance of extrapolation to converged thermodynamic-limit values is emphasized. Furthermore, cases where agreement between different methods is obtained establish benchmark results that may be useful in the validation of new approaches and the improvement of existing methods.« less
LeBlanc, J. P. F.; Antipov, Andrey E.; Becca, Federico; Bulik, Ireneusz W.; Chan, Garnet Kin-Lic; Chung, Chia -Min; Deng, Youjin; Ferrero, Michel; Henderson, Thomas M.; Jiménez-Hoyos, Carlos A.; Kozik, E.; Liu, Xuan -Wen; Millis, Andrew J.; Prokof’ev, N. V.; Qin, Mingpu; Scuseria, Gustavo E.; Shi, Hao; Svistunov, B. V.; Tocchio, Luca F.; Tupitsyn, I. S.; White, Steven R.; Zhang, Shiwei; Zheng, Bo -Xiao; Zhu, Zhenyue; Gull, Emanuel
2015-12-14
Numerical results for ground-state and excited-state properties (energies, double occupancies, and Matsubara-axis self-energies) of the single-orbital Hubbard model on a two-dimensional square lattice are presented, in order to provide an assessment of our ability to compute accurate results in the thermodynamic limit. Many methods are employed, including auxiliary-field quantum Monte Carlo, bare and bold-line diagrammatic Monte Carlo, method of dual fermions, density matrix embedding theory, density matrix renormalization group, dynamical cluster approximation, diffusion Monte Carlo within a fixed-node approximation, unrestricted coupled cluster theory, and multireference projected Hartree-Fock methods. Comparison of results obtained by different methods allows for the identification of uncertainties and systematic errors. The importance of extrapolation to converged thermodynamic-limit values is emphasized. Furthermore, cases where agreement between different methods is obtained establish benchmark results that may be useful in the validation of new approaches and the improvement of existing methods.
NASA Astrophysics Data System (ADS)
Kindrachuk, Vitaliy M.; Galanov, Boris A.
2014-02-01
A computationally efficient solution scheme is presented for the mechanical problems whose formulations include the Kuhn-Tucker or Signorini-Fichera conditions. It is proposed to reformulate these problems replacing inequalities in these conditions by equations with respect to new unknowns. The solutions of the modified problems have simple physical meanings and determine uniquely the unknowns of the original problems. The approach avoids application of multi-valued operators (inclusions or inequalities) in formulation of the problems. Hence, the modified formulations are suitable for numerical analysis using established powerful mathematical methods and corresponding solvers developed for solving systems of non-linear equations.
Farquhar, J.; Chacko, T. . Dept. of Geology); Frost, B.R. )
1992-01-01
The Sybille Pit is a late-stage magnetite-ilmenite-plagioclase-bearing differentiate of the Laramie Anorthosite with a wide range of grain sizes and modal mineralogy. This variability makes Sybille an ideal locality in which to study the factors that affect isotopic thermometry in plutonic environments. The authors have developed a numerical model based on isotope exchange trajectories that retrieves close to magmatic temperatures for samples from Sybille. This method is based on the premise that hand sample-scale sub-systems close to exchange with each other at temperatures that exceed those of the constituent minerals. The temperature of hand-sample scale closure is retrieved by back calculating the isotope exchange trajectories to the temperature at which two samples with widely different model compositions are in isotopic equilibrium. Application of these methods to samples from Sybille provides promising results. Whereas conventional isotopic thermometry of individual samples yields a wide range of temperatures ([approximately]600 to > 1000 C) depending on the mineral-pair chosen, application of this numerical model to multiple samples yields temperatures of 1,070 [+-] 100 C which corresponds closely to the inferred solidus for these rocks.
NASA Astrophysics Data System (ADS)
Hu, Xuanyu; Jekeli, Christopher
2015-02-01
We present a comprehensive numerical analysis of spherical, spheroidal, and ellipsoidal harmonic series for gravitational field modeling near small moderately irregular bodies, such as the Martian moons. The comparison of model performances for these bodies is less intuitive and distinct than for a highly irregular object, such as Eros. The harmonic series models are each associated with a distinct surface, i.e., the Brillouin sphere, spheroid, or ellipsoid, which separates the regions of convergence and possible divergence for the parent infinite series. In their convergence regions, the models are subject only to omission errors representing the residual field variations not accounted for by the finite degree expansions. In the regions inside their respective Brillouin surfaces, the models are susceptible to amplification of omission errors and possible divergence effects, where the latter can be discerned if the error increases with an increase in the maximum degree of the model. We test the harmonic series models on the Martian moons, Phobos and Deimos, with moderate oblateness of 0.4. The possible divergence effects and amplified omission errors of the models are illustrated and quantified. The three models yield consistent results on a bounding sphere of Phobos in their common convergence region, with relative errors in potential of 0.01 and 0.001 % for expansions up to degree 10 and degree 20 respectively. On the surface of Phobos, the spherical and spheroidal models up to degree 10 both have maximum relative errors of 1 % in potential and 100 % in acceleration due ostensibly to divergence effect. Their performances deteriorate more severely on the more irregular Deimos. The ellipsoidal model exhibits much less distinct divergence behavior and proves more reliable in modeling both potential and acceleration, with respective maximum relative errors of 1 and 10 %, on both bodies. Our results show that for the Martian moons and other such moderately irregular
NASA Astrophysics Data System (ADS)
Benaïchouche, Abed; Stab, Olivier; Tessier, Bruno; Cojan, Isabelle
2016-01-01
In landscapes dominated by fluvial erosion, the landscape morphology is closely related to the hydrographic network system. In this paper, we investigate the hydrographic network reorganization caused by a headward piracy mechanism between two drainage basins in France, the Meuse and the Moselle. Several piracies occurred in the Meuse basin during the past one million years, and the basin's current characteristics are favorable to new piracies by the Moselle river network. This study evaluates the consequences over the next several million years of a relative lowering of the Moselle River (and thus of its basin) with respect to the Meuse River. The problem is addressed with a numerical modeling approach (landscape evolution model, hereafter LEM) that requires empirical determinations of parameters and threshold values. Classically, fitting of the parameters is based on analysis of the relationship between the slope and the drainage area and is conducted under the hypothesis of equilibrium. Application of this conventional approach to the capture issue yields incomplete results that have been consolidated by a parametric sensitivity analysis. The LEM equations give a six-dimensional parameter space that was explored with over 15,000 simulations using the landscape evolution model GOLEM. The results demonstrate that stream piracies occur in only four locations in the studied reach near the city of Toul. The locations are mainly controlled by the local topography and are model-independent. Nevertheless, the chronology of the captures depends on two parameters: the river concavity (given by the fluvial advection equation) and the hillslope erosion factor. Thus, the simulations lead to three different scenarios that are explained by a phenomenon of exclusion or a string of events.
NASA Astrophysics Data System (ADS)
Hässig, Marc; Duretz, Thibault; Rolland, Yann; Sosson, Marc
2016-05-01
The ophiolites of NE Anatolia and of the Lesser Caucasus (NALC) evidence an obduction over ∼200 km of oceanic lithosphere of Middle Jurassic age (c. 175-165 Ma) along an entire tectonic boundary (>1000 km) at around 90 Ma. The obduction process is characterized by four first order geological constraints: Ophiolites represent remnants of a single ophiolite nappe currently of only a few kilometres thick and 200 km long. The oceanic crust was old (∼80 Ma) at the time of its obduction. The presence of OIB-type magmatism emplaced up to 10 Ma prior to obduction preserved on top of the ophiolites is indicative of mantle upwelling processes (hotspot). The leading edge of the Taurides-Anatolides, represented by the South Armenian Block, did not experience pressures exceeding 0.8 GPa nor temperatures greater than ∼300 °C during underthrusting below the obducting oceanic lithosphere. An oceanic domain of a maximum 1000 km (from north to south) remained between Taurides-Anatolides and Pontides-Southern Eurasian Margin after the obduction. We employ two-dimensional thermo-mechanical numerical modelling in order to investigate obduction dynamics of a re-heated oceanic lithosphere. Our results suggest that thermal rejuvenation (i.e. reheating) of the oceanic domain, tectonic compression, and the structure of the passive margin are essential ingredients for enabling obduction. Afterwards, extension induced by far-field plate kinematics (subduction below Southern Eurasian Margin), facilitates the thinning of the ophiolite, the transport of the ophiolite on the continental domain, and the exhumation of continental basement through the ophiolite. The combined action of thermal rejuvenation and compression are ascribed to a major change in tectonic motions occurring at 110-90 Ma, which led to simultaneous obductions in the Oman (Arabia) and NALC regions.
NASA Astrophysics Data System (ADS)
Carlino, Stefano; Troiano, Antonio; Giulia Di Giuseppe, Maria; Tramelli, Anna; Troise, Claudia; Somma, Renato; De Natale, Giuseppe
2015-04-01
The active volcanic area of Campi Flegrei caldera has been the site of many geothermal investigations, since the early XX century. This caldera is characterised by high heat flow, with maximum value > 150 mWm-2, geothermal gradients larger than 200°Ckm-1 and diffuse magmatic gases discharge at the surface. These features encouraged an extensive campaign for geothermal investigation, started in 1939, with many drillings performed at Campanian volcanoes (Campi Flegrei and Ischia) and later at Vesuvius. Several wells aimed to the exploitation of high enthalpy geothermal energy, were drilled in the Campi Flegrei caldera, down to a maximum depth of ~3 km involving mainly two sites (Mofete and S.Vito geothermal fields) located in western and northern sector of caldera respectively. The most interesting site for geothermal exploitation was the Mofete zone, where a number of 4 productive wells were drilled and tested to produce electrical power. Based on data inferred from the productive tests it was established a potential electrical extractable power from Mofete field of at least 10MWe. More recently an empirical evaluation of the whole geothermal potential of the caldera provides a value of more than 1 GWe. The results of AGIP-ENEL exploration at Campi Flegrei highlighted the feasibility of geothermal exploitation. Here, we show for the first time the results of numerical simulations (TOUGH2 code ®) of fluids extraction and reinjection from the Mofete geothermal field, in order to produce at least 5MWe from zero emission power plant (Organic Rankine Cycle type). The simulation is aimed to understand the perturbation of the geothermal reservoir in terms of temperature, pressure change, and possible related seismicity, after different simulated time of exploitation. The modeling is mainly constrained by the data derived from geothermal exploration and productive tests performed since 1979 by AGIP-ENEL Companies. A general assessment of the maximum potential magnitude
Numerical Asymptotic Solutions Of Differential Equations
NASA Technical Reports Server (NTRS)
Thurston, Gaylen A.
1992-01-01
Numerical algorithms derived and compared with classical analytical methods. In method, expansions replaced with integrals evaluated numerically. Resulting numerical solutions retain linear independence, main advantage of asymptotic solutions.
A Hybrid Parallel Preconditioning Algorithm For CFD
NASA Technical Reports Server (NTRS)
Barth,Timothy J.; Tang, Wei-Pai; Kwak, Dochan (Technical Monitor)
1995-01-01
A new hybrid preconditioning algorithm will be presented which combines the favorable attributes of incomplete lower-upper (ILU) factorization with the favorable attributes of the approximate inverse method recently advocated by numerous researchers. The quality of the preconditioner is adjustable and can be increased at the cost of additional computation while at the same time the storage required is roughly constant and approximately equal to the storage required for the original matrix. In addition, the preconditioning algorithm suggests an efficient and natural parallel implementation with reduced communication. Sample calculations will be presented for the numerical solution of multi-dimensional advection-diffusion equations. The matrix solver has also been embedded into a Newton algorithm for solving the nonlinear Euler and Navier-Stokes equations governing compressible flow. The full paper will show numerous examples in CFD to demonstrate the efficiency and robustness of the method.
Logistics distribution centers location problem and algorithm under fuzzy environment
NASA Astrophysics Data System (ADS)
Yang, Lixing; Ji, Xiaoyu; Gao, Ziyou; Li, Keping
2007-11-01
Distribution centers location problem is concerned with how to select distribution centers from the potential set so that the total relevant cost is minimized. This paper mainly investigates this problem under fuzzy environment. Consequentially, chance-constrained programming model for the problem is designed and some properties of the model are investigated. Tabu search algorithm, genetic algorithm and fuzzy simulation algorithm are integrated to seek the approximate best solution of the model. A numerical example is also given to show the application of the algorithm.
NASA Astrophysics Data System (ADS)
Imada, Masatoshi; Kashima, Tsuyoshi
2000-09-01
A numerical algorithm for studying strongly correlated electron systems is proposed. The groundstate wavefunction is projected out after a numerical renormalization procedure in the path integral formalism. The wavefunction is expressed from the optimized linear combination of retained states in the truncated Hilbert space with a numerically chosen basis. This algorithm does not suffer from the negative sign problem and can be applied to any type of Hamiltonian in any dimension. The efficiency is tested in examples of the Hubbard model where the basis of Slater determinants is numerically optimized. We show results on fast convergence and accuracy achieved with a small number of retained states.
Local multiplicative Schwarz algorithms for convection-diffusion equations
NASA Technical Reports Server (NTRS)
Cai, Xiao-Chuan; Sarkis, Marcus
1995-01-01
We develop a new class of overlapping Schwarz type algorithms for solving scalar convection-diffusion equations discretized by finite element or finite difference methods. The preconditioners consist of two components, namely, the usual two-level additive Schwarz preconditioner and the sum of some quadratic terms constructed by using products of ordered neighboring subdomain preconditioners. The ordering of the subdomain preconditioners is determined by considering the direction of the flow. We prove that the algorithms are optimal in the sense that the convergence rates are independent of the mesh size, as well as the number of subdomains. We show by numerical examples that the new algorithms are less sensitive to the direction of the flow than either the classical multiplicative Schwarz algorithms, and converge faster than the additive Schwarz algorithms. Thus, the new algorithms are more suitable for fluid flow applications than the classical additive or multiplicative Schwarz algorithms.
A hybrid algorithm for Caputo fractional differential equations
NASA Astrophysics Data System (ADS)
Salgado, G. H. O.; Aguirre, L. A.
2016-04-01
This paper is concerned with the numerical solution of fractional initial value problems (FIVP) in sense of Caputo's definition for dynamical systems. Unlike for integer-order derivatives that have a single definition, there is more than one definition of non integer-order derivatives and the solution of an FIVP is definition-dependent. In this paper, the chief differences of the main definitions of fractional derivatives are revisited and a numerical algorithm to solve an FIVP for Caputo derivative is proposed. The main advantages of the algorithm are twofold: it can be initialized with integer-order derivatives, and it is faster than the corresponding standard algorithm. The performance of the proposed algorithm is illustrated with examples which suggest that it requires about half the computation time to achieve the same accuracy than the standard algorithm.
Algorithms and Algorithmic Languages.
ERIC Educational Resources Information Center
Veselov, V. M.; Koprov, V. M.
This paper is intended as an introduction to a number of problems connected with the description of algorithms and algorithmic languages, particularly the syntaxes and semantics of algorithmic languages. The terms "letter, word, alphabet" are defined and described. The concept of the algorithm is defined and the relation between the algorithm and…
Geist, G.A.; Howell, G.W.; Watkins, D.S.
1997-11-01
The BR algorithm, a new method for calculating the eigenvalues of an upper Hessenberg matrix, is introduced. It is a bulge-chasing algorithm like the QR algorithm, but, unlike the QR algorithm, it is well adapted to computing the eigenvalues of the narrowband, nearly tridiagonal matrices generated by the look-ahead Lanczos process. This paper describes the BR algorithm and gives numerical evidence that it works well in conjunction with the Lanczos process. On the biggest problems run so far, the BR algorithm beats the QR algorithm by a factor of 30--60 in computing time and a factor of over 100 in matrix storage space.
Algorithmic Differentiation for Calculus-based Optimization
NASA Astrophysics Data System (ADS)
Walther, Andrea
2010-10-01
For numerous applications, the computation and provision of exact derivative information plays an important role for optimizing the considered system but quite often also for its simulation. This presentation introduces the technique of Algorithmic Differentiation (AD), a method to compute derivatives of arbitrary order within working precision. Quite often an additional structure exploitation is indispensable for a successful coupling of these derivatives with state-of-the-art optimization algorithms. The talk will discuss two important situations where the problem-inherent structure allows a calculus-based optimization. Examples from aerodynamics and nano optics illustrate these advanced optimization approaches.
Symbalisty, E.M.D.; Zinn, J.; Whitaker, R.W.
1995-09-01
This paper describes the history, physics, and algorithms of the computer code RADFLO and its extension HYCHEM. RADFLO is a one-dimensional, radiation-transport hydrodynamics code that is used to compute early-time fireball behavior for low-altitude nuclear bursts. The primary use of the code is the prediction of optical signals produced by nuclear explosions. It has also been used to predict thermal and hydrodynamic effects that are used for vulnerability and lethality applications. Another closely related code, HYCHEM, is an extension of RADFLO which includes the effects of nonequilibrium chemistry. Some examples of numerical results will be shown, along with scaling expressions derived from those results. We describe new computations of the structures and luminosities of steady-state shock waves and radiative thermal waves, which have been extended to cover a range of ambient air densities for high-altitude applications. We also describe recent modifications of the codes to use a one-dimensional analog of the CAVEAT fluid-dynamics algorithm in place of the former standard Richtmyer-von Neumann algorithm.
An efficient algorithm for solving the phase field crystal model
Cheng Mowei Warren, James A.
2008-06-01
We present and discuss the development of an unconditionally stable algorithm used to solve the evolution equations of the phase field crystal (PFC) model. This algorithm allows for an arbitrarily large algorithmic time step. As the basis for our analysis of the accuracy of this algorithm, we determine an effective time step in Fourier space. We then compare our calculations with a set of representative numerical results, and demonstrate that this algorithm is an effective approach for the study of the PFC models, yielding a time step effectively 180 times larger than the Euler algorithm for a representative set of material parameters. As the PFC model is just a simple example of a wide class of density functional theories, we expect this method will have wide applicability to modeling systems of considerable interest to the materials modeling communities.
A Stochastic Collocation Algorithm for Uncertainty Analysis
NASA Technical Reports Server (NTRS)
Mathelin, Lionel; Hussaini, M. Yousuff; Zang, Thomas A. (Technical Monitor)
2003-01-01
This report describes a stochastic collocation method to adequately handle a physically intrinsic uncertainty in the variables of a numerical simulation. For instance, while the standard Galerkin approach to Polynomial Chaos requires multi-dimensional summations over the stochastic basis functions, the stochastic collocation method enables to collapse those summations to a one-dimensional summation only. This report furnishes the essential algorithmic details of the new stochastic collocation method and provides as a numerical example the solution of the Riemann problem with the stochastic collocation method used for the discretization of the stochastic parameters.
Accurate Finite Difference Algorithms
NASA Technical Reports Server (NTRS)
Goodrich, John W.
1996-01-01
Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.
Markov chain Monte Carlo methods: an introductory example
NASA Astrophysics Data System (ADS)
Klauenberg, Katy; Elster, Clemens
2016-02-01
When the Guide to the Expression of Uncertainty in Measurement (GUM) and methods from its supplements are not applicable, the Bayesian approach may be a valid and welcome alternative. Evaluating the posterior distribution, estimates or uncertainties involved in Bayesian inferences often requires numerical methods to avoid high-dimensional integrations. Markov chain Monte Carlo (MCMC) sampling is such a method—powerful, flexible and widely applied. Here, a concise introduction is given, illustrated by a simple, typical example from metrology. The Metropolis-Hastings algorithm is the most basic and yet flexible MCMC method. Its underlying concepts are explained and the algorithm is given step by step. The few lines of software code required for its implementation invite interested readers to get started. Diagnostics to evaluate the performance and common algorithmic choices are illustrated to calibrate the Metropolis-Hastings algorithm for efficiency. Routine application of MCMC algorithms may be hindered currently by the difficulty to assess the convergence of MCMC output and thus to assure the validity of results. An example points to the importance of convergence and initiates discussion about advantages as well as areas of research. Available software tools are mentioned throughout.
A new algorithm for L2 optimal model reduction
NASA Technical Reports Server (NTRS)
Spanos, J. T.; Milman, M. H.; Mingori, D. L.
1992-01-01
In this paper the quadratically optimal model reduction problem for single-input, single-output systems is considered. The reduced order model is determined by minimizing the integral of the magnitude-squared of the transfer function error. It is shown that the numerator coefficients of the optimal approximant satisfy a weighted least squares problem and, on this basis, a two-step iterative algorithm is developed combining a least squares solver with a gradient minimizer. Convergence of the proposed algorithm to stationary values of the quadratic cost function is proved. The formulation is extended to handle the frequency-weighted optimal model reduction problem. Three examples demonstrate the optimization algorithm.
Lessor, K.S.
1988-08-26
The parallel algorithm of Ariyawansa, Sorensen, and Wets for approximating the values and subgradients of the recourse function in a stochastic program with complete recourse is implemented and timing results are reported for limited experimental trials. 14 refs., 6 figs., 8 tabs.
Numerical model for the Programmable Multirole Furnace (PMZF)
NASA Technical Reports Server (NTRS)
Kassemi, M.; Panzarella, C. H.; Destro-Sidik, K. E.; Krolikowski, C. R.; Licht, B. W.
1993-01-01
The present account of the Programmable Multizone Furnace numerical model uses various examples to illustrate the ways in which the model serves as an optimization, test, prediction, and visualization tool; a numerical PID-control algorithm obtains the desired sample temperature distributions and allows the model to solve an inverse heat transfer problem where the desired sample temperature profile is the input and the required heater power distribution is the output of numerical simulations. Parametric studies show how the total power consumption of the furnace is affected by such design variables as the conductivity.
Numerical Modeling of Ocean Acoustic Wavefields
NASA Astrophysics Data System (ADS)
Tappert, Frederick
1997-08-01
The U.S. Navy requires real-time ``acoustic performance prediction'' models in order to optimize sonar tactics in naval combat situations. The need for numerical models that solve the acoustic wave equation in realistic ocean environments is being met by a collaborative effort between university researchers, industrial contractors, and navy laboratory workers. This paper discusses one particularly successful numerical model, called the PE/SSF model, that was originally developed by the author. Here PE stands for Parabolic Equation, a good approximation to the elliptic Helmholtz equation; and SSF stands for the Split-Step Fourier algorithm, a highly efficient marching algorithm for solving parabolic type equations. These techniques are analyzed, and examples are displayed of ocean acoustic wavefields generated by the PE/SSF model.
A spectral canonical electrostatic algorithm
NASA Astrophysics Data System (ADS)
Webb, Stephen D.
2016-03-01
Studying single-particle dynamics over many periods of oscillations is a well-understood problem solved using symplectic integration. Such integration schemes derive their update sequence from an approximate Hamiltonian, guaranteeing that the geometric structure of the underlying problem is preserved. Simulating a self-consistent system over many oscillations can introduce numerical artifacts such as grid heating. This unphysical heating stems from using non-symplectic methods on Hamiltonian systems. With this guidance, we derive an electrostatic algorithm using a discrete form of Hamilton’s principle. The resulting algorithm, a gridless spectral electrostatic macroparticle model, does not exhibit the unphysical heating typical of most particle-in-cell methods. We present results of this using a two-body problem as an example of the algorithm’s energy- and momentum-conserving properties.
Razali, Azhani Mohd Abdullah, Jaafar
2015-04-29
Single Photon Emission Computed Tomography (SPECT) is a well-known imaging technique used in medical application, and it is part of medical imaging modalities that made the diagnosis and treatment of disease possible. However, SPECT technique is not only limited to the medical sector. Many works are carried out to adapt the same concept by using high-energy photon emission to diagnose process malfunctions in critical industrial systems such as in chemical reaction engineering research laboratories, as well as in oil and gas, petrochemical and petrochemical refining industries. Motivated by vast applications of SPECT technique, this work attempts to study the application of SPECT on a Pebble Bed Reactor (PBR) using numerical phantom of pebbles inside the PBR core. From the cross-sectional images obtained from SPECT, the behavior of pebbles inside the core can be analyzed for further improvement of the PBR design. As the quality of the reconstructed image is largely dependent on the algorithm used, this work aims to compare two image reconstruction algorithms for SPECT, namely the Expectation Maximization Algorithm and the Exact Inversion Formula. The results obtained from the Exact Inversion Formula showed better image contrast and sharpness, and shorter computational time compared to the Expectation Maximization Algorithm.
NASA Astrophysics Data System (ADS)
Razali, Azhani Mohd; Abdullah, Jaafar
2015-04-01
Single Photon Emission Computed Tomography (SPECT) is a well-known imaging technique used in medical application, and it is part of medical imaging modalities that made the diagnosis and treatment of disease possible. However, SPECT technique is not only limited to the medical sector. Many works are carried out to adapt the same concept by using high-energy photon emission to diagnose process malfunctions in critical industrial systems such as in chemical reaction engineering research laboratories, as well as in oil and gas, petrochemical and petrochemical refining industries. Motivated by vast applications of SPECT technique, this work attempts to study the application of SPECT on a Pebble Bed Reactor (PBR) using numerical phantom of pebbles inside the PBR core. From the cross-sectional images obtained from SPECT, the behavior of pebbles inside the core can be analyzed for further improvement of the PBR design. As the quality of the reconstructed image is largely dependent on the algorithm used, this work aims to compare two image reconstruction algorithms for SPECT, namely the Expectation Maximization Algorithm and the Exact Inversion Formula. The results obtained from the Exact Inversion Formula showed better image contrast and sharpness, and shorter computational time compared to the Expectation Maximization Algorithm.
Regularized shallow water equations for numerical simulation of flows with a moving shoreline
NASA Astrophysics Data System (ADS)
Bulatov, O. V.; Elizarova, T. G.
2016-04-01
A numerical algorithm for simulating free-surface flows based on regularized shallow water equations is adapted to flows involving moving dry-bed areas. Well-balanced versions of the algorithm are constructed. Test computations of flows with dry-bed areas in the cases of water runup onto a plane beach and a constant-slope beach are presented. An example of tsunami simulation is given.
Numerical solutions of nonlinear STIFF initial value problems by perturbed functional iterations
NASA Technical Reports Server (NTRS)
Dey, S. K.
1982-01-01
Numerical solution of nonlinear stiff initial value problems by a perturbed functional iterative scheme is discussed. The algorithm does not fully linearize the system and requires only the diagonal terms of the Jacobian. Some examples related to chemical kinetics are presented.
Algorithmically specialized parallel computers
Snyder, L.; Jamieson, L.H.; Gannon, D.B.; Siegel, H.J.
1985-01-01
This book is based on a workshop which dealt with array processors. Topics considered include algorithmic specialization using VLSI, innovative architectures, signal processing, speech recognition, image processing, specialized architectures for numerical computations, and general-purpose computers.
Boundary acquisition for setup of numerical simulation
Diegert, C.
1997-12-31
The author presents a work flow diagram that includes a path that begins with taking experimental measurements, and ends with obtaining insight from results produced by numerical simulation. Two examples illustrate this path: (1) Three-dimensional imaging measurement at micron scale, using X-ray tomography, provides information on the boundaries of irregularly-shaped alumina oxide particles held in an epoxy matrix. A subsequent numerical simulation predicts the electrical field concentrations that would occur in the observed particle configurations. (2) Three-dimensional imaging measurement at meter scale, again using X-ray tomography, provides information on the boundaries fossilized bone fragments in a Parasaurolophus crest recently discovered in New Mexico. A subsequent numerical simulation predicts acoustic response of the elaborate internal structure of nasal passageways defined by the fossil record. The author must both add value, and must change the format of the three-dimensional imaging measurements before the define the geometric boundary initial conditions for the automatic mesh generation, and subsequent numerical simulation. The author applies a variety of filters and statistical classification algorithms to estimate the extents of the structures relevant to the subsequent numerical simulation, and capture these extents as faceted geometries. The author will describe the particular combination of manual and automatic methods used in the above two examples.
Annealed Importance Sampling Reversible Jump MCMC algorithms
Karagiannis, Georgios; Andrieu, Christophe
2013-03-20
It will soon be 20 years since reversible jump Markov chain Monte Carlo (RJ-MCMC) algorithms have been proposed. They have significantly extended the scope of Markov chain Monte Carlo simulation methods, offering the promise to be able to routinely tackle transdimensional sampling problems, as encountered in Bayesian model selection problems for example, in a principled and flexible fashion. Their practical efficient implementation, however, still remains a challenge. A particular difficulty encountered in practice is in the choice of the dimension matching variables (both their nature and their distribution) and the reversible transformations which allow one to define the one-to-one mappings underpinning the design of these algorithms. Indeed, even seemingly sensible choices can lead to algorithms with very poor performance. The focus of this paper is the development and performance evaluation of a method, annealed importance sampling RJ-MCMC (aisRJ), which addresses this problem by mitigating the sensitivity of RJ-MCMC algorithms to the aforementioned poor design. As we shall see the algorithm can be understood as being an “exact approximation” of an idealized MCMC algorithm that would sample from the model probabilities directly in a model selection set-up. Such an idealized algorithm may have good theoretical convergence properties, but typically cannot be implemented, and our algorithms can approximate the performance of such idealized algorithms to an arbitrary degree while not introducing any bias for any degree of approximation. Our approach combines the dimension matching ideas of RJ-MCMC with annealed importance sampling and its Markov chain Monte Carlo implementation. We illustrate the performance of the algorithm with numerical simulations which indicate that, although the approach may at first appear computationally involved, it is in fact competitive.
Reasoning about systolic algorithms
Purushothaman, S.; Subrahmanyam, P.A.
1988-12-01
The authors present a methodology for verifying correctness of systolic algorithms. The methodology is based on solving a set of Uniform Recurrence Equations obtained from a description of systolic algorithms as a set of recursive equations. They present an approach to mechanically verify correctness of systolic algorithms, using the Boyer-Moore theorem proven. A mechanical correctness proof of an example from the literature is also presented.
Advances in Numerical Boundary Conditions for Computational Aeroacoustics
NASA Technical Reports Server (NTRS)
Tam, Christopher K. W.
1997-01-01
Advances in Computational Aeroacoustics (CAA) depend critically on the availability of accurate, nondispersive, least dissipative computation algorithm as well as high quality numerical boundary treatments. This paper focuses on the recent developments of numerical boundary conditions. In a typical CAA problem, one often encounters two types of boundaries. Because a finite computation domain is used, there are external boundaries. On the external boundaries, boundary conditions simulating the solution outside the computation domain are to be imposed. Inside the computation domain, there may be internal boundaries. On these internal boundaries, boundary conditions simulating the presence of an object or surface with specific acoustic characteristics are to be applied. Numerical boundary conditions, both external or internal, developed for simple model problems are reviewed and examined. Numerical boundary conditions for real aeroacoustic problems are also discussed through specific examples. The paper concludes with a description of some much needed research in numerical boundary conditions for CAA.
Active Learning with Irrelevant Examples
NASA Technical Reports Server (NTRS)
Wagstaff, Kiri; Mazzoni, Dominic
2009-01-01
An improved active learning method has been devised for training data classifiers. One example of a data classifier is the algorithm used by the United States Postal Service since the 1960s to recognize scans of handwritten digits for processing zip codes. Active learning algorithms enable rapid training with minimal investment of time on the part of human experts to provide training examples consisting of correctly classified (labeled) input data. They function by identifying which examples would be most profitable for a human expert to label. The goal is to maximize classifier accuracy while minimizing the number of examples the expert must label. Although there are several well-established methods for active learning, they may not operate well when irrelevant examples are present in the data set. That is, they may select an item for labeling that the expert simply cannot assign to any of the valid classes. In the context of classifying handwritten digits, the irrelevant items may include stray marks, smudges, and mis-scans. Querying the expert about these items results in wasted time or erroneous labels, if the expert is forced to assign the item to one of the valid classes. In contrast, the new algorithm provides a specific mechanism for avoiding querying the irrelevant items. This algorithm has two components: an active learner (which could be a conventional active learning algorithm) and a relevance classifier. The combination of these components yields a method, denoted Relevance Bias, that enables the active learner to avoid querying irrelevant data so as to increase its learning rate and efficiency when irrelevant items are present. The algorithm collects irrelevant data in a set of rejected examples, then trains the relevance classifier to distinguish between labeled (relevant) training examples and the rejected ones. The active learner combines its ranking of the items with the probability that they are relevant to yield a final decision about which item
Heuristic algorithms for constructing optimized structures of linear multihop lightwave networks
NASA Astrophysics Data System (ADS)
Banerjee, Subrata; Mukherjee, Biswanath; Sarkar, Dillip
1994-02-01
We propose to exploit the capabilities of emerging lightwave technology in order to construct photonic implementations of 'adaptive' and 'optimized' distributed queue dual bus (DQDB) structures. Two sets of heuristic optimization algorithms are formulated. The performance of these heuristics are compared, some of their properties are analyzed, while their other attractive properties are highlighted via numerical examples.
