NASA Astrophysics Data System (ADS)
Leblanc, James
In this talk we present numerical results for ground state and excited state properties (energies, double occupancies, and Matsubara-axis self energies) of the single-orbital Hubbard model on a two-dimensional square lattice. In order to provide an assessment of our ability to compute accurate results in the thermodynamic limit we employ numerous methods including auxiliary field quantum Monte Carlo, bare and bold-line diagrammatic Monte Carlo, method of dual fermions, density matrix embedding theory, density matrix renormalization group, dynamical cluster approximation, diffusion Monte Carlo within a fixed node approximation, unrestricted coupled cluster theory, and multireference projected Hartree-Fock. We illustrate cases where agreement between different methods is obtained in order to establish benchmark results that should be useful in the validation of future results.
NASA Astrophysics Data System (ADS)
LeBlanc, J. P. F.; Antipov, Andrey E.; Becca, Federico; Bulik, Ireneusz W.; Chan, Garnet Kin-Lic; Chung, Chia-Min; Deng, Youjin; Ferrero, Michel; Henderson, Thomas M.; Jiménez-Hoyos, Carlos A.; Kozik, E.; Liu, Xuan-Wen; Millis, Andrew J.; Prokof'ev, N. V.; Qin, Mingpu; Scuseria, Gustavo E.; Shi, Hao; Svistunov, B. V.; Tocchio, Luca F.; Tupitsyn, I. S.; White, Steven R.; Zhang, Shiwei; Zheng, Bo-Xiao; Zhu, Zhenyue; Gull, Emanuel; Simons Collaboration on the Many-Electron Problem
2015-10-01
Numerical results for ground-state and excited-state properties (energies, double occupancies, and Matsubara-axis self-energies) of the single-orbital Hubbard model on a two-dimensional square lattice are presented, in order to provide an assessment of our ability to compute accurate results in the thermodynamic limit. Many methods are employed, including auxiliary-field quantum Monte Carlo, bare and bold-line diagrammatic Monte Carlo, method of dual fermions, density matrix embedding theory, density matrix renormalization group, dynamical cluster approximation, diffusion Monte Carlo within a fixed-node approximation, unrestricted coupled cluster theory, and multireference projected Hartree-Fock methods. Comparison of results obtained by different methods allows for the identification of uncertainties and systematic errors. The importance of extrapolation to converged thermodynamic-limit values is emphasized. Cases where agreement between different methods is obtained establish benchmark results that may be useful in the validation of new approaches and the improvement of existing methods.
Numerical Algorithms Based on Biorthogonal Wavelets
NASA Technical Reports Server (NTRS)
Ponenti, Pj.; Liandrat, J.
1996-01-01
Wavelet bases are used to generate spaces of approximation for the resolution of bidimensional elliptic and parabolic problems. Under some specific hypotheses relating the properties of the wavelets to the order of the involved operators, it is shown that an approximate solution can be built. This approximation is then stable and converges towards the exact solution. It is designed such that fast algorithms involving biorthogonal multi resolution analyses can be used to resolve the corresponding numerical problems. Detailed algorithms are provided as well as the results of numerical tests on partial differential equations defined on the bidimensional torus.
LeBlanc, J. P. F.; Antipov, Andrey E.; Becca, Federico; Bulik, Ireneusz W.; Chan, Garnet Kin-Lic; Chung, Chia -Min; Deng, Youjin; Ferrero, Michel; Henderson, Thomas M.; Jiménez-Hoyos, Carlos A.; Kozik, E.; Liu, Xuan -Wen; Millis, Andrew J.; Prokof’ev, N. V.; Qin, Mingpu; Scuseria, Gustavo E.; Shi, Hao; Svistunov, B. V.; Tocchio, Luca F.; Tupitsyn, I. S.; White, Steven R.; Zhang, Shiwei; Zheng, Bo -Xiao; Zhu, Zhenyue; Gull, Emanuel
2015-12-14
Numerical results for ground-state and excited-state properties (energies, double occupancies, and Matsubara-axis self-energies) of the single-orbital Hubbard model on a two-dimensional square lattice are presented, in order to provide an assessment of our ability to compute accurate results in the thermodynamic limit. Many methods are employed, including auxiliary-field quantum Monte Carlo, bare and bold-line diagrammatic Monte Carlo, method of dual fermions, density matrix embedding theory, density matrix renormalization group, dynamical cluster approximation, diffusion Monte Carlo within a fixed-node approximation, unrestricted coupled cluster theory, and multireference projected Hartree-Fock methods. Comparison of results obtained by different methods allows for the identification of uncertainties and systematic errors. The importance of extrapolation to converged thermodynamic-limit values is emphasized. Furthermore, cases where agreement between different methods is obtained establish benchmark results that may be useful in the validation of new approaches and the improvement of existing methods.
LeBlanc, J. P. F.; Antipov, Andrey E.; Becca, Federico; Bulik, Ireneusz W.; Chan, Garnet Kin-Lic; Chung, Chia -Min; Deng, Youjin; Ferrero, Michel; Henderson, Thomas M.; Jiménez-Hoyos, Carlos A.; et al
2015-12-14
Numerical results for ground-state and excited-state properties (energies, double occupancies, and Matsubara-axis self-energies) of the single-orbital Hubbard model on a two-dimensional square lattice are presented, in order to provide an assessment of our ability to compute accurate results in the thermodynamic limit. Many methods are employed, including auxiliary-field quantum Monte Carlo, bare and bold-line diagrammatic Monte Carlo, method of dual fermions, density matrix embedding theory, density matrix renormalization group, dynamical cluster approximation, diffusion Monte Carlo within a fixed-node approximation, unrestricted coupled cluster theory, and multireference projected Hartree-Fock methods. Comparison of results obtained by different methods allows for the identification ofmore » uncertainties and systematic errors. The importance of extrapolation to converged thermodynamic-limit values is emphasized. Furthermore, cases where agreement between different methods is obtained establish benchmark results that may be useful in the validation of new approaches and the improvement of existing methods.« less
Stochastic Formal Correctness of Numerical Algorithms
NASA Technical Reports Server (NTRS)
Daumas, Marc; Lester, David; Martin-Dorel, Erik; Truffert, Annick
2009-01-01
We provide a framework to bound the probability that accumulated errors were never above a given threshold on numerical algorithms. Such algorithms are used for example in aircraft and nuclear power plants. This report contains simple formulas based on Levy's and Markov's inequalities and it presents a formal theory of random variables with a special focus on producing concrete results. We selected four very common applications that fit in our framework and cover the common practices of systems that evolve for a long time. We compute the number of bits that remain continuously significant in the first two applications with a probability of failure around one out of a billion, where worst case analysis considers that no significant bit remains. We are using PVS as such formal tools force explicit statement of all hypotheses and prevent incorrect uses of theorems.
Numerical taxonomy on data: Experimental results
Cohen, J.; Farach, M.
1997-12-01
The numerical taxonomy problems associated with most of the optimization criteria described above are NP - hard [3, 5, 1, 4]. In, the first positive result for numerical taxonomy was presented. They showed that if e is the distance to the closest tree metric under the L{sub {infinity}} norm. i.e., e = min{sub T} [L{sub {infinity}} (T-D)], then it is possible to construct a tree T such that L{sub {infinity}} (T-D) {le} 3e, that is, they gave a 3-approximation algorithm for this problem. We will refer to this algorithm as the Single Pivot (SP) heuristic.
Parallel processing of numerical transport algorithms
Wienke, B.R.; Hiromoto, R.E.
1984-01-01
The multigroup, discrete ordinates representation for the linear transport equation enjoys widespread computational use and popularity. Serial solution schemes and numerical algorithms developed over the years provide a timely framework for parallel extension. On the Denelcor HEP, we investigate the parallel structure and extension of a number of standard S/sub n/ approaches. Concurrent inner sweeps, coupled acceleration techniques, synchronized inner-outer loops, and chaotic iteration are described, and results of computations are contrasted. The multigroup representation and serial iteration methods are also detailed. The basic iterative S/sub n/ method lends itself to parallel tasking, portably affording an effective medium for performing transport calculations on future architectures. This analysis represents a first attempt to extend serial S/sub n/ algorithms to parallel environments and provides good baseline estimates on ease of parallel implementation, relative algorithm efficiency, comparative speedup, and some future directions. We find basic inner-outer and chaotic iteration strategies both easily support comparably high degrees of parallelism. Both accommodate parallel rebalance and diffusion acceleration and appear as robust and viable parallel techniques for S/sub n/ production work.
Numerical comparison of Kalman filter algorithms - Orbit determination case study
NASA Technical Reports Server (NTRS)
Bierman, G. J.; Thornton, C. L.
1977-01-01
Numerical characteristics of various Kalman filter algorithms are illustrated with a realistic orbit determination study. The case study of this paper highlights the numerical deficiencies of the conventional and stabilized Kalman algorithms. Computational errors associated with these algorithms are found to be so large as to obscure important mismodeling effects and thus cause misleading estimates of filter accuracy. The positive result of this study is that the U-D covariance factorization algorithm has excellent numerical properties and is computationally efficient, having CPU costs that differ negligibly from the conventional Kalman costs. Accuracies of the U-D filter using single precision arithmetic consistently match the double precision reference results. Numerical stability of the U-D filter is further demonstrated by its insensitivity to variations in the a priori statistics.
A Numerical Instability in an ADI Algorithm for Gyrokinetics
E.A. Belli; G.W. Hammett
2004-12-17
We explore the implementation of an Alternating Direction Implicit (ADI) algorithm for a gyrokinetic plasma problem and its resulting numerical stability properties. This algorithm, which uses a standard ADI scheme to divide the field solve from the particle distribution function advance, has previously been found to work well for certain plasma kinetic problems involving one spatial and two velocity dimensions, including collisions and an electric field. However, for the gyrokinetic problem we find a severe stability restriction on the time step. Furthermore, we find that this numerical instability limitation also affects some other algorithms, such as a partially implicit Adams-Bashforth algorithm, where the parallel motion operator v{sub {parallel}} {partial_derivative}/{partial_derivative}z is treated implicitly and the field terms are treated with an Adams-Bashforth explicit scheme. Fully explicit algorithms applied to all terms can be better at long wavelengths than these ADI or partially implicit algorithms.
Results from Numerical General Relativity
NASA Technical Reports Server (NTRS)
Baker, John G.
2011-01-01
For several years numerical simulations have been revealing the details of general relativity's predictions for the dynamical interactions of merging black holes. I will review what has been learned of the rich phenomenology of these mergers and the resulting gravitational wave signatures. These wave forms provide a potentially observable record of the powerful astronomical events, a central target of gravitational wave astronomy. Asymmetric radiation can produce a thrust on the system which may accelerate the single black hole resulting from the merger to high relative velocity.
A hybrid artificial bee colony algorithm for numerical function optimization
NASA Astrophysics Data System (ADS)
Alqattan, Zakaria N.; Abdullah, Rosni
2015-02-01
Artificial Bee Colony (ABC) algorithm is one of the swarm intelligence algorithms; it has been introduced by Karaboga in 2005. It is a meta-heuristic optimization search algorithm inspired from the intelligent foraging behavior of the honey bees in nature. Its unique search process made it as one of the most competitive algorithm with some other search algorithms in the area of optimization, such as Genetic algorithm (GA) and Particle Swarm Optimization (PSO). However, the ABC performance of the local search process and the bee movement or the solution improvement equation still has some weaknesses. The ABC is good in avoiding trapping at the local optimum but it spends its time searching around unpromising random selected solutions. Inspired by the PSO, we propose a Hybrid Particle-movement ABC algorithm called HPABC, which adapts the particle movement process to improve the exploration of the original ABC algorithm. Numerical benchmark functions were used in order to experimentally test the HPABC algorithm. The results illustrate that the HPABC algorithm can outperform the ABC algorithm in most of the experiments (75% better in accuracy and over 3 times faster).
An efficient cuckoo search algorithm for numerical function optimization
NASA Astrophysics Data System (ADS)
Ong, Pauline; Zainuddin, Zarita
2013-04-01
Cuckoo search algorithm which reproduces the breeding strategy of the best known brood parasitic bird, the cuckoos has demonstrated its superiority in obtaining the global solution for numerical optimization problems. However, the involvement of fixed step approach in its exploration and exploitation behavior might slow down the search process considerably. In this regards, an improved cuckoo search algorithm with adaptive step size adjustment is introduced and its feasibility on a variety of benchmarks is validated. The obtained results show that the proposed scheme outperforms the standard cuckoo search algorithm in terms of convergence characteristic while preserving the fascinating features of the original method.
A novel bee swarm optimization algorithm for numerical function optimization
NASA Astrophysics Data System (ADS)
Akbari, Reza; Mohammadi, Alireza; Ziarati, Koorush
2010-10-01
The optimization algorithms which are inspired from intelligent behavior of honey bees are among the most recently introduced population based techniques. In this paper, a novel algorithm called bee swarm optimization, or BSO, and its two extensions for improving its performance are presented. The BSO is a population based optimization technique which is inspired from foraging behavior of honey bees. The proposed approach provides different patterns which are used by the bees to adjust their flying trajectories. As the first extension, the BSO algorithm introduces different approaches such as repulsion factor and penalizing fitness (RP) to mitigate the stagnation problem. Second, to maintain efficiently the balance between exploration and exploitation, time-varying weights (TVW) are introduced into the BSO algorithm. The proposed algorithm (BSO) and its two extensions (BSO-RP and BSO-RPTVW) are compared with existing algorithms which are based on intelligent behavior of honey bees, on a set of well known numerical test functions. The experimental results show that the BSO algorithms are effective and robust; produce excellent results, and outperform other algorithms investigated in this consideration.
Adaptive Numerical Algorithms in Space Weather Modeling
NASA Technical Reports Server (NTRS)
Toth, Gabor; vanderHolst, Bart; Sokolov, Igor V.; DeZeeuw, Darren; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Nakib, Dalal; Powell, Kenneth G.; Stout, Quentin F.; Glocer, Alex; Ma, Ying-Juan; Opher, Merav
2010-01-01
Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different physics in different domains. A multi-physics system can be modeled by a software framework comprising of several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solar wind Roe Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamics (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit numerical
Adaptive numerical algorithms in space weather modeling
NASA Astrophysics Data System (ADS)
Tóth, Gábor; van der Holst, Bart; Sokolov, Igor V.; De Zeeuw, Darren L.; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Najib, Dalal; Powell, Kenneth G.; Stout, Quentin F.; Glocer, Alex; Ma, Ying-Juan; Opher, Merav
2012-02-01
Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different relevant physics in different domains. A multi-physics system can be modeled by a software framework comprising several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solarwind Roe-type Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamic (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit
An algorithm for the numerical solution of linear differential games
Polovinkin, E S; Ivanov, G E; Balashov, M V; Konstantinov, R V; Khorev, A V
2001-10-31
A numerical algorithm for the construction of stable Krasovskii bridges, Pontryagin alternating sets, and also of piecewise program strategies solving two-person linear differential (pursuit or evasion) games on a fixed time interval is developed on the basis of a general theory. The aim of the first player (the pursuer) is to hit a prescribed target (terminal) set by the phase vector of the control system at the prescribed time. The aim of the second player (the evader) is the opposite. A description of numerical algorithms used in the solution of differential games of the type under consideration is presented and estimates of the errors resulting from the approximation of the game sets by polyhedra are presented.
Research on numerical algorithms for large space structures
NASA Technical Reports Server (NTRS)
Denman, E. D.
1982-01-01
Numerical algorithms for large space structures were investigated with particular emphasis on decoupling method for analysis and design. Numerous aspects of the analysis of large systems ranging from the algebraic theory to lambda matrices to identification algorithms were considered. A general treatment of the algebraic theory of lambda matrices is presented and the theory is applied to second order lambda matrices.
Linsen, Sarah; Torbeyns, Joke; Verschaffel, Lieven; Reynvoet, Bert; De Smedt, Bert
2016-03-01
There are two well-known computation methods for solving multi-digit subtraction items, namely mental and algorithmic computation. It has been contended that mental and algorithmic computation differentially rely on numerical magnitude processing, an assumption that has already been examined in children, but not yet in adults. Therefore, in this study, we examined how numerical magnitude processing was associated with mental and algorithmic computation, and whether this association with numerical magnitude processing was different for mental versus algorithmic computation. We also investigated whether the association between numerical magnitude processing and mental and algorithmic computation differed for measures of symbolic versus nonsymbolic numerical magnitude processing. Results showed that symbolic, and not nonsymbolic, numerical magnitude processing was associated with mental computation, but not with algorithmic computation. Additional analyses showed, however, that the size of this association with symbolic numerical magnitude processing was not significantly different for mental and algorithmic computation. We also tried to further clarify the association between numerical magnitude processing and complex calculation by also including relevant arithmetical subskills, i.e. arithmetic facts, needed for complex calculation that are also known to be dependent on numerical magnitude processing. Results showed that the associations between symbolic numerical magnitude processing and mental and algorithmic computation were fully explained by individual differences in elementary arithmetic fact knowledge. PMID:26914586
A Polynomial Time, Numerically Stable Integer Relation Algorithm
NASA Technical Reports Server (NTRS)
Ferguson, Helaman R. P.; Bailey, Daivd H.; Kutler, Paul (Technical Monitor)
1998-01-01
Let x = (x1, x2...,xn be a vector of real numbers. X is said to possess an integer relation if there exist integers a(sub i) not all zero such that a1x1 + a2x2 + ... a(sub n)Xn = 0. Beginning in 1977 several algorithms (with proofs) have been discovered to recover the a(sub i) given x. The most efficient of these existing integer relation algorithms (in terms of run time and the precision required of the input) has the drawback of being very unstable numerically. It often requires a numeric precision level in the thousands of digits to reliably recover relations in modest-sized test problems. We present here a new algorithm for finding integer relations, which we have named the "PSLQ" algorithm. It is proved in this paper that the PSLQ algorithm terminates with a relation in a number of iterations that is bounded by a polynomial in it. Because this algorithm employs a numerically stable matrix reduction procedure, it is free from the numerical difficulties, that plague other integer relation algorithms. Furthermore, its stability admits an efficient implementation with lower run times oil average than other algorithms currently in Use. Finally, this stability can be used to prove that relation bounds obtained from computer runs using this algorithm are numerically accurate.
New Results in Astrodynamics Using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Coverstone-Carroll, V.; Hartmann, J. W.; Williams, S. N.; Mason, W. J.
1998-01-01
Generic algorithms have gained popularity as an effective procedure for obtaining solutions to traditionally difficult space mission optimization problems. In this paper, a brief survey of the use of genetic algorithms to solve astrodynamics problems is presented and is followed by new results obtained from applying a Pareto genetic algorithm to the optimization of low-thrust interplanetary spacecraft missions.
Research on numerical algorithms for large space structures
NASA Technical Reports Server (NTRS)
Denman, E. D.
1981-01-01
Numerical algorithms for analysis and design of large space structures are investigated. The sign algorithm and its application to decoupling of differential equations are presented. The generalized sign algorithm is given and its application to several problems discussed. The Laplace transforms of matrix functions and the diagonalization procedure for a finite element equation are discussed. The diagonalization of matrix polynomials is considered. The quadrature method and Laplace transforms is discussed and the identification of linear systems by the quadrature method investigated.
A numerical comparison of discrete Kalman filtering algorithms: An orbit determination case study
NASA Technical Reports Server (NTRS)
Thornton, C. L.; Bierman, G. J.
1976-01-01
The numerical stability and accuracy of various Kalman filter algorithms are thoroughly studied. Numerical results and conclusions are based on a realistic planetary approach orbit determination study. The case study results of this report highlight the numerical instability of the conventional and stabilized Kalman algorithms. Numerical errors associated with these algorithms can be so large as to obscure important mismodeling effects and thus give misleading estimates of filter accuracy. The positive result of this study is that the Bierman-Thornton U-D covariance factorization algorithm is computationally efficient, with CPU costs that differ negligibly from the conventional Kalman costs. In addition, accuracy of the U-D filter using single-precision arithmetic consistently matches the double-precision reference results. Numerical stability of the U-D filter is further demonstrated by its insensitivity of variations in the a priori statistics.
Wake Vortex Algorithm Scoring Results
NASA Technical Reports Server (NTRS)
Robins, R. E.; Delisi, D. P.; Hinton, David (Technical Monitor)
2002-01-01
This report compares the performance of two models of trailing vortex evolution for which interaction with the ground is not a significant factor. One model uses eddy dissipation rate (EDR) and the other uses the kinetic energy of turbulence fluctuations (TKE) to represent the effect of turbulence. In other respects, the models are nearly identical. The models are evaluated by comparing their predictions of circulation decay, vertical descent, and lateral transport to observations for over four hundred cases from Memphis and Dallas/Fort Worth International Airports. These observations were obtained during deployments in support of NASA's Aircraft Vortex Spacing System (AVOSS). The results of the comparisons show that the EDR model usually performs slightly better than the TKE model.
Algorithm-Based Fault Tolerance for Numerical Subroutines
NASA Technical Reports Server (NTRS)
Tumon, Michael; Granat, Robert; Lou, John
2007-01-01
A software library implements a new methodology of detecting faults in numerical subroutines, thus enabling application programs that contain the subroutines to recover transparently from single-event upsets. The software library in question is fault-detecting middleware that is wrapped around the numericalsubroutines. Conventional serial versions (based on LAPACK and FFTW) and a parallel version (based on ScaLAPACK) exist. The source code of the application program that contains the numerical subroutines is not modified, and the middleware is transparent to the user. The methodology used is a type of algorithm- based fault tolerance (ABFT). In ABFT, a checksum is computed before a computation and compared with the checksum of the computational result; an error is declared if the difference between the checksums exceeds some threshold. Novel normalization methods are used in the checksum comparison to ensure correct fault detections independent of algorithm inputs. In tests of this software reported in the peer-reviewed literature, this library was shown to enable detection of 99.9 percent of significant faults while generating no false alarms.
Understanding disordered systems through numerical simulation and algorithm development
NASA Astrophysics Data System (ADS)
Sweeney, Sean Michael
Disordered systems arise in many physical contexts. Not all matter is uniform, and impurities or heterogeneities can be modeled by fixed random disorder. Numerous complex networks also possess fixed disorder, leading to applications in transportation systems, telecommunications, social networks, and epidemic modeling, to name a few. Due to their random nature and power law critical behavior, disordered systems are difficult to study analytically. Numerical simulation can help overcome this hurdle by allowing for the rapid computation of system states. In order to get precise statistics and extrapolate to the thermodynamic limit, large systems must be studied over many realizations. Thus, innovative algorithm development is essential in order reduce memory or running time requirements of simulations. This thesis presents a review of disordered systems, as well as a thorough study of two particular systems through numerical simulation, algorithm development and optimization, and careful statistical analysis of scaling properties. Chapter 1 provides a thorough overview of disordered systems, the history of their study in the physics community, and the development of techniques used to study them. Topics of quenched disorder, phase transitions, the renormalization group, criticality, and scale invariance are discussed. Several prominent models of disordered systems are also explained. Lastly, analysis techniques used in studying disordered systems are covered. In Chapter 2, minimal spanning trees on critical percolation clusters are studied, motivated in part by an analytic perturbation expansion by Jackson and Read that I check against numerical calculations. This system has a direct mapping to the ground state of the strongly disordered spin glass. We compute the path length fractal dimension of these trees in dimensions d = {2, 3, 4, 5} and find our results to be compatible with the analytic results suggested by Jackson and Read. In Chapter 3, the random bond Ising
Numerical comparison of discrete Kalman filter algorithms - Orbit determination case study
NASA Technical Reports Server (NTRS)
Bierman, G. J.; Thornton, C. L.
1976-01-01
Numerical characteristics of various Kalman filter algorithms are illustrated with a realistic orbit determination study. The case study of this paper highlights the numerical deficiencies of the conventional and stabilized Kalman algorithms. Computational errors associated with these algorithms are found to be so large as to obscure important mismodeling effects and thus cause misleading estimates of filter accuracy. The positive result of this study is that the U-D covariance factorization algorithm has excellent numerical properties and is computationally efficient, having CPU costs that differ negligibly from the conventional Kalman costs. Accuracies of the U-D filter using single precision arithmetic consistently match the double precision reference results. Numerical stability of the U-D filter is further demonstrated by its insensitivity to variations in the a priori statistics.
Multiresolution representation and numerical algorithms: A brief review
NASA Technical Reports Server (NTRS)
Harten, Amiram
1994-01-01
In this paper we review recent developments in techniques to represent data in terms of its local scale components. These techniques enable us to obtain data compression by eliminating scale-coefficients which are sufficiently small. This capability for data compression can be used to reduce the cost of many numerical solution algorithms by either applying it to the numerical solution operator in order to get an approximate sparse representation, or by applying it to the numerical solution itself in order to reduce the number of quantities that need to be computed.
Fast Quantum Algorithms for Numerical Integrals and Stochastic Processes
NASA Technical Reports Server (NTRS)
Abrams, D.; Williams, C.
1999-01-01
We discuss quantum algorithms that calculate numerical integrals and descriptive statistics of stochastic processes. With either of two distinct approaches, one obtains an exponential speed increase in comparison to the fastest known classical deterministic algotithms and a quadratic speed increase incomparison to classical Monte Carlo methods.
Mathematical model and numerical algorithm for aerodynamical flow
NASA Astrophysics Data System (ADS)
Shaydurov, V.; Shchepanovskaya, G.; Yakubovich, M.
2016-10-01
In the paper, a mathematical model and a numerical algorithm are proposed for modeling an air flow. The proposed model is based on the time-dependent Navier-Stokes equations for viscous heat-conducting gas. The energy equation and the state equations are modified to account for two kinds of `internal' energy. The first one is the usual translational and rotational energy of molecules which defines the thermodynamical temperature and the pressure. The second one is the subgrid energy of small turbulent eddies. A numerical algorithm is proposed for solving the formulated initial-boundary value problem as a combination of the semi-Lagrangian approximation for Lagrange transport derivatives and the conforming finite element method for other terms. A numerical example illustrates these approaches.
Numerical stability analysis of the pseudo-spectral analytical time-domain PIC algorithm
Godfrey, Brendan B.; Vay, Jean-Luc; Haber, Irving
2014-02-01
The pseudo-spectral analytical time-domain (PSATD) particle-in-cell (PIC) algorithm solves the vacuum Maxwell's equations exactly, has no Courant time-step limit (as conventionally defined), and offers substantial flexibility in plasma and particle beam simulations. It is, however, not free of the usual numerical instabilities, including the numerical Cherenkov instability, when applied to relativistic beam simulations. This paper derives and solves the numerical dispersion relation for the PSATD algorithm and compares the results with corresponding behavior of the more conventional pseudo-spectral time-domain (PSTD) and finite difference time-domain (FDTD) algorithms. In general, PSATD offers superior stability properties over a reasonable range of time steps. More importantly, one version of the PSATD algorithm, when combined with digital filtering, is almost completely free of the numerical Cherenkov instability for time steps (scaled to the speed of light) comparable to or smaller than the axial cell size.
Numerical simulations of catastrophic disruption: Recent results
NASA Astrophysics Data System (ADS)
Benz, W.; Asphaug, E.; Ryan, E. V.
1994-12-01
Numerical simulations have been used to study high velocity two-body impacts. In this paper, a two-dimensional Largrangian finite difference hydro-code and a three-dimensional smooth particle hydro-code (SPH) are described and initial results reported. These codes can be, and have been, used to make specific predictions about particular objects in our solar system. But more significantly, they allow us to explore a broad range of collisional events. Certain parameters (size, time) can be studied only over a very restricted range within the laboratory; other parameters (initial spin, low gravity, exotic structure or composition) are difficult to study at all experimentally. The outcomes of numerical simulations lead to a more general and accurate understanding of impacts in their many forms.
Numerical algorithms for the atomistic dopant profiling of semiconductor materials
NASA Astrophysics Data System (ADS)
Aghaei Anvigh, Samira
In this dissertation, we investigate the possibility to use scanning microscopy such as scanning capacitance microscopy (SCM) and scanning spreading resistance microscopy (SSRM) for the "atomistic" dopant profiling of semiconductor materials. For this purpose, we first analyze the discrete effects of random dopant fluctuations (RDF) on SCM and SSRM measurements with nanoscale probes and show that RDF significantly affects the differential capacitance and spreading resistance of the SCM and SSRM measurements if the dimension of the probe is below 50 nm. Then, we develop a mathematical algorithm to compute the spatial coordinates of the ionized impurities in the depletion region using a set of scanning microscopy measurements. The proposed numerical algorithm is then applied to extract the (x, y, z) coordinates of ionized impurities in the depletion region in the case of a few semiconductor materials with different doping configuration. The numerical algorithm developed to solve the above inverse problem is based on the evaluation of doping sensitivity functions of the differential capacitance, which show how sensitive the differential capacitance is to doping variations at different locations. To develop the numerical algorithm we first express the doping sensitivity functions in terms of the Gâteaux derivative of the differential capacitance, use Riesz representation theorem, and then apply a gradient optimization approach to compute the locations of the dopants. The algorithm is verified numerically using 2-D simulations, in which the C-V curves are measured at 3 different locations on the surface of the semiconductor. Although the cases studied in this dissertation are much idealized and, in reality, the C-V measurements are subject to noise and other experimental errors, it is shown that if the differential capacitance is measured precisely, SCM measurements can be potentially used for the "atomistic" profiling of ionized impurities in doped semiconductors.
Algorithms for the Fractional Calculus: A Selection of Numerical Methods
NASA Technical Reports Server (NTRS)
Diethelm, K.; Ford, N. J.; Freed, A. D.; Luchko, Yu.
2003-01-01
Many recently developed models in areas like viscoelasticity, electrochemistry, diffusion processes, etc. are formulated in terms of derivatives (and integrals) of fractional (non-integer) order. In this paper we present a collection of numerical algorithms for the solution of the various problems arising in this context. We believe that this will give the engineer the necessary tools required to work with fractional models in an efficient way.
Copps, Kevin D.; Carnes, Brian R.
2008-04-01
We examine algorithms for the finite element approximation of thermal contact models. We focus on the implementation of thermal contact algorithms in SIERRA Mechanics. Following the mathematical formulation of models for tied contact and resistance contact, we present three numerical algorithms: (1) the multi-point constraint (MPC) algorithm, (2) a resistance algorithm, and (3) a new generalized algorithm. We compare and contrast both the correctness and performance of the algorithms in three test problems. We tabulate the convergence rates of global norms of the temperature solution on sequentially refined meshes. We present the results of a parameter study of the effect of contact search tolerances. We outline best practices in using the software for predictive simulations, and suggest future improvements to the implementation.
A Numerical Algorithm for the Solution of a Phase-Field Model of Polycrystalline Materials
Dorr, M R; Fattebert, J; Wickett, M E; Belak, J F; Turchi, P A
2008-12-04
We describe an algorithm for the numerical solution of a phase-field model (PFM) of microstructure evolution in polycrystalline materials. The PFM system of equations includes a local order parameter, a quaternion representation of local orientation and a species composition parameter. The algorithm is based on the implicit integration of a semidiscretization of the PFM system using a backward difference formula (BDF) temporal discretization combined with a Newton-Krylov algorithm to solve the nonlinear system at each time step. The BDF algorithm is combined with a coordinate projection method to maintain quaternion unit length, which is related to an important solution invariant. A key element of the Newton-Krylov algorithm is the selection of a preconditioner to accelerate the convergence of the Generalized Minimum Residual algorithm used to solve the Jacobian linear system in each Newton step. Results are presented for the application of the algorithm to 2D and 3D examples.
Topics in Randomized Algorithms for Numerical Linear Algebra
NASA Astrophysics Data System (ADS)
Holodnak, John T.
In this dissertation, we present results for three topics in randomized algorithms. Each topic is related to random sampling. We begin by studying a randomized algorithm for matrix multiplication that randomly samples outer products. We show that if a set of deterministic conditions is satisfied, then the algorithm can compute the exact product. In addition, we show probabilistic bounds on the two norm relative error of the algorithm. two norm relative error of the algorithm. In the second part, we discuss the sensitivity of leverage scores to perturbations. Leverage scores are scalar quantities that give a notion of importance to the rows of a matrix. They are used as sampling probabilities in many randomized algorithms. We show bounds on the difference between the leverage scores of a matrix and a perturbation of the matrix. In the last part, we approximate functions over an active subspace of parameters. To identify the active subspace, we apply an algorithm that relies on a random sampling scheme. We show bounds on the accuracy of the active subspace identification algorithm and construct an approximation to a function with 3556 parameters using a ten-dimensional active subspace.
Predictive Lateral Logic for Numerical Entry Guidance Algorithms
NASA Technical Reports Server (NTRS)
Smith, Kelly M.
2016-01-01
Recent entry guidance algorithm development123 has tended to focus on numerical integration of trajectories onboard in order to evaluate candidate bank profiles. Such methods enjoy benefits such as flexibility to varying mission profiles and improved robustness to large dispersions. A common element across many of these modern entry guidance algorithms is a reliance upon the concept of Apollo heritage lateral error (or azimuth error) deadbands in which the number of bank reversals to be performed is non-deterministic. This paper presents a closed-loop bank reversal method that operates with a fixed number of bank reversals defined prior to flight. However, this number of bank reversals can be modified at any point, including in flight, based on contingencies such as fuel leaks where propellant usage must be minimized.
The Aquarius Salinity Retrieval Algorithm: Early Results
NASA Technical Reports Server (NTRS)
Meissner, Thomas; Wentz, Frank J.; Lagerloef, Gary; LeVine, David
2012-01-01
The Aquarius L-band radiometer/scatterometer system is designed to provide monthly salinity maps at 150 km spatial scale to a 0.2 psu accuracy. The sensor was launched on June 10, 2011, aboard the Argentine CONAE SAC-D spacecraft. The L-band radiometers and the scatterometer have been taking science data observations since August 25, 2011. The first part of this presentation gives an overview over the Aquarius salinity retrieval algorithm. The instrument calibration converts Aquarius radiometer counts into antenna temperatures (TA). The salinity retrieval algorithm converts those TA into brightness temperatures (TB) at a flat ocean surface. As a first step, contributions arising from the intrusion of solar, lunar and galactic radiation are subtracted. The antenna pattern correction (APC) removes the effects of cross-polarization contamination and spillover. The Aquarius radiometer measures the 3rd Stokes parameter in addition to vertical (v) and horizontal (h) polarizations, which allows for an easy removal of ionospheric Faraday rotation. The atmospheric absorption at L-band is almost entirely due to O2, which can be calculated based on auxiliary input fields from numerical weather prediction models and then successively removed from the TB. The final step in the TA to TB conversion is the correction for the roughness of the sea surface due to wind. This is based on the radar backscatter measurements by the scatterometer. The TB of the flat ocean surface can now be matched to a salinity value using a surface emission model that is based on a model for the dielectric constant of sea water and an auxiliary field for the sea surface temperature. In the current processing (as of writing this abstract) only v-pol TB are used for this last process and NCEP winds are used for the roughness correction. Before the salinity algorithm can be operationally implemented and its accuracy assessed by comparing versus in situ measurements, an extensive calibration and validation
Efficient algorithms for numerical simulation of the motion of earth satellites
NASA Astrophysics Data System (ADS)
Bordovitsyna, T. V.; Bykova, L. E.; Kardash, A. V.; Fedyaev, Yu. A.; Sharkovskii, N. A.
1992-08-01
We briefly present our results obtained during the development and an investigation of the efficacy of algorithms for numerical prediction of the motion of earth satellites (ESs) using computers of different power. High accuracy and efficiency in predicting ES motion are achieved by using higher-order numerical methods, transformations that regularize and stabilize the equations of motion, and a high-precision model of the forces acting on an ES. This approach enables us to construct efficient algorithms of the required accuracy, both for universal computers with a large RAM and for personal computers with very limited capacity.
Wang, Peng; Zhu, Zhouquan; Huang, Shuai
2013-01-01
This paper presents a novel biologically inspired metaheuristic algorithm called seven-spot ladybird optimization (SLO). The SLO is inspired by recent discoveries on the foraging behavior of a seven-spot ladybird. In this paper, the performance of the SLO is compared with that of the genetic algorithm, particle swarm optimization, and artificial bee colony algorithms by using five numerical benchmark functions with multimodality. The results show that SLO has the ability to find the best solution with a comparatively small population size and is suitable for solving optimization problems with lower dimensions. PMID:24385879
Wang, Peng; Zhu, Zhouquan; Huang, Shuai
2013-01-01
This paper presents a novel biologically inspired metaheuristic algorithm called seven-spot ladybird optimization (SLO). The SLO is inspired by recent discoveries on the foraging behavior of a seven-spot ladybird. In this paper, the performance of the SLO is compared with that of the genetic algorithm, particle swarm optimization, and artificial bee colony algorithms by using five numerical benchmark functions with multimodality. The results show that SLO has the ability to find the best solution with a comparatively small population size and is suitable for solving optimization problems with lower dimensions.
Computational Fluid Dynamics. [numerical methods and algorithm development
NASA Technical Reports Server (NTRS)
1992-01-01
This collection of papers was presented at the Computational Fluid Dynamics (CFD) Conference held at Ames Research Center in California on March 12 through 14, 1991. It is an overview of CFD activities at NASA Lewis Research Center. The main thrust of computational work at Lewis is aimed at propulsion systems. Specific issues related to propulsion CFD and associated modeling will also be presented. Examples of results obtained with the most recent algorithm development will also be presented.
NASA Technical Reports Server (NTRS)
Nacozy, P. E.
1984-01-01
The equations of motion are developed for a perfectly flexible, inelastic tether with a satellite at its extremity. The tether is attached to a space vehicle in orbit. The tether is allowed to possess electrical conductivity. A numerical solution algorithm to provide the motion of the tether and satellite system is presented. The resulting differential equations can be solved by various existing standard numerical integration computer programs. The resulting differential equations allow the introduction of approximations that can lead to analytical, approximate general solutions. The differential equations allow more dynamical insight of the motion.
Analysis of V-cycle multigrid algorithms for forms defined by numerical quadrature
Bramble, J.H. . Dept. of Mathematics); Goldstein, C.I.; Pasciak, J.E. . Applied Mathematics Dept.)
1994-05-01
The authors describe and analyze certain V-cycle multigrid algorithms with forms defined by numerical quadrature applied to the approximation of symmetric second-order elliptic boundary value problems. This approach can be used for the efficient solution of finite element systems resulting from numerical quadrature as well as systems arising from finite difference discretizations. The results are based on a regularity free theory and hence apply to meshes with local grid refinement as well as the quasi-uniform case. It is shown that uniform (independent of the number of levels) convergence rates often hold for appropriately defined V-cycle algorithms with as few as one smoothing per grid. These results hold even on applications without full elliptic regularity, e.g., a domain in R[sup 2] with a crack.
PolyPole-1: An accurate numerical algorithm for intra-granular fission gas release
NASA Astrophysics Data System (ADS)
Pizzocri, D.; Rabiti, C.; Luzzi, L.; Barani, T.; Van Uffelen, P.; Pastore, G.
2016-09-01
The transport of fission gas from within the fuel grains to the grain boundaries (intra-granular fission gas release) is a fundamental controlling mechanism of fission gas release and gaseous swelling in nuclear fuel. Hence, accurate numerical solution of the corresponding mathematical problem needs to be included in fission gas behaviour models used in fuel performance codes. Under the assumption of equilibrium between trapping and resolution, the process can be described mathematically by a single diffusion equation for the gas atom concentration in a grain. In this paper, we propose a new numerical algorithm (PolyPole-1) to efficiently solve the fission gas diffusion equation in time-varying conditions. The PolyPole-1 algorithm is based on the analytic modal solution of the diffusion equation for constant conditions, combined with polynomial corrective terms that embody the information on the deviation from constant conditions. The new algorithm is verified by comparing the results to a finite difference solution over a large number of randomly generated operation histories. Furthermore, comparison to state-of-the-art algorithms used in fuel performance codes demonstrates that the accuracy of PolyPole-1 is superior to other algorithms, with similar computational effort. Finally, the concept of PolyPole-1 may be extended to the solution of the general problem of intra-granular fission gas diffusion during non-equilibrium trapping and resolution, which will be the subject of future work.
Thickness determination in textile material design: dynamic modeling and numerical algorithms
NASA Astrophysics Data System (ADS)
Xu, Dinghua; Ge, Meibao
2012-03-01
Textile material design is of paramount importance in the study of functional clothing design. It is therefore important to determine the dynamic heat and moisture transfer characteristics in the human body-clothing-environment system, which directly determine the heat-moisture comfort level of the human body. Based on a model of dynamic heat and moisture transfer with condensation in porous fabric at low temperature, this paper presents a new inverse problem of textile thickness determination (IPTTD). Adopting the idea of the least-squares method, we formulate the IPTTD into a function minimization problem. By means of the finite-difference method, quasi-solution method and direct search method for one-dimensional minimization problems, we construct iterative algorithms of the approximated solution for the IPTTD. Numerical simulation results validate the formulation of the IPTTD and demonstrate the effectiveness of the proposed numerical algorithms.
NASA Astrophysics Data System (ADS)
Alfonso, Lester; Zamora, Jose; Cruz, Pedro
2015-04-01
The stochastic approach to coagulation considers the coalescence process going in a system of a finite number of particles enclosed in a finite volume. Within this approach, the full description of the system can be obtained from the solution of the multivariate master equation, which models the evolution of the probability distribution of the state vector for the number of particles of a given mass. Unfortunately, due to its complexity, only limited results were obtained for certain type of kernels and monodisperse initial conditions. In this work, a novel numerical algorithm for the solution of the multivariate master equation for stochastic coalescence that works for any type of kernels and initial conditions is introduced. The performance of the method was checked by comparing the numerically calculated particle mass spectrum with analytical solutions obtained for the constant and sum kernels, with an excellent correspondence between the analytical and numerical solutions. In order to increase the speedup of the algorithm, software parallelization techniques with OpenMP standard were used, along with an implementation in order to take advantage of new accelerator technologies. Simulations results show an important speedup of the parallelized algorithms. This study was funded by a grant from Consejo Nacional de Ciencia y Tecnologia de Mexico SEP-CONACYT CB-131879. The authors also thanks LUFAC® Computacion SA de CV for CPU time and all the support provided.
Numerical advection algorithms and their role in atmospheric transport and chemistry models
NASA Technical Reports Server (NTRS)
Rood, Richard B.
1987-01-01
During the last 35 years, well over 100 algorithms for modeling advection processes have been described and tested. This review summarizes the development and improvements that have taken place. The nature of the errors caused by numerical approximation to the advection equation are highlighted. Then the particular devices that have been proposed to remedy these errors are discussed. The extensive literature comparing transport algorithms is reviewed. Although there is no clear cut 'best' algorithm, several conclusions can be made. Spectral and pseudospectral techniques consistently provide the highest degree of accuracy, but expense and difficulties assuring positive mixing ratios are serious drawbacks. Schemes which consider fluid slabs bounded by grid points (volume schemes), rather than the simple specification of constituent values at the grid points, provide accurate positive definite results.
Numerical advection algorithms and their role in atmospheric transport and chemistry models
NASA Astrophysics Data System (ADS)
Rood, Richard B.
1987-02-01
During the last 35 years, well over 100 algorithms for modeling advection processes have been described and tested. This review summarizes the development and improvements that have taken place. The nature of the errors caused by numerical approximation to the advection equation are highlighted. Then the particular devices that have been proposed to remedy these errors are discussed. The extensive literature comparing transport algorithms is reviewed. Although there is no clear cut 'best' algorithm, several conclusions can be made. Spectral and pseudospectral techniques consistently provide the highest degree of accuracy, but expense and difficulties assuring positive mixing ratios are serious drawbacks. Schemes which consider fluid slabs bounded by grid points (volume schemes), rather than the simple specification of constituent values at the grid points, provide accurate positive definite results.
NASA Astrophysics Data System (ADS)
Chernyaev, Yu. A.
2016-03-01
A numerical algorithm for minimizing a convex function on a smooth surface is proposed. The algorithm is based on reducing the original problem to a sequence of convex programming problems. Necessary extremum conditions are examined, and the convergence of the algorithm is analyzed.
Analysis of the numerical effects of parallelism on a parallel genetic algorithm
Hart, W.E.; Belew, R.K.; Kohn, S.; Baden, S.
1995-09-18
This paper examines the effects of relaxed synchronization on both the numerical and parallel efficiency of parallel genetic algorithms (GAs). We describe a coarse-grain geographically structured parallel genetic algorithm. Our experiments show that asynchronous versions of these algorithms have a lower run time than-synchronous GAs. Furthermore, we demonstrate that this improvement in performance is partly due to the fact that the numerical efficiency of the asynchronous genetic algorithm is better than the synchronous genetic algorithm. Our analysis includes a critique of the utility of traditional parallel performance measures for parallel GAs, and we evaluate the claims made by several researchers that parallel GAs can have superlinear speedup.
Hu, Shaoxing; Xu, Shike; Wang, Duhu; Zhang, Aiwu
2015-01-01
Aiming at addressing the problem of high computational cost of the traditional Kalman filter in SINS/GPS, a practical optimization algorithm with offline-derivation and parallel processing methods based on the numerical characteristics of the system is presented in this paper. The algorithm exploits the sparseness and/or symmetry of matrices to simplify the computational procedure. Thus plenty of invalid operations can be avoided by offline derivation using a block matrix technique. For enhanced efficiency, a new parallel computational mechanism is established by subdividing and restructuring calculation processes after analyzing the extracted “useful” data. As a result, the algorithm saves about 90% of the CPU processing time and 66% of the memory usage needed in a classical Kalman filter. Meanwhile, the method as a numerical approach needs no precise-loss transformation/approximation of system modules and the accuracy suffers little in comparison with the filter before computational optimization. Furthermore, since no complicated matrix theories are needed, the algorithm can be easily transplanted into other modified filters as a secondary optimization method to achieve further efficiency. PMID:26569247
Hu, Shaoxing; Xu, Shike; Wang, Duhu; Zhang, Aiwu
2015-11-11
Aiming at addressing the problem of high computational cost of the traditional Kalman filter in SINS/GPS, a practical optimization algorithm with offline-derivation and parallel processing methods based on the numerical characteristics of the system is presented in this paper. The algorithm exploits the sparseness and/or symmetry of matrices to simplify the computational procedure. Thus plenty of invalid operations can be avoided by offline derivation using a block matrix technique. For enhanced efficiency, a new parallel computational mechanism is established by subdividing and restructuring calculation processes after analyzing the extracted "useful" data. As a result, the algorithm saves about 90% of the CPU processing time and 66% of the memory usage needed in a classical Kalman filter. Meanwhile, the method as a numerical approach needs no precise-loss transformation/approximation of system modules and the accuracy suffers little in comparison with the filter before computational optimization. Furthermore, since no complicated matrix theories are needed, the algorithm can be easily transplanted into other modified filters as a secondary optimization method to achieve further efficiency.