Xiao, Jianyuan; Liu, Jian; Qin, Hong; Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 ; Yu, Zhi
2013-10-15
Smoothing functions are commonly used to reduce numerical noise arising from coarse sampling of particles in particle-in-cell (PIC) plasma simulations. When applying smoothing functions to symplectic algorithms, the conservation of symplectic structure should be guaranteed to preserve good conservation properties. In this paper, we show how to construct a variational multi-symplectic PIC algorithm with smoothing functions for the Vlasov-Maxwell system. The conservation of the multi-symplectic structure and the reduction of numerical noise make this algorithm specifically suitable for simulating long-term dynamics of plasmas, such as those in the steady-state operation or long-pulse discharge of a super-conducting tokamak. The algorithm has been implemented in a 6D large scale PIC code. Numerical examples are given to demonstrate the good conservation properties of the multi-symplectic algorithm and the reduction of the noise due to the application of smoothing function.
Di Pierro, Michele; Elber, Ron; Leimkuhler, Benedict
2015-12-01
We present an algorithm termed COMPEL (COnstant Molecular Pressure with Ewald sum for Long range forces) to conduct simulations in the NPT ensemble. The algorithm combines novel features recently proposed in the literature to obtain a highly efficient and accurate numerical integrator. COMPEL exploits the concepts of molecular pressure, rapid stochastic relaxation to equilibrium, exact calculation of the contribution to the pressure of long-range nonbonded forces with Ewald summation, and the use of Trotter expansion to generate a robust, highly stable, symmetric, and accurate algorithm. Explicit implementation in the MOIL program and illustrative numerical examples are discussed. PMID:26616351
A Hybrid Shortest Path Algorithm for Navigation System
NASA Astrophysics Data System (ADS)
Cho, Hsun-Jung; Lan, Chien-Lun
2007-12-01
Combined with Geographic Information System (GIS) and Global Positioning System (GPS), the vehicle navigation system had become a quite popular product in daily life. A key component of the navigation system is the Shortest Path Algorithm. Navigation in real world must face a network consists of tens of thousands nodes and links, and even more. Under the limited computation capability of vehicle navigation equipment, it is difficult to satisfy the realtime response requirement that user expected. Hence, this study focused on shortest path algorithm that enhances the computation speed with less memory requirement. Several well-known algorithms such as Dijkstra, A* and hierarchical concepts were integrated to build hybrid algorithms that reduce searching space and improve searching speed. Numerical examples were conducted on Taiwan highway network that consists of more than four hundred thousands of links and nearly three hundred thousands of nodes. This real network was divided into two connected sub-networks (layers). The upper layer is constructed by freeways and expressways; the lower layer is constructed by local networks. Test origin-destination pairs were chosen randomly and divided into three distance categories; short, medium and long distances. The evaluation of outcome is judged by actual length and travel time. The numerical example reveals that the hybrid algorithm proposed by this research might be tens of thousands times faster than traditional Dijkstra algorithm; the memory requirement of the hybrid algorithm is also much smaller than the tradition algorithm. This outcome shows that this proposed algorithm would have an advantage over vehicle navigation system.
Fully efficient time-parallelized quantum optimal control algorithm
NASA Astrophysics Data System (ADS)
Riahi, M. K.; Salomon, J.; Glaser, S. J.; Sugny, D.
2016-04-01
We present a time-parallelization method that enables one to accelerate the computation of quantum optimal control algorithms. We show that this approach is approximately fully efficient when based on a gradient method as optimization solver: the computational time is approximately divided by the number of available processors. The control of spin systems, molecular orientation, and Bose-Einstein condensates are used as illustrative examples to highlight the wide range of applications of this numerical scheme.
Newton algorithm for fitting transfer functions to frequency response measurements
NASA Technical Reports Server (NTRS)
Spanos, J. T.; Mingori, D. L.
1993-01-01
In this paper the problem of synthesizing transfer functions from frequency response measurements is considered. Given a complex vector representing the measured frequency response of a physical system, a transfer function of specified order is determined that minimizes the sum of the magnitude-squared of the frequency response errors. This nonlinear least squares minimization problem is solved by an iterative global descent algorithm of the Newton type that converges quadratically near the minimum. The unknown transfer function is expressed as a sum of second-order rational polynomials, a parameterization that facilitates a numerically robust computer implementation. The algorithm is developed for single-input, single-output, causal, stable transfer functions. Two numerical examples demonstrate the effectiveness of the algorithm.
NASA Technical Reports Server (NTRS)
Farhat, C.; Park, K. C.; Dubois-Pelerin, Y.
1991-01-01
An unconditionally stable second order accurate implicit-implicit staggered procedure for the finite element solution of fully coupled thermoelasticity transient problems is proposed. The procedure is stabilized with a semi-algebraic augmentation technique. A comparative cost analysis reveals the superiority of the proposed computational strategy to other conventional staggered procedures. Numerical examples of one and two-dimensional thermomechanical coupled problems demonstrate the accuracy of the proposed numerical solution algorithm.
Verifying a Computer Algorithm Mathematically.
ERIC Educational Resources Information Center
Olson, Alton T.
1986-01-01
Presents an example of mathematics from an algorithmic point of view, with emphasis on the design and verification of this algorithm. The program involves finding roots for algebraic equations using the half-interval search algorithm. The program listing is included. (JN)
Artificial bee colony algorithm for constrained possibilistic portfolio optimization problem
NASA Astrophysics Data System (ADS)
Chen, Wei
2015-07-01
In this paper, we discuss the portfolio optimization problem with real-world constraints under the assumption that the returns of risky assets are fuzzy numbers. A new possibilistic mean-semiabsolute deviation model is proposed, in which transaction costs, cardinality and quantity constraints are considered. Due to such constraints the proposed model becomes a mixed integer nonlinear programming problem and traditional optimization methods fail to find the optimal solution efficiently. Thus, a modified artificial bee colony (MABC) algorithm is developed to solve the corresponding optimization problem. Finally, a numerical example is given to illustrate the effectiveness of the proposed model and the corresponding algorithm.
Efficient procedures for the numerical simulation of mid-size RNA kinetics
2012-01-01
Motivation Methods for simulating the kinetic folding of RNAs by numerically solving the chemical master equation have been developed since the late 90's, notably the programs Kinfold and Treekin with Barriers that are available in the Vienna RNA package. Our goal is to formulate extensions to the algorithms used, starting from the Gillespie algorithm, that will allow numerical simulations of mid-size (~ 60–150 nt) RNA kinetics in some practical cases where numerous distributions of folding times are desired. These extensions can contribute to analyses and predictions of RNA folding in biologically significant problems. Results By describing in a particular way the reduction of numerical simulations of RNA folding kinetics into the Gillespie stochastic simulation algorithm for chemical reactions, it is possible to formulate extensions to the basic algorithm that will exploit memoization and parallelism for efficient computations. These can be used to advance forward from the small examples demonstrated to larger examples of biological interest. Software The implementation that is described and used for the Gillespie algorithm is freely available by contacting the authors, noting that the efficient procedures suggested may also be applicable along with Vienna's Kinfold. PMID:22958879
Efficient sequential and parallel algorithms for record linkage
Mamun, Abdullah-Al; Mi, Tian; Aseltine, Robert; Rajasekaran, Sanguthevar
2014-01-01
Background and objective Integrating data from multiple sources is a crucial and challenging problem. Even though there exist numerous algorithms for record linkage or deduplication, they suffer from either large time needs or restrictions on the number of datasets that they can integrate. In this paper we report efficient sequential and parallel algorithms for record linkage which handle any number of datasets and outperform previous algorithms. Methods Our algorithms employ hierarchical clustering algorithms as the basis. A key idea that we use is radix sorting on certain attributes to eliminate identical records before any further processing. Another novel idea is to form a graph that links similar records and find the connected components. Results Our sequential and parallel algorithms have been tested on a real dataset of 1 083 878 records and synthetic datasets ranging in size from 50 000 to 9 000 000 records. Our sequential algorithm runs at least two times faster, for any dataset, than the previous best-known algorithm, the two-phase algorithm using faster computation of the edit distance (TPA (FCED)). The speedups obtained by our parallel algorithm are almost linear. For example, we get a speedup of 7.5 with 8 cores (residing in a single node), 14.1 with 16 cores (residing in two nodes), and 26.4 with 32 cores (residing in four nodes). Conclusions We have compared the performance of our sequential algorithm with TPA (FCED) and found that our algorithm outperforms the previous one. The accuracy is the same as that of this previous best-known algorithm. PMID:24154837
Numerical analysis of bifurcations
Guckenheimer, J.
1996-06-01
This paper is a brief survey of numerical methods for computing bifurcations of generic families of dynamical systems. Emphasis is placed upon algorithms that reflect the structure of the underlying mathematical theory while retaining numerical efficiency. Significant improvements in the computational analysis of dynamical systems are to be expected from more reliance of geometric insight coming from dynamical systems theory. {copyright} {ital 1996 American Institute of Physics.}
Coupling Algorithms for Calculating Sensitivities of Population Balances
Man, P. L. W.; Kraft, M.; Norris, J. R.
2008-09-01
We introduce a new class of stochastic algorithms for calculating parametric derivatives of the solution of the space-homogeneous Smoluchowski's coagulation equation. Currently, it is very difficult to produce low variance estimates of these derivatives in reasonable amounts of computational time through the use of stochastic methods. These new algorithms consider a central difference estimator of the parametric derivative which is calculated by evaluating the coagulation equation at two different parameter values simultaneously, and causing variance reduction by maximising the covariance between these. The two different coupling strategies ('Single' and 'Double') have been compared to the case when there is no coupling ('Independent'). Both coupling algorithms converge and the Double coupling is the most 'efficient' algorithm. For the numerical example chosen we obtain a factor of about 100 in efficiency in the best case (small system evolution time and small parameter perturbation)
A robust Feasible Directions algorithm for design synthesis
NASA Technical Reports Server (NTRS)
Vanderplaats, G. N.
1983-01-01
A nonlinear optimization algorithm is developed which combines the best features of the Method of Feasible Directions and the Generalized Reduced Gradient Method. This algorithm utilizes the direction-finding sub-problem from the Method of Feasible Directions to find a search direction which is equivalent to that of the Generalized Reduced Gradient Method, but does not require the addition of a large number of slack variables associated with inequality constraints. This method provides a core-efficient algorithm for the solution of optimization problems with a large number of inequality constraints. Further optimization efficiency is derived by introducing the concept of infrequent gradient calculations. In addition, it is found that the sensitivity of the optimum design to changes in the problem parameters can be obtained using this method without the need for second derivatives or Lagrange multipliers. A numerical example is given in order to demonstrate the efficiency of the algorithm and the sensitivity analysis.
Randomized Algorithms for Matrices and Data
NASA Astrophysics Data System (ADS)
Mahoney, Michael W.
2012-03-01
This chapter reviews recent work on randomized matrix algorithms. By “randomized matrix algorithms,” we refer to a class of recently developed random sampling and random projection algorithms for ubiquitous linear algebra problems such as least-squares (LS) regression and low-rank matrix approximation. These developments have been driven by applications in large-scale data analysis—applications which place very different demands on matrices than traditional scientific computing applications. Thus, in this review, we will focus on highlighting the simplicity and generality of several core ideas that underlie the usefulness of these randomized algorithms in scientific applications such as genetics (where these algorithms have already been applied) and astronomy (where, hopefully, in part due to this review they will soon be applied). The work we will review here had its origins within theoretical computer science (TCS). An important feature in the use of randomized algorithms in TCS more generally is that one must identify and then algorithmically deal with relevant “nonuniformity structure” in the data. For the randomized matrix algorithms to be reviewed here and that have proven useful recently in numerical linear algebra (NLA) and large-scale data analysis applications, the relevant nonuniformity structure is defined by the so-called statistical leverage scores. Defined more precisely below, these leverage scores are basically the diagonal elements of the projection matrix onto the dominant part of the spectrum of the input matrix. As such, they have a long history in statistical data analysis, where they have been used for outlier detection in regression diagnostics. More generally, these scores often have a very natural interpretation in terms of the data and processes generating the data. For example, they can be interpreted in terms of the leverage or influence that a given data point has on, say, the best low-rank matrix approximation; and this
Dynamics of Numerics & Spurious Behaviors in CFD Computations. Revised
NASA Technical Reports Server (NTRS)
Yee, Helen C.; Sweby, Peter K.
1997-01-01
The global nonlinear behavior of finite discretizations for constant time steps and fixed or adaptive grid spacings is studied using tools from dynamical systems theory. Detailed analysis of commonly used temporal and spatial discretizations for simple model problems is presented. The role of dynamics in the understanding of long time behavior of numerical integration and the nonlinear stability, convergence, and reliability of using time-marching approaches for obtaining steady-state numerical solutions in computational fluid dynamics (CFD) is explored. The study is complemented with examples of spurious behavior observed in steady and unsteady CFD computations. The CFD examples were chosen to illustrate non-apparent spurious behavior that was difficult to detect without extensive grid and temporal refinement studies and some knowledge from dynamical systems theory. Studies revealed the various possible dangers of misinterpreting numerical simulation of realistic complex flows that are constrained by available computing power. In large scale computations where the physics of the problem under study is not well understood and numerical simulations are the only viable means of solution, extreme care must be taken in both computation and interpretation of the numerical data. The goal of this paper is to explore the important role that dynamical systems theory can play in the understanding of the global nonlinear behavior of numerical algorithms and to aid the identification of the sources of numerical uncertainties in CFD.
A general-purpose contact detection algorithm for nonlinear structural analysis codes
Heinstein, M.W.; Attaway, S.W.; Swegle, J.W.; Mello, F.J.
1993-05-01
A new contact detection algorithm has been developed to address difficulties associated with the numerical simulation of contact in nonlinear finite element structural analysis codes. Problems including accurate and efficient detection of contact for self-contacting surfaces, tearing and eroding surfaces, and multi-body impact are addressed. The proposed algorithm is portable between dynamic and quasi-static codes and can efficiently model contact between a variety of finite element types including shells, bricks, beams and particles. The algorithm is composed of (1) a location strategy that uses a global search to decide which slave nodes are in proximity to a master surface and (2) an accurate detailed contact check that uses the projected motions of both master surface and slave node. In this report, currently used contact detection algorithms and their associated difficulties are discussed. Then the proposed algorithm and how it addresses these problems is described. Finally, the capability of the new algorithm is illustrated with several example problems.
Implementation of genetic algorithm for distribution systems loss minimum re-configuration
Nara, K.; Shiose, A. ); Kitagawa, M.; Ishihara, T. )
1992-08-01
In this paper, a distribution systems loss minimum reconfiguration method by genetic algorithm is proposed. The problem is a complex mixed integer programming problem and is very difficult to solve by a mathematical programming approach. A genetic algorithm (GA) is a search or optimization algorithm based on the mechanics of natural selection and natural genetics. Since GA is suitable to solve combinatorial optimization problems, it can be successfully applied to problems of loss minimum in distribution systems. Numerical examples demonstrate the validity and effectiveness of the proposed methodology.
Generalized wave-front reconstruction algorithm applied in a Shack-Hartmann test.
NASA Astrophysics Data System (ADS)
Weiyao, Zou; Zhang, Zhenchao
2000-01-01
A generalized numerical wave-front reconstruction method is proposed that is suitable for diversified irregular pupil shapes of optical systems to be measured. That is, to make a generalized and regular normal equation set, the test domain is extended to a regular square shape. The compatibility of this method is discussed in detail, and efficient algorithms (such as the Cholesky method) for solving this normal equation set are given. In addition, the authors give strict analyses of not only the error propagation in the wave-front estimate but also of the discretization errors of this domain extension algorithm. Finally, some application examples are given to demonstrate this algorithm.
Yang, Chao; Meza, Juan C.; Wang, Lin-Wang
2005-07-26
A new direct constrained optimization algorithm forminimizing the Kohn-Sham (KS) total energy functional is presented inthis paper. The key ingredients of this algorithm involve projecting thetotal energy functional into a sequences of subspaces of small dimensionsand seeking the minimizer of total energy functional within eachsubspace. The minimizer of a subspace energy functional not only providesa search direction along which the KS total energy functional decreasesbut also gives an optimal "step-length" to move along this searchdirection. A numerical example is provided to demonstrate that this newdirect constrained optimization algorithm can be more efficient than theself-consistent field (SCF) iteration.
REQUEST: A Recursive QUEST Algorithm for Sequential Attitude Determination
NASA Technical Reports Server (NTRS)
Bar-Itzhack, Itzhack Y.
1996-01-01
In order to find the attitude of a spacecraft with respect to a reference coordinate system, vector measurements are taken. The vectors are pairs of measurements of the same generalized vector, taken in the spacecraft body coordinates, as well as in the reference coordinate system. We are interested in finding the best estimate of the transformation between these coordinate system.s The algorithm called QUEST yields that estimate where attitude is expressed by a quarternion. Quest is an efficient algorithm which provides a least squares fit of the quaternion of rotation to the vector measurements. Quest however, is a single time point (single frame) batch algorithm, thus measurements that were taken at previous time points are discarded. The algorithm presented in this work provides a recursive routine which considers all past measurements. The algorithm is based on on the fact that the, so called, K matrix, one of whose eigenvectors is the sought quaternion, is linerly related to the measured pairs, and on the ability to propagate K. The extraction of the appropriate eigenvector is done according to the classical QUEST algorithm. This stage, however, can be eliminated, and the computation simplified, if a standard eigenvalue-eigenvector solver algorithm is used. The development of the recursive algorithm is presented and illustrated via a numerical example.
Parallel algorithms for boundary value problems
NASA Technical Reports Server (NTRS)
Lin, Avi
1990-01-01
A general approach to solve boundary value problems numerically in a parallel environment is discussed. The basic algorithm consists of two steps: the local step where all the P available processors work in parallel, and the global step where one processor solves a tridiagonal linear system of the order P. The main advantages of this approach are two fold. First, this suggested approach is very flexible, especially in the local step and thus the algorithm can be used with any number of processors and with any of the SIMD or MIMD machines. Secondly, the communication complexity is very small and thus can be used as easily with shared memory machines. Several examples for using this strategy are discussed.
High-performance combinatorial algorithms
Pinar, Ali
2003-10-31
Combinatorial algorithms have long played an important role in many applications of scientific computing such as sparse matrix computations and parallel computing. The growing importance of combinatorial algorithms in emerging applications like computational biology and scientific data mining calls for development of a high performance library for combinatorial algorithms. Building such a library requires a new structure for combinatorial algorithms research that enables fast implementation of new algorithms. We propose a structure for combinatorial algorithms research that mimics the research structure of numerical algorithms. Numerical algorithms research is nicely complemented with high performance libraries, and this can be attributed to the fact that there are only a small number of fundamental problems that underlie numerical solvers. Furthermore there are only a handful of kernels that enable implementation of algorithms for these fundamental problems. Building a similar structure for combinatorial algorithms will enable efficient implementations for existing algorithms and fast implementation of new algorithms. Our results will promote utilization of combinatorial techniques and will impact research in many scientific computing applications, some of which are listed.
Numerical quadrature for slab geometry transport algorithms
Hennart, J.P.; Valle, E. del
1995-12-31
In recent papers, a generalized nodal finite element formalism has been presented for virtually all known linear finite difference approximations to the discrete ordinates equations in slab geometry. For a particular angular directions {mu}, the neutron flux {Phi} is approximated by a piecewise function Oh, which over each space interval can be polynomial or quasipolynomial. Here we shall restrict ourselves to the polynomial case. Over each space interval, {Phi} is a polynomial of degree k, interpolating parameters given by in the continuous and discontinuous cases, respectively. The angular flux at the left and right ends and the k`th Legendre moment of {Phi} over the cell considered are represented as.
NASA Astrophysics Data System (ADS)
Mehanee, Salah A.; Essa, Khalid S.
2015-08-01
A new two-and-a-half dimensional (2.5D) regularized inversion scheme has been developed for the interpretation of residual gravity data by a dipping thin-sheet model. This scheme solves for the characteristic inverse parameters (depth to top z, dip angle θ, extension in depth L, strike length 2 Y, and amplitude coefficient A) of a model in the space of logarithms of these parameters (log( z), log( θ), log( L), log( Y), and log(| A|)). The developed method has been successfully verified on synthetic examples without noise. The method is found stable and can estimate the inverse parameters of the buried target with acceptable accuracy when applied to data contaminated with various noise levels. However, some of the inverse parameters encountered some inaccuracy when the method was applied to synthetic data distorted by significant neighboring gravity effects/interferences. The validity of this method for practical applications has been successfully illustrated on two field examples with diverse geologic settings from mineral exploration. The estimated inverse parameters of the real data investigated are found to generally conform well with those yielded from drilling. The method is shown to be highly applicable for mineral prospecting and reconnaissance studies. It is capable of extracting the various characteristic inverse parameters that are of geologic and economic significance, and is of particular value in cases where the residual gravity data set is due to an isolated thin-sheet type buried target. The sensitivity analysis carried out on the Jacobian matrices of the field examples investigated here has shown that the parameter that can be determined with the superior accuracy is θ (as confirmed from drilling information). The parameters z, L, Y, and A can be estimated with acceptable accuracy, especially the parameters z and A. This inverse problem is non-unique. The non-uniqueness analysis and the tabulated inverse results presented here have shown that the
A split finite element algorithm for the compressible Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Baker, A. J.
1979-01-01
An accurate and efficient numerical solution algorithm is established for solution of the high Reynolds number limit of the Navier-Stokes equations governing the multidimensional flow of a compressible essentially inviscid fluid. Finite element interpolation theory is used within a dissipative formulation established using Galerkin criteria within the Method of Weighted Residuals. An implicit iterative solution algorithm is developed, employing tensor product bases within a fractional steps integration procedure, that significantly enhances solution economy concurrent with sharply reduced computer hardware demands. The algorithm is evaluated for resolution of steep field gradients and coarse grid accuracy using both linear and quadratic tensor product interpolation bases. Numerical solutions for linear and nonlinear, one, two and three dimensional examples confirm and extend the linearized theoretical analyses, and results are compared to competitive finite difference derived algorithms.
Numerical simulation of laminar reacting flows with complex chemistry
Day, Marcus S.; Bell, John B.
1999-12-01
We present an adaptive algorithm for low Mach number reacting flows with complex chemistry. Our approach uses a form of the low Mach number equations that discretely conserves both mass and energy. The discretization methodology is based on a robust projection formulation that accommodates large density contrasts. The algorithm uses an operator-split treatment of stiff reaction terms and includes effects of differential diffusion. The basic computational approach is embedded in an adaptive projection framework that uses structured hierarchical grids with subcycling in time that preserves the discrete conservation properties of the underlying single-grid algorithm. We present numerical examples illustrating the performance of the method on both premixed and non-premixed flames.
NASA Astrophysics Data System (ADS)
Amisigo, B. A.; van de Giesen, N. C.
2005-04-01
A spatio-temporal linear dynamic model has been developed for patching short gaps in daily river runoff series. The model was cast in a state-space form in which the state variable was estimated using the Kalman smoother (RTS smoother). The EM algorithm was used to concurrently estimate both parameter and missing runoff values. Application of the model to daily runoff series in the Volta Basin of West Africa showed that the model was capable of providing good estimates of missing runoff values at a gauging station from the remaining series at the station and at spatially correlated stations in the same sub-basin.
NASA Astrophysics Data System (ADS)
Chierici, Francesco; Beranzoli, Laura; Best, Mairi; Embriaco, Davide; Favali, Paolo; Galbraith, Nan; Heeseman, Martin; Kelly, Deborah; Pignagnoli, Luca; Pirenne, Benoit; Scofield, Oscar; Weller, Robert; Zitellini, Nevio
2015-04-01
The development of Tsunami modeling and Tsunami Early Warning Systems able to operate in near-source areas is a common need for many coastal regions like Mediterranean, Juan de Fuca/NE Pacific Coast of North America, Indian Ocean archipelagos and Japan. These regions with the important exception of Mediterranean and North East Atlantic are presently covered by Tsunami Warning Systems and Ocean Bottom Observatories, in the frame of EMSO, OOI and ONC ocean networks equipped with a varieties of sensors, using different technologies, data formats and detection procedures. A significant improvement in efficiency, cost saving and detection reliability can be achieved by exchanging technologies and data and by harmonizing sensors metadata and instrument settings. To undertake a step in this direction we propose to apply the Tsunami Detection Algorithm, which was developed in the framework of NEAREST EU project for open ocean data in near source areas and is presently used by NEMO-SN1 EMSO abyssal observatory, to the tide gauge data of Arena Cove, CA and Cordova, AK. We show the first results of the application of the algorithm.
NASA Technical Reports Server (NTRS)
Wang, Lui; Bayer, Steven E.
1991-01-01
Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology.
Note on symmetric BCJ numerator
NASA Astrophysics Data System (ADS)
Fu, Chih-Hao; Du, Yi-Jian; Feng, Bo
2014-08-01
We present an algorithm that leads to BCJ numerators satisfying manifestly the three properties proposed by Broedel and Carrasco in [42]. We explicitly calculate the numerators at 4, 5 and 6-points and show that the relabeling property is generically satisfied.
Algorithms for verbal autopsies: a validation study in Kenyan children.
Quigley, M. A.; Armstrong Schellenberg, J. R.; Snow, R. W.
1996-01-01
The verbal autopsy (VA) questionnaire is a widely used method for collecting information on cause-specific mortality where the medical certification of deaths in childhood is incomplete. This paper discusses review by physicians and expert algorithms as approaches to ascribing cause of deaths from the VA questionnaire and proposes an alternative, data-derived approach. In this validation study, the relatives of 295 children who had died in hospital were interviewed using a VA questionnaire. The children were assigned causes of death using data-derived algorithms obtained under logistic regression and using expert algorithms. For most causes of death, the data-derived algorithms and expert algorithms yielded similar levels of diagnostic accuracy. However, a data-derived algorithm for malaria gave a sensitivity of 71% (95% Cl: 58-84%), which was significantly higher than the sensitivity of 47% obtained under an expert algorithm. The need for exploring this and other ways in which the VA technique can be improved are discussed. The implications of less-than-perfect sensitivity and specificity are explored using numerical examples. Misclassification bias should be taken into consideration when planning and evaluating epidemiological studies. PMID:8706229
NASA Astrophysics Data System (ADS)
Jaunat, J.; Dupuy, A.; Huneau, F.; Celle-Jeanton, H.; Le Coustumer, P.
2016-04-01
A numerical groundwater model of the weathered crystalline aquifer of Ursuya (a major water source for the north-western Pyrenees region, south-western France) has been computed based on monitoring of hydrological, hydrodynamic and meteorological parameters over 3 years. The equivalent porous media model was used to simulate groundwater flow in the different layers of the weathered profile: from surface to depth, the weathered layer (5 · 10-8 ≤ K ≤ 5 · 10-7 m s-1), the transition layer (7 · 10-8 ≤ K ≤ 1 · 10-5 m s-1, the highest values being along major discontinuities), two fissured layers (3.5 · 10-8 ≤ K ≤ 5 · 10-4 m s-1, depending on weathering profile conditions and on the existence of active fractures), and the hard-rock basement simulated with a negligible hydraulic conductivity (K = 1 10 -9 ). Hydrodynamic properties of these five calculation layers demonstrate both the impact of the weathering degree and of the discontinuities on the groundwater flow. The great agreement between simulated and observed hydraulic conditions allowed for validation of the methodology and its proposed use for application on analogous aquifers. With the aim of long-term management of this strategic aquifer, the model was then used to evaluate the impact of climate change on the groundwater resource. The simulations performed according to the most pessimistic climatic scenario until 2050 show a low sensitivity of the aquifer. The decreasing trend of the natural discharge is estimated at about -360 m3 y-1 for recharge decreasing at about -5.6 mm y-1 (0.8 % of annual recharge).
NASA Astrophysics Data System (ADS)
Ramadan, Omar Salameh
2010-03-01
Accurate and unconditionally stable finite difference time domain (FDTD) algorithm is presented for modeling electromagnetic wave propagation in double-negative (DNG) meta-material domains. The proposed algorithm is based on incorporating the Bilinear transformation technique into the FDTD implementations of Maxwell’s equations. The stability of the proposed approach is studied by combining the von Neumann method with the Routh-Huwitz criterion and it has been observed that the proposed algorithm is free from the Courant-Friedrichs-Lewy (CFL) stability limit of the conventional FDTD scheme. Furthermore, the proposed algorithm is incorporated with the split-step FDTD scheme to model two-dimensional problems. Numerical examples carried out in one and two dimensional domains are included to show the validity of the proposed algorithm.
Stability of the DSI algorithm on a chevron grid
Brandon, S.T.; Rambo, P.W.
1995-06-01
The development of time domain electromagnetic solvers for nonorthogonal grids is an area of current research interest, stemming from the need to simulate complex geometries in a wide variety of applications. A notable example is the discrete surface integral (DSI) algorithm which solves the Maxwell curl equations in the time domain using a 3d, unstructured, mixed-polyhedral grid. Although this method is an extension of the time proven Yee algorithm, little is known about the numerical properties of the method when discretized on these more general grids. Dispersion relations for the DSI algorithm can be derived using 2d idealized grids, such as the skewed mesh analysis done by Ray and Rambo for both triangles and quadrilaterals. The present work applies the same techniques used for the skewed mesh analysis to another idealized, but nonorthogonal, 2d grid.
Graph-balancing algorithms for average consensus over directed networks
NASA Astrophysics Data System (ADS)
Fan, Yuan; Han, Runzhe; Qiu, Jianbin
2016-01-01
Consensus strategies find extensive applications in coordination of robot groups and decision-making of agents. Since balanced graph plays an important role in the average consensus problem and many other coordination problems for directed communication networks, this work explores the conditions and algorithms for the digraph balancing problem. Based on the analysis of graph cycles, we prove that a digraph can be balanced if and only if the null space of its incidence matrix contains positive vectors. Then, based on this result and the corresponding analysis, two weight balance algorithms have been proposed, and the conditions for obtaining a unique balanced solution and a set of analytical results on weight balance problems have been introduced. Then, we point out the relationship between the weight balance problem and the features of the corresponding underlying Markov chain. Finally, two numerical examples are presented to verify the proposed algorithms.
NASA Astrophysics Data System (ADS)
FENG, Xiaojun; Gerbault, Muriel; Martin, Roland; Ganne, Jérôme; Jessell, Mark
2015-04-01
High strain zones appear to play a significant role in feeding the upper crust with fluids and partially molten material from lower crust sources. The Bole-Bulenga terrain (North-Western Ghana) is located in between two subvertical shear zones, and mainly consists of high-grade orthogneisses, paragneisses and metabasites intruded by partially molten lower crustal material with monzogranites and orthogneisses (Eburnean orogeny, around 2.1 Ga). In order to understand the location of these high grade rocks at the edges and in between these two shear zones, a three dimensional numerical model was built to test the influence of different orientations of a system of branched strike-slip faults on visco-plastic deformation, under compressional and simple shear boundary conditions. Our models indicate domains of tensile vs. compressional strain as well as shear zones, and show that not only internal fault zones but also the host rock in between the faults behave relatively softer than external regions. Under both applied compressive and simple shear boundary conditions, these softened domains constitute preferential zones of tensile strain accommodation (dilation) in the upper crust, which may favor infilling by deeper partially molten rocks. Our modeled pre-existing faults zones are assumed to have formed during an early D1 stage of deformation, and they are shown to passively migrate and rotate together with the solid matrix under applied external boundary conditions (corresponding to a post D1 - early D2 phase of deformation). We suggest that in the Bole-Bulenga terrain, fluids or partially molten material stored in deeper crustal domains, preferentially intruded the upper crust within these highly (shear and tensile) strained domains, thanks to this D2 shearing deformation phase. Building relief at the surface is primarily controlled by fault orientations, together with mechanical parameters and external boundary conditions. In particular, greatest magnitudes of relief
An algorithm for the solution of dynamic linear programs
NASA Technical Reports Server (NTRS)
Psiaki, Mark L.