Numerical Results of 3-D Modeling of Moon Accumulation
NASA Astrophysics Data System (ADS)
Khachay, Yurie; Anfilogov, Vsevolod; Antipin, Alexandr
2014-05-01
For the last time for the model of the Moon usually had been used the model of mega impact in which the forming of the Earth and its sputnik had been the consequence of the Earth's collision with the body of Mercurial mass. But all dynamical models of the Earth's accumulation and the estimations after the Pb-Pb system, lead to the conclusion that the duration of the planet accumulation was about 1 milliard years. But isotopic results after the W-Hf system testify about a very early (5-10) million years, dividing of the geochemical reservoirs of the core and mantle. In [1,2] it is shown, that the account of energy dissipating by the decay of short living radioactive elements and first of all Al26,it is sufficient for heating even small bodies with dimensions about (50-100) km up to the iron melting temperature and can be realized a principal new differentiation mechanism. The inner parts of the melted preplanets can join and they are mainly of iron content, but the cold silicate fragments return to the supply zone and additionally change the content of Moon forming to silicates. Only after the increasing of the gravitational radius of the Earth, the growing area of the future Earth's core can save also the silicate envelope fragments [3]. For understanding the further system Earth-Moon evolution it is significant to trace the origin and evolution of heterogeneities, which occur on its accumulation stage.In that paper we are modeling the changing of temperature,pressure,velocity of matter flowing in a block of 3d spherical body with a growing radius. The boundary problem is solved by the finite-difference method for the system of equations, which include equations which describe the process of accumulation, the Safronov equation, the equation of impulse balance, equation Navier-Stocks, equation for above litho static pressure and heat conductivity in velocity-pressure variables using the Businesque approach.The numerical algorithm of the problem solution in velocity
Numerical Optimization Algorithms and Software for Systems Biology
Saunders, Michael
2013-02-02
The basic aims of this work are: to develop reliable algorithms for solving optimization problems involving large stoi- chiometric matrices; to investigate cyclic dependency between metabolic and macromolecular biosynthetic networks; and to quantify the significance of thermodynamic constraints on prokaryotic metabolism.
Variationally consistent discretization schemes and numerical algorithms for contact problems
NASA Astrophysics Data System (ADS)
Wohlmuth, Barbara
We consider variationally consistent discretization schemes for mechanical contact problems. Most of the results can also be applied to other variational inequalities, such as those for phase transition problems in porous media, for plasticity or for option pricing applications from finance. The starting point is to weakly incorporate the constraint into the setting and to reformulate the inequality in the displacement in terms of a saddle-point problem. Here, the Lagrange multiplier represents the surface forces, and the constraints are restricted to the boundary of the simulation domain. Having a uniform inf-sup bound, one can then establish optimal low-order a priori convergence rates for the discretization error in the primal and dual variables. In addition to the abstract framework of linear saddle-point theory, complementarity terms have to be taken into account. The resulting inequality system is solved by rewriting it equivalently by means of the non-linear complementarity function as a system of equations. Although it is not differentiable in the classical sense, semi-smooth Newton methods, yielding super-linear convergence rates, can be applied and easily implemented in terms of a primal-dual active set strategy. Quite often the solution of contact problems has a low regularity, and the efficiency of the approach can be improved by using adaptive refinement techniques. Different standard types, such as residual- and equilibrated-based a posteriori error estimators, can be designed based on the interpretation of the dual variable as Neumann boundary condition. For the fully dynamic setting it is of interest to apply energy-preserving time-integration schemes. However, the differential algebraic character of the system can result in high oscillations if standard methods are applied. A possible remedy is to modify the fully discretized system by a local redistribution of the mass. Numerical results in two and three dimensions illustrate the wide range of
Godfrey, Brendan B.; Vay, Jean-Luc
2013-09-01
Rapidly growing numerical instabilities routinely occur in multidimensional particle-in-cell computer simulations of plasma-based particle accelerators, astrophysical phenomena, and relativistic charged particle beams. Reducing instability growth to acceptable levels has necessitated higher resolution grids, high-order field solvers, current filtering, etc. except for certain ratios of the time step to the axial cell size, for which numerical growth rates and saturation levels are reduced substantially. This paper derives and solves the cold beam dispersion relation for numerical instabilities in multidimensional, relativistic, electromagnetic particle-in-cell programs employing either the standard or the Cole–Karkkainnen finite difference field solver on a staggered mesh and the common Esirkepov current-gathering algorithm. Good overall agreement is achieved with previously reported results of the WARP code. In particular, the existence of select time steps for which instabilities are minimized is explained. Additionally, an alternative field interpolation algorithm is proposed for which instabilities are almost completely eliminated for a particular time step in ultra-relativistic simulations.
Numerical Laplace Transform Inversion Employing the Gaver-Stehfest Algorithm.
ERIC Educational Resources Information Center
Jacquot, Raymond G.; And Others
1985-01-01
Presents a technique for the numerical inversion of Laplace Transforms and several examples employing this technique. Limitations of the method in terms of available computer word length and the effects of these limitations on approximate inverse functions are also discussed. (JN)
A bibliography on parallel and vector numerical algorithms
NASA Technical Reports Server (NTRS)
Ortega, J. M.; Voigt, R. G.
1987-01-01
This is a bibliography of numerical methods. It also includes a number of other references on machine architecture, programming language, and other topics of interest to scientific computing. Certain conference proceedings and anthologies which have been published in book form are listed also.
A bibliography on parallel and vector numerical algorithms
NASA Technical Reports Server (NTRS)
Ortega, James M.; Voigt, Robert G.; Romine, Charles H.
1988-01-01
This is a bibliography on numerical methods. It also includes a number of other references on machine architecture, programming language, and other topics of interest to scientific computing. Certain conference proceedings and anthologies which have been published in book form are also listed.
A method for data handling numerical results in parallel OpenFOAM simulations
Anton, Alin; Muntean, Sebastian
2015-12-31
Parallel computational fluid dynamics simulations produce vast amount of numerical result data. This paper introduces a method for reducing the size of the data by replaying the interprocessor traffic. The results are recovered only in certain regions of interest configured by the user. A known test case is used for several mesh partitioning scenarios using the OpenFOAM toolkit{sup ®}[1]. The space savings obtained with classic algorithms remain constant for more than 60 Gb of floating point data. Our method is most efficient on large simulation meshes and is much better suited for compressing large scale simulation results than the regular algorithms.
Bu, Sunyoung; Huang, Jingfang; Boyer, Treavor H.; Miller, Cass T.
2010-01-01
The focus of this work is on the modeling of an ion exchange process that occurs in drinking water treatment applications. The model formulation consists of a two-scale model in which a set of microscale diffusion equations representing ion exchange resin particles that vary in size and age are coupled through a boundary condition with a macroscopic ordinary differential equation (ODE), which represents the concentration of a species in a well-mixed reactor. We introduce a new age-averaged model (AAM) that averages all ion exchange particle ages for a given size particle to avoid the expensive Monte-Carlo simulation associated with previous modeling applications. We discuss two different numerical schemes to approximate both the original Monte Carlo algorithm and the new AAM for this two-scale problem. The first scheme is based on the finite element formulation in space coupled with an existing backward-difference-formula-based ODE solver in time. The second scheme uses an integral equation based Krylov deferred correction (KDC) method and a fast elliptic solver (FES) for the resulting elliptic equations. Numerical results are presented to validate the new AAM algorithm, which is also shown to be more computationally efficient than the original Monte Carlo algorithm. We also demonstrate that the higher order KDC scheme is more efficient than the traditional finite element solution approach and this advantage becomes increasingly important as the desired accuracy of the solution increases. We also discuss issues of smoothness, which affect the efficiency of the KDC-FES approach, and outline additional algorithmic changes that would further improve the efficiency of these developing methods for a wide range of applications. PMID:20577570
NASA Astrophysics Data System (ADS)
Bu, Sunyoung; Huang, Jingfang; Boyer, Treavor H.; Miller, Cass T.
2010-07-01
The focus of this work is on the modeling of an ion exchange process that occurs in drinking water treatment applications. The model formulation consists of a two-scale model in which a set of microscale diffusion equations representing ion exchange resin particles that vary in size and age are coupled through a boundary condition with a macroscopic ordinary differential equation (ODE), which represents the concentration of a species in a well-mixed reactor. We introduce a new age-averaged model (AAM) that averages all ion exchange particle ages for a given size particle to avoid the expensive Monte-Carlo simulation associated with previous modeling applications. We discuss two different numerical schemes to approximate both the original Monte-Carlo algorithm and the new AAM for this two-scale problem. The first scheme is based on the finite element formulation in space coupled with an existing backward difference formula-based ODE solver in time. The second scheme uses an integral equation based Krylov deferred correction (KDC) method and a fast elliptic solver (FES) for the resulting elliptic equations. Numerical results are presented to validate the new AAM algorithm, which is also shown to be more computationally efficient than the original Monte-Carlo algorithm. We also demonstrate that the higher order KDC scheme is more efficient than the traditional finite element solution approach and this advantage becomes increasingly important as the desired accuracy of the solution increases. We also discuss issues of smoothness, which affect the efficiency of the KDC-FES approach, and outline additional algorithmic changes that would further improve the efficiency of these developing methods for a wide range of applications.
Bu, Sunyoung; Huang, Jingfang; Boyer, Treavor H; Miller, Cass T
2010-07-01
The focus of this work is on the modeling of an ion exchange process that occurs in drinking water treatment applications. The model formulation consists of a two-scale model in which a set of microscale diffusion equations representing ion exchange resin particles that vary in size and age are coupled through a boundary condition with a macroscopic ordinary differential equation (ODE), which represents the concentration of a species in a well-mixed reactor. We introduce a new age-averaged model (AAM) that averages all ion exchange particle ages for a given size particle to avoid the expensive Monte-Carlo simulation associated with previous modeling applications. We discuss two different numerical schemes to approximate both the original Monte Carlo algorithm and the new AAM for this two-scale problem. The first scheme is based on the finite element formulation in space coupled with an existing backward-difference-formula-based ODE solver in time. The second scheme uses an integral equation based Krylov deferred correction (KDC) method and a fast elliptic solver (FES) for the resulting elliptic equations. Numerical results are presented to validate the new AAM algorithm, which is also shown to be more computationally efficient than the original Monte Carlo algorithm. We also demonstrate that the higher order KDC scheme is more efficient than the traditional finite element solution approach and this advantage becomes increasingly important as the desired accuracy of the solution increases. We also discuss issues of smoothness, which affect the efficiency of the KDC-FES approach, and outline additional algorithmic changes that would further improve the efficiency of these developing methods for a wide range of applications.
A Novel Quantum-Behaved Bat Algorithm with Mean Best Position Directed for Numerical Optimization.
Zhu, Binglian; Zhu, Wenyong; Liu, Zijuan; Duan, Qingyan; Cao, Long
2016-01-01
This paper proposes a novel quantum-behaved bat algorithm with the direction of mean best position (QMBA). In QMBA, the position of each bat is mainly updated by the current optimal solution in the early stage of searching and in the late search it also depends on the mean best position which can enhance the convergence speed of the algorithm. During the process of searching, quantum behavior of bats is introduced which is beneficial to jump out of local optimal solution and make the quantum-behaved bats not easily fall into local optimal solution, and it has better ability to adapt complex environment. Meanwhile, QMBA makes good use of statistical information of best position which bats had experienced to generate better quality solutions. This approach not only inherits the characteristic of quick convergence, simplicity, and easy implementation of original bat algorithm, but also increases the diversity of population and improves the accuracy of solution. Twenty-four benchmark test functions are tested and compared with other variant bat algorithms for numerical optimization the simulation results show that this approach is simple and efficient and can achieve a more accurate solution. PMID:27293424
A Novel Quantum-Behaved Bat Algorithm with Mean Best Position Directed for Numerical Optimization
Zhu, Wenyong; Liu, Zijuan; Duan, Qingyan; Cao, Long
2016-01-01
This paper proposes a novel quantum-behaved bat algorithm with the direction of mean best position (QMBA). In QMBA, the position of each bat is mainly updated by the current optimal solution in the early stage of searching and in the late search it also depends on the mean best position which can enhance the convergence speed of the algorithm. During the process of searching, quantum behavior of bats is introduced which is beneficial to jump out of local optimal solution and make the quantum-behaved bats not easily fall into local optimal solution, and it has better ability to adapt complex environment. Meanwhile, QMBA makes good use of statistical information of best position which bats had experienced to generate better quality solutions. This approach not only inherits the characteristic of quick convergence, simplicity, and easy implementation of original bat algorithm, but also increases the diversity of population and improves the accuracy of solution. Twenty-four benchmark test functions are tested and compared with other variant bat algorithms for numerical optimization the simulation results show that this approach is simple and efficient and can achieve a more accurate solution. PMID:27293424
Sheet Hydroforming Process Numerical Model Improvement Through Experimental Results Analysis
NASA Astrophysics Data System (ADS)
Gabriele, Papadia; Antonio, Del Prete; Alfredo, Anglani
2010-06-01
The increasing application of numerical simulation in metal forming field has helped engineers to solve problems one after another to manufacture a qualified formed product reducing the required time [1]. Accurate simulation results are fundamental for the tooling and the product designs. The wide application of numerical simulation is encouraging the development of highly accurate simulation procedures to meet industrial requirements. Many factors can influence the final simulation results and many studies have been carried out about materials [2], yield criteria [3] and plastic deformation [4,5], process parameters [6] and their optimization. In order to develop a reliable hydromechanical deep drawing (HDD) numerical model the authors have been worked out specific activities based on the evaluation of the effective stiffness of the blankholder structure [7]. In this paper after an appropriate tuning phase of the blankholder force distribution, the experimental activity has been taken into account to improve the accuracy of the numerical model. In the first phase, the effective capability of the blankholder structure to transfer the applied load given by hydraulic actuators to the blank has been explored. This phase ended with the definition of an appropriate subdivision of the blankholder active surface in order to take into account the effective pressure map obtained for the given loads configuration. In the second phase the numerical results obtained with the developed subdivision have been compared with the experimental data of the studied model. The numerical model has been then improved, finding the best solution for the blankholder force distribution.
A Numerical Algorithm for Finding Solution of Cross-Coupled Algebraic Riccati Equations
NASA Astrophysics Data System (ADS)
Mukaidani, Hiroaki; Yamamoto, Seiji; Yamamoto, Toru
In this letter, a computational approach for solving cross-coupled algebraic Riccati equations (CAREs) is investigated. The main purpose of this letter is to propose a new algorithm that combines Newton's method with a gradient-based iterative (GI) algorithm for solving CAREs. In particular, it is noteworthy that both a quadratic convergence under an appropriate initial condition and reduction in dimensions for matrix computation are both achieved. A numerical example is provided to demonstrate the efficiency of this proposed algorithm.
A Numerical Algorithm for Complex Biological Flow in Irregular Microdevice Geometries
Nonaka, A; Miller, G H; Marshall, T; Liepmann, D; Gulati, S; Trebotich, D; Colella, P
2003-12-15
We present a numerical algorithm to simulate non-Newtonian flow in complex microdevice components. The model consists of continuum viscoelastic incompressible flow in irregular microscale geometries. Our numerical approach is the projection method of Bell, Colella and Glaz (BCG) to impose the incompressibility constraint coupled with the polymeric stress splitting discretization of Trebotich, Colella and Miller (TCM). In this approach we exploit the hyperbolic structure of the equations of motion to achieve higher resolution in the presence of strong gradients and to gain an order of magnitude in the timestep. We also extend BCG and TCM to an embedded boundary method to treat irregular domain geometries which exist in microdevices. Our method allows for particle representation in a continuum fluid. We present preliminary results for incompressible viscous flow with comparison to flow of DNA and simulants in microchannels and other components used in chem/bio microdevices.
Fourier analysis of numerical algorithms for the Maxwell equations
NASA Technical Reports Server (NTRS)
Liu, Yen
1993-01-01
The Fourier method is used to analyze the dispersive, dissipative, and isotropy errors of various spatial and time discretizations applied to the Maxwell equations on multi-dimensional grids. Both Cartesian grids and non-Cartesian grids based on hexagons and tetradecahedra are studied and compared. The numerical errors are quantitatively determined in terms of phase speed, wave number, propagation direction, gridspacings, and CFL number. The study shows that centered schemes are more efficient than upwind schemes. The non-Cartesian grids yield superior isotropy and higher accuracy than the Cartesian ones. For the centered schemes, the staggered grids produce less errors than the unstaggered ones. A new unstaggered scheme which has all the best properties is introduced. The study also demonstrates that a proper choice of time discretization can reduce the overall numerical errors due to the spatial discretization.
Stochastic algorithms for the analysis of numerical flame simulations
Bell, John B.; Day, Marcus S.; Grcar, Joseph F.; Lijewski, Michael J.
2001-12-14
Recent progress in simulation methodologies and new, high-performance parallel architectures have made it is possible to perform detailed simulations of multidimensional combustion phenomena using comprehensive kinetics mechanisms. However, as simulation complexity increases, it becomes increasingly difficult to extract detailed quantitative information about the flame from the numerical solution, particularly regarding the details of chemical processes. In this paper we present a new diagnostic tool for analysis of numerical simulations of combustion phenomena. Our approach is based on recasting an Eulerian flow solution in a Lagrangian frame. Unlike a conventional Lagrangian viewpoint in which we follow the evolution of a volume of the fluid, we instead follow specific chemical elements, e.g., carbon, nitrogen, etc., as they move through the system. From this perspective an ''atom'' is part of some molecule that is transported through the domain by advection and diffusion. Reactions ca use the atom to shift from one species to another with the subsequent transport given by the movement of the new species. We represent these processes using a stochastic particle formulation that treats advection deterministically and models diffusion as a suitable random-walk process. Within this probabilistic framework, reactions can be viewed as a Markov process transforming molecule to molecule with given probabilities. In this paper, we discuss the numerical issues in more detail and demonstrate that an ensemble of stochastic trajectories can accurately capture key features of the continuum solution. We also illustrate how the method can be applied to studying the role of cyanochemistry on NOx production in a diffusion flame.
Stochastic algorithms for the analysis of numerical flame simulations
Bell, John B.; Day, Marcus S.; Grcar, Joseph F.; Lijewski, Michael J.
2004-04-26
Recent progress in simulation methodologies and high-performance parallel computers have made it is possible to perform detailed simulations of multidimensional reacting flow phenomena using comprehensive kinetics mechanisms. As simulations become larger and more complex, it becomes increasingly difficult to extract useful information from the numerical solution, particularly regarding the interactions of the chemical reaction and diffusion processes. In this paper we present a new diagnostic tool for analysis of numerical simulations of reacting flow. Our approach is based on recasting an Eulerian flow solution in a Lagrangian frame. Unlike a conventional Lagrangian view point that follows the evolution of a volume of the fluid, we instead follow specific chemical elements, e.g., carbon, nitrogen, etc., as they move through the system . From this perspective an ''atom'' is part of some molecule of a species that is transported through the domain by advection and diffusion. Reactions cause the atom to shift from one chemical host species to another and the subsequent transport of the atom is given by the movement of the new species. We represent these processes using a stochastic particle formulation that treats advection deterministically and models diffusion and chemistry as stochastic processes. In this paper, we discuss the numerical issues in detail and demonstrate that an ensemble of stochastic trajectories can accurately capture key features of the continuum solution. The capabilities of this diagnostic are then demonstrated by applications to study the modulation of carbon chemistry during a vortex-flame interaction, and the role of cyano chemistry in rm NO{sub x} production for a steady diffusion flame.
Thrombosis modeling in intracranial aneurysms: a lattice Boltzmann numerical algorithm
NASA Astrophysics Data System (ADS)
Ouared, R.; Chopard, B.; Stahl, B.; Rüfenacht, D. A.; Yilmaz, H.; Courbebaisse, G.
2008-07-01
The lattice Boltzmann numerical method is applied to model blood flow (plasma and platelets) and clotting in intracranial aneurysms at a mesoscopic level. The dynamics of blood clotting (thrombosis) is governed by mechanical variations of shear stress near wall that influence platelets-wall interactions. Thrombosis starts and grows below a shear rate threshold, and stops above it. Within this assumption, it is possible to account qualitatively well for partial, full or no occlusion of the aneurysm, and to explain why spontaneous thrombosis is more likely to occur in giant aneurysms than in small or medium sized aneurysms.
NASA Astrophysics Data System (ADS)
Dong, Suchuan
2015-11-01
This talk focuses on simulating the motion of a mixture of N (N>=2) immiscible incompressible fluids with given densities, dynamic viscosities and pairwise surface tensions. We present an N-phase formulation within the phase field framework that is thermodynamically consistent, in the sense that the formulation satisfies the conservations of mass/momentum, the second law of thermodynamics and Galilean invariance. We also present an efficient algorithm for numerically simulating the N-phase system. The algorithm has overcome the issues caused by the variable coefficient matrices associated with the variable mixture density/viscosity and the couplings among the (N-1) phase field variables and the flow variables. We compare simulation results with the Langmuir-de Gennes theory to demonstrate that the presented method produces physically accurate results for multiple fluid phases. Numerical experiments will be presented for several problems involving multiple fluid phases, large density contrasts and large viscosity contrasts to demonstrate the capabilities of the method for studying the interactions among multiple types of fluid interfaces. Support from NSF and ONR is gratefully acknowledged.
Numerical Algorithms for Precise and Efficient Orbit Propagation and Positioning
NASA Astrophysics Data System (ADS)
Bradley, Ben K.
Motivated by the growing space catalog and the demands for precise orbit determination with shorter latency for science and reconnaissance missions, this research improves the computational performance of orbit propagation through more efficient and precise numerical integration and frame transformation implementations. Propagation of satellite orbits is required for astrodynamics applications including mission design, orbit determination in support of operations and payload data analysis, and conjunction assessment. Each of these applications has somewhat different requirements in terms of accuracy, precision, latency, and computational load. This dissertation develops procedures to achieve various levels of accuracy while minimizing computational cost for diverse orbit determination applications. This is done by addressing two aspects of orbit determination: (1) numerical integration used for orbit propagation and (2) precise frame transformations necessary for force model evaluation and station coordinate rotations. This dissertation describes a recently developed method for numerical integration, dubbed Bandlimited Collocation Implicit Runge-Kutta (BLC-IRK), and compare its efficiency in propagating orbits to existing techniques commonly used in astrodynamics. The BLC-IRK scheme uses generalized Gaussian quadratures for bandlimited functions. It requires significantly fewer force function evaluations than explicit Runge-Kutta schemes and approaches the efficiency of the 8th-order Gauss-Jackson multistep method. Converting between the Geocentric Celestial Reference System (GCRS) and International Terrestrial Reference System (ITRS) is necessary for many applications in astrodynamics, such as orbit propagation, orbit determination, and analyzing geoscience data from satellite missions. This dissertation provides simplifications to the Celestial Intermediate Origin (CIO) transformation scheme and Earth orientation parameter (EOP) storage for use in positioning and
A stable and efficient numerical algorithm for unconfined aquifer analysis
Keating, Elizabeth; Zyvoloski, George
2008-01-01
The non-linearity of equations governing flow in unconfined aquifers poses challenges for numerical models, particularly in field-scale applications. Existing methods are often unstable, do not converge, or require extremely fine grids and small time steps. Standard modeling procedures such as automated model calibration and Monte Carlo uncertainty analysis typically require thousands of forward model runs. Stable and efficient model performance is essential to these analyses. We propose a new method that offers improvements in stability and efficiency, and is relatively tolerant of coarse grids. It applies a strategy similar to that in the MODFLOW code to solution of Richard's Equation with a grid-dependent pressure/saturation relationship. The method imposes a contrast between horizontal and vertical permeability in gridblocks containing the water table. We establish the accuracy of the method by comparison to an analytical solution for radial flow to a well in an unconfined aquifer with delayed yield. Using a suite of test problems, we demonstrate the efficiencies gained in speed and accuracy over two-phase simulations, and improved stability when compared to MODFLOW. The advantages for applications to transient unconfined aquifer analysis are clearly demonstrated by our examples. We also demonstrate applicability to mixed vadose zone/saturated zone applications, including transport, and find that the method shows great promise for these types of problem, as well.
NASA Astrophysics Data System (ADS)
Barnes, T.
In this article we review numerical studies of the quantum Heisenberg antiferromagnet on a square lattice, which is a model of the magnetic properties of the undoped “precursor insulators” of the high temperature superconductors. We begin with a brief pedagogical introduction and then discuss zero and nonzero temperature properties and compare the numerical results to analytical calculations and to experiment where appropriate. We also review the various algorithms used to obtain these results, and discuss algorithm developments and improvements in computer technology which would be most useful for future numerical work in this area. Finally we list several outstanding problems which may merit further investigation.
Comparison of Fully Numerical Predictor-Corrector and Apollo Skip Entry Guidance Algorithms
NASA Astrophysics Data System (ADS)
Brunner, Christopher W.; Lu, Ping
2012-09-01
The dramatic increase in computational power since the Apollo program has enabled the development of numerical predictor-corrector (NPC) entry guidance algorithms that allow on-board accurate determination of a vehicle's trajectory. These algorithms are sufficiently mature to be flown. They are highly adaptive, especially in the face of extreme dispersion and off-nominal situations compared with reference-trajectory following algorithms. The performance and reliability of entry guidance are critical to mission success. This paper compares the performance of a recently developed fully numerical predictor-corrector entry guidance (FNPEG) algorithm with that of the Apollo skip entry guidance. Through extensive dispersion testing, it is clearly demonstrated that the Apollo skip entry guidance algorithm would be inadequate in meeting the landing precision requirement for missions with medium (4000-7000 km) and long (>7000 km) downrange capability requirements under moderate dispersions chiefly due to poor modeling of atmospheric drag. In the presence of large dispersions, a significant number of failures occur even for short-range missions due to the deviation from planned reference trajectories. The FNPEG algorithm, on the other hand, is able to ensure high landing precision in all cases tested. All factors considered, a strong case is made for adopting fully numerical algorithms for future skip entry missions.
Numerical Results of Earth's Core Accumulation 3-D Modelling
NASA Astrophysics Data System (ADS)
Khachay, Yurie; Anfilogov, Vsevolod
2013-04-01
For a long time as a most convenient had been the model of mega impact in which the early forming of the Earth's core and mantle had been the consequence of formed protoplanet collision with the body of Mercurial mass. But all dynamical models of the Earth's accumulation and the estimations after the Pb-Pb system, lead to the conclusion that the duration of the planet accumulation was about 1 milliard years. But isotopic results after the W-Hf system testify about a very early (5-10) million years, dividing of the geochemical reservoirs of the core and mantle. In [1,3] it is shown, that the account of energy dissipating by the decay of short living radioactive elements and first of all Al,it is sufficient for heating even small bodies with dimensions about (50-100) km up to the iron melting temperature and can be realized a principal new differentiation mechanism. The inner parts of the melted preplanets can join and they are mainly of iron content, but the cold silicate fragments return to the supply zone. Only after the increasing of the gravitational radius, the growing area of the future core can save also the silicate envelope fragments. All existing dynamical accumulation models are constructed by using a spherical-symmetrical model. Hence for understanding the further planet evolution it is significant to trace the origin and evolution of heterogeneities, which occur on the planet accumulation stage. In that paper we are modeling distributions of temperature, pressure, velocity of matter flowing in a block of 3D- spherical body with a growing radius. The boundary problem is solved by the finite-difference method for the system of equations, which include equations which describe the process of accumulation, the Safronov equation, the equation of impulse balance, equation Navier-Stocks, equation for above litho static pressure and heat conductivity in velocity-pressure variables using the Businesque approach. The numerical algorithm of the problem solution in
Numerical Algorithms for Acoustic Integrals - The Devil is in the Details
NASA Technical Reports Server (NTRS)
Brentner, Kenneth S.
1996-01-01
The accurate prediction of the aeroacoustic field generated by aerospace vehicles or nonaerospace machinery is necessary for designers to control and reduce source noise. Powerful computational aeroacoustic methods, based on various acoustic analogies (primarily the Lighthill acoustic analogy) and Kirchhoff methods, have been developed for prediction of noise from complicated sources, such as rotating blades. Both methods ultimately predict the noise through a numerical evaluation of an integral formulation. In this paper, we consider three generic acoustic formulations and several numerical algorithms that have been used to compute the solutions to these formulations. Algorithms for retarded-time formulations are the most efficient and robust, but they are difficult to implement for supersonic-source motion. Collapsing-sphere and emission-surface formulations are good alternatives when supersonic-source motion is present, but the numerical implementations of these formulations are more computationally demanding. New algorithms - which utilize solution adaptation to provide a specified error level - are needed.
A numerical solution algorithm and its application to studies of pulsed light fields propagation
NASA Astrophysics Data System (ADS)
Banakh, V. A.; Gerasimova, L. O.; Smalikho, I. N.; Falits, A. V.
2016-08-01
A new method for studies of pulsed laser beams propagation in a turbulent atmosphere was proposed. The algorithm of numerical simulation is based on the solution of wave parabolic equation for complex spectral amplitude of wave field using method of splitting into physical factors. Examples of the use of the algorithm in the case the propagation pulsed Laguerre-Gaussian beams of femtosecond duration in the turbulence atmosphere has been shown.
Chaotic algorithms: A numerical exploration of the dynamics of a stiff photoconductor model
Markus, A.S. de
1997-04-01
The photoconducting property of semiconductors leads, in general, to a very complex kinetics for the charge carriers due to the non-equilibrium processes involved. In a semi-conductor with one type of trap, the dynamics of the photo-conducting process are described by a set of ordinary coupled non-linear differential equations given by where n and p are the free electron and hole densities, and m the trapped electron density at time t. So far, there is no known closed solution for these set of non-linear differential equations, and therefore, numerical integration techniques have to be employed, as, for example, the standard procedure of the Runge-Kutta (RK) method. Now then, each one of the mechanisms of generation, recombination, and trapping has its own lifetime, which means that different time constants are to be expected in the time dependent behavior of the photocurrent. Thus, depending on the parameters of the model, the system may become stiff if the time scales between n, m, and p separate considerably. This situation may impose a considerable stress upon a fixed step numerical algorithm as the RK, which may produce then unreliable results, and other methods have to be considered. Therefore, the purpose of this note is to examine, for a critical range of parameters, the results of the numerical integration of the stiff system obtained by standard numerical schemes, such as the single-step fourth-order Runge-Kutta method and the multistep Gear method, the latter being appropriate for a rigid system of equations. 7 refs., 2 figs.
Prandtl's Equations: Numerical Results about Singularity Formation and a New Numerical Method
NASA Astrophysics Data System (ADS)
Puppo, Gabriella
1990-01-01
In this work, new numerical results about singularity formation for unsteady Prandtl's equations are presented. Extensive computations with a Lax Wendroff scheme for the impulsively started circular cylinder show that the gradient of the velocity becomes infinite in a finite time. The accuracy and the simplicity of the Lax Wendroff scheme allow us to couple the resolution given by second order accuracy in space with the detail of an extremely fine grid. Thus, while these computations confirm previous results about singularity formation (Van Dommelen and Shen, Cebeci, Wang), they differ in other respects. In fact the peak in the velocity gradient appears to be located upstream of the region of reversed flow and away from the zero vorticity line. Some analytic arguments are also presented to support these conclusions, independently of the computations. In the second part of this work another new numerical method to solve the unsteady Prandtl equations is proposed. This numerical scheme derives from Chorin's Vortex Sheet method. The equations are also solved with operator splitting, but, unlike Chorin's, this scheme is deterministic. This feature is achieved using a Lagrangian particle formulation for the convective step and solving the diffusion step with finite differences on an Eulerian mesh. Finally, a numerical convergence proof is presented.
On the impact of communication complexity in the design of parallel numerical algorithms
NASA Technical Reports Server (NTRS)
Gannon, D.; Vanrosendale, J.
1984-01-01
This paper describes two models of the cost of data movement in parallel numerical algorithms. One model is a generalization of an approach due to Hockney, and is suitable for shared memory multiprocessors where each processor has vector capabilities. The other model is applicable to highly parallel nonshared memory MIMD systems. In the second model, algorithm performance is characterized in terms of the communication network design. Techniques used in VLSI complexity theory are also brought in, and algorithm independent upper bounds on system performance are derived for several problems that are important to scientific computation.
Extremal polynomials and methods of optimization of numerical algorithms
Lebedev, V I
2004-10-31
Chebyshev-Markov-Bernstein-Szegoe polynomials C{sub n}(x) extremal on [-1,1] with weight functions w(x)=(1+x){sup {alpha}}(1- x){sup {beta}}/{radical}(S{sub l}(x)) where {alpha},{beta}=0,1/2 and S{sub l}(x)={pi}{sub k=1}{sup m}(1-c{sub k}T{sub l{sub k}}(x))>0 are considered. A universal formula for their representation in trigonometric form is presented. Optimal distributions of the nodes of the weighted interpolation and explicit quadrature formulae of Gauss, Markov, Lobatto, and Rado types are obtained for integrals with weight p(x)=w{sup 2}(x)(1-x{sup 2}){sup -1/2}. The parameters of optimal Chebyshev iterative methods reducing the error optimally by comparison with the initial error defined in another norm are determined. For each stage of the Fedorenko-Bakhvalov method iteration parameters are determined which take account of the results of the previous calculations. Chebyshev filters with weight are constructed. Iterative methods of the solution of equations containing compact operators are studied.
A Parallel Compact Multi-Dimensional Numerical Algorithm with Aeroacoustics Applications
NASA Technical Reports Server (NTRS)
Povitsky, Alex; Morris, Philip J.
1999-01-01
In this study we propose a novel method to parallelize high-order compact numerical algorithms for the solution of three-dimensional PDEs (Partial Differential Equations) in a space-time domain. For this numerical integration most of the computer time is spent in computation of spatial derivatives at each stage of the Runge-Kutta temporal update. The most efficient direct method to compute spatial derivatives on a serial computer is a version of Gaussian elimination for narrow linear banded systems known as the Thomas algorithm. In a straightforward pipelined implementation of the Thomas algorithm processors are idle due to the forward and backward recurrences of the Thomas algorithm. To utilize processors during this time, we propose to use them for either non-local data independent computations, solving lines in the next spatial direction, or local data-dependent computations by the Runge-Kutta method. To achieve this goal, control of processor communication and computations by a static schedule is adopted. Thus, our parallel code is driven by a communication and computation schedule instead of the usual "creative, programming" approach. The obtained parallelization speed-up of the novel algorithm is about twice as much as that for the standard pipelined algorithm and close to that for the explicit DRP algorithm.
NASA Astrophysics Data System (ADS)
Dong, S.
2015-02-01
We present a family of physical formulations, and a numerical algorithm, based on a class of general order parameters for simulating the motion of a mixture of N (N ⩾ 2) immiscible incompressible fluids with given densities, dynamic viscosities, and pairwise surface tensions. The N-phase formulations stem from a phase field model we developed in a recent work based on the conservations of mass/momentum, and the second law of thermodynamics. The introduction of general order parameters leads to an extremely strongly-coupled system of (N - 1) phase field equations. On the other hand, the general form enables one to compute the N-phase mixing energy density coefficients in an explicit fashion in terms of the pairwise surface tensions. We show that the increased complexity in the form of the phase field equations associated with general order parameters in actuality does not cause essential computational difficulties. Our numerical algorithm reformulates the (N - 1) strongly-coupled phase field equations for general order parameters into 2 (N - 1) Helmholtz-type equations that are completely de-coupled from one another. This leads to a computational complexity comparable to that for the simplified phase field equations associated with certain special choice of the order parameters. We demonstrate the capabilities of the method developed herein using several test problems involving multiple fluid phases and large contrasts in densities and viscosities among the multitude of fluids. In particular, by comparing simulation results with the Langmuir-de Gennes theory of floating liquid lenses we show that the method using general order parameters produces physically accurate results for multiple fluid phases.
Dong, S.
2015-02-15
We present a family of physical formulations, and a numerical algorithm, based on a class of general order parameters for simulating the motion of a mixture of N (N⩾2) immiscible incompressible fluids with given densities, dynamic viscosities, and pairwise surface tensions. The N-phase formulations stem from a phase field model we developed in a recent work based on the conservations of mass/momentum, and the second law of thermodynamics. The introduction of general order parameters leads to an extremely strongly-coupled system of (N−1) phase field equations. On the other hand, the general form enables one to compute the N-phase mixing energy density coefficients in an explicit fashion in terms of the pairwise surface tensions. We show that the increased complexity in the form of the phase field equations associated with general order parameters in actuality does not cause essential computational difficulties. Our numerical algorithm reformulates the (N−1) strongly-coupled phase field equations for general order parameters into 2(N−1) Helmholtz-type equations that are completely de-coupled from one another. This leads to a computational complexity comparable to that for the simplified phase field equations associated with certain special choice of the order parameters. We demonstrate the capabilities of the method developed herein using several test problems involving multiple fluid phases and large contrasts in densities and viscosities among the multitude of fluids. In particular, by comparing simulation results with the Langmuir–de Gennes theory of floating liquid lenses we show that the method using general order parameters produces physically accurate results for multiple fluid phases.
A new free-surface stabilization algorithm for geodynamical modelling: Theory and numerical tests
NASA Astrophysics Data System (ADS)
Andrés-Martínez, Miguel; Morgan, Jason P.; Pérez-Gussinyé, Marta; Rüpke, Lars
2015-09-01
The surface of the solid Earth is effectively stress free in its subaerial portions, and hydrostatic beneath the oceans. Unfortunately, this type of boundary condition is difficult to treat computationally, and for computational convenience, numerical models have often used simpler approximations that do not involve a normal stress-loaded, shear-stress free top surface that is free to move. Viscous flow models with a computational free surface typically confront stability problems when the time step is bigger than the viscous relaxation time. The small time step required for stability (< 2 Kyr) makes this type of model computationally intensive, so there remains a need to develop strategies that mitigate the stability problem by making larger (at least ∼10 Kyr) time steps stable and accurate. Here we present a new free-surface stabilization algorithm for finite element codes which solves the stability problem by adding to the Stokes formulation an intrinsic penalization term equivalent to a portion of the future load at the surface nodes. Our algorithm is straightforward to implement and can be used with both Eulerian or Lagrangian grids. It includes α and β parameters to respectively control both the vertical and the horizontal slope-dependent penalization terms, and uses Uzawa-like iterations to solve the resulting system at a cost comparable to a non-stress free surface formulation. Four tests were carried out in order to study the accuracy and the stability of the algorithm: (1) a decaying first-order sinusoidal topography test, (2) a decaying high-order sinusoidal topography test, (3) a Rayleigh-Taylor instability test, and (4) a steep-slope test. For these tests, we investigate which α and β parameters give the best results in terms of both accuracy and stability. We also compare the accuracy and the stability of our algorithm with a similar implicit approach recently developed by Kaus et al. (2010). We find that our algorithm is slightly more accurate
Evaluation of registration, compression and classification algorithms. Volume 1: Results
NASA Technical Reports Server (NTRS)
Jayroe, R.; Atkinson, R.; Callas, L.; Hodges, J.; Gaggini, B.; Peterson, J.
1979-01-01
The registration, compression, and classification algorithms were selected on the basis that such a group would include most of the different and commonly used approaches. The results of the investigation indicate clearcut, cost effective choices for registering, compressing, and classifying multispectral imagery.
NASA Technical Reports Server (NTRS)
Powell, Richard W.
1998-01-01
This paper describes the development and evaluation of a numerical roll reversal predictor-corrector guidance algorithm for the atmospheric flight portion of the Mars Surveyor Program 2001 Orbiter and Lander missions. The Lander mission utilizes direct entry and has a demanding requirement to deploy its parachute within 10 km of the target deployment point. The Orbiter mission utilizes aerocapture to achieve a precise captured orbit with a single atmospheric pass. Detailed descriptions of these predictor-corrector algorithms are given. Also, results of three and six degree-of-freedom Monte Carlo simulations which include navigation, aerodynamics, mass properties and atmospheric density uncertainties are presented.
Comparisons between physical model and numerical model results
Sagasta, P.F.
1986-04-01
Physical modeling scaling laws provide the opportunity to compare results among numerical modeling programs, including two- and three-dimensional interactive-raytracing and more sophisticated wave-equation-approximation methods, and seismic data collected over a known, three-dimensional model in a water tank. The sixfold closely spaced common-midpoint water-tank data modeled for this study simulate a standard marine three-dimensional survey shot over a three-layered physical model (a structured upper layer overlying two flat layers. Using modeling theory, the physical-tank model dimensions scale to realistic exploration dimensions, and the ultrasonic frequencies scale to seismic frequencies of 2-60 Hz. A comparison of P and converted-S events and amplitudes among these physical tank data and numerical modeling results illustrates many of the advantages and limitations of modeling methods available to the exploration geophysicist. The ability of three-dimensional raytracing to model off-line events and more closely predict waveform phase due to geometric effects shows the greater usefulness of three-dimensional modeling methods over two-dimensional methods in seismic interpretation. Forward modeling of P to Sv-converted events and multiples predicts their presence in the seismic data. The geometry of the physical model leads to examples where raytracing approximations are limited and the more time-consuming finite-element technique is useful to better understand wave propagation within the physical model. All of the numerical modeling programs used show limitations in matching the amplitudes and phase of events in the physical-model seismic data.
An adaptive numeric predictor-corrector guidance algorithm for atmospheric entry vehicles
NASA Astrophysics Data System (ADS)
Spratlin, Kenneth Milton
1987-05-01
An adaptive numeric predictor-corrector guidance is developed for atmospheric entry vehicles which utilize lift to achieve maximum footprint capability. Applicability of the guidance design to vehicles with a wide range of performance capabilities is desired so as to reduce the need for algorithm redesign with each new vehicle. Adaptability is desired to minimize mission-specific analysis and planning. The guidance algorithm motivation and design are presented. Performance is assessed for application of the algorithm to the NASA Entry Research Vehicle (ERV). The dispersions the guidance must be designed to handle are presented. The achievable operational footprint for expected worst-case dispersions is presented. The algorithm performs excellently for the expected dispersions and captures most of the achievable footprint.
NASA Astrophysics Data System (ADS)
Kojic, M.; Mijailovic, S.; Zdravkovic, N.
Complex behaviour of connective tissue can be modeled by a fiber-fiber kinetics material model introduced in Mijailovic (1991), Mijailovic et al. (1993). The model is based on the hypothesis of sliding of elastic fibers with Coulomb and viscous friction. The main characteristics of the model were verified experimentally in Mijailovic (1991), and a numerical procedure for one-dimensional tension was developed considering sliding as a contact problem between bodies. In this paper we propose a new and general numerical procedure for calculation of the stress-strain law of the fiber-fiber kinetics model in case of Coulomb friction. Instead of using a contact algorithm (Mijailovic 1991), which is numerically inefficient and never enough reliable, here the history of sliding along the sliding length is traced numerically through a number of segments along the fiber. The algorithm is simple, efficient and reliable and provides solutions for arbitrary cyclic loading, including tension, shear, and tension and shear simultaneously, giving hysteresis loops typical for soft tissue response. The model is built in the finite element technique, providing the possibility of its application to general and real problems. Solved examples illustrate the main characteristics of the model and of the developed numerical method, as well as its applicability to practical problems. Accuracy of some results, for the simple case of uniaxial loading, is verified by comparison with analytical solutions.
On the impact of communication complexity on the design of parallel numerical algorithms
NASA Technical Reports Server (NTRS)
Gannon, D. B.; Van Rosendale, J.
1984-01-01
This paper describes two models of the cost of data movement in parallel numerical alorithms. One model is a generalization of an approach due to Hockney, and is suitable for shared memory multiprocessors where each processor has vector capabilities. The other model is applicable to highly parallel nonshared memory MIMD systems. In this second model, algorithm performance is characterized in terms of the communication network design. Techniques used in VLSI complexity theory are also brought in, and algorithm-independent upper bounds on system performance are derived for several problems that are important to scientific computation.
NASA Astrophysics Data System (ADS)
Kim, J.; Sonnenthal, E. L.; Rutqvist, J.
2011-12-01
Rigorous modeling of coupling between fluid, heat, and geomechanics (thermo-poro-mechanics), in fractured porous media is one of the important and difficult topics in geothermal reservoir simulation, because the physics are highly nonlinear and strongly coupled. Coupled fluid/heat flow and geomechanics are investigated using the multiple interacting continua (MINC) method as applied to naturally fractured media. In this study, we generalize constitutive relations for the isothermal elastic dual porosity model proposed by Berryman (2002) to those for the non-isothermal elastic/elastoplastic multiple porosity model, and derive the coupling coefficients of coupled fluid/heat flow and geomechanics and constraints of the coefficients. When the off-diagonal terms of the total compressibility matrix for the flow problem are zero, the upscaled drained bulk modulus for geomechanics becomes the harmonic average of drained bulk moduli of the multiple continua. In this case, the drained elastic/elastoplastic moduli for mechanics are determined by a combination of the drained moduli and volume fractions in multiple porosity materials. We also determine a relation between local strains of all multiple porosity materials in a gridblock and the global strain of the gridblock, from which we can track local and global elastic/plastic variables. For elastoplasticity, the return mapping is performed for all multiple porosity materials in the gridblock. For numerical implementation, we employ and extend the fixed-stress sequential method of the single porosity model to coupled fluid/heat flow and geomechanics in multiple porosity systems, because it provides numerical stability and high accuracy. This sequential scheme can be easily implemented by using a porosity function and its corresponding porosity correction, making use of the existing robust flow and geomechanics simulators. We implemented the proposed modeling and numerical algorithm to the reaction transport simulator
Analysis of Numerical Simulation Results of LIPS-200 Lifetime Experiments
NASA Astrophysics Data System (ADS)
Chen, Juanjuan; Zhang, Tianping; Geng, Hai; Jia, Yanhui; Meng, Wei; Wu, Xianming; Sun, Anbang
2016-06-01
Accelerator grid structural and electron backstreaming failures are the most important factors affecting the ion thruster's lifetime. During the thruster's operation, Charge Exchange Xenon (CEX) ions are generated from collisions between plasma and neutral atoms. Those CEX ions grid's barrel and wall frequently, which cause the failures of the grid system. In order to validate whether the 20 cm Lanzhou Ion Propulsion System (LIPS-200) satisfies China's communication satellite platform's application requirement for North-South Station Keeping (NSSK), this study analyzed the measured depth of the pit/groove on the accelerator grid's wall and aperture diameter's variation and estimated the operating lifetime of the ion thruster. Different from the previous method, in this paper, the experimental results after the 5500 h of accumulated operation of the LIPS-200 ion thruster are presented firstly. Then, based on these results, theoretical analysis and numerical calculations were firstly performed to predict the on-orbit lifetime of LIPS-200. The results obtained were more accurate to calculate the reliability and analyze the failure modes of the ion thruster. The results indicated that the predicted lifetime of LIPS-200's was about 13218.1 h which could satisfy the required lifetime requirement of 11000 h very well.