1989-01-01
The algorithm's objective is to efficiently solve Dynamic Linear Programs (DLP) by taking advantage of their special staircase structure. This algorithm constitutes a stepping stone to an improved algorithm for solving Dynamic Quadratic Programs, which, in turn, would make the nonlinear programming method of Successive Quadratic Programs more practical for solving trajectory optimization problems. The ultimate goal is to being trajectory optimization solution speeds into the realm of real-time control. The algorithm exploits the staircase nature of the large constraint matrix of the equality-constrained DLPs encountered when solving inequality-constrained DLPs by an active set approach. A numerically-stable, staircase QL factorization of the staircase constraint matrix is carried out starting from its last rows and columns. The resulting recursion is like the time-varying Riccati equation from multi-stage LQR theory. The resulting factorization increases the efficiency of all of the typical LP solution operations over that of a dense matrix LP code. At the same time numerical stability is ensured. The algorithm also takes advantage of dynamic programming ideas about the cost-to-go by relaxing active pseudo constraints in a backwards sweeping process. This further decreases the cost per update of the LP rank-1 updating procedure, although it may result in more changes of the active set that if pseudo constraints were relaxed in a non-stagewise fashion. The usual stability of closed-loop Linear/Quadratic optimally-controlled systems, if it carries over to strictly linear cost functions, implies that the saving due to reduced factor update effort may outweigh the cost of an increased number of updates. An aerospace example is presented in which a ground-to-ground rocket's distance is maximized. This example demonstrates the applicability of this class of algorithms to aerospace guidance. It also sheds light on the efficacy of the proposed pseudo constraint relaxation
Teaching Mathematics with Technology: Numerical Relationships.
ERIC Educational Resources Information Center
Bright, George W.
1989-01-01
Developing numerical relationships with calculators is emphasized. Calculators furnish some needed support for students as they investigate the value of fractions as the numerators or denominators change. An example with Logo programing for computers is also included. (MNS)
Worldline numerics for energy-momentum tensors in Casimir geometries
NASA Astrophysics Data System (ADS)
Schäfer, Marco; Huet, Idrish; Gies, Holger
2016-04-01
We develop the worldline formalism for computations of composite operators such as the fluctuation induced energy-momentum tensor. As an example, we use a fluctuating real scalar field subject to Dirichlet boundary conditions. The resulting worldline representation can be evaluated by worldline Monte-Carlo methods in continuous spacetime. We benchmark this worldline numerical algorithm with the aid of analytically accessible single-plate and parallel-plate Casimir configurations, providing a detailed analysis of statistical and systematic errors. The method generalizes straightforwardly to arbitrary Casimir geometries and general background potentials.
Path Integrals and Exotic Options:. Methods and Numerical Results
NASA Astrophysics Data System (ADS)
Bormetti, G.; Montagna, G.; Moreni, N.; Nicrosini, O.
2005-09-01
In the framework of Black-Scholes-Merton model of financial derivatives, a path integral approach to option pricing is presented. A general formula to price path dependent options on multidimensional and correlated underlying assets is obtained and implemented by means of various flexible and efficient algorithms. As an example, we detail the case of Asian call options. The numerical results are compared with those obtained with other procedures used in quantitative finance and found to be in good agreement. In particular, when pricing at the money (ATM) and out of the money (OTM) options, path integral exhibits competitive performances.
Numerical methods for high-dimensional probability density function equations
NASA Astrophysics Data System (ADS)
Cho, H.; Venturi, D.; Karniadakis, G. E.
2016-01-01
In this paper we address the problem of computing the numerical solution to kinetic partial differential equations involving many phase variables. These types of equations arise naturally in many different areas of mathematical physics, e.g., in particle systems (Liouville and Boltzmann equations), stochastic dynamical systems (Fokker-Planck and Dostupov-Pugachev equations), random wave theory (Malakhov-Saichev equations) and coarse-grained stochastic systems (Mori-Zwanzig equations). We propose three different classes of new algorithms addressing high-dimensionality: The first one is based on separated series expansions resulting in a sequence of low-dimensional problems that can be solved recursively and in parallel by using alternating direction methods. The second class of algorithms relies on truncation of interaction in low-orders that resembles the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) framework of kinetic gas theory and it yields a hierarchy of coupled probability density function equations. The third class of algorithms is based on high-dimensional model representations, e.g., the ANOVA method and probabilistic collocation methods. A common feature of all these approaches is that they are reducible to the problem of computing the solution to high-dimensional equations via a sequence of low-dimensional problems. The effectiveness of the new algorithms is demonstrated in numerical examples involving nonlinear stochastic dynamical systems and partial differential equations, with up to 120 variables.
Parallel algorithms for unconstrained optimizations by multisplitting
He, Qing
1994-12-31
In this paper a new parallel iterative algorithm for unconstrained optimization using the idea of multisplitting is proposed. This algorithm uses the existing sequential algorithms without any parallelization. Some convergence and numerical results for this algorithm are presented. The experiments are performed on an Intel iPSC/860 Hyper Cube with 64 nodes. It is interesting that the sequential implementation on one node shows that if the problem is split properly, the algorithm converges much faster than one without splitting.
Numerical methods used in fusion science numerical modeling
NASA Astrophysics Data System (ADS)
Yagi, M.
2015-04-01
The dynamics of burning plasma is very complicated physics, which is dominated by multi-scale and multi-physics phenomena. To understand such phenomena, numerical simulations are indispensable. Fundamentals of numerical methods used in fusion science numerical modeling are briefly discussed in this paper. In addition, the parallelization technique such as open multi processing (OpenMP) and message passing interface (MPI) parallel programing are introduced and the loop-level parallelization is shown as an example.
NASA Technical Reports Server (NTRS)
Martin, E. D.; Lomax, H.
1977-01-01
Revised and extended versions of a fast, direct (noniterative) numerical Cauchy-Riemann solver are presented for solving finite difference approximations of first order systems of partial differential equations. Although the difference operators treated are linear and elliptic, one significant application of these extended direct Cauchy-Riemann solvers is in the fast, semidirect (iterative) solution of fluid dynamic problems governed by the nonlinear mixed elliptic-hyperbolic equations of transonic flow. Different versions of the algorithms are derived and the corresponding FORTRAN computer programs for a simple example problem are described and listed. The algorithms are demonstrated to be efficient and accurate.
The Superior Lambert Algorithm
NASA Astrophysics Data System (ADS)
der, G.
2011-09-01
Lambert algorithms are used extensively for initial orbit determination, mission planning, space debris correlation, and missile targeting, just to name a few applications. Due to the significance of the Lambert problem in Astrodynamics, Gauss, Battin, Godal, Lancaster, Gooding, Sun and many others (References 1 to 15) have provided numerous formulations leading to various analytic solutions and iterative methods. Most Lambert algorithms and their computer programs can only work within one revolution, break down or converge slowly when the transfer angle is near zero or 180 degrees, and their multi-revolution limitations are either ignored or barely addressed. Despite claims of robustness, many Lambert algorithms fail without notice, and the users seldom have a clue why. The DerAstrodynamics lambert2 algorithm, which is based on the analytic solution formulated by Sun, works for any number of revolutions and converges rapidly at any transfer angle. It provides significant capability enhancements over every other Lambert algorithm in use today. These include improved speed, accuracy, robustness, and multirevolution capabilities as well as implementation simplicity. Additionally, the lambert2 algorithm provides a powerful tool for solving the angles-only problem without artificial singularities (pointed out by Gooding in Reference 16), which involves 3 lines of sight captured by optical sensors, or systems such as the Air Force Space Surveillance System (AFSSS). The analytic solution is derived from the extended Godal’s time equation by Sun, while the iterative method of solution is that of Laguerre, modified for robustness. The Keplerian solution of a Lambert algorithm can be extended to include the non-Keplerian terms of the Vinti algorithm via a simple targeting technique (References 17 to 19). Accurate analytic non-Keplerian trajectories can be predicted for satellites and ballistic missiles, while performing at least 100 times faster in speed than most
Numerical simulation of dusty plasmas
Winske, D.
1995-09-01
The numerical simulation of physical processes in dusty plasmas is reviewed, with emphasis on recent results and unresolved issues. Three areas of research are discussed: grain charging, weak dust-plasma interactions, and strong dust-plasma interactions. For each area, we review the basic concepts that are tested by simulations, present some appropriate examples, and examine numerical issues associated with extending present work.
Aerodynamic design using numerical optimization
NASA Technical Reports Server (NTRS)
Murman, E. M.; Chapman, G. T.
1983-01-01
The procedure of using numerical optimization methods coupled with computational fluid dynamic (CFD) codes for the development of an aerodynamic design is examined. Several approaches that replace wind tunnel tests, develop pressure distributions and derive designs, or fulfill preset design criteria are presented. The method of Aerodynamic Design by Numerical Optimization (ADNO) is described and illustrated with examples.
ERIC Educational Resources Information Center
Siegler, Robert S.; Braithwaite, David W.
2016-01-01
In this review, we attempt to integrate two crucial aspects of numerical development: learning the magnitudes of individual numbers and learning arithmetic. Numerical magnitude development involves gaining increasingly precise knowledge of increasing ranges and types of numbers: from non-symbolic to small symbolic numbers, from smaller to larger…
A quantum search algorithm for future spacecraft attitude determination
NASA Astrophysics Data System (ADS)
Tsai, Jack; Hsiao, Fu-Yuen; Li, Yi-Ju; Shen, Jen-Fu
2011-04-01
In this paper we study the potential application of a quantum search algorithm to spacecraft navigation with a focus on attitude determination. Traditionally, attitude determination is achieved by recognizing the relative position/attitude with respect to the background stars using sun sensors, earth limb sensors, or star trackers. However, due to the massive celestial database, star pattern recognition is a complicated and power consuming job. We propose a new method of attitude determination by applying the quantum search algorithm to the search for a specific star or star pattern. The quantum search algorithm, proposed by Grover in 1996, could search the specific data out of an unstructured database containing a number N of data in only O(√{N}) steps, compared to an average of N/2 steps in conventional computers. As a result, by taking advantage of matching a particular star in a vast celestial database in very few steps, we derive a new algorithm for attitude determination, collaborated with Grover's search algorithm and star catalogues of apparent magnitude and absorption spectra. Numerical simulations and examples are also provided to demonstrate the feasibility and robustness of our new algorithm.
Juarez-Salazar, Rigoberto; Guerrero-Sanchez, Fermin; Robledo-Sanchez, Carlos
2015-06-10
Some advances in fringe analysis technology for phase computing are presented. A full scheme for phase evaluation, applicable to automatic applications, is proposed. The proposal consists of: a fringe-pattern normalization method, Fourier fringe-normalized analysis, generalized phase-shifting processing for inhomogeneous nonlinear phase shifts and spatiotemporal visibility, and a phase-unwrapping method by a rounding-least-squares approach. The theoretical principles of each algorithm are given. Numerical examples and an experimental evaluation are presented. PMID:26192836
Frontiers in Numerical Relativity
NASA Astrophysics Data System (ADS)
Evans, Charles R.; Finn, Lee S.; Hobill, David W.
2011-06-01
Preface; Participants; Introduction; 1. Supercomputing and numerical relativity: a look at the past, present and future David W. Hobill and Larry L. Smarr; 2. Computational relativity in two and three dimensions Stuart L. Shapiro and Saul A. Teukolsky; 3. Slowly moving maximally charged black holes Robert C. Ferrell and Douglas M. Eardley; 4. Kepler's third law in general relativity Steven Detweiler; 5. Black hole spacetimes: testing numerical relativity David H. Bernstein, David W. Hobill and Larry L. Smarr; 6. Three dimensional initial data of numerical relativity Ken-ichi Oohara and Takashi Nakamura; 7. Initial data for collisions of black holes and other gravitational miscellany James W. York, Jr.; 8. Analytic-numerical matching for gravitational waveform extraction Andrew M. Abrahams; 9. Supernovae, gravitational radiation and the quadrupole formula L. S. Finn; 10. Gravitational radiation from perturbations of stellar core collapse models Edward Seidel and Thomas Moore; 11. General relativistic implicit radiation hydrodynamics in polar sliced space-time Paul J. Schinder; 12. General relativistic radiation hydrodynamics in spherically symmetric spacetimes A. Mezzacappa and R. A. Matzner; 13. Constraint preserving transport for magnetohydrodynamics John F. Hawley and Charles R. Evans; 14. Enforcing the momentum constraints during axisymmetric spacelike simulations Charles R. Evans; 15. Experiences with an adaptive mesh refinement algorithm in numerical relativity Matthew W. Choptuik; 16. The multigrid technique Gregory B. Cook; 17. Finite element methods in numerical relativity P. J. Mann; 18. Pseudo-spectral methods applied to gravitational collapse Silvano Bonazzola and Jean-Alain Marck; 19. Methods in 3D numerical relativity Takashi Nakamura and Ken-ichi Oohara; 20. Nonaxisymmetric rotating gravitational collapse and gravitational radiation Richard F. Stark; 21. Nonaxisymmetric neutron star collisions: initial results using smooth particle hydrodynamics
Implementation of a partitioned algorithm for simulation of large CSI problems
NASA Technical Reports Server (NTRS)
Alvin, Kenneth F.; Park, K. C.
1991-01-01
The implementation of a partitioned numerical algorithm for determining the dynamic response of coupled structure/controller/estimator finite-dimensional systems is reviewed. The partitioned approach leads to a set of coupled first and second-order linear differential equations which are numerically integrated with extrapolation and implicit step methods. The present software implementation, ACSIS, utilizes parallel processing techniques at various levels to optimize performance on a shared-memory concurrent/vector processing system. A general procedure for the design of controller and filter gains is also implemented, which utilizes the vibration characteristics of the structure to be solved. Also presented are: example problems; a user's guide to the software; the procedures and algorithm scripts; a stability analysis for the algorithm; and the source code for the parallel implementation.
Parallel Algorithm Solves Coupled Differential Equations
NASA Technical Reports Server (NTRS)
Hayashi, A.
1987-01-01
Numerical methods adapted to concurrent processing. Algorithm solves set of coupled partial differential equations by numerical integration. Adapted to run on hypercube computer, algorithm separates problem into smaller problems solved concurrently. Increase in computing speed with concurrent processing over that achievable with conventional sequential processing appreciable, especially for large problems.
Numerical infinities and infinitesimals in a new supercomputing framework
NASA Astrophysics Data System (ADS)
Sergeyev, Yaroslav D.
2016-06-01
Traditional computers are able to work numerically with finite numbers only. The Infinity Computer patented recently in USA and EU gets over this limitation. In fact, it is a computational device of a new kind able to work numerically not only with finite quantities but with infinities and infinitesimals, as well. The new supercomputing methodology is not related to non-standard analysis and does not use either Cantor's infinite cardinals or ordinals. It is founded on Euclid's Common Notion 5 saying `The whole is greater than the part'. This postulate is applied to all numbers (finite, infinite, and infinitesimal) and to all sets and processes (finite and infinite). It is shown that it becomes possible to write down finite, infinite, and infinitesimal numbers by a finite number of symbols as numerals belonging to a positional numeral system with an infinite radix described by a specific ad hoc introduced axiom. Numerous examples of the usage of the introduced computational tools are given during the lecture. In particular, algorithms for solving optimization problems and ODEs are considered among the computational applications of the Infinity Computer. Numerical experiments executed on a software prototype of the Infinity Computer are discussed.
Optimal control of switched linear systems based on Migrant Particle Swarm Optimization algorithm
NASA Astrophysics Data System (ADS)
Xie, Fuqiang; Wang, Yongji; Zheng, Zongzhun; Li, Chuanfeng
2009-10-01
The optimal control problem for switched linear systems with internally forced switching has more constraints than with externally forced switching. Heavy computations and slow convergence in solving this problem is a major obstacle. In this paper we describe a new approach for solving this problem, which is called Migrant Particle Swarm Optimization (Migrant PSO). Imitating the behavior of a flock of migrant birds, the Migrant PSO applies naturally to both continuous and discrete spaces, in which definitive optimization algorithm and stochastic search method are combined. The efficacy of the proposed algorithm is illustrated via a numerical example.
NASA Astrophysics Data System (ADS)
Sangeetha, K.; Sengottuvelan, P.
2013-03-01
Image inpainting is the process of filling in of missing region so as to preserve its overall continuity. Image inpainting is manipulation and modification of an image in a form that is not easily detected. Digital image inpainting is relatively new area of research, but numerous and different approaches to tackle the inpainting problem have been proposed since the concept was first introduced. This paper analyzes and compares two recent exemplar based inpainting algorithms by Zhaolin Lu et al and Hao Guo et al. A number of examples on real images are demonstrated to evaluate the results of algorithms using Peak Signal to Noise Ratio (PSNR).
Thermoluminescence curves simulation using genetic algorithm with factorial design
NASA Astrophysics Data System (ADS)
Popko, E. A.; Weinstein, I. A.
2016-05-01
The evolutionary approach is an effective optimization tool for numeric analysis of thermoluminescence (TL) processes to assess the microparameters of kinetic models and to determine its effects on the shape of TL peaks. In this paper, the procedure for tuning of genetic algorithm (GA) is presented. This approach is based on multifactorial experiment and allows choosing intrinsic mechanisms of evolutionary operators which provide the most efficient algorithm performance. The proposed method is tested by considering the “one trap-one recombination center” (OTOR) model as an example and advantages for approximation of experimental TL curves are shown.
The minimal residual QR-factorization algorithm for reliably solving subset regression problems
NASA Technical Reports Server (NTRS)
Verhaegen, M. H.
1987-01-01
A new algorithm to solve test subset regression problems is described, called the minimal residual QR factorization algorithm (MRQR). This scheme performs a QR factorization with a new column pivoting strategy. Basically, this strategy is based on the change in the residual of the least squares problem. Furthermore, it is demonstrated that this basic scheme might be extended in a numerically efficient way to combine the advantages of existing numerical procedures, such as the singular value decomposition, with those of more classical statistical procedures, such as stepwise regression. This extension is presented as an advisory expert system that guides the user in solving the subset regression problem. The advantages of the new procedure are highlighted by a numerical example.
Efficient computer algebra algorithms for polynomial matrices in control design
NASA Technical Reports Server (NTRS)
Baras, J. S.; Macenany, D. C.; Munach, R.
1989-01-01
The theory of polynomial matrices plays a key role in the design and analysis of multi-input multi-output control and communications systems using frequency domain methods. Examples include coprime factorizations of transfer functions, cannonical realizations from matrix fraction descriptions, and the transfer function design of feedback compensators. Typically, such problems abstract in a natural way to the need to solve systems of Diophantine equations or systems of linear equations over polynomials. These and other problems involving polynomial matrices can in turn be reduced to polynomial matrix triangularization procedures, a result which is not surprising given the importance of matrix triangularization techniques in numerical linear algebra. Matrices with entries from a field and Gaussian elimination play a fundamental role in understanding the triangularization process. In the case of polynomial matrices, matrices with entries from a ring for which Gaussian elimination is not defined and triangularization is accomplished by what is quite properly called Euclidean elimination. Unfortunately, the numerical stability and sensitivity issues which accompany floating point approaches to Euclidean elimination are not very well understood. New algorithms are presented which circumvent entirely such numerical issues through the use of exact, symbolic methods in computer algebra. The use of such error-free algorithms guarantees that the results are accurate to within the precision of the model data--the best that can be hoped for. Care must be taken in the design of such algorithms due to the phenomenon of intermediate expressions swell.
Generating Rules and Examples.
ERIC Educational Resources Information Center
Grabinger, R. Scott; Jonassen, David H.
1989-01-01
This seventh in a series of articles discussing expert system construction focuses on two ways to create a structure that determines a decision: (1) rule-based, or deductive, implementation; and (2) example-based, or inductive, implementation. Probability factors and confidence levels are discussed, and an example is given for selecting an…
NASA Astrophysics Data System (ADS)
Deprit, André; Palacián, Jesúus; Deprit, Etienne
2001-03-01
The relegation algorithm extends the method of normalization by Lie transformations. Given a Hamiltonian that is a power series ℋ = ℋ0+ ɛℋ1+ ... of a small parameter ɛ, normalization constructs a map which converts the principal part ℋ0into an integral of the transformed system — relegation does the same for an arbitrary function ℋ[G]. If the Lie derivative induced by ℋ[G] is semi-simple, a double recursion produces the generator of the relegating transformation. The relegation algorithm is illustrated with an elementary example borrowed from galactic dynamics; the exercise serves as a standard against which to test software implementations. Relegation is also applied to the more substantial example of a Keplerian system perturbed by radiation pressure emanating from a rotating source.
Efficient multicomponent fuel algorithm
NASA Astrophysics Data System (ADS)
Torres, D. J.; O'Rourke, P. J.; Amsden, A. A.
2003-03-01
We derive equations for multicomponent fuel evaporation in airborne fuel droplets and wall films, and implement the model into KIVA-3V. Temporal and spatial variations in liquid droplet composition and temperature are not modelled but solved for by discretizing the interior of the droplet in an implicit and computationally efficient way. We find that an interior discretization is necessary to correctly compute the evolution of the droplet composition. The details of the one-dimensional numerical algorithm are described. Numerical simulations of multicomponent evaporation are performed for single droplets and compared to experimental data.
NASA Astrophysics Data System (ADS)
Khatibinia, Mohsen; Sadegh Naseralavi, Seyed
2014-12-01
Structural optimization on shape and sizing with frequency constraints is well-known as a highly nonlinear dynamic optimization problem with several local optimum solutions. Hence, efficient optimization algorithms should be utilized to solve this problem. In this study, orthogonal multi-gravitational search algorithm (OMGSA) as a meta-heuristic algorithm is introduced to solve truss optimization on shape and sizing with frequency constraints. The OMGSA is a hybrid approach based on a combination of multi-gravitational search algorithm (multi-GSA) and an orthogonal crossover (OC). In multi-GSA, the population is split into several sub-populations. Then, each sub-population is independently evaluated by an improved gravitational search algorithm (IGSA). Furthermore, the OC is used in the proposed OMGSA in order to find and exploit the global solution in the search space. The capability of OMGSA is demonstrated through six benchmark examples. Numerical results show that the proposed OMGSA outperform the other optimization techniques.
An algorithm for fitting circular arcs to data using the l 1 norm
NASA Astrophysics Data System (ADS)
Al-Subaihi, I.
2008-01-01
There are many applications of fitting circular arcs to data. We have for example, system control, using a computer controlled cutting machine, approximating hulls of boats, drawing and image techniques. Out of these applications comes the least squares norm to be the most commonly used criterionE This paper examines how the l 1 norm is used which seems to be more appropriate than the use of least squares in the context of wild points in the data. An algorithm and different methods to determine the starting points are developed. However, numerical examples are given to help illustrate these methods.
Synthesis of Greedy Algorithms Using Dominance Relations
NASA Technical Reports Server (NTRS)
Nedunuri, Srinivas; Smith, Douglas R.; Cook, William R.
2010-01-01
Greedy algorithms exploit problem structure and constraints to achieve linear-time performance. Yet there is still no completely satisfactory way of constructing greedy algorithms. For example, the Greedy Algorithm of Edmonds depends upon translating a problem into an algebraic structure called a matroid, but the existence of such a translation can be as hard to determine as the existence of a greedy algorithm itself. An alternative characterization of greedy algorithms is in terms of dominance relations, a well-known algorithmic technique used to prune search spaces. We demonstrate a process by which dominance relations can be methodically derived for a number of greedy algorithms, including activity selection, and prefix-free codes. By incorporating our approach into an existing framework for algorithm synthesis, we demonstrate that it could be the basis for an effective engineering method for greedy algorithms. We also compare our approach with other characterizations of greedy algorithms.
NASA Astrophysics Data System (ADS)
Rahneshin, Vahid; Chierichetti, Maria
2016-09-01
In this paper, a combined numerical and experimental method, called Extended Load Confluence Algorithm, is presented to accurately predict the dynamic response of non-periodic structures when little or no information about the applied loads is available. This approach, which falls into the category of Shape Sensing methods, inputs limited experimental information acquired from sensors to a mapping algorithm that predicts the response at unmeasured locations. The proposed algorithm consists of three major cores: an experimental core for data acquisition, a numerical core based on Finite Element Method for modeling the structure, and a mapping algorithm that improves the numerical model based on a modal approach in the frequency domain. The robustness and precision of the proposed algorithm are verified through numerical and experimental examples. The results of this paper demonstrate that without a precise knowledge of the loads acting on the structure, the dynamic behavior of the system can be predicted in an effective and precise manner after just a few iterations.
A numerical analysis of the unsteady flow past bluff bodies
NASA Astrophysics Data System (ADS)
Fernando, M. S. U. K.; Modi, V. J.
1990-01-01
The paper describes in detail a relatively sophisticated numerical approach, using the Boundary Element Method in conjunction with the Discrete Vortex Model, to represent the complex unsteady flow field around a bluff body with separating shear layers. Important steps in the numerical analysis of this challenging problem are discussed and a performance evaluation algorithm established. Of considerable importance is the effect of computational parameters such as number of elements representing the geometry, time-step size, location of the nascent vortices, etc., on the accuracy of results and the associated cost. As an example, the method is applied to the analysis of the flow around a stationary Savonius rotor. A detailed parametric study provides fundamental information concerning the starting torque time histories, evolution of the wake, Strouhal number, etc. A comparison with the wind tunnel test data shows remarkable correlation suggesting considerable promise for the approach.
Probabilistic numerics and uncertainty in computations
Hennig, Philipp; Osborne, Michael A.; Girolami, Mark
2015-01-01
We deliver a call to arms for probabilistic numerical methods: algorithms for numerical tasks, including linear algebra, integration, optimization and solving differential equations, that return uncertainties in their calculations. Such uncertainties, arising from the loss of precision induced by numerical calculation with limited time or hardware, are important for much contemporary science and industry. Within applications such as climate science and astrophysics, the need to make decisions on the basis of computations with large and complex data have led to a renewed focus on the management of numerical uncertainty. We describe how several seminal classic numerical methods can be interpreted naturally as probabilistic inference. We then show that the probabilistic view suggests new algorithms that can flexibly be adapted to suit application specifics, while delivering improved empirical performance. We provide concrete illustrations of the benefits of probabilistic numeric algorithms on real scientific problems from astrometry and astronomical imaging, while highlighting open problems with these new algorithms. Finally, we describe how probabilistic numerical methods provide a coherent framework for identifying the uncertainty in calculations performed with a combination of numerical algorithms (e.g. both numerical optimizers and differential equation solvers), potentially allowing the diagnosis (and control) of error sources in computations. PMID:26346321
High-order algorithms for compressible reacting flow with complex chemistry
NASA Astrophysics Data System (ADS)
Emmett, Matthew; Zhang, Weiqun; Bell, John B.
2014-05-01
In this paper we describe a numerical algorithm for integrating the multicomponent, reacting, compressible Navier-Stokes equations, targeted for direct numerical simulation of combustion phenomena. The algorithm addresses two shortcomings of previous methods. First, it incorporates an eighth-order narrow stencil approximation of diffusive terms that reduces the communication compared to existing methods and removes the need to use a filtering algorithm to remove Nyquist frequency oscillations that are not damped with traditional approaches. The methodology also incorporates a multirate temporal integration strategy that provides an efficient mechanism for treating chemical mechanisms that are stiff relative to fluid dynamical time-scales. The overall methodology is eighth order in space with options for fourth order to eighth order in time. The implementation uses a hybrid programming model designed for effective utilisation of many-core architectures. We present numerical results demonstrating the convergence properties of the algorithm with realistic chemical kinetics and illustrating its performance characteristics. We also present a validation example showing that the algorithm matches detailed results obtained with an established low Mach number solver.
2006-05-09
The Monte Carlo example programs VARHATOM and DMCATOM are two small, simple FORTRAN programs that illustrate the use of the Monte Carlo Mathematical technique for calculating the ground state energy of the hydrogen atom.
Dynamics of Quantum Adiabatic Evolution Algorithm for Number Partitioning
NASA Technical Reports Server (NTRS)
Smelyanskiy, V. N.; Toussaint, U. V.; Timucin, D. A.
2002-01-01
We have developed a general technique to study the dynamics of the quantum adiabatic evolution algorithm applied to random combinatorial optimization problems in the asymptotic limit of large problem size n. We use as an example the NP-complete Number Partitioning problem and map the algorithm dynamics to that of an auxiliary quantum spin glass system with the slowly varying Hamiltonian. We use a Green function method to obtain the adiabatic eigenstates and the minimum excitation gap. g min, = O(n 2(exp -n/2), corresponding to the exponential complexity of the algorithm for Number Partitioning. The key element of the analysis is the conditional energy distribution computed for the set of all spin configurations generated from a given (ancestor) configuration by simultaneous flipping of a fixed number of spins. For the problem in question this distribution is shown to depend on the ancestor spin configuration only via a certain parameter related to 'the energy of the configuration. As the result, the algorithm dynamics can be described in terms of one-dimensional quantum diffusion in the energy space. This effect provides a general limitation of a quantum adiabatic computation in random optimization problems. Analytical results are in agreement with the numerical simulation of the algorithm.
Dynamics of Quantum Adiabatic Evolution Algorithm for Number Partitioning
NASA Technical Reports Server (NTRS)
Smelyanskiy, Vadius; vonToussaint, Udo V.; Timucin, Dogan A.; Clancy, Daniel (Technical Monitor)
2002-01-01
We have developed a general technique to study the dynamics of the quantum adiabatic evolution algorithm applied to random combinatorial optimization problems in the asymptotic limit of large problem size n. We use as an example the NP-complete Number Partitioning problem and map the algorithm dynamics to that of an auxiliary quantum spin glass system with the slowly varying Hamiltonian. We use a Green function method to obtain the adiabatic eigenstates and the minimum exitation gap, gmin = O(n2(sup -n/2)), corresponding to the exponential complexity of the algorithm for Number Partitioning. The key element of the analysis is the conditional energy distribution computed for the set of all spin configurations generated from a given (ancestor) configuration by simultaneous flipping of a fixed number of spins. For the problem in question this distribution is shown to depend on the ancestor spin configuration only via a certain parameter related to the energy of the configuration. As the result, the algorithm dynamics can be described in terms of one-dimensional quantum diffusion in the energy space. This effect provides a general limitation of a quantum adiabatic computation in random optimization problems. Analytical results are in agreement with the numerical simulation of the algorithm.
Numerical Polynomial Homotopy Continuation Method and String Vacua
Mehta, Dhagash
2011-01-01
Finding vmore » acua for the four-dimensional effective theories for supergravity which descend from flux compactifications and analyzing them according to their stability is one of the central problems in string phenomenology. Except for some simple toy models, it is, however, difficult to find all the vacua analytically. Recently developed algorithmic methods based on symbolic computer algebra can be of great help in the more realistic models. However, they suffer from serious algorithmic complexities and are limited to small system sizes. In this paper, we review a numerical method called the numerical polynomial homotopy continuation (NPHC) method, first used in the areas of lattice field theories, which by construction finds all of the vacua of a given potential that is known to have only isolated solutions. The NPHC method is known to suffer from no major algorithmic complexities and is embarrassingly parallelizable , and hence its applicability goes way beyond the existing symbolic methods. We first solve a simple toy model as a warm-up example to demonstrate the NPHC method at work. We then show that all the vacua of a more complicated model of a compactified M theory model, which has an S U ( 3 ) structure, can be obtained by using a desktop machine in just about an hour, a feat which was reported to be prohibitively difficult by the existing symbolic methods. Finally, we compare the various technicalities between the two methods.« less
ERIC Educational Resources Information Center
Sozio, Gerry
2009-01-01
Senior secondary students cover numerical integration techniques in their mathematics courses. In particular, students would be familiar with the "midpoint rule," the elementary "trapezoidal rule" and "Simpson's rule." This article derives these techniques by methods which secondary students may not be familiar with and an approach that…
NASA Technical Reports Server (NTRS)
Baker, John G.
2009-01-01
Recent advances in numerical relativity have fueled an explosion of progress in understanding the predictions of Einstein's theory of gravity, General Relativity, for the strong field dynamics, the gravitational radiation wave forms, and consequently the state of the remnant produced from the merger of compact binary objects. I will review recent results from the field, focusing on mergers of two black holes.
Sobel, E.; Lange, K.; O`Connell, J.R.
1996-12-31
Haplotyping is the logical process of inferring gene flow in a pedigree based on phenotyping results at a small number of genetic loci. This paper formalizes the haplotyping problem and suggests four algorithms for haplotype reconstruction. These algorithms range from exhaustive enumeration of all haplotype vectors to combinatorial optimization by simulated annealing. Application of the algorithms to published genetic analyses shows that manual haplotyping is often erroneous. Haplotyping is employed in screening pedigrees for phenotyping errors and in positional cloning of disease genes from conserved haplotypes in population isolates. 26 refs., 6 figs., 3 tabs.
An Artificial Bee Colony Algorithm for Uncertain Portfolio Selection
Chen, Wei
2014-01-01
Portfolio selection is an important issue for researchers and practitioners. In this paper, under the assumption that security returns are given by experts' evaluations rather than historical data, we discuss the portfolio adjusting problem which takes transaction costs and diversification degree of portfolio into consideration. Uncertain variables are employed to describe the security returns. In the proposed mean-variance-entropy model, the uncertain mean value of the return is used to measure investment return, the uncertain variance of the return is used to measure investment risk, and the entropy is used to measure diversification degree of portfolio. In order to solve the proposed model, a modified artificial bee colony (ABC) algorithm is designed. Finally, a numerical example is given to illustrate the modelling idea and the effectiveness of the proposed algorithm. PMID:25089292
Dynamic evidential reasoning algorithm for systems reliability prediction
NASA Astrophysics Data System (ADS)
Hu, Chang-Hua; Si, Xiao-Sheng; Yang, Jian-Bo
2010-07-01
In this article, dynamic evidential reasoning (DER) algorithm is applied to forecast reliability in turbochargers engine systems and a reliability prediction model is developed. The focus of this study is to examine the feasibility and validity of DER algorithm in systems reliability prediction by comparing it with some existing approaches. To build an effective DER forecasting model, the parameters of prediction model must be set carefully. To solve this problem, a generic nonlinear optimisation model is investigated to search for the optimal parameters of forecasting model, and then the optimal parameters are adopted to construct the DER forecasting model. Finally, a numerical example is provided to demonstrate the detailed implementation procedures and the validity of the proposed approach in the areas of reliability prediction.
Efficient algorithms for linear dynamic inverse problems with known motion
NASA Astrophysics Data System (ADS)
Hahn, B. N.
2014-03-01
An inverse problem is called dynamic if the object changes during the data acquisition process. This occurs e.g. in medical applications when fast moving organs like the lungs or the heart are imaged. Most regularization methods are based on the assumption that the object is static during the measuring procedure. Hence, their application in the dynamic case often leads to serious motion artefacts in the reconstruction. Therefore, an algorithm has to take into account the temporal changes of the investigated object. In this paper, a reconstruction method that compensates for the motion of the object is derived for dynamic linear inverse problems. The algorithm is validated at numerical examples from computerized tomography.
A spectral unaveraged algorithm for free electron laser simulations
Andriyash, I.A.; Lehe, R.; Malka, V.
2015-02-01
We propose and discuss a numerical method to model electromagnetic emission from the oscillating relativistic charged particles and its coherent amplification. The developed technique is well suited for free electron laser simulations, but it may also be useful for a wider range of physical problems involving resonant field–particles interactions. The algorithm integrates the unaveraged coupled equations for the particles and the electromagnetic fields in a discrete spectral domain. Using this algorithm, it is possible to perform full three-dimensional or axisymmetric simulations of short-wavelength amplification. In this paper we describe the method, its implementation, and we present examples of free electron laser simulations comparing the results with the ones provided by commonly known free electron laser codes.
A retrodictive stochastic simulation algorithm
Vaughan, T.G. Drummond, P.D.; Drummond, A.J.
2010-05-20
In this paper we describe a simple method for inferring the initial states of systems evolving stochastically according to master equations, given knowledge of the final states. This is achieved through the use of a retrodictive stochastic simulation algorithm which complements the usual predictive stochastic simulation approach. We demonstrate the utility of this new algorithm by applying it to example problems, including the derivation of likely ancestral states of a gene sequence given a Markovian model of genetic mutation.
PSLQ: An Algorithm to Discover Integer Relations
Bailey, David H.; Borwein, J. M.
2009-04-03
Let x = (x{sub 1}, x{sub 2} {hor_ellipsis}, x{sub n}) be a vector of real or complex numbers. x is said to possess an integer relation if there exist integers a{sub i}, not all zero, such that a{sub 1}x{sub 1} + a{sub 2}x{sub 2} + {hor_ellipsis} + a{sub n}x{sub n} = 0. By an integer relation algorithm, we mean a practical computational scheme that can recover the vector of integers ai, if it exists, or can produce bounds within which no integer relation exists. As we will see in the examples below, an integer relation algorithm can be used to recognize a computed constant in terms of a formula involving known constants, or to discover an underlying relation between quantities that can be computed to high precision. At the present time, the most effective algorithm for integer relation detection is the 'PSLQ' algorithm of mathematician-sculptor Helaman Ferguson [10, 4]. Some efficient 'multi-level' implementations of PSLQ, as well as a variant of PSLQ that is well-suited for highly parallel computer systems, are given in [4]. PSLQ constructs a sequence of integer-valued matrices B{sub n} that reduces the vector y = xB{sub n}, until either the relation is found (as one of the columns of B{sub n}), or else precision is exhausted. At the same time, PSLQ generates a steadily growing bound on the size of any possible relation. When a relation is found, the size of smallest entry of the vector y abruptly drops to roughly 'epsilon' (i.e. 10{sup -p}, where p is the number of digits of precision). The size of this drop can be viewed as a 'confidence level' that the relation is real and not merely a numerical artifact - a drop of 20 or more orders of magnitude almost always indicates a real relation. Very high precision arithmetic must be used in PSLQ. If one wishes to recover a relation of length n, with coefficients of maximum size d digits, then the input vector x must be specified to at least nd digits, and one must employ nd-digit floating-point arithmetic. Maple and
Algorithms for propagating uncertainty across heterogeneous domains
Cho, Heyrim; Yang, Xiu; Venturi, D.; Karniadakis, George E.
2015-12-30
We address an important research area in stochastic multi-scale modeling, namely the propagation of uncertainty across heterogeneous domains characterized by partially correlated processes with vastly different correlation lengths. This class of problems arise very often when computing stochastic PDEs and particle models with stochastic/stochastic domain interaction but also with stochastic/deterministic coupling. The domains may be fully embedded, adjacent or partially overlapping. The fundamental open question we address is the construction of proper transmission boundary conditions that preserve global statistical properties of the solution across different subdomains. Often, the codes that model different parts of the domains are black-box and hence a domain decomposition technique is required. No rigorous theory or even effective empirical algorithms have yet been developed for this purpose, although interfaces defined in terms of functionals of random fields (e.g., multi-point cumulants) can overcome the computationally prohibitive problem of preserving sample-path continuity across domains. The key idea of the different methods we propose relies on combining local reduced-order representations of random fields with multi-level domain decomposition. Specifically, we propose two new algorithms: The first one enforces the continuity of the conditional mean and variance of the solution across adjacent subdomains by using Schwarz iterations. The second algorithm is based on PDE-constrained multi-objective optimization, and it allows us to set more general interface conditions. The effectiveness of these new algorithms is demonstrated in numerical examples involving elliptic problems with random diffusion coefficients, stochastically advected scalar fields, and nonlinear advection-reaction problems with random reaction rates.
Application of numerical methods to elasticity imaging.
Castaneda, Benjamin; Ormachea, Juvenal; Rodríguez, Paul; Parker, Kevin J
2013-03-01
Elasticity imaging can be understood as the intersection of the study of biomechanical properties, imaging sciences, and physics. It was mainly motivated by the fact that pathological tissue presents an increased stiffness when compared to surrounding normal tissue. In the last two decades, research on elasticity imaging has been an international and interdisciplinary pursuit aiming to map the viscoelastic properties of tissue in order to provide clinically useful information. As a result, several modalities of elasticity imaging, mostly based on ultrasound but also on magnetic resonance imaging and optical coherence tomography, have been proposed and applied to a number of clinical applications: cancer diagnosis (prostate, breast, liver), hepatic cirrhosis, renal disease, thyroiditis, arterial plaque evaluation, wall stiffness in arteries, evaluation of thrombosis in veins, and many others. In this context, numerical methods are applied to solve forward and inverse problems implicit in the algorithms in order to estimate viscoelastic linear and nonlinear parameters, especially for quantitative elasticity imaging modalities. In this work, an introduction to elasticity imaging modalities is presented. The working principle of qualitative modalities (sonoelasticity, strain elastography, acoustic radiation force impulse) and quantitative modalities (Crawling Waves Sonoelastography, Spatially Modulated Ultrasound Radiation Force (SMURF), Supersonic Imaging) will be explained. Subsequently, the areas in which numerical methods can be applied to elasticity imaging are highlighted and discussed. Finally, we present a detailed example of applying total variation and AM-FM techniques to the estimation of elasticity. PMID:24010245
Tensor networks and the numerical renormalization group
NASA Astrophysics Data System (ADS)
Weichselbaum, Andreas
2012-12-01
The full-density-matrix numerical renormalization group has evolved as a systematic and transparent setting for the calculation of thermodynamical quantities at arbitrary temperatures within the numerical renormalization group (NRG) framework. It directly evaluates the relevant Lehmann representations based on the complete basis sets introduced by Anders and Schiller [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.95.196801 95, 196801 (2005)]. In addition, specific attention is given to the possible feedback from low-energy physics to high energies by the explicit and careful construction of the full thermal density matrix, naturally generated over a distribution of energy shells. Specific examples are given in terms of spectral functions (fdmNRG), time-dependent NRG (tdmNRG), Fermi-golden-rule calculations (fgrNRG) as well as the calculation of plain thermodynamic expectation values. Furthermore, based on the very fact that, by its iterative nature, the NRG eigenstates are naturally described in terms of matrix product states, the language of tensor networks has proven enormously convenient in the description of the underlying algorithmic procedures. This paper therefore also provides a detailed introduction and discussion of the prototypical NRG calculations in terms of their corresponding tensor networks.
NASA Astrophysics Data System (ADS)
Vaucouleur, Sebastien
2011-02-01
We introduce code query by example for customisation of evolvable software products in general and of enterprise resource planning systems (ERPs) in particular. The concept is based on an initial empirical study on practices around ERP systems. We motivate our design choices based on those empirical results, and we show how the proposed solution helps with respect to the infamous upgrade problem: the conflict between the need for customisation and the need for upgrade of ERP systems. We further show how code query by example can be used as a form of lightweight static analysis, to detect automatically potential defects in large software products. Code query by example as a form of lightweight static analysis is particularly interesting in the context of ERP systems: it is often the case that programmers working in this field are not computer science specialists but more of domain experts. Hence, they require a simple language to express custom rules.
Xie, Jiaquan; Huang, Qingxue; Yang, Xia
2016-01-01
In this paper, we are concerned with nonlinear one-dimensional fractional convection diffusion equations. An effective approach based on Chebyshev operational matrix is constructed to obtain the numerical solution of fractional convection diffusion equations with variable coefficients. The principal characteristic of the approach is the new orthogonal functions based on Chebyshev polynomials to the fractional calculus. The corresponding fractional differential operational matrix is derived. Then the matrix with the Tau method is utilized to transform the solution of this problem into the solution of a system of linear algebraic equations. By solving the linear algebraic equations, the numerical solution is obtained. The approach is tested via examples. It is shown that the proposed algorithm yields better results. Finally, error analysis shows that the algorithm is convergent. PMID:27504247
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sweby, P. K.; Griffiths, D. F.
1991-01-01
Spurious stable as well as unstable steady state numerical solutions, spurious asymptotic numerical solutions of higher period, and even stable chaotic behavior can occur when finite difference methods are used to solve nonlinear differential equations (DE) numerically. The occurrence of spurious asymptotes is independent of whether the DE possesses a unique steady state or has additional periodic solutions and/or exhibits chaotic phenomena. The form of the nonlinear DEs and the type of numerical schemes are the determining factor. In addition, the occurrence of spurious steady states is not restricted to the time steps that are beyond the linearized stability limit of the scheme. In many instances, it can occur below the linearized stability limit. Therefore, it is essential for practitioners in computational sciences to be knowledgeable about the dynamical behavior of finite difference methods for nonlinear scalar DEs before the actual application of these methods to practical computations. It is also important to change the traditional way of thinking and practices when dealing with genuinely nonlinear problems. In the past, spurious asymptotes were observed in numerical computations but tended to be ignored because they all were assumed to lie beyond the linearized stability limits of the time step parameter delta t. As can be seen from the study, bifurcations to and from spurious asymptotic solutions and transitions to computational instability not only are highly scheme dependent and problem dependent, but also initial data and boundary condition dependent, and not limited to time steps that are beyond the linearized stability limit.
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sweby, P. K.; Griffiths, D. F.
1990-01-01
Spurious stable as well as unstable steady state numerical solutions, spurious asymptotic numerical solutions of higher period, and even stable chaotic behavior can occur when finite difference methods are used to solve nonlinear differential equations (DE) numerically. The occurrence of spurious asymptotes is independent of whether the DE possesses a unique steady state or has additional periodic solutions and/or exhibits chaotic phenomena. The form of the nonlinear DEs and the type of numerical schemes are the determining factor. In addition, the occurrence of spurious steady states is not restricted to the time steps that are beyond the linearized stability limit of the scheme. In many instances, it can occur below the linearized stability limit. Therefore, it is essential for practitioners in computational sciences to be knowledgeable about the dynamical behavior of finite difference methods for nonlinear scalar DEs before the actual application of these methods to practical computations. It is also important to change the traditional way of thinking and practices when dealing with genuinely nonlinear problems. In the past, spurious asymptotes were observed in numerical computations but tended to be ignored because they all were assumed to lie beyond the linearized stability limits of the time step parameter delta t. As can be seen from the study, bifurcations to and from spurious asymptotic solutions and transitions to computational instability not only are highly scheme dependent and problem dependent, but also initial data and boundary condition dependent, and not limited to time steps that are beyond the linearized stability limit.
A simple suboptimal least-squares algorithm for attitude determination with multiple sensors
NASA Technical Reports Server (NTRS)
Brozenec, Thomas F.; Bender, Douglas J.
1994-01-01
Three-axis attitude determination is equivalent to finding a coordinate transformation matrix which transforms a set of reference vectors fixed in inertial space to a set of measurement vectors fixed in the spacecraft. The attitude determination problem can be expressed as a constrained optimization problem. The constraint is that a coordinate transformation matrix must be proper, real, and orthogonal. A transformation matrix can be thought of as optimal in the least-squares sense if it maps the measurement vectors to the reference vectors with minimal 2-norm errors and meets the above constraint. This constrained optimization problem is known as Wahba's problem. Several algorithms which solve Wahba's problem exactly have been developed and used. These algorithms, while steadily improving, are all rather complicated. Furthermore, they involve such numerically unstable or sensitive operations as matrix determinant, matrix adjoint, and Newton-Raphson iterations. This paper describes an algorithm which minimizes Wahba's loss function, but without the constraint. When the constraint is ignored, the problem can be solved by a straightforward, numerically stable least-squares algorithm such as QR decomposition. Even though the algorithm does not explicitly take the constraint into account, it still yields a nearly orthogonal matrix for most practical cases; orthogonality only becomes corrupted when the sensor measurements are very noisy, on the same order of magnitude as the attitude rotations. The algorithm can be simplified if the attitude rotations are small enough so that the approximation sin(theta) approximately equals theta holds. We then compare the computational requirements for several well-known algorithms. For the general large-angle case, the QR least-squares algorithm is competitive with all other know algorithms and faster than most. If attitude rotations are small, the least-squares algorithm can be modified to run faster, and this modified algorithm is
Learning about Functions through Learner-Generated Examples
ERIC Educational Resources Information Center
Dinkelman, Martha O.; Cavey, Laurie O.
2015-01-01
In many mathematics classrooms, the teacher provides "worked examples" to demonstrate how students should perform certain algorithms or processes. Some students find it difficult to generalize from the examples that teachers provide and cannot apply what they have learned in new situations (Watson and Mason 2002). Instead, teachers might…
Fast algorithms for transport models
Manteuffel, T.A.
1992-12-01
The objective of this project is the development of numerical solution techniques for deterministic models of the transport of neutral and charged particles and the demonstration of their effectiveness in both a production environment and on advanced architecture computers. The primary focus is on various versions of the linear Boltzman equation. These equations are fundamental in many important applications. This project is an attempt to integrate the development of numerical algorithms with the process of developing production software. A major thrust of this reject will be the implementation of these algorithms on advanced architecture machines that reside at the Advanced Computing Laboratory (ACL) at Los Alamos National Laboratories (LANL).
An overview of SuperLU: Algorithms, implementation, and userinterface
Li, Xiaoye S.
2003-09-30
We give an overview of the algorithms, design philosophy,and implementation techniques in the software SuperLU, for solving sparseunsymmetric linear systems. In particular, we highlight the differencesbetween the sequential SuperLU (including its multithreaded extension)and parallel SuperLU_DIST. These include the numerical pivoting strategy,the ordering strategy for preserving sparsity, the ordering in which theupdating tasks are performed, the numerical kernel, and theparallelization strategy. Because of the scalability concern, theparallel code is drastically different from the sequential one. Wedescribe the user interfaces ofthe libraries, and illustrate how to usethe libraries most efficiently depending on some matrix characteristics.Finally, we give some examples of how the solver has been used inlarge-scale scientific applications, and the performance.
A numerical model including PID control of a multizone crystal growth furnace
NASA Technical Reports Server (NTRS)
Panzarella, Charles H.; Kassemi, Mohammad
1992-01-01
This paper presents a 2D axisymmetric combined conduction and radiation model of a multizone crystal growth furnace. The model is based on a programmable multizone furnace (PMZF) designed and built at NASA Lewis Research Center for growing high quality semiconductor crystals. A novel feature of this model is a control algorithm which automatically adjusts the power in any number of independently controlled heaters to establish the desired crystal temperatures in the furnace model. The control algorithm eliminates the need for numerous trial and error runs previously required to obtain the same results. The finite element code, FIDAP, used to develop the furnace model, was modified to directly incorporate the control algorithm. This algorithm, which presently uses PID control, and the associated heat transfer model are briefly discussed. Together, they have been used to predict the heater power distributions for a variety of furnace configurations and desired temperature profiles. Examples are included to demonstrate the effectiveness of the PID controlled model in establishing isothermal, Bridgman, and other complicated temperature profies in the sample. Finally, an example is given to show how the algorithm can be used to change the desired profile with time according to a prescribed temperature-time evolution.
Numerical inversion of finite Toeplitz matrices and vector Toeplitz matrices
NASA Technical Reports Server (NTRS)
Bareiss, E. H.
1969-01-01
Numerical technique increases the efficiencies of the numerical methods involving Toeplitz matrices by reducing the number of multiplications required by an N-order Toeplitz matrix from N-cubed to N-squared multiplications. Some efficient algorithms are given.
Teaching Responsibility through Example
ERIC Educational Resources Information Center
Notar, Toni A.
2008-01-01
As Literacy Outreach Coordinator for Opportunity to Read (OTR), the Watsonville (CA) Public Library literacy program, this author has recognized the concept of responsibility through example. Adult learners incorporate concepts easily when these concepts are specifically demonstrated for them by someone similar to them. Sounds simple, but putting…
NASA Astrophysics Data System (ADS)
Antoni, Jérôme
2009-05-01
This paper is a tutorial on cyclostationarity oriented towards mechanical applications. The approach is voluntarily intuitive and accessible to neophytes. It thrives on 20 examples devoted to illustrating key concepts on actual mechanical signals and demonstrating how cyclostationarity can be taken advantage of in machine diagnostics, identification of mechanical systems and separation of mechanical sources.
Numerical Aerodynamic Simulation (NAS)
NASA Technical Reports Server (NTRS)
Peterson, V. L.; Ballhaus, W. F., Jr.; Bailey, F. R.
1983-01-01
The history of the Numerical Aerodynamic Simulation Program, which is designed to provide a leading-edge capability to computational aerodynamicists, is traced back to its origin in 1975. Factors motivating its development and examples of solutions to successively refined forms of the governing equations are presented. The NAS Processing System Network and each of its eight subsystems are described in terms of function and initial performance goals. A proposed usage allocation policy is discussed and some initial problems being readied for solution on the NAS system are identified.
Variable Selection using MM Algorithms
Hunter, David R.; Li, Runze
2009-01-01
Variable selection is fundamental to high-dimensional statistical modeling. Many variable selection techniques may be implemented by maximum penalized likelihood using various penalty functions. Optimizing the penalized likelihood function is often challenging because it may be nondifferentiable and/or nonconcave. This article proposes a new class of algorithms for finding a maximizer of the penalized likelihood for a broad class of penalty functions. These algorithms operate by perturbing the penalty function slightly to render it differentiable, then optimizing this differentiable function using a minorize-maximize (MM) algorithm. MM algorithms are useful extensions of the well-known class of EM algorithms, a fact that allows us to analyze the local and global convergence of the proposed algorithm using some of the techniques employed for EM algorithms. In particular, we prove that when our MM algorithms converge, they must converge to a desirable point; we also discuss conditions under which this convergence may be guaranteed. We exploit the Newton-Raphson-like aspect of these algorithms to propose a sandwich estimator for the standard errors of the estimators. Our method performs well in numerical tests. PMID:19458786
Tomasz Plawski, J. Hovater
2010-09-01
A digital low level radio frequency (RF) system typically incorporates either a heterodyne or direct sampling technique, followed by fast ADCs, then an FPGA, and finally a transmitting DAC. This universal platform opens up the possibilities for a variety of control algorithm implementations. The foremost concern for an RF control system is cavity field stability, and to meet the required quality of regulation, the chosen control system needs to have sufficient feedback gain. In this paper we will investigate the effectiveness of the regulation for three basic control system algorithms: I&Q (In-phase and Quadrature), Amplitude & Phase and digital SEL (Self Exciting Loop) along with the example of the Jefferson Lab 12 GeV cavity field control system.
A Simple Two Aircraft Conflict Resolution Algorithm
NASA Technical Reports Server (NTRS)
Chatterji, Gano B.
1999-01-01
Conflict detection and resolution methods are crucial for distributed air-ground traffic management in which the crew in the cockpit, dispatchers in operation control centers and air traffic controllers in the ground-based air traffic management facilities share information and participate in the traffic flow and traffic control imctions.This paper describes a conflict detection and a conflict resolution method. The conflict detection method predicts the minimum separation and the time-to-go to the closest point of approach by assuming that both the aircraft will continue to fly at their current speeds along their current headings. The conflict resolution method described here is motivated by the proportional navigation algorithm. It generates speed and heading commands to rotate the line-of-sight either clockwise or counter-clockwise for conflict resolution. Once the aircraft achieve a positive range-rate and no further conflict is predicted, the algorithm generates heading commands to turn back the aircraft to their nominal trajectories. The speed commands are set to the optimal pre-resolution speeds. Six numerical examples are presented to demonstrate the conflict detection and resolution method.
A Simple Two Aircraft Conflict Resolution Algorithm
NASA Technical Reports Server (NTRS)
Chatterji, Gano B.
2006-01-01
Conflict detection and resolution methods are crucial for distributed air-ground traffic management in which the crew in, the cockpit, dispatchers in operation control centers sad and traffic controllers in the ground-based air traffic management facilities share information and participate in the traffic flow and traffic control functions. This paper describes a conflict detection, and a conflict resolution method. The conflict detection method predicts the minimum separation and the time-to-go to the closest point of approach by assuming that both the aircraft will continue to fly at their current speeds along their current headings. The conflict resolution method described here is motivated by the proportional navigation algorithm, which is often used for missile guidance during the terminal phase. It generates speed and heading commands to rotate the line-of-sight either clockwise or counter-clockwise for conflict resolution. Once the aircraft achieve a positive range-rate and no further conflict is predicted, the algorithm generates heading commands to turn back the aircraft to their nominal trajectories. The speed commands are set to the optimal pre-resolution speeds. Six numerical examples are presented to demonstrate the conflict detection, and the conflict resolution methods.
Systematic reviews. Some examples.
Knipschild, P.
1994-01-01
Reviewing the literature is a scientific inquiry that needs a clear design to preclude bias. It is a real enterprise if one aims at completeness of the literature on a certain subject. Going through refereed English language journals is not enough. On line databases are helpful, but mainly as a starting point. This article gives examples of systematic reviews on vitamin C and the common cold, pyridoxine against the premenstrual syndrome, homeopathy, and physiotherapy. Images p720-a PMID:7950526
Systematic reviews. Some examples.
Knipschild, P
1994-09-17
Reviewing the literature is a scientific inquiry that needs a clear design to preclude bias. It is a real enterprise if one aims at completeness of the literature on a certain subject. Going through refereed English language journals is not enough. On line databases are helpful, but mainly as a starting point. This article gives examples of systematic reviews on vitamin C and the common cold, pyridoxine against the premenstrual syndrome, homeopathy, and physiotherapy. PMID:7950526
Model reduction algorithms for optimal control and importance sampling of diffusions
NASA Astrophysics Data System (ADS)
Hartmann, Carsten; Schütte, Christof; Zhang, Wei
2016-08-01
We propose numerical algorithms for solving optimal control and importance sampling problems based on simplified models. The algorithms combine model reduction techniques for multiscale diffusions and stochastic optimization tools, with the aim of reducing the original, possibly high-dimensional problem to a lower dimensional representation of the dynamics, in which only a few relevant degrees of freedom are controlled or biased. Specifically, we study situations in which either a reaction coordinate onto which the dynamics can be projected is known, or situations in which the dynamics shows strongly localized behavior in the small noise regime. No explicit assumptions about small parameters or scale separation have to be made. We illustrate the approach with simple, but paradigmatic numerical examples.
Conditional Convergence of Numerical Series
ERIC Educational Resources Information Center
Gomez, E.; Plaza, A.
2002-01-01
One of the most astonishing properties when studying numerical series is that the sum is not commutative, that is the sum may change when the order of its elements is altered. In this note an example is given of such a series. A well-known mathematical proof is given and a MATLAB[C] program used for different rearrangements of the series…
NASA Astrophysics Data System (ADS)
Zhong, Wei; Su, Ruiyi; Gui, Liangjin; Fan, Zijie
2016-06-01
This article proposes a method called the cooperative coevolutionary genetic algorithm with independent ground structures (CCGA-IGS) for the simultaneous topology and sizing optimization of discrete structures. An IGS strategy is proposed to enhance the flexibility of the optimization by offering two separate design spaces and to improve the efficiency of the algorithm by reducing the search space. The CCGA is introduced to divide a complex problem into two smaller subspaces: the topological and sizing variables are assigned into two subpopulations which evolve in isolation but collaborate in fitness evaluations. Five different methods were implemented on 2D and 3D numeric examples to test the performance of the algorithms. The results demonstrate that the performance of the algorithms is improved in terms of accuracy and convergence speed with the IGS strategy, and the CCGA converges faster than the traditional GA without loss of accuracy.
Simultaneous stabilization using genetic algorithms
Benson, R.W.; Schmitendorf, W.E. . Dept. of Mechanical Engineering)
1991-01-01
This paper considers the problem of simultaneously stabilizing a set of plants using full state feedback. The problem is converted to a simple optimization problem which is solved by a genetic algorithm. Several examples demonstrate the utility of this method. 14 refs., 8 figs.
Tutorial examples for uncertainty quantification methods.
De Bord, Sarah
2015-08-01
This report details the work accomplished during my 2015 SULI summer internship at Sandia National Laboratories in Livermore, CA. During this internship, I worked on multiple tasks with the common goal of making uncertainty quantification (UQ) methods more accessible to the general scientific community. As part of my work, I created a comprehensive numerical integration example to incorporate into the user manual of a UQ software package. Further, I developed examples involving heat transfer through a window to incorporate into tutorial lectures that serve as an introduction to UQ methods.
A convergent hybrid decomposition algorithm model for SVM training.
Lucidi, Stefano; Palagi, Laura; Risi, Arnaldo; Sciandrone, Marco
2009-06-01
Training of support vector machines (SVMs) requires to solve a linearly constrained convex quadratic problem. In real applications, the number of training data may be very huge and the Hessian matrix cannot be stored. In order to take into account this issue, a common strategy consists in using decomposition algorithms which at each iteration operate only on a small subset of variables, usually referred to as the working set. Training time can be significantly reduced by using a caching technique that allocates some memory space to store the columns of the Hessian matrix corresponding to the variables recently updated. The convergence properties of a decomposition method can be guaranteed by means of a suitable selection of the working set and this can limit the possibility of exploiting the information stored in the cache. We propose a general hybrid algorithm model which combines the capability of producing a globally convergent sequence of points with a flexible use of the information in the cache. As an example of a specific realization of the general hybrid model, we describe an algorithm based on a particular strategy for exploiting the information deriving from a caching technique. We report the results of computational experiments performed by simple implementations of this algorithm. The numerical results point out the potentiality of the approach. PMID:19435679
GPS-Free Localization Algorithm for Wireless Sensor Networks
Wang, Lei; Xu, Qingzheng
2010-01-01
Localization is one of the most fundamental problems in wireless sensor networks, since the locations of the sensor nodes are critical to both network operations and most application level tasks. A GPS-free localization scheme for wireless sensor networks is presented in this paper. First, we develop a standardized clustering-based approach for the local coordinate system formation wherein a multiplication factor is introduced to regulate the number of master and slave nodes and the degree of connectivity among master nodes. Second, using homogeneous coordinates, we derive a transformation matrix between two Cartesian coordinate systems to efficiently merge them into a global coordinate system and effectively overcome the flip ambiguity problem. The algorithm operates asynchronously without a centralized controller; and does not require that the location of the sensors be known a priori. A set of parameter-setting guidelines for the proposed algorithm is derived based on a probability model and the energy requirements are also investigated. A simulation analysis on a specific numerical example is conducted to validate the mathematical analytical results. We also compare the performance of the proposed algorithm under a variety multiplication factor, node density and node communication radius scenario. Experiments show that our algorithm outperforms existing mechanisms in terms of accuracy and convergence time. PMID:22219694
GPS-free localization algorithm for wireless sensor networks.
Wang, Lei; Xu, Qingzheng
2010-01-01
Localization is one of the most fundamental problems in wireless sensor networks, since the locations of the sensor nodes are critical to both network operations and most application level tasks. A GPS-free localization scheme for wireless sensor networks is presented in this paper. First, we develop a standardized clustering-based approach for the local coordinate system formation wherein a multiplication factor is introduced to regulate the number of master and slave nodes and the degree of connectivity among master nodes. Second, using homogeneous coordinates, we derive a transformation matrix between two Cartesian coordinate systems to efficiently merge them into a global coordinate system and effectively overcome the flip ambiguity problem. The algorithm operates asynchronously without a centralized controller; and does not require that the location of the sensors be known a priori. A set of parameter-setting guidelines for the proposed algorithm is derived based on a probability model and the energy requirements are also investigated. A simulation analysis on a specific numerical example is conducted to validate the mathematical analytical results. We also compare the performance of the proposed algorithm under a variety multiplication factor, node density and node communication radius scenario. Experiments show that our algorithm outperforms existing mechanisms in terms of accuracy and convergence time. PMID:22219694
A High-Order Finite-Volume Algorithm for Fokker-Planck Collisions in Magnetized Plasmas
Xiong, Z; Cohen, R H; Rognlien, T D; Xu, X Q
2007-04-18
A high-order finite volume algorithm is developed for the Fokker-Planck Operator (FPO) describing Coulomb collisions in strongly magnetized plasmas. The algorithm is based on a general fourth-order reconstruction scheme for an unstructured grid in the velocity space spanned by parallel velocity and magnetic moment. The method provides density conservation and high-order-accurate evaluation of the FPO independent of the choice of the velocity coordinates. As an example, a linearized FPO in constant-of-motion coordinates, i.e. the total energy and the magnetic moment, is developed using the present algorithm combined with a cut-cell merging procedure. Numerical tests include the Spitzer thermalization problem and the return to isotropy for distributions initialized with velocity space loss cones. Utilization of the method for a nonlinear FPO is straightforward but requires evaluation of the Rosenbluth potentials.
Improved delay-leaping simulation algorithm for biochemical reaction systems with delays
NASA Astrophysics Data System (ADS)
Yi, Na; Zhuang, Gang; Da, Liang; Wang, Yifei
2012-04-01
In biochemical reaction systems dominated by delays, the simulation speed of the stochastic simulation algorithm depends on the size of the wait queue. As a result, it is important to control the size of the wait queue to improve the efficiency of the simulation. An improved accelerated delay stochastic simulation algorithm for biochemical reaction systems with delays, termed the improved delay-leaping algorithm, is proposed in this paper. The update method for the wait queue is effective in reducing the size of the queue as well as shortening the storage and access time, thereby accelerating the simulation speed. Numerical simulation on two examples indicates that this method not only obtains a more significant efficiency compared with the existing methods, but also can be widely applied in biochemical reaction systems with delays.
NASA Astrophysics Data System (ADS)
Martin, R.; Gonzalez Ortiz, A.