The Effect of Pansharpening Algorithms on the Resulting Orthoimagery
NASA Astrophysics Data System (ADS)
Agrafiotis, P.; Georgopoulos, A.; Karantzalos, K.
2016-06-01
This paper evaluates the geometric effects of pansharpening algorithms on automatically generated DSMs and thus on the resulting orthoimagery through a quantitative assessment of the accuracy on the end products. The main motivation was based on the fact that for automatically generated Digital Surface Models, an image correlation step is employed for extracting correspondences between the overlapping images. Thus their accuracy and reliability is strictly related to image quality, while pansharpening may result into lower image quality which may affect the DSM generation and the resulting orthoimage accuracy. To this direction, an iterative methodology was applied in order to combine the process described by Agrafiotis and Georgopoulos (2015) with different pansharpening algorithms and check the accuracy of orthoimagery resulting from pansharpened data. Results are thoroughly examined and statistically analysed. The overall evaluation indicated that the pansharpening process didn't affect the geometric accuracy of the resulting DSM with a 10m interval, as well as the resulting orthoimagery. Although some residuals in the orthoimages were observed, their magnitude cannot adversely affect the accuracy of the final orthoimagery.
François, Marianne M.
2015-05-28
A review of recent advances made in numerical methods and algorithms within the volume tracking framework is presented. The volume tracking method, also known as the volume-of-fluid method has become an established numerical approach to model and simulate interfacial flows. Its advantage is its strict mass conservation. However, because the interface is not explicitly tracked but captured via the material volume fraction on a fixed mesh, accurate estimation of the interface position, its geometric properties and modeling of interfacial physics in the volume tracking framework remain difficult. Several improvements have been made over the last decade to address these challenges.more » In this study, the multimaterial interface reconstruction method via power diagram, curvature estimation via heights and mean values and the balanced-force algorithm for surface tension are highlighted.« less
François, Marianne M.
2015-05-28
A review of recent advances made in numerical methods and algorithms within the volume tracking framework is presented. The volume tracking method, also known as the volume-of-fluid method has become an established numerical approach to model and simulate interfacial flows. Its advantage is its strict mass conservation. However, because the interface is not explicitly tracked but captured via the material volume fraction on a fixed mesh, accurate estimation of the interface position, its geometric properties and modeling of interfacial physics in the volume tracking framework remain difficult. Several improvements have been made over the last decade to address these challenges. In this study, the multimaterial interface reconstruction method via power diagram, curvature estimation via heights and mean values and the balanced-force algorithm for surface tension are highlighted.
NASA Astrophysics Data System (ADS)
Fedoseyev, A.; Kansa, E. J.; Tsynkov, S.; Petropavlovskiy, S.; Osintcev, M.; Shumlak, U.; Henshaw, W. D.
2016-10-01
We present the implementation of the Lacuna method, that removes a key diffculty that currently hampers many existing methods for computing unsteady electromagnetic waves on unbounded regions. Numerical accuracy and/or stability may deterio-rate over long times due to the treatment of artificial outer boundaries. We describe a developed universal algorithm and software that correct this problem by employing the Huygens' principle and lacunae of Maxwell's equations. The algorithm provides a temporally uniform guaranteed error bound (no deterioration at all), and the software will enable robust electromagnetic simulations in a high-performance computing environment. The methodology applies to any geometry, any scheme, and any boundary condition. It eliminates the long-time deterioration regardless of its origin and how it manifests itself. In retrospect, the lacunae method was first proposed by V. Ryaben'kii and subsequently developed by S. Tsynkov. We have completed development of an innovative numerical methodology for high fidelity error-controlled modeling of a broad variety of electromagnetic and other wave phenomena. Proof-of-concept 3D computations have been conducted that con-vincingly demonstrate the feasibility and effciency of the proposed approach. Our algorithms are being implemented as robust commercial software tools in a standalone module to be combined with existing numerical schemes in several widely used computational electromagnetic codes.
Rayleigh Wave Numerical Dispersion in a 3D Finite-Difference Algorithm
NASA Astrophysics Data System (ADS)
Preston, L. A.; Aldridge, D. F.
2010-12-01
A Rayleigh wave propagates laterally without dispersion in the vicinity of the plane stress-free surface of a homogeneous and isotropic elastic halfspace. The phase speed is independent of frequency and depends only on the Poisson ratio of the medium. However, after temporal and spatial discretization, a Rayleigh wave simulated by a 3D staggered-grid finite-difference (FD) seismic wave propagation algorithm suffers from frequency- and direction-dependent numerical dispersion. The magnitude of this dispersion depends critically on FD algorithm implementation details. Nevertheless, proper gridding can control numerical dispersion to within an acceptable level, leading to accurate Rayleigh wave simulations. Many investigators have derived dispersion relations appropriate for body wave propagation by various FD algorithms. However, the situation for surface waves is less well-studied. We have devised a numerical search procedure to estimate Rayleigh phase speed and group speed curves for 3D O(2,2) and O(2,4) staggered-grid FD algorithms. In contrast with the continuous time-space situation (where phase speed is obtained by extracting the appropriate root of the Rayleigh cubic), we cannot develop a closed-form mathematical formula governing the phase speed. Rather, we numerically seek the particular phase speed that leads to a solution of the discrete wave propagation equations, while holding medium properties, frequency, horizontal propagation direction, and gridding intervals fixed. Group speed is then obtained by numerically differentiating the phase speed with respect to frequency. The problem is formulated for an explicit stress-free surface positioned at two different levels within the staggered spatial grid. Additionally, an interesting variant involving zero-valued medium properties above the surface is addressed. We refer to the latter as an implicit free surface. Our preliminary conclusion is that an explicit free surface, implemented with O(4) spatial FD
Adaptively resizing populations: Algorithm, analysis, and first results
NASA Technical Reports Server (NTRS)
Smith, Robert E.; Smuda, Ellen
1993-01-01
Deciding on an appropriate population size for a given Genetic Algorithm (GA) application can often be critical to the algorithm's success. Too small, and the GA can fall victim to sampling error, affecting the efficacy of its search. Too large, and the GA wastes computational resources. Although advice exists for sizing GA populations, much of this advice involves theoretical aspects that are not accessible to the novice user. An algorithm for adaptively resizing GA populations is suggested. This algorithm is based on recent theoretical developments that relate population size to schema fitness variance. The suggested algorithm is developed theoretically, and simulated with expected value equations. The algorithm is then tested on a problem where population sizing can mislead the GA. The work presented suggests that the population sizing algorithm may be a viable way to eliminate the population sizing decision from the application of GA's.
Palanichamy, Jegathambal; Schüttrumpf, Holger; Köngeter, Jürgen; Becker, Torsten; Palani, Sundarambal
2009-01-01
The migration of the species of chromium and ammonium in groundwater and their effective remediation depend on the various hydro-geological characteristics of the system. The computational modeling of the reactive transport problems is one of the most preferred tools for field engineers in groundwater studies to make decision in pollution abatement. The analytical models are less modular in nature with low computational demand where the modification is difficult during the formulation of different reactive systems. Numerical models provide more detailed information with high computational demand. Coupling of linear partial differential Equations (PDE) for the transport step with a non-linear system of ordinary differential equations (ODE) for the reactive step is the usual mode of solving a kinetically controlled reactive transport equation. This assumption is not appropriate for a system with low concentration of species such as chromium. Such reaction systems can be simulated using a stochastic algorithm. In this paper, a finite difference scheme coupled with a stochastic algorithm for the simulation of the transport of ammonium and chromium in subsurface media has been detailed.
Numerical Asymptotic Solutions Of Differential Equations
NASA Technical Reports Server (NTRS)
Thurston, Gaylen A.
1992-01-01
Numerical algorithms derived and compared with classical analytical methods. In method, expansions replaced with integrals evaluated numerically. Resulting numerical solutions retain linear independence, main advantage of asymptotic solutions.
Design and Implementation of Numerical Linear Algebra Algorithms on Fixed Point DSPs
NASA Astrophysics Data System (ADS)
Nikolić, Zoran; Nguyen, Ha Thai; Frantz, Gene
2007-12-01
Numerical linear algebra algorithms use the inherent elegance of matrix formulations and are usually implemented using C/C++ floating point representation. The system implementation is faced with practical constraints because these algorithms usually need to run in real time on fixed point digital signal processors (DSPs) to reduce total hardware costs. Converting the simulation model to fixed point arithmetic and then porting it to a target DSP device is a difficult and time-consuming process. In this paper, we analyze the conversion process. We transformed selected linear algebra algorithms from floating point to fixed point arithmetic, and compared real-time requirements and performance between the fixed point DSP and floating point DSP algorithm implementations. We also introduce an advanced code optimization and an implementation by DSP-specific, fixed point C code generation. By using the techniques described in the paper, speed can be increased by a factor of up to 10 compared to floating point emulation on fixed point hardware.
Busted Butte: Achieving the Objectives and Numerical Modeling Results
W.E. Soll; M. Kearney; P. Stauffer; P. Tseng; H.J. Turin; Z. Lu
2002-10-07
The Unsaturated Zone Transport Test (UZTT) at Busted Butte is a mesoscale field/laboratory/modeling investigation designed to address uncertainties associated with flow and transport in the UZ site-process models for Yucca Mountain. The UZTT test facility is located approximately 8 km southeast of the potential Yucca Mountain repository area. The UZTT was designed in two phases, to address five specific objectives in the UZ: the effect of heterogeneities, flow and transport (F&T) behavior at permeability contrast boundaries, migration of colloids , transport models of sorbing tracers, and scaling issues in moving from laboratory scale to field scale. Phase 1A was designed to assess the influence of permeability contrast boundaries in the hydrologic Calico Hills. Visualization of fluorescein movement , mineback rock analyses, and comparison with numerical models demonstrated that F&T are capillary dominated with permeability contrast boundaries distorting the capillary flow. Phase 1B was designed to assess the influence of fractures on F&T and colloid movement. The injector in Phase 1B was located at a fracture, while the collector, 30 cm below, was placed at what was assumed to be the same fracture. Numerical simulations of nonreactive (Br) and reactive (Li) tracers show the experimental data are best explained by a combination of molecular diffusion and advective flux. For Phase 2, a numerical model with homogeneous unit descriptions was able to qualitatively capture the general characteristics of the system. Numerical simulations and field observations revealed a capillary dominated flow field. Although the tracers showed heterogeneity in the test block, simulation using heterogeneous fields did not significantly improve the data fit over homogeneous field simulations. In terms of scaling, simulations of field tracer data indicate a hydraulic conductivity two orders of magnitude higher than measured in the laboratory. Simulations of Li, a weakly sorbing tracer
NASA Technical Reports Server (NTRS)
Pline, Alexander D.; Wernet, Mark P.; Hsieh, Kwang-Chung
1991-01-01
The Surface Tension Driven Convection Experiment (STDCE) is a Space Transportation System flight experiment to study both transient and steady thermocapillary fluid flows aboard the United States Microgravity Laboratory-1 (USML-1) Spacelab mission planned for June, 1992. One of the components of data collected during the experiment is a video record of the flow field. This qualitative data is then quantified using an all electric, two dimensional Particle Image Velocimetry (PIV) technique called Particle Displacement Tracking (PDT), which uses a simple space domain particle tracking algorithm. Results using the ground based STDCE hardware, with a radiant flux heating mode, and the PDT system are compared to numerical solutions obtained by solving the axisymmetric Navier Stokes equations with a deformable free surface. The PDT technique is successful in producing a velocity vector field and corresponding stream function from the raw video data which satisfactorily represents the physical flow. A numerical program is used to compute the velocity field and corresponding stream function under identical conditions. Both the PDT system and numerical results were compared to a streak photograph, used as a benchmark, with good correlation.
NASA Technical Reports Server (NTRS)
Pline, Alexander D.; Werner, Mark P.; Hsieh, Kwang-Chung
1991-01-01
The Surface Tension Driven Convection Experiment (STDCE) is a Space Transportation System flight experiment to study both transient and steady thermocapillary fluid flows aboard the United States Microgravity Laboratory-1 (USML-1) Spacelab mission planned for June, 1992. One of the components of data collected during the experiment is a video record of the flow field. This qualitative data is then quantified using an all electric, two dimensional Particle Image Velocimetry (PIV) technique called Particle Displacement Tracking (PDT), which uses a simple space domain particle tracking algorithm. Results using the ground based STDCE hardware, with a radiant flux heating mode, and the PDT system are compared to numerical solutions obtained by solving the axisymmetric Navier Stokes equations with a deformable free surface. The PDT technique is successful in producing a velocity vector field and corresponding stream function from the raw video data which satisfactorily represents the physical flow. A numerical program is used to compute the velocity field and corresponding stream function under identical conditions. Both the PDT system and numerical results were compared to a streak photograph, used as a benchmark, with good correlation.
New Concepts in Breast Cancer Emerge from Analyzing Clinical Data Using Numerical Algorithms
Retsky, Michael
2009-01-01
A small international group has recently challenged fundamental concepts in breast cancer. As a guiding principle in therapy, it has long been assumed that breast cancer growth is continuous. However, this group suggests tumor growth commonly includes extended periods of quasi-stable dormancy. Furthermore, surgery to remove the primary tumor often awakens distant dormant micrometastases. Accordingly, over half of all relapses in breast cancer are accelerated in this manner. This paper describes how a numerical algorithm was used to come to these conclusions. Based on these findings, a dormancy preservation therapy is proposed. PMID:19440287
NASA Technical Reports Server (NTRS)
Shia, Run-Lie; Ha, Yuk Lung; Wen, Jun-Shan; Yung, Yuk L.
1990-01-01
Extensive testing of the advective scheme proposed by Prather (1986) has been carried out in support of the California Institute of Technology-Jet Propulsion Laboratory two-dimensional model of the middle atmosphere. The original scheme is generalized to include higher-order moments. In addition, it is shown how well the scheme works in the presence of chemistry as well as eddy diffusion. Six types of numerical experiments including simple clock motion and pure advection in two dimensions have been investigated in detail. By comparison with analytic solutions, it is shown that the new algorithm can faithfully preserve concentration profiles, has essentially no numerical diffusion, and is superior to a typical fourth-order finite difference scheme.
Shia, R L; Ha, Y L; Wen, J S; Yung, Y L
1990-05-20
Extensive testing of the advective scheme, proposed by Prather (1986), has been carried out in support of the California Institute of Technology-Jet Propulsion Laboratory two-dimensional model of the middle atmosphere. We generalize the original scheme to include higher-order moments. In addition, we show how well the scheme works in the presence of chemistry as well as eddy diffusion. Six types of numerical experiments including simple clock motion and pure advection in two dimensions have been investigated in detail. By comparison with analytic solutions it is shown that the new algorithm can faithfully preserve concentration profiles, has essentially no numerical diffusion, and is superior to a typical fourth-order finite difference scheme.
Numerical calculations of high-altitude differential charging: Preliminary results
NASA Technical Reports Server (NTRS)
Laframboise, J. G.; Godard, R.; Prokopenko, S. M. L.
1979-01-01
A two dimensional simulation program was constructed in order to obtain theoretical predictions of floating potential distributions on geostationary spacecraft. The geometry was infinite-cylindrical with angle dependence. Effects of finite spacecraft length on sheath potential profiles can be included in an approximate way. The program can treat either steady-state conditions or slowly time-varying situations, involving external time scales much larger than particle transit times. Approximate, locally dependent expressions were used to provide space charge, density profiles, but numerical orbit-following is used to calculate surface currents. Ambient velocity distributions were assumed to be isotropic, beam-like, or some superposition of these.
Non-Shock Initiation Model for Explosive Families: Numerical Results
NASA Astrophysics Data System (ADS)
Todd, S. N.; Anderson, M. U.; Caipen, T. L.; Grady, D. E.
2009-12-01
A damage initiated reaction (DMGIR) computational model is being developed for the CTH shock physics code to predict the response of an explosive to non-shock mechanical insults. The distinguishing feature of this model is the introduction of a damage variable, which relates the evolution of damage to the initiation of reaction in the explosive, and its growth to detonation. The DMGIR model is a complement to the History Variable Reactive Burn (HVRB) model embedded in the current CTH code. Specifically designed experiments are supporting the development, implementation, and validation of the DMGIR numerical approach. PBXN-5 was the initial explosive material used experimentally to develop the DMGIR model. This explosive represents a family of plastically bonded explosives with good mechanical strength and rigid body properties. The model has been extended to cast explosives represented by Composition B.
Spurious frequencies as a result of numerical boundary treatments
NASA Technical Reports Server (NTRS)
Abarbanel, Saul; Gottlieb, David
1990-01-01
The stability theory for finite difference Initial Boundary-Value approximations to systems of hyperbolic partial differential equations states that the exclusion of eigenvalues and generalized eigenvalues is a sufficient condition for stability. The theory, however, does not discuss the nature of numerical approximations in the presence of such eigenvalues. In fact, as was shown previously, for the problem of vortex shedding by a 2-D cylinder in subsonic flow, stating boundary conditions in terms of the primitive (non-characteristic) variables may lead to such eigenvalues, causing perturbations that decay slowly in space and remain periodic time. Characteristic formulation of the boundary conditions avoided this problem. A more systematic study of the behavior of the (linearized) one-dimensional gas dynamic equations under various sets of oscillation-inducing legal boundary conditions is reported.
On the complexity of classical and quantum algorithms for numerical problems in quantum mechanics
NASA Astrophysics Data System (ADS)
Bessen, Arvid J.
Our understanding of complex quantum mechanical processes is limited by our inability to solve the equations that govern them except for simple cases. Numerical simulation of quantum systems appears to be our best option to understand, design and improve quantum systems. It turns out, however, that computational problems in quantum mechanics are notoriously difficult to treat numerically. The computational time that is required often scales exponentially with the size of the problem. One of the most radical approaches for treating quantum problems was proposed by Feytiman in 1982 [46]: he suggested that quantum mechanics itself showed a promising way to simulate quantum physics. This idea, the so called quantum computer, showed its potential convincingly in one important regime with the development of Shor's integer factorization algorithm which improves exponentially on the best known classical algorithm. In this thesis we explore six different computational problems from quantum mechanics, study their computational complexity and try to find ways to remedy them. In the first problem we investigate the reasons behind the improved performance of Shor's and similar algorithms. We show that the key quantum part in Shor's algorithm, the quantum phase estimation algorithm, achieves its good performance through the use of power queries and we give lower bounds for all phase estimation algorithms that use power queries that match the known upper bounds. Our research indicates that problems that allow the use of power queries will achieve similar exponential improvements over classical algorithms. We then apply our lower bound technique for power queries to the Sturm-Liouville eigenvalue problem and show matching lower bounds to the upper bounds of Papageorgiou and Wozniakowski [85]. It seems to be very difficult, though, to find nontrivial instances of the Sturm-Lionville problem for which power queries can be simulated efficiently. A quantum computer differs from a
NASA Astrophysics Data System (ADS)
Zhang, Lisha
We present fast and robust numerical algorithms for 3-D scattering from perfectly electrical conducting (PEC) and dielectric random rough surfaces in microwave remote sensing. The Coifman wavelets or Coiflets are employed to implement Galerkin's procedure in the method of moments (MoM). Due to the high-precision one-point quadrature, the Coiflets yield fast evaluations of the most off-diagonal entries, reducing the matrix fill effort from O(N2) to O( N). The orthogonality and Riesz basis of the Coiflets generate well conditioned impedance matrix, with rapid convergence for the conjugate gradient solver. The resulting impedance matrix is further sparsified by the matrix-formed standard fast wavelet transform (SFWT). By properly selecting multiresolution levels of the total transformation matrix, the solution precision can be enhanced while matrix sparsity and memory consumption have not been noticeably sacrificed. The unified fast scattering algorithm for dielectric random rough surfaces can asymptotically reduce to the PEC case when the loss tangent grows extremely large. Numerical results demonstrate that the reduced PEC model does not suffer from ill-posed problems. Compared with previous publications and laboratory measurements, good agreement is observed.
NASA Astrophysics Data System (ADS)
Wang, Jiong; Steinmann, Paul
2016-05-01
This is part II of this series of papers. The aim of the current paper was to solve the governing PDE system derived in part I numerically, such that the procedure of variant reorientation in a magnetic shape memory alloy (MSMA) sample can be simulated. The sample to be considered in this paper has a 3D cuboid shape and is subject to typical magnetic and mechanical loading conditions. To investigate the demagnetization effect on the sample's response, the surrounding space of the sample is taken into account. By considering the different properties of the independent variables, an iterative numerical algorithm is proposed to solve the governing system. The related mathematical formulas and some techniques facilitating the numerical calculations are introduced. Based on the results of numerical simulations, the distributions of some important physical quantities (e.g., magnetization, demagnetization field, and mechanical stress) in the sample can be determined. Furthermore, the properties of configurational force on the twin interfaces are investigated. By virtue of the twin interface movement criteria derived in part I, the whole procedure of magnetic field- or stress-induced variant reorientations in the MSMA sample can be properly simulated.
Numerical Simulation of Turbulent MHD Flows Using an Iterative PNS Algorithm
NASA Technical Reports Server (NTRS)
Kato, Hiromasa; Tannehill, John C.; Mehta, Unmeel B.
2003-01-01
A new parabolized Navier-Stokes (PNS) algorithm has been developed to efficiently compute magnetohydrodynamic (MHD) flows in the low magnetic Reynolds number regime. In this regime, the electrical conductivity is low and the induced magnetic field is negligible compared to the applied magnetic field. The MHD effects are modeled by introducing source terms into the PNS equation which can then be solved in a very efficient manner. To account for upstream (elliptic) effects, the flowfields are computed using multiple streamwise sweeps with an iterated PNS algorithm. Turbulence has been included by modifying the Baldwin-Lomax turbulence model to account for MHD effects. The new algorithm has been used to compute both laminar and turbulent, supersonic, MHD flows over flat plates and supersonic viscous flows in a rectangular MHD accelerator. The present results are in excellent agreement with previous complete Navier-Stokes calculations.
Studies of numerical algorithms for gyrokinetics and the effects of shaping on plasma turbulence
NASA Astrophysics Data System (ADS)
Belli, Emily Ann
Advanced numerical algorithms for gyrokinetic simulations are explored for more effective studies of plasma turbulent transport. The gyrokinetic equations describe the dynamics of particles in 5-dimensional phase space, averaging over the fast gyromotion, and provide a foundation for studying plasma microturbulence in fusion devices and in astrophysical plasmas. Several algorithms for Eulerian/continuum gyrokinetic solvers are compared. An iterative implicit scheme based on numerical approximations of the plasma response is developed. This method reduces the long time needed to set-up implicit arrays, yet still has larger time step advantages similar to a fully implicit method. Various model preconditioners and iteration schemes, including Krylov-based solvers, are explored. An Alternating Direction Implicit algorithm is also studied and is surprisingly found to yield a severe stability restriction on the time step. Overall, an iterative Krylov algorithm might be the best approach for extensions of core tokamak gyrokinetic simulations to edge kinetic formulations and may be particularly useful for studies of large-scale ExB shear effects. The effects of flux surface shape on the gyrokinetic stability and transport of tokamak plasmas are studied using the nonlinear GS2 gyrokinetic code with analytic equilibria based on interpolations of representative JET-like shapes. High shaping is found to be a stabilizing influence on both the linear ITG instability and nonlinear ITG turbulence. A scaling of the heat flux with elongation of chi ˜ kappa-1.5 or kappa-2 (depending on the triangularity) is observed, which is consistent with previous gyrofluid simulations. Thus, the GS2 turbulence simulations are explaining a significant fraction, but not all, of the empirical elongation scaling. The remainder of the scaling may come from (1) the edge boundary conditions for core turbulence, and (2) the larger Dimits nonlinear critical temperature gradient shift due to the
NASA Astrophysics Data System (ADS)
Li, Yiming
2007-12-01
This symposium is an open forum for discussion on the current trends and future directions of physical modeling, mathematical theory, and numerical algorithm in electrical and electronic engineering. The goal is for computational scientists and engineers, computer scientists, applied mathematicians, physicists, and researchers to present their recent advances and exchange experience. We welcome contributions from researchers of academia and industry. All papers to be presented in this symposium have carefully been reviewed and selected. They include semiconductor devices, circuit theory, statistical signal processing, design optimization, network design, intelligent transportation system, and wireless communication. Welcome to this interdisciplinary symposium in International Conference of Computational Methods in Sciences and Engineering (ICCMSE 2007). Look forward to seeing you in Corfu, Greece!
A numerical algorithm for optimal feedback gains in high dimensional LQR problems
NASA Technical Reports Server (NTRS)
Banks, H. T.; Ito, K.
1986-01-01
A hybrid method for computing the feedback gains in linear quadratic regulator problems is proposed. The method, which combines the use of a Chandrasekhar type system with an iteration of the Newton-Kleinman form with variable acceleration parameter Smith schemes, is formulated so as to efficiently compute directly the feedback gains rather than solutions of an associated Riccati equation. The hybrid method is particularly appropriate when used with large dimensional systems such as those arising in approximating infinite dimensional (distributed parameter) control systems (e.g., those governed by delay-differential and partial differential equations). Computational advantage of the proposed algorithm over the standard eigenvector (Potter, Laub-Schur) based techniques are discussed and numerical evidence of the efficacy of our ideas presented.
NASA Astrophysics Data System (ADS)
Carrano, Charles S.; Rino, Charles L.
2016-06-01
We extend the power law phase screen theory for ionospheric scintillation to account for the case where the refractive index irregularities follow a two-component inverse power law spectrum. The two-component model includes, as special cases, an unmodified power law and a modified power law with spectral break that may assume the role of an outer scale, intermediate break scale, or inner scale. As such, it provides a framework for investigating the effects of a spectral break on the scintillation statistics. Using this spectral model, we solve the fourth moment equation governing intensity variations following propagation through two-dimensional field-aligned irregularities in the ionosphere. A specific normalization is invoked that exploits self-similar properties of the structure to achieve a universal scaling, such that different combinations of perturbation strength, propagation distance, and frequency produce the same results. The numerical algorithm is validated using new theoretical predictions for the behavior of the scintillation index and intensity correlation length under strong scatter conditions. A series of numerical experiments are conducted to investigate the morphologies of the intensity spectrum, scintillation index, and intensity correlation length as functions of the spectral indices and strength of scatter; retrieve phase screen parameters from intensity scintillation observations; explore the relative contributions to the scintillation due to large- and small-scale ionospheric structures; and quantify the conditions under which a general spectral break will influence the scintillation statistics.
NASA Astrophysics Data System (ADS)
Angeli, D.; Stalio, E.; Corticelli, M. A.; Barozzi, G. S.
2015-11-01
A parallel algorithm is presented for the Direct Numerical Simulation of buoyancy- induced flows in open or partially confined periodic domains, containing immersed cylindrical bodies of arbitrary cross-section. The governing equations are discretized by means of the Finite Volume method on Cartesian grids. A semi-implicit scheme is employed for the diffusive terms, which are treated implicitly on the periodic plane and explicitly along the homogeneous direction, while all convective terms are explicit, via the second-order Adams-Bashfort scheme. The contemporary solution of velocity and pressure fields is achieved by means of a projection method. The numerical resolution of the set of linear equations resulting from discretization is carried out by means of efficient and highly parallel direct solvers. Verification and validation of the numerical procedure is reported in the paper, for the case of flow around an array of heated cylindrical rods arranged in a square lattice. Grid independence is assessed in laminar flow conditions, and DNS results in turbulent conditions are presented for two different grids and compared to available literature data, thus confirming the favorable qualities of the method.
Numerical Arc Segmentation Algorithm for a Radio Conference-NASARC (version 4.0) technical manual
NASA Technical Reports Server (NTRS)
Whyte, Wayne A., Jr.; Heyward, Ann O.; Ponchak, Denise S.; Spence, Rodney L.; Zuzek, John E.
1988-01-01
The information contained in the NASARC (Version 4.0) Technical Manual and NASARC (Version 4.0) User's Manual relates to the Numerical Arc Segmentation Algorithm for a Radio Conference (NASARC) software development through November 1, 1988. The Technical Manual describes the NASARC concept and the algorithms used to implement the concept. The User's Manual provides information on computer system considerations, installation instructions, description of input files, and program operation instructions. Significant revisions were incorporated in the Version 4.0 software over prior versions. These revisions have further enhanced the modeling capabilities of the NASARC procedure and provide improved arrangements of predetermined arcs within the geostationary orbits. Array dimensions within the software were structured to fit within the currently available 12 megabyte memory capacity of the International Frequency Registration Board (IFRB) computer facility. A piecewise approach to predetermined arc generation in NASARC (Version 4.0) allows worldwide planning problem scenarios to be accommodated within computer run time and memory constraints with enhanced likelihood and ease of solution.
Numerical Arc Segmentation Algorithm for a Radio Conference (NASARC), version 4.0: User's manual
NASA Technical Reports Server (NTRS)
Whyte, Wayne A., Jr.; Heyward, Ann O.; Ponchak, Denise S.; Spence, Rodney L.; Zuzek, John E.
1988-01-01
The information in the NASARC (Version 4.0) Technical Manual (NASA-TM-101453) and NASARC (Version 4.0) User's Manual (NASA-TM-101454) relates to the state of Numerical Arc Segmentation Algorithm for a Radio Conference (NASARC) software development through November 1, 1988. The Technical Manual describes the NASARC concept and the algorithms used to implement the concept. The User's Manual provides information on computer system considerations, installation instructions, description of input files, and program operation instructions. Significant revisions were incorporated in the Version 4.0 software over prior versions. These revisions have further enhanced the modeling capabilities of the NASARC procedure and provide improved arrangements of predetermined arcs within the geostationary orbit. Array dimensions within the software were structured to fit within the currently available 12-megabyte memory capacity of the International Frequency Registration Board (IFRB) computer facility. A piecewise approach to predetermined arc generation in NASARC (Version 4.) allows worldwide planning problem scenarios to be accommodated within computer run time and memory constraints with enhanced likelihood and ease of solution.
Numerical Arc Segmentation Algorithm for a Radio Conference-NASARC, Version 2.0: User's Manual
NASA Technical Reports Server (NTRS)
Whyte, Wayne A., Jr.; Heyward, Ann O.; Ponchak, Denise S.; Spence, Rodney L.; Zuzek, John E.
1987-01-01
The information contained in the NASARC (Version 2.0) Technical Manual (NASA TM-100160) and the NASARC (Version 2.0) User's Manual (NASA TM-100161) relates to the state of the Numerical Arc Segmentation Algorithm for a Radio Conference (NASARC) software development through October 16, 1987. The technical manual describes the NASARC concept and the algorithms which are used to implement it. The User's Manual provides information on computer system considerations, installation instructions, description of input files, and program operation instructions. Significant revisions have been incorporated in the Version 2.0 software over prior versions. These revisions have enhanced the modeling capabilities of the NASARC procedure while greatly reducing the computer run time and memory requirements. Array dimensions within the software have been structured to fit into the currently available 6-megabyte memory capacity of the International Frequency Registration Board (IFRB) computer facility. A piecewise approach to predetermined arc generation in NASARC (Version 2.0) allows worldwide scenarios to be accommodated within these memory constraints while at the same time reducing computer run time.
Numerical arc segmentation algorithm for a radio conference-NASARC (version 2.0) technical manual
NASA Technical Reports Server (NTRS)
Whyte, Wayne A., Jr.; Heyward, Ann O.; Ponchak, Denise S.; Spence, Rodney L.; Zuzek, John E.
1987-01-01
The information contained in the NASARC (Version 2.0) Technical Manual (NASA TM-100160) and NASARC (Version 2.0) User's Manual (NASA TM-100161) relates to the state of NASARC software development through October 16, 1987. The Technical Manual describes the Numerical Arc Segmentation Algorithm for a Radio Conference (NASARC) concept and the algorithms used to implement the concept. The User's Manual provides information on computer system considerations, installation instructions, description of input files, and program operating instructions. Significant revisions have been incorporated in the Version 2.0 software. These revisions have enhanced the modeling capabilities of the NASARC procedure while greatly reducing the computer run time and memory requirements. Array dimensions within the software have been structured to fit within the currently available 6-megabyte memory capacity of the International Frequency Registration Board (IFRB) computer facility. A piecewise approach to predetermined arc generation in NASARC (Version 2.0) allows worldwide scenarios to be accommodated within these memory constraints while at the same time effecting an overall reduction in computer run time.
Sediment Pathways Across Trench Slopes: Results From Numerical Modeling
NASA Astrophysics Data System (ADS)
Cormier, M. H.; Seeber, L.; McHugh, C. M.; Fujiwara, T.; Kanamatsu, T.; King, J. W.
2015-12-01
Until the 2011 Mw9.0 Tohoku earthquake, the role of earthquakes as agents of sediment dispersal and deposition at erosional trenches was largely under-appreciated. A series of cruises carried out after the 2011 event has revealed a variety of unsuspected sediment transport mechanisms, such as tsunami-triggered sheet turbidites, suggesting that great earthquakes may in fact be important agents for dispersing sediments across trench slopes. To complement these observational data, we have modeled the pathways of sediments across the trench slope based on bathymetric grids. Our approach assumes that transport direction is controlled by slope azimuth only, and ignores obstacles smaller than 0.6-1 km; these constraints are meant to approximate the behavior of turbidites. Results indicate that (1) most pathways issued from the upper slope terminate near the top of the small frontal wedge, and thus do not reach the trench axis; (2) in turn, sediments transported to the trench axis are likely derived from the small frontal wedge or from the subducting Pacific plate. These results are consistent with the stratigraphy imaged in seismic profiles, which reveals that the slope apron does not extend as far as the frontal wedge, and that the thickness of sediments at the trench axis is similar to that of the incoming Pacific plate. We further applied this modeling technique to the Cascadia, Nankai, Middle-America, and Sumatra trenches. Where well-defined canyons carve the trench slopes, sediments from the upper slope may routinely reach the trench axis (e.g., off Costa Rica and Cascadia). In turn, slope basins that are isolated from the canyons drainage systems must mainly accumulate locally-derived sediments. Therefore, their turbiditic infill may be diagnostic of seismic activity only - and not from storm or flood activity. If correct, this would make isolated slope basins ideal targets for paleoseismological investigation.
Artificial algae algorithm with multi-light source for numerical optimization and applications.
Uymaz, Sait Ali; Tezel, Gulay; Yel, Esra
2015-12-01
Artificial algae algorithm (AAA), which is one of the recently developed bio-inspired optimization algorithms, has been introduced by inspiration from living behaviors of microalgae. In AAA, the modification of the algal colonies, i.e. exploration and exploitation is provided with a helical movement. In this study, AAA was modified by implementing multi-light source movement and artificial algae algorithm with multi-light source (AAAML) version was established. In this new version, we propose the selection of a different light source for each dimension that is modified with the helical movement for stronger balance between exploration and exploitation. These light sources have been selected by tournament method and each light source are different from each other. This gives different solutions in the search space. The best of these three light sources provides orientation to the better region of search space. Furthermore, the diversity in the source space is obtained with the worst light source. In addition, the other light source improves the balance. To indicate the performance of AAA with new proposed operators (AAAML), experiments were performed on two different sets. Firstly, the performance of AAA and AAAML was evaluated on the IEEE-CEC'13 benchmark set. The second set was real-world optimization problems used in the IEEE-CEC'11. To verify the effectiveness and efficiency of the proposed algorithm, the results were compared with other state-of-the-art hybrid and modified algorithms. Experimental results showed that the multi-light source movement (MLS) increases the success of the AAA.
Numerical simulation results in the Carthage Cotton Valley field
Meehan, D.N.; Pennington, B.F.
1982-01-01
By coordinating three-dimensional reservoir simulations with pressure-transient tests, core analyses, open-hole and production logs, evaluations of tracer data during hydraulic fracturing, and geologic mapping, Champlin Petroleum obtained better predictions of the reserves and the long-term deliverability of the very tight (less than 0.1-md) Cotton Valley gas reservoir in east Texas. The simulation model that was developed proved capable of optimizing the well spacing and the fracture length. The final history match with the simulator indicated that the formation permeability of the very tight producing zones is substantially lower than suggested by conventional core analysis, 640-acre well spacing will not drain this reservoir efficiently in a reasonable time, and reserves are higher than presimulation estimates. Other results showed that even very long-term pressure buildups in this multilayer reservoir may not reach the straight line required in the conventional Horner pressure-transient analysis, type curves reflecting finite fracture flow capacity can be very useful, and pressure-drawdown analyses from well flow rates and flowing tubing pressure can provide good initial estimates of reservoir and fracture properties for detailed reservoir simulation without requiring expensive, long-term shut-ins of the well.
An Implicit Algorithm for the Numerical Simulation of Shape-Memory Alloys
Becker, R; Stolken, J; Jannetti, C; Bassani, J
2003-10-16
Shape-memory alloys (SMA) have the potential to be used in a variety of interesting applications due to their unique properties of pseudoelasticity and the shape-memory effect. However, in order to design SMA devices efficiently, a physics-based constitutive model is required to accurately simulate the behavior of shape-memory alloys. The scope of this work is to extend the numerical capabilities of the SMA constitutive model developed by Jannetti et. al. (2003), to handle large-scale polycrystalline simulations. The constitutive model is implemented within the finite-element software ABAQUS/Standard using a user defined material subroutine, or UMAT. To improve the efficiency of the numerical simulations, so that polycrystalline specimens of shape-memory alloys can be modeled, a fully implicit algorithm has been implemented to integrate the constitutive equations. Using an implicit integration scheme increases the efficiency of the UMAT over the previously implemented explicit integration method by a factor of more than 100 for single crystal simulations.
NASA Astrophysics Data System (ADS)
Filo, Ján; Hundertmark-Zaušková, Anna
2016-10-01
The aim of this paper is to design a rescaling algorithm for the numerical solution to the system of two porous medium equations defined on two different components of the real line, that are connected by the nonlinear contact condition. The algorithm is based on the self-similarity of solutions on different scales and it presents a space-time adaptable method producing more exact numerical solution in the area of the interface between the components, whereas the number of grid points stays fixed.
Biphasic indentation of articular cartilage--II. A numerical algorithm and an experimental study.
Mow, V C; Gibbs, M C; Lai, W M; Zhu, W B; Athanasiou, K A
1989-01-01
Part I (Mak et al., 1987, J. Biomechanics 20, 703-714) presented the theoretical solutions for the biphasic indentation of articular cartilage under creep and stress-relaxation conditions. In this study, using the creep solution, we developed an efficient numerical algorithm to compute all three material coefficients of cartilage in situ on the joint surface from the indentation creep experiment. With this method we determined the average values of the aggregate modulus. Poisson's ratio and permeability for young bovine femoral condylar cartilage in situ to be HA = 0.90 MPa, vs = 0.39 and k = 0.44 x 10(-15) m4/Ns respectively, and those for patellar groove cartilage to be HA = 0.47 MPa, vs = 0.24, k = 1.42 x 10(-15) m4/Ns. One surprising finding from this study is that the in situ Poisson's ratio of cartilage (0.13-0.45) may be much less than those determined from measurements performed on excised osteochondral plugs (0.40-0.49) reported in the literature. We also found the permeability of patellar groove cartilage to be several times higher than femoral condyle cartilage. These findings may have important implications on understanding the functional behavior of cartilage in situ and on methods used to determine the elastic moduli of cartilage using the indentation experiments.
NASA Technical Reports Server (NTRS)
Whyte, W. A.; Heyward, A. O.; Ponchak, D. S.; Spence, R. L.; Zuzek, J. E.
1988-01-01
The Numerical Arc Segmentation Algorithm for a Radio Conference (NASARC) provides a method of generating predetermined arc segments for use in the development of an allotment planning procedure to be carried out at the 1988 World Administrative Radio Conference (WARC) on the Use of the Geostationary Satellite Orbit and the Planning of Space Services Utilizing It. Through careful selection of the predetermined arc (PDA) for each administration, flexibility can be increased in terms of choice of system technical characteristics and specific orbit location while reducing the need for coordination among administrations. The NASARC software determines pairwise compatibility between all possible service areas at discrete arc locations. NASARC then exhaustively enumerates groups of administrations whose satellites can be closely located in orbit, and finds the arc segment over which each such compatible group exists. From the set of all possible compatible groupings, groups and their associated arc segments are selected using a heuristic procedure such that a PDA is identified for each administration. Various aspects of the NASARC concept and how the software accomplishes specific features of allotment planning are discussed.
NASA Astrophysics Data System (ADS)
Long, Robert Bryan; Thacker, William Carlisle
1989-06-01
Numerical modeling provides a powerful tool for the study of the dynamics of oceans and atmospheres. However, the relevance of modeling results can only be established by reference to observations of the system being modeled. Typical oceanic observation sets are sparse, asynoptic, of mixed type and limited reliability, generally inadequate in some respects, and redundant and inconsistent in others. An optimal procedure for interfacing such data sets with a numerical model is the so-called adjoint method. This procedure effectively assimilates the observations into a run of the numerical model by finding that solution to the model equations that best fits all observations made within some specified space-time interval. The method requires the construction of the adjoint of the numerical model, a process made practical for models of realistic complexity by the work of Thacker and Long. In the present paper, the first of two parts, we illustrate the application of Thacker and Long's approach by constructing a data-assimilating version of an equatorial ocean model incorporating the adjoint method. The model is subsequently run for 5 years to near-steady-state, and exhibits many of the features known to be characteristic of equatorial oceanic flows. Using the last 54 days of the run as a control, a set of simulated sea-level and subsurface-density observations are collected, then successfully assimilated to demonstrate that the procedure can recover the control run, given a generous amount of data. In part II we conduct a sequence of numerical experiments to explore the ability of more limited sets of observations to fix the state of the modeled ocean; in the process, we examine the potential value of sea-level data obtained via satellite altimetry.
NASA Astrophysics Data System (ADS)
Horng, Thin-Lin
The main purpose of this paper is to explore a numerical algorithm for determining the contact stress when a circular crowned roller is compressed between two plates. To start with, the deformation curve on a plate surface will be derived by using the contact mechanical model. Then, the contact stress distribution along the roller which occurs on the plate surface is divided into three parts: from the center of contact to the edge, the edge and apart from the contact line. The first part is calculated by the elastic contact theorem for the contact subjected to nominal stress between non-crowned parts of roller and plates, the second part is obtained by the classical Hertzian contact solution for the contact between crowned parts of roller and plates, and the third part is simulated as exponential decay. In order to overcome the defect of the half space theorem, in which a plate with infinite thickness is assumed initially, a weighting method is introduced to find the contact stress of the plate with finite thickness. Comparisons with various finite element results indicate that the algorithm for estimating the contact stress of a circular crowned roller compressed between two plates derived in this paper can be a reasonably accurate when a heavy displacement load is applied. This is because the contact area is large under a heavy load, and the effect of stress concentration is smaller in comparison with the case under a light load.
ERIC Educational Resources Information Center
Gonzalez-Vega, Laureano
1999-01-01
Using a Computer Algebra System (CAS) to help with the teaching of an elementary course in linear algebra can be one way to introduce computer algebra, numerical analysis, data structures, and algorithms. Highlights the advantages and disadvantages of this approach to the teaching of linear algebra. (Author/MM)
NASA Technical Reports Server (NTRS)
Carter, Richard G.
1989-01-01
For optimization problems associated with engineering design, parameter estimation, image reconstruction, and other optimization/simulation applications, low accuracy function and gradient values are frequently much less expensive to obtain than high accuracy values. Here, researchers investigate the computational performance of trust region methods for nonlinear optimization when high accuracy evaluations are unavailable or prohibitively expensive, and confirm earlier theoretical predictions when the algorithm is convergent even with relative gradient errors of 0.5 or more. The proper choice of the amount of accuracy to use in function and gradient evaluations can result in orders-of-magnitude savings in computational cost.
Kreuzmair, Christina; Siegrist, Michael; Keller, Carmen
2016-08-01
In two experiments, we investigated the influence of numeracy on individuals' information processing of pictographs depending on numeracy via an eye-tracker. In two conditions, participants from the general population were presented with a scenario depicting the risk of having cancer and were asked to indicate their perceived risk. The risk level was high (63%) in experiment 1 (N = 70) and low (6%) in experiment 2 (N = 69). In the default condition, participants were free to use their default strategy for information processing. In the guiding-toward-the-number condition, they were prompted to count icons in the pictograph by answering with an explicit number. We used eye-tracking parameters related to the distance between sequential fixations to analyze participants' strategies for processing numerical information. In the default condition, the higher the numeracy was, the shorter the distances traversed in the pictograph were, indicating that participants counted the icons. People lower in numeracy performed increased large-area processing by comparing highlighted and nonhighlighted parts of the pictograph. In the guiding-toward-the-number condition, participants used short distances regardless of their numeracy, supporting the notion that short distances represent counting. Despite the different default processing strategies, participants processed the pictograph with a similar depth and derived similar risk perceptions. The results show that pictographs are beneficial for communicating medical risk. Pictographs make the gist salient by making the part-to-whole relationship visually available, and they facilitate low numerates' non-numeric processing of numerical information. Contemporaneously, pictographs allow high numerates to numerically process and rely on the number depicted in the pictograph.
Numerical prediction of freezing fronts in cryosurgery: comparison with experimental results.
Fortin, André; Belhamadia, Youssef
2005-08-01
Recent developments in scientific computing now allow to consider realistic applications of numerical modelling to medicine. In this work, a numerical method is presented for the simulation of phase change occurring in cryosurgery applications. The ultimate goal of these simulations is to accurately predict the freezing front position and the thermal history inside the ice ball which is essential to determine if cancerous cells have been completely destroyed. A semi-phase field formulation including blood flow considerations is employed for the simulations. Numerical results are enhanced by the introduction of an anisotropic remeshing strategy. The numerical procedure is validated by comparing the predictions of the model with experimental results. PMID:16298846
An efficient algorithm for numerical computations of continuous densities of states
NASA Astrophysics Data System (ADS)
Langfeld, K.; Lucini, B.; Pellegrini, R.; Rago, A.