In the industry as well as in the geophysical community, multiphase flows are mod- elled using a finite volume approach and a multicorrector algorithm in time in order to determine implicitly the pressures, velocities and volume fractions for each phase. Pressures, and velocities are generally determined at mid-half mesh step from each other following the staggered grid approach. This ensures stability and prevents os- cillations in pressure. It allows to treat almost all the Reynolds number ranges for all speeds and viscosities. The disadvantages appear when we want to treat more complex geometries or if a generalized curvilinear formulation of the conservation equations is considered. Too many interpolations have to be done and accuracy is then lost. In order to overcome these problems, we use here a similar algorithm in time and a Rhie and Chow interpolation (1983) of the collocated variables and essentially the velocities at the interface. The Rhie and Chow interpolation of the velocities at the finite volume interfaces allows to have no oscillatons of the pressure without checkerboard effects and to stabilize all the algorithm. In a first predictor step, fluxes at the interfaces of the finite volumes are then computed using 2nd and 3rd order shock capturing schemes of MUSCL/TVD or Van Leer type, and the orthogonal stress components are treated implicitly while cross viscous/diffusion terms are treated explicitly. A pentadiagonal system in 2D or a septadiagonal in 3D must be solve but here we have chosen to solve 3 tridiagonal linear systems (the so called Alternate Direction Implicit algorithm), one in each spatial direction, to reduce the cost of computation. Then a multi-correction of interpolated velocities, pressures and volumic fractions of each phase are done in the cartesian frame or the deformed local curvilinear coordinate system till convergence and mass conservation. At the end the energy conservation equations are solved. In all this process the
Probability tree algorithm for general diffusion processes
NASA Astrophysics Data System (ADS)
Ingber, Lester; Chen, Colleen; Mondescu, Radu Paul; Muzzall, David; Renedo, Marco
2001-11-01
Motivated by path-integral numerical solutions of diffusion processes, PATHINT, we present a tree algorithm, PATHTREE, which permits extremely fast accurate computation of probability distributions of a large class of general nonlinear diffusion processes.
NASA Technical Reports Server (NTRS)
Vardi, A.
1984-01-01
The representation min t s.t. F(I)(x). - t less than or equal to 0 for all i is examined. An active set strategy is designed of functions: active, semi-active, and non-active. This technique will help in preventing zigzagging which often occurs when an active set strategy is used. Some of the inequality constraints are handled with slack variables. Also a trust region strategy is used in which at each iteration there is a sphere around the current point in which the local approximation of the function is trusted. The algorithm is implemented into a successful computer program. Numerical results are provided.
Spurious Numerical Solutions Of Differential Equations
NASA Technical Reports Server (NTRS)
Lafon, A.; Yee, H. C.
1995-01-01
Paper presents detailed study of spurious steady-state numerical solutions of differential equations that contain nonlinear source terms. Main objectives of this study are (1) to investigate how well numerical steady-state solutions of model nonlinear reaction/convection boundary-value problem mimic true steady-state solutions and (2) to relate findings of this investigation to implications for interpretation of numerical results from computational-fluid-dynamics algorithms and computer codes used to simulate reacting flows.
NASA Technical Reports Server (NTRS)
Beam, R. M.; Warming, R. F.; Yee, H. C.
1981-01-01
Implicit, noniterative, finite difference schemes were recently developed by several authors for multidimensional systems of nonlinear hyperbolic partial differential equations. When applied to linear model equations with periodic boundary conditions those schemes are unconditionally stable (A-stable). As applied in practice the algorithms often face a severe time step restriction. A major source of the difficulty is the treatment of the numerical boundary conditions. One conjecture was that unconditional stability requires implicit numerical boundary conditions. An apparent counter example was the space time extrapolation considered by Gustafsson, Kreiss, and Sunstrom. Spatial (implicit) and space time (explicit) extrapolation using normal mode analysis for a finite and infinite number of spatial mesh intervals are examined. The results indicate that for unconditional stability with a finite number of spatial mesh intervals, the numerical boundary conditions must be implicit.
Gaining Algorithmic Insight through Simplifying Constraints.
ERIC Educational Resources Information Center
Ginat, David
2002-01-01
Discusses algorithmic problem solving in computer science education, particularly algorithmic insight, and focuses on the relevance and effectiveness of the heuristic simplifying constraints which involves simplification of a given problem to a problem in which constraints are imposed on the input data. Presents three examples involving…
Accelerating Numerical Calculation on the Cray XMT
Scherrer, Chad; Shippert, Timothy R.; Marquez, Andres
2009-05-25
The Cray XMT provides hardware support for parallel algorithms that would be communication- or memory-bound on other machines. Unfortunately, even if an algorithm meets these criteria, performance suffers if the algorithm is too numerically intensive. We present a lookup-based approach that achieves a significant performance advantage over explicit calculation. We describe an approach to balancing memory bandwidth against on-chip floating point capabilities, leading to further speedup. Finally, we provide table lookup algorithms for a number of common functions.
Sequential and Parallel Algorithms for Spherical Interpolation
NASA Astrophysics Data System (ADS)
De Rossi, Alessandra
2007-09-01
Given a large set of scattered points on a sphere and their associated real values, we analyze sequential and parallel algorithms for the construction of a function defined on the sphere satisfying the interpolation conditions. The algorithms we implemented are based on a local interpolation method using spherical radial basis functions and the Inverse Distance Weighted method. Several numerical results show accuracy and efficiency of the algorithms.
Cuba: Multidimensional numerical integration library
NASA Astrophysics Data System (ADS)
Hahn, Thomas
2016-08-01
The Cuba library offers four independent routines for multidimensional numerical integration: Vegas, Suave, Divonne, and Cuhre. The four algorithms work by very different methods, and can integrate vector integrands and have very similar Fortran, C/C++, and Mathematica interfaces. Their invocation is very similar, making it easy to cross-check by substituting one method by another. For further safeguarding, the output is supplemented by a chi-square probability which quantifies the reliability of the error estimate.
MFIX documentation numerical technique
Syamlal, M.
1998-01-01
MFIX (Multiphase Flow with Interphase eXchanges) is a general-purpose hydrodynamic model for describing chemical reactions and heat transfer in dense or dilute fluid-solids flows, which typically occur in energy conversion and chemical processing reactors. The calculations give time-dependent information on pressure, temperature, composition, and velocity distributions in the reactors. The theoretical basis of the calculations is described in the MFIX Theory Guide. Installation of the code, setting up of a run, and post-processing of results are described in MFIX User`s manual. Work was started in April 1996 to increase the execution speed and accuracy of the code, which has resulted in MFIX 2.0. To improve the speed of the code the old algorithm was replaced by a more implicit algorithm. In different test cases conducted the new version runs 3 to 30 times faster than the old version. To increase the accuracy of the computations, second order accurate discretization schemes were included in MFIX 2.0. Bubbling fluidized bed simulations conducted with a second order scheme show that the predicted bubble shape is rounded, unlike the (unphysical) pointed shape predicted by the first order upwind scheme. This report describes the numerical technique used in MFIX 2.0.
Dynamical Approach Study of Spurious Numerics in Nonlinear Computations
NASA Technical Reports Server (NTRS)
Yee, H. C.; Mansour, Nagi (Technical Monitor)
2002-01-01
The last two decades have been an era when computation is ahead of analysis and when very large scale practical computations are increasingly used in poorly understood multiscale complex nonlinear physical problems and non-traditional fields. Ensuring a higher level of confidence in the predictability and reliability (PAR) of these numerical simulations could play a major role in furthering the design, understanding, affordability and safety of our next generation air and space transportation systems, and systems for planetary and atmospheric sciences, and in understanding the evolution and origin of life. The need to guarantee PAR becomes acute when computations offer the ONLY way of solving these types of data limited problems. Employing theory from nonlinear dynamical systems, some building blocks to ensure a higher level of confidence in PAR of numerical simulations have been revealed by the author and world expert collaborators in relevant fields. Five building blocks with supporting numerical examples were discussed. The next step is to utilize knowledge gained by including nonlinear dynamics, bifurcation and chaos theories as an integral part of the numerical process. The third step is to design integrated criteria for reliable and accurate algorithms that cater to the different multiscale nonlinear physics. This includes but is not limited to the construction of appropriate adaptive spatial and temporal discretizations that are suitable for the underlying governing equations. In addition, a multiresolution wavelets approach for adaptive numerical dissipation/filter controls for high speed turbulence, acoustics and combustion simulations will be sought. These steps are corner stones for guarding against spurious numerical solutions that are solutions of the discretized counterparts but are not solutions of the underlying governing equations.
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Rankin, Charles C.
2006-01-01
This document summarizes the STructural Analysis of General Shells (STAGS) development effort, STAGS performance for selected demonstration problems, and STAGS application problems illustrating selected advanced features available in the STAGS Version 5.0. Each problem is discussed including selected background information and reference solutions when available. The modeling and solution approach for each problem is described and illustrated. Numerical results are presented and compared with reference solutions, test data, and/or results obtained from mesh refinement studies. These solutions provide an indication of the overall capabilities of the STAGS nonlinear finite element analysis tool and provide users with representative cases, including input files, to explore these capabilities that may then be tailored to other applications.
Large scale tracking algorithms.
Hansen, Ross L.; Love, Joshua Alan; Melgaard, David Kennett; Karelitz, David B.; Pitts, Todd Alan; Zollweg, Joshua David; Anderson, Dylan Z.; Nandy, Prabal; Whitlow, Gary L.; Bender, Daniel A.; Byrne, Raymond Harry
2015-01-01
Low signal-to-noise data processing algorithms for improved detection, tracking, discrimination and situational threat assessment are a key research challenge. As sensor technologies progress, the number of pixels will increase signi cantly. This will result in increased resolution, which could improve object discrimination, but unfortunately, will also result in a significant increase in the number of potential targets to track. Many tracking techniques, like multi-hypothesis trackers, suffer from a combinatorial explosion as the number of potential targets increase. As the resolution increases, the phenomenology applied towards detection algorithms also changes. For low resolution sensors, "blob" tracking is the norm. For higher resolution data, additional information may be employed in the detection and classfication steps. The most challenging scenarios are those where the targets cannot be fully resolved, yet must be tracked and distinguished for neighboring closely spaced objects. Tracking vehicles in an urban environment is an example of such a challenging scenario. This report evaluates several potential tracking algorithms for large-scale tracking in an urban environment.
Asynchronous Event-Driven Particle Algorithms
Donev, A
2007-02-28
We present in a unifying way the main components of three examples of asynchronous event-driven algorithms for simulating physical systems of interacting particles. The first example, hard-particle molecular dynamics (MD), is well-known. We also present a recently-developed diffusion kinetic Monte Carlo (DKMC) algorithm, as well as a novel event-driven algorithm for Direct Simulation Monte Carlo (DSMC). Finally, we describe how to combine MD with DSMC in an event-driven framework, and discuss some promises and challenges for event-driven simulation of realistic physical systems.
Numerical modeling of the gas lift process in gas lift wells
NASA Astrophysics Data System (ADS)
Temirbekov, N. M.; Turarov, A. K.; Baigereyev, D. R.
2016-06-01
In this paper, one-dimensional and two-dimensional axisymmetric motion of gas, liquid and a gas-liquid mixture in a gas-lift well is studied. Numerical simulation of the one-dimensional model of gas-lift process is considered where the movement in a gas-lift well is described by partial differential equations of hyperbolic type. Difference schemes for the gas-lift model of the process are developed on a nonuniform grid condensing in subdomains with big gradients of the solution. The results of the proposed algorithm are illustrated on the example of a real well.
NASA Astrophysics Data System (ADS)
Shapiro, A.; Fedorovich, E.; Gibbs, J. A.
2015-03-01
An analytical solution of the Boussinesq equations for the motion of a viscous stably stratified fluid driven by a surface thermal forcing with large horizontal gradients (step changes) is obtained. The solution can be used to verify that computer codes for Boussinesq fluid system simulations are free of errors in formulation of wall boundary conditions, and to evaluate the relative performances of competing numerical algorithms. Because the solution pertains to flows driven by a surface thermal forcing, one of its main applications may be for testing the no-slip, impermeable wall boundary conditions for the pressure Poisson equation. Examples of such tests are presented.
Plasmon spectroscopy: Theoretical and numerical calculations, and optimization techniques
NASA Astrophysics Data System (ADS)
Rodríguez-Oliveros, Rogelio; Paniagua-Domínguez, Ramón; Sánchez-Gil, José A.; Macías, Demetrio
2016-02-01
We present an overview of recent advances in plasmonics, mainly concerning theoretical and numerical tools required for the rigorous determination of the spectral properties of complex-shape nanoparticles exhibiting strong localized surface plasmon resonances (LSPRs). Both quasistatic approaches and full electrodynamic methods are described, providing a thorough comparison of their numerical implementations. Special attention is paid to surface integral equation formulations, giving examples of their performance in complicated nanoparticle shapes of interest for their LSPR spectra. In this regard, complex (single) nanoparticle configurations (nanocrosses and nanorods) yield a hierarchy of multiple-order LSPR s with evidence of a rich symmetric or asymmetric (Fano-like) LSPR line shapes. In addition, means to address the design of complex geometries to retrieve LSPR spectra are commented on, with special interest in biologically inspired algorithms. Thewealth of LSPRbased applications are discussed in two choice examples, single-nanoparticle surface-enhanced Raman scattering (SERS) and optical heating, and multifrequency nanoantennas for fluorescence and nonlinear optics.
Developing dataflow algorithms
Hiromoto, R.E. ); Bohm, A.P.W. . Dept. of Computer Science)
1991-01-01
Our goal is to study the performance of a collection of numerical algorithms written in Id which is available to users of Motorola's dataflow machine Monsoon. We will study the dataflow performance of these implementations first under the parallel profiling simulator Id World, and second in comparison with actual dataflow execution on the Motorola Monsoon. This approach will allow us to follow the computational and structural details of the parallel algorithms as implemented on dataflow systems. When running our programs on the Id World simulator we will examine the behaviour of algorithms at dataflow graph level, where each instruction takes one timestep and data becomes available at the next. This implies that important machine level phenomena such as the effect that global communication time may have on the computation are not addressed. These phenomena will be addressed when we run our programs on the Monsoon hardware. Potential ramifications for compilation techniques, functional programming style, and program efficiency are significant to this study. In a later stage of our research we will compare the efficiency of Id programs to programs written in other languages. This comparison will be of a rather qualitative nature as there are too many degrees of freedom in a language implementation for a quantitative comparison to be of interest. We begin our study by examining one routine that exhibit different computational characteristics. This routine and its corresponding characteristics is Fast Fourier Transforms; computational parallelism and data dependences between the butterfly shuffles.
Laamiri, Imen; Khouaja, Anis; Messaoud, Hassani
2015-03-01
In this paper we provide a convergence analysis of the alternating RGLS (Recursive Generalized Least Square) algorithm used for the identification of the reduced complexity Volterra model describing stochastic non-linear systems. The reduced Volterra model used is the 3rd order SVD-PARAFC-Volterra model provided using the Singular Value Decomposition (SVD) and the Parallel Factor (PARAFAC) tensor decomposition of the quadratic and the cubic kernels respectively of the classical Volterra model. The Alternating RGLS (ARGLS) algorithm consists on the execution of the classical RGLS algorithm in alternating way. The ARGLS convergence was proved using the Ordinary Differential Equation (ODE) method. It is noted that the algorithm convergence canno׳t be ensured when the disturbance acting on the system to be identified has specific features. The ARGLS algorithm is tested in simulations on a numerical example by satisfying the determined convergence conditions. To raise the elegies of the proposed algorithm, we proceed to its comparison with the classical Alternating Recursive Least Squares (ARLS) presented in the literature. The comparison has been built on a non-linear satellite channel and a benchmark system CSTR (Continuous Stirred Tank Reactor). Moreover the efficiency of the proposed identification approach is proved on an experimental Communicating Two Tank system (CTTS). PMID:25442399
Development and application of unified algorithms for problems in computational science
NASA Technical Reports Server (NTRS)
Shankar, Vijaya; Chakravarthy, Sukumar
1987-01-01
A framework is presented for developing computationally unified numerical algorithms for solving nonlinear equations that arise in modeling various problems in mathematical physics. The concept of computational unification is an attempt to encompass efficient solution procedures for computing various nonlinear phenomena that may occur in a given problem. For example, in Computational Fluid Dynamics (CFD), a unified algorithm will be one that allows for solutions to subsonic (elliptic), transonic (mixed elliptic-hyperbolic), and supersonic (hyperbolic) flows for both steady and unsteady problems. The objectives are: development of superior unified algorithms emphasizing accuracy and efficiency aspects; development of codes based on selected algorithms leading to validation; application of mature codes to realistic problems; and extension/application of CFD-based algorithms to problems in other areas of mathematical physics. The ultimate objective is to achieve integration of multidisciplinary technologies to enhance synergism in the design process through computational simulation. Specific unified algorithms for a hierarchy of gas dynamics equations and their applications to two other areas: electromagnetic scattering, and laser-materials interaction accounting for melting.
LC-Grid: a linear global contact search algorithm for finite element analysis
NASA Astrophysics Data System (ADS)
Chen, Hu; Lei, Zhou; Zang, Mengyan
2014-11-01
The contact searching is computationally intensive and its memory requirement is highly demanding; therefore, it is significant to develop an efficient contact search algorithm with less memory required. In this paper, we propose an efficient global contact search algorithm with linear complexity in terms of computational cost and memory requirement for the finite element analysis of contact problems. This algorithm is named LC-Grid (Lei devised the algorithm and Chen implemented it). The contact space is decomposed; thereafter, all contact nodes and segments are firstly mapped onto layers, then onto rows and lastly onto cells. In each mapping level, the linked-list technique is used for the efficient storing and retrieval of contact nodes and segments. The contact detection is performed in each non-empty cell along non-empty rows in each non-empty layer, and moves to the next non-empty layer once a layer is completed. The use of migration strategy makes the algorithm insensitive to mesh size. The properties of this algorithm are investigated and numerically verified to be linearly proportional to the number of contact segments. Besides, the ideal ranges of two significant scale factors of cell size and buffer zone which strongly affect computational efficiency are determined via an illustrative example.
Nonclassicality thresholds for multiqubit states: Numerical analysis
Gruca, Jacek; Zukowski, Marek; Laskowski, Wieslaw; Kiesel, Nikolai; Wieczorek, Witlef; Weinfurter, Harald; Schmid, Christian
2010-07-15
States that strongly violate Bell's inequalities are required in many quantum-informational protocols as, for example, in cryptography, secret sharing, and the reduction of communication complexity. We investigate families of such states with a numerical method which allows us to reveal nonclassicality even without direct knowledge of Bell's inequalities for the given problem. An extensive set of numerical results is presented and discussed.
Bahşı, Ayşe Kurt; Yalçınbaş, Salih
2016-01-01
In this study, the Fibonacci collocation method based on the Fibonacci polynomials are presented to solve for the fractional diffusion equations with variable coefficients. The fractional derivatives are described in the Caputo sense. This method is derived by expanding the approximate solution with Fibonacci polynomials. Using this method of the fractional derivative this equation can be reduced to a set of linear algebraic equations. Also, an error estimation algorithm which is based on the residual functions is presented for this method. The approximate solutions are improved by using this error estimation algorithm. If the exact solution of the problem is not known, the absolute error function of the problems can be approximately computed by using the Fibonacci polynomial solution. By using this error estimation function, we can find improved solutions which are more efficient than direct numerical solutions. Numerical examples, figures, tables are comparisons have been presented to show efficiency and usable of proposed method. PMID:27610294
Example based lesion segmentation
NASA Astrophysics Data System (ADS)
Roy, Snehashis; He, Qing; Carass, Aaron; Jog, Amod; Cuzzocreo, Jennifer L.; Reich, Daniel S.; Prince, Jerry; Pham, Dzung
2014-03-01
Automatic and accurate detection of white matter lesions is a significant step toward understanding the progression of many diseases, like Alzheimer's disease or multiple sclerosis. Multi-modal MR images are often used to segment T2 white matter lesions that can represent regions of demyelination or ischemia. Some automated lesion segmentation methods describe the lesion intensities using generative models, and then classify the lesions with some combination of heuristics and cost minimization. In contrast, we propose a patch-based method, in which lesions are found using examples from an atlas containing multi-modal MR images and corresponding manual delineations of lesions. Patches from subject MR images are matched to patches from the atlas and lesion memberships are found based on patch similarity weights. We experiment on 43 subjects with MS, whose scans show various levels of lesion-load. We demonstrate significant improvement in Dice coefficient and total lesion volume compared to a state of the art model-based lesion segmentation method, indicating more accurate delineation of lesions.
A generalized memory test algorithm
NASA Technical Reports Server (NTRS)
Milner, E. J.
1982-01-01
A general algorithm for testing digital computer memory is presented. The test checks that (1) every bit can be cleared and set in each memory work, and (2) bits are not erroneously cleared and/or set elsewhere in memory at the same time. The algorithm can be applied to any size memory block and any size memory word. It is concise and efficient, requiring the very few cycles through memory. For example, a test of 16-bit-word-size memory requries only 384 cycles through memory. Approximately 15 seconds were required to test a 32K block of such memory, using a microcomputer having a cycle time of 133 nanoseconds.
Intelligent perturbation algorithms for space scheduling optimization
NASA Technical Reports Server (NTRS)
Kurtzman, Clifford R.
1991-01-01
Intelligent perturbation algorithms for space scheduling optimization are presented in the form of the viewgraphs. The following subject areas are covered: optimization of planning, scheduling, and manifesting; searching a discrete configuration space; heuristic algorithms used for optimization; use of heuristic methods on a sample scheduling problem; intelligent perturbation algorithms are iterative refinement techniques; properties of a good iterative search operator; dispatching examples of intelligent perturbation algorithm and perturbation operator attributes; scheduling implementations using intelligent perturbation algorithms; major advances in scheduling capabilities; the prototype ISF (industrial Space Facility) experiment scheduler; optimized schedule (max revenue); multi-variable optimization; Space Station design reference mission scheduling; ISF-TDRSS command scheduling demonstration; and example task - communications check.
Reactive Collision Avoidance Algorithm
NASA Technical Reports Server (NTRS)
Scharf, Daniel; Acikmese, Behcet; Ploen, Scott; Hadaegh, Fred
2010-01-01
The reactive collision avoidance (RCA) algorithm allows a spacecraft to find a fuel-optimal trajectory for avoiding an arbitrary number of colliding spacecraft in real time while accounting for acceleration limits. In addition to spacecraft, the technology can be used for vehicles that can accelerate in any direction, such as helicopters and submersibles. In contrast to existing, passive algorithms that simultaneously design trajectories for a cluster of vehicles working to achieve a common goal, RCA is implemented onboard spacecraft only when an imminent collision is detected, and then plans a collision avoidance maneuver for only that host vehicle, thus preventing a collision in an off-nominal situation for which passive algorithms cannot. An example scenario for such a situation might be when a spacecraft in the cluster is approaching another one, but enters safe mode and begins to drift. Functionally, the RCA detects colliding spacecraft, plans an evasion trajectory by solving the Evasion Trajectory Problem (ETP), and then recovers after the collision is avoided. A direct optimization approach was used to develop the algorithm so it can run in real time. In this innovation, a parameterized class of avoidance trajectories is specified, and then the optimal trajectory is found by searching over the parameters. The class of trajectories is selected as bang-off-bang as motivated by optimal control theory. That is, an avoiding spacecraft first applies full acceleration in a constant direction, then coasts, and finally applies full acceleration to stop. The parameter optimization problem can be solved offline and stored as a look-up table of values. Using a look-up table allows the algorithm to run in real time. Given a colliding spacecraft, the properties of the collision geometry serve as indices of the look-up table that gives the optimal trajectory. For multiple colliding spacecraft, the set of trajectories that avoid all spacecraft is rapidly searched on
Parameter incremental learning algorithm for neural networks.
Wan, Sheng; Banta, Larry E
2006-11-01
In this paper, a novel stochastic (or online) training algorithm for neural networks, named parameter incremental learning (PIL) algorithm, is proposed and developed. The main idea of the PIL strategy is that the learning algorithm should not only adapt to the newly presented input-output training pattern by adjusting parameters, but also preserve the prior results. A general PIL algorithm for feedforward neural networks is accordingly presented as the first-order approximate solution to an optimization problem, where the performance index is the combination of proper measures of preservation and adaptation. The PIL algorithms for the multilayer perceptron (MLP) are subsequently derived. Numerical studies show that for all the three benchmark problems used in this paper the PIL algorithm for MLP is measurably superior to the standard online backpropagation (BP) algorithm and the stochastic diagonal Levenberg-Marquardt (SDLM) algorithm in terms of the convergence speed and accuracy. Other appealing features of the PIL algorithm are that it is computationally as simple as the BP algorithm, and as easy to use as the BP algorithm. It, therefore, can be applied, with better performance, to any situations where the standard online BP algorithm is applicable. PMID:17131658
Algorithm to search for genomic rearrangements
NASA Astrophysics Data System (ADS)
Nałecz-Charkiewicz, Katarzyna; Nowak, Robert
2013-10-01
The aim of this article is to discuss the issue of comparing nucleotide sequences in order to detect chromosomal rearrangements (for example, in the study of genomes of two cucumber varieties, Polish and Chinese). Two basic algorithms for detecting rearrangements has been described: Smith-Waterman algorithm, as well as a new method of searching genetic markers in combination with Knuth-Morris-Pratt algorithm. The computer program in client-server architecture was developed. The algorithms properties were examined on genomes Escherichia coli and Arabidopsis thaliana genomes, and are prepared to compare two cucumber varieties, Polish and Chinese. The results are promising and further works are planned.
Thermostat algorithm for generating target ensembles
NASA Astrophysics Data System (ADS)
Bravetti, A.; Tapias, D.
2016-02-01
We present a deterministic algorithm called contact density dynamics that generates any prescribed target distribution in the physical phase space. Akin to the famous model of Nosé and Hoover, our algorithm is based on a non-Hamiltonian system in an extended phase space. However, the equations of motion in our case follow from contact geometry and we show that in general they have a similar form to those of the so-called density dynamics algorithm. As a prototypical example, we apply our algorithm to produce a Gibbs canonical distribution for a one-dimensional harmonic oscillator.
Thermostat algorithm for generating target ensembles.
Bravetti, A; Tapias, D
2016-02-01
We present a deterministic algorithm called contact density dynamics that generates any prescribed target distribution in the physical phase space. Akin to the famous model of Nosé and Hoover, our algorithm is based on a non-Hamiltonian system in an extended phase space. However, the equations of motion in our case follow from contact geometry and we show that in general they have a similar form to those of the so-called density dynamics algorithm. As a prototypical example, we apply our algorithm to produce a Gibbs canonical distribution for a one-dimensional harmonic oscillator. PMID:26986320
An accurate product SVD (singular value decomposition) algorithm
Bojanczyk, A.W.; Luk, F.T. . School of Electrical Engineering); Ewerbring, M. ); Van Dooren, P. )
1990-01-01
In this paper, we propose a new algorithm for computing a singular value decomposition of a product of three matrices. We show that our algorithm is numerically desirable in that all relevant residual elements will be numerically small. 12 refs., 1 tab.
A radiation and energy budget algorithm for forest canopies
NASA Astrophysics Data System (ADS)
Tunick, A.
2006-01-01
Previously, it was shown that a one-dimensional, physics-based (conservation-law) computer model can provide a useful mathematical representation of the wind flow, temperatures, and turbulence inside and above a uniform forest stand. A key element of this calculation was a radiation and energy budget algorithm (implemented to predict the heat source). However, to keep the earlier publication brief, a full description of the radiation and energy budget algorithm was not given. Hence, this paper presents our equation set for calculating the incoming total radiation at the canopy top as well as the transmission, reflection, absorption, and emission of the solar flux through a forest stand. In addition, example model output is presented from three interesting numerical experiments, which were conducted to simulate the canopy microclimate for a forest stand that borders the Blossom Point Field Test Facility (located near La Plata, Maryland along the Potomac River). It is anticipated that the current numerical study will be useful to researchers and experimental planners who will be collecting acoustic and meteorological data at the Blossom Point Facility in the near future.
Computation of Transient Nonlinear Ship Waves Using AN Adaptive Algorithm
NASA Astrophysics Data System (ADS)
Çelebi, M. S.
2000-04-01
An indirect boundary integral method is used to solve transient nonlinear ship wave problems. A resulting mixed boundary value problem is solved at each time-step using a mixed Eulerian- Lagrangian time integration technique. Two dynamic node allocation techniques, which basically distribute nodes on an ever changing body surface, are presented. Both two-sided hyperbolic tangent and variational grid generation algorithms are developed and compared on station curves. A ship hull form is generated in parametric space using a B-spline surface representation. Two-sided hyperbolic tangent and variational adaptive curve grid-generation methods are then applied on the hull station curves to generate effective node placement. The numerical algorithm, in the first method, used two stretching parameters. In the second method, a conservative form of the parametric variational Euler-Lagrange equations is used the perform an adaptive gridding on each station. The resulting unsymmetrical influence coefficient matrix is solved using both a restarted version of GMRES based on the modified Gram-Schmidt procedure and a line Jacobi method based on LU decomposition. The convergence rates of both matrix iteration techniques are improved with specially devised preconditioners. Numerical examples of node placements on typical hull cross-sections using both techniques are discussed and fully nonlinear ship wave patterns and wave resistance computations are presented.
Numerical Propulsion System Simulation
NASA Technical Reports Server (NTRS)
Naiman, Cynthia
2006-01-01
The NASA Glenn Research Center, in partnership with the aerospace industry, other government agencies, and academia, is leading the effort to develop an advanced multidisciplinary analysis environment for aerospace propulsion systems called the Numerical Propulsion System Simulation (NPSS). NPSS is a framework for performing analysis of complex systems. The initial development of NPSS focused on the analysis and design of airbreathing aircraft engines, but the resulting NPSS framework may be applied to any system, for example: aerospace, rockets, hypersonics, power and propulsion, fuel cells, ground based power, and even human system modeling. NPSS provides increased flexibility for the user, which reduces the total development time and cost. It is currently being extended to support the NASA Aeronautics Research Mission Directorate Fundamental Aeronautics Program and the Advanced Virtual Engine Test Cell (AVETeC). NPSS focuses on the integration of multiple disciplines such as aerodynamics, structure, and heat transfer with numerical zooming on component codes. Zooming is the coupling of analyses at various levels of detail. NPSS development includes capabilities to facilitate collaborative engineering. The NPSS will provide improved tools to develop custom components and to use capability for zooming to higher fidelity codes, coupling to multidiscipline codes, transmitting secure data, and distributing simulations across different platforms. These powerful capabilities extend NPSS from a zero-dimensional simulation tool to a multi-fidelity, multidiscipline system-level simulation tool for the full development life cycle.
The study on gear transmission multi-objective optimum design based on SQP algorithm
NASA Astrophysics Data System (ADS)
Li, Quancai; Qiao, Xuetao; Wu, Cuirong; Wang, Xingxing
2011-12-01
Gear mechanism is the most popular transmission mechanism; however, the traditional design method is complex and not accurate. Optimization design is the effective method to solve the above problems, used in gear design method. In many of the optimization software MATLAB, there are obvious advantage projects and numerical calculation. There is a single gear transmission as example, the mathematical model of gear transmission system, based on the analysis of the objective function, and on the basis of design variables and confirmation of choice restrictive conditions. The results show that the algorithm through MATLAB, the optimization designs, efficient, reliable, simple.
Evaluation of Algorithms for Automatic Data Extraction from Digital Holographic Images of Particles
NASA Astrophysics Data System (ADS)
Dyomin, V. V.; Kamenev, D. V.
2016-02-01
The procedures and algorithms providing a numerical implementation of the physical process of image reconstruction from in-line particle holograms are discussed. The methods are proposed which allow functioning of this process in an automatic mode and ensure data processing and extraction from digital particle holograms in a form convenient for subsequent physical interpretation. The experimental results on realization of these methods are presented, using digital holograms of plankton particles, air bubbles in water, and sand particles, obtained under laboratory conditions as examples.
NASA Astrophysics Data System (ADS)
Zhao, Guo-Zhong; Chen, Gang; Kang, Zhan
2012-04-01
This paper analyzes the random response of structural-acoustic coupled systems. Most existing works on coupled structural-acoustic analysis are limited to systems under deterministic excitations due to high computational cost required by a random response analysis. To reduce the computational burden involved in the coupled random analysis, an iterative procedure based on the Pseudo excitation method has been developed. It is found that this algorithm has an overwhelming advantage in computing efficiency over traditional methods, as demonstrated by some numerical examples given in this paper.
Reduced-cost sparsity-exploiting algorithm for solving coupled-cluster equations.