2016-06-01
In Wang-Landau type algorithms, Monte-Carlo updates are performed with respect to the density of states, which is iteratively refined during simulations. The partition function and thermodynamic observables are then obtained by standard integration. In this work, our recently introduced method in this class (the LLR approach) is analysed and further developed. Our approach is a histogram free method particularly suited for systems with continuous degrees of freedom giving rise to a continuum density of states, as it is commonly found in lattice gauge theories and in some statistical mechanics systems. We show that the method possesses an exponential error suppression that allows us to estimate the density of states over several orders of magnitude with nearly constant relative precision. We explain how ergodicity issues can be avoided and how expectation values of arbitrary observables can be obtained within this framework. We then demonstrate the method using compact U(1) lattice gauge theory as a show case. A thorough study of the algorithm parameter dependence of the results is performed and compared with the analytically expected behaviour. We obtain high precision values for the critical coupling for the phase transition and for the peak value of the specific heat for lattice sizes ranging from 8^4 to 20^4. Our results perfectly agree with the reference values reported in the literature, which covers lattice sizes up to 18^4. Robust results for the 20^4 volume are obtained for the first time. This latter investigation, which, due to strong metastabilities developed at the pseudo-critical coupling of the system, so far has been out of reach even on supercomputers with importance sampling approaches, has been performed to high accuracy with modest computational resources. This shows the potential of the method for studies of first order phase transitions. Other situations where the method is expected to be superior to importance sampling techniques are pointed
NASA Technical Reports Server (NTRS)
Bui, Trong T.; Mankbadi, Reda R.
1995-01-01
Numerical simulation of a very small amplitude acoustic wave interacting with a shock wave in a quasi-1D convergent-divergent nozzle is performed using an unstructured finite volume algorithm with a piece-wise linear, least square reconstruction, Roe flux difference splitting, and second-order MacCormack time marching. First, the spatial accuracy of the algorithm is evaluated for steady flows with and without the normal shock by running the simulation with a sequence of successively finer meshes. Then the accuracy of the Roe flux difference splitting near the sonic transition point is examined for different reconstruction schemes. Finally, the unsteady numerical solutions with the acoustic perturbation are presented and compared with linear theory results.
NASA Technical Reports Server (NTRS)
Lakshminarayana, B.; Ho, Y.; Basson, A.
1993-01-01
The objective of this research is to simulate steady and unsteady viscous flows, including rotor/stator interaction and tip clearance effects in turbomachinery. The numerical formulation for steady flow developed here includes an efficient grid generation scheme, particularly suited to computational grids for the analysis of turbulent turbomachinery flows and tip clearance flows, and a semi-implicit, pressure-based computational fluid dynamics scheme that directly includes artificial dissipation, and is applicable to both viscous and inviscid flows. The values of these artificial dissipation is optimized to achieve accuracy and convergency in the solution. The numerical model is used to investigate the structure of tip clearance flows in a turbine nozzle. The structure of leakage flow is captured accurately, including blade-to-blade variation of all three velocity components, pitch and yaw angles, losses and blade static pressures in the tip clearance region. The simulation also includes evaluation of such quantities of leakage mass flow, vortex strength, losses, dominant leakage flow regions and the spanwise extent affected by the leakage flow. It is demonstrated, through optimization of grid size and artificial dissipation, that the tip clearance flow field can be captured accurately. The above numerical formulation was modified to incorporate time accurate solutions. An inner loop iteration scheme is used at each time step to account for the non-linear effects. The computation of unsteady flow through a flat plate cascade subjected to a transverse gust reveals that the choice of grid spacing and the amount of artificial dissipation is critical for accurate prediction of unsteady phenomena. The rotor-stator interaction problem is simulated by starting the computation upstream of the stator, and the upstream rotor wake is specified from the experimental data. The results show that the stator potential effects have appreciable influence on the upstream rotor wake
NASA Technical Reports Server (NTRS)
Weir, Kent A.; Wells, Eugene M.
1990-01-01
The design and operation of a Strapdown Navigation Analysis Program (SNAP) developed to perform covariance analysis on spacecraft inertial-measurement-unit (IMU) navigation errors are described and demonstrated. Consideration is given to the IMU modeling subroutine (with user-specified sensor characteristics), the data input procedures, state updates and the simulation of instrument failures, the determination of the nominal trajectory, the mapping-matrix and Monte Carlo covariance-matrix propagation methods, and aided-navigation simulation. Numerical results are presented in tables for sample applications involving (1) the Galileo/IUS spacecraft from its deployment from the Space Shuttle to a point 10 to the 8th ft from the center of the earth and (2) the TDRS-C/IUS spacecraft from Space Shuttle liftoff to a point about 2 h before IUS deployment. SNAP is shown to give reliable results for both cases, with good general agreement between the mapping-matrix and Monte Carlo predictions.
NASA Astrophysics Data System (ADS)
Eaves, Nick A.; Zhang, Qingan; Liu, Fengshan; Guo, Hongsheng; Dworkin, Seth B.; Thomson, Murray J.
2016-10-01
Mitigation of soot emissions from combustion devices is a global concern. For example, recent EURO 6 regulations for vehicles have placed stringent limits on soot emissions. In order to allow design engineers to achieve the goal of reduced soot emissions, they must have the tools to so. Due to the complex nature of soot formation, which includes growth and oxidation, detailed numerical models are required to gain fundamental insights into the mechanisms of soot formation. A detailed description of the CoFlame FORTRAN code which models sooting laminar coflow diffusion flames is given. The code solves axial and radial velocity, temperature, species conservation, and soot aggregate and primary particle number density equations. The sectional particle dynamics model includes nucleation, PAH condensation and HACA surface growth, surface oxidation, coagulation, fragmentation, particle diffusion, and thermophoresis. The code utilizes a distributed memory parallelization scheme with strip-domain decomposition. The public release of the CoFlame code, which has been refined in terms of coding structure, to the research community accompanies this paper. CoFlame is validated against experimental data for reattachment length in an axi-symmetric pipe with a sudden expansion, and ethylene-air and methane-air diffusion flames for multiple soot morphological parameters and gas-phase species. Finally, the parallel performance and computational costs of the code is investigated. Catalogue identifier: AFAU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AFAU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 94964 No. of bytes in distributed program, including test data, etc.: 6242986 Distribution format: tar.gz Programming language: Fortran 90, MPI. (Requires an Intel compiler). Computer: Workstations
NASA Astrophysics Data System (ADS)
Li, Cong; Lei, Jianshe
2014-10-01
In this paper, we focus on the influences of various parameters in the niching genetic algorithm inversion procedure on the results, such as various objective functions, the number of the models in each subpopulation, and the critical separation radius. The frequency-waveform integration (F-K) method is applied to synthesize three-component waveform data with noise in various epicentral distances and azimuths. Our results show that if we use a zero-th-lag cross-correlation function, then we will obtain the model with a faster convergence and a higher precision than other objective functions. The number of models in each subpopulation has a great influence on the rate of convergence and computation time, suggesting that it should be obtained through tests in practical problems. The critical separation radius should be determined carefully because it directly affects the multi-extreme values in the inversion. We also compare the inverted results from full-band waveform data and surface-wave frequency-band (0.02-0.1 Hz) data, and find that the latter is relatively poorer but still has a higher precision, suggesting that surface-wave frequency-band data can also be used to invert for the crustal structure.
NASA Astrophysics Data System (ADS)
Li, Cong; Lei, Jianshe
2014-09-01
In this paper, we focus on the influences of various parameters in the niching genetic algorithm inversion procedure on the results, such as various objective functions, the number of the models in each subpopulation, and the critical separation radius. The frequency-waveform integration (F-K) method is applied to synthesize three-component waveform data with noise in various epicentral distances and azimuths. Our results show that if we use a zero-th-lag cross-correlation function, then we will obtain the model with a faster convergence and a higher precision than other objective functions. The number of models in each subpopulation has a great influence on the rate of convergence and computation time, suggesting that it should be obtained through tests in practical problems. The critical separation radius should be determined carefully because it directly affects the multi-extreme values in the inversion. We also compare the inverted results from full-band waveform data and surface-wave frequency-band (0.02-0.1 Hz) data, and find that the latter is relatively poorer but still has a higher precision, suggesting that surface-wave frequency-band data can also be used to invert for the crustal structure.
Experimental Results in the Comparison of Search Algorithms Used with Room Temperature Detectors
Guss, P., Yuan, D., Cutler, M., Beller, D.
2010-11-01
Analysis of time sequence data was run for several higher resolution scintillation detectors using a variety of search algorithms, and results were obtained in predicting the relative performance for these detectors, which included a slightly superior performance by CeBr{sub 3}. Analysis of several search algorithms shows that inclusion of the RSPRT methodology can improve sensitivity.
NASA Technical Reports Server (NTRS)
Smutek, C.; Bontoux, P.; Roux, B.; Schiroky, G. H.; Hurford, A. C.
1985-01-01
The results of a three-dimensional numerical simulation of Boussinesq free convection in a horizontal differentially heated cylinder are presented. The computation was based on a Samarskii-Andreyev scheme (described by Leong, 1981) and a false-transient advancement in time, with vorticity, velocity, and temperature as dependent variables. Solutions for velocity and temperature distributions were obtained for Rayleigh numbers (based on the radius) Ra = 74-18,700, thus covering the core- and boundary-layer-driven regimes. Numerical solutions are compared with asymptotic analytical solutions and experimental data. The numerical results well represent the complex three-dimensional flows found experimentally.
Manzini, Gianmarco; Cangiani, Andrea; Sutton, Oliver
2014-10-02
This document presents the results of a set of preliminary numerical experiments using several possible conforming virtual element approximations of the convection-reaction-diffusion equation with variable coefficients.
SOLA-DM: A numerical solution algorithm for transient three-dimensional flows
Wilson, T.L.; Nichols, B.D.; Hirt, C.W.; Stein, L.R.
1988-02-01
SOLA-DM is a three-dimensional time-explicit, finite-difference, Eulerian, fluid-dynamics computer code for solving the time-dependent incompressible Navier-Stokes equations. The solution algorithm (SOLA) evolved from the marker-and-cell (MAC) method, and the code is highly vectorized for efficient performance on a Cray computer. The computational domain is discretized by a mesh of parallelepiped cells in either cartesian or cylindrical geometry. The primary hydrodynamic variables for approximating the solution of the momentum equations are cell-face-centered velocity components and cell-centered pressures. Spatial accuracy is selected by the user to be first or second order; the time differencing is first-order accurate. The incompressibility condition results in an elliptic equation for pressure that is solved by a conjugate gradient method. Boundary conditions of five general types may be chosen: free-slip, no-slip, continuative, periodic, and specified pressure. In addition, internal mesh specifications to model obstacles and walls are provided. SOLA-DM also solves the equations for discrete particle dynamics, permitting the transport of marker particles or other solid particles through the fluid to be modeled. 7 refs., 7 figs.
Comparison of results of experimental research with numerical calculations of a model one-sided seal
NASA Astrophysics Data System (ADS)
Joachimiak, Damian; Krzyślak, Piotr
2015-06-01
Paper presents the results of experimental and numerical research of a model segment of a labyrinth seal for a different wear level. The analysis covers the extent of leakage and distribution of static pressure in the seal chambers and the planes upstream and downstream of the segment. The measurement data have been compared with the results of numerical calculations obtained using commercial software. Based on the flow conditions occurring in the area subjected to calculations, the size of the mesh defined by parameter y+ has been analyzed and the selection of the turbulence model has been described. The numerical calculations were based on the measurable thermodynamic parameters in the seal segments of steam turbines. The work contains a comparison of the mass flow and distribution of static pressure in the seal chambers obtained during the measurement and calculated numerically in a model segment of the seal of different level of wear.
NASA Astrophysics Data System (ADS)
Zhou, Lin
In the first part of the work, we developed coding for large-scale computation to solve 3-dimensional microwave scattering problem. Maxwell integral equations are solved by using MoM with RWG basis functions in conjunction with fast computation algorithms. The cost-effective solutions of parallel and distributed simulation were implemented on a low cost PC cluster, which consists of 32 processors connected to a fast Ethernet switch. More than a million of surface current unknowns were solved at unprecedented speeds. Accurate simulations of emissivities and bistatic coefficients from ocean and soil were achieved. Exponential correlation function and ocean spectrum are implementd for generating soil and ocean surfaces. They have fine scale features with large rms slope. The results were justified by comparison with numerical results from original code, which is based on pulse basis function, and from analytic methods like SPM, and also with experiments. In the second part of the work, fully polarimetric microwave emissions from wind-generated foam-covered ocean surfaces were investigated. The foam is treated as densely packed air bubbles coated with thin seawater coating. The absorption, scattering and extinction coefficients were calculated by Monte Carlo simulations of solutionsof Maxwell equations of a collection of coated particles. The effects of boundary roughness of ocean surfaces were included by using the second-order small perturbation method (SPM) describing the reflection coefficients between foam and ocean. An empirical wave-number spectrum was used to represent the small-scale wind-generated sea surfaces. The theoretical results of four Stokes brightness temperatures with typical parameters of foam in passive remote sensing at 10.8 GHz, 19.0 GHz and 36.5 GHz were illustrated. The azimuth variations of polarimetric brightness temperature were calculated. Emission with various wind speed and foam layer thickness was studied. The results were also compared
Chaotic scattering in an open vase-shaped cavity: Topological, numerical, and experimental results
NASA Astrophysics Data System (ADS)
Novick, Jaison Allen
point to each "detector point". We then construct the wave function directly from these classical trajectories using the two-dimensional WKB approximation. The wave function is Fourier Transformed using a Fast Fourier Transform algorithm resulting in a spectrum in which each peak corresponds to an interpolated trajectory. Our predictions are based on an imagined experiment that uses microwave propagation within an electromagnetic waveguide. Such an experiment exploits the fact that under suitable conditions both Maxwell's Equations and the Schrodinger Equation can be reduced to the Helmholtz Equation. Therefore, our predictions, while compared to the electromagnetic experiment, contain information about the quantum system. Identifying peaks in the transmission spectrum with chaotic trajectories will allow for an additional experimental verification of the intermediate recursive structure. Finally, we summarize our results and discuss possible extensions of this project.
NASA Astrophysics Data System (ADS)
Townley, Lloyd R.; Wilson, John L.
1985-12-01
Finite difference and finite element methods are frequently used to study aquifer flow; however, additional analysis is required when model parameters, and hence predicted heads are uncertain. Computational algorithms are presented for steady and transient models in which aquifer storage coefficients, transmissivities, distributed inputs, and boundary values may all be simultaneously uncertain. Innovative aspects of these algorithms include a new form of generalized boundary condition; a concise discrete derivation of the adjoint problem for transient models with variable time steps; an efficient technique for calculating the approximate second derivative during line searches in weighted least squares estimation; and a new efficient first-order second-moment algorithm for calculating the covariance of predicted heads due to a large number of uncertain parameter values. The techniques are presented in matrix form, and their efficiency depends on the structure of sparse matrices which occur repeatedly throughout the calculations. Details of matrix structures are provided for a two-dimensional linear triangular finite element model.
Isaksson, Hanna; van Donkelaar, Corrinus C; Huiskes, Rik; Ito, Keita
2006-05-01
Several mechanoregulation algorithms proposed to control tissue differentiation during bone healing have been shown to accurately predict temporal and spatial tissue distributions during normal fracture healing. As these algorithms are different in nature and biophysical parameters, it raises the question of which reflects the actual mechanobiological processes the best. The aim of this study was to resolve this issue by corroborating the mechanoregulatory algorithms with more extensive in vivo bone healing data from animal experiments. A poroelastic three-dimensional finite element model of an ovine tibia with a 2.4 mm gap and external callus was used to simulate the course of tissue differentiation during fracture healing in an adaptive model. The mechanical conditions applied were similar to those used experimentally, with axial compression or torsional rotation as two distinct cases. Histological data at 4 and 8 weeks, and weekly radiographs, were used for comparison. By applying new mechanical conditions, torsional rotation, the predictions of the algorithms were distinguished successfully. In torsion, the algorithms regulated by strain and hydrostatic pressure failed to predict healing and bone formation as seen in experimental data. The algorithm regulated by deviatoric strain and fluid velocity predicted bridging and healing in torsion, as observed in vivo. The predictions of the algorithm regulated by deviatoric strain alone did not agree with in vivo data. None of the algorithms predicted patterns of healing entirely similar to those observed experimentally for both loading modes. However, patterns predicted by the algorithm based on deviatoric strain and fluid velocity was closest to experimental results. It was the only algorithm able to predict healing with torsional loading as seen in vivo.
NASA Astrophysics Data System (ADS)
Bor, E.; Turduev, M.; Kurt, H.
2016-08-01
Photonic structure designs based on optimization algorithms provide superior properties compared to those using intuition-based approaches. In the present study, we numerically and experimentally demonstrate subwavelength focusing of light using wavelength scale absorption-free dielectric scattering objects embedded in an air background. An optimization algorithm based on differential evolution integrated into the finite-difference time-domain method was applied to determine the locations of each circular dielectric object with a constant radius and refractive index. The multiobjective cost function defined inside the algorithm ensures strong focusing of light with low intensity side lobes. The temporal and spectral responses of the designed compact photonic structure provided a beam spot size in air with a full width at half maximum value of 0.19λ, where λ is the wavelength of light. The experiments were carried out in the microwave region to verify numerical findings, and very good agreement between the two approaches was found. The subwavelength light focusing is associated with a strong interference effect due to nonuniformly arranged scatterers and an irregular index gradient. Improving the focusing capability of optical elements by surpassing the diffraction limit of light is of paramount importance in optical imaging, lithography, data storage, and strong light-matter interaction.
Bor, E; Turduev, M; Kurt, H
2016-01-01
Photonic structure designs based on optimization algorithms provide superior properties compared to those using intuition-based approaches. In the present study, we numerically and experimentally demonstrate subwavelength focusing of light using wavelength scale absorption-free dielectric scattering objects embedded in an air background. An optimization algorithm based on differential evolution integrated into the finite-difference time-domain method was applied to determine the locations of each circular dielectric object with a constant radius and refractive index. The multiobjective cost function defined inside the algorithm ensures strong focusing of light with low intensity side lobes. The temporal and spectral responses of the designed compact photonic structure provided a beam spot size in air with a full width at half maximum value of 0.19λ, where λ is the wavelength of light. The experiments were carried out in the microwave region to verify numerical findings, and very good agreement between the two approaches was found. The subwavelength light focusing is associated with a strong interference effect due to nonuniformly arranged scatterers and an irregular index gradient. Improving the focusing capability of optical elements by surpassing the diffraction limit of light is of paramount importance in optical imaging, lithography, data storage, and strong light-matter interaction.
Bor, E; Turduev, M; Kurt, H
2016-01-01
Photonic structure designs based on optimization algorithms provide superior properties compared to those using intuition-based approaches. In the present study, we numerically and experimentally demonstrate subwavelength focusing of light using wavelength scale absorption-free dielectric scattering objects embedded in an air background. An optimization algorithm based on differential evolution integrated into the finite-difference time-domain method was applied to determine the locations of each circular dielectric object with a constant radius and refractive index. The multiobjective cost function defined inside the algorithm ensures strong focusing of light with low intensity side lobes. The temporal and spectral responses of the designed compact photonic structure provided a beam spot size in air with a full width at half maximum value of 0.19λ, where λ is the wavelength of light. The experiments were carried out in the microwave region to verify numerical findings, and very good agreement between the two approaches was found. The subwavelength light focusing is associated with a strong interference effect due to nonuniformly arranged scatterers and an irregular index gradient. Improving the focusing capability of optical elements by surpassing the diffraction limit of light is of paramount importance in optical imaging, lithography, data storage, and strong light-matter interaction. PMID:27477060
Bor, E.; Turduev, M.; Kurt, H.
2016-01-01
Photonic structure designs based on optimization algorithms provide superior properties compared to those using intuition-based approaches. In the present study, we numerically and experimentally demonstrate subwavelength focusing of light using wavelength scale absorption-free dielectric scattering objects embedded in an air background. An optimization algorithm based on differential evolution integrated into the finite-difference time-domain method was applied to determine the locations of each circular dielectric object with a constant radius and refractive index. The multiobjective cost function defined inside the algorithm ensures strong focusing of light with low intensity side lobes. The temporal and spectral responses of the designed compact photonic structure provided a beam spot size in air with a full width at half maximum value of 0.19λ, where λ is the wavelength of light. The experiments were carried out in the microwave region to verify numerical findings, and very good agreement between the two approaches was found. The subwavelength light focusing is associated with a strong interference effect due to nonuniformly arranged scatterers and an irregular index gradient. Improving the focusing capability of optical elements by surpassing the diffraction limit of light is of paramount importance in optical imaging, lithography, data storage, and strong light-matter interaction. PMID:27477060
DasGupta, Bhaskar; Enciso, German Andres; Sontag, Eduardo; Zhang, Yi
2007-01-01
A useful approach to the mathematical analysis of large-scale biological networks is based upon their decompositions into monotone dynamical systems. This paper deals with two computational problems associated to finding decompositions which are optimal in an appropriate sense. In graph-theoretic language, the problems can be recast in terms of maximal sign-consistent subgraphs. The theoretical results include polynomial-time approximation algorithms as well as constant-ratio inapproximability results. One of the algorithms, which has a worst-case guarantee of 87.9% from optimality, is based on the semidefinite programming relaxation approach of Goemans-Williamson [Goemans, M., Williamson, D., 1995. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42 (6), 1115-1145]. The algorithm was implemented and tested on a Drosophila segmentation network and an Epidermal Growth Factor Receptor pathway model, and it was found to perform close to optimally.
Chen, Deng-kai; Gu, Rong; Gu, Yu-feng; Yu, Sui-huai
2016-01-01
Consumers' Kansei needs reflect their perception about a product and always consist of a large number of adjectives. Reducing the dimension complexity of these needs to extract primary words not only enables the target product to be explicitly positioned, but also provides a convenient design basis for designers engaging in design work. Accordingly, this study employs a numerical design structure matrix (NDSM) by parameterizing a conventional DSM and integrating genetic algorithms to find optimum Kansei clusters. A four-point scale method is applied to assign link weights of every two Kansei adjectives as values of cells when constructing an NDSM. Genetic algorithms are used to cluster the Kansei NDSM and find optimum clusters. Furthermore, the process of the proposed method is presented. The details of the proposed approach are illustrated using an example of electronic scooter for Kansei needs clustering. The case study reveals that the proposed method is promising for clustering Kansei needs adjectives in product emotional design.
Chen, Deng-kai; Gu, Rong; Gu, Yu-feng; Yu, Sui-huai
2016-01-01
Consumers' Kansei needs reflect their perception about a product and always consist of a large number of adjectives. Reducing the dimension complexity of these needs to extract primary words not only enables the target product to be explicitly positioned, but also provides a convenient design basis for designers engaging in design work. Accordingly, this study employs a numerical design structure matrix (NDSM) by parameterizing a conventional DSM and integrating genetic algorithms to find optimum Kansei clusters. A four-point scale method is applied to assign link weights of every two Kansei adjectives as values of cells when constructing an NDSM. Genetic algorithms are used to cluster the Kansei NDSM and find optimum clusters. Furthermore, the process of the proposed method is presented. The details of the proposed approach are illustrated using an example of electronic scooter for Kansei needs clustering. The case study reveals that the proposed method is promising for clustering Kansei needs adjectives in product emotional design. PMID:27630709
NASA Astrophysics Data System (ADS)
Schroder, Kjell; Olsen, Thomas; Wiener, Richard
2006-11-01
Recursive Proportional Feedback (RPF) is an algorithm for the control of chaotic systems of great utility and ease of use. Control coefficients are determined from pre- control sampling of the system dynamics. We have adapted this method, in the spirit of the Extended Time-Delay Autosynchronization (ETDAS) method to seek minimal change from each previous value. The two methods so derived, Simple Recursive Proportional Feedback (SRPF) and Doubly Recursive Proportional Feedback (DRPF) have been studied in numerical simulations to determine their robustness when system parameters, other than that used for feedback, drift over time. We present evidence of the range over which each algorithm displays robustness against drift. Rollins et al, Phys. Rev. E 47, R780 (1993). Scolar et al, Phys. Rev. E 50, 3245 (1994).
Yang, Yan-Pu; Chen, Deng-Kai; Gu, Rong; Gu, Yu-Feng; Yu, Sui-Huai
2016-01-01
Consumers' Kansei needs reflect their perception about a product and always consist of a large number of adjectives. Reducing the dimension complexity of these needs to extract primary words not only enables the target product to be explicitly positioned, but also provides a convenient design basis for designers engaging in design work. Accordingly, this study employs a numerical design structure matrix (NDSM) by parameterizing a conventional DSM and integrating genetic algorithms to find optimum Kansei clusters. A four-point scale method is applied to assign link weights of every two Kansei adjectives as values of cells when constructing an NDSM. Genetic algorithms are used to cluster the Kansei NDSM and find optimum clusters. Furthermore, the process of the proposed method is presented. The details of the proposed approach are illustrated using an example of electronic scooter for Kansei needs clustering. The case study reveals that the proposed method is promising for clustering Kansei needs adjectives in product emotional design.
Yang, Yan-Pu; Chen, Deng-Kai; Gu, Rong; Gu, Yu-Feng; Yu, Sui-Huai
2016-01-01
Consumers' Kansei needs reflect their perception about a product and always consist of a large number of adjectives. Reducing the dimension complexity of these needs to extract primary words not only enables the target product to be explicitly positioned, but also provides a convenient design basis for designers engaging in design work. Accordingly, this study employs a numerical design structure matrix (NDSM) by parameterizing a conventional DSM and integrating genetic algorithms to find optimum Kansei clusters. A four-point scale method is applied to assign link weights of every two Kansei adjectives as values of cells when constructing an NDSM. Genetic algorithms are used to cluster the Kansei NDSM and find optimum clusters. Furthermore, the process of the proposed method is presented. The details of the proposed approach are illustrated using an example of electronic scooter for Kansei needs clustering. The case study reveals that the proposed method is promising for clustering Kansei needs adjectives in product emotional design. PMID:27630709
Shuttle Entry Air Data System (SEADS) - Optimization of preflight algorithms based on flight results
NASA Technical Reports Server (NTRS)
Wolf, H.; Henry, M. W.; Siemers, Paul M., III
1988-01-01
The SEADS pressure model algorithm results were tested against other sources of air data, in particular, the Shuttle Best Estimated Trajectory (BET). The algorithm basis was also tested through a comparison of flight-measured pressure distribution vs the wind tunnel database. It is concluded that the successful flight of SEADS and the subsequent analysis of the data shows good agreement between BET and SEADS air data.
Image restoration by the method of convex projections: part 2 applications and numerical results.
Sezan, M I; Stark, H
1982-01-01
The image restoration theory discussed in a previous paper by Youla and Webb [1] is applied to a simulated image and the results compared with the well-known method known as the Gerchberg-Papoulis algorithm. The results show that the method of image restoration by projection onto convex sets, by providing a convenient technique for utilizing a priori information, performs significantly better than the Gerchberg-Papoulis method.
2014-01-01
Background Eukaryotic transcriptional regulation is known to be highly connected through the networks of cooperative transcription factors (TFs). Measuring the cooperativity of TFs is helpful for understanding the biological relevance of these TFs in regulating genes. The recent advances in computational techniques led to various predictions of cooperative TF pairs in yeast. As each algorithm integrated different data resources and was developed based on different rationales, it possessed its own merit and claimed outperforming others. However, the claim was prone to subjectivity because each algorithm compared with only a few other algorithms and only used a small set of performance indices for comparison. This motivated us to propose a series of indices to objectively evaluate the prediction performance of existing algorithms. And based on the proposed performance indices, we conducted a comprehensive performance evaluation. Results We collected 14 sets of predicted cooperative TF pairs (PCTFPs) in yeast from 14 existing algorithms in the literature. Using the eight performance indices we adopted/proposed, the cooperativity of each PCTFP was measured and a ranking score according to the mean cooperativity of the set was given to each set of PCTFPs under evaluation for each performance index. It was seen that the ranking scores of a set of PCTFPs vary with different performance indices, implying that an algorithm used in predicting cooperative TF pairs is of strength somewhere but may be of weakness elsewhere. We finally made a comprehensive ranking for these 14 sets. The results showed that Wang J's study obtained the best performance evaluation on the prediction of cooperative TF pairs in yeast. Conclusions In this study, we adopted/proposed eight performance indices to make a comprehensive performance evaluation on the prediction results of 14 existing cooperative TFs identification algorithms. Most importantly, these proposed indices can be easily applied to
Hemesath, Eric R.; Corrales, Louis R.
2005-06-15
The sensitivity of resulting structures to starting configurations and quench algorithms were characterized using molecular dynamics (MD) simulations. The classical potential model introduced by Damodaran, Rao, and Rao (DRR) Phys. Chem. Glasses 31, 212 (1990) for lead silicate glass was used. Glasses were prepared using five distinct initial configurations and four glass forming algorithms. In previous MD work of bulk lead silicate glasses the ability of this potential model to provide good structural results were established by comparing to experimental results. Here the sensitivity of the results to the simulation methodology and the persistence of clustering with attention to details of molecular structure are determined.
ORDMET: A General Algorithm for Constructing All Numerical Solutions to Ordered Metric Data
ERIC Educational Resources Information Center
McClelland, Gary; Coombs, Clyde H.
1975-01-01
ORDMET is applicable to structures obtained from additive conjoint measurement designs, unfolding theory, general Fechnerian scaling, types of multidimensional scaling, and ordinal multiple regression. A description is obtained of the space containing all possible numerical representations which can satisfy the structure, size, and shape of which…
AN ACCURATE AND EFFICIENT ALGORITHM FOR NUMERICAL SIMULATION OF CONDUCTION-TYPE PROBLEMS. (R824801)
A modification of the finite analytic numerical method for conduction-type (diffusion) problems is presented. The finite analytic discretization scheme is derived by means of the Fourier series expansion for the most general case of nonuniform grid and variabl...
Numerical modeling of on-orbit propellant motion resulting from an impulsive acceleration
NASA Technical Reports Server (NTRS)
Aydelott, John C.; Mjolsness, Raymond C.; Torrey, Martin D.; Hochstein, John I.
1987-01-01
In-space docking and separation maneuvers of spacecraft that have large fluid mass fractions may cause undesirable spacecraft motion in response to the impulsive-acceleration-induced fluid motion. An example of this potential low gravity fluid management problem arose during the development of the shuttle/Centaur vehicle. Experimentally verified numerical modeling techniques were developed to establish the propellant dynamics, and subsequent vehicle motion, associated with the separation of the Centaur vehicle from the shuttle orbiter cargo bay. Although the shuttle/Centaur development activity was suspended, the numerical modeling techniques are available to predict on-orbit liquid motion resulting from impulsive accelerations for other missions and spacecraft.
NASA Technical Reports Server (NTRS)
Morrell, F. R.; Motyka, P. R.; Bailey, M. L.
1990-01-01
Flight test results for two sensor fault-tolerant algorithms developed for a redundant strapdown inertial measurement unit are presented. The inertial measurement unit (IMU) consists of four two-degrees-of-freedom gyros and accelerometers mounted on the faces of a semi-octahedron. Fault tolerance is provided by edge vector test and generalized likelihood test algorithms, each of which can provide dual fail-operational capability for the IMU. To detect the wide range of failure magnitudes in inertial sensors, which provide flight crucial information for flight control and navigation, failure detection and isolation are developed in terms of a multi level structure. Threshold compensation techniques, developed to enhance the sensitivity of the failure detection process to navigation level failures, are presented. Four flight tests were conducted in a commercial transport-type environment to compare and determine the performance of the failure detection and isolation methods. Dual flight processors enabled concurrent tests for the algorithms. Failure signals such as hard-over, null, or bias shift, were added to the sensor outputs as simple or multiple failures during the flights. Both algorithms provided timely detection and isolation of flight control level failures. The generalized likelihood test algorithm provided more timely detection of low-level sensor failures, but it produced one false isolation. Both algorithms demonstrated the capability to provide dual fail-operational performance for the skewed array of inertial sensors.
NASA Technical Reports Server (NTRS)
Gunzburger, M. D.; Nicolaides, R. A.
1986-01-01
Substructuring methods are in common use in mechanics problems where typically the associated linear systems of algebraic equations are positive definite. Here these methods are extended to problems which lead to nonpositive definite, nonsymmetric matrices. The extension is based on an algorithm which carries out the block Gauss elimination procedure without the need for interchanges even when a pivot matrix is singular. Examples are provided wherein the method is used in connection with finite element solutions of the stationary Stokes equations and the Helmholtz equation, and dual methods for second-order elliptic equations.
Trescott, Peter C.; Pinder, George Francis; Larson, S.P.
1976-01-01
The model will simulate ground-water flow in an artesian aquifer, a water-table aquifer, or a combined artesian and water-table aquifer. The aquifer may be heterogeneous and anisotropic and have irregular boundaries. The source term in the flow equation may include well discharge, constant recharge, leakage from confining beds in which the effects of storage are considered, and evapotranspiration as a linear function of depth to water. The theoretical development includes presentation of the appropriate flow equations and derivation of the finite-difference approximations (written for a variable grid). The documentation emphasizes the numerical techniques that can be used for solving the simultaneous equations and describes the results of numerical experiments using these techniques. Of the three numerical techniques available in the model, the strongly implicit procedure, in general, requires less computer time and has fewer numerical difficulties than do the iterative alternating direction implicit procedure and line successive overrelaxation (which includes a two-dimensional correction procedure to accelerate convergence). The documentation includes a flow chart, program listing, an example simulation, and sections on designing an aquifer model and requirements for data input. It illustrates how model results can be presented on the line printer and pen plotters with a program that utilizes the graphical display software available from the Geological Survey Computer Center Division. In addition the model includes options for reading input data from a disk and writing intermediate results on a disk.
Numerical time-step restrictions as a result of capillary waves
NASA Astrophysics Data System (ADS)
Denner, Fabian; van Wachem, Berend G. M.
2015-03-01
The propagation of capillary waves on material interfaces between two fluids imposes a strict constraint on the numerical time-step applied to solve the equations governing this problem and is directly associated with the stability of interfacial flow simulations. The explicit implementation of surface tension is the generally accepted reason for the restrictions on the temporal resolution caused by capillary waves. In this article, a fully-coupled numerical framework with an implicit treatment of surface tension is proposed and applied, demonstrating that the capillary time-step constraint is in fact a constraint imposed by the temporal sampling of capillary waves, irrespective of the type of implementation. The presented results show that the capillary time-step constraint can be exceeded by several orders of magnitude, with the explicit as well as the implicit treatment of surface tension, if capillary waves are absent. Furthermore, a revised capillary time-step constraint is derived by studying the temporal resolution of capillary waves based on numerical stability and signal processing theory, including the Doppler shift caused by an underlying fluid motion. The revised capillary time-step constraint assures a robust, aliasing-free result, as demonstrated by representative numerical experiments, and is in the static case less restrictive than previously proposed time-step limits associated with capillary waves.
Improving the trust in results of numerical simulations and scientific data analytics
Cappello, Franck; Constantinescu, Emil; Hovland, Paul; Peterka, Tom; Phillips, Carolyn; Snir, Marc; Wild, Stefan
2015-04-30
This white paper investigates several key aspects of the trust that a user can give to the results of numerical simulations and scientific data analytics. In this document, the notion of trust is related to the integrity of numerical simulations and data analytics applications. This white paper complements the DOE ASCR report on Cybersecurity for Scientific Computing Integrity by (1) exploring the sources of trust loss; (2) reviewing the definitions of trust in several areas; (3) providing numerous cases of result alteration, some of them leading to catastrophic failures; (4) examining the current notion of trust in numerical simulation and scientific data analytics; (5) providing a gap analysis; and (6) suggesting two important research directions and their respective research topics. To simplify the presentation without loss of generality, we consider that trust in results can be lost (or the results’ integrity impaired) because of any form of corruption happening during the execution of the numerical simulation or the data analytics application. In general, the sources of such corruption are threefold: errors, bugs, and attacks. Current applications are already using techniques to deal with different types of corruption. However, not all potential corruptions are covered by these techniques. We firmly believe that the current level of trust that a user has in the results is at least partially founded on ignorance of this issue or the hope that no undetected corruptions will occur during the execution. This white paper explores the notion of trust and suggests recommendations for developing a more scientifically grounded notion of trust in numerical simulation and scientific data analytics. We first formulate the problem and show that it goes beyond previous questions regarding the quality of results such as V&V, uncertainly quantification, and data assimilation. We then explore the complexity of this difficult problem, and we sketch complementary general
Freddi, Alessandro; Monteriù, Andrea; Longhi, Sauro
2014-01-01
Both the theoretical background and the experimental results of an algorithm developed to perform human respiratory rate measurements without any physical contact are presented. Based on depth image sensing techniques, the respiratory rate is derived by measuring morphological changes of the chest wall. The algorithm identifies the human chest, computes its distance from the camera and compares this value with the instantaneous distance, discerning if it is due to the respiratory act or due to a limited movement of the person being monitored. To experimentally validate the proposed algorithm, the respiratory rate measurements coming from a spirometer were taken as a benchmark and compared with those estimated by the algorithm. Five tests were performed, with five different persons sat in front of the camera. The first test aimed to choose the suitable sampling frequency. The second test was conducted to compare the performances of the proposed system with respect to the gold standard in ideal conditions of light, orientation and clothing. The third, fourth and fifth tests evaluated the algorithm performances under different operating conditions. The experimental results showed that the system can correctly measure the respiratory rate, and it is a viable alternative to monitor the respiratory activity of a person without using invasive sensors. PMID:26609383
Akbari, Hamed; Bilello, Michel; Da, Xiao; Davatzikos, Christos
2015-01-01
Evaluating various algorithms for the inter-subject registration of brain magnetic resonance images (MRI) is a necessary topic receiving growing attention. Existing studies evaluated image registration algorithms in specific tasks or using specific databases (e.g., only for skull-stripped images, only for single-site images, etc.). Consequently, the choice of registration algorithms seems task- and usage/parameter-dependent. Nevertheless, recent large-scale, often multi-institutional imaging-related studies create the need and raise the question whether some registration algorithms can 1) generally apply to various tasks/databases posing various challenges; 2) perform consistently well, and while doing so, 3) require minimal or ideally no parameter tuning. In seeking answers to this question, we evaluated 12 general-purpose registration algorithms, for their generality, accuracy and robustness. We fixed their parameters at values suggested by algorithm developers as reported in the literature. We tested them in 7 databases/tasks, which present one or more of 4 commonly-encountered challenges: 1) inter-subject anatomical variability in skull-stripped images; 2) intensity homogeneity, noise and large structural differences in raw images; 3) imaging protocol and field-of-view (FOV) differences in multi-site data; and 4) missing correspondences in pathology-bearing images. Totally 7,562 registrations were performed. Registration accuracies were measured by (multi-)expert-annotated landmarks or regions of interest (ROIs). To ensure reproducibility, we used public software tools, public databases (whenever possible), and we fully disclose the parameter settings. We show evaluation results, and discuss the performances in light of algorithms’ similarity metrics, transformation models and optimization strategies. We also discuss future directions for the algorithm development and evaluations. PMID:24951685
NASA Astrophysics Data System (ADS)
Bozzoli, F.; Cattani, L.; Rainieri, S.; Zachár, A.
2015-11-01
In the last years, the attention of heat transfer equipments manufacturers turned toward helically coiled-tube heat exchangers, especially with regards to applications for viscous and/or particulate products. The recent progress achieved in numerical simulation motivated many research groups to develop numerical models for this kind of apparatuses. These models, intended both to improve the knowledge of the fundamental heat transfer mechanisms in curved geometries and to support the industrial design of this kind of apparatuses, are usually validated throughout the comparison with either theoretical or experimental evidences by considering average heat transfer performances. However, this approach doesn't guarantee that the validated models are able to reproduce local effects in details, which are so important in this kind of non-standard geometries. In the present paper a numerical model of convective heat transfer in coiled tubes for laminar flow regime was formulated and discussed. Its goodness was checked throughout the comparison with the latest experimental outcomes of Bozzoli et al. [1] in terms of convective heat flux distribution along the boundary of the duct, by ensuring the effectiveness of the model also in the description of local behaviours. Although the present paper reports only preliminary results of this simulation/validation process, it could be of interest for the research community because it proposes a novel approach that could be useful to validate many numerical models for nonstandard geometries.
NASA Astrophysics Data System (ADS)
Biamonte, Mason; Idarraga, John
2013-04-01
A classical hybrid alternating-direction implicit difference scheme is used to simulate two-dimensional charge carrier advection-diffusion induced by alpha particles incident upon silicon pixel detectors at room temperature in vacuum. A mapping between the results of the simulation and a projection of the cluster size for each incident alpha is constructed. The error between the simulation and the experimental data diminishes with the increase in the applied voltage for the pixels in the central region of the cluster. Simulated peripheral pixel TOT values do not match the data for any value of applied voltage, suggesting possible modifications to the current algorithm from first principles. Coulomb repulsion between charge carriers is built into the algorithm using the Barnes-Hut tree algorithm. The plasma effect arising from the initial presence of holes in the silicon is incorporated into the simulation. The error between the simulation and the data helps identify physics not accounted for in standard literature simulation techniques.
NASA Astrophysics Data System (ADS)
Ariyawansa, K. A.; Tabor, Wayne L.
2009-08-01
A family of algorithms for the approximate solution of the bound-constrained minimization problem is described. These algorithms employ the standard barrier method, with the inner iteration based on trust region methods. Local models are conic functions rather than the usual quadratic functions, and are required to match first and second derivatives of the barrier function at the current iterate. The various members of the family are distinguished by the choice of a vector-valued parameter, which is the zero vector in the degenerate case that quadratic local models are used. Computational results are used to compare the efficiency of various members of the family on a selection of test functions.
Image Artifacts Resulting from Gamma-Ray Tracking Algorithms Used with Compton Imagers
Seifert, Carolyn E.; He, Zhong
2005-10-01
For Compton imaging it is necessary to determine the sequence of gamma-ray interactions in a single detector or array of detectors. This can be done by time-of-flight measurements if the interactions are sufficiently far apart. However, in small detectors the time between interactions can be too small to measure, and other means of gamma-ray sequencing must be used. In this work, several popular sequencing algorithms are reviewed for sequences with two observed events and three or more observed events in the detector. These algorithms can result in poor imaging resolution and introduce artifacts in the backprojection images. The effects of gamma-ray tracking algorithms on Compton imaging are explored in the context of the 4π Compton imager built by the University of Michigan.
Forecasting Energy Market Contracts by Ambit Processes: Empirical Study and Numerical Results
Di Persio, Luca; Marchesan, Michele
2014-01-01
In the present paper we exploit the theory of ambit processes to develop a model which is able to effectively forecast prices of forward contracts written on the Italian energy market. Both short-term and medium-term scenarios are considered and proper calibration procedures as well as related numerical results are provided showing a high grade of accuracy in the obtained approximations when compared with empirical time series of interest. PMID:27437500
Forecasting Energy Market Contracts by Ambit Processes: Empirical Study and Numerical Results.
Di Persio, Luca; Marchesan, Michele
2014-01-01
In the present paper we exploit the theory of ambit processes to develop a model which is able to effectively forecast prices of forward contracts written on the Italian energy market. Both short-term and medium-term scenarios are considered and proper calibration procedures as well as related numerical results are provided showing a high grade of accuracy in the obtained approximations when compared with empirical time series of interest.
NASA Astrophysics Data System (ADS)
García, Hermes A.; Guerrero-Bolaño, Francisco J.; Obregón-Neira, Nelson
2010-05-01
Due to both mathematical tractability and efficiency on computational resources, it is very common to find in the realm of numerical modeling in hydro-engineering that regular linearization techniques have been applied to nonlinear partial differential equations properly obtained in environmental flow studies. Sometimes this simplification is also made along with omission of nonlinear terms involved in such equations which in turn diminishes the performance of any implemented approach. This is the case for example, for contaminant transport modeling in streams. Nowadays, a traditional and one of the most common used water quality model such as QUAL2k, preserves its original algorithm, which omits nonlinear terms through linearization techniques, in spite of the continuous algorithmic development and computer power enhancement. For that reason, the main objective of this research was to generate a flexible tool for non-linear water quality modeling. The solution implemented here was based on two genetic algorithms, used in a nested way in order to find two different types of solutions sets: the first set is composed by the concentrations of the physical-chemical variables used in the modeling approach (16 variables), which satisfies the non-linear equation system. The second set, is the typical solution of the inverse problem, the parameters and constants values for the model when it is applied to a particular stream. From a total of sixteen (16) variables, thirteen (13) was modeled by using non-linear coupled equation systems and three (3) was modeled in an independent way. The model used here had a requirement of fifty (50) parameters. The nested genetic algorithm used for the numerical solution of a non-linear equation system proved to serve as a flexible tool to handle with the intrinsic non-linearity that emerges from the interactions occurring between multiple variables involved in water quality studies. However because there is a strong data limitation in
Comparison of numerical and experimental results of the flow in the U9 Kaplan turbine model
NASA Astrophysics Data System (ADS)
Petit, O.; Mulu, B.; Nilsson, H.; Cervantes, M.
2010-08-01
The present work compares simulations made using the OpenFOAM CFD code with experimental measurements of the flow in the U9 Kaplan turbine model. Comparisons of the velocity profiles in the spiral casing and in the draft tube are presented. The U9 Kaplan turbine prototype located in Porjus and its model, located in Älvkarleby, Sweden, have curved inlet pipes that lead the flow to the spiral casing. Nowadays, this curved pipe and its effect on the flow in the turbine is not taken into account when numerical simulations are performed at design stage. To study the impact of the inlet pipe curvature on the flow in the turbine, and to get a better overview of the flow of the whole system, measurements were made on the 1:3.1 model of the U9 turbine. Previously published measurements were taken at the inlet of the spiral casing and just before the guide vanes, using the laser Doppler anemometry (LDA) technique. In the draft tube, a number of velocity profiles were measured using the LDA techniques. The present work extends the experimental investigation with a horizontal section at the inlet of the draft tube. The experimental results are used to specify the inlet boundary condition for the numerical simulations in the draft tube, and to validate the computational results in both the spiral casing and the draft tube. The numerical simulations were realized using the standard k-e model and a block-structured hexahedral wall function mesh.
Recent Analytical and Numerical Results for The Navier-Stokes-Voigt Model and Related Models
NASA Astrophysics Data System (ADS)
Larios, Adam; Titi, Edriss; Petersen, Mark; Wingate, Beth
2010-11-01
The equations which govern the motions of fluids are notoriously difficult to handle both mathematically and computationally. Recently, a new approach to these equations, known as the Voigt-regularization, has been investigated as both a numerical and analytical regularization for the 3D Navier-Stokes equations, the Euler equations, and related fluid models. This inviscid regularization is related to the alpha-models of turbulent flow; however, it overcomes many of the problems present in those models. I will discuss recent work on the Voigt-regularization, as well as a new criterion for the finite-time blow-up of the Euler equations based on their Voigt-regularization. Time permitting, I will discuss some numerical results, as well as applications of this technique to the Magnetohydrodynamic (MHD) equations and various equations of ocean dynamics.
NASA Astrophysics Data System (ADS)
Mouton, S.; Ledoux, Y.; Teissandier, D.; Sébastian, P.