Brabec, Jiri; Yang, Chao; Epifanovsky, Evgeny; Krylov, Anna I; Ng, Esmond
2016-05-01
We present an algorithm for reducing the computational work involved in coupled-cluster (CC) calculations by sparsifying the amplitude correction within a CC amplitude update procedure. We provide a theoretical justification for this approach, which is based on the convergence theory of inexact Newton iterations. We demonstrate by numerical examples that, in the simplest case of the CCD equations, we can sparsify the amplitude correction by setting, on average, roughly 90% nonzero elements to zeros without a major effect on the convergence of the inexact Newton iterations. PMID:26804120
A Regression Algorithm for Model Reduction of Large-Scale Multi-Dimensional Problems
NASA Astrophysics Data System (ADS)
Rasekh, Ehsan
2011-11-01
Model reduction is an approach for fast and cost-efficient modelling of large-scale systems governed by Ordinary Differential Equations (ODEs). Multi-dimensional model reduction has been suggested for reduction of the linear systems simultaneously with respect to frequency and any other parameter of interest. Multi-dimensional model reduction is also used to reduce the weakly nonlinear systems based on Volterra theory. Multiple dimensions degrade the efficiency of reduction by increasing the size of the projection matrix. In this paper a new methodology is proposed to efficiently build the reduced model based on regression analysis. A numerical example confirms the validity of the proposed regression algorithm for model reduction.
Flux-split algorithms for flows with non-equilibrium chemistry and vibrational relaxation
NASA Technical Reports Server (NTRS)
Grossman, B.; Cinnella, P.
1990-01-01
The present consideration of numerical computation methods for gas flows with nonequilibrium chemistry thermodynamics gives attention to an equilibrium model, a general nonequilibrium model, and a simplified model based on vibrational relaxation. Flux-splitting procedures are developed for the fully-coupled inviscid equations encompassing fluid dynamics and both chemical and internal energy-relaxation processes. A fully coupled and implicit large-block structure is presented which embodies novel forms of flux-vector split and flux-difference split algorithms valid for nonequilibrium flow; illustrative high-temperature shock tube and nozzle flow examples are given.
Chen, Ying-ping; Chen, Chao-Hong
2010-01-01
An adaptive discretization method, called split-on-demand (SoD), enables estimation of distribution algorithms (EDAs) for discrete variables to solve continuous optimization problems. SoD randomly splits a continuous interval if the number of search points within the interval exceeds a threshold, which is decreased at every iteration. After the split operation, the nonempty intervals are assigned integer codes, and the search points are discretized accordingly. As an example of using SoD with EDAs, the integration of SoD and the extended compact genetic algorithm (ECGA) is presented and numerically examined. In this integration, we adopt a local search mechanism as an optional component of our back end optimization engine. As a result, the proposed framework can be considered as a memetic algorithm, and SoD can potentially be applied to other memetic algorithms. The numerical experiments consist of two parts: (1) a set of benchmark functions on which ECGA with SoD and ECGA with two well-known discretization methods: the fixed-height histogram (FHH) and the fixed-width histogram (FWH) are compared; (2) a real-world application, the economic dispatch problem, on which ECGA with SoD is compared to other methods. The experimental results indicate that SoD is a better discretization method to work with ECGA. Moreover, ECGA with SoD works quite well on the economic dispatch problem and delivers solutions better than the best known results obtained by other methods in existence. PMID:20210600
An improved sink particle algorithm for SPH simulations
NASA Astrophysics Data System (ADS)
Hubber, D. A.; Walch, S.; Whitworth, A. P.
2013-04-01
Numerical simulations of star formation frequently rely on the implementation of sink particles: (a) to avoid expending computational resource on the detailed internal physics of individual collapsing protostars, (b) to derive mass functions, binary statistics and clustering kinematics (and hence to make comparisons with observation), and (c) to model radiative and mechanical feedback; sink particles are also used in other contexts, for example to represent accreting black holes in galactic nuclei. We present a new algorithm for creating and evolving sink particles in smoothed particle hydrodynamic (SPH) simulations, which appears to represent a significant improvement over existing algorithms - particularly in situations where sinks are introduced after the gas has become optically thick to its own cooling radiation and started to heat up by adiabatic compression. (i) It avoids spurious creation of sinks. (ii) It regulates the accretion of matter on to a sink so as to mitigate non-physical perturbations in the vicinity of the sink. (iii) Sinks accrete matter, but the associated angular momentum is transferred back to the surrounding medium. With the new algorithm - and modulo the need to invoke sufficient resolution to capture the physics preceding sink formation - the properties of sinks formed in simulations are essentially independent of the user-defined parameters of sink creation, or the number of SPH particles used.
Stabilizing the Richardson eigenvector algorithm by controlling chaos
He, S.
1997-03-01
By viewing the operations of the Richardson purification algorithm as a discrete time dynamical process, we propose a method to overcome the instability of this eigenvector algorithm by controlling chaos. We present theoretical analysis and numerical results on the behavior and performance of the stabilized algorithm. {copyright} {ital 1997 American Institute of Physics.}
An algorithm for the automatic synchronization of Omega receivers
NASA Technical Reports Server (NTRS)
Stonestreet, W. M.; Marzetta, T. L.
1977-01-01
The Omega navigation system and the requirement for receiver synchronization are discussed. A description of the synchronization algorithm is provided. The numerical simulation and its associated assumptions were examined and results of the simulation are presented. The suggested form of the synchronization algorithm and the suggested receiver design values were surveyed. A Fortran of the synchronization algorithm used in the simulation was also included.
Reliable numerical computation in an optimal output-feedback design
NASA Technical Reports Server (NTRS)
Vansteenwyk, Brett; Ly, Uy-Loi
1991-01-01
This paper presents a reliable algorithm for the evaluation of a quadratic performance index and its gradients with respect to the controller design parameters. The algorithm is part of a design algorithm for optimal linear dynamic output-feedback controller that minimizes a finite-time quadratic performance index. The numerical scheme is particularly robust when it is applied to the control-law synthesis for systems with densely packed modes and where there is a high likelihood of encountering degeneracies in the closed-loop eigensystem. The algorithm has been included in a control design package for optimal robust low-order controllers. Usefulness of the proposed numerical algorithm has been demonstrated using numerous practical design cases where degeneracies occur frequently in the closed-loop system under an arbitrary controller design initialization and during the numerical search.
Reliable numerical computation in an optimal output-feedback design
NASA Technical Reports Server (NTRS)
Vansteenwyk, Brett; Ly, Uy-Loi
1991-01-01
A reliable algorithm is presented for the evaluation of a quadratic performance index and its gradients with respect to the controller design parameters. The algorithm is a part of a design algorithm for optimal linear dynamic output-feedback controller that minimizes a finite-time quadratic performance index. The numerical scheme is particularly robust when it is applied to the control-law synthesis for systems with densely packed modes and where there is a high likelihood of encountering degeneracies in the closed-loop eigensystem. This approach through the use of an accurate Pade series approximation does not require the closed-loop system matrix to be diagonalizable. The algorithm was included in a control design package for optimal robust low-order controllers. Usefulness of the proposed numerical algorithm was demonstrated using numerous practical design cases where degeneracies occur frequently in the closed-loop system under an arbitrary controller design initialization and during the numerical search.
NASA Astrophysics Data System (ADS)
Liliana Gheorghian, Mariana
2014-05-01
beginning of the XXI century" with the participation of several schools in the country in 2009 and 2011. The papers presented were diverse and gave examples of various teaching experiences and scientific information. Topics by the teachers: The impact of tourism on the environment, Tornadoes, Natural science and environmental education in school, Air Pollution and health, Ecological education of children from primary school, The effects of electromagnetic radiation, Formation of an ecological mentality using chemistry, Why should we protect water, Environmental education, Education for the future, SOS Nature, Science in the twenty-first century, etc. Topics by students: Nature- the palace of thermal phenomena, Life depends on heat, Water Mysteries, Global Heating, The Mysterious universe, etc. In March 2013 our school hosted an interesting exchange of ideas on environmental issues between our students and those from Bulgaria, Poland and Turkey, during a symposium of the Comenius multilateral project "Conserving Nature". In order to present the results of protecting nature in their communities, two projects "Citizen" qualified in the Program Civitas in the autumn of 2013. "The Battle" continues both in nature and in classrooms, in order to preserve the environment.
NASA Technical Reports Server (NTRS)
Reed, K. W.; Atluri, S. N.
1983-01-01
A new hybrid-stress finite element algorithm, suitable for analyses of large, quasistatic, inelastic deformations, is presented. The algorithm is base upon a generalization of de Veubeke's complementary energy principle. The principal variables in the formulation are the nominal stress rate and spin, and thg resulting finite element equations are discrete versions of the equations of compatibility and angular momentum balance. The algorithm produces true rates, time derivatives, as opposed to 'increments'. There results a complete separation of the boundary value problem (for stress rate and velocity) and the initial value problem (for total stress and deformation); hence, their numerical treatments are essentially independent. After a fairly comprehensive discussion of the numerical treatment of the boundary value problem, we launch into a detailed examination of the numerical treatment of the initial value problem, covering the topics of efficiency, stability and objectivity. The paper is closed with a set of examples, finite homogeneous deformation problems, which serve to bring out important aspects of the algorithm.
Numerical taxonomy on data: Experimental results
Cohen, J.; Farach, M.
1997-12-01
The numerical taxonomy problems associated with most of the optimization criteria described above are NP - hard [3, 5, 1, 4]. In, the first positive result for numerical taxonomy was presented. They showed that if e is the distance to the closest tree metric under the L{sub {infinity}} norm. i.e., e = min{sub T} [L{sub {infinity}} (T-D)], then it is possible to construct a tree T such that L{sub {infinity}} (T-D) {le} 3e, that is, they gave a 3-approximation algorithm for this problem. We will refer to this algorithm as the Single Pivot (SP) heuristic.
Fontana, W.
1990-12-13
In this paper complex adaptive systems are defined by a self- referential loop in which objects encode functions that act back on these objects. A model for this loop is presented. It uses a simple recursive formal language, derived from the lambda-calculus, to provide a semantics that maps character strings into functions that manipulate symbols on strings. The interaction between two functions, or algorithms, is defined naturally within the language through function composition, and results in the production of a new function. An iterated map acting on sets of functions and a corresponding graph representation are defined. Their properties are useful to discuss the behavior of a fixed size ensemble of randomly interacting functions. This function gas'', or Turning gas'', is studied under various conditions, and evolves cooperative interaction patterns of considerable intricacy. These patterns adapt under the influence of perturbations consisting in the addition of new random functions to the system. Different organizations emerge depending on the availability of self-replicators.
Propagation of numerical noise in particle-in-cell tracking
NASA Astrophysics Data System (ADS)
Kesting, Frederik; Franchetti, Giuliano
2015-11-01
Particle-in-cell (PIC) is the most used algorithm to perform self-consistent tracking of intense charged particle beams. It is based on depositing macroparticles on a grid, and subsequently solving on it the Poisson equation. It is well known that PIC algorithms occupy intrinsic limitations as they introduce numerical noise. Although not significant for short-term tracking, this becomes important in simulations for circular machines over millions of turns as it may induce artificial diffusion of the beam. In this work, we present a modeling of numerical noise induced by PIC algorithms, and discuss its influence on particle dynamics. The combined effect of particle tracking and noise created by PIC algorithms leads to correlated or decorrelated numerical noise. For decorrelated numerical noise we derive a scaling law for the simulation parameters, allowing an estimate of artificial emittance growth. Lastly, the effect of correlated numerical noise is discussed, and a mitigation strategy is proposed.
LI, MING-HSU; SIEGEL, MALCOLM D.; YEH, GOUR-TSYH
1999-09-20
The couplings among chemical reaction rates, advective and diffusive transport in fractured media or soils, and changes in hydraulic properties due to precipitation and dissolution within fractures and in rock matrix are important for both nuclear waste disposal and remediation of contaminated sites. This paper describes the development and application of LEHGC2.0, a mechanistically-based numerical model for simulation of coupled fluid flow and reactive chemical transport including both fast and slow reactions invariably saturated media. Theoretical bases and numerical implementations are summarized, and two example problems are demonstrated. The first example deals with the effect of precipitation-dissolution on fluid flow and matrix diffusion in a two-dimensional fractured media. Because of the precipitation and decreased diffusion of solute from the fracture into the matrix, retardation in the fractured medium is not as large as the case wherein interactions between chemical reactions and transport are not considered. The second example focuses on a complicated but realistic advective-dispersive-reactive transport problem. This example exemplifies the need for innovative numerical algorithms to solve problems involving stiff geochemical reactions.
NASA Technical Reports Server (NTRS)
Korkin, S.; Lyapustin, A.
2012-01-01
The Levenberg-Marquardt algorithm [1, 2] provides a numerical iterative solution to the problem of minimization of a function over a space of its parameters. In our work, the Levenberg-Marquardt algorithm retrieves optical parameters of a thin (single scattering) plane parallel atmosphere irradiated by collimated infinitely wide monochromatic beam of light. Black ground surface is assumed. Computational accuracy, sensitivity to the initial guess and the presence of noise in the signal, and other properties of the algorithm are investigated in scalar (using intensity only) and vector (including polarization) modes. We consider an atmosphere that contains a mixture of coarse and fine fractions. Following [3], the fractions are simulated using Henyey-Greenstein model. Though not realistic, this assumption is very convenient for tests [4, p.354]. In our case it yields analytical evaluation of Jacobian matrix. Assuming the MISR geometry of observation [5] as an example, the average scattering cosines and the ratio of coarse and fine fractions, the atmosphere optical depth, and the single scattering albedo, are the five parameters to be determined numerically. In our implementation of the algorithm, the system of five linear equations is solved using the fast Cramer s rule [6]. A simple subroutine developed by the authors, makes the algorithm independent from external libraries. All Fortran 90/95 codes discussed in the presentation will be available immediately after the meeting from sergey.v.korkin@nasa.gov by request.
Some nonlinear space decomposition algorithms
Tai, Xue-Cheng; Espedal, M.
1996-12-31
Convergence of a space decomposition method is proved for a general convex programming problem. The space decomposition refers to methods that decompose a space into sums of subspaces, which could be a domain decomposition or a multigrid method for partial differential equations. Two algorithms are proposed. Both can be used for linear as well as nonlinear elliptic problems and they reduce to the standard additive and multiplicative Schwarz methods for linear elliptic problems. Two {open_quotes}hybrid{close_quotes} algorithms are also presented. They converge faster than the additive one and have better parallelism than the multiplicative method. Numerical tests with a two level domain decomposition for linear, nonlinear and interface elliptic problems are presented for the proposed algorithms.
Spatial search algorithms on Hanoi networks
NASA Astrophysics Data System (ADS)
Marquezino, Franklin de Lima; Portugal, Renato; Boettcher, Stefan
2013-01-01
We use the abstract search algorithm and its extension due to Tulsi to analyze a spatial quantum search algorithm that finds a marked vertex in Hanoi networks of degree 4 faster than classical algorithms. We also analyze the effect of using non-Groverian coins that take advantage of the small-world structure of the Hanoi networks. We obtain the scaling of the total cost of the algorithm as a function of the number of vertices. We show that Tulsi's technique plays an important role to speed up the searching algorithm. We can improve the algorithm's efficiency by choosing a non-Groverian coin if we do not implement Tulsi's method. Our conclusions are based on numerical implementations.
Modified OMP Algorithm for Exponentially Decaying Signals
Kazimierczuk, Krzysztof; Kasprzak, Paweł
2015-01-01
A group of signal reconstruction methods, referred to as compressed sensing (CS), has recently found a variety of applications in numerous branches of science and technology. However, the condition of the applicability of standard CS algorithms (e.g., orthogonal matching pursuit, OMP), i.e., the existence of the strictly sparse representation of a signal, is rarely met. Thus, dedicated algorithms for solving particular problems have to be developed. In this paper, we introduce a modification of OMP motivated by nuclear magnetic resonance (NMR) application of CS. The algorithm is based on the fact that the NMR spectrum consists of Lorentzian peaks and matches a single Lorentzian peak in each of its iterations. Thus, we propose the name Lorentzian peak matching pursuit (LPMP). We also consider certain modification of the algorithm by introducing the allowed positions of the Lorentzian peaks' centers. Our results show that the LPMP algorithm outperforms other CS algorithms when applied to exponentially decaying signals. PMID:25609044
Numerical vorticity creation based on impulse conservation.
Summers, D M; Chorin, A J
1996-01-01
The problem of creating solenoidal vortex elements to satisfy no-slip boundary conditions in Lagrangian numerical vortex methods is solved through the use of impulse elements at walls and their subsequent conversion to vortex loops. The algorithm is not uniquely defined, due to the gauge freedom in the definition of impulse; the numerically optimal choice of gauge remains to be determined. Two different choices are discussed, and an application to flow past a sphere is sketched. PMID:11607636
A hybrid likelihood algorithm for risk modelling.
Kellerer, A M; Kreisheimer, M; Chmelevsky, D; Barclay, D
1995-03-01
The risk of radiation-induced cancer is assessed through the follow-up of large cohorts, such as atomic bomb survivors or underground miners who have been occupationally exposed to radon and its decay products. The models relate to the dose, age and time dependence of the excess tumour rates, and they contain parameters that are estimated in terms of maximum likelihood computations. The computations are performed with the software package EPI-CURE, which contains the two main options of person-by person regression or of Poisson regression with grouped data. The Poisson regression is most frequently employed, but there are certain models that require an excessive number of cells when grouped data are used. One example involves computations that account explicitly for the temporal distribution of continuous exposures, as they occur with underground miners. In past work such models had to be approximated, but it is shown here that they can be treated explicitly in a suitably reformulated person-by person computation of the likelihood. The algorithm uses the familiar partitioning of the log-likelihood into two terms, L1 and L0. The first term, L1, represents the contribution of the 'events' (tumours). It needs to be evaluated in the usual way, but constitutes no computational problem. The second term, L0, represents the event-free periods of observation. It is, in its usual form, unmanageable for large cohorts. However, it can be reduced to a simple form, in which the number of computational steps is independent of cohort size. The method requires less computing time and computer memory, but more importantly it leads to more stable numerical results by obviating the need for grouping the data. The algorithm may be most relevant to radiation risk modelling, but it can facilitate the modelling of failure-time data in general. PMID:7604154
Nonlinear dynamics and numerical uncertainties in CFD
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sweby, P. K.
1996-01-01
The application of nonlinear dynamics to improve the understanding of numerical uncertainties in computational fluid dynamics (CFD) is reviewed. Elementary examples in the use of dynamics to explain the nonlinear phenomena and spurious behavior that occur in numerics are given. The role of dynamics in the understanding of long time behavior of numerical integrations and the nonlinear stability, convergence, and reliability of using time-marching, approaches for obtaining steady-state numerical solutions in CFD is explained. The study is complemented with spurious behavior observed in CFD computations.
NASA Technical Reports Server (NTRS)
Merceret, Francis; Lane, John; Immer, Christopher; Case, Jonathan; Manobianco, John
2005-01-01
The contour error map (CEM) algorithm and the software that implements the algorithm are means of quantifying correlations between sets of time-varying data that are binarized and registered on spatial grids. The present version of the software is intended for use in evaluating numerical weather forecasts against observational sea-breeze data. In cases in which observational data come from off-grid stations, it is necessary to preprocess the observational data to transform them into gridded data. First, the wind direction is gridded and binarized so that D(i,j;n) is the input to CEM based on forecast data and d(i,j;n) is the input to CEM based on gridded observational data. Here, i and j are spatial indices representing 1.25-km intervals along the west-to-east and south-to-north directions, respectively; and n is a time index representing 5-minute intervals. A binary value of D or d = 0 corresponds to an offshore wind, whereas a value of D or d = 1 corresponds to an onshore wind. CEM includes two notable subalgorithms: One identifies and verifies sea-breeze boundaries; the other, which can be invoked optionally, performs an image-erosion function for the purpose of attempting to eliminate river-breeze contributions in the wind fields.
Performance Comparison Of Evolutionary Algorithms For Image Clustering
NASA Astrophysics Data System (ADS)
Civicioglu, P.; Atasever, U. H.; Ozkan, C.; Besdok, E.; Karkinli, A. E.; Kesikoglu, A.
2014-09-01
Evolutionary computation tools are able to process real valued numerical sets in order to extract suboptimal solution of designed problem. Data clustering algorithms have been intensively used for image segmentation in remote sensing applications. Despite of wide usage of evolutionary algorithms on data clustering, their clustering performances have been scarcely studied by using clustering validation indexes. In this paper, the recently proposed evolutionary algorithms (i.e., Artificial Bee Colony Algorithm (ABC), Gravitational Search Algorithm (GSA), Cuckoo Search Algorithm (CS), Adaptive Differential Evolution Algorithm (JADE), Differential Search Algorithm (DSA) and Backtracking Search Optimization Algorithm (BSA)) and some classical image clustering techniques (i.e., k-means, fcm, som networks) have been used to cluster images and their performances have been compared by using four clustering validation indexes. Experimental test results exposed that evolutionary algorithms give more reliable cluster-centers than classical clustering techniques, but their convergence time is quite long.
Numerical propagator through PIAA optics
NASA Astrophysics Data System (ADS)
Pueyo, Laurent; Shaklan, Stuart; Give'On, Amir; Krist, John
2009-08-01
In this communication we address two outstanding issues pertaining the modeling of PIAA coronagraphs, accurate numerical propagation of edge effects and fast propagation of mid spatial frequencies for wavefront control. In order to solve them, we first derive a quadratic approximation of the Huygens wavelets that allows us to develop an angular spectrum propagator for pupil remapping. Using this result we introduce an independent method to verify the ultimate contrast floor, due to edge propagation effects, of PIAA units currently being tested in various testbeds. We then delve into the details of a novel fast algorithm, based on the recognition that angular spectrum computations with a pre-apodised system are computationally light. When used for the propagation of mid spatial frequencies, such a fast propagator will ultimately allow us to develop robust wavefront control algorithms with DMs located before the pupil remapping mirrors.
Fully implicit particle-in-cell algorithm.
NASA Astrophysics Data System (ADS)
Kim, Hyung; Chacon, Luis
2005-10-01
Most current particle-in-cell (PIC) algorithms employ an explicit approach. Explicit PIC approaches are not only time-step limited for numerical stability, but also grid-intensive due to the so-called finite-grid instability.ootnotetextC. Birdsall and A. Langdon, Plasma physics via computer simulation, McGraw-Hill, New York, 1985 As a result, explicit PIC methods are very hardware-intensive, and become prohibitive for system scale simulations even with modern supercomputers. To avoid such stringent time-step and grid-size requirements, the implicit moment method PIC approach (IM-PIC) was developed.ootnotetextJ. Brackbill and D. Forslund, J. Comput. Phys. 46, 271 (1982). IM-PIC advances the required moments (density, current) using Chapman-Enskop-based fluid equations, and then advances the particles with such moments. While being able to employ much larger time steps and grid spacings than explicit PIC methods, IM-PIC is limited in that the time-advanced moments and the particle moments are inconsistent, resulting in lack of energy conservation. To remedy this, we propose here a fully implicit, fully nonlinear PIC approach (FI-PIC) where the particles and the moments are converged simultaneously using Newton-Krylov techniques. This guarantees the consistency of moments and particles upon convergence. We will demonstrate the feasibility of the concept using a purely electrostatic Vlasov-Poisson model, and will show its effectiveness with several fully kinetic examples.
Interpolation algorithm of Leverrier?Faddev type for polynomial matrices
NASA Astrophysics Data System (ADS)
Petkovic, Marko; Stanimirovic, Predrag
2006-07-01
We investigated an interpolation algorithm for computing outer inverses of a given polynomial matrix, based on the Leverrier?Faddeev method. This algorithm is a continuation of the finite algorithm for computing generalized inverses of a given polynomial matrix, introduced in [11]. Also, a method for estimating the degrees of polynomial matrices arising from the Leverrier?Faddeev algorithm is given as the improvement of the interpolation algorithm. Based on similar idea, we introduced methods for computing rank and index of polynomial matrix. All algorithms are implemented in the symbolic programming language MATHEMATICA , and tested on several different classes of test examples.
Query by image example: The CANDID approach
Kelly, P.M.; Cannon, M.; Hush, D.R.
1995-02-01
CANDID (Comparison Algorithm for Navigating Digital Image Databases) was developed to enable content-based retrieval of digital imagery from large databases using a query-by-example methodology. A user provides an example image to the system, and images in the database that are similar to that example are retrieved. The development of CANDID was inspired by the N-gram approach to document fingerprinting, where a ``global signature`` is computed for every document in a database and these signatures are compared to one another to determine the similarity between any two documents. CANDID computes a global signature for every image in a database, where the signature is derived from various image features such as localized texture, shape, or color information. A distance between probability density functions of feature vectors is then used to compare signatures. In this paper, the authors present CANDID and highlight two results from their current research: subtracting a ``background`` signature from every signature in a database in an attempt to improve system performance when using inner-product similarity measures, and visualizing the contribution of individual pixels in the matching process. These ideas are applicable to any histogram-based comparison technique.
Multiresolution strategies for the numerical solution of optimal control problems
NASA Astrophysics Data System (ADS)
Jain, Sachin
There exist many numerical techniques for solving optimal control problems but less work has been done in the field of making these algorithms run faster and more robustly. The main motivation of this work is to solve optimal control problems accurately in a fast and efficient way. Optimal control problems are often characterized by discontinuities or switchings in the control variables. One way of accurately capturing the irregularities in the solution is to use a high resolution (dense) uniform grid. This requires a large amount of computational resources both in terms of CPU time and memory. Hence, in order to accurately capture any irregularities in the solution using a few computational resources, one can refine the mesh locally in the region close to an irregularity instead of refining the mesh uniformly over the whole domain. Therefore, a novel multiresolution scheme for data compression has been designed which is shown to outperform similar data compression schemes. Specifically, we have shown that the proposed approach results in fewer grid points in the grid compared to a common multiresolution data compression scheme. The validity of the proposed mesh refinement algorithm has been verified by solving several challenging initial-boundary value problems for evolution equations in 1D. The examples have demonstrated the stability and robustness of the proposed algorithm. The algorithm adapted dynamically to any existing or emerging irregularities in the solution by automatically allocating more grid points to the region where the solution exhibited sharp features and fewer points to the region where the solution was smooth. Thereby, the computational time and memory usage has been reduced significantly, while maintaining an accuracy equivalent to the one obtained using a fine uniform mesh. Next, a direct multiresolution-based approach for solving trajectory optimization problems is developed. The original optimal control problem is transcribed into a
NASA Astrophysics Data System (ADS)
Balashov, V. A.; Savenkov, E. B.
2015-10-01
The applicability of numerical algorithms based on a quasi-hydrodynamic system of equations for computing viscous heat-conducting compressible gas flows at Mach numbers M = 10-2-10-1 is studied numerically. The numerical algorithm is briefly described, and the results obtained for a number of two- and three-dimensional test problems are presented and compared with earlier numerical data.
SCORPIUS algorithm benchmarks on the image understanding architecture machine
NASA Astrophysics Data System (ADS)
Bogdanowicz, Julius F.; Nash, J. Gregory; Shu, David B.
1992-04-01
Many Hughes tactical and strategic programs need high performance image processing. For example, photo-interpretation applications can require up to four orders of magnitude speedup over conventional computer architectures. Therefore, parallel processing systems are needed to help close the processing gap. Vision applications can usually be decomposed into three levels of processing called high, intermediate, and low level vision. Each processing level typically requires different types of numeric/symbolic computation, processing task granularities, and communications bandwidths. No parallel processing system is commercially available that is optimized for the entire range of computations. To meet these processing challenges, the image understanding architecture (IUA) has been developed by Hughes in collaboration with the University of Massachusetts. The IUA is a heterogeneous, hierarchical, associative parallel processor that is organized in three levels corresponding to the vision problem. Its lowest level consists of a large content addressable array parallel processor. This array of 'per pixel' bit serial processors is used for fixed point, low level numeric, and symbolic computations. The middle level is an interface communications array processor (ICAP). ICAP is an array of digital signal processing chips from TI TMS320Cx line, used for high speed number crunching. The highest level is the symbolic processing array. It is an array of general purpose microprocessors in which the artificial intelligence content of the image understanding software resides. A set of benchmarks from the DARPA/ORD sponsored SCORPIUS program were developed using the IUA. The set of algorithms included low level image processing as well as high level matching algorithms. Benchmark performance on the second generation IUA hardware is over four orders of magnitude faster than equivalent algorithms implemented on a DEC VAX 8650. The first generation hardware is operational. Development
Gas-kinetic numerical studies of three-dimensional complex flows on spacecraft re-entry
NASA Astrophysics Data System (ADS)
Li, Zhi-Hui; Zhang, Han-Xin
2009-03-01
The gas-kinetic numerical algorithm solving the Boltzmann model equation is extended and developed to study the three-dimensional hypersonic flows of spacecraft re-entry into the atmosphere in perfect gas. In this study, the simplified velocity distribution function equation for various flow regimes is presented on the basis of the kinetic Boltzmann-Shakhov model. The discrete velocity ordinate technique and numerical quadrature methods, such as the Gauss quadrature formulas with the weight function 2/ π1/2exp(- V2) and the Gauss-Legendre numerical quadrature rule, are studied to resolve the barrier in simulating complex flows from low Mach numbers to hypersonic problems. Specially, the gas-kinetic finite-difference scheme is constructed for the computation of three-dimensional flow problems, which directly captures the time evolution of the molecular velocity distribution function. The gas-kinetic boundary conditions and numerical procedures are studied and implemented by directly acting on the velocity distribution function. The HPF (high performance fortran) parallel implementation technique for the gas-kinetic numerical method is developed and applied to study the hypersonic flows around three-dimensional complex bodies. The main purpose of the current research is to provide a way to extend the gas-kinetic numerical algorithm to the flow computation of three-dimensional complex hypersonic problems with high Mach numbers. To verify the current method and simulate gas transport phenomena covering various flow regimes, the three-dimensional hypersonic flows around sphere and spacecraft shape with different Knudsen numbers and Mach numbers are studied by HPF parallel computing. Excellent results have been obtained for all examples computed.
Five-dimensional Janis-Newman algorithm
NASA Astrophysics Data System (ADS)
Erbin, Harold; Heurtier, Lucien
2015-08-01
The Janis-Newman algorithm has been shown to be successful in finding new stationary solutions of four-dimensional gravity. Attempts for a generalization to higher dimensions have already been found for the restricted cases with only one angular momentum. In this paper we propose an extension of this algorithm to five-dimensions with two angular momenta—using the prescription of Giampieri—through two specific examples, that are the Myers-Perry and BMPV black holes. We also discuss possible enlargements of our prescriptions to other dimensions and maximal number of angular momenta, and show how dimensions higher than six appear to be much more challenging to treat within this framework. Nonetheless this general algorithm provides a unification of the formulation in d=3,4,5 of the Janis-Newman algorithm, from which several examples are exposed, including the BTZ black hole.
Active learning in the presence of unlabelable examples
NASA Technical Reports Server (NTRS)
Mazzoni, Dominic; Wagstaff, Kiri
2004-01-01
We propose a new active learning framework where the expert labeler is allowed to decline to label any example. This may be necessary because the true label is unknown or because the example belongs to a class that is not part of the real training problem. We show that within this framework, popular active learning algorithms (such as Simple) may perform worse than random selection because they make so many queries to the unlabelable class. We present a method by which any active learning algorithm can be modified to avoid unlabelable examples by training a second classifier to distinguish between the labelable and unlabelable classes. We also demonstrate the effectiveness of the method on two benchmark data sets and a real-world problem.
A spectral, quasi-cylindrical and dispersion-free Particle-In-Cell algorithm
NASA Astrophysics Data System (ADS)
Lehe, Rémi; Kirchen, Manuel; Andriyash, Igor A.; Godfrey, Brendan B.; Vay, Jean-Luc
2016-06-01
We propose a spectral Particle-In-Cell (PIC) algorithm that is based on the combination of a Hankel transform and a Fourier transform. For physical problems that have close-to-cylindrical symmetry, this algorithm can be much faster than full 3D PIC algorithms. In addition, unlike standard finite-difference PIC codes, the proposed algorithm is free of spurious numerical dispersion, in vacuum. This algorithm is benchmarked in several situations that are of interest for laser-plasma interactions. These benchmarks show that it avoids a number of numerical artifacts, that would otherwise affect the physics in a standard PIC algorithm - including the zero-order numerical Cherenkov effect.
NASA Technical Reports Server (NTRS)
Acikmese, Behcet A.; Carson, John M., III
2005-01-01
A robustly stabilizing MPC (model predictive control) algorithm for uncertain nonlinear systems is developed that guarantees the resolvability of the associated finite-horizon optimal control problem in a receding-horizon implementation. The control consists of two components; (i) feedforward, and (ii) feedback part. Feed-forward control is obtained by online solution of a finite-horizon optimal control problem for the nominal system dynamics. The feedback control policy is designed off-line based on a bound on the uncertainty in the system model. The entire controller is shown to be robustly stabilizing with a region of attraction composed of initial states for which the finite-horizon optimal control problem is feasible. The controller design for this algorithm is demonstrated on a class of systems with uncertain nonlinear terms that have norm-bounded derivatives, and derivatives in polytopes. An illustrative numerical example is also provided.