2010-06-01
A key challenge for the future is to reduce drastically the human impact on the environment. In the aeronautic field, this challenge aims at optimizing the design of the aircraft to decrease the global mass. This reduction leads to the optimization of every part constitutive of the plane. This operation is even more delicate when the used material is composite material. In this case, it is necessary to find a compromise between the strength, the mass and the manufacturing cost of the component. Due to these different kinds of design constraints it is necessary to assist engineer with decision support system to determine feasible solutions. In this paper, an approach is proposed based on the coupling of the different key characteristics of the design process and on the consideration of the failure risk of the component. The originality of this work is that the manufacturing deviations due to the RTM process are integrated in the simulation of the assembly process. Two kinds of deviations are identified: volume impregnation (injection phase of RTM process) and geometrical deviations (curing and cooling phases). The quantification of these deviations and the related failure risk calculation is based on finite element simulations (Pam RTM® and Samcef® softwares). The use of genetic algorithm allows to estimate the impact of the design choices and their consequences on the failure risk of the component. The main focus of the paper is the optimization of tool design. In the framework of decision support systems, the failure risk calculation is used for making the comparison of possible industrialization alternatives. It is proposed to apply this method on a particular part of the airplane structure: a spar unit made of carbon fiber/epoxy composite.
Mouton, S.; Ledoux, Y.; Teissandier, D.; Sebastian, P.
2010-06-15
A key challenge for the future is to reduce drastically the human impact on the environment. In the aeronautic field, this challenge aims at optimizing the design of the aircraft to decrease the global mass. This reduction leads to the optimization of every part constitutive of the plane. This operation is even more delicate when the used material is composite material. In this case, it is necessary to find a compromise between the strength, the mass and the manufacturing cost of the component. Due to these different kinds of design constraints it is necessary to assist engineer with decision support system to determine feasible solutions. In this paper, an approach is proposed based on the coupling of the different key characteristics of the design process and on the consideration of the failure risk of the component. The originality of this work is that the manufacturing deviations due to the RTM process are integrated in the simulation of the assembly process. Two kinds of deviations are identified: volume impregnation (injection phase of RTM process) and geometrical deviations (curing and cooling phases). The quantification of these deviations and the related failure risk calculation is based on finite element simulations (Pam RTM registered and Samcef registered softwares). The use of genetic algorithm allows to estimate the impact of the design choices and their consequences on the failure risk of the component. The main focus of the paper is the optimization of tool design. In the framework of decision support systems, the failure risk calculation is used for making the comparison of possible industrialization alternatives. It is proposed to apply this method on a particular part of the airplane structure: a spar unit made of carbon fiber/epoxy composite.
Temperature Fields in Soft Tissue during LPUS Treatment: Numerical Prediction and Experiment Results
Kujawska, Tamara; Wojcik, Janusz; Nowicki, Andrzej
2010-03-09
Recent research has shown that beneficial therapeutic effects in soft tissues can be induced by the low power ultrasound (LPUS). For example, increasing of cells immunity to stress (among others thermal stress) can be obtained through the enhanced heat shock proteins (Hsp) expression induced by the low intensity ultrasound. The possibility to control the Hsp expression enhancement in soft tissues in vivo stimulated by ultrasound can be the potential new therapeutic approach to the neurodegenerative diseases which utilizes the known feature of cells to increase their immunity to stresses through the Hsp expression enhancement. The controlling of the Hsp expression enhancement by adjusting of exposure level to ultrasound energy would allow to evaluate and optimize the ultrasound-mediated treatment efficiency. Ultrasonic regimes are controlled by adjusting the pulsed ultrasound waves intensity, frequency, duration, duty cycle and exposure time. Our objective was to develop the numerical model capable of predicting in space and time temperature fields induced by a circular focused transducer generating tone bursts in multilayer nonlinear attenuating media and to compare the numerically calculated results with the experimental data in vitro. The acoustic pressure field in multilayer biological media was calculated using our original numerical solver. For prediction of temperature fields the Pennes' bio-heat transfer equation was employed. Temperature field measurements in vitro were carried out in a fresh rat liver using the 15 mm diameter, 25 mm focal length and 2 MHz central frequency transducer generating tone bursts with the spatial peak temporal average acoustic intensity varied between 0.325 and 1.95 W/cm{sup 2}, duration varied from 20 to 500 cycles at the same 20% duty cycle and the exposure time varied up to 20 minutes. The measurement data were compared with numerical simulation results obtained under experimental boundary conditions. Good agreement between
Temperature Fields in Soft Tissue during LPUS Treatment: Numerical Prediction and Experiment Results
NASA Astrophysics Data System (ADS)
Kujawska, Tamara; Wójcik, Janusz; Nowicki, Andrzej
2010-03-01
Recent research has shown that beneficial therapeutic effects in soft tissues can be induced by the low power ultrasound (LPUS). For example, increasing of cells immunity to stress (among others thermal stress) can be obtained through the enhanced heat shock proteins (Hsp) expression induced by the low intensity ultrasound. The possibility to control the Hsp expression enhancement in soft tissues in vivo stimulated by ultrasound can be the potential new therapeutic approach to the neurodegenerative diseases which utilizes the known feature of cells to increase their immunity to stresses through the Hsp expression enhancement. The controlling of the Hsp expression enhancement by adjusting of exposure level to ultrasound energy would allow to evaluate and optimize the ultrasound-mediated treatment efficiency. Ultrasonic regimes are controlled by adjusting the pulsed ultrasound waves intensity, frequency, duration, duty cycle and exposure time. Our objective was to develop the numerical model capable of predicting in space and time temperature fields induced by a circular focused transducer generating tone bursts in multilayer nonlinear attenuating media and to compare the numerically calculated results with the experimental data in vitro. The acoustic pressure field in multilayer biological media was calculated using our original numerical solver. For prediction of temperature fields the Pennes' bio-heat transfer equation was employed. Temperature field measurements in vitro were carried out in a fresh rat liver using the 15 mm diameter, 25 mm focal length and 2 MHz central frequency transducer generating tone bursts with the spatial peak temporal average acoustic intensity varied between 0.325 and 1.95 W/cm2, duration varied from 20 to 500 cycles at the same 20% duty cycle and the exposure time varied up to 20 minutes. The measurement data were compared with numerical simulation results obtained under experimental boundary conditions. Good agreement between the
Islam, Sk Minhazul; Das, Swagatam; Ghosh, Saurav; Roy, Subhrajit; Suganthan, Ponnuthurai Nagaratnam
2012-04-01
Differential evolution (DE) is one of the most powerful stochastic real parameter optimizers of current interest. In this paper, we propose a new mutation strategy, a fitness-induced parent selection scheme for the binomial crossover of DE, and a simple but effective scheme of adapting two of its most important control parameters with an objective of achieving improved performance. The new mutation operator, which we call DE/current-to-gr_best/1, is a variant of the classical DE/current-to-best/1 scheme. It uses the best of a group (whose size is q% of the population size) of randomly selected solutions from current generation to perturb the parent (target) vector, unlike DE/current-to-best/1 that always picks the best vector of the entire population to perturb the target vector. In our modified framework of recombination, a biased parent selection scheme has been incorporated by letting each mutant undergo the usual binomial crossover with one of the p top-ranked individuals from the current population and not with the target vector with the same index as used in all variants of DE. A DE variant obtained by integrating the proposed mutation, crossover, and parameter adaptation strategies with the classical DE framework (developed in 1995) is compared with two classical and four state-of-the-art adaptive DE variants over 25 standard numerical benchmarks taken from the IEEE Congress on Evolutionary Computation 2005 competition and special session on real parameter optimization. Our comparative study indicates that the proposed schemes improve the performance of DE by a large magnitude such that it becomes capable of enjoying statistical superiority over the state-of-the-art DE variants for a wide variety of test problems. Finally, we experimentally demonstrate that, if one or more of our proposed strategies are integrated with existing powerful DE variants such as jDE and JADE, their performances can also be enhanced.
Experimental and numerical results on the fluid flow driven by a traveling magnetic field
NASA Astrophysics Data System (ADS)
Lantzsch, R.; Galindo, V.; Grants, I.; Zhang, C.; Pätzold, O.; Gerbeth, G.; Stelter, M.
2007-07-01
A traveling magnetic field (TMF) driven flow and its transition from a laminar to a time-dependent flow is studied by means of ultrasonic Doppler velocimetry and numerical simulations. The experimental setup comprises a cylindrical cavity containing the electrically conducting model fluid GaInSn and a system of six equidistant coils, which are fed by an out-of-phase current to create an up- or downward directed TMF. Hence, a Lorentz force is induced in the melt which leads to meridional flow patterns. For numerical simulations commercial codes (Opera/Fidap) and a spectral code are used. The characteristic parameters of the magnetohydrodynamic model system are chosen close to the conditions used for vertical gradient freeze (VGF) crystal growth. The axisymmetric basic flow and its dependence on the dimensionless shielding parameter S are examined. It is shown that, for S>10, the flow velocity decreases significantly, whereas almost no influence is found for a smaller shielding parameter. The critical Reynolds number for the onset of instability is found in the range of 300-450. Good agreement between experimental results and the numerical simulations is achieved.
NASA Astrophysics Data System (ADS)
Zueco, Joaquín; López-González, Luis María
2016-04-01
We have studied decompression processes when pressure changes that take place, in blood and tissues using a technical numerical based in electrical analogy of the parameters that involved in the problem. The particular problem analyzed is the behavior dynamics of the extravascular bubbles formed in the intercellular cavities of a hypothetical tissue undergoing decompression. Numerical solutions are given for a system of equations to simulate gas exchanges of bubbles after decompression, with particular attention paid to the effect of bubble size, nitrogen tension, nitrogen diffusivity in the intercellular fluid and in the tissue cell layer in a radial direction, nitrogen solubility, ambient pressure and specific blood flow through the tissue over the different molar diffusion fluxes of nitrogen per time unit (through the bubble surface, between the intercellular fluid layer and blood and between the intercellular fluid layer and the tissue cell layer). The system of nonlinear equations is solved using the Network Simulation Method, where the electric analogy is applied to convert these equations into a network-electrical model, and a computer code (electric circuit simulator, Pspice). In this paper, numerical results new (together to a network model improved with interdisciplinary electrical analogies) are provided.
Laboratory simulations of lidar returns from clouds: experimental and numerical results.
Zaccanti, G; Bruscaglioni, P; Gurioli, M; Sansoni, P
1993-03-20
The experimental results of laboratory simulations of lidar returns from clouds are presented. Measurements were carried out on laboratory-scaled cloud models by using a picosecond laser and a streak-camera system. The turbid structures simulating clouds were suspensions of polystyrene spheres in water. The geometrical situation was similar to that of an actual lidar sounding a cloud 1000 m distant and with a thickness of 300 m. Measurements were repeated for different concentrations and different sizes of spheres. The results show how the effect of multiple scattering depends on the scattering coefficient and on the phase function of the diffusers. The depolarization introduced by multiple scattering was also investigated. The results were also compared with numerical results obtained by Monte Carlo simulations. Substantially good agreement between numerical and experimental results was found. The measurements showed the adequacy of modern electro-optical systems to study the features of multiple-scattering effects on lidar echoes from atmosphere or ocean by means of experiments on well-controlled laboratory-scaled models. This adequacy provides the possibility of studying the influence of different effects in the laboratory in well-controlled situations.
Bearup, Daniel; Petrovskaya, Natalia; Petrovskii, Sergei
2015-05-01
Monitoring of pest insects is an important part of the integrated pest management. It aims to provide information about pest insect abundance at a given location. This includes data collection, usually using traps, and their subsequent analysis and/or interpretation. However, interpretation of trap count (number of insects caught over a fixed time) remains a challenging problem. First, an increase in either the population density or insects activity can result in a similar increase in the number of insects trapped (the so called "activity-density" problem). Second, a genuine increase of the local population density can be attributed to qualitatively different ecological mechanisms such as multiplication or immigration. Identification of the true factor causing an increase in trap count is important as different mechanisms require different control strategies. In this paper, we consider a mean-field mathematical model of insect trapping based on the diffusion equation. Although the diffusion equation is a well-studied model, its analytical solution in closed form is actually available only for a few special cases, whilst in a more general case the problem has to be solved numerically. We choose finite differences as the baseline numerical method and show that numerical solution of the problem, especially in the realistic 2D case, is not at all straightforward as it requires a sufficiently accurate approximation of the diffusion fluxes. Once the numerical method is justified and tested, we apply it to the corresponding boundary problem where different types of boundary forcing describe different scenarios of pest insect immigration and reveal the corresponding patterns in the trap count growth. PMID:25744607
O'Brien, James Edward; Sohal, Manohar Singh; Huff, George Albert
2002-08-01
A combined experimental and numerical investigation is under way to investigate heat transfer enhancement techniques that may be applicable to large-scale air-cooled condensers such as those used in geothermal power applications. The research is focused on whether air-side heat transfer can be improved through the use of finsurface vortex generators (winglets,) while maintaining low heat exchanger pressure drop. A transient heat transfer visualization and measurement technique has been employed in order to obtain detailed distributions of local heat transfer coefficients on model fin surfaces. Pressure drop measurements have also been acquired in a separate multiple-tube row apparatus. In addition, numerical modeling techniques have been developed to allow prediction of local and average heat transfer for these low-Reynolds-number flows with and without winglets. Representative experimental and numerical results presented in this paper reveal quantitative details of local fin-surface heat transfer in the vicinity of a circular tube with a single delta winglet pair downstream of the cylinder. The winglets were triangular (delta) with a 1:2 height/length aspect ratio and a height equal to 90% of the channel height. Overall mean fin-surface Nusselt-number results indicate a significant level of heat transfer enhancement (average enhancement ratio 35%) associated with the deployment of the winglets with oval tubes. Pressure drop measurements have also been obtained for a variety of tube and winglet configurations using a single-channel flow apparatus that includes four tube rows in a staggered array. Comparisons of heat transfer and pressure drop results for the elliptical tube versus a circular tube with and without winglets are provided. Heat transfer and pressure-drop results have been obtained for flow Reynolds numbers based on channel height and mean flow velocity ranging from 700 to 6500.
NASA Astrophysics Data System (ADS)
Tang, Yu-Hang; Karniadakis, George Em
2014-11-01
We present a scalable dissipative particle dynamics simulation code, fully implemented on the Graphics Processing Units (GPUs) using a hybrid CUDA/MPI programming model, which achieves 10-30 times speedup on a single GPU over 16 CPU cores and almost linear weak scaling across a thousand nodes. A unified framework is developed within which the efficient generation of the neighbor list and maintaining particle data locality are addressed. Our algorithm generates strictly ordered neighbor lists in parallel, while the construction is deterministic and makes no use of atomic operations or sorting. Such neighbor list leads to optimal data loading efficiency when combined with a two-level particle reordering scheme. A faster in situ generation scheme for Gaussian random numbers is proposed using precomputed binary signatures. We designed custom transcendental functions that are fast and accurate for evaluating the pairwise interaction. The correctness and accuracy of the code is verified through a set of test cases simulating Poiseuille flow and spontaneous vesicle formation. Computer benchmarks demonstrate the speedup of our implementation over the CPU implementation as well as strong and weak scalability. A large-scale simulation of spontaneous vesicle formation consisting of 128 million particles was conducted to further illustrate the practicality of our code in real-world applications. Catalogue identifier: AETN_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETN_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 1 602 716 No. of bytes in distributed program, including test data, etc.: 26 489 166 Distribution format: tar.gz Programming language: C/C++, CUDA C/C++, MPI. Computer: Any computers having nVidia GPGPUs with compute capability 3.0. Operating system: Linux. Has the code been
Numerical computation of the effective-one-body potential q using self-force results
NASA Astrophysics Data System (ADS)
Akcay, Sarp; van de Meent, Maarten
2016-03-01
The effective-one-body theory (EOB) describes the conservative dynamics of compact binary systems in terms of an effective Hamiltonian approach. The Hamiltonian for moderately eccentric motion of two nonspinning compact objects in the extreme mass-ratio limit is given in terms of three potentials: a (v ) , d ¯ (v ) , q (v ) . By generalizing the first law of mechanics for (nonspinning) black hole binaries to eccentric orbits, [A. Le Tiec, Phys. Rev. D 92, 084021 (2015).] recently obtained new expressions for d ¯(v ) and q (v ) in terms of quantities that can be readily computed using the gravitational self-force approach. Using these expressions we present a new computation of the EOB potential q (v ) by combining results from two independent numerical self-force codes. We determine q (v ) for inverse binary separations in the range 1 /1200 ≤v ≲1 /6 . Our computation thus provides the first-ever strong-field results for q (v ) . We also obtain d ¯ (v ) in our entire domain to a fractional accuracy of ≳10-8 . We find that our results are compatible with the known post-Newtonian expansions for d ¯(v ) and q (v ) in the weak field, and agree with previous (less accurate) numerical results for d ¯(v ) in the strong field.
Angus, Simon D; Piotrowska, Monika Joanna
2014-01-01
Multi-dose radiotherapy protocols (fraction dose and timing) currently used in the clinic are the product of human selection based on habit, received wisdom, physician experience and intra-day patient timetabling. However, due to combinatorial considerations, the potential treatment protocol space for a given total dose or treatment length is enormous, even for relatively coarse search; well beyond the capacity of traditional in-vitro methods. In constrast, high fidelity numerical simulation of tumor development is well suited to the challenge. Building on our previous single-dose numerical simulation model of EMT6/Ro spheroids, a multi-dose irradiation response module is added and calibrated to the effective dose arising from 18 independent multi-dose treatment programs available in the experimental literature. With the developed model a constrained, non-linear, search for better performing cadidate protocols is conducted within the vicinity of two benchmarks by genetic algorithm (GA) techniques. After evaluating less than 0.01% of the potential benchmark protocol space, candidate protocols were identified by the GA which conferred an average of 9.4% (max benefit 16.5%) and 7.1% (13.3%) improvement (reduction) on tumour cell count compared to the two benchmarks, respectively. Noticing that a convergent phenomenon of the top performing protocols was their temporal synchronicity, a further series of numerical experiments was conducted with periodic time-gap protocols (10 h to 23 h), leading to the discovery that the performance of the GA search candidates could be replicated by 17-18 h periodic candidates. Further dynamic irradiation-response cell-phase analysis revealed that such periodicity cohered with latent EMT6/Ro cell-phase temporal patterning. Taken together, this study provides powerful evidence towards the hypothesis that even simple inter-fraction timing variations for a given fractional dose program may present a facile, and highly cost-effecitive means
NASA Astrophysics Data System (ADS)
Fontana, A.; Marzari, F.
2016-05-01
Context. Planetesimals and planets embedded in a circumstellar disk are dynamically perturbed by the disk gravity. It causes an apsidal line precession at a rate that depends on the disk density profile and on the distance of the massive body from the star. Aims: Different analytical models are exploited to compute the precession rate of the perihelion ϖ˙. We compare them to verify their equivalence, in particular after analytical manipulations performed to derive handy formulas, and test their predictions against numerical models in some selected cases. Methods: The theoretical precession rates were computed with analytical algorithms found in the literature using the Mathematica symbolic code, while the numerical simulations were performed with the hydrodynamical code FARGO. Results: For low-mass bodies (planetesimals) the analytical approaches described in Binney & Tremaine (2008, Galactic Dynamics, p. 96), Ward (1981, Icarus, 47, 234), and Silsbee & Rafikov (2015a, ApJ, 798, 71) are equivalent under the same initial conditions for the disk in terms of mass, density profile, and inner and outer borders. They also match the numerical values computed with FARGO away from the outer border of the disk reasonably well. On the other hand, the predictions of the classical Mestel disk (Mestel 1963, MNRAS, 126, 553) for disks with p = 1 significantly depart from the numerical solution for radial distances beyond one-third of the disk extension because of the underlying assumption of the Mestel disk is that the outer disk border is equal to infinity. For massive bodies such as terrestrial and giant planets, the agreement of the analytical approaches is progressively poorer because of the changes in the disk structure that are induced by the planet gravity. For giant planets the precession rate changes sign and is higher than the modulus of the theoretical value by a factor ranging from 1.5 to 1.8. In this case, the correction of the formula proposed by Ward (1981) to
A few results for using genetic algorithms in the design of electrical machines
Wurtz, F.; Richomme, M.; Bigeon, J.; Sabonnadiere, J.C.
1997-03-01
Genetic algorithms (GAs) seem to be attractive for the design of electrical machines but their main difficulty is to find a configuration so that they are efficient. This paper exposes a criterion and a methodology the authors have imagined to find efficient configurations. The first configuration they obtained will then be detailed. The results based on this configuration will be exposed with an example of a design problem.
NASA Technical Reports Server (NTRS)
Barth, Timothy J.; Lomax, Harvard
1987-01-01
The past decade has seen considerable activity in algorithm development for the Navier-Stokes equations. This has resulted in a wide variety of useful new techniques. Some examples for the numerical solution of the Navier-Stokes equations are presented, divided into two parts. One is devoted to the incompressible Navier-Stokes equations, and the other to the compressible form.
NASA Astrophysics Data System (ADS)
Mori, Takuro; Nakatani, Makoto; Tesfamariam, Solomon
2015-12-01
This paper presents analytical and numerical models for semirigid timber frame with Lagscrewbolt (LSB) connections. A series of static and reverse cyclic experimental tests were carried out for different beam sizes (400, 500, and 600 mm depth) and column-base connections with different numbers of LSBs (4, 5, 8). For the beam-column connections, with increase in beam depth, moment resistance and stiffness values increased, and ductility factor reduced. For the column-base connection, with increase in the number of LSBs, the strength, stiffness, and ductility values increased. A material model available in OpenSees, Pinching4 hysteretic model, was calibrated for all connection test results. Finally, analytical model of the portal frame was developed and compared with the experimental test results. Overall, there was good agreement with the experimental test results, and the Pinching4 hysteretic model can readily be used for full-scale structural model.
NASA Technical Reports Server (NTRS)
Carrier, Alain C.; Aubrun, Jean-Noel
1993-01-01
New frequency response measurement procedures, on-line modal tuning techniques, and off-line modal identification algorithms are developed and applied to the modal identification of the Advanced Structures/Controls Integrated Experiment (ASCIE), a generic segmented optics telescope test-bed representative of future complex space structures. The frequency response measurement procedure uses all the actuators simultaneously to excite the structure and all the sensors to measure the structural response so that all the transfer functions are measured simultaneously. Structural responses to sinusoidal excitations are measured and analyzed to calculate spectral responses. The spectral responses in turn are analyzed as the spectral data become available and, which is new, the results are used to maintain high quality measurements. Data acquisition, processing, and checking procedures are fully automated. As the acquisition of the frequency response progresses, an on-line algorithm keeps track of the actuator force distribution that maximizes the structural response to automatically tune to a structural mode when approaching a resonant frequency. This tuning is insensitive to delays, ill-conditioning, and nonproportional damping. Experimental results show that is useful for modal surveys even in high modal density regions. For thorough modeling, a constructive procedure is proposed to identify the dynamics of a complex system from its frequency response with the minimization of a least-squares cost function as a desirable objective. This procedure relies on off-line modal separation algorithms to extract modal information and on least-squares parameter subset optimization to combine the modal results and globally fit the modal parameters to the measured data. The modal separation algorithms resolved modal density of 5 modes/Hz in the ASCIE experiment. They promise to be useful in many challenging applications.
Numerical approach to constructing the lunar physical libration: results of the initial stage
NASA Astrophysics Data System (ADS)
Zagidullin, A.; Petrova, N.; Nefediev, Yu.; Usanin, V.; Glushkov, M.
2015-10-01
So called "main problem" it is taken as a model to develop the numerical approach in the theory of lunar physical libration. For the chosen model, there are both a good methodological basis and results obtained at the Kazan University as an outcome of the analytic theory construction. Results of the first stage in numerical approach are presented in this report. Three main limitation are taken to describe the main problem: -independent consideration of orbital and rotational motion of the Moon; - a rigid body model for the lunar body is taken and its dynamical figure is described by inertia ellipsoid, which gives us the mass distribution inside the Moon. - only gravitational interaction with the Earth and the Sun is considered. Development of selenopotential is limited on this stage by the second harmonic only. Inclusion of the 3-rd and 4-th order harmonics is the nearest task for the next stage.The full solution of libration problem consists of removing the below specified limitations: consideration of the fine effects, caused by planet perturbations, by visco-elastic properties of the lunar body, by the presence of a two-layer lunar core, by the Earth obliquity, by ecliptic rotation, if it is taken as a reference plane.
NASA Astrophysics Data System (ADS)
Lahaye, Noé; Paci, Alexandre; Smith, Stefan Llewellyn
2016-04-01
We examine the instability of lenticular vortices -- or lenses -- in a stratified rotating fluid. The simplest configuration is one in which the lenses overlay a deep layer and have a free surface, and this can be studied using a two-layer rotating shallow water model. We report results from laboratory experiments and high-resolution direct numerical simulations of the destabilization of vortices with constant potential vorticity, and compare these to a linear stability analysis. The stability properties of the system are governed by two parameters: the typical upper-layer potential vorticity and the size (depth) of the vortex. Good agreement is found between analytical, numerical and experimental results for the growth rate and wavenumber of the instability. The nonlinear saturation of the instability is associated with conversion from potential to kinetic energy and weak emission of gravity waves, giving rise to the formation of coherent vortex multipoles with trapped waves. The impact of flow in the lower layer is examined. In particular, it is shown that the growth rate can be strongly affected and the instability can be suppressed for certain types of weak co-rotating flow.
Noninvasive assessment of mitral inertness: clinical results with numerical model validation
NASA Technical Reports Server (NTRS)
Firstenberg, M. S.; Greenberg, N. L.; Smedira, N. G.; McCarthy, P. M.; Garcia, M. J.; Thomas, J. D.
2001-01-01
Inertial forces (Mdv/dt) are a significant component of transmitral flow, but cannot be measured with Doppler echo. We validated a method of estimating Mdv/dt. Ten patients had a dual sensor transmitral (TM) catheter placed during cardiac surgery. Doppler and 2D echo was performed while acquiring LA and LV pressures. Mdv/dt was determined from the Bernoulli equation using Doppler velocities and TM gradients. Results were compared with numerical modeling. TM gradients (range: 1.04-14.24 mmHg) consisted of 74.0 +/- 11.0% inertial forcers (range: 0.6-12.9 mmHg). Multivariate analysis predicted Mdv/dt = -4.171(S/D (RATIO)) + 0.063(LAvolume-max) + 5. Using this equation, a strong relationship was obtained for the clinical dataset (y=0.98x - 0.045, r=0.90) and the results of numerical modeling (y=0.96x - 0.16, r=0.84). TM gradients are mainly inertial and, as validated by modeling, can be estimated with echocardiography.
Numerical modelling of radon-222 entry into houses: an outline of techniques and results.
Andersen, C E
2001-05-14
Numerical modelling is a powerful tool for studies of soil gas and radon-222 entry into houses. It is the purpose of this paper to review some main techniques and results. In the past, modelling has focused on Darcy flow of soil gas (driven by indoor-outdoor pressure differences) and combined diffusive and advective transport of radon. Models of different complexity have been used. The simpler ones are finite-difference models with one or two spatial dimensions. The more complex models allow for full three-dimensional and time dependency. Advanced features include: soil heterogeneity, anisotropy, fractures, moisture, non-uniform soil temperature, non-Darcy flow of gas, and flow caused by changes in the atmospheric pressure. Numerical models can be used to estimate the importance of specific factors for radon entry. Models are also helpful when results obtained in special laboratory or test structure experiments need to be extrapolated to more general situations (e.g. to real houses or even to other soil-gas pollutants). Finally, models provide a cost-effective test bench for improved designs of radon prevention systems. The paper includes a summary of transport equations and boundary conditions. As an illustrative example, radon entry is calculated for a standard slab-on-grade house.
Evaluation of observation-driven evaporation algorithms: results of the WACMOS-ET project
NASA Astrophysics Data System (ADS)
Miralles, Diego G.; Jimenez, Carlos; Ershadi, Ali; McCabe, Matthew F.; Michel, Dominik; Hirschi, Martin; Seneviratne, Sonia I.; Jung, Martin; Wood, Eric F.; (Bob) Su, Z.; Timmermans, Joris; Chen, Xuelong; Fisher, Joshua B.; Mu, Quiaozen; Fernandez, Diego
2015-04-01
Terrestrial evaporation (ET) links the continental water, energy and carbon cycles. Understanding the magnitude and variability of ET at the global scale is an essential step towards reducing uncertainties in our projections of climatic conditions and water availability for the future. However, the requirement of global observational data of ET can neither be satisfied with our sparse global in-situ networks, nor with the existing satellite sensors (which cannot measure evaporation directly from space). This situation has led to the recent rise of several algorithms dedicated to deriving ET fields from satellite data indirectly, based on the combination of ET-drivers that can be observed from space (e.g. radiation, temperature, phenological variability, water content, etc.). These algorithms can either be based on physics (e.g. Priestley and Taylor or Penman-Monteith approaches) or be purely statistical (e.g., machine learning). However, and despite the efforts from different initiatives like GEWEX LandFlux (Jimenez et al., 2011; Mueller et al., 2013), the uncertainties inherent in the resulting global ET datasets remain largely unexplored, partly due to a lack of inter-product consistency in forcing data. In response to this need, the ESA WACMOS-ET project started in 2012 with the main objectives of (a) developing a Reference Input Data Set to derive and validate ET estimates, and (b) performing a cross-comparison, error characterization and validation exercise of a group of selected ET algorithms driven by this Reference Input Data Set and by in-situ forcing data. The algorithms tested are SEBS (Su et al., 2002), the Penman- Monteith approach from MODIS (Mu et al., 2011), the Priestley and Taylor JPL model (Fisher et al., 2008), the MPI-MTE model (Jung et al., 2010) and GLEAM (Miralles et al., 2011). In this presentation we will show the first results from the ESA WACMOS-ET project. The performance of the different algorithms at multiple spatial and temporal
Castro, A. P. G.; Paul, C. P. L.; Detiger, S. E. L.; Smit, T. H.; van Royen, B. J.; Pimenta Claro, J. C.; Mullender, M. G.; Alves, J. L.
2014-01-01
The loaded disk culture system is an intervertebral disk (IVD)-oriented bioreactor developed by the VU Medical Center (VUmc, Amsterdam, The Netherlands), which has the capacity of maintaining up to 12 IVDs in culture, for approximately 3 weeks after extraction. Using this system, eight goat IVDs were provided with the essential nutrients and submitted to compression tests without losing their biomechanical and physiological properties, for 22 days. Based on previous reports (Paul et al., 2012, 2013; Detiger et al., 2013), four of these IVDs were kept in physiological condition (control) and the other four were previously injected with chondroitinase ABC (CABC), in order to promote degenerative disk disease (DDD). The loading profile intercalated 16 h of activity loading with 8 h of loading recovery to express the standard circadian variations. The displacement behavior of these eight IVDs along the first 2 days of the experiment was numerically reproduced, using an IVD osmo-poro-hyper-viscoelastic and fiber-reinforced finite element (FE) model. The simulations were run on a custom FE solver (Castro et al., 2014). The analysis of the experimental results allowed concluding that the effect of the CABC injection was only significant in two of the four IVDs. The four control IVDs showed no signs of degeneration, as expected. In what concerns to the numerical simulations, the IVD FE model was able to reproduce the generic behavior of the two groups of goat IVDs (control and injected). However, some discrepancies were still noticed on the comparison between the injected IVDs and the numerical simulations, namely on the recovery periods. This may be justified by the complexity of the pathways for DDD, associated with the multiplicity of physiological responses to each direct or indirect stimulus. Nevertheless, one could conclude that ligaments, muscles, and IVD covering membranes could be added to the FE model, in order to improve its accuracy and properly
Castro, A P G; Paul, C P L; Detiger, S E L; Smit, T H; van Royen, B J; Pimenta Claro, J C; Mullender, M G; Alves, J L
2014-01-01
The loaded disk culture system is an intervertebral disk (IVD)-oriented bioreactor developed by the VU Medical Center (VUmc, Amsterdam, The Netherlands), which has the capacity of maintaining up to 12 IVDs in culture, for approximately 3 weeks after extraction. Using this system, eight goat IVDs were provided with the essential nutrients and submitted to compression tests without losing their biomechanical and physiological properties, for 22 days. Based on previous reports (Paul et al., 2012, 2013; Detiger et al., 2013), four of these IVDs were kept in physiological condition (control) and the other four were previously injected with chondroitinase ABC (CABC), in order to promote degenerative disk disease (DDD). The loading profile intercalated 16 h of activity loading with 8 h of loading recovery to express the standard circadian variations. The displacement behavior of these eight IVDs along the first 2 days of the experiment was numerically reproduced, using an IVD osmo-poro-hyper-viscoelastic and fiber-reinforced finite element (FE) model. The simulations were run on a custom FE solver (Castro et al., 2014). The analysis of the experimental results allowed concluding that the effect of the CABC injection was only significant in two of the four IVDs. The four control IVDs showed no signs of degeneration, as expected. In what concerns to the numerical simulations, the IVD FE model was able to reproduce the generic behavior of the two groups of goat IVDs (control and injected). However, some discrepancies were still noticed on the comparison between the injected IVDs and the numerical simulations, namely on the recovery periods. This may be justified by the complexity of the pathways for DDD, associated with the multiplicity of physiological responses to each direct or indirect stimulus. Nevertheless, one could conclude that ligaments, muscles, and IVD covering membranes could be added to the FE model, in order to improve its accuracy and properly
Performance analysis results of a battery fuel gauge algorithm at multiple temperatures
NASA Astrophysics Data System (ADS)
Balasingam, B.; Avvari, G. V.; Pattipati, K. R.; Bar-Shalom, Y.
2015-01-01
Evaluating a battery fuel gauge (BFG) algorithm is a challenging problem due to the fact that there are no reliable mathematical models to represent the complex features of a Li-ion battery, such as hysteresis and relaxation effects, temperature effects on parameters, aging, power fade (PF), and capacity fade (CF) with respect to the chemical composition of the battery. The existing literature is largely focused on developing different BFG strategies and BFG validation has received little attention. In this paper, using hardware in the loop (HIL) data collected form three Li-ion batteries at nine different temperatures ranging from -20 °C to 40 °C, we demonstrate detailed validation results of a battery fuel gauge (BFG) algorithm. The BFG validation is based on three different BFG validation metrics; we provide implementation details of these three BFG evaluation metrics by proposing three different BFG validation load profiles that satisfy varying levels of user requirements.
Re-Computation of Numerical Results Contained in NACA Report No. 496
NASA Technical Reports Server (NTRS)
Perry, Boyd, III
2015-01-01
An extensive examination of NACA Report No. 496 (NACA 496), "General Theory of Aerodynamic Instability and the Mechanism of Flutter," by Theodore Theodorsen, is described. The examination included checking equations and solution methods and re-computing interim quantities and all numerical examples in NACA 496. The checks revealed that NACA 496 contains computational shortcuts (time- and effort-saving devices for engineers of the time) and clever artifices (employed in its solution methods), but, unfortunately, also contains numerous tripping points (aspects of NACA 496 that have the potential to cause confusion) and some errors. The re-computations were performed employing the methods and procedures described in NACA 496, but using modern computational tools. With some exceptions, the magnitudes and trends of the original results were in fair-to-very-good agreement with the re-computed results. The exceptions included what are speculated to be computational errors in the original in some instances and transcription errors in the original in others. Independent flutter calculations were performed and, in all cases, including those where the original and re-computed results differed significantly, were in excellent agreement with the re-computed results. Appendix A contains NACA 496; Appendix B contains a Matlab(Reistered) program that performs the re-computation of results; Appendix C presents three alternate solution methods, with examples, for the two-degree-of-freedom solution method of NACA 496; Appendix D contains the three-degree-of-freedom solution method (outlined in NACA 496 but never implemented), with examples.
Swiler, Laura Painton; Eldred, Michael Scott
2009-09-01
This report documents the results of an FY09 ASC V&V Methods level 2 milestone demonstrating new algorithmic capabilities for mixed aleatory-epistemic uncertainty quantification. Through the combination of stochastic expansions for computing aleatory statistics and interval optimization for computing epistemic bounds, mixed uncertainty analysis studies are shown to be more accurate and efficient than previously achievable. Part I of the report describes the algorithms and presents benchmark performance results. Part II applies these new algorithms to UQ analysis of radiation effects in electronic devices and circuits for the QASPR program.
Algorithms for personalized therapy of type 2 diabetes: results of a web-based international survey
Gallo, Marco; Mannucci, Edoardo; De Cosmo, Salvatore; Gentile, Sandro; Candido, Riccardo; De Micheli, Alberto; Di Benedetto, Antonino; Esposito, Katherine; Genovese, Stefano; Medea, Gerardo; Ceriello, Antonio
2015-01-01
Objective In recent years increasing interest in the issue of treatment personalization for type 2 diabetes (T2DM) has emerged. This international web-based survey aimed to evaluate opinions of physicians about tailored therapeutic algorithms developed by the Italian Association of Diabetologists (AMD) and available online, and to get suggestions for future developments. Another aim of this initiative was to assess whether the online advertising and the survey would have increased the global visibility of the AMD algorithms. Research design and methods The web-based survey, which comprised five questions, has been available from the homepage of the web-version of the journal Diabetes Care throughout the month of December 2013, and on the AMD website between December 2013 and September 2014. Participation was totally free and responders were anonymous. Results Overall, 452 physicians (M=58.4%) participated in the survey. Diabetologists accounted for 76.8% of responders. The results of the survey show wide agreement (>90%) by participants on the utility of the algorithms proposed, even if they do not cover all possible needs of patients with T2DM for a personalized therapeutic approach. In the online survey period and in the months after its conclusion, a relevant and durable increase in the number of unique users who visited the websites was registered, compared to the period preceding the survey. Conclusions Patients with T2DM are heterogeneous, and there is interest toward accessible and easy to use personalized therapeutic algorithms. Responders opinions probably reflect the peculiar organization of diabetes care in each country. PMID:26301097
Interpretation of high-dimensional numerical results for the Anderson transition
Suslov, I. M.
2014-12-15
The existence of the upper critical dimension d{sub c2} = 4 for the Anderson transition is a rigorous consequence of the Bogoliubov theorem on renormalizability of φ{sup 4} theory. For d ≥ 4 dimensions, one-parameter scaling does not hold and all existent numerical data should be reinterpreted. These data are exhausted by the results for d = 4, 5 from scaling in quasi-one-dimensional systems and the results for d = 4, 5, 6 from level statistics. All these data are compatible with the theoretical scaling dependences obtained from Vollhardt and Wolfle’s self-consistent theory of localization. The widespread viewpoint that d{sub c2} = ∞ is critically discussed.
Chaoticity threshold in magnetized plasmas: Numerical results in the weak coupling regime
Carati, A. Benfenati, F.; Maiocchi, A.; Galgani, L.; Zuin, M.
2014-03-15
The present paper is a numerical counterpart to the theoretical work [Carati et al., Chaos 22, 033124 (2012)]. We are concerned with the transition from order to chaos in a one-component plasma (a system of point electrons with mutual Coulomb interactions, in a uniform neutralizing background), the plasma being immersed in a uniform stationary magnetic field. In the paper [Carati et al., Chaos 22, 033124 (2012)], it was predicted that a transition should take place when the electron density is increased or the field decreased in such a way that the ratio ω{sub p}/ω{sub c} between plasma and cyclotron frequencies becomes of order 1, irrespective of the value of the so-called Coulomb coupling parameter Γ. Here, we perform numerical computations for a first principles model of N point electrons in a periodic box, with mutual Coulomb interactions, using as a probe for chaoticity the time-autocorrelation function of magnetization. We consider two values of Γ (0.04 and 0.016) in the weak coupling regime Γ ≪ 1, with N up to 512. A transition is found to occur for ω{sub p}/ω{sub c} in the range between 0.25 and 2, in fairly good agreement with the theoretical prediction. These results might be of interest for the problem of the breakdown of plasma confinement in fusion machines.
Verification of Numerical Weather Prediction Model Results for Energy Applications in Latvia
NASA Astrophysics Data System (ADS)
Sīle, Tija; Cepite-Frisfelde, Daiga; Sennikovs, Juris; Bethers, Uldis
2014-05-01
A resolution to increase the production and consumption of renewable energy has been made by EU governments. Most of the renewable energy in Latvia is produced by Hydroelectric Power Plants (HPP), followed by bio-gas, wind power and bio-mass energy production. Wind and HPP power production is sensitive to meteorological conditions. Currently the basis of weather forecasting is Numerical Weather Prediction (NWP) models. There are numerous methodologies concerning the evaluation of quality of NWP results (Wilks 2011) and their application can be conditional on the forecast end user. The goal of this study is to evaluate the performance of Weather Research and Forecast model (Skamarock 2008) implementation over the territory of Latvia, focusing on forecasting of wind speed and quantitative precipitation forecasts. The target spatial resolution is 3 km. Observational data from Latvian Environment, Geology and Meteorology Centre are used. A number of standard verification metrics are calculated. The sensitivity to the model output interpretation (output spatial interpolation versus nearest gridpoint) is investigated. For the precipitation verification the dichotomous verification metrics are used. Sensitivity to different precipitation accumulation intervals is examined. Skamarock, William C. and Klemp, Joseph B. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. Journal of Computational Physics. 227, 2008, pp. 3465-3485. Wilks, Daniel S. Statistical Methods in the Atmospheric Sciences. Third Edition. Academic Press, 2011.
Orion Guidance and Control Ascent Abort Algorithm Design and Performance Results
NASA Technical Reports Server (NTRS)
Proud, Ryan W.; Bendle, John R.; Tedesco, Mark B.; Hart, Jeremy J.
2009-01-01
During the ascent flight phase of NASA s Constellation Program, the Ares launch vehicle propels the Orion crew vehicle to an agreed to insertion target. If a failure occurs at any point in time during ascent then a system must be in place to abort the mission and return the crew to a safe landing with a high probability of success. To achieve continuous abort coverage one of two sets of effectors is used. Either the Launch Abort System (LAS), consisting of the Attitude Control Motor (ACM) and the Abort Motor (AM), or the Service Module (SM), consisting of SM Orion Main Engine (OME), Auxiliary (Aux) Jets, and Reaction Control System (RCS) jets, is used. The LAS effectors are used for aborts from liftoff through the first 30 seconds of second stage flight. The SM effectors are used from that point through Main Engine Cutoff (MECO). There are two distinct sets of Guidance and Control (G&C) algorithms that are designed to maximize the performance of these abort effectors. This paper will outline the necessary inputs to the G&C subsystem, the preliminary design of the G&C algorithms, the ability of the algorithms to predict what abort modes are achievable, and the resulting success of the abort system. Abort success will be measured against the Preliminary Design Review (PDR) abort performance metrics and overall performance will be reported. Finally, potential improvements to the G&C design will be discussed.
A new algorithm and results of ionospheric delay correction for satellite-based augmentation system
NASA Astrophysics Data System (ADS)
Huang, Z.; Yuan, H.
Ionospheric delay resulted from radio signals traveling ionosphere is the largest source of errors for single-frequency users of the Global Positioning System GPS In order to improve users position accuracy augmentation systems based on satellite have been developed to provide accurate calibration since the nineties A famous one is Wide Area Augmentation System WAAS which is aimed to the efficiency of navigation over the conterminous United States and has been operating successfully so far The main idea of ionospheric correction algorithm for WAAS is to establish ionospheric grid model i e ionosphere is discretized into a set of regularly-spaced intervals in latitude and longitude at an altitude of 350km above the earth surface The users calculate their pseudoranges by interpolating estimates of vertical ionospheric delay modeled at ionospheric grid points The Chinese crust deformation monitoring network has been established since the eighties and now it is in good operation with 25 permanent GPS stations which provide feasibility to construct similar satellite-based augmentation system SBAS in China For the west region of China the distribution of stations is relatively sparse not to ensure sufficient data If we follow the ionospheric grid correction algorithm some grid points can t obtain their estimate and lost availability Consequently ionospheric correction measurement on the users situated in that region is inestimable which constitute a fatal threat to navigation users In this paper we presented a new algorithm that
NASA Technical Reports Server (NTRS)
Markham, B. L.; Halthore, R. N.; Goetz, S. J.
1992-01-01
Visible to shortwave infrared radiometric data collected by a number of remote sensing instruments on aircraft and satellite platforms were compared over common areas in the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) site on August 4, 1989, to assess their radiometric consistency and the adequacy of atmospheric correction algorithms. The instruments in the study included the Landsat 5 Thematic Mapper (TM), the SPOT 1 high-resolution visible (HRV) 1 sensor, the NS001 Thematic Mapper simulator, and the modular multispectral radiometers (MMRs). Atmospheric correction routines analyzed were an algorithm developed for FIFE, LOWTRAN 7, and 5S. A comparison between corresponding bands of the SPOT 1 HRV 1 and the Landsat 5 TM sensors indicated that the two instruments were radiometrically consistent to within about 5 percent. Retrieved surface reflectance factors using the FIFE algorithm over one site under clear atmospheric conditions indicated a capability to determine near-nadir surface reflectance factors to within about 0.01 at a reflectance of 0.06 in the visible (0.4-0.7 microns) and about 0.30 in the near infrared (0.7-1.2 microns) for all but the NS001 sensor. All three atmospheric correction procedures produced absolute reflectances to within 0.005 in the visible and near infrared. In the shortwave infrared (1.2-2.5 microns) region the three algorithms differed in the retrieved surface reflectances primarily owing to differences in predicted gaseous absorption. Although uncertainties in the measured surface reflectance in the shortwave infrared precluded definitive results, the 5S code appeared to predict gaseous transmission marginally more accurately than LOWTRAN 7.
NASA Astrophysics Data System (ADS)
Markham, B. L.; Halthore, R. N.; Goetz, S. J.
1992-11-01
Visible to shortwave infrared radiometric data collected by a number of remote sensing instruments on aircraft and satellite platforms were compared over common areas in the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) site on August 4, 1989, to assess their radiometric consistency and the adequacy of atmospheric correction algorithms. The instruments in the study included the Landsat 5 thematic mapper (TM), the SPOT 1 high-resolution visible (HRV) 1 sensor, the NS001 thematic mapper simulator, and the modular multispectral radiometers (MMRs). Atmospheric correction routines analyzed were an algorithm developed for FIFE, LOWTRAN 7, and 5S. A comparison between corresponding bands of the SPOT 1 HRV 1 and the Landsat 5 TM sensors indicated that the two instruments were radiometrically consistent to within about 5%. Retrieved surface reflectance factors using the FIFE algorithm over one site under clear atmospheric conditions indicated a capability to determine near-nadir surface reflectance factors to within about 0.01 at a reflectance of 0.06 in the visible (0.4-0.7 μm) and about 0.30 in the near infrared (0.7-1.2 μm) for all but the NS001 sensor. All three atmospheric correction procedures produced absolute reflectances to within 0.005 in the visible and near infrared. In the shortwave infrared (1.2-2.5 μm) region the three algorithms differed in the retrieved surface reflectances primarily owing to differences in predicted gaseous absorption. Although uncertainties in the measured surface reflectance in the shortwave infrared precluded definitive results, the 5S code appeared to predict gaseous transmission marginally more accurately than LOWTRAN 7.
Numerical results for near surface time domain electromagnetic exploration: a full waveform approach
NASA Astrophysics Data System (ADS)
Sun, H.; Li, K.; Li, X., Sr.; Liu, Y., Sr.; Wen, J., Sr.
2015-12-01
Time domain or Transient electromagnetic (TEM) survey including types with airborne, semi-airborne and ground play important roles in applicants such as geological surveys, ground water/aquifer assess [Meju et al., 2000; Cox et al., 2010], metal ore exploration [Yang and Oldenburg, 2012], prediction of water bearing structures in tunnels [Xue et al., 2007; Sun et al., 2012], UXO exploration [Pasion et al., 2007; Gasperikova et al., 2009] etc. The common practice is introducing a current into a transmitting (Tx) loop and acquire the induced electromagnetic field after the current is cut off [Zhdanov and Keller, 1994]. The current waveforms are different depending on instruments. Rectangle is the most widely used excitation current source especially in ground TEM. Triangle and half sine are commonly used in airborne and semi-airborne TEM investigation. In most instruments, only the off time responses are acquired and used in later analysis and data inversion. Very few airborne instruments acquire the on time and off time responses together. Although these systems acquire the on time data, they usually do not use them in the interpretation.This abstract shows a novel full waveform time domain electromagnetic method and our recent modeling results. The benefits comes from our new algorithm in modeling full waveform time domain electromagnetic problems. We introduced the current density into the Maxwell's equation as the transmitting source. This approach allows arbitrary waveforms, such as triangle, half-sine, trapezoidal waves or scatter record from equipment, being used in modeling. Here, we simulate the establishing and induced diffusion process of the electromagnetic field in the earth. The traditional time domain electromagnetic with pure secondary fields can also be extracted from our modeling results. The real time responses excited by a loop source can be calculated using the algorithm. We analyze the full time gates responses of homogeneous half space and two
Barbati, Alexander C; Kirby, Brian J
2016-07-01
We derive an approximate analytical representation of the conductivity for a 1D system with porous and charged layers grafted onto parallel plates. Our theory improves on prior work by developing approximate analytical expressions applicable over an arbitrary range of potentials, both large and small as compared to the thermal voltage (RTF). Further, we describe these results in a framework of simplifying nondimensional parameters, indicating the relative dominance of various physicochemical processes. We demonstrate the efficacy of our approximate expression with comparisons to numerical representations of the exact analytical conductivity. Finally, we utilize this conductivity expression, in concert with other components of the electrokinetic coupling matrix, to describe the streaming potential and electroviscous effect in systems with porous and charged layers.
Interacting steps with finite-range interactions: Analytical approximation and numerical results
NASA Astrophysics Data System (ADS)
Jaramillo, Diego Felipe; Téllez, Gabriel; González, Diego Luis; Einstein, T. L.
2013-05-01
We calculate an analytical expression for the terrace-width distribution P(s) for an interacting step system with nearest- and next-nearest-neighbor interactions. Our model is derived by mapping the step system onto a statistically equivalent one-dimensional system of classical particles. The validity of the model is tested with several numerical simulations and experimental results. We explore the effect of the range of interactions q on the functional form of the terrace-width distribution and pair correlation functions. For physically plausible interactions, we find modest changes when next-nearest neighbor interactions are included and generally negligible changes when more distant interactions are allowed. We discuss methods for extracting from simulated experimental data the characteristic scale-setting terms in assumed potential forms.
Solar flare model: Comparison of the results of numerical simulations and observations
NASA Astrophysics Data System (ADS)
Podgorny, I. M.; Vashenyuk, E. V.; Podgorny, A. I.
2009-12-01
The electrodynamic flare model is based on numerical 3D simulations with the real magnetic field of an active region. An energy of ˜1032 erg necessary for a solar flare is shown to accumulate in the magnetic field of a coronal current sheet. The thermal X-ray source in the corona results from plasma heating in the current sheet upon reconnection. The hard X-ray sources are located on the solar surface at the loop foot-points. They are produced by the precipitation of electron beams accelerated in field-aligned currents. Solar cosmic rays appear upon acceleration in the electric field along a singular magnetic X-type line. The generation mechanism of the delayed cosmic-ray component is also discussed.
NASA Astrophysics Data System (ADS)
Xu, Hengyi; Heinzel, T.; Zozoulenko, I. V.
2011-09-01
We derive analytical expressions for the conductivity of bilayer graphene (BLG) using the Boltzmann approach within the the Born approximation for a model of Gaussian disorders describing both short- and long-range impurity scattering. The range of validity of the Born approximation is established by comparing the analytical results to exact tight-binding numerical calculations. A comparison of the obtained density dependencies of the conductivity with experimental data shows that the BLG samples investigated experimentally so far are in the quantum scattering regime where the Fermi wavelength exceeds the effective impurity range. In this regime both short- and long-range scattering lead to the same linear density dependence of the conductivity. Our calculations imply that bilayer and single-layer graphene have the same scattering mechanisms. We also provide an upper limit for the effective, density-dependent spatial extension of the scatterers present in the experiments.
NASA Astrophysics Data System (ADS)
Milošević, M.; Dimitrijević, D. D.; Djordjević, G. S.; Stojanović, M. D.
2016-06-01
The role tachyon fields may play in evolution of early universe is discussed in this paper. We consider the evolution of a flat and homogeneous universe governed by a tachyon scalar field with the DBI-type action and calculate the slow-roll parameters of inflation, scalar spectral index (n), and tensor-scalar ratio (r) for the given potentials. We pay special attention to the inverse power potential, first of all to V(x)˜ x^{-4}, and compare the available results obtained by analytical and numerical methods with those obtained by observation. It is shown that the computed values of the observational parameters and the observed ones are in a good agreement for the high values of the constant X_0. The possibility that influence of the radion field can extend a range of the acceptable values of the constant X_0 to the string theory motivated sector of its values is briefly considered.
NASA Technical Reports Server (NTRS)
Cooke, C. H.
1976-01-01
An iterative method for numerically solving the time independent Navier-Stokes equations for viscous compressible flows is presented. The method is based upon partial application of the Gauss-Seidel principle in block form to the systems of nonlinear algebraic equations which arise in construction of finite element (Galerkin) models approximating solutions of fluid dynamic problems. The C deg-cubic element on triangles is employed for function approximation. Computational results for a free shear flow at Re = 1,000 indicate significant achievement of economy in iterative convergence rate over finite element and finite difference models which employ the customary time dependent equations and asymptotic time marching procedure to steady solution. Numerical results are in excellent agreement with those obtained for the same test problem employing time marching finite element and finite difference solution techniques.
ERIC Educational Resources Information Center
Henle, James M.
This pamphlet consists of 17 brief chapters, each containing a discussion of a numeration system and a set of problems on the use of that system. The numeration systems used include Egyptian fractions, ordinary continued fractions and variants of that method, and systems using positive and negative bases. The book is informal and addressed to…
Sheng, I. C.; Kuan, C. K.; Chen, Y. T.; Yang, J. Y.; Hsiung, G. Y.; Chen, J. R.
2010-06-23
The pressure distribution is an important aspect of a UHV subsystem in either a storage ring or a front end. The design of the 3-GeV, 400-mA Taiwan Photon Source (TPS) foresees outgassing induced by photons and due to a bending magnet and an insertion device. An algorithm to calculate the photon-stimulated absorption (PSD) due to highly energetic radiation from a synchrotron source is presented. Several results using undulator sources such as IU20 are also presented, and the pressure distribution is illustrated.
NASA Astrophysics Data System (ADS)
Sprenger, Lisa; Lange, Adrian; Odenbach, Stefan
2014-02-01
Ferrofluids consist of magnetic nanoparticles dispersed in a carrier liquid. Their strong thermodiffusive behaviour, characterised by the Soret coefficient, coupled with the dependency of the fluid's parameters on magnetic fields is dealt with in this work. It is known from former experimental investigations on the one hand that the Soret coefficient itself is magnetic field dependent and on the other hand that the accuracy of the coefficient's experimental determination highly depends on the volume concentration of the fluid. The thermally driven separation of particles and carrier liquid is carried out with a concentrated ferrofluid (φ = 0.087) in a horizontal thermodiffusion cell and is compared to equally detected former measurement data. The temperature gradient (1 K/mm) is applied perpendicular to the separation layer. The magnetic field is either applied parallel or perpendicular to the temperature difference. For three different magnetic field strengths (40 kA/m, 100 kA/m, 320 kA/m) the diffusive separation is detected. It reveals a sign change of the Soret coefficient with rising field strength for both field directions which stands for a change in the direction of motion of the particles. This behaviour contradicts former experimental results with a dilute magnetic fluid, in which a change in the coefficient's sign could only be detected for the parallel setup. An anisotropic behaviour in the current data is measured referring to the intensity of the separation being more intense in the perpendicular position of the magnetic field: ST‖ = -0.152 K-1 and ST⊥ = -0.257 K-1 at H = 320 kA/m. The ferrofluiddynamics-theory (FFD-theory) describes the thermodiffusive processes thermodynamically and a numerical simulation of the fluid's separation depending on the two transport parameters ξ‖ and ξ⊥ used within the FFD-theory can be implemented. In the case of a parallel aligned magnetic field, the parameter can be determined to ξ‖ = {2.8; 9.1; 11.2}
Lima da Silva, M.; Sauvage, E.; Brun, P.; Gagnoud, A.; Fautrelle, Y.; Riva, R.
2013-07-01
The process of vitrification in a cold crucible heated by direct induction is used in the fusion of oxides. Its feature is the production of high-purity materials. The high-level of purity of the molten is achieved because this melting technique excludes the contamination of the charge by the crucible. The aim of the present paper is to analyze the hydrodynamic of the vitrification process by direct induction, with the focus in the effects associated with the interaction between the mechanical stirrer and bubbling. Considering the complexity of the analyzed system and the goal of the present work, we simplified the system by not taking into account the thermal and electromagnetic phenomena. Based in the concept of hydraulic similitude, we performed an experimental study and a numerical modeling of the simplified model. The results of these two studies were compared and showed a good agreement. The results presented in this paper in conjunction with the previous work contribute to a better understanding of the hydrodynamics effects resulting from the interaction between the mechanical stirrer and air bubbling in the cold crucible heated by direct induction. Further works will take into account thermal and electromagnetic phenomena in the presence of mechanical stirrer and air bubbling. (authors)
NASA Astrophysics Data System (ADS)
Saito, Kyosuke; Tanabe, Tadao; Oyama, Yutaka
2016-04-01
We have presented a numerical analysis to describe the behavior of a second harmonic generation (SHG) in THz regime by taking into account for both linear and nonlinear optical susceptibility. We employed a nonlinear finite-difference-time-domain (nonlinear FDTD) method to simulate SHG output characteristics in THz photonic crystal waveguide based on semi insulating gallium phosphide crystal. Unique phase matching conditions originated from photonic band dispersions with low group velocity are appeared, resulting in SHG output characteristics. This numerical study provides spectral information of SHG output in THz PC waveguide. THz PC waveguides is one of the active nonlinear optical devices in THz regime, and nonlinear FDTD method is a powerful tool to design photonic nonlinear THz devices.
Potential for false positive HIV test results with the serial rapid HIV testing algorithm
2012-01-01
Background Rapid HIV tests provide same-day results and are widely used in HIV testing programs in areas with limited personnel and laboratory infrastructure. The Uganda Ministry of Health currently recommends the serial rapid testing algorithm with Determine, STAT-PAK, and Uni-Gold for diagnosis of HIV infection. Using this algorithm, individuals who test positive on Determine, negative to STAT-PAK and positive to Uni-Gold are reported as HIV positive. We conducted further testing on this subgroup of samples using qualitative DNA PCR to assess the potential for false positive tests in this situation. Results Of the 3388 individuals who were tested, 984 were HIV positive on two consecutive tests, and 29 were considered positive by a tiebreaker (positive on Determine, negative on STAT-PAK, and positive on Uni-Gold). However, when the 29 samples were further tested using qualitative DNA PCR, 14 (48.2%) were HIV negative. Conclusion Although this study was not primarily designed to assess the validity of rapid HIV tests and thus only a subset of the samples were retested, the findings show a potential for false positive HIV results in the subset of individuals who test positive when a tiebreaker test is used in serial testing. These findings highlight a need for confirmatory testing for this category of individuals. PMID:22429706
NASA Astrophysics Data System (ADS)
Dimitropoulos, Costas D.; Beris, Antony N.; Sureshkumar, R.; Handler, Robert A.
1998-11-01
This work continues our attempts to elucidate theoretically the mechanism of polymer-induced drag reduction through direct numerical simulations of turbulent channel flow, using an independently evaluated rheological model for the polymer stress. Using appropriate scaling to accommodate effects due to viscoelasticity reveals that there exists a great consistency in the results for different combinations of the polymer concentration and chain extension. This helps demonstrate that our obervations are applicable to very dilute systems, currently not possible to simulate. It also reinforces the hypothesis that one of the prerequisites for the phenomenon of drag reduction is sufficiently enhanced extensional viscosity, corresponding to the level of intensity and duration of extensional rates typically encountered during the turbulent flow. Moreover, these results motivate a study of the turbulence structure at larger Reynolds numbers and for different periodic computational cell sizes. In addition, the Reynolds stress budgets demonstrate that flow elasticity adversely affects the activities represented by the pressure-strain correlations, leading to a redistribution of turbulent kinetic energy amongst all directions. Finally, we discuss the influence of viscoelasticity in reducing the production of streamwise vorticity.
Results from CrIS/ATMS Obtained Using an AIRS "Version-6 like" Retrieval Algorithm
NASA Technical Reports Server (NTRS)
Susskind, Joel; Kouvaris, Louis; Iredell, Lena
2015-01-01
We tested and evaluated Version-6.22 AIRS and Version-6.22 CrIS products on a single day, December 4, 2013, and compared results to those derived using AIRS Version-6. AIRS and CrIS Version-6.22 O3(p) and q(p) products are both superior to those of AIRS Version-6All AIRS and CrIS products agree reasonably well with each other. CrIS Version-6.22 T(p) and q(p) results are slightly poorer than AIRS over land, especially under very cloudy conditions. Both AIRS and CrIS Version-6.22 run now at JPL. Our short term plans are to analyze many common months at JPL in the near future using Version-6.22 or a further improved algorithm to assess the compatibility of AIRS and CrIS monthly mean products and their interannual differences. Updates to the calibration of both CrIS and ATMS are still being finalized. JPL plans, in collaboration with the Goddard DISC, to reprocess all AIRS data using a still to be finalized Version-7 retrieval algorithm, and to reprocess all recalibrated CrISATMS data using Version-7 as well.
Results from CrIS/ATMS Obtained Using an AIRS "Version-6 Like" Retrieval Algorithm
NASA Technical Reports Server (NTRS)
Susskind, Joel; Kouvaris, Louis; Iredell, Lena
2015-01-01
We have tested and evaluated Version-6.22 AIRS and Version-6.22 CrIS products on a single day, December 4, 2013, and compared results to those derived using AIRS Version-6. AIRS and CrIS Version-6.22 O3(p) and q(p) products are both superior to those of AIRS Version-6All AIRS and CrIS products agree reasonably well with each other CrIS Version-6.22 T(p) and q(p) results are slightly poorer than AIRS under very cloudy conditions. Both AIRS and CrIS Version-6.22 run now at JPL. Our short term plans are to analyze many common months at JPL in the near future using Version-6.22 or a further improved algorithm to assess the compatibility of AIRS and CrIS monthly mean products and their interannual differencesUpdates to the calibration of both CrIS and ATMS are still being finalized. JPL plans, in collaboration with the Goddard DISC, to reprocess all AIRS data using a still to be finalized Version-7 retrieval algorithm, and to reprocess all recalibrated CrISATMS data using Version-7 as well.
NASA Astrophysics Data System (ADS)
Williams, Arnold C.; Pachowicz, Peter W.
2004-09-01
Current mine detection research indicates that no single sensor or single look from a sensor will detect mines/minefields in a real-time manner at a performance level suitable for a forward maneuver unit. Hence, the integrated development of detectors and fusion algorithms are of primary importance. A problem in this development process has been the evaluation of these algorithms with relatively small data sets, leading to anecdotal and frequently over trained results. These anecdotal results are often unreliable and conflicting among various sensors and algorithms. Consequently, the physical phenomena that ought to be exploited and the performance benefits of this exploitation are often ambiguous. The Army RDECOM CERDEC Night Vision Laboratory and Electron Sensors Directorate has collected large amounts of multisensor data such that statistically significant evaluations of detection and fusion algorithms can be obtained. Even with these large data sets care must be taken in algorithm design and data processing to achieve statistically significant performance results for combined detectors and fusion algorithms. This paper discusses statistically significant detection and combined multilook fusion results for the Ellipse Detector (ED) and the Piecewise Level Fusion Algorithm (PLFA). These statistically significant performance results are characterized by ROC curves that have been obtained through processing this multilook data for the high resolution SAR data of the Veridian X-Band radar. We discuss the implications of these results on mine detection and the importance of statistical significance, sample size, ground truth, and algorithm design in performance evaluation.
NASA Astrophysics Data System (ADS)
Beniaiche, Ahmed; Ghenaiet, Adel; Carcasci, Carlo; Facchini, Bruno
2016-05-01
This paper presents a numerical validation of the aero-thermal study of a 30:1 scaled model reproducing an innovative trailing edge with one row of enlarged pedestals under stationary and rotating conditions. A CFD analysis was performed by means of commercial ANSYS-Fluent modeling the isothermal air flow and using k-ω SST turbulence model and an isothermal air flow for both static and rotating conditions (Ro up to 0.23). The used numerical model is validated first by comparing the numerical velocity profiles distribution results to those obtained experimentally by means of PIV technique for Re = 20,000 and Ro = 0-0.23. The second validation is based on the comparison of the numerical results of the 2D HTC maps over the heated plate to those of TLC experimental data, for a smooth surface for a Reynolds number = 20,000 and 40,000 and Ro = 0-0.23. Two-tip conditions were considered: open tip and closed tip conditions. Results of the average Nusselt number inside the pedestal ducts region are presented too. The obtained results help to predict the flow field visualization and the evaluation of the aero-thermal performance of the studied blade cooling system during the design step.
Liberatore, S.; Jaouen, S.; Tabakhoff, E.; Canaud, B.
2009-04-15
Magnetic Rayleigh-Taylor instability is addressed in compressible hydrostatic media. A full model is presented and compared to numerical results from a linear perturbation code. A perfect agreement between both approaches is obtained in a wide range of parameters. Compressibility effects are examined and substantial deviations from classical Chandrasekhar growth rates are obtained and confirmed by the model and the numerical calculations.
Kurihara, M.; Sato, A.; Funatsu, K.; Ouchi, H.; Masuda, Y.; Narita, H.; Collett, T.S.
2011-01-01
Targeting the methane hydrate (MH) bearing units C and D at the Mount Elbert prospect on the Alaska North Slope, four MDT (Modular Dynamic Formation Tester) tests were conducted in February 2007. The C2 MDT test was selected for history matching simulation in the MH Simulator Code Comparison Study. Through history matching simulation, the physical and chemical properties of the unit C were adjusted, which suggested the most likely reservoir properties of this unit. Based on these properties thus tuned, the numerical models replicating "Mount Elbert C2 zone like reservoir" "PBU L-Pad like reservoir" and "PBU L-Pad down dip like reservoir" were constructed. The long term production performances of wells in these reservoirs were then forecasted assuming the MH dissociation and production by the methods of depressurization, combination of depressurization and wellbore heating, and hot water huff and puff. The predicted cumulative gas production ranges from 2.16??106m3/well to 8.22??108m3/well depending mainly on the initial temperature of the reservoir and on the production method.This paper describes the details of modeling and history matching simulation. This paper also presents the results of the examinations on the effects of reservoir properties on MH dissociation and production performances under the application of the depressurization and thermal methods. ?? 2010 Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Klapp, J.; Cervantes-Cota, J.; Chauvet, P.
1990-11-01
RESUMEN. A nivel cosmol6gico pensamos que se ha estado prodticiendo radiaci6n gravitacional en cantidades considerables dentro de las galaxias. Si los eventos prodnctores de radiaci6n gravitatoria han venido ocurriendo desde Ia epoca de Ia formaci6n de las galaxias, cuando menos, sus efectos cosmol6gicos pueden ser tomados en cuenta con simplicidad y elegancia al representar la producci6n de radiaci6n y, por consiguiente, su interacci6n con materia ordinaria fenomenol6gicamente a trave's de una ecuaci6n de estado politr6pica, como lo hemos mostrado en otros trabajos. Presentamos en este articulo resultados nunericos de este modelo. ABSTRACT A common believe in cosmology is that gravitational radiation in considerable quantities is being produced within the galaxies. Ifgravitational radiation production has been running since the galaxy formation epoch, at least, its cosmological effects can be assesed with simplicity and elegance by representing the production of radiation and, therefore, its interaction with ordinary matter phenomenologically through a polytropic equation of state as shown already elsewhere. We present in this paper the numerical results of such a model. K words: COSMOLOGY - GRAVITATION
NASA Astrophysics Data System (ADS)
Gorczyk, W.; Vogt, K.; Gerya, T.; Hobbs, B. E.
2012-12-01
It is becoming increasingly apparent that intense deformation, metamorphism and metasomatism occur within continental cratonic blocks far removed form subducting margins Such changes may occur intra-cratonically arising from lithospheric thickening and the development of gravitational instabilities, but mostly occur at the boundary of cratonic blocks. The contact of two cratons is characterized by rheological lateral variations within mantle-lithosphere and overlying crust. Tectonic stresses acting on craton/craton boundaries may lead to thinning or thickening due to delamination of the mantle lithosphere. This is reflected in tectonic deformation, topography evolution, melting and crustal metamorphism. To understand the controls on these processes a number of 2D, coupled petrological thermo-mechanical numerical experiments has been performed to test the response of a laterally weakened zone to a compressional regime. The results indicate that the presence of water-bearing minerals in the lithosphere and lower crust is essential to initiate melting, which in the later stages may expand to dry melting of crust and mantle. In the case of anhydrous crust and lithosphere, no melting occurs. Thus a variety of instabilities, melting behaviour and topographic responses occurs at the base of the lithosphere as well as intensive faulting and buckling in the crust dependent on the strength and "water" content of the lithosphere.
Mars Entry Atmospheric Data System Trajectory Reconstruction Algorithms and Flight Results
NASA Technical Reports Server (NTRS)
Karlgaard, Christopher D.; Kutty, Prasad; Schoenenberger, Mark; Shidner, Jeremy; Munk, Michelle
2013-01-01
The Mars Entry Atmospheric Data System is a part of the Mars Science Laboratory, Entry, Descent, and Landing Instrumentation project. These sensors are a system of seven pressure transducers linked to ports on the entry vehicle forebody to record the pressure distribution during atmospheric entry. These measured surface pressures are used to generate estimates of atmospheric quantities based on modeled surface pressure distributions. Specifically, angle of attack, angle of sideslip, dynamic pressure, Mach number, and freestream atmospheric properties are reconstructed from the measured pressures. Such data allows for the aerodynamics to become decoupled from the assumed atmospheric properties, allowing for enhanced trajectory reconstruction and performance analysis as well as an aerodynamic reconstruction, which has not been possible in past Mars entry reconstructions. This paper provides details of the data processing algorithms that are utilized for this purpose. The data processing algorithms include two approaches that have commonly been utilized in past planetary entry trajectory reconstruction, and a new approach for this application that makes use of the pressure measurements. The paper describes assessments of data quality and preprocessing, and results of the flight data reduction from atmospheric entry, which occurred on August 5th, 2012.
Sprenger, Lisa Lange, Adrian; Odenbach, Stefan
2014-02-15
Ferrofluids consist of magnetic nanoparticles dispersed in a carrier liquid. Their strong thermodiffusive behaviour, characterised by the Soret coefficient, coupled with the dependency of the fluid's parameters on magnetic fields is dealt with in this work. It is known from former experimental investigations on the one hand that the Soret coefficient itself is magnetic field dependent and on the other hand that the accuracy of the coefficient's experimental determination highly depends on the volume concentration of the fluid. The thermally driven separation of particles and carrier liquid is carried out with a concentrated ferrofluid (φ = 0.087) in a horizontal thermodiffusion cell and is compared to equally detected former measurement data. The temperature gradient (1 K/mm) is applied perpendicular to the separation layer. The magnetic field is either applied parallel or perpendicular to the temperature difference. For three different magnetic field strengths (40 kA/m, 100 kA/m, 320 kA/m) the diffusive separation is detected. It reveals a sign change of the Soret coefficient with rising field strength for both field directions which stands for a change in the direction of motion of the particles. This behaviour contradicts former experimental results with a dilute magnetic fluid, in which a change in the coefficient's sign could only be detected for the parallel setup. An anisotropic behaviour in the current data is measured referring to the intensity of the separation being more intense in the perpendicular position of the magnetic field: S{sub T‖} = −0.152 K{sup −1} and S{sub T⊥} = −0.257 K{sup −1} at H = 320 kA/m. The ferrofluiddynamics-theory (FFD-theory) describes the thermodiffusive processes thermodynamically and a numerical simulation of the fluid's separation depending on the two transport parameters ξ{sub ‖} and ξ{sub ⊥} used within the FFD-theory can be implemented. In the case of a parallel aligned magnetic field, the parameter can
Viola, Francesco; Coe, Ryan L; Owen, Kevin; Guenther, Drake A; Walker, William F
2008-12-01
Image registration and motion estimation play central roles in many fields, including RADAR, SONAR, light microscopy, and medical imaging. Because of its central significance, estimator accuracy, precision, and computational cost are of critical importance. We have previously presented a highly accurate, spline-based time delay estimator that directly determines sub-sample time delay estimates from sampled data. The algorithm uses cubic splines to produce a continuous representation of a reference signal and then computes an analytical matching function between this reference and a delayed signal. The location of the minima of this function yields estimates of the time delay. In this paper we describe the MUlti-dimensional Spline-based Estimator (MUSE) that allows accurate and precise estimation of multi-dimensional displacements/strain components from multi-dimensional data sets. We describe the mathematical formulation for two- and three-dimensional motion/strain estimation and present simulation results to assess the intrinsic bias and standard deviation of this algorithm and compare it to currently available multi-dimensional estimators. In 1000 noise-free simulations of ultrasound data we found that 2D MUSE exhibits maximum bias of 2.6 x 10(-4) samples in range and 2.2 x 10(-3) samples in azimuth (corresponding to 4.8 and 297 nm, respectively). The maximum simulated standard deviation of estimates in both dimensions was comparable at roughly 2.8 x 10(-3) samples (corresponding to 54 nm axially and 378 nm laterally). These results are between two and three orders of magnitude better than currently used 2D tracking methods. Simulation of performance in 3D yielded similar results to those observed in 2D. We also present experimental results obtained using 2D MUSE on data acquired by an Ultrasonix Sonix RP imaging system with an L14-5/38 linear array transducer operating at 6.6 MHz. While our validation of the algorithm was performed using ultrasound data, MUSE is
NASA Astrophysics Data System (ADS)
Chan, P. W.
2009-03-01
The Hong Kong International Airport (HKIA) is situated in an area of complex terrain. Turbulent flow due to terrain disruption could occur in the vicinity of HKIA when winds from east to southwest climb over Lantau Island, a mountainous island to the south of the airport. Low-level turbulence is an aviation hazard to the aircraft flying into and out of HKIA. It is closely monitored using remote-sensing instruments including Doppler LIght Detection And Ranging (LIDAR) systems and wind profilers in the airport area. Forecasting of low-level turbulence by numerical weather prediction models would be useful in the provision of timely turbulence warnings to the pilots. The feasibility of forecasting eddy dissipation rate (EDR), a measure of turbulence intensity adopted in the international civil aviation community, is studied in this paper using the Regional Atmospheric Modelling System (RAMS). Super-high resolution simulation (within the regime of large eddy simulation) is performed with a horizontal grid size down to 50 m for some typical cases of turbulent airflow at HKIA, such as spring-time easterly winds in a stable boundary layer and gale-force southeasterly winds associated with a typhoon. Sensitivity of the simulation results with respect to the choice of turbulent kinetic energy (TKE) parameterization scheme in RAMS is also examined. RAMS simulation with Deardorff (1980) TKE scheme is found to give the best result in comparison with actual EDR observations. It has the potential for real-time forecasting of low-level turbulence in short-term aviation applications (viz. for the next several hours).
A Hydrodynamic Theory for Spatially Inhomogeneous Semiconductor Lasers. 2; Numerical Results
NASA Technical Reports Server (NTRS)
Li, Jianzhong; Ning, C. Z.; Biegel, Bryan A. (Technical Monitor)
2001-01-01
We present numerical results of the diffusion coefficients (DCs) in the coupled diffusion model derived in the preceding paper for a semiconductor quantum well. These include self and mutual DCs in the general two-component case, as well as density- and temperature-related DCs under the single-component approximation. The results are analyzed from the viewpoint of free Fermi gas theory with many-body effects incorporated. We discuss in detail the dependence of these DCs on densities and temperatures in order to identify different roles played by the free carrier contributions including carrier statistics and carrier-LO phonon scattering, and many-body corrections including bandgap renormalization and electron-hole (e-h) scattering. In the general two-component case, it is found that the self- and mutual- diffusion coefficients are determined mainly by the free carrier contributions, but with significant many-body corrections near the critical density. Carrier-LO phonon scattering is dominant at low density, but e-h scattering becomes important in determining their density dependence above the critical electron density. In the single-component case, it is found that many-body effects suppress the density coefficients but enhance the temperature coefficients. The modification is of the order of 10% and reaches a maximum of over 20% for the density coefficients. Overall, temperature elevation enhances the diffusive capability or DCs of carriers linearly, and such an enhancement grows with density. Finally, the complete dataset of various DCs as functions of carrier densities and temperatures provides necessary ingredients for future applications of the model to various spatially inhomogeneous optoelectronic devices.
Numerical and experimental results on the spectral wave transfer in finite depth
NASA Astrophysics Data System (ADS)
Benassai, Guido
2016-04-01
Determination of the form of the one-dimensional surface gravity wave spectrum in water of finite depth is important for many scientific and engineering applications. Spectral parameters of deep water and intermediate depth waves serve as input data for the design of all coastal structures and for the description of many coastal processes. Moreover, the wave spectra are given as an input for the response and seakeeping calculations of high speed vessels in extreme sea conditions and for reliable calculations of the amount of energy to be extracted by wave energy converters (WEC). Available data on finite depth spectral form is generally extrapolated from parametric forms applicable in deep water (e.g., JONSWAP) [Hasselmann et al., 1973; Mitsuyasu et al., 1980; Kahma, 1981; Donelan et al., 1992; Zakharov, 2005). The present paper gives a contribution in this field through the validation of the offshore energy spectra transfer from given spectral forms through the measurement of inshore wave heights and spectra. The wave spectra on deep water were recorded offshore Ponza by the Wave Measurement Network (Piscopia et al.,2002). The field regressions between the spectral parameters, fp and the nondimensional energy with the fetch length were evaluated for fetch-limited sea conditions. These regressions gave the values of the spectral parameters for the site of interest. The offshore wave spectra were transfered from the measurement station offshore Ponza to a site located offshore the Gulf of Salerno. The offshore local wave spectra so obtained were transfered on the coastline with the TMA model (Bouws et al., 1985). Finally the numerical results, in terms of significant wave heights, were compared with the wave data recorded by a meteo-oceanographic station owned by Naples Hydrographic Office on the coastline of Salerno in 9m depth. Some considerations about the wave energy to be potentially extracted by Wave Energy Converters were done and the results were discussed.
Development of region processing algorithm for HSTAMIDS: status and field test results
NASA Astrophysics Data System (ADS)
Ngan, Peter; Burke, Sean; Cresci, Roger; Wilson, Joseph N.; Gader, Paul; Ho, K. C.; Bartosz, Elizabeth; Duvoisin, Herbert
2007-04-01
The Region Processing Algorithm (RPA) has been developed by the Office of the Army Humanitarian Demining Research and Development (HD R&D) Program as part of improvements for the AN/PSS-14. The effort was a collaboration between the HD R&D Program, L-3 Communication CyTerra Corporation, University of Florida, Duke University and University of Missouri. RPA has been integrated into and implemented in a real-time AN/PSS-14. The subject unit was used to collect data and tested for its performance at three Army test sites within the United States of America. This paper describes the status of the technology and its recent test results.
Scholl, M.A.
2000-01-01
Numerical simulations were used to examine the effects of heterogeneity in hydraulic conductivity (K) and intrinsic biodegradation rate on the accuracy of contaminant plume-scale biodegradation rates obtained from field data. The simulations were based on a steady-state BTEX contaminant plume-scale biodegradation under sulfate-reducing conditions, with the electron acceptor in excess. Biomass was either uniform or correlated with K to model spatially variable intrinsic biodegradation rates. A hydraulic conductivity data set from an alluvial aquifer was used to generate three sets of 10 realizations with different degrees of heterogeneity, and contaminant transport with biodegradation was simulated with BIOMOC. Biodegradation rates were calculated from the steady-state contaminant plumes using decreases in concentration with distance downgradient and a single flow velocity estimate, as is commonly done in site characterization to support the interpretation of natural attenuation. The observed rates were found to underestimate the actual rate specified in the heterogeneous model in all cases. The discrepancy between the observed rate and the 'true' rate depended on the ground water flow velocity estimate, and increased with increasing heterogeneity in the aquifer. For a lognormal K distribution with variance of 0.46, the estimate was no more than a factor of 1.4 slower than the true rate. For aquifer with 20% silt/clay lenses, the rate estimate was as much as nine times slower than the true rate. Homogeneous-permeability, uniform-degradation rate simulations were used to generate predictions of remediation time with the rates estimated from heterogeneous models. The homogeneous models were generally overestimated the extent of remediation or underestimated remediation time, due to delayed degradation of contaminants in the low-K areas. Results suggest that aquifer characterization for natural attenuation at contaminated sites should include assessment of the presence
A super-resolution algorithm for enhancement of flash lidar data: flight test results
NASA Astrophysics Data System (ADS)
Bulyshev, Alexander; Amzajerdian, Farzin; Roback, Eric; Reisse, Robert
2013-03-01
This paper describes the results of a 3D super-resolution algorithm applied to the range data obtained from a recent Flash Lidar helicopter flight test. The flight test was conducted by the NASA's Autonomous Landing and Hazard Avoidance Technology (ALHAT) project over a simulated lunar terrain facility at NASA Kennedy Space Center. ALHAT is developing the technology for safe autonomous landing on the surface of celestial bodies: Moon, Mars, asteroids. One of the test objectives was to verify the ability of 3D super-resolution technique to generate high resolution digital elevation models (DEMs) and to determine time resolved relative positions and orientations of the vehicle. 3D super-resolution algorithm was developed earlier and tested in computational modeling, and laboratory experiments, and in a few dynamic experiments using a moving truck. Prior to the helicopter flight test campaign, a 100mX100m hazard field was constructed having most of the relevant extraterrestrial hazard: slopes, rocks, and craters with different sizes. Data were collected during the flight and then processed by the super-resolution code. The detailed DEM of the hazard field was constructed using independent measurement to be used for comparison. ALHAT navigation system data were used to verify abilities of super-resolution method to provide accurate relative navigation information. Namely, the 6 degree of freedom state vector of the instrument as a function of time was restored from super-resolution data. The results of comparisons show that the super-resolution method can construct high quality DEMs and allows for identifying hazards like rocks and craters within the accordance of ALHAT requirements.
A Super-Resolution Algorithm for Enhancement of FLASH LIDAR Data: Flight Test Results
NASA Technical Reports Server (NTRS)
Bulyshev, Alexander; Amzajerdian, Farzin; Roback, Eric; Reisse Robert
2014-01-01
This paper describes the results of a 3D super-resolution algorithm applied to the range data obtained from a recent Flash Lidar helicopter flight test. The flight test was conducted by the NASA's Autonomous Landing and Hazard Avoidance Technology (ALHAT) project over a simulated lunar terrain facility at NASA Kennedy Space Center. ALHAT is developing the technology for safe autonomous landing on the surface of celestial bodies: Moon, Mars, asteroids. One of the test objectives was to verify the ability of 3D super-resolution technique to generate high resolution digital elevation models (DEMs) and to determine time resolved relative positions and orientations of the vehicle. 3D super-resolution algorithm was developed earlier and tested in computational modeling, and laboratory experiments, and in a few dynamic experiments using a moving truck. Prior to the helicopter flight test campaign, a 100mX100m hazard field was constructed having most of the relevant extraterrestrial hazard: slopes, rocks, and craters with different sizes. Data were collected during the flight and then processed by the super-resolution code. The detailed DEM of the hazard field was constructed using independent measurement to be used for comparison. ALHAT navigation system data were used to verify abilities of super-resolution method to provide accurate relative navigation information. Namely, the 6 degree of freedom state vector of the instrument as a function of time was restored from super-resolution data. The results of comparisons show that the super-resolution method can construct high quality DEMs and allows for identifying hazards like rocks and craters within the accordance of ALHAT requirements.
NASA Astrophysics Data System (ADS)
Aguiar, P.; González-Castaño, D. M.; Gómez, F.; Pardo-Montero, J.
2014-10-01
Liquid-filled ionisation chambers (LICs) are used in radiotherapy for dosimetry and quality assurance. Volume recombination can be quite important in LICs for moderate dose rates, causing non-linearities in the dose rate response of these detectors, and needs to be corrected for. This effect is usually described with Greening and Boag models for continuous and pulsed radiation respectively. Such models assume that the charge is carried by two different species, positive and negative ions, each of those species with a given mobility. However, LICs operating in non-ultrapure mode can contain different types of electronegative impurities with different mobilities, thus increasing the number of different charge carriers. If this is the case, Greening and Boag models can be no longer valid and need to be reformulated. In this work we present a theoretical and numerical study of volume recombination in parallel-plate LICs with multiple charge carrier species, extending Boag and Greening models. Results from a recent publication that reported three different mobilities in an isooctane-filled LIC have been used to study the effect of extra carrier species on recombination. We have found that in pulsed beams the inclusion of extra mobilities does not affect volume recombination much, a behaviour that was expected because Boag formula for charge collection efficiency does not depend on the mobilities of the charge carriers if the Debye relationship between mobilities and recombination constant holds. This is not the case in continuous radiation, where the presence of extra charge carrier species significantly affects the amount of volume recombination.
Preliminary results of numerical investigations at SECARB Cranfield, MS field test site
NASA Astrophysics Data System (ADS)
Choi, J.; Nicot, J.; Meckel, T. A.; Chang, K.; Hovorka, S. D.
2008-12-01
The Southeast Regional Carbon Sequestration partnership sponsored by DOE has chosen the Cranfield, MS field as a test site for its Phase II experiment. It will provide information on CO2 storage in oil and gas fields, in particular on storage permanence, storage capacity, and pressure buildup as well as on sweep efficiency. The 10,300 ft-deep reservoir produced 38 MMbbl of oil and 677 MMSCF of gas from the 1940's to the 1960's and is being retrofitted by Denbury Resources for tertiary recovery. CO2 injection started in July 2008 with a scheduled ramp up during the next few months. The Cranfield modeling team selected the northern section of the field for development of a numerical model using the multiphase-flow, compositional CMG-GEM software. Model structure was determined through interpretation of logs from old and recently-drilled wells and geophysical data. PETREL was used to upscale and export permeability and porosity data to the GEM model. Preliminary sensitivity analyses determined that relative permeability parameters and oil composition had the largest impact on CO2 behavior. The first modeling step consisted in history-matching the total oil, gas, and water production out of the reservoir starting from its natural state to determine the approximate current conditions of the reservoir. The fact that pressure recovered in the 40 year interval since end of initial production helps in constraining boundary conditions. In a second step, the modeling focused on understanding pressure evolution and CO2 transport in the reservoir. The presentation will introduce preliminary results of the simulations and confirm/explain discrepancies with field measurements.
NASA Astrophysics Data System (ADS)
Gliko, A. O.; Molodenskii, S. M.
2015-01-01
) are not only capable of significantly changing the magnitude of the radial displacements of the geoid but also altering their sign. Moreover, even in the uniform Earth's model, the effects of sphericity of its external surface and self-gravitation can also provide a noticeable contribution, which determines the signs of the coefficients in the expansion of the geoid's shape in the lower-order spherical functions. In order to separate these effects, below we present the results of the numerical calculations of the total effects of thermoelastic deformations for the two simplest models of spherical Earth without and with self-gravitation with constant density and complex-valued shear moduli and for the real Earth PREM model (which describes the depth distributions of density and elastic moduli for the high-frequency oscillations disregarding the rheology of the medium) and the modern models of the mantle rheology. Based on the calculations, we suggest the simplest interpretation of the present-day data on the relationship between the coefficients of spherical expansion of temperature, velocities of seismic body waves, the topography of the Earth's surface and geoid, and the data on the correlation between the lower-order coefficients in the expansions of the geoid and the corresponding terms of the expansions of horizontal inhomogeneities in seismic velocities. The suggested interpretation includes the estimates of the sign and magnitude for the ratios between the first coefficients of spherical expansions of seismic velocities, topography, and geoid. The presence of this correlation and the relationship between the signs and absolute values of these coefficients suggests that both the long-period oscillations of the geoid and the long-period variations in the velocities of seismic body waves are largely caused by thermoelastic deformations.
NASA Astrophysics Data System (ADS)
Heinze, Thomas; Galvan, Boris; Miller, Stephen
2013-04-01
Fluid-rock interactions are mechanically fundamental to many earth processes, including fault zones and hydrothermal/volcanic systems, and to future green energy solutions such as enhanced geothermal systems and carbon capture and storage (CCS). Modeling these processes is challenging because of the strong coupling between rock fracture evolution and the consequent large changes in the hydraulic properties of the system. In this talk, we present results of a numerical model that includes poro-elastic plastic rheology (with hardening, softening, and damage), and coupled to a non-linear diffusion model for fluid pressure propagation and two-phase fluid flow. Our plane strain model is based on the poro- elastic plastic behavior of porous rock and is advanced with hardening, softening and damage using the Mohr- Coulomb failure criteria. The effective stress model of Biot (1944) is used for coupling the pore pressure and the rock behavior. Frictional hardening and cohesion softening are introduced following Vermeer and de Borst (1984) with the angle of internal friction and the cohesion as functions of the principal strain rates. The scalar damage coefficient is assumed to be a linear function of the hardening parameter. Fluid injection is modeled as a two phase mixture of water and air using the Richards equation. The theoretical model is solved using finite differences on a staggered grid. The model is benchmarked with experiments on the laboratory scale in which fluid is injected from below in a critically-stressed, dry sandstone (Stanchits et al. 2011). We simulate three experiments, a) the failure a dry specimen due to biaxial compressive loading, b) the propagation a of low pressure fluid front induced from the bottom in a critically stressed specimen, and c) the failure of a critically stressed specimen due to a high pressure fluid intrusion. Comparison of model results with the fluid injection experiments shows that the model captures most of the experimental
One-year results of an algorithmic approach to managing failed back surgery syndrome
Avellanal, Martín; Diaz-Reganon, Gonzalo; Orts, Alejandro; Soto, Silvia
2014-01-01
BACKGROUND: Failed back surgery syndrome (FBSS) is a major clinical problem. Different etiologies with different incidence rates have been proposed. There are currently no standards regarding the management of these patients. Epiduroscopy is an endoscopic technique that may play a role in the management of FBSS. OBJECTIVE: To evaluate an algorithm for management of severe FBSS including epiduroscopy as a diagnostic and therapeutic tool. METHODS: A total of 133 patients with severe symptoms of FBSS (visual analogue scale score ≥7) and no response to pharmacological treatment and physical therapy were included. A six-step management algorithm was applied. Data, including patient demographics, pain and surgical procedure, were analyzed. In all cases, one or more objective causes of pain were established. Treatment success was defined as ≥50% long-term pain relief maintained during the first year of follow-up. Final allocation of patients was registered: good outcome with conservative treatment, surgical reintervention and palliative treatment with implantable devices. RESULTS: Of 122 patients enrolled, 59.84% underwent instrumented surgery and 40.16% a noninstrumented procedure. Most (64.75%) experienced significant pain relief with conventional pain clinic treatments; 15.57% required surgical treatment. Palliative spinal cord stimulation and spinal analgesia were applied in 9.84% and 2.46% of the cases, respectively. The most common diagnosis was epidural fibrosis, followed by disc herniation, global or lateral stenosis, and foraminal stenosis. CONCLUSIONS: A new six-step ladder approach to severe FBSS management that includes epiduroscopy was analyzed. Etiologies are accurately described and a useful role of epiduroscopy was confirmed. PMID:25222573
Sakai, Y. Telephone Corporation, Musashino-shi, Tokyo 180 ); Hawkins, R.J. ); Friberg, S.R. Telephone Corporation, Musashino-shi, Tokyo 180 )
1990-02-15
Using analytic theory and numerical experiments, we show that a quantum nondemolition measurement of the photon number of optical solitons in a single-mode optical fiber can be made. We describe the soliton-collision interferometer with which we propose to make this measurement and discuss simulations of the performance of this interferometer.
Chaotic structures of nonlinear magnetic fields. I - Theory. II - Numerical results
NASA Technical Reports Server (NTRS)
Lee, Nam C.; Parks, George K.
1992-01-01
A study of the evolutionary properties of nonlinear magnetic fields in flowing MHD plasmas is presented to illustrate that nonlinear magnetic fields may involve chaotic dynamics. It is shown how a suitable transformation of the coupled equations leads to Duffing's form, suggesting that the behavior of the general solution can also be chaotic. Numerical solutions of the nonlinear magnetic field equations that have been cast in the form of Duffing's equation are presented.