Use of the particle swarm optimization algorithm for second order design of levelling networks
NASA Astrophysics Data System (ADS)
Yetkin, Mevlut; Inal, Cevat; Yigit, Cemal Ozer
2009-08-01
The weight problem in geodetic networks can be dealt with as an optimization procedure. This classic problem of geodetic network optimization is also known as second-order design. The basic principles of geodetic network optimization are reviewed. Then the particle swarm optimization (PSO) algorithm is applied to a geodetic levelling network in order to solve the second-order design problem. PSO, which is an iterative-stochastic search algorithm in swarm intelligence, emulates the collective behaviour of bird flocking, fish schooling or bee swarming, to converge probabilistically to the global optimum. Furthermore, it is a powerful method because it is easy to implement and computationally efficient. Second-order design of a geodetic levelling network using PSO yields a practically realizable solution. It is also suitable for non-linear matrix functions that are very often encountered in geodetic network optimization. The fundamentals of the method and a numeric example are given.
[A study for time-history waveform synthesis of algorithm in shock response spectrum (SRS)].
Liu, Hong-ying; Ma, Ai-jun
2002-12-01
Objective. To present an effective on-line SRS time-history waveform synthesis method for simulating pyrotechnic shock environment with electrodynamic shakers. Method. A procedure was developed for synthesizing a SRS time-history waveform according to a general principle. The effect of three main parameters to waveform's shape, amplitude of acceleration and duration were investigated. A modification method of SRS's amplitude and an optimal algorithm of time-history waveform were presented. Result. The algorithm was used to generate a time-history waveform that could satisfy SRS's accuracy requirement and electrodynamic shaker's acceleration limitation. Conclusion. The numerical example indicates that the developed method is effective. The synthesized time-history waveform can be used to simulate pyrotechnic shock environment using electrodynamic shakers. PMID:12622083
NASA Technical Reports Server (NTRS)
Acikmese, Ahmet Behcet; Carson, John M., III
2006-01-01
A robustly stabilizing MPC (model predictive control) algorithm for uncertain nonlinear systems is developed that guarantees resolvability. With resolvability, initial feasibility of the finite-horizon optimal control problem implies future feasibility in a receding-horizon framework. The control consists of two components; (i) feed-forward, and (ii) feedback part. Feed-forward control is obtained by online solution of a finite-horizon optimal control problem for the nominal system dynamics. The feedback control policy is designed off-line based on a bound on the uncertainty in the system model. The entire controller is shown to be robustly stabilizing with a region of attraction composed of initial states for which the finite-horizon optimal control problem is feasible. The controller design for this algorithm is demonstrated on a class of systems with uncertain nonlinear terms that have norm-bounded derivatives and derivatives in polytopes. An illustrative numerical example is also provided.
Disruptive Innovation in Numerical Hydrodynamics
Waltz, Jacob I.
2012-09-06
We propose the research and development of a high-fidelity hydrodynamic algorithm for tetrahedral meshes that will lead to a disruptive innovation in the numerical modeling of Laboratory problems. Our proposed innovation has the potential to reduce turnaround time by orders of magnitude relative to Advanced Simulation and Computing (ASC) codes; reduce simulation setup costs by millions of dollars per year; and effectively leverage Graphics Processing Unit (GPU) and future Exascale computing hardware. If successful, this work will lead to a dramatic leap forward in the Laboratory's quest for a predictive simulation capability.
Large space structures control algorithm characterization
NASA Technical Reports Server (NTRS)
Fogel, E.
1983-01-01
Feedback control algorithms are developed for sensor/actuator pairs on large space systems. These algorithms have been sized in terms of (1) floating point operation (FLOP) demands; (2) storage for variables; and (3) input/output data flow. FLOP sizing (per control cycle) was done as a function of the number of control states and the number of sensor/actuator pairs. Storage for variables and I/O sizing was done for specific structure examples.
GPU Accelerated Event Detection Algorithm
2011-05-25
Smart grid external require new algorithmic approaches as well as parallel formulations. One of the critical components is the prediction of changes and detection of anomalies within the power grid. The state-of-the-art algorithms are not suited to handle the demands of streaming data analysis. (i) need for events detection algorithms that can scale with the size of data, (ii) need for algorithms that can not only handle multi dimensional nature of the data, but alsomore » model both spatial and temporal dependencies in the data, which, for the most part, are highly nonlinear, (iii) need for algorithms that can operate in an online fashion with streaming data. The GAEDA code is a new online anomaly detection techniques that take into account spatial, temporal, multi-dimensional aspects of the data set. The basic idea behind the proposed approach is to (a) to convert a multi-dimensional sequence into a univariate time series that captures the changes between successive windows extracted from the original sequence using singular value decomposition (SVD), and then (b) to apply known anomaly detection techniques for univariate time series. A key challenge for the proposed approach is to make the algorithm scalable to huge datasets by adopting techniques from perturbation theory, incremental SVD analysis. We used recent advances in tensor decomposition techniques which reduce computational complexity to monitor the change between successive windows and detect anomalies in the same manner as described above. Therefore we propose to develop the parallel solutions on many core systems such as GPUs, because these algorithms involve lot of numerical operations and are highly data-parallelizable.« less
Rent Seeking: A Textbook Example
ERIC Educational Resources Information Center
Pecorino, Paul
2007-01-01
The author argues that the college textbook market provides a clear example of monopoly seeking as described by Tullock (1967, 1980). This behavior is also known as rent seeking. Because this market is important to students, this example of rent seeking will be of particular interest to them. (Contains 24 notes.)
Constructing Programs from Example Computations.
ERIC Educational Resources Information Center
Bierman, A. W.; Krishnaswamy, R.
This paper describes the construction and implementation of an autoprogramming system. An autoprogrammer is an interactive computer programming system which automatically constructs computer programs from example computations executed by the user. The example calculations are done in a scratch pad fashion at a computer display, and the system…
High-resolution algorithms for the Navier-Stokes equations for generalized discretizations
NASA Astrophysics Data System (ADS)
Mitchell, Curtis Randall
Accurate finite volume solution algorithms for the two dimensional Navier Stokes equations and the three dimensional Euler equations for both structured and unstructured grid topologies are presented. Results for two dimensional quadrilateral and triangular elements and three dimensional tetrahedral elements will be provided. Fundamental to the solution algorithm is a technique for generating multidimensional polynomials which model the spatial variation of the flow variables. Cell averaged data is used to reconstruct pointwise distributions of the dependent variables. The reconstruction errors are evaluated on triangular meshes. The implementation of the algorithm is unique in that three reconstructions are performed for each cell face in the domain. Two of the reconstructions are used to evaluate the inviscid fluxes and correspond to the right and left interface states needed for the solution of a Riemann problem. The third reconstruction is used to evaluate the viscous fluxes. The gradient terms that appear in the viscous fluxes are formed by simply differentiating the polynomial. By selecting the appropriate cell control volumes, centered, upwind and upwind-biased stencils are possible. Numerical calculations in two dimensions include solutions to elliptic boundary value problems, Ringlebs' flow, an inviscid shock reflection, a flat plate boundary layer, and a shock induced separation over a flat plate. Three dimensional results include the ONERA M6 wing. All of the unstructured grids were generated using an advancing front mesh generation procedure. Modifications to the three dimensional grid generator were necessary to discretize the surface grids for bodies with high curvature. In addition, mesh refinement algorithms were implemented to improve the surface grid integrity. Examples include a Glasair fuselage, High Speed Civil Transport, and the ONERA M6 wing. The role of reconstruction as applied to adaptive remeshing is discussed and a new first order error
A local anisotropic adaptive algorithm for the solution of low-Mach transient combustion problems
NASA Astrophysics Data System (ADS)
Carpio, Jaime; Prieto, Juan Luis; Vera, Marcos
2016-02-01
A novel numerical algorithm for the simulation of transient combustion problems at low Mach and moderately high Reynolds numbers is presented. These problems are often characterized by the existence of a large disparity of length and time scales, resulting in the development of directional flow features, such as slender jets, boundary layers, mixing layers, or flame fronts. This makes local anisotropic adaptive techniques quite advantageous computationally. In this work we propose a local anisotropic refinement algorithm using, for the spatial discretization, unstructured triangular elements in a finite element framework. For the time integration, the problem is formulated in the context of semi-Lagrangian schemes, introducing the semi-Lagrange-Galerkin (SLG) technique as a better alternative to the classical semi-Lagrangian (SL) interpolation. The good performance of the numerical algorithm is illustrated by solving a canonical laminar combustion problem: the flame/vortex interaction. First, a premixed methane-air flame/vortex interaction with simplified transport and chemistry description (Test I) is considered. Results are found to be in excellent agreement with those in the literature, proving the superior performance of the SLG scheme when compared with the classical SL technique, and the advantage of using anisotropic adaptation instead of uniform meshes or isotropic mesh refinement. As a more realistic example, we then conduct simulations of non-premixed hydrogen-air flame/vortex interactions (Test II) using a more complex combustion model which involves state-of-the-art transport and chemical kinetics. In addition to the analysis of the numerical features, this second example allows us to perform a satisfactory comparison with experimental visualizations taken from the literature.
A GROUP FINDING ALGORITHM FOR MULTIDIMENSIONAL DATA SETS
Sharma, Sanjib; Johnston, Kathryn V. E-mail: kvj@astro.columbia.ed
2009-09-20
We describe a density-based hierarchical group finding algorithm capable of identifying structures and substructures of any shape and density in multidimensional data sets where each dimension can be a numeric attribute with arbitrary measurement scale. This has applications in a wide variety of fields from finding structures in galaxy redshift surveys, to identifying halos and subhalos in N-body simulations and group finding in Local Group chemodynamical data sets. In general, clustering schemes require an a priori definition of a metric (a non-negative function that gives the distance between two points in a space) and the quality of clustering depends upon this choice. The general practice is to use a constant global metric which is optimal only if the clusters in the data are self-similar. For complex data configurations even the most finely tuned constant global metric turns out to be suboptimal. Moreover, the correct choice of metric also becomes increasingly important as the number of dimensions increase. To address these problems, we present an entropy-based binary space partitioning algorithm which uses a locally adaptive metric for each data point. The metric is employed to calculate the density at each point and a list of its nearest neighbors, and this information is then used to form a hierarchy of groups. Finally, the ratio of maximum to minimum density of points in a group is used to estimate the significance of the groups. Setting a threshold on this significance can effectively screen out groups arising due to Poisson noise and helps organize the groups into meaningful clusters. For a data set of N points, the algorithm requires only O(N) space and O(N(log N){sup 3}) time which makes it ideally suitable for analyzing large data sets. As an example, we apply the algorithm to identify structures in a simulated stellar halo using the full six-dimensional phase space coordinates.
Atmospheric channel for bistatic optical communication: simulation algorithms
NASA Astrophysics Data System (ADS)
Belov, V. V.; Tarasenkov, M. V.
2015-11-01
Three algorithms of statistical simulation of the impulse response (IR) for the atmospheric optical communication channel are considered, including algorithms of local estimate and double local estimate and the algorithm suggested by us. On the example of a homogeneous molecular atmosphere it is demonstrated that algorithms of double local estimate and the suggested algorithm are more efficient than the algorithm of local estimate. For small optical path length, the proposed algorithm is more efficient, and for large optical path length, the algorithm of double local estimate is more efficient. Using the proposed algorithm, the communication quality is estimated for a particular case of the atmospheric channel under conditions of intermediate turbidity. The communication quality is characterized by the maximum IR, time of maximum IR, integral IR, and bandwidth of the communication channel. Calculations of these criteria demonstrated that communication is most efficient when the point of intersection of the directions toward the source and the receiver is most close to the source point.
On Numerical Methods For Hypersonic Turbulent Flows
NASA Astrophysics Data System (ADS)
Yee, H. C.; Sjogreen, B.; Shu, C. W.; Wang, W.; Magin, T.; Hadjadj, A.
2011-05-01
Proper control of numerical dissipation in numerical methods beyond the standard shock-capturing dissipation at discontinuities is an essential element for accurate and stable simulation of hypersonic turbulent flows, including combustion, and thermal and chemical nonequilibrium flows. Unlike rapidly developing shock interaction flows, turbulence computations involve long time integrations. Improper control of numerical dissipation from one time step to another would be compounded over time, resulting in the smearing of turbulent fluctuations to an unrecognizable form. Hypersonic turbulent flows around re- entry space vehicles involve mixed steady strong shocks and turbulence with unsteady shocklets that pose added computational challenges. Stiffness of the source terms and material mixing in combustion pose yet other types of numerical challenges. A low dissipative high order well- balanced scheme, which can preserve certain non-trivial steady solutions of the governing equations exactly, may help minimize some of these difficulties. For stiff reactions it is well known that the wrong propagation speed of discontinuities occurs due to the under-resolved numerical solutions in both space and time. Schemes to improve the wrong propagation speed of discontinuities for systems of stiff reacting flows remain a challenge for algorithm development. Some of the recent algorithm developments for direct numerical simulations (DNS) and large eddy simulations (LES) for the subject physics, including the aforementioned numerical challenges, will be discussed.
Ten years of Nature Physics: Numerical models come of age
NASA Astrophysics Data System (ADS)
Gull, E.; Millis, A. J.
2015-10-01
When Nature Physics celebrated 20 years of high-temperature superconductors, numerical approaches were on the periphery. Since then, new ideas implemented in new algorithms are leading to new insights.
Extremal polynomials and methods of optimization of numerical algorithms
Lebedev, V I
2004-10-31
Chebyshev-Markov-Bernstein-Szegoe polynomials C{sub n}(x) extremal on [-1,1] with weight functions w(x)=(1+x){sup {alpha}}(1- x){sup {beta}}/{radical}(S{sub l}(x)) where {alpha},{beta}=0,1/2 and S{sub l}(x)={pi}{sub k=1}{sup m}(1-c{sub k}T{sub l{sub k}}(x))>0 are considered. A universal formula for their representation in trigonometric form is presented. Optimal distributions of the nodes of the weighted interpolation and explicit quadrature formulae of Gauss, Markov, Lobatto, and Rado types are obtained for integrals with weight p(x)=w{sup 2}(x)(1-x{sup 2}){sup -1/2}. The parameters of optimal Chebyshev iterative methods reducing the error optimally by comparison with the initial error defined in another norm are determined. For each stage of the Fedorenko-Bakhvalov method iteration parameters are determined which take account of the results of the previous calculations. Chebyshev filters with weight are constructed. Iterative methods of the solution of equations containing compact operators are studied.
Extremal polynomials and methods of optimization of numerical algorithms
NASA Astrophysics Data System (ADS)
Lebedev, V. I.
2004-10-01
Chebyshëv-Markov-Bernstein-Szegö polynomials C_n(x) extremal on \\lbrack -1,1 \\rbrack with weight functions w(x)=(1+x)^\\alpha(1- x)^\\beta/\\sqrt{S_l(x)} where \\alpha,\\beta=0,\\frac12 and S_l(x)=\\prod_{k=1}^m(1-c_kT_{l_k}(x))>0 are considered. A universal formula for their representation in trigonometric form is presented. Optimal distributions of the nodes of the weighted interpolation and explicit quadrature formulae of Gauss, Markov, Lobatto, and Rado types are obtained for integrals with weight p(x)=w^2(x)(1-x^2)^{-1/2}. The parameters of optimal Chebyshëv iterative methods reducing the error optimally by comparison with the initial error defined in another norm are determined. For each stage of the Fedorenko-Bakhvalov method iteration parameters are determined which take account of the results of the previous calculations. Chebyshëv filters with weight are constructed. Iterative methods of the solution of equations containing compact operators are studied.
Numerical algorithms for finite element computations on arrays of microprocessors
NASA Technical Reports Server (NTRS)
Ortega, J. M.
1981-01-01
The development of a multicolored successive over relaxation (SOR) program for the finite element machine is discussed. The multicolored SOR method uses a generalization of the classical Red/Black grid point ordering for the SOR method. These multicolored orderings have the advantage of allowing the SOR method to be implemented as a Jacobi method, which is ideal for arrays of processors, but still enjoy the greater rate of convergence of the SOR method. The program solves a general second order self adjoint elliptic problem on a square region with Dirichlet boundary conditions, discretized by quadratic elements on triangular regions. For this general problem and discretization, six colors are necessary for the multicolored method to operate efficiently. The specific problem that was solved using the six color program was Poisson's equation; for Poisson's equation, three colors are necessary but six may be used. In general, the number of colors needed is a function of the differential equation, the region and boundary conditions, and the particular finite element used for the discretization.
Numerical Arc-Segmentation Algorithm For A Radio Conference
NASA Technical Reports Server (NTRS)
Whyte, W. A.; Ponchak, Denise S.; Heyward, A. O.; Zuzek, John E.; Spence, R. L.
1992-01-01
NASARC computer program developed from general planning principles and decisions of both sessions of World Administrative Radio Conference on Use of Geostationary Satellite Orbit and on Planning of Space Services Utilizing It (WARC-85 and WARC-88). Written to help countries satisfy requirements for nationwide fixed-satellite services from at least one orbital position within predetermined arc. Written in ANSI standard FORTRAN 77.
Evaluating numerical ODE/DAE methods, algorithms and software
NASA Astrophysics Data System (ADS)
Soderlind, Gustaf; Wang, Lina
2006-01-01
Until recently, the testing of ODE/DAE software has been limited to simple comparisons and benchmarking. The process of developing software from a mathematically specified method is complex: it entails constructing control structures and objectives, selecting iterative methods and termination criteria, choosing norms and many more decisions. Most software constructors have taken a heuristic approach to these design choices, and as a consequence two different implementations of the same method may show significant differences in performance. Yet it is common to try to deduce from software comparisons that one method is better than another. Such conclusions are not warranted, however, unless the testing is carried out under true ceteris paribus conditions. Moreover, testing is an empirical science and as such requires a formal test protocol; without it conclusions are questionable, invalid or even false.We argue that ODE/DAE software can be constructed and analyzed by proven, "standard" scientific techniques instead of heuristics. The goals are computational stability, reproducibility, and improved software quality. We also focus on different error criteria and norms, and discuss modifications to DASPK and RADAU5. Finally, some basic principles of a test protocol are outlined and applied to testing these codes on a variety of problems.
Generation of fast neturon spectra using an adaptive Gauss-Kronrod Quadrature algorithm
NASA Astrophysics Data System (ADS)
Triplett, Brian Scott
A lattice physics calculation is often the first step in analyzing a nuclear reactor. This calculation condenses regions of the reactor into average parameters (i.e., group constants) that can be used in coarser full-core, time-dependent calculations. This work presents a high-fidelity deterministic method for calculating the neutron energy spectrum in an infinite medium. The spectrum resulting from this calculation can be used to generate accurate group constants. This method includes a numerical algorithm based on Gauss-Kronrod Quadrature to determine the neutron transfer source to a given energy while controlling numerical error. This algorithm was implemented in a pointwise transport solver program called Pointwise Fast Spectrum Generator (PWFSG). PWFSG was benchmarked against the Monte Carlo program MCNP and another pointwise spectrum generation program, CENTRM, for a set of fast reactor infinite medium example cases. PWFSG showed good agreement with MCNP, yielding coefficients of determination above 98% for all example cases. In addition, PWFSG had 6 to 8 times lower flux estimation error than CENTRM in the cases examined. With run-times comparable to CENTRM, PWFSG represents a robust set of methods for generation of fast neutron spectra with increased accuracy without increased computational cost.
Asynchronous Event-Driven Particle Algorithms
Donev, A
2007-08-30
We present, in a unifying way, the main components of three asynchronous event-driven algorithms for simulating physical systems of interacting particles. The first example, hard-particle molecular dynamics (MD), is well-known. We also present a recently-developed diffusion kinetic Monte Carlo (DKMC) algorithm, as well as a novel stochastic molecular-dynamics algorithm that builds on the Direct Simulation Monte Carlo (DSMC). We explain how to effectively combine event-driven and classical time-driven handling, and discuss some promises and challenges for event-driven simulation of realistic physical systems.
Algorithms for computing the multivariable stability margin
NASA Technical Reports Server (NTRS)
Tekawy, Jonathan A.; Safonov, Michael G.; Chiang, Richard Y.
1989-01-01
Stability margin for multiloop flight control systems has become a critical issue, especially in highly maneuverable aircraft designs where there are inherent strong cross-couplings between the various feedback control loops. To cope with this issue, we have developed computer algorithms based on non-differentiable optimization theory. These algorithms have been developed for computing the Multivariable Stability Margin (MSM). The MSM of a dynamical system is the size of the smallest structured perturbation in component dynamics that will destabilize the system. These algorithms have been coded and appear to be reliable. As illustrated by examples, they provide the basis for evaluating the robustness and performance of flight control systems.
Three-dimensional numerical simulations of three-phase flows
NASA Astrophysics Data System (ADS)
Pavlidis, Dimitrios; Xie, Zhizhua; Salinas, Pablo; Pain, Chris; Matar, Omar
2015-11-01
The objective of this study is to investigate the fluid dynamics of three-dimensional three-phase flow problems, such as droplet impact on a gas-liquid interface and bubble rising through a liquid-liquid interface. An adaptive unstructured mesh modelling framework is employed here to study three-phase flow problems, which can modify and adapt unstructured meshes to better represent the underlying physics of multiphase problems and reduce computational effort without sacrificing accuracy. The numerical framework consists of a mixed control volume and finite element formulation, a `volume of fluid' type method for the interface capturing based on a compressive control volume advection method and second-order finite element methods, and a force-balanced algorithm for the surface tension implementation, minimising the spurious velocities often found in such flow simulations. The surface tension coefficient decomposition method has been employed to deal with surface tension pairing between different phases via a compositional approach. Numerical examples of some benchmark tests and the dynamics of three-phase flows are presented to demonstrate the ability of this method. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.
Hedging rule for reservoir operations: 2. A numerical model
NASA Astrophysics Data System (ADS)
You, Jiing-Yun; Cai, Ximing
2008-01-01
Optimization models for reservoir operation analysis usually use a heuristic algorithm to search for the hedging rule. This paper presents a method that derives a hedging rule from theoretical analysis (J.-Y. You and X. Cai, 2008) with an explicit two-period Markov hydrology model, a particular form of nonlinear utility function, and a given inflow probability distribution. The unique procedure is to embed hedging rule derivation based on the marginal utility principle into reservoir operation simulation. The simulation method embedded with the optimization principle for hedging rule derivation will avoid both the inaccuracy problem caused by trail and error with traditional simulation models and the computational difficulty ("curse of dimensionality") with optimization models. Results show utility improvement with the hedging policy compared to the standard operation policy (SOP), considering factors such as reservoir capacity, inflow level and uncertainty, price elasticity and discount rate. Following the theoretical analysis presented in the companion paper, the condition for hedging application, the starting water availability and ending water availability for hedging, is reexamined with the numerical example; the probabilistic performance of hedging and SOP regarding water supply reliability is compared; and some findings from the theoretical analysis are verified numerically.
Numerical study of Taylor bubbles with adaptive unstructured meshes
NASA Astrophysics Data System (ADS)
Xie, Zhihua; Pavlidis, Dimitrios; Percival, James; Pain, Chris; Matar, Omar; Hasan, Abbas; Azzopardi, Barry
2014-11-01
The Taylor bubble is a single long bubble which nearly fills the entire cross section of a liquid-filled circular tube. This type of bubble flow regime often occurs in gas-liquid slug flows in many industrial applications, including oil-and-gas production, chemical and nuclear reactors, and heat exchangers. The objective of this study is to investigate the fluid dynamics of Taylor bubbles rising in a vertical pipe filled with oils of extremely high viscosity (mimicking the ``heavy oils'' found in the oil-and-gas industry). A modelling and simulation framework is presented here which can modify and adapt anisotropic unstructured meshes to better represent the underlying physics of bubble rise and reduce the computational effort without sacrificing accuracy. The numerical framework consists of a mixed control-volume and finite-element formulation, a ``volume of fluid''-type method for the interface capturing based on a compressive control volume advection method, and a force-balanced algorithm for the surface tension implementation. Numerical examples of some benchmark tests and the dynamics of Taylor bubbles are presented to show the capability of this method. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.
Numerical modelling of compensation grouting above shallow tunnels
NASA Astrophysics Data System (ADS)
Wisser, C.; Augarde, C. E.; Burd, H. J.
2005-04-01
This paper describes the development of a numerical model for compensation grouting which is a useful technique for the protection of surface structures from the potentially damaging movements arising from tunnel construction. Pipes are inserted into the ground between the tunnel and the overlaying structure from an access shaft. Buildings on the surface are instrumented and movements are carefully monitored. Once the deformations exceed a certain Trigger Level, grout is injected into the ground to prevent damage. In the finite element model described here, compensation grouting is modelled by applying an internal pressure to zero-thickness interface elements embedded in the mesh. An observational algorithm is used, where the deformations of the surface are monitored and used to control the injection process. Example analyses of compensation grouting are given for three-dimensional tunnel construction underneath a greenfield site. Different strategies are used to control the injection process and their effectiveness in preventing surface movement is assessed. The numerical model is shown to replicate general behaviour expected in the field and is capable of modelling the control of ground surface movements at a greenfield site.
Libration Orbit Mission Design: Applications of Numerical & Dynamical Methods
NASA Technical Reports Server (NTRS)
Bauer, Frank (Technical Monitor); Folta, David; Beckman, Mark
2002-01-01
Sun-Earth libration point orbits serve as excellent locations for scientific investigations. These orbits are often selected to minimize environmental disturbances and maximize observing efficiency. Trajectory design in support of libration orbits is ever more challenging as more complex missions are envisioned in the next decade. Trajectory design software must be further enabled to incorporate better understanding of the libration orbit solution space and thus improve the efficiency and expand the capabilities of current approaches. The Goddard Space Flight Center (GSFC) is currently supporting multiple libration missions. This end-to-end support consists of mission operations, trajectory design, and control. It also includes algorithm and software development. The recently launched Microwave Anisotropy Probe (MAP) and upcoming James Webb Space Telescope (JWST) and Constellation-X missions are examples of the use of improved numerical methods for attaining constrained orbital parameters and controlling their dynamical evolution at the collinear libration points. This paper presents a history of libration point missions, a brief description of the numerical and dynamical design techniques including software used, and a sample of future GSFC mission designs.
User`s guide for the frequency domain algorithms in the LIFE2 fatigue analysis code
Sutherland, H.J.; Linker, R.L.
1993-10-01
The LIFE2 computer code is a fatigue/fracture analysis code that is specialized to the analysis of wind turbine components. The numerical formulation of the code uses a series of cycle count matrices to describe the cyclic stress states imposed upon the turbine. However, many structural analysis techniques yield frequency-domain stress spectra and a large body of experimental loads (stress) data is reported in the frequency domain. To permit the analysis of this class of data, a Fourier analysis is used to transform a frequency-domain spectrum to an equivalent time series suitable for rainflow counting by other modules in the code. This paper describes the algorithms incorporated into the code and their numerical implementation. Example problems are used to illustrate typical inputs and outputs.
Evolutionary development of path planning algorithms
Hage, M
1998-09-01
This paper describes the use of evolutionary software techniques for developing both genetic algorithms and genetic programs. Genetic algorithms are evolved to solve a specific problem within a fixed and known environment. While genetic algorithms can evolve to become very optimized for their task, they often are very specialized and perform poorly if the environment changes. Genetic programs are evolved through simultaneous training in a variety of environments to develop a more general controller behavior that operates in unknown environments. Performance of genetic programs is less optimal than a specially bred algorithm for an individual environment, but the controller performs acceptably under a wider variety of circumstances. The example problem addressed in this paper is evolutionary development of algorithms and programs for path planning in nuclear environments, such as Chernobyl.
MM Algorithms for Geometric and Signomial Programming.
Lange, Kenneth; Zhou, Hua
2014-02-01
This paper derives new algorithms for signomial programming, a generalization of geometric programming. The algorithms are based on a generic principle for optimization called the MM algorithm. In this setting, one can apply the geometric-arithmetic mean inequality and a supporting hyperplane inequality to create a surrogate function with parameters separated. Thus, unconstrained signomial programming reduces to a sequence of one-dimensional minimization problems. Simple examples demonstrate that the MM algorithm derived can converge to a boundary point or to one point of a continuum of minimum points. Conditions under which the minimum point is unique or occurs in the interior of parameter space are proved for geometric programming. Convergence to an interior point occurs at a linear rate. Finally, the MM framework easily accommodates equality and inequality constraints of signomial type. For the most important special case, constrained quadratic programming, the MM algorithm involves very simple updates. PMID:24634545
The theory of hybrid stochastic algorithms
Kennedy, A.D. . Supercomputer Computations Research Inst.)
1989-11-21
These lectures introduce the family of Hybrid Stochastic Algorithms for performing Monte Carlo calculations in Quantum Field Theory. After explaining the basic concepts of Monte Carlo integration we discuss the properties of Markov processes and one particularly useful example of them: the Metropolis algorithm. Building upon this framework we consider the Hybrid and Langevin algorithms from the viewpoint that they are approximate versions of the Hybrid Monte Carlo method; and thus we are led to consider Molecular Dynamics using the Leapfrog algorithm. The lectures conclude by reviewing recent progress in these areas, explaining higher-order integration schemes, the asymptotic large-volume behaviour of the various algorithms, and some simple exact results obtained by applying them to free field theory. It is attempted throughout to give simple yet correct proofs of the various results encountered. 38 refs.
MM Algorithms for Geometric and Signomial Programming
Lange, Kenneth; Zhou, Hua
2013-01-01
This paper derives new algorithms for signomial programming, a generalization of geometric programming. The algorithms are based on a generic principle for optimization called the MM algorithm. In this setting, one can apply the geometric-arithmetic mean inequality and a supporting hyperplane inequality to create a surrogate function with parameters separated. Thus, unconstrained signomial programming reduces to a sequence of one-dimensional minimization problems. Simple examples demonstrate that the MM algorithm derived can converge to a boundary point or to one point of a continuum of minimum points. Conditions under which the minimum point is unique or occurs in the interior of parameter space are proved for geometric programming. Convergence to an interior point occurs at a linear rate. Finally, the MM framework easily accommodates equality and inequality constraints of signomial type. For the most important special case, constrained quadratic programming, the MM algorithm involves very simple updates. PMID:24634545
Acceleration of iterative image restoration algorithms.
Biggs, D S; Andrews, M
1997-03-10
A new technique for the acceleration of iterative image restoration algorithms is proposed. The method is based on the principles of vector extrapolation and does not require the minimization of a cost function. The algorithm is derived and its performance illustrated with Richardson-Lucy (R-L) and maximum entropy (ME) deconvolution algorithms and the Gerchberg-Saxton magnitude and phase retrieval algorithms. Considerable reduction in restoration times is achieved with little image distortion or computational overhead per iteration. The speedup achieved is shown to increase with the number of iterations performed and is easily adapted to suit different algorithms. An example R-L restoration achieves an average speedup of 40 times after 250 iterations and an ME method 20 times after only 50 iterations. An expression for estimating the acceleration factor is derived and confirmed experimentally. Comparisons with other acceleration techniques in the literature reveal significant improvements in speed and stability. PMID:18250863
Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models
Yuan, Gonglin; Duan, Xiabin; Liu, Wenjie; Wang, Xiaoliang; Cui, Zengru; Sheng, Zhou
2015-01-01
Two new PRP conjugate Algorithms are proposed in this paper based on two modified PRP conjugate gradient methods: the first algorithm is proposed for solving unconstrained optimization problems, and the second algorithm is proposed for solving nonlinear equations. The first method contains two aspects of information: function value and gradient value. The two methods both possess some good properties, as follows: 1)βk ≥ 0 2) the search direction has the trust region property without the use of any line search method 3) the search direction has sufficient descent property without the use of any line search method. Under some suitable conditions, we establish the global convergence of the two algorithms. We conduct numerical experiments to evaluate our algorithms. The numerical results indicate that the first algorithm is effective and competitive for solving unconstrained optimization problems and that the second algorithm is effective for solving large-scale nonlinear equations. PMID:26502409
Wire Detection Algorithms for Navigation
NASA Technical Reports Server (NTRS)
Kasturi, Rangachar; Camps, Octavia I.