Mosconi, E; Sima, D M; Osorio Garcia, M I; Fontanella, M; Fiorini, S; Van Huffel, S; Marzola, P
2014-04-01
Proton magnetic resonance spectroscopy (MRS) is a sensitive method for investigating the biochemical compounds in a tissue. The interpretation of the data relies on the quantification algorithms applied to MR spectra. Each of these algorithms has certain underlying assumptions and may allow one to incorporate prior knowledge, which could influence the quality of the fit. The most commonly considered types of prior knowledge include the line-shape model (Lorentzian, Gaussian, Voigt), knowledge of the resonating frequencies, modeling of the baseline, constraints on the damping factors and phase, etc. In this article, we study whether the statistical outcome of a biological investigation can be influenced by the quantification method used. We chose to study lipid signals because of their emerging role in the investigation of metabolic disorders. Lipid spectra, in particular, are characterized by peaks that are in most cases not Lorentzian, because measurements are often performed in difficult body locations, e.g. in visceral fats close to peristaltic movements in humans or very small areas close to different tissues in animals. This leads to spectra with several peak distortions. Linear combination of Model spectra (LCModel), Advanced Method for Accurate Robust and Efficient Spectral fitting (AMARES), quantitation based on QUantum ESTimation (QUEST), Automated Quantification of Short Echo-time MRS (AQSES)-Lineshape and Integration were applied to simulated spectra, and area under the curve (AUC) values, which are proportional to the quantity of the resonating molecules in the tissue, were compared with true values. A comparison between techniques was also carried out on lipid signals from obese and lean Zucker rats, for which the polyunsaturation value expressed in white adipose tissue should be statistically different, as confirmed by high-resolution NMR measurements (considered the gold standard) on the same animals. LCModel, AQSES-Lineshape, QUEST and Integration
NASA Astrophysics Data System (ADS)
Haney, M. M.; Aldridge, D. F.; Symons, N. P.
2005-12-01
Numerical solution of partial differential equations by explicit, time-domain, finite-difference (FD) methods entails approximating temporal and spatial derivatives by discrete function differences. Thus, the solution of the difference equation will not be identical to the solution of the underlying differential equation. Solution accuracy degrades if temporal and spatial gridding intervals are too large. Overly coarse spatial gridding leads to spurious artifacts in the calculated results referred to as numerical dispersion, whereas coarse temporal sampling may produce numerical instability (manifest as unbounded growth in the calculations as FD timestepping proceeds). Quantitative conditions for minimizing dispersion and avoiding instability are developed by deriving the dispersion relation appropriate for the discrete difference equation (or coupled system of difference equations) under examination. A dispersion relation appropriate for FD solution of the 3D velocity-stress system of isotropic elastodynamics, on staggered temporal and spatial grids, is developed. The relation applies to either compressional or shear wave propagation, and reduces to the proper form for acoustic propagation in the limit of vanishing shear modulus. A stability condition and a plane-wave phase-speed formula follow as consequences of the dispersion relation. The mathematical procedure utilized for the derivation is a modern variant of classical von Neumann analysis, and involves a 4D discrete space/time Fourier transform of the nine, coupled, FD updating formulae for particle velocity vector and stress tensor components. The method is generalized to seismic wave propagation within anelastic and poroelastic media, as well as sound wave propagation within a uniformly-moving atmosphere. A significant extension of the approach yields a stability condition for wave propagation across an interface between dissimilar media with strong material contrast (e.g., the earth's surface, the seabed
Approximation of HRPITS results for SI GaAs by large scale support vector machine algorithms
NASA Astrophysics Data System (ADS)
Jankowski, Stanisław; Wojdan, Konrad; Szymański, Zbigniew; Kozłowski, Roman
2006-10-01
For the first time large-scale support vector machine algorithms are used to extraction defect parameters in semi-insulating (SI) GaAs from high resolution photoinduced transient spectroscopy experiment. By smart decomposition of the data set the SVNTorch algorithm enabled to obtain good approximation of analyzed correlation surface by a parsimonious model (with small number of support vector). The extracted parameters of deep level defect centers from SVM approximation are of good quality as compared to the reference data.
Numerical model of the lowermost Mississippi River as an alluvial-bedrock reach: preliminary results
NASA Astrophysics Data System (ADS)
Viparelli, E.; Nittrouer, J. A.; Mohrig, D. C.; Parker, G.
2012-12-01
Recent field studies reveal that the river bed of the Lower Mississippi River is characterized by a transition from alluvium (upstream) to bedrock (downstream). In particular, in the downstream 250 km of the river, fields of actively migrating bedforms alternate with deep zones where a consolidated substratum is exposed. Here we present a first version of a one-dimensional numerical model able to capture the alluvial-bedrock transition in the lowermost Mississippi River, defined herein as the 500-km reach between the Old River Control Structure and the Gulf of Mexico. The flow is assumed to be steady, and the cross-section is divided in two regions, the river channel and the floodplain. The streamwise variation of channel and floodplain geometry is described with synthetic relations derived from field observations. Flow resistance in the river channel is computed with the formulation for low-slope, large sand bed rivers due to Wright and Parker, while a Chezy-type formulation is implemented on the floodplain. Sediment is modeled in terms of bed material and wash load. Suspended load is computed with the Wright-Parker formulation. This treatment allows either uniform sediment or a mixture of different grain sizes, and accounts for stratification effects. Bedload transport rates are estimated with the relation for sediment mixtures of Ashida and Michiue. Previous work documents reasonable agreement between these load relations and field measurements. Washload is routed through the system solving the equation of mass conservation of sediment in suspension in the water column. The gradual transition from the alluvial reach to the bedrock reach is modeled in terms of a "mushy" layer of specified thickness overlying the non-erodible substrate. In the case of a fully alluvial reach, the channel bed elevation is above this mushy layer, while in the case of partial alluvial cover of the substratum, the channel bed elevation is within the mushy layer. Variations in base
Deriving rules from activity diary data: A learning algorithm and results of computer experiments
NASA Astrophysics Data System (ADS)
Arentze, Theo A.; Hofman, Frank; Timmermans, Harry J. P.
Activity-based models consider travel as a derived demand from the activities households need to conduct in space and time. Over the last 15 years, computational or rule-based models of activity scheduling have gained increasing interest in time-geography and transportation research. This paper argues that a lack of techniques for deriving rules from empirical data hinders the further development of rule-based systems in this area. To overcome this problem, this paper develops and tests an algorithm for inductively deriving rules from activity-diary data. The decision table formalism is used to exhaustively represent the theoretically possible decision rules that individuals may use in sequencing a given set of activities. Actual activity patterns of individuals are supplied to the system as examples. In an incremental learning process, the system progressively improves on the selection of rules used for reproducing the examples. Computer experiments based on simulated data are performed to fine-tune rule selection and rule value update functions. The results suggest that the system is effective and fairly robust for parameter settings. It is concluded, therefore, that the proposed approach opens up possibilities to derive empirically tested rule-based models of activity scheduling. Follow-up research will be concerned with testing the system on empirical data.
Ponderomotive stabilization of flute modes in mirrors Feedback control and numerical results
NASA Technical Reports Server (NTRS)
Similon, P. L.
1987-01-01
Ponderomotive stabilization of rigid plasma flute modes is numerically investigated by use of a variational principle, for a simple geometry, without eikonal approximation. While the near field of the studied antenna can be stabilizing, the far field has a small contribution only, because of large cancellation by quasi mode-coupling terms. The field energy for stabilization is evaluated and is a nonnegligible fraction of the plasma thermal energy. A new antenna design is proposed, and feedback stabilization is investigated. Their use drastically reduces power requirements.
NASA Technical Reports Server (NTRS)
Zhai, Chengxing; Milman, Mark H.; Regehr, Martin W.; Best, Paul K.
2007-01-01
In the companion paper, [Appl. Opt. 46, 5853 (2007)] a highly accurate white light interference model was developed from just a few key parameters characterized in terms of various moments of the source and instrument transmission function. We develop and implement the end-to-end process of calibrating these moment parameters together with the differential dispersion of the instrument and applying them to the algorithms developed in the companion paper. The calibration procedure developed herein is based on first obtaining the standard monochromatic parameters at the pixel level: wavenumber, phase, intensity, and visibility parameters via a nonlinear least-squares procedure that exploits the structure of the model. The pixel level parameters are then combined to obtain the required 'global' moment and dispersion parameters. The process is applied to both simulated scenarios of astrometric observations and to data from the microarcsecond metrology testbed (MAM), an interferometer testbed that has played a prominent role in the development of this technology.
Estimation of geopotential from satellite-to-satellite range rate data: Numerical results
NASA Technical Reports Server (NTRS)
Thobe, Glenn E.; Bose, Sam C.
1987-01-01
A technique for high-resolution geopotential field estimation by recovering the harmonic coefficients from satellite-to-satellite range rate data is presented and tested against both a controlled analytical simulation of a one-day satellite mission (maximum degree and order 8) and then against a Cowell method simulation of a 32-day mission (maximum degree and order 180). Innovations include: (1) a new frequency-domain observation equation based on kinetic energy perturbations which avoids much of the complication of the usual Keplerian element perturbation approaches; (2) a new method for computing the normalized inclination functions which unlike previous methods is both efficient and numerically stable even for large harmonic degrees and orders; (3) the application of a mass storage FFT to the entire mission range rate history; (4) the exploitation of newly discovered symmetries in the block diagonal observation matrix which reduce each block to the product of (a) a real diagonal matrix factor, (b) a real trapezoidal factor with half the number of rows as before, and (c) a complex diagonal factor; (5) a block-by-block least-squares solution of the observation equation by means of a custom-designed Givens orthogonal rotation method which is both numerically stable and tailored to the trapezoidal matrix structure for fast execution.
NASA Technical Reports Server (NTRS)
Morrell, F. R.; Bailey, M. L.; Motyka, P. R.
1988-01-01
Flight test results of a vector-based fault-tolerant algorithm for a redundant strapdown inertial measurement unit are presented. Because the inertial sensors provide flight-critical information for flight control and navigation, failure detection and isolation is developed in terms of a multi-level structure. Threshold compensation techniques for gyros and accelerometers, developed to enhance the sensitivity of the failure detection process to low-level failures, are presented. Four flight tests, conducted in a commercial transport type environment, were used to determine the ability of the failure detection and isolation algorithm to detect failure signals, such a hard-over, null, or bias shifts. The algorithm provided timely detection and correct isolation of flight control- and low-level failures. The flight tests of the vector-based algorithm demonstrated its capability to provide false alarm free dual fail-operational performance for the skewed array of inertial sensors.
Interaction of a mantle plume and a segmented mid-ocean ridge: Results from numerical modeling
NASA Astrophysics Data System (ADS)
Georgen, Jennifer E.
2014-04-01
Previous investigations have proposed that changes in lithospheric thickness across a transform fault, due to the juxtaposition of seafloor of different ages, can impede lateral dispersion of an on-ridge mantle plume. The application of this “transform damming” mechanism has been considered for several plume-ridge systems, including the Reunion hotspot and the Central Indian Ridge, the Amsterdam-St. Paul hotspot and the Southeast Indian Ridge, the Cobb hotspot and the Juan de Fuca Ridge, the Iceland hotspot and the Kolbeinsey Ridge, the Afar plume and the ridges of the Gulf of Aden, and the Marion/Crozet hotspot and the Southwest Indian Ridge. This study explores the geodynamics of the transform damming mechanism using a three-dimensional finite element numerical model. The model solves the coupled steady-state equations for conservation of mass, momentum, and energy, including thermal buoyancy and viscosity that is dependent on pressure and temperature. The plume is introduced as a circular thermal anomaly on the bottom boundary of the numerical domain. The center of the plume conduit is located directly beneath a spreading segment, at a distance of 200 km (measured in the along-axis direction) from a transform offset with length 100 km. Half-spreading rate is 0.5 cm/yr. In a series of numerical experiments, the buoyancy flux of the modeled plume is progressively increased to investigate the effects on the temperature and velocity structure of the upper mantle in the vicinity of the transform. Unlike earlier studies, which suggest that a transform always acts to decrease the along-axis extent of plume signature, these models imply that the effect of a transform on plume dispersion may be complex. Under certain ranges of plume flux modeled in this study, the region of the upper mantle undergoing along-axis flow directed away from the plume could be enhanced by the three-dimensional velocity and temperature structure associated with ridge
Otero, Fernando E B; Freitas, Alex A
2016-01-01
Most ant colony optimization (ACO) algorithms for inducing classification rules use a ACO-based procedure to create a rule in a one-at-a-time fashion. An improved search strategy has been proposed in the cAnt-Miner[Formula: see text] algorithm, where an ACO-based procedure is used to create a complete list of rules (ordered rules), i.e., the ACO search is guided by the quality of a list of rules instead of an individual rule. In this paper we propose an extension of the cAnt-Miner[Formula: see text] algorithm to discover a set of rules (unordered rules). The main motivations for this work are to improve the interpretation of individual rules by discovering a set of rules and to evaluate the impact on the predictive accuracy of the algorithm. We also propose a new measure to evaluate the interpretability of the discovered rules to mitigate the fact that the commonly used model size measure ignores how the rules are used to make a class prediction. Comparisons with state-of-the-art rule induction algorithms, support vector machines, and the cAnt-Miner[Formula: see text] producing ordered rules are also presented.
Recent numerical results on double-layer simulation in high-intensity laser--plasma interaction
Szichman, H.
1988-06-01
Numerical studies on dynamic electric fields and double layers created inside of plasmas irradiated at laser intensities of 10/sup 17/ and 10/sup 18/ Wcm/sup 2/ were carried out using a macroscopic two-fluid model including nonlinear forces and the complete intensity dependent optical response for heating and dielectric force effects. This was possible only by longer computation times since the temporal and spatial step sizes had to be reduced accordingly. Electrostatic fields as high as 10/sup 9/ and 10/sup 10/ Vcm were, respectively, measured for both laser intensities and the coupling of irradiated electromagnetic waves to generate Langmuir longitudinal waves is shown to be possible for the first time. The development and production of the well-known density minima (cavitons) because of nonlinear forces is also confirmed, their prominent appearance being in direct relation to the stronger effect of the high irradiances applied.
Distribution of Steps with Finite-Range Interactions: Analytic Approximations and Numerical Results
NASA Astrophysics Data System (ADS)
GonzáLez, Diego Luis; Jaramillo, Diego Felipe; TéLlez, Gabriel; Einstein, T. L.
2013-03-01
While most Monte Carlo simulations assume only nearest-neighbor steps interact elastically, most analytic frameworks (especially the generalized Wigner distribution) posit that each step elastically repels all others. In addition to the elastic repulsions, we allow for possible surface-state-mediated interactions. We investigate analytically and numerically how next-nearest neighbor (NNN) interactions and, more generally, interactions out to q'th nearest neighbor alter the form of the terrace-width distribution and of pair correlation functions (i.e. the sum over n'th neighbor distribution functions, which we investigated recently.[2] For physically plausible interactions, we find modest changes when NNN interactions are included and generally negligible changes when more distant interactions are allowed. We discuss methods for extracting from simulated experimental data the characteristic scale-setting terms in assumed potential forms.
NASA Astrophysics Data System (ADS)
Blecka, Maria I.
2010-05-01
The passive remote spectrometric methods are important in examinations the atmospheres of planets. The radiance spectra inform us about values of thermodynamical parameters and composition of the atmospheres and surfaces. The spectral technology can be useful in detection of the trace aerosols like biological substances (if present) in the environments of the planets. We discuss here some of the aspects related to the spectroscopic search for the aerosols and dust in planetary atmospheres. Possibility of detection and identifications of biological aerosols with a passive InfraRed spectrometer in an open-air environment is discussed. We present numerically simulated, based on radiative transfer theory, spectroscopic observations of the Earth atmosphere. Laboratory measurements of transmittance of various kinds of aerosols, pollens and bacterias were used in modeling.
NASA Technical Reports Server (NTRS)
Aveiro, H. C.; Hysell, D. L.; Caton, R. G.; Groves, K. M.; Klenzing, J.; Pfaff, R. F.; Stoneback, R.; Heelis, R. A.
2012-01-01
A three-dimensional numerical simulation of plasma density irregularities in the postsunset equatorial F region ionosphere leading to equatorial spread F (ESF) is described. The simulation evolves under realistic background conditions including bottomside plasma shear flow and vertical current. It also incorporates C/NOFS satellite data which partially specify the forcing. A combination of generalized Rayleigh-Taylor instability (GRT) and collisional shear instability (CSI) produces growing waveforms with key features that agree with C/NOFS satellite and ALTAIR radar observations in the Pacific sector, including features such as gross morphology and rates of development. The transient response of CSI is consistent with the observation of bottomside waves with wavelengths close to 30 km, whereas the steady state behavior of the combined instability can account for the 100+ km wavelength waves that predominate in the F region.
Photometric redshifts with the quasi Newton algorithm (MLPQNA) Results in the PHAT1 contest
NASA Astrophysics Data System (ADS)
Cavuoti, S.; Brescia, M.; Longo, G.; Mercurio, A.
2012-10-01
Context. Since the advent of modern multiband digital sky surveys, photometric redshifts (photo-z's) have become relevant if not crucial to many fields of observational cosmology, such as the characterization of cosmic structures and the weak and strong lensing. Aims: We describe an application to an astrophysical context, namely the evaluation of photometric redshifts, of MLPQNA, which is a machine-learning method based on the quasi Newton algorithm. Methods: Theoretical methods for photo-z evaluation are based on the interpolation of a priori knowledge (spectroscopic redshifts or SED templates), and they represent an ideal comparison ground for neural network-based methods. The MultiLayer Perceptron with quasi Newton learning rule (MLPQNA) described here is an effective computing implementation of neural networks exploited for the first time to solve regression problems in the astrophysical context. It is offered to the community through the DAMEWARE (DAta Mining & Exploration Web Application REsource) infrastructure. Results: The PHAT contest (Hildebrandt et al. 2010, A&A, 523, A31) provides a standard dataset to test old and new methods for photometric redshift evaluation and with a set of statistical indicators that allow a straightforward comparison among different methods. The MLPQNA model has been applied on the whole PHAT1 dataset of 1984 objects after an optimization of the model performed with the 515 available spectroscopic redshifts as training set. When applied to the PHAT1 dataset, MLPQNA obtains the best bias accuracy (0.0006) and very competitive accuracies in terms of scatter (0.056) and outlier percentage (16.3%), scoring as the second most effective empirical method among those that have so far participated in the contest. MLPQNA shows better generalization capabilities than most other empirical methods especially in the presence of underpopulated regions of the knowledge base.
Bader, P; McDonald, P; Selby, P
2009-01-01
Background: Evidence-based smoking cessation guidelines recommend nicotine replacement therapy (NRT), bupropion SR and varenicline as first-line therapy in combination with behavioural interventions. However, there are limited data to guide clinicians in recommending one form over another, using combinations, or matching individual smokers to particular forms. Objective: To develop decision rules for clinicians to guide differential prescribing practices and tailoring of pharmacotherapy for smoking cessation. Methods: A Delphi approach was used to build consensus among a panel of 37 international experts from various health disciplines. Through an iterative process, panellists responded to three rounds of questionnaires. Participants identified and ranked “best practices” used by them to tailor pharmacotherapy to aid smoking cessation. An independent panel of 10 experts provided cross-validation of findings. Results: There was a 100% response rate to all three rounds. A high level of consensus was achieved in determining the most important priorities: (1) factors to consider in prescribing pharmacotherapy: evidence, patient preference, patient experience; (2) combinations based on: failed attempt with monotherapy, patients with breakthrough cravings, level of tobacco dependence; (3) specific combinations, main categories: (a) two or more forms of NRT, (b) bupropion + form of NRT; (4) specific combinations, subcategories: (1a) patch + gum, (1b) patch + inhaler, (1c) patch + lozenge; (2a) bupropion + patch, (2b) bupropion + gum; (5) impact of comorbidities on selection of pharmacotherapy: contraindications, specific pharmacotherapy useful for certain comorbidities, dual purpose medications; (6) frequency of monitoring determined by patient needs and type of pharmacotherapy. Conclusion: An algorithm and guide were developed to assist clinicians in prescribing pharmacotherapy for smoking cessation. There appears to be good justification for “off-label” use such
NASA Astrophysics Data System (ADS)
Mlynczak, Martin G.; Hunt, Linda A.; Marshall, B. Thomas; Mertens, Christopher J.; Marsh, Daniel R.; Smith, Anne K.; Russell, James M.; Siskind, David E.; Gordley, Larry L.
2014-03-01
Atomic hydrogen (H) is a fundamental component in the photochemistry and energy balance of the terrestrial mesopause region (80-100 km). H is generated primarily by photolysis of water vapor and participates in a highly exothermic reaction with ozone. This reaction is a significant source of heat in the mesopause region and also creates highly vibrationally excited hydroxyl (OH) from which the Meinel band radiative emission features originate. Concentrations (cm-3) and volume mixing ratios of H are derived from observations of infrared emission from the OH (υ = 9 + 8, Δυ = 2) vibration-rotation bands near 2.0 µm made by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite. The algorithms for deriving day and night H are described herein. Day and night concentrations exhibit excellent agreement between 87 and 95 km. SABER H results also exhibit good agreement with observations from the Solar Mesosphere Explorer made nearly 30 years ago. An apparent inverse dependence on the solar cycle is observed in the SABER H concentrations, with the H increasing as solar activity decreases. This increase is shown to be primarily due to the temperature dependence of various reaction rate coefficients for H photochemistry. The SABER H data, coupled with SABER atomic oxygen, ozone, and temperature, enable tests of mesospheric photochemistry and energetics in atmospheric models, studies of formation of polar mesospheric clouds, and studies of atmospheric evolution via escape of hydrogen. These data and studies are made possible by the wide range of parameters measured simultaneously by the SABER instrument.
Ding, Lei; Van Renterghem, Timothy; Botteldooren, Dick; Horoshenkov, Kirill; Khan, Amir
2013-12-01
The influence of loose plant leaves on the acoustic absorption of a porous substrate is experimentally and numerically studied. Such systems are typical in vegetative walls, where the substrate has strong acoustical absorbing properties. Both experiments in an impedance tube and theoretical predictions show that when a leaf is placed in front of such a porous substrate, its absorption characteristics markedly change (for normal incident sound). Typically, there is an unaffected change in the low frequency absorption coefficient (below 250 Hz), an increase in the middle frequency absorption coefficient (500-2000 Hz) and a decrease in the absorption at higher frequencies. The influence of leaves becomes most pronounced when the substrate has a low mass density. A combination of the Biot's elastic frame porous model, viscous damping in the leaf boundary layers and plate vibration theory is implemented via a finite-difference time-domain model, which is able to predict accurately the absorption spectrum of a leaf above a porous substrate system. The change in the absorption spectrum caused by the leaf vibration can be modeled reasonably well assuming the leaf and porous substrate properties are uniform.
Mazza, Fabio; Vulcano, Alfonso
2008-07-08
For a widespread application of dissipative braces to protect framed buildings against seismic loads, practical and reliable design procedures are needed. In this paper a design procedure based on the Direct Displacement-Based Design approach is adopted, assuming the elastic lateral storey-stiffness of the damped braces proportional to that of the unbraced frame. To check the effectiveness of the design procedure, presented in an associate paper, a six-storey reinforced concrete plane frame, representative of a medium-rise symmetric framed building, is considered as primary test structure; this structure, designed in a medium-risk region, is supposed to be retrofitted as in a high-risk region, by insertion of diagonal braces equipped with hysteretic dampers. A numerical investigation is carried out to study the nonlinear static and dynamic responses of the primary and the damped braced test structures, using step-by-step procedures described in the associate paper mentioned above; the behaviour of frame members and hysteretic dampers is idealized by bilinear models. Real and artificial accelerograms, matching EC8 response spectrum for a medium soil class, are considered for dynamic analyses.
NASA Astrophysics Data System (ADS)
Mazza, Fabio; Vulcano, Alfonso
2008-07-01
For a widespread application of dissipative braces to protect framed buildings against seismic loads, practical and reliable design procedures are needed. In this paper a design procedure based on the Direct Displacement-Based Design approach is adopted, assuming the elastic lateral storey-stiffness of the damped braces proportional to that of the unbraced frame. To check the effectiveness of the design procedure, presented in an associate paper, a six-storey reinforced concrete plane frame, representative of a medium-rise symmetric framed building, is considered as primary test structure; this structure, designed in a medium-risk region, is supposed to be retrofitted as in a high-risk region, by insertion of diagonal braces equipped with hysteretic dampers. A numerical investigation is carried out to study the nonlinear static and dynamic responses of the primary and the damped braced test structures, using step-by-step procedures described in the associate paper mentioned above; the behaviour of frame members and hysteretic dampers is idealized by bilinear models. Real and artificial accelerograms, matching EC8 response spectrum for a medium soil class, are considered for dynamic analyses.
Preliminary Results from Numerical Experiments on the Summer 1980 Heat Wave and Drought
NASA Technical Reports Server (NTRS)
Wolfson, N.; Atlas, R.; Sud, Y. C.
1985-01-01
During the summer of 1980, a prolonged heat wave and drought affected the United States. A preliminary set of experiments has been conducted to study the effect of varying boundary conditions on the GLA model simulation of the heat wave. Five 10-day numerical integrations with three different specifications of boundary conditions were carried out: a control experiment which utilized climatological boundary conditions, an SST experiment which utilized summer 1980 sea-surface temperatures in the North Pacific, but climatological values elsewhere, and a Soil Moisture experiment which utilized the values of Mintz-Serafini for the summer, 1980. The starting dates for the five forecasts were 11 June, 7 July, 21 July, 22 August, and 6 September of 1980. These dates were specifically chosen as days when a heat wave was already established in order to investigate the effect of soil moistures or North Pacific sea-surface temperatures on the model's ability to maintain the heat wave pattern. The experiments were evaluated in terms of the heat wave index for the South Plains, North Plains, Great Plains and the entire U.S. In addition a subjective comparison of map patterns has been performed.
Parallel algorithms for unconstrained optimizations by multisplitting
He, Qing
1994-12-31
In this paper a new parallel iterative algorithm for unconstrained optimization using the idea of multisplitting is proposed. This algorithm uses the existing sequential algorithms without any parallelization. Some convergence and numerical results for this algorithm are presented. The experiments are performed on an Intel iPSC/860 Hyper Cube with 64 nodes. It is interesting that the sequential implementation on one node shows that if the problem is split properly, the algorithm converges much faster than one without splitting.
Hidden modes in open disordered media: analytical, numerical, and experimental results
NASA Astrophysics Data System (ADS)
Bliokh, Yury P.; Freilikher, Valentin; Shi, Z.; Genack, A. Z.; Nori, Franco
2015-11-01
We explore numerically, analytically, and experimentally the relationship between quasi-normal modes (QNMs) and transmission resonance (TR) peaks in the transmission spectrum of one-dimensional (1D) and quasi-1D open disordered systems. It is shown that for weak disorder there exist two types of the eigenstates: ordinary QNMs which are associated with a TR, and hidden QNMs which do not exhibit peaks in transmission or within the sample. The distinctive feature of the hidden modes is that unlike ordinary ones, their lifetimes remain constant in a wide range of the strength of disorder. In this range, the averaged ratio of the number of transmission peaks {N}{{res}} to the number of QNMs {N}{{mod}}, {N}{{res}}/{N}{{mod}}, is insensitive to the type and degree of disorder and is close to the value \\sqrt{2/5}, which we derive analytically in the weak-scattering approximation. The physical nature of the hidden modes is illustrated in simple examples with a few scatterers. The analogy between ordinary and hidden QNMs and the segregation of superradiant states and trapped modes is discussed. When the coupling to the environment is tuned by an external edge reflectors, the superradiance transition is reproduced. Hidden modes have been also found in microwave measurements in quasi-1D open disordered samples. The microwave measurements and modal analysis of transmission in the crossover to localization in quasi-1D systems give a ratio of {N}{{res}}/{N}{{mod}} close to \\sqrt{2/5}. In diffusive quasi-1D samples, however, {N}{{res}}/{N}{{mod}} falls as the effective number of transmission eigenchannels M increases. Once {N}{{mod}} is divided by M, however, the ratio {N}{{res}}/{N}{{mod}} is close to the ratio found in 1D.
NASA Technical Reports Server (NTRS)
Gogos, George; Pope, Daniel N.
2003-01-01
The problem considered is that of a single-component liquid fuel (n-heptane) droplet undergoing evaporation and combustion in a hot, convective, low pressure, zero-gravity environment of infinite expanse. For a moving droplet, the relative velocity (U(sub infinity)) between the droplet and freestream is subject to change due to the influence of the drag force on the droplet. For a suspended droplet, the relative velocity is kept constant. The governing equations for the gas-phase and the liquid-phase consist of the unsteady, axisymmetric equations of mass, momentum, species (gas-phase only) and energy conservation. Interfacial conservation equations are employed to couple the two phases. Variable properties are used in the gas- and liquid-phase. Multicomponent diffusion in the gas-phase is accounted for by solving the Stefan-Maxwell equations for the species diffusion velocities. A one-step overall reaction is used to model the combustion. The governing equations are discretized using the finite volume and SIMPLEC methods. A colocated grid is adopted. Hyperbolic tangent stretching functions are used to concentrate grid points near the fore and aft lines of symmetry and at the droplet surface in both the gas- and liquid-phase. The discretization equations are solved using the ADI method with the TDMA used on each line of the two alternating directions. Iterations are performed within each time-step until convergence is achieved. The grid spacing, size of the computational domain and time-step were tested to ensure that all solutions are independent of these parameters. A detailed discussion of the numerical model is given.
222Rn transport in a fractured crystalline rock aquifer: Results from numerical simulations
Folger, P.F.; Poeter, E.; Wanty, R.B.; Day, W.; Frishman, D.
1997-01-01
Dissolved 222Rn concentrations in ground water from a small wellfield underlain by fractured Middle Proterozoic Pikes Peak Granite southwest of Denver, Colorado range from 124 to 840 kBq m-3 (3360-22700 pCi L-1). Numerical simulations of flow and transport between two wells show that differences in equivalent hydraulic aperture of transmissive fractures, assuming a simplified two-fracture system and the parallel-plate model, can account for the different 222Rn concentrations in each well under steady-state conditions. Transient flow and transport simulations show that 222Rn concentrations along the fracture profile are influenced by 222Rn concentrations in the adjoining fracture and depend on boundary conditions, proximity of the pumping well to the fracture intersection, transmissivity of the conductive fractures, and pumping rate. Non-homogeneous distribution (point sources) of 222Rn parent radionuclides, uranium and 226Ra, can strongly perturb the dissolved 222Rn concentrations in a fracture system. Without detailed information on the geometry and hydraulic properties of the connected fracture system, it may be impossible to distinguish the influence of factors controlling 222Rn distribution or to determine location of 222Rn point sources in the field in areas where ground water exhibits moderate 222Rn concentrations. Flow and transport simulations of a hypothetical multifracture system consisting of ten connected fractures, each 10 m in length with fracture apertures ranging from 0.1 to 1.0 mm, show that 222Rn concentrations at the pumping well can vary significantly over time. Assuming parallel-plate flow, transmissivities of the hypothetical system vary over four orders of magnitude because transmissivity varies with the cube of fracture aperture. The extreme hydraulic heterogeneity of the simple hypothetical system leads to widely ranging 222Rn values, even assuming homogeneous distribution of uranium and 226Ra along fracture walls. Consequently, it is
Spiegal, R.J.
1984-08-01
For humans exposed to electromagnetic (EM) radiation, the resulting thermophysiologic response is not well understood. Because it is unlikely that this information will be determined from quantitative experimentation, it is necessary to develop theoretical models which predict the resultant thermal response after exposure to EM fields. These calculations are difficult and involved because the human thermoregulatory system is very complex. In this paper, the important numerical models are reviewed and possibilities for future development are discussed.
Lou, X M; Hassebrook, L G; Lhamon, M E; Li, J
1997-01-01
We introduce a new method for determining the number of straight lines, line angles, offsets, widths, and discontinuities in complicated images. In this method, line angles are obtained by searching the peaks of a hybrid discrete Fourier and bilinear transformed line angle spectrum. Numerical advantages and performance are demonstrated.
NASA Astrophysics Data System (ADS)
Razali, Azhani Mohd; Abdullah, Jaafar
2015-04-01
Single Photon Emission Computed Tomography (SPECT) is a well-known imaging technique used in medical application, and it is part of medical imaging modalities that made the diagnosis and treatment of disease possible. However, SPECT technique is not only limited to the medical sector. Many works are carried out to adapt the same concept by using high-energy photon emission to diagnose process malfunctions in critical industrial systems such as in chemical reaction engineering research laboratories, as well as in oil and gas, petrochemical and petrochemical refining industries. Motivated by vast applications of SPECT technique, this work attempts to study the application of SPECT on a Pebble Bed Reactor (PBR) using numerical phantom of pebbles inside the PBR core. From the cross-sectional images obtained from SPECT, the behavior of pebbles inside the core can be analyzed for further improvement of the PBR design. As the quality of the reconstructed image is largely dependent on the algorithm used, this work aims to compare two image reconstruction algorithms for SPECT, namely the Expectation Maximization Algorithm and the Exact Inversion Formula. The results obtained from the Exact Inversion Formula showed better image contrast and sharpness, and shorter computational time compared to the Expectation Maximization Algorithm.
Razali, Azhani Mohd Abdullah, Jaafar
2015-04-29
Single Photon Emission Computed Tomography (SPECT) is a well-known imaging technique used in medical application, and it is part of medical imaging modalities that made the diagnosis and treatment of disease possible. However, SPECT technique is not only limited to the medical sector. Many works are carried out to adapt the same concept by using high-energy photon emission to diagnose process malfunctions in critical industrial systems such as in chemical reaction engineering research laboratories, as well as in oil and gas, petrochemical and petrochemical refining industries. Motivated by vast applications of SPECT technique, this work attempts to study the application of SPECT on a Pebble Bed Reactor (PBR) using numerical phantom of pebbles inside the PBR core. From the cross-sectional images obtained from SPECT, the behavior of pebbles inside the core can be analyzed for further improvement of the PBR design. As the quality of the reconstructed image is largely dependent on the algorithm used, this work aims to compare two image reconstruction algorithms for SPECT, namely the Expectation Maximization Algorithm and the Exact Inversion Formula. The results obtained from the Exact Inversion Formula showed better image contrast and sharpness, and shorter computational time compared to the Expectation Maximization Algorithm.
NASA Technical Reports Server (NTRS)
Goodrich, John W.
1995-01-01
Two methods for developing high order single step explicit algorithms on symmetric stencils with data on only one time level are presented. Examples are given for the convection and linearized Euler equations with up to the eighth order accuracy in both space and time in one space dimension, and up to the sixth in two space dimensions. The method of characteristics is generalized to nondiagonalizable hyperbolic systems by using exact local polynominal solutions of the system, and the resulting exact propagator methods automatically incorporate the correct multidimensional wave propagation dynamics. Multivariate Taylor or Cauchy-Kowaleskaya expansions are also used to develop algorithms. Both of these methods can be applied to obtain algorithms of arbitrarily high order for hyperbolic systems in multiple space dimensions. Cross derivatives are included in the local approximations used to develop the algorithms in this paper in order to obtain high order accuracy, and improved isotropy and stability. Efficiency in meeting global error bounds is an important criterion for evaluating algorithms, and the higher order algorithms are shown to be up to several orders of magnitude more efficient even though they are more complex. Stable high order boundary conditions for the linearized Euler equations are developed in one space dimension, and demonstrated in two space dimensions.
A numerically efficient finite element hydroelastic analysis. Volume 1: Theory and results
NASA Technical Reports Server (NTRS)
Coppolino, R. N.
1976-01-01
Symmetric finite element matrix formulations for compressible and incompressible hydroelasticity are developed on the basis of Toupin's complementary formulation of classical mechanics. Results of implementation of the new technique in the NASTRAN structural analysis program are presented which demonstrate accuracy and efficiency.
Erratum: new numerical results and novel effective string predictions for Wilson loops
NASA Astrophysics Data System (ADS)
Billó, M.; Caselle, M.; Pellegrini, R.
2013-04-01
We correct a few misprints present in the published version, regarding eq.s (4.30), (4.35), (A.4) and (A.6). Plots and results of the paper are not affected since they were derived from the correct formulae.
NASA Astrophysics Data System (ADS)
Khokhlov, A.; Domínguez, I.; Bacon, C.; Clifford, B.; Baron, E.; Hoeflich, P.; Krisciunas, K.; Suntzeff, N.; Wang, L.
2012-07-01
We describe a new astrophysical version of a cell-based adaptive mesh refinement code ALLA for reactive flow fluid dynamic simulations, including a new implementation of α-network nuclear kinetics, and present preliminary results of first three-dimensional simulations of incomplete carbon-oxygen detonation in Type Ia Supernovae.
Multi-Country Experience in Delivering a Joint Course on Software Engineering--Numerical Results
ERIC Educational Resources Information Center
Budimac, Zoran; Putnik, Zoran; Ivanovic, Mirjana; Bothe, Klaus; Zdravkova, Katerina; Jakimovski, Boro
2014-01-01
A joint course, created as a result of a project under the auspices of the "Stability Pact of South-Eastern Europe" and DAAD, has been conducted in several Balkan countries: in Novi Sad, Serbia, for the last six years in several different forms, in Skopje, FYR of Macedonia, for two years, for several types of students, and in Tirana,…
NASA Technical Reports Server (NTRS)
Wehrbein, W. M.; Leovy, C. B.
1981-01-01
A Curtis matrix is used to compute cooling by the 15 micron and 10 micron bands of carbon dioxide. Escape of radiation to space and exchange the lower boundary are used for the 9.6 micron band of ozone. Voigt line shape, vibrational relaxation, line overlap, and the temperature dependence of line strength distributions and transmission functions are incorporated into the Curtis matrices. The distributions of the atmospheric constituents included in the algorithm, and the method used to compute the Curtis matrices are discussed as well as cooling or heating by the 9.6 micron band of ozone. The FORTRAN programs and subroutines that were developed are described and listed.
NASA Astrophysics Data System (ADS)
Motheau, E.; Abraham, J.
2016-05-01
A novel and efficient algorithm is presented in this paper to deal with DNS of turbulent reacting flows under the low-Mach-number assumption, with detailed chemistry and a quasi-spectral accuracy. The temporal integration of the equations relies on an operating-split strategy, where chemical reactions are solved implicitly with a stiff solver and the convection-diffusion operators are solved with a Runge-Kutta-Chebyshev method. The spatial discretisation is performed with high-order compact schemes, and a FFT based constant-coefficient spectral solver is employed to solve a variable-coefficient Poisson equation. The numerical implementation takes advantage of the 2DECOMP&FFT libraries developed by [1], which are based on a pencil decomposition method of the domain and are proven to be computationally very efficient. An enhanced pressure-correction method is proposed to speed up the achievement of machine precision accuracy. It is demonstrated that a second-order accuracy is reached in time, while the spatial accuracy ranges from fourth-order to sixth-order depending on the set of imposed boundary conditions. The software developed to implement the present algorithm is called HOLOMAC, and its numerical efficiency opens the way to deal with DNS of reacting flows to understand complex turbulent and chemical phenomena in flames.
NASA Technical Reports Server (NTRS)
Rigby, D. L.; Vanfossen, G. J.
1992-01-01
A study of the effect of spanwise variation in momentum on leading edge heat transfer is discussed. Numerical and experimental results are presented for both a circular leading edge and a 3:1 elliptical leading edge. Reynolds numbers in the range of 10,000 to 240,000 based on leading edge diameter are investigated. The surface of the body is held at a constant uniform temperature. Numerical and experimental results with and without spanwise variations are presented. Direct comparison of the two-dimensional results, that is, with no spanwise variations, to the analytical results of Frossling is very good. The numerical calculation, which uses the PARC3D code, solves the three-dimensional Navier-Stokes equations, assuming steady laminar flow on the leading edge region. Experimentally, increases in the spanwise-averaged heat transfer coefficient as high as 50 percent above the two-dimensional value were observed. Numerically, the heat transfer coefficient was seen to increase by as much as 25 percent. In general, under the same flow conditions, the circular leading edge produced a higher heat transfer rate than the elliptical leading edge. As a percentage of the respective two-dimensional values, the circular and elliptical leading edges showed similar sensitivity to span wise variations in momentum. By equating the root mean square of the amplitude of the spanwise variation in momentum to the turbulence intensity, a qualitative comparison between the present work and turbulent results was possible. It is shown that increases in leading edge heat transfer due to spanwise variations in freestream momentum are comparable to those due to freestream turbulence.
Yield criteria for porous media in plane strain: second-order estimates versus numerical results
NASA Astrophysics Data System (ADS)
Pastor, Joseph; Ponte Castañeda, Pedro
2002-11-01
This Note presents a comparison of some recently developed "second-order" homogenization estimates for two-dimensional, ideally plastic porous media subjected to plane strain conditions with corresponding yield analysis results using a new linearization technique and systematically optimized finite elements meshes. Good qualitative agreement is found between the second-order theory and the yield analysis results for the shape of the yield surfaces, which exhibit a corner on the hydrostatic axis, as well as for the dependence of the effective flow stress in shear on the porosity, which is found to be non-analytic in the dilute limit. Both of these features are inconsistent with the predictions of the standard Gurson model. To cite this article: J. Pastor, P. Ponte Castañeda, C. R. Mecanique 330 (2002) 741-747.
Preliminary numerical modeling results - cone penetrometer (CPT) tip used as an electrode
Ramirez, A L
2006-12-19
Figure 1 shows the resistivity models considered in this study; log10 of the resistivity is shown. The graph on the upper left hand side shows a hypothetical resisitivity well log measured along a well in the upper layered model; 10% Gaussian noise has been added to the well log data. The lower model is identical to the upper one except for one square area located within the second deepest layer. Figure 2 shows the electrode configurations considered. The ''reference'' case (upper frame) considers point electrodes located along the surface and along a vertical borehole. The ''CPT electrode'' case (middle frame) assumes that the CPT tip serves as an electrode that is electrically connected to the push rod; the surface electrodes are used in conjuction with the moving CPT electrode. The ''isolated CPT electrode'' case assumes that the electrode at the CPT tip is electrically isolated from the pushrod. Note that the separate CPT push rods in the middle and lower frames are shown separated to clarify the figure; in reality, there is only one pushrod that is changing length as the probe advances. Figure 3 shows three pole-pole measurement schemes were considered; in all cases, the ''get lost'' electrodes were the leftmost and rightmost surface electrodes. The top frame shows the reference scheme where all surface and borehole electrodes can be used. The middle frame shows two possible configurations available when a CPT mounted electrode is used. Note that only one of the four poles can be located along the borehole at any given time; electrode combinations such as the one depicted in blue (upper frame) are not possible in this case. The bottom frame shows a sample configuration where only the surface electrodes are used. Figure 4 shows the results obtained for the various measurement schemes. The white lines show the outline of the true model (shown in Figure 1, upper frame). The starting initial model for these inversions is based on the electrical resistivity log
Results from CrIS/ATMS Obtained Using an "AIRS Version-6 Like" Retrieval Algorithm
NASA Technical Reports Server (NTRS)
Susskind, Joel; Kouvaris, Louis; Iredell, Lena
2015-01-01
A main objective of AIRS/AMSU on EOS is to provide accurate sounding products that are used to generate climate data sets. Suomi NPP carries CrIS/ATMS that were designed as follow-ons to AIRS/AMSU. Our objective is to generate a long term climate data set of products derived from CrIS/ATMS to serve as a continuation of the AIRS/AMSU products. We have modified an improved version of the operational AIRS Version-6 retrieval algorithm for use with CrIS/ATMS. CrIS/ATMS products are of very good quality, and are comparable to, and consistent with, those of AIRS.
Results from CrIS/ATMS obtained using an "AIRS Version-6 like" retrieval algorithm
NASA Astrophysics Data System (ADS)
Susskind, Joel; Kouvaris, Louis; Iredell, Lena
2015-09-01
A main objective of AIRS/AMSU on EOS is to provide accurate sounding products that are used to generate climate data sets. Suomi NPP carries CrIS/ATMS that were designed as follow-ons to AIRS/AMSU. Our objective is to generate a long term climate data set of products derived from CrIS/ATMS to serve as a continuation of the AIRS/AMSU products. We have modified an improved version of the operational AIRS Version-6 retrieval algorithm for use with CrIS/ATMS. CrIS/ATMS products are of very good quality, and are comparable to, and consistent with, those of AIRS.
Guo, Hanming; Zhuang, Songlin; Guo, Shuwen; Chen, Jiabi; Liang, Zhongcheng
2008-07-01
In terms of the electromagnetic theory described in Part I of our current investigations [J. Opt. Soc. Am. A24, 1776 (2007)], the numerical method for and results of numerical computations corresponding to the electromagnetic theory of a waveguide multilayered optical memory are presented. Here the characteristics of the cross talk and the modulation contrast, the power of readout signals, the variation of the power of the readout signals with the scanning position along the track, and the distribution of the light intensity at the detector are investigated in detail. Results show that the polarization of the reading light, the feature sizes of bits, and the distances between the two adjacent tracks and the two adjacent bits on the same track have significant effects on the distribution of the light intensity at the detector, the power of the readout signals, the cross talk, and the modulation contrast. In addition, the optimal polarization of the reading light is also suggested.
Wang, Zhan-Shan; Pan, Li-Bo
2014-03-01
The emission inventory of air pollutants from the thermal power plants in the year of 2010 was set up. Based on the inventory, the air quality of the prediction scenarios by implementation of both 2003-version emission standard and the new emission standard were simulated using Models-3/CMAQ. The concentrations of NO2, SO2, and PM2.5, and the deposition of nitrogen and sulfur in the year of 2015 and 2020 were predicted to investigate the regional air quality improvement by the new emission standard. The results showed that the new emission standard could effectively improve the air quality in China. Compared with the implementation results of the 2003-version emission standard, by 2015 and 2020, the area with NO2 concentration higher than the emission standard would be reduced by 53.9% and 55.2%, the area with SO2 concentration higher than the emission standard would be reduced by 40.0%, the area with nitrogen deposition higher than 1.0 t x km(-2) would be reduced by 75.4% and 77.9%, and the area with sulfur deposition higher than 1.6 t x km(-2) would be reduced by 37.1% and 34.3%, respectively.
Numerical predictions and experimental results of a dry bay fire environment.
Suo-Anttila, Jill Marie; Gill, Walter; Black, Amalia Rebecca
2003-11-01
The primary objective of the Safety and Survivability of Aircraft Initiative is to improve the safety and survivability of systems by using validated computational models to predict the hazard posed by a fire. To meet this need, computational model predictions and experimental data have been obtained to provide insight into the thermal environment inside an aircraft dry bay. The calculations were performed using the Vulcan fire code, and the experiments were completed using a specially designed full-scale fixture. The focus of this report is to present comparisons of the Vulcan results with experimental data for a selected test scenario and to assess the capability of the Vulcan fire field model to accurately predict dry bay fire scenarios. Also included is an assessment of the sensitivity of the fire model predictions to boundary condition distribution and grid resolution. To facilitate the comparison with experimental results, a brief description of the dry bay fire test fixture and a detailed specification of the geometry and boundary conditions are included. Overall, the Vulcan fire field model has shown the capability to predict the thermal hazard posed by a sustained pool fire within a dry bay compartment of an aircraft; although, more extensive experimental data and rigorous comparison are required for model validation.