2002-01-01
In this research we addressed the problem of obstacle detection for low altitude rotorcraft flight. In particular, the problem of detecting thin wires in the presence of image clutter and noise was studied. Wires present a serious hazard to rotorcrafts. Since they are very thin, their detection early enough so that the pilot has enough time to take evasive action is difficult, as their images can be less than one or two pixels wide. Two approaches were explored for this purpose. The first approach involved a technique for sub-pixel edge detection and subsequent post processing, in order to reduce the false alarms. After reviewing the line detection literature, an algorithm for sub-pixel edge detection proposed by Steger was identified as having good potential to solve the considered task. The algorithm was tested using a set of images synthetically generated by combining real outdoor images with computer generated wire images. The performance of the algorithm was evaluated both, at the pixel and the wire levels. It was observed that the algorithm performs well, provided that the wires are not too thin (or distant) and that some post processing is performed to remove false alarms due to clutter. The second approach involved the use of an example-based learning scheme namely, Support Vector Machines. The purpose of this approach was to explore the feasibility of an example-based learning based approach for the task of detecting wires from their images. Support Vector Machines (SVMs) have emerged as a promising pattern classification tool and have been used in various applications. It was found that this approach is not suitable for very thin wires and of course, not suitable at all for sub-pixel thick wires. High dimensionality of the data as such does not present a major problem for SVMs. However it is desirable to have a large number of training examples especially for high dimensional data. The main difficulty in using SVMs (or any other example-based learning
The annealing robust backpropagation (ARBP) learning algorithm.
Chuang, C C; Su, S F; Hsiao, C C
2000-01-01
Multilayer feedforward neural networks are often referred to as universal approximators. Nevertheless, if the used training data are corrupted by large noise, such as outliers, traditional backpropagation learning schemes may not always come up with acceptable performance. Even though various robust learning algorithms have been proposed in the literature, those approaches still suffer from the initialization problem. In those robust learning algorithms, the so-called M-estimator is employed. For the M-estimation type of learning algorithms, the loss function is used to play the role in discriminating against outliers from the majority by degrading the effects of those outliers in learning. However, the loss function used in those algorithms may not correctly discriminate against those outliers. In this paper, the annealing robust backpropagation learning algorithm (ARBP) that adopts the annealing concept into the robust learning algorithms is proposed to deal with the problem of modeling under the existence of outliers. The proposed algorithm has been employed in various examples. Those results all demonstrated the superiority over other robust learning algorithms independent of outliers. In the paper, not only is the annealing concept adopted into the robust learning algorithms but also the annealing schedule k/t was found experimentally to achieve the best performance among other annealing schedules, where k is a constant and is the epoch number. PMID:18249835
Distilling the Verification Process for Prognostics Algorithms
NASA Technical Reports Server (NTRS)
Roychoudhury, Indranil; Saxena, Abhinav; Celaya, Jose R.; Goebel, Kai
2013-01-01
The goal of prognostics and health management (PHM) systems is to ensure system safety, and reduce downtime and maintenance costs. It is important that a PHM system is verified and validated before it can be successfully deployed. Prognostics algorithms are integral parts of PHM systems. This paper investigates a systematic process of verification of such prognostics algorithms. To this end, first, this paper distinguishes between technology maturation and product development. Then, the paper describes the verification process for a prognostics algorithm as it moves up to higher maturity levels. This process is shown to be an iterative process where verification activities are interleaved with validation activities at each maturation level. In this work, we adopt the concept of technology readiness levels (TRLs) to represent the different maturity levels of a prognostics algorithm. It is shown that at each TRL, the verification of a prognostics algorithm depends on verifying the different components of the algorithm according to the requirements laid out by the PHM system that adopts this prognostics algorithm. Finally, using simplified examples, the systematic process for verifying a prognostics algorithm is demonstrated as the prognostics algorithm moves up TRLs.
Overview of an Algorithm Plugin Package (APP)
NASA Astrophysics Data System (ADS)
Linda, M.; Tilmes, C.; Fleig, A. J.
2004-12-01
Science software that runs operationally is fundamentally different than software that runs on a scientist's desktop. There are complexities in hosting software for automated production that are necessary and significant. Identifying common aspects of these complexities can simplify algorithm integration. We use NASA's MODIS and OMI data production systems as examples. An Algorithm Plugin Package (APP) is science software that is combined with algorithm-unique elements that permit the algorithm to interface with, and function within, the framework of a data processing system. The framework runs algorithms operationally against large quantities of data. The extra algorithm-unique items are constrained by the design of the data processing system. APPs often include infrastructure that is vastly similar. When the common elements in APPs are identified and abstracted, the cost of APP development, testing, and maintenance will be reduced. This paper is an overview of the extra algorithm-unique pieces that are shared between MODAPS and OMIDAPS APPs. Our exploration of APP structure will help builders of other production systems identify their common elements and reduce algorithm integration costs. Our goal is to complete the development of a library of functions and a menu of implementation choices that reflect common needs of APPs. The library and menu will reduce the time and energy required for science developers to integrate algorithms into production systems.
Numerical recipes for mold filling simulation
Kothe, D.; Juric, D.; Lam, K.; Lally, B.
1998-07-01
Has the ability to simulate the filling of a mold progressed to a point where an appropriate numerical recipe achieves the desired results? If results are defined to be topological robustness, computational efficiency, quantitative accuracy, and predictability, all within a computational domain that faithfully represents complex three-dimensional foundry molds, then the answer unfortunately remains no. Significant interfacial flow algorithm developments have occurred over the last decade, however, that could bring this answer closer to maybe. These developments have been both evolutionary and revolutionary, will continue to transpire for the near future. Might they become useful numerical recipes for mold filling simulations? Quite possibly. Recent progress in algorithms for interface kinematics and dynamics, linear solution methods, computer science issues such as parallelization and object-oriented programming, high resolution Navier-Stokes (NS) solution methods, and unstructured mesh techniques, must all be pursued as possible paths toward higher fidelity mold filling simulations. A detailed exposition of these algorithmic developments is beyond the scope of this paper, hence the authors choose to focus here exclusively on algorithms for interface kinematics. These interface tracking algorithms are designed to model the movement of interfaces relative to a reference frame such as a fixed mesh. Current interface tracking algorithm choices are numerous, so is any one best suited for mold filling simulation? Although a clear winner is not (yet) apparent, pros and cons are given in the following brief, critical review. Highlighted are those outstanding interface tracking algorithm issues the authors feel can hamper the reliable modeling of today`s foundry mold filling processes.
NUMERICAL METHODS FOR THE SIMULATION OF HIGH INTENSITY HADRON SYNCHROTRONS.
LUCCIO, A.; D'IMPERIO, N.; MALITSKY, N.
2005-09-12
Numerical algorithms for PIC simulation of beam dynamics in a high intensity synchrotron on a parallel computer are presented. We introduce numerical solvers of the Laplace-Poisson equation in the presence of walls, and algorithms to compute tunes and twiss functions in the presence of space charge forces. The working code for the simulation here presented is SIMBAD, that can be run as stand alone or as part of the UAL (Unified Accelerator Libraries) package.
Comparison of two numerical techniques for aerodynamic model identification
NASA Technical Reports Server (NTRS)
Verhaegen, M. H.
1987-01-01
An algorithm, called the Minimal Residual QR algorithm, is presented to solve subset regression problems. It is shown that this scheme can be used as a numerically reliable implementation of the stepwise regression technique, which is widely used to identify an aerodynamic model from flight test data. This capability as well as the numerical superiority of this scheme over the stepwise regression technique is demonstrated in an experimental simulation study.
NASA Astrophysics Data System (ADS)
Taitano, W. T.; Chacón, L.; Simakov, A. N.; Molvig, K.
2015-09-01
In this study, we demonstrate a fully implicit algorithm for the multi-species, multidimensional Rosenbluth-Fokker-Planck equation which is exactly mass-, momentum-, and energy-conserving, and which preserves positivity. Unlike most earlier studies, we base our development on the Rosenbluth (rather than Landau) form of the Fokker-Planck collision operator, which reduces complexity while allowing for an optimal fully implicit treatment. Our discrete conservation strategy employs nonlinear constraints that force the continuum symmetries of the collision operator to be satisfied upon discretization. We converge the resulting nonlinear system iteratively using Jacobian-free Newton-Krylov methods, effectively preconditioned with multigrid methods for efficiency. Single- and multi-species numerical examples demonstrate the advertised accuracy properties of the scheme, and the superior algorithmic performance of our approach. In particular, the discretization approach is numerically shown to be second-order accurate in time and velocity space and to exhibit manifestly positive entropy production. That is, H-theorem behavior is indicated for all the examples we have tested. The solution approach is demonstrated to scale optimally with respect to grid refinement (with CPU time growing linearly with the number of mesh points), and timestep (showing very weak dependence of CPU time with time-step size). As a result, the proposed algorithm delivers several orders-of-magnitude speedup vs. explicit algorithms.
Algorithms For Integrating Nonlinear Differential Equations
NASA Technical Reports Server (NTRS)
Freed, A. D.; Walker, K. P.
1994-01-01
Improved algorithms developed for use in numerical integration of systems of nonhomogenous, nonlinear, first-order, ordinary differential equations. In comparison with integration algorithms, these algorithms offer greater stability and accuracy. Several asymptotically correct, thereby enabling retention of stability and accuracy when large increments of independent variable used. Accuracies attainable demonstrated by applying them to systems of nonlinear, first-order, differential equations that arise in study of viscoplastic behavior, spread of acquired immune-deficiency syndrome (AIDS) virus and predator/prey populations.
Library of Continuation Algorithms
2005-03-01
LOCA (Library of Continuation Algorithms) is scientific software written in C++ that provides advanced analysis tools for nonlinear systems. In particular, it provides parameter continuation algorithms. bifurcation tracking algorithms, and drivers for linear stability analysis. The algorithms are aimed at large-scale applications that use Newtons method for their nonlinear solve.
Two numerical models for landslide dynamic analysis
NASA Astrophysics Data System (ADS)
Hungr, Oldrich; McDougall, Scott
2009-05-01
Two microcomputer-based numerical models (Dynamic ANalysis (DAN) and three-dimensional model DAN (DAN3D)) have been developed and extensively used for analysis of landslide runout, specifically for the purposes of practical landslide hazard and risk assessment. The theoretical basis of both models is a system of depth-averaged governing equations derived from the principles of continuum mechanics. Original features developed specifically during this work include: an open rheological kernel; explicit use of tangential strain to determine the tangential stress state within the flowing sheet, which is both more realistic and beneficial to the stability of the model; orientation of principal tangential stresses parallel with the direction of motion; inclusion of the centripetal forces corresponding to the true curvature of the path in the motion direction and; the use of very simple and highly efficient free surface interpolation methods. Both models yield similar results when applied to the same sets of input data. Both algorithms are designed to work within the semi-empirical framework of the "equivalent fluid" approach. This approach requires selection of material rheology and calibration of input parameters through back-analysis of real events. Although approximate, it facilitates simple and efficient operation while accounting for the most important characteristics of extremely rapid landslides. The two models have been verified against several controlled laboratory experiments with known physical basis. A large number of back-analyses of real landslides of various types have also been carried out. One example is presented. Calibration patterns are emerging, which give a promise of predictive capability.
Translation and integration of numerical atomic orbitals in linear molecules.
Heinäsmäki, Sami
2014-02-14
We present algorithms for translation and integration of atomic orbitals for LCAO calculations in linear molecules. The method applies to arbitrary radial functions given on a numerical mesh. The algorithms are based on pseudospectral differentiation matrices in two dimensions and the corresponding two-dimensional Gaussian quadratures. As a result, multicenter overlap and Coulomb integrals can be evaluated effectively. PMID:24527905
Translation and integration of numerical atomic orbitals in linear molecules
NASA Astrophysics Data System (ADS)
Heinäsmäki, Sami
2014-02-01
We present algorithms for translation and integration of atomic orbitals for LCAO calculations in linear molecules. The method applies to arbitrary radial functions given on a numerical mesh. The algorithms are based on pseudospectral differentiation matrices in two dimensions and the corresponding two-dimensional Gaussian quadratures. As a result, multicenter overlap and Coulomb integrals can be evaluated effectively.
Birkhoffian symplectic algorithms derived from Hamiltonian symplectic algorithms
NASA Astrophysics Data System (ADS)
Xin-Lei, Kong; Hui-Bin, Wu; Feng-Xiang, Mei
2016-01-01
In this paper, we focus on the construction of structure preserving algorithms for Birkhoffian systems, based on existing symplectic schemes for the Hamiltonian equations. The key of the method is to seek an invertible transformation which drives the Birkhoffian equations reduce to the Hamiltonian equations. When there exists such a transformation, applying the corresponding inverse map to symplectic discretization of the Hamiltonian equations, then resulting difference schemes are verified to be Birkhoffian symplectic for the original Birkhoffian equations. To illustrate the operation process of the method, we construct several desirable algorithms for the linear damped oscillator and the single pendulum with linear dissipation respectively. All of them exhibit excellent numerical behavior, especially in preserving conserved quantities. Project supported by the National Natural Science Foundation of China (Grant No. 11272050), the Excellent Young Teachers Program of North China University of Technology (Grant No. XN132), and the Construction Plan for Innovative Research Team of North China University of Technology (Grant No. XN129).
Saccomani, Maria Pia; Audoly, Stefania; Bellu, Giuseppina; D'Angiò, Leontina
2010-04-01
DAISY (Differential Algebra for Identifiability of SYstems) is a recently developed computer algebra software tool which can be used to automatically check global identifiability of (linear and) nonlinear dynamic models described by differential equations involving polynomial or rational functions. Global identifiability is a fundamental prerequisite for model identification which is important not only for biological or medical systems but also for many physical and engineering systems derived from first principles. Lack of identifiability implies that the parameter estimation techniques may not fail but any obtained numerical estimates will be meaningless. The software does not require understanding of the underlying mathematical principles and can be used by researchers in applied fields with a minimum of mathematical background. We illustrate the DAISY software by checking the a priori global identifiability of two benchmark nonlinear models taken from the literature. The analysis of these two examples includes comparison with other methods and demonstrates how identifiability analysis is simplified by this tool. Thus we illustrate the identifiability analysis of other two examples, by including discussion of some specific aspects related to the role of observability and knowledge of initial conditions in testing identifiability and to the computational complexity of the software. The main focus of this paper is not on the description of the mathematical background of the algorithm, which has been presented elsewhere, but on illustrating its use and on some of its more interesting features. DAISY is available on the web site http://www.dei.unipd.it/ approximately pia/. PMID:20185123
Algorithm for Compressing Time-Series Data
NASA Technical Reports Server (NTRS)
Hawkins, S. Edward, III; Darlington, Edward Hugo
2012-01-01
An algorithm based on Chebyshev polynomials effects lossy compression of time-series data or other one-dimensional data streams (e.g., spectral data) that are arranged in blocks for sequential transmission. The algorithm was developed for use in transmitting data from spacecraft scientific instruments to Earth stations. In spite of its lossy nature, the algorithm preserves the information needed for scientific analysis. The algorithm is computationally simple, yet compresses data streams by factors much greater than two. The algorithm is not restricted to spacecraft or scientific uses: it is applicable to time-series data in general. The algorithm can also be applied to general multidimensional data that have been converted to time-series data, a typical example being image data acquired by raster scanning. However, unlike most prior image-data-compression algorithms, this algorithm neither depends on nor exploits the two-dimensional spatial correlations that are generally present in images. In order to understand the essence of this compression algorithm, it is necessary to understand that the net effect of this algorithm and the associated decompression algorithm is to approximate the original stream of data as a sequence of finite series of Chebyshev polynomials. For the purpose of this algorithm, a block of data or interval of time for which a Chebyshev polynomial series is fitted to the original data is denoted a fitting interval. Chebyshev approximation has two properties that make it particularly effective for compressing serial data streams with minimal loss of scientific information: The errors associated with a Chebyshev approximation are nearly uniformly distributed over the fitting interval (this is known in the art as the "equal error property"); and the maximum deviations of the fitted Chebyshev polynomial from the original data have the smallest possible values (this is known in the art as the "min-max property").
Numerical integration of asymptotic solutions of ordinary differential equations
NASA Technical Reports Server (NTRS)
Thurston, Gaylen A.
1989-01-01
Classical asymptotic analysis of ordinary differential equations derives approximate solutions that are numerically stable. However, the analysis also leads to tedious expansions in powers of the relevant parameter for a particular problem. The expansions are replaced with integrals that can be evaluated by numerical integration. The resulting numerical solutions retain the linear independence that is the main advantage of asymptotic solutions. Examples, including the Falkner-Skan equation from laminar boundary layer theory, illustrate the method of asymptotic analysis with numerical integration.
Aerocapture Guidance Algorithm Comparison Campaign
NASA Technical Reports Server (NTRS)
Rousseau, Stephane; Perot, Etienne; Graves, Claude; Masciarelli, James P.; Queen, Eric
2002-01-01
The aerocapture is a promising technique for the future human interplanetary missions. The Mars Sample Return was initially based on an insertion by aerocapture. A CNES orbiter Mars Premier was developed to demonstrate this concept. Mainly due to budget constraints, the aerocapture was cancelled for the French orbiter. A lot of studies were achieved during the three last years to develop and test different guidance algorithms (APC, EC, TPC, NPC). This work was shared between CNES and NASA, with a fruitful joint working group. To finish this study an evaluation campaign has been performed to test the different algorithms. The objective was to assess the robustness, accuracy, capability to limit the load, and the complexity of each algorithm. A simulation campaign has been specified and performed by CNES, with a similar activity on the NASA side to confirm the CNES results. This evaluation has demonstrated that the numerical guidance principal is not competitive compared to the analytical concepts. All the other algorithms are well adapted to guaranty the success of the aerocapture. The TPC appears to be the more robust, the APC the more accurate, and the EC appears to be a good compromise.
Gerchberg-Saxton algorithm applied to a translational-variant optical setup.
Amézquita-Orozco, Ricardo; Mejía-Barbosa, Yobani
2013-08-12
The standard Gerchberg-Saxton (GS) algorithm is normally used to find the phase (measured on two different parallel planes) of a propagating optical field (usually far-field propagation), given that the irradiance information on those planes is known. This is mostly used to calculate the modulation function of a phase mask so that when illuminated by a plane wave, it produces a known far-field irradiance distribution, or the equivalent, to calculate the phase mask to be used in a Fourier optical system so the desired pattern is obtained on the image plane. There are some extensions of the GS algorithm that can be used when the transformations that describe the optical setup are non-unitary, for example the Yang-Gu algorithm, but these are usually demonstrated using nonunitary translational-invariant optical systems. In this work a practical approach to use the GS algorithm is presented, where raytracing together with the Huygens-Fresnel principle are used to obtain the transformations that describe the optical system, so the calculation can be made when the field is propagated through a translational-variant optical system (TVOS) of arbitrary complexity. Some numerical results are shown for a system where a microscope objective composed by 5 lenses is used. PMID:23938827
A parallel second-order adaptive mesh algorithm for incompressible flow in porous media.
Pau, George S H; Almgren, Ann S; Bell, John B; Lijewski, Michael J
2009-11-28
In this paper, we present a second-order accurate adaptive algorithm for solving multi-phase, incompressible flow in porous media. We assume a multi-phase form of Darcy's law with relative permeabilities given as a function of the phase saturation. The remaining equations express conservation of mass for the fluid constituents. In this setting, the total velocity, defined to be the sum of the phase velocities, is divergence free. The basic integration method is based on a total-velocity splitting approach in which we solve a second-order elliptic pressure equation to obtain a total velocity. This total velocity is then used to recast component conservation equations as nonlinear hyperbolic equations. Our approach to adaptive refinement uses a nested hierarchy of logically rectangular grids with simultaneous refinement of the grids in both space and time. The integration algorithm on the grid hierarchy is a recursive procedure in which coarse grids are advanced in time, fine grids are advanced multiple steps to reach the same time as the coarse grids and the data at different levels are then synchronized. The single-grid algorithm is described briefly, but the emphasis here is on the time-stepping procedure for the adaptive hierarchy. Numerical examples are presented to demonstrate the algorithm's accuracy and convergence properties and to illustrate the behaviour of the method. PMID:19840985
A Parallel Second-Order Adaptive Mesh Algorithm for Incompressible Flow in Porous Media
Pau, George Shu Heng; Almgren, Ann S.; Bell, John B.; Lijewski, Michael J.
2008-04-01
In this paper we present a second-order accurate adaptive algorithm for solving multiphase, incompressible flows in porous media. We assume a multiphase form of Darcy's law with relative permeabilities given as a function of the phase saturation. The remaining equations express conservation of mass for the fluid constituents. In this setting the total velocity, defined to be the sum of the phase velocities, is divergence-free. The basic integration method is based on a total-velocity splitting approach in which we solve a second-order elliptic pressure equation to obtain a total velocity. This total velocity is then used to recast component conservation equations as nonlinear hyperbolic equations. Our approach to adaptive refinement uses a nested hierarchy of logically rectangular grids with simultaneous refinement of the grids in both space and time. The integration algorithm on the grid hierarchy is a recursive procedure in which coarse grids are advanced in time, fine grids areadvanced multiple steps to reach the same time as the coarse grids and the data atdifferent levels are then synchronized. The single grid algorithm is described briefly,but the emphasis here is on the time-stepping procedure for the adaptive hierarchy. Numerical examples are presented to demonstrate the algorithm's accuracy and convergence properties and to illustrate the behavior of the method.
Machnes, S.; Sander, U.; Glaser, S. J.; Schulte-Herbrueggen, T.; Fouquieres, P. de; Gruslys, A.; Schirmer, S.
2011-08-15
For paving the way to novel applications in quantum simulation, computation, and technology, increasingly large quantum systems have to be steered with high precision. It is a typical task amenable to numerical optimal control to turn the time course of pulses, i.e., piecewise constant control amplitudes, iteratively into an optimized shape. Here, we present a comparative study of optimal-control algorithms for a wide range of finite-dimensional applications. We focus on the most commonly used algorithms: GRAPE methods which update all controls concurrently, and Krotov-type methods which do so sequentially. Guidelines for their use are given and open research questions are pointed out. Moreover, we introduce a unifying algorithmic framework, DYNAMO (dynamic optimization platform), designed to provide the quantum-technology community with a convenient matlab-based tool set for optimal control. In addition, it gives researchers in optimal-control techniques a framework for benchmarking and comparing newly proposed algorithms with the state of the art. It allows a mix-and-match approach with various types of gradients, update and step-size methods as well as subspace choices. Open-source code including examples is made available at http://qlib.info.
NASA Astrophysics Data System (ADS)
Peddle, Derek R.; Ferguson, David T.
2002-02-01
The classification of integrated data from multiple sources represents a powerful and synergistic approach to deriving important geoscience information from diverse data sets. These data often reside on Geographical Information Systems (GIS) and encompass a variety of sources and properties such as thematic data, remote sensing imagery, topographic data, or environmental map information in raster or vector formats in point, line or polygon representations. Multisource data classification algorithms often require the specification of user-defined parameters to guide data processing, however, these inputs can be numerous or difficult to determine, resulting in less than optimal results. This paper presents three methods for optimising the specification of user-defined inputs based on different levels of empirical testing and computational efficiency: (i) Exhaustive search by recursion, (ii) isolated independent search, and (iii) sequential dependent search. These methods have been implemented in an optimisation software program which is suitable for use with any data classification or analysis algorithm for which user specified inputs are required. In an example application of classifying sub-Arctic mountain permafrost in the Yukon Territory of northern Canada, these optimisation methods were compared in terms of classification accuracy, memory resources and run-time performance using a multisource evidential reasoning classifier, which has been shown to provide improved classification of multisource data compared to neural network, linear discriminant analysis, and maximum likelihood approaches. Using the optimisation software, higher evidential reasoning classification accuracies were achieved without excessive additional computing time. A two-stage approach was recommended for general use to ensure maximum efficiency. It was concluded that these methods are applicable to a wide variety of classification and data analysis algorithms and represent a useful approach
Wavelet Algorithms for Illumination Computations
NASA Astrophysics Data System (ADS)
Schroder, Peter
One of the core problems of computer graphics is the computation of the equilibrium distribution of light in a scene. This distribution is given as the solution to a Fredholm integral equation of the second kind involving an integral over all surfaces in the scene. In the general case such solutions can only be numerically approximated, and are generally costly to compute, due to the geometric complexity of typical computer graphics scenes. For this computation both Monte Carlo and finite element techniques (or hybrid approaches) are typically used. A simplified version of the illumination problem is known as radiosity, which assumes that all surfaces are diffuse reflectors. For this case hierarchical techniques, first introduced by Hanrahan et al. (32), have recently gained prominence. The hierarchical approaches lead to an asymptotic improvement when only finite precision is required. The resulting algorithms have cost proportional to O(k^2 + n) versus the usual O(n^2) (k is the number of input surfaces, n the number of finite elements into which the input surfaces are meshed). Similarly a hierarchical technique has been introduced for the more general radiance problem (which allows glossy reflectors) by Aupperle et al. (6). In this dissertation we show the equivalence of these hierarchical techniques to the use of a Haar wavelet basis in a general Galerkin framework. By so doing, we come to a deeper understanding of the properties of the numerical approximations used and are able to extend the hierarchical techniques to higher orders. In particular, we show the correspondence of the geometric arguments underlying hierarchical methods to the theory of Calderon-Zygmund operators and their sparse realization in wavelet bases. The resulting wavelet algorithms for radiosity and radiance are analyzed and numerical results achieved with our implementation are reported. We find that the resulting algorithms achieve smaller and smoother errors at equivalent work.
A Collaborative Recommend Algorithm Based on Bipartite Community
Fu, Yuchen; Liu, Quan; Cui, Zhiming
2014-01-01
The recommendation algorithm based on bipartite network is superior to traditional methods on accuracy and diversity, which proves that considering the network topology of recommendation systems could help us to improve recommendation results. However, existing algorithms mainly focus on the overall topology structure and those local characteristics could also play an important role in collaborative recommend processing. Therefore, on account of data characteristics and application requirements of collaborative recommend systems, we proposed a link community partitioning algorithm based on the label propagation and a collaborative recommendation algorithm based on the bipartite community. Then we designed numerical experiments to verify the algorithm validity under benchmark and real database. PMID:24955393
A Unified Differential Evolution Algorithm for Global Optimization
Qiang, Ji; Mitchell, Chad
2014-06-24
Abstract?In this paper, we propose a new unified differential evolution (uDE) algorithm for single objective global optimization. Instead of selecting among multiple mutation strategies as in the conventional differential evolution algorithm, this algorithm employs a single equation as the mutation strategy. It has the virtue of mathematical simplicity and also provides users the flexbility for broader exploration of different mutation strategies. Numerical tests using twelve basic unimodal and multimodal functions show promising performance of the proposed algorithm in comparison to convential differential evolution algorithms.
Faster Algorithms on Branch and Clique Decompositions
NASA Astrophysics Data System (ADS)
Bodlaender, Hans L.; van Leeuwen, Erik Jan; van Rooij, Johan M. M.; Vatshelle, Martin
We combine two techniques recently introduced to obtain faster dynamic programming algorithms for optimization problems on graph decompositions. The unification of generalized fast subset convolution and fast matrix multiplication yields significant improvements to the running time of previous algorithms for several optimization problems. As an example, we give an O^{*}(3^{ω/2k}) time algorithm for Minimum Dominating Set on graphs of branchwidth k, improving on the previous O *(4 k ) algorithm. Here ω is the exponent in the running time of the best matrix multiplication algorithm (currently ω< 2.376). For graphs of cliquewidth k, we improve from O *(8 k ) to O *(4 k ). We also obtain an algorithm for counting the number of perfect matchings of a graph, given a branch decomposition of width k, that runs in time O^{*}(2^{ω/2k}). Generalizing these approaches, we obtain faster algorithms for all so-called [ρ,σ]-domination problems on branch decompositions if ρ and σ are finite or cofinite. The algorithms presented in this paper either attain or are very close to natural lower bounds for these problems.
Numerical simulation of steady supersonic flow. [spatial marching
NASA Technical Reports Server (NTRS)
Schiff, L. B.; Steger, J. L.
1981-01-01
A noniterative, implicit, space-marching, finite-difference algorithm was developed for the steady thin-layer Navier-Stokes equations in conservation-law form. The numerical algorithm is applicable to steady supersonic viscous flow over bodies of arbitrary shape. In addition, the same code can be used to compute supersonic inviscid flow or three-dimensional boundary layers. Computed results from two-dimensional and three-dimensional versions of the numerical algorithm are in good agreement with those obtained from more costly time-marching techniques.
Neural Network Algorithm for Particle Loading
J. L. V. Lewandowski
2003-04-25
An artificial neural network algorithm for continuous minimization is developed and applied to the case of numerical particle loading. It is shown that higher-order moments of the probability distribution function can be efficiently renormalized using this technique. A general neural network for the renormalization of an arbitrary number of moments is given.
A Low-Stress Algorithm for Fractions
ERIC Educational Resources Information Center
Ruais, Ronald W.
1978-01-01
An algorithm is given for the addition and subtraction of fractions based on dividing the sum of diagonal numerator and denominator products by the product of the denominators. As an explanation of the teaching method, activities used in teaching are demonstrated. (MN)
Fundamental Travel Demand Model Example
NASA Technical Reports Server (NTRS)
Hanssen, Joel
2010-01-01
Instances of transportation models are abundant and detailed "how to" instruction is available in the form of transportation software help documentation. The purpose of this paper is to look at the fundamental inputs required to build a transportation model by developing an example passenger travel demand model. The example model reduces the scale to a manageable size for the purpose of illustrating the data collection and analysis required before the first step of the model begins. This aspect of the model development would not reasonably be discussed in software help documentation (it is assumed the model developer comes prepared). Recommendations are derived from the example passenger travel demand model to suggest future work regarding the data collection and analysis required for a freight travel demand model.
QPSO-Based Adaptive DNA Computing Algorithm
Karakose, Mehmet; Cigdem, Ugur
2013-01-01
DNA (deoxyribonucleic acid) computing that is a new computation model based on DNA molecules for information storage has been increasingly used for optimization and data analysis in recent years. However, DNA computing algorithm has some limitations in terms of convergence speed, adaptability, and effectiveness. In this paper, a new approach for improvement of DNA computing is proposed. This new approach aims to perform DNA computing algorithm with adaptive parameters towards the desired goal using quantum-behaved particle swarm optimization (QPSO). Some contributions provided by the proposed QPSO based on adaptive DNA computing algorithm are as follows: (1) parameters of population size, crossover rate, maximum number of operations, enzyme and virus mutation rate, and fitness function of DNA computing algorithm are simultaneously tuned for adaptive process, (2) adaptive algorithm is performed using QPSO algorithm for goal-driven progress, faster operation, and flexibility in data, and (3) numerical realization of DNA computing algorithm with proposed approach is implemented in system identification. Two experiments with different systems were carried out to evaluate the performance of the proposed approach with comparative results. Experimental results obtained with Matlab and FPGA demonstrate ability to provide effective optimization, considerable convergence speed, and high accuracy according to DNA computing algorithm. PMID:23935409
Wu, Yu-Shu; Forsyth, Peter A.
2006-04-13
Numerical issues with modeling transport of chemicals or solute in realistic large-scale subsurface systems have been a serious concern, even with the continual progress made in both simulation algorithms and computer hardware in the past few decades. The problem remains and becomes even more difficult when dealing with chemical transport in a multiphase flow system using coarse, multidimensional regular or irregular grids, because of the known effects of numerical dispersion associated with moving plume fronts. We have investigated several total-variation-diminishing (TVD) or flux-limiter schemes by implementing and testing them in the T2R3D code, one of the TOUGH2 family of codes. The objectives of this paper are (1) to investigate the possibility of applying these TVD schemes, using multi-dimensional irregular unstructured grids, and (2) to help select more accurate spatial averaging methods for simulating chemical transport given a numerical grid or spatial discretization. We present an application example to show that such TVD schemes are able to effectively reduce numerical dispersion.
Numerical Aerodynamic Simulation
NASA Technical Reports Server (NTRS)
1989-01-01
An overview of historical and current numerical aerodynamic simulation (NAS) is given. The capabilities and goals of the Numerical Aerodynamic Simulation Facility are outlined. Emphasis is given to numerical flow visualization and its applications to structural analysis of aircraft and spacecraft bodies. The uses of NAS in computational chemistry, engine design, and galactic evolution are mentioned.
Numerical Boundary Condition Procedures
NASA Technical Reports Server (NTRS)
1981-01-01
Topics include numerical procedures for treating inflow and outflow boundaries, steady and unsteady discontinuous surfaces, far field boundaries, and multiblock grids. In addition, the effects of numerical boundary approximations on stability, accuracy, and convergence rate of the numerical solution are discussed.