Analytical and Numerical Results for an Adhesively Bonded Joint Subjected to Pure Bending
NASA Technical Reports Server (NTRS)
Smeltzer, Stanley S., III; Lundgren, Eric
2006-01-01
A one-dimensional, semi-analytical methodology that was previously developed for evaluating adhesively bonded joints composed of anisotropic adherends and adhesives that exhibit inelastic material behavior is further verified in the present paper. A summary of the first-order differential equations and applied joint loading used to determine the adhesive response from the methodology are also presented. The method was previously verified against a variety of single-lap joint configurations from the literature that subjected the joints to cases of axial tension and pure bending. Using the same joint configuration and applied bending load presented in a study by Yang, the finite element analysis software ABAQUS was used to further verify the semi-analytical method. Linear static ABAQUS results are presented for two models, one with a coarse and one with a fine element meshing, that were used to verify convergence of the finite element analyses. Close agreement between the finite element results and the semi-analytical methodology were determined for both the shear and normal stress responses of the adhesive bondline. Thus, the semi-analytical methodology was successfully verified using the ABAQUS finite element software and a single-lap joint configuration subjected to pure bending.
Urban Surface Network In Marseille: Network Optimization Using Numerical Simulations and Results
NASA Astrophysics Data System (ADS)
Pigeon, G.; Lemonsu, A.; Durand, P.; Masson, V.
During the ESCOMPTE program (Field experiment to constrain models of atmo- spheric pollution and emissions transport) in Marseille between june and july 2001 an important device has been set up to describe the urban boundary layer over the built-up aera of Marseille. There was notably a network of 20 temperature and humid- ity sensors which has mesured the spatial and temporal variability of these parameters. Before the experiment the arrangement of the network had been optimized to get the maximum of information about these two varaibilities. We have worked on results of high resolution simulations containing the TEB scheme which represents the energy budgets associated with the gobal street geometry of the mesh. First, a qualitative analysis had enabled the identification of the characteristical phenomenons over the town of Marseille. There are narrows links beetween urban effects and local effects : marine advection and orography. Then, a quantitative analysis of the field has been developped. EOF (empirical orthogonal functions) have been used to characterised the spatial and temporal structures of the field evolution. Instrumented axis have been determined with all these results. Finally, we have choosen very carefully the locations of the instruments at the scale of the street to avoid that micro-climatic effects interfere with the meso-scale effect of the town. The recording of the mesurements, every 10 minutes, had started on the 12th of june and had finished on the 16th of july. We did not get any problem with the instrument and so all the period has been recorded every 10 minutes. The analysis of the datas will be led on different way. First, will be done a temporal study. We want to determine if the times when occur phenomenons are linked to the location in the town. We will interest particulary to the warming during the morning and the cooling during the evening. Then, we will look for correlation between the temperature and mixing ratio with the wind
NASA Astrophysics Data System (ADS)
Hughes, Scott; Flanagan, Eanna; Hinderer, Tanja; Ruangsri, Uchupol
2015-04-01
We describe how we have modified a frequency-domain Teukolsky-equation solver, previously used for computing orbit-averaged dissipation, in order to compute the dissipative piece of the gravitational self force on orbits of Kerr black holes. This calculation involves summing over a large number of harmonics. Each harmonic is independent of all others, so it is well suited to parallel computation. We show preliminary results for equatorial eccentric orbits and circular inclined orbits, demonstrating convergence of the harmonic expansion, as well as interesting phenomenology of the self force's behavior in the strong field. We conclude by discussing plans for using this force to study generic orbits, with a focus on the behavior of orbital resonances.
Restricted diffusion in a model acinar labyrinth by NMR: Theoretical and numerical results
NASA Astrophysics Data System (ADS)
Grebenkov, D. S.; Guillot, G.; Sapoval, B.
2007-01-01
A branched geometrical structure of the mammal lungs is known to be crucial for rapid access of oxygen to blood. But an important pulmonary disease like emphysema results in partial destruction of the alveolar tissue and enlargement of the distal airspaces, which may reduce the total oxygen transfer. This effect has been intensively studied during the last decade by MRI of hyperpolarized gases like helium-3. The relation between geometry and signal attenuation remained obscure due to a lack of realistic geometrical model of the acinar morphology. In this paper, we use Monte Carlo simulations of restricted diffusion in a realistic model acinus to compute the signal attenuation in a diffusion-weighted NMR experiment. We demonstrate that this technique should be sensitive to destruction of the branched structure: partial removal of the interalveolar tissue creates loops in the tree-like acinar architecture that enhance diffusive motion and the consequent signal attenuation. The role of the local geometry and related practical applications are discussed.
Active behavior of abdominal wall muscles: Experimental results and numerical model formulation.
Grasa, J; Sierra, M; Lauzeral, N; Muñoz, M J; Miana-Mena, F J; Calvo, B
2016-08-01
In the present study a computational finite element technique is proposed to simulate the mechanical response of muscles in the abdominal wall. This technique considers the active behavior of the tissue taking into account both collagen and muscle fiber directions. In an attempt to obtain the computational response as close as possible to real muscles, the parameters needed to adjust the mathematical formulation were determined from in vitro experimental tests. Experiments were conducted on male New Zealand White rabbits (2047±34g) and the active properties of three different muscles: Rectus Abdominis, External Oblique and multi-layered samples formed by three muscles (External Oblique, Internal Oblique, and Transversus Abdominis) were characterized. The parameters obtained for each muscle were incorporated into a finite strain formulation to simulate active behavior of muscles incorporating the anisotropy of the tissue. The results show the potential of the model to predict the anisotropic behavior of the tissue associated to fibers and how this influences on the strain, stress and generated force during an isometric contraction. PMID:27111629
NASA Technical Reports Server (NTRS)
Roussel-Dupre, Robert; Miller, Ronald H.
1993-01-01
The early-time evolution of plasmas moving across a background magnetic field is addressed with a 2D model in which a plasma cloud is assumed to have formed instantaneously with a velocity across a uniform background magnetic field and with a Gaussian density profile in the two dimensions perpendicular to the direction of motion. This model treats both the dynamics associated with the formation of a polarization field and the generation and propagation of electromagnetic waves. In general, the results indicate that, to zeroth order, the plasma cloud behaves like a large dipole antenna oriented in the direction of the polarization field which oscillates at frequencies defined by the normal mode of the system. Radiation damping is shown to play an important role in defining the plasma cloud evolution, causing a rapid decay of the polarizaiton field and a loss of plasma kinetic energy and momentum on time scales comprable to several ion gyroperiods. Scaling laws are derived for the plasma momentum and energy loss rates, and predictions for the braking time, the amplitude and spectrum of the radiation field, and the total radiated power are presented for conditions relevant to the recent Combined Release and Radiation Effects Satellite experiments.
Active behavior of abdominal wall muscles: Experimental results and numerical model formulation.
Grasa, J; Sierra, M; Lauzeral, N; Muñoz, M J; Miana-Mena, F J; Calvo, B
2016-08-01
In the present study a computational finite element technique is proposed to simulate the mechanical response of muscles in the abdominal wall. This technique considers the active behavior of the tissue taking into account both collagen and muscle fiber directions. In an attempt to obtain the computational response as close as possible to real muscles, the parameters needed to adjust the mathematical formulation were determined from in vitro experimental tests. Experiments were conducted on male New Zealand White rabbits (2047±34g) and the active properties of three different muscles: Rectus Abdominis, External Oblique and multi-layered samples formed by three muscles (External Oblique, Internal Oblique, and Transversus Abdominis) were characterized. The parameters obtained for each muscle were incorporated into a finite strain formulation to simulate active behavior of muscles incorporating the anisotropy of the tissue. The results show the potential of the model to predict the anisotropic behavior of the tissue associated to fibers and how this influences on the strain, stress and generated force during an isometric contraction.
Insight into collision zone dynamics from topography: numerical modelling results and observations
NASA Astrophysics Data System (ADS)
Bottrill, A. D.; van Hunen, J.; Allen, M. B.
2012-11-01
Dynamic models of subduction and continental collision are used to predict dynamic topography changes on the overriding plate. The modelling results show a distinct evolution of topography on the overriding plate, during subduction, continental collision and slab break-off. A prominent topographic feature is a temporary (few Myrs) basin on the overriding plate after initial collision. This "collisional mantle dynamic basin" (CMDB) is caused by slab steepening drawing, material away from the base of the overriding plate. Also, during this initial collision phase, surface uplift is predicted on the overriding plate between the suture zone and the CMDB, due to the subduction of buoyant continental material and its isostatic compensation. After slab detachment, redistribution of stresses and underplating of the overriding plate cause the uplift to spread further into the overriding plate. This topographic evolution fits the stratigraphy found on the overriding plate of the Arabia-Eurasia collision zone in Iran and south east Turkey. The sedimentary record from the overriding plate contains Upper Oligocene-Lower Miocene marine carbonates deposited between terrestrial clastic sedimentary rocks, in units such as the Qom Formation and its lateral equivalents. This stratigraphy shows that during the Late Oligocene-Early Miocene the surface of the overriding plate sank below sea level before rising back above sea level, without major compressional deformation recorded in the same area. Our modelled topography changes fit well with this observed uplift and subsidence.
Insight into collision zone dynamics from topography: numerical modelling results and observations
NASA Astrophysics Data System (ADS)
Bottrill, A. D.; van Hunen, J.; Allen, M. B.
2012-07-01
Dynamic models of subduction and continental collision are used to predict dynamic topography changes on the overriding plate. The modelling results show a distinct evolution of topography on the overriding plate, during subduction, continental collision and slab break-off. A prominent topographic feature is a temporary (few Myrs) deepening in the area of the back arc-basin after initial collision. This collisional mantle dynamic basin (CMDB) is caused by slab steepening drawing material away from the base of the overriding plate. Also during this initial collision phase, surface uplift is predicted on the overriding plate between the suture zone and the CMDB, due to the subduction of buoyant continental material and its isostatic compensation. After slab detachment, redistribution of stresses and underplating of the overriding plate causes the uplift to spread further into the overriding plate. This topographic evolution fits the stratigraphy found on the overriding plate of the Arabia-Eurasia collision zone in Iran and south east Turkey. The sedimentary record from the overriding plate contains Upper Oligocene-Lower Miocene marine carbonates deposited between terrestrial clastic sedimentary rocks, in units such as the Qom Formation and its lateral equivalents. This stratigraphy shows that during the Late Oligocene-Early Miocene the surface of the overriding plate sank below sea level before rising back above sea level, without major compressional deformation recorded in the same area. This uplift and subsidence pattern correlates well with our modelled topography changes.
The Formation of Asteroid Satellites in Catastrophic Impacts: Results from Numerical Simulations
NASA Technical Reports Server (NTRS)
Durda, D. D.; Bottke, W. F., Jr.; Enke, B. L.; Asphaug, E.; Richardson, D. C.; Leinhardt, Z. M.
2003-01-01
We have performed new simulations of the formation of asteroid satellites by collisions, using a combination of hydrodynamical and gravitational dynamical codes. This initial work shows that both small satellites and ejected, co-orbiting pairs are produced most favorably by moderate-energy collisions at more direct, rather than oblique, impact angles. Simulations so far seem to be able to produce systems qualitatively similar to known binaries. Asteroid satellites provide vital clues that can help us understand the physics of hypervelocity impacts, the dominant geologic process affecting large main belt asteroids. Moreover, models of satellite formation may provide constraints on the internal structures of asteroids beyond those possible from observations of satellite orbital properties alone. It is probable that most observed main-belt asteroid satellites are by-products of cratering and/or catastrophic disruption events. Several possible formation mechanisms related to collisions have been identified: (i) mutual capture following catastrophic disruption, (ii) rotational fission due to glancing impact and spin-up, and (iii) re-accretion in orbit of ejecta from large, non-catastrophic impacts. Here we present results from a systematic investigation directed toward mapping out the parameter space of the first and third of these three collisional mechanisms.
Kam, Seung I.; Gauglitz, Phillip A. ); Rossen, William R.
2000-12-01
The goal of this study is to fit model parameters to changes in waste level in response to barometric pressure changes in underground storage tanks at the Hanford Site. This waste compressibility is a measure of the quantity of gas, typically hydrogen and other flammable gases that can pose a safety hazard, retained in the waste. A one-dimensional biconical-pore-network model for compressibility of a bubbly slurry is presented in a companion paper. Fitting these results to actual waste level changes in the tanks implies that bubbles are long in the slurry layer and the ratio of pore-body radius to pore-throat radius is close to one; unfortunately, capillary effects can not be quantified unambiguously from the data without additional information on pore geometry. Therefore determining the quantity of gas in the tanks requires more than just slurry volume data. Similar ambiguity also exists with two other simple models: a capillary-tube model with contact angle hysteresis and spherical-p ore model.
Chaotic escape from an open vase-shaped cavity. I. Numerical and experimental results
NASA Astrophysics Data System (ADS)
Novick, Jaison; Keeler, Matthew L.; Giefer, Joshua; Delos, John B.
2012-01-01
We present part I in a two-part study of an open chaotic cavity shaped as a vase. The vase possesses an unstable periodic orbit in its neck. Trajectories passing through this orbit escape without return. For our analysis, we consider a family of trajectories launched from a point on the vase boundary. We imagine a vertical array of detectors past the unstable periodic orbit and, for each escaping trajectory, record the propagation time and the vertical detector position. We find that the escape time exhibits a complicated recursive structure. This recursive structure is explored in part I of our study. We present an approximation to the Helmholtz equation for waves escaping the vase. By choosing a set of detector points, we interpolate trajectories connecting the source to the different detector points. We use these interpolated classical trajectories to construct the solution to the wave equation at a detector point. Finally, we construct a plot of the detector position versus the escape time and compare this graph to the results of an experiment using classical ultrasound waves. We find that generally the classical trajectories organize the escaping ultrasound waves.
Results from CrIS/ATMS Obtained Using an "AIRS Version-6 Like" Retrieval Algorithm
NASA Technical Reports Server (NTRS)
Susskind, Joel; Kouvaris, Louis; Iredell, Lena; Blaisdell, John
2015-01-01
AIRS and CrIS Version-6.22 O3(p) and q(p) products are both superior to those of AIRS Version-6.Monthly mean August 2014 Version-6.22 AIRS and CrIS products agree reasonably well with OMPS, CERES, and witheach other. JPL plans to process AIRS and CrIS for many months and compare interannual differences. Updates to thecalibration of both CrIS and ATMS are still being finalized. We are also working with JPL to develop a joint AIRS/CrISlevel-1 to level-3 processing system using a still to be finalized Version-7 retrieval algorithm. The NASA Goddard DISCwill eventually use this system to reprocess all AIRS and recalibrated CrIS/ATMS. .
NASA Astrophysics Data System (ADS)
Barf, J.; Rapp, T.; Bergmann, M.; Geiger, S.; Scharf, A.; Wolz, F.
2015-09-01
The aim of the Horizon Acquisition Experiment (HORACE) was to prove a new concept for a two-axis horizon sensor using algorithms processing ordinary images, which is also operable at high spinning rates occurring during emergencies. The difficulty to cope with image distortions, which is avoided by conventional horizon sensors, was introduced on purpose as we envision a system being capable of using any optical data. During the flight on REXUS1 16, which provided a suitable platform similar to the future application scenario, a malfunction of the payload cameras caused severe degradation of the collected scientific data. Nevertheless, with the aid of simulations we could show that the concept is accurate (±0.6°), fast (~ lOOms/frame) and robust enough for coarse attitude determination during emergencies and also applicable for small satellites. Besides, technical knowledge regarding the design of REXUS-experiments, including the detection of interferences between SATA and GPS, was gained.
Baker, Mei W.; Groose, Molly; Hoffman, Gary; Rock, Michael; Levy, Hara; Farrell, Philip M.
2011-01-01
Background There has been great variation and uncertainty about how many and what CFTR mutations to include in cystic fibrosis (CF) newborn screening algorithms, and very little research on this topic using large populations of newborns. Methods We reviewed Wisconsin screening results for 1994–2008 to identify an ideal panel. Results Upon analyzing approximately 1 million screening results, we found it optimal to use a 23 CFTR mutation panel as a second tier when an immunoreactive trypsinogen (IRT)/DNA algorithm was applied for CF screening. This panel in association with a 96th percentile IRT cutoff gave a sensitivity of 97.3%, but restricting the DNA tier to F508del was associated with 90% (P<.0001). Conclusions Although CFTR panel selection has been challenging, our data show that a 23 mutation method optimizes sensitivity and is practically advantageous. The IRT cutoff value, however, is actually more critical than DNA in determining CF newborn screening sensitivity. PMID:21388895
Cropsey, Karen L.; Jardin, Bianca; Burkholder, Greer; Clark, C. Brendan; Raper, James L.; Saag, Michael
2015-01-01
Background Smoking now represents one of the biggest modifiable risk factors for disease and mortality in PLHIV. To produce significant changes in smoking rates among this population, treatments will need to be both acceptable to the larger segment of PLHIV smokers as well as feasible to implement in busy HIV clinics. The purpose of this study was to evaluate the feasibility and effects of a novel proactive algorithm-based intervention in an HIV/AIDS clinic. Methods PLHIV smokers (N =100) were proactively identified via their electronic medical records and were subsequently randomized at baseline to receive a 12-week pharmacotherapy-based algorithm treatment or treatment as usual. Participants were tracked in-person for 12-weeks. Participants provided information on smoking behaviors and associated constructs of cessation at each follow-up session. Results The findings revealed that many smokers reported utilizing prescribed medications when provided with a supply of cessation medication as determined by an algorithm. Compared to smokers receiving treatment as usual, PLHIV smokers prescribed these medications reported more quit attempts and greater reduction in smoking. Proxy measures of cessation readiness (e.g., motivation, self-efficacy) also favored participants receiving algorithm treatment. Conclusions This algorithm-derived treatment produced positive changes across a number of important clinical markers associated with smoking cessation. Given these promising findings coupled with the brief nature of this treatment, the overall pattern of results suggests strong potential for dissemination into clinical settings as well as significant promise for further advancing clinical health outcomes in this population. PMID:26181705
Numerical modeling of anti-icing systems and comparison to test results on a NACA 0012 airfoil
NASA Technical Reports Server (NTRS)
Al-Khalil, Kamel M.; Potapczuk, Mark G.
1993-01-01
A series of experimental tests were conducted in the NASA Lewis IRT on an electro-thermally heated NACA 0012 airfoil. Quantitative comparisons between the experimental results and those predicted by a computer simulation code were made to assess the validity of a recently developed anti-icing model. An infrared camera was utilized to scan the instantaneous temperature contours of the skin surface. Despite some experimental difficulties, good agreement between the numerical predictions and the experimental results were generally obtained for the surface temperature and the possibility for the runback to freeze. Some recommendations were given for an efficient operation of a thermal anti-icing system.
Numerical Modeling of Anti-icing Systems and Comparison to Test Results on a NACA 0012 Airfoil
NASA Technical Reports Server (NTRS)
Al-Khalil, Kamel M.; Potapczuk, Mark G.
1993-01-01
A series of experimental tests were conducted in the NASA Lewis IRT on an electro-thermally heated NACA 0012 airfoil. Quantitative comparisons between the experimental results and those predicted by a computer simulation code were made to assess the validity of a recently developed anti-icing model. An infrared camera was utilized to scan the instantaneous temperature contours of the skin surface. Despite some experimental difficulties, good agreement between the numerical predictions and the experiment results were generally obtained for the surface temperature and the possibility for each runback to freeze. Some recommendations were given for an efficient operation of a thermal anti-icing system.
Nourgaliev R.; Knoll D.; Mousseau V.; Berry R.
2007-04-01
The state-of-the-art for Direct Numerical Simulation (DNS) of boiling multiphase flows is reviewed, focussing on potential of available computational techniques, the level of current success for their applications to model several basic flow regimes (film, pool-nucleate and wall-nucleate boiling -- FB, PNB and WNB, respectively). Then, we discuss multiphysics and multiscale nature of practical boiling flows in LWR reactors, requiring high-fidelity treatment of interfacial dynamics, phase-change, hydrodynamics, compressibility, heat transfer, and non-equilibrium thermodynamics and chemistry of liquid/vapor and fluid/solid-wall interfaces. Finally, we outline the framework for the {\\sf Fervent} code, being developed at INL for DNS of reactor-relevant boiling multiphase flows, with the purpose of gaining insight into the physics of multiphase flow regimes, and generating a basis for effective-field modeling in terms of its formulation and closure laws.
NASA Technical Reports Server (NTRS)
Swartz, W. H.; Bucesla, E. J.; Lamsal, L. N.; Celarier, E. A.; Krotkov, N. A.; Bhartia, P, K,; Strahan, S. E.; Gleason, J. F.; Herman, J.; Pickering, K.
2012-01-01
Nitrogen oxides (NOx =NO+NO2) are important atmospheric trace constituents that impact tropospheric air pollution chemistry and air quality. We have developed a new NASA algorithm for the retrieval of stratospheric and tropospheric NO2 vertical column densities using measurements from the nadir-viewing Ozone Monitoring Instrument (OMI) on NASA's Aura satellite. The new products rely on an improved approach to stratospheric NO2 column estimation and stratosphere-troposphere separation and a new monthly NO2 climatology based on the NASA Global Modeling Initiative chemistry-transport model. The retrieval does not rely on daily model profiles, minimizing the influence of a priori information. We evaluate the retrieved tropospheric NO2 columns using surface in situ (e.g., AQS/EPA), ground-based (e.g., DOAS), and airborne measurements (e.g., DISCOVER-AQ). The new, improved OMI tropospheric NO2 product is available at high spatial resolution for the years 200S-present. We believe that this product is valuable for the evaluation of chemistry-transport models, examining the spatial and temporal patterns of NOx emissions, constraining top-down NOx inventories, and for the estimation of NOx lifetimes.
NASA Astrophysics Data System (ADS)
Florens, Serge; Snyman, Izak
2015-11-01
We analyze the spatial correlation structure of the spin density of an electron gas in the vicinity of an antiferromagnetically coupled Kondo impurity. Our analysis extends to the regime of spin-anisotropic couplings, where there are no quantitative results for spatial correlations in the literature. We use an original and numerically exact method, based on a systematic coherent-state expansion of the ground state of the underlying spin-boson Hamiltonian. It has not yet been applied to the computation of observables that are specific to the fermionic Kondo model. We also present an important technical improvement to the method that obviates the need to discretize modes of the Fermi sea, and allows one to tackle the problem in the thermodynamic limit. As a result, one can obtain excellent spatial resolution over arbitrary length scales, for a relatively low computational cost, a feature that gives the method an advantage over popular techniques such as the numerical and density-matrix renormalization groups. We find that the anisotropic Kondo model shows rich universal scaling behavior in the spatial structure of the entanglement cloud. First, SU(2) spin-symmetry is dynamically restored in a finite domain in the parameter space in the vicinity of the isotropic line, as expected from poor man's scaling. More surprisingly, we are able to obtain in closed analytical form a set of different, yet universal, scaling curves for strong exchange asymmetry, which are parametrized by the longitudinal exchange coupling. Deep inside the cloud, i.e., for distances smaller than the Kondo length, the correlation between the electron spin density and the impurity spin oscillates between ferromagnetic and antiferromagnetic values at the scale of the Fermi wavelength, an effect that is drastically enhanced at strongly anisotropic couplings. Our results also provide further numerical checks and alternative analytical approximations for the Kondo overlaps that were recently computed by
NASA Astrophysics Data System (ADS)
Gnutzmann, Sven; Seif, Burkhard
2004-05-01
In a series of two papers we investigate the universal spectral statistics of chaotic quantum systems in the ten known symmetry classes of quantum mechanics. In this first paper we focus on the construction of appropriate ensembles of star graphs in the ten symmetry classes. A generalization of the Bohigas-Giannoni-Schmit conjecture is given that covers all these symmetry classes. The conjecture is supported by numerical results that demonstrate the fidelity of the spectral statistics of star graphs to the corresponding Gaussian random-matrix theories.
Pancheliuga, V A; Pancheliuga, M S
2013-01-01
In the present work a methodological background for the histogram method of time series analysis is developed. Connection between shapes of smoothed histograms constructed on the basis of short segments of time series of fluctuations and the fractal dimension of the segments is studied. It is shown that the fractal dimension possesses all main properties of the histogram method. Based on it a further development of fractal dimension determination algorithm is proposed. This algorithm allows more precision determination of the fractal dimension by using the "all possible combination" method. The application of the method to noise-like time series analysis leads to results, which could be obtained earlier only by means of the histogram method based on human expert comparisons of histograms shapes. PMID:23755565
NASA Technical Reports Server (NTRS)
Wang, Lui; Bayer, Steven E.
1991-01-01
Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology.
NASA Astrophysics Data System (ADS)
Wu, Yang; Kelly, Damien P.
2014-12-01
The distribution of the complex field in the focal region of a lens is a classical optical diffraction problem. Today, it remains of significant theoretical importance for understanding the properties of imaging systems. In the paraxial regime, it is possible to find analytical solutions in the neighborhood of the focus, when a plane wave is incident on a focusing lens whose finite extent is limited by a circular aperture. For example, in Born and Wolf's treatment of this problem, two different, but mathematically equivalent analytical solutions, are presented that describe the 3D field distribution using infinite sums of ? and ? type Lommel functions. An alternative solution expresses the distribution in terms of Zernike polynomials, and was presented by Nijboer in 1947. More recently, Cao derived an alternative analytical solution by expanding the Fresnel kernel using a Taylor series expansion. In practical calculations, however, only a finite number of terms from these infinite series expansions is actually used to calculate the distribution in the focal region. In this manuscript, we compare and contrast each of these different solutions to a numerically calculated result, paying particular attention to how quickly each solution converges for a range of different spatial locations behind the focusing lens. We also examine the time taken to calculate each of the analytical solutions. The numerical solution is calculated in a polar coordinate system and is semi-analytic. The integration over the angle is solved analytically, while the radial coordinate is sampled with a sampling interval of ? and then numerically integrated. This produces an infinite set of replicas in the diffraction plane, that are located in circular rings centered at the optical axis and each with radii given by ?, where ? is the replica order. These circular replicas are shown to be fundamentally different from the replicas that arise in a Cartesian coordinate system.
NASA Astrophysics Data System (ADS)
Musa, A. B.
2015-05-01
The study is about impact of a short elastic rod (or slug) on a stationary semi-infinite viscoelastic rod. The viscoelastic materials are modeled as standard linear solid which involve three material parameters and the motion is treated as one-dimensional. We first establish the governing equations pertaining to the impact of viscoelastic materials subject to certain boundary conditions for the case when an elastic slug moving at a speed V impacts a semi-infinite stationary viscoelastic rod. The objective is to validate the numerical results of stresses and velocities at the interface following wave transmissions and reflections in the slug after the impact using viscoelastic discontinuity. If the stress at the interface becomes tensile and the velocity changes its sign, then the slug and the rod part company. If the stress at the interface is compressive after the impact, the slug and the rod remain in contact. After modelling the impact and solve the governing system of partial differential equations in the Laplace transform domain, we invert the Laplace transformed solution numerically to obtain the stresses and velocities at the interface for several viscosity time constants and ratios of acoustic impedances. In inverting the Laplace transformed equations, we used the complex inversion formula because there is a branch cut and infinitely many poles within the Bromwich contour. In the viscoelastic discontinuity analysis, we look at the moving discontinuities in stress and velocity using the impulse-momentum relation and kinematical condition of compatibility. Finally, we discussed the relationship of the stresses and velocities using numeric and the validated stresses and velocities using viscoelastic discontinuity analysis.
Wu, Yang; Kelly, Damien P.
2014-01-01
The distribution of the complex field in the focal region of a lens is a classical optical diffraction problem. Today, it remains of significant theoretical importance for understanding the properties of imaging systems. In the paraxial regime, it is possible to find analytical solutions in the neighborhood of the focus, when a plane wave is incident on a focusing lens whose finite extent is limited by a circular aperture. For example, in Born and Wolf’s treatment of this problem, two different, but mathematically equivalent analytical solutions, are presented that describe the 3D field distribution using infinite sums of Un and Vn type Lommel functions. An alternative solution expresses the distribution in terms of Zernike polynomials, and was presented by Nijboer in 1947. More recently, Cao derived an alternative analytical solution by expanding the Fresnel kernel using a Taylor series expansion. In practical calculations, however, only a finite number of terms from these infinite series expansions is actually used to calculate the distribution in the focal region. In this manuscript, we compare and contrast each of these different solutions to a numerically calculated result, paying particular attention to how quickly each solution converges for a range of different spatial locations behind the focusing lens. We also examine the time taken to calculate each of the analytical solutions. The numerical solution is calculated in a polar coordinate system and is semi-analytic. The integration over the angle is solved analytically, while the radial coordinate is sampled with a sampling interval of Δρ and then numerically integrated. This produces an infinite set of replicas in the diffraction plane, that are located in circular rings centered at the optical axis and each with radii given by 2πm/Δρ, where m is the replica order. These circular replicas are shown to be fundamentally different from the replicas that arise in a Cartesian coordinate system. PMID
Meyer, H. O.
The PINTEX group studied proton-proton and proton-deuteron scattering and reactions between 100 and 500 MeV at the Indiana University Cyclotron Facility (IUCF). More than a dozen experiments made use of electron-cooled polarized proton or deuteron beams, orbiting in the 'Indiana Cooler' storage ring, and of a polarized atomic-beam target of hydrogen or deuterium in the path of the stored beam. The collaboration involved researchers from several midwestern universities, as well as a number of European institutions. The PINTEX program ended when the Indiana Cooler was shut down in August 2002. The website contains links to some of the numerical results, descriptions of experiments, and a complete list of publications resulting from PINTEX.
Siddique, Waseem; El-Gabry, Lamyaa; Shevchuk, Igor V; Fransson, Torsten H
2013-01-01
High inlet temperatures in a gas turbine lead to an increase in the thermal efficiency of the gas turbine. This results in the requirement of cooling of gas turbine blades/vanes. Internal cooling of the gas turbine blade/vanes with the help of two-pass channels is one of the effective methods to reduce the metal temperatures. In particular, the trailing edge of a turbine vane is a critical area, where effective cooling is required. The trailing edge can be modeled as a trapezoidal channel. This paper describes the numerical validation of the heat transfer and pressure drop in a trapezoidal channel with and without orthogonal ribs at the bottom surface. A new concept of ribbed trailing edge has been introduced in this paper which presents a numerical study of several trailing edge cooling configurations based on the placement of ribs at different walls. The baseline geometries are two-pass trapezoidal channels with and without orthogonal ribs at the bottom surface of the channel. Ribs induce secondary flow which results in enhancement of heat transfer; therefore, for enhancement of heat transfer at the trailing edge, ribs are placed at the trailing edge surface in three different configurations: first without ribs at the bottom surface, then ribs at the trailing edge surface in-line with the ribs at the bottom surface, and finally staggered ribs. Heat transfer and pressure drop is calculated at Reynolds number equal to 9400 for all configurations. Different turbulent models are used for the validation of the numerical results. For the smooth channel low-Re k-ɛ model, realizable k-ɛ model, the RNG k-ω model, low-Re k-ω model, and SST k-ω models are compared, whereas for ribbed channel, low-Re k-ɛ model and SST k-ω models are compared. The results show that the low-Re k-ɛ model, which predicts the heat transfer in outlet pass of the smooth channels with difference of +7%, underpredicts the heat transfer by -17% in case of ribbed channel compared to
Siddique, Waseem; El-Gabry, Lamyaa; Shevchuk, Igor V; Fransson, Torsten H
2013-01-01
High inlet temperatures in a gas turbine lead to an increase in the thermal efficiency of the gas turbine. This results in the requirement of cooling of gas turbine blades/vanes. Internal cooling of the gas turbine blade/vanes with the help of two-pass channels is one of the effective methods to reduce the metal temperatures. In particular, the trailing edge of a turbine vane is a critical area, where effective cooling is required. The trailing edge can be modeled as a trapezoidal channel. This paper describes the numerical validation of the heat transfer and pressure drop in a trapezoidal channel with and without orthogonal ribs at the bottom surface. A new concept of ribbed trailing edge has been introduced in this paper which presents a numerical study of several trailing edge cooling configurations based on the placement of ribs at different walls. The baseline geometries are two-pass trapezoidal channels with and without orthogonal ribs at the bottom surface of the channel. Ribs induce secondary flow which results in enhancement of heat transfer; therefore, for enhancement of heat transfer at the trailing edge, ribs are placed at the trailing edge surface in three different configurations: first without ribs at the bottom surface, then ribs at the trailing edge surface in-line with the ribs at the bottom surface, and finally staggered ribs. Heat transfer and pressure drop is calculated at Reynolds number equal to 9400 for all configurations. Different turbulent models are used for the validation of the numerical results. For the smooth channel low-Re k-ɛ model, realizable k-ɛ model, the RNG k-ω model, low-Re k-ω model, and SST k-ω models are compared, whereas for ribbed channel, low-Re k-ɛ model and SST k-ω models are compared. The results show that the low-Re k-ɛ model, which predicts the heat transfer in outlet pass of the smooth channels with difference of +7%, underpredicts the heat transfer by -17% in case of ribbed channel compared to
NASA Astrophysics Data System (ADS)
Venema, Victor; Mestre, Olivier
2010-05-01
As part of the COST Action HOME (Advances in homogenisation methods of climate series: an integrated approach) a dataset was generated that serves as a benchmark for homogenisation algorithms. Members of the Action and third parties have been invited to homogenise this dataset. The results of this exercise are analysed by the HOME Working Groups (WG) on detection (WG2) and correction (WG3) algorithms to obtain recommendations for a standard homogenisation procedure for climate data. This talk will shortly describe this benchmark dataset and present first results comparing the quality of the about 25 contributions. Based upon a survey among homogenisation experts we chose to work with monthly values for temperature and precipitation. Temperature and precipitation were selected because most participants consider these elements the most relevant for their studies. Furthermore, they represent two important types of statistics (additive and multiplicative). The benchmark has three different types of datasets: real data, surrogate data and synthetic data. The real datasets allow comparing the different homogenisation methods with the most realistic type of data and inhomogeneities. Thus this part of the benchmark is important for a faithful comparison of algorithms with each other. However, as in this case the truth is not known, it is not possible to quantify the improvements due to homogenisation. Therefore, the benchmark also has two datasets with artificial data to which we inserted known inhomogeneities: surrogate and synthetic data. The aim of surrogate data is to reproduce the structure of measured data accurately enough that it can be used as substitute for measurements. The surrogate climate networks have the spatial and temporal auto- and cross-correlation functions of real homogenised networks as well as the exact (non-Gaussian) distribution for each station. The idealised synthetic data is based on the surrogate networks. The change is that the difference
NASA Astrophysics Data System (ADS)
de'Michieli Vitturi, M.; Todesco, M.; Neri, A.; Esposti Ongaro, T.; Tola, E.; Rocco, G.
2011-12-01
We present a new DVD of the INGV outreach series, aimed at illustrating our research work on pyroclastic flow modeling. Pyroclastic flows (or pyroclastic density currents) are hot, devastating clouds of gas and ashes, generated during explosive eruptions. Understanding their dynamics and impact is crucial for a proper hazard assessment. We employ a 3D numerical model which describes the main features of the multi-phase and multi-component process, from the generation of the flows to their propagation along complex terrains. Our numerical results can be translated into color animations, which describe the temporal evolution of flow variables such as temperature or ash concentration. The animations provide a detailed and effective description of the natural phenomenon which can be used to present this geological process to a general public and to improve the hazard perception in volcanic areas. In our DVD, the computer animations are introduced and commented by professionals and researchers who deals at various levels with the study of pyroclastic flows and their impact. Their comments are taken as short interviews, mounted in a short video (about 10 minutes), which describes the natural process, as well as the model and its applications to some explosive volcanoes like Vesuvio, Campi Flegrei, Mt. St. Helens and Soufriere Hills (Montserrat). The ensemble of different voices and faces provides a direct sense of the multi-disciplinary effort involved in the assessment of pyroclastic flow hazard. The video also introduces the people who address this complex problem, and the personal involvement beyond the scientific results. The full, uncommented animations of the pyroclastic flow propagation on the different volcanic settings are also provided in the DVD, that is meant to be a general, flexible outreach tool.
NASA Astrophysics Data System (ADS)
Mazoyer, Johan; Pueyo, Laurent; Norman, Colin; N'Diaye, Mamadou; van der Marel, Roeland P.; Soummer, Rémi
2016-03-01
The new frontier in the quest for the highest contrast levels in the focal plane of a coronagraph is now the correction of the large diffraction artifacts introduced at the science camera by apertures of increasing complexity. Indeed, the future generation of space- and ground-based coronagraphic instruments will be mounted on on-axis and/or segmented telescopes; the design of coronagraphic instruments for such observatories is currently a domain undergoing rapid progress. One approach consists of using two sequential deformable mirrors (DMs) to correct for aberrations introduced by secondary mirror structures and segmentation of the primary mirror. The coronagraph for the WFIRST-AFTA mission will be the first of such instruments in space with a two-DM wavefront control system. Regardless of the control algorithm for these multiple DMs, they will have to rely on quick and accurate simulation of the propagation effects introduced by the out-of-pupil surface. In the first part of this paper, we present the analytical description of the different approximations to simulate these propagation effects. In Appendix A, we prove analytically that in the special case of surfaces inducing a converging beam, the Fresnel method yields high fidelity for simulations of these effects. We provide numerical simulations showing this effect. In the second part, we use these tools in the framework of the active compensation of aperture discontinuities (ACAD) technique applied to pupil geometries similar to WFIRST-AFTA. We present these simulations in the context of the optical layout of the high-contrast imager for complex aperture telescopes, which will test ACAD on a optical bench. The results of this analysis show that using the ACAD method, an apodized pupil Lyot coronagraph, and the performance of our current DMs, we are able to obtain, in numerical simulations, a dark hole with a WFIRST-AFTA-like. Our numerical simulation shows that we can obtain contrast better than 2×10-9 in
Remote sensing of gases by hyperspectral imaging: algorithms and results of field measurements
NASA Astrophysics Data System (ADS)
Sabbah, Samer; Rusch, Peter; Eichmann, Jens; Gerhard, Jörn-Hinnrich; Harig, Roland
2012-09-01
Remote gas detection and visualization provides vital information in scenarios involving chemical accidents, terrorist attacks or gas leaks. Previous work showed how imaging infrared spectroscopy can be used to assess the location, the dimensions, and the dispersion of a potentially hazardous cloud. In this work the latest developments of an infrared hyperspectral imager based on a Michelson interferometer in combination with a focal plane array detector are presented. The performance of the system is evaluated by laboratory measurements. The system was deployed in field measurements to identify industrial gas emissions. Excellent results were obtained by successfully identifying released gases from relatively long distances.
NASA Technical Reports Server (NTRS)
Vinh, Hoang; Dwyer, Harry A.; Van Dam, C. P.
1992-01-01
The applications of two CFD-based finite-difference methods to computational electromagnetics are investigated. In the first method, the time-domain Maxwell's equations are solved using the explicit Lax-Wendroff scheme and in the second method, the second-order wave equations satisfying the Maxwell's equations are solved using the implicit Crank-Nicolson scheme. The governing equations are transformed to a generalized curvilinear coordinate system and solved on a body-conforming mesh using the scattered-field formulation. The induced surface current and the bistatic radar cross section are computed and the results are validated for several two-dimensional test cases involving perfectly-conducting scatterers submerged in transverse-magnetic plane waves.
Simulation Results of the Huygens Probe Entry and Descent Trajectory Reconstruction Algorithm
NASA Technical Reports Server (NTRS)
Kazeminejad, B.; Atkinson, D. H.; Perez-Ayucar, M.
2005-01-01
Cassini/Huygens is a joint NASA/ESA mission to explore the Saturnian system. The ESA Huygens probe is scheduled to be released from the Cassini spacecraft on December 25, 2004, enter the atmosphere of Titan in January, 2005, and descend to Titan s surface using a sequence of different parachutes. To correctly interpret and correlate results from the probe science experiments and to provide a reference set of data for "ground-truthing" Orbiter remote sensing measurements, it is essential that the probe entry and descent trajectory reconstruction be performed as early as possible in the postflight data analysis phase. The Huygens Descent Trajectory Working Group (DTWG), a subgroup of the Huygens Science Working Team (HSWT), is responsible for developing a methodology and performing the entry and descent trajectory reconstruction. This paper provides an outline of the trajectory reconstruction methodology, preliminary probe trajectory retrieval test results using a simulated synthetic Huygens dataset developed by the Huygens Project Scientist Team at ESA/ESTEC, and a discussion of strategies for recovery from possible instrument failure.
Deriving Arctic Cloud Microphysics at Barrow, Alaska. Algorithms, Results, and Radiative Closure
Shupe, Matthew D.; Turner, David D.; Zwink, Alexander; Thieman, Mandana M.; Mlawer, Eli J.; Shippert, Timothy
2015-07-01
Cloud phase and microphysical properties control the radiative effects of clouds in the climate system and are therefore crucial to characterize in a variety of conditions and locations. An Arctic-specific, ground-based, multi-sensor cloud retrieval system is described here and applied to two years of observations from Barrow, Alaska. Over these two years, clouds occurred 75% of the time, with cloud ice and liquid each occurring nearly 60% of the time. Liquid water occurred at least 25% of the time even in the winter, and existed up to heights of 8 km. The vertically integrated mass of liquid was typically larger than that of ice. While it is generally difficult to evaluate the overall uncertainty of a comprehensive cloud retrieval system of this type, radiative flux closure analyses were performed where flux calculations using the derived microphysical properties were compared to measurements at the surface and top-of-atmosphere. Radiative closure biases were generally smaller for cloudy scenes relative to clear skies, while the variability of flux closure results was only moderately larger than under clear skies. The best closure at the surface was obtained for liquid-containing clouds. Radiative closure results were compared to those based on a similar, yet simpler, cloud retrieval system. These comparisons demonstrated the importance of accurate cloud phase classification, and specifically the identification of liquid water, for determining radiative fluxes. Enhanced retrievals of liquid water path for thin clouds were also shown to improve radiative flux calculations.
NASA Technical Reports Server (NTRS)
Guo, Liwen; Cardullo, Frank M.; Kelly, Lon C.
2007-01-01
This report summarizes the results of delay measurement and piloted performance tests that were conducted to assess the effectiveness of the adaptive compensator and the state space compensator for alleviating the phase distortion of transport delay in the visual system in the VMS at the NASA Langley Research Center. Piloted simulation tests were conducted to assess the effectiveness of two novel compensators in comparison to the McFarland predictor and the baseline system with no compensation. Thirteen pilots with heterogeneous flight experience executed straight-in and offset approaches, at various delay configurations, on a flight simulator where different predictors were applied to compensate for transport delay. The glideslope and touchdown errors, power spectral density of the pilot control inputs, NASA Task Load Index, and Cooper-Harper rating of the handling qualities were employed for the analyses. The overall analyses show that the adaptive predictor results in slightly poorer compensation for short added delay (up to 48 ms) and better compensation for long added delay (up to 192 ms) than the McFarland compensator. The analyses also show that the state space predictor is fairly superior for short delay and significantly superior for long delay than the McFarland compensator.
G. L. Hawkes; J. E. O'Brien; B. A. Haberman; A. J. Marquis; C. M. Baca; D. Tripepi; P. Costamagna
2008-06-01
A numerical study of the thermal and electrochemical performance of a single-tube Integrated Planar Solid Oxide Fuel Cell (IP-SOFC) has been performed. Results obtained from two finite-volume computational fluid dynamics (CFD) codes FLUENT and SOHAB and from a two-dimensional inhouse developed finite-volume GENOA model are presented and compared. Each tool uses physical and geometric models of differing complexity and comparisons are made to assess their relative merits. Several single-tube simulations were run using each code over a range of operating conditions. The results include polarization curves, distributions of local current density, composition and temperature. Comparisons of these results are discussed, along with their relationship to the respective imbedded phenomenological models for activation losses, fluid flow and mass transport in porous media. In general, agreement between the codes was within 15% for overall parameters such as operating voltage and maximum temperature. The CFD results clearly show the effects of internal structure on the distributions of gas flows and related quantities within the electrochemical cells.
Minimal Sign Representation of Boolean Functions: Algorithms and Exact Results for Low Dimensions.
Sezener, Can Eren; Oztop, Erhan
2015-08-01
Boolean functions (BFs) are central in many fields of engineering and mathematics, such as cryptography, circuit design, and combinatorics. Moreover, they provide a simple framework for studying neural computation mechanisms of the brain. Many representation schemes for BFs exist to satisfy the needs of the domain they are used in. In neural computation, it is of interest to know how many input lines a neuron would need to represent a given BF. A common BF representation to study this is the so-called polynomial sign representation where [Formula: see text] and 1 are associated with true and false, respectively. The polynomial is treated as a real-valued function and evaluated at its parameters, and the sign of the polynomial is then taken as the function value. The number of input lines for the modeled neuron is exactly the number of terms in the polynomial. This letter investigates the minimum number of terms, that is, the minimum threshold density, that is sufficient to represent a given BF and more generally aims to find the maximum over this quantity for all BFs in a given dimension. With this work, for the first time exact results for four- and five-variable BFs are obtained, and strong bounds for six-variable BFs are derived. In addition, some connections between the sign representation framework and bent functions are derived, which are generally studied for their desirable cryptographic properties.
The equation of state for stellar envelopes. II - Algorithm and selected results
NASA Technical Reports Server (NTRS)
Mihalas, Dimitri; Dappen, Werner; Hummer, D. G.
1988-01-01
A free-energy-minimization method for computing the dissociation and ionization equilibrium of a multicomponent gas is discussed. The adopted free energy includes terms representing the translational free energy of atoms, ions, and molecules; the internal free energy of particles with excited states; the free energy of a partially degenerate electron gas; and the configurational free energy from shielded Coulomb interactions among charged particles. Internal partition functions are truncated using an occupation probability formalism that accounts for perturbations of bound states by both neutral and charged perturbers. The entire theory is analytical and differentiable to all orders, so it is possible to write explicit analytical formulas for all derivatives required in a Newton-Raphson iteration; these are presented to facilitate future work. Some representative results for both Saha and free-energy-minimization equilibria are presented for a hydrogen-helium plasma with N(He)/N(H) = 0.10. These illustrate nicely the phenomena of pressure dissociation and ionization, and also demonstrate vividly the importance of choosing a reliable cutoff procedure for internal partition functions.
Minimal Sign Representation of Boolean Functions: Algorithms and Exact Results for Low Dimensions.
Sezener, Can Eren; Oztop, Erhan
2015-08-01
Boolean functions (BFs) are central in many fields of engineering and mathematics, such as cryptography, circuit design, and combinatorics. Moreover, they provide a simple framework for studying neural computation mechanisms of the brain. Many representation schemes for BFs exist to satisfy the needs of the domain they are used in. In neural computation, it is of interest to know how many input lines a neuron would need to represent a given BF. A common BF representation to study this is the so-called polynomial sign representation where [Formula: see text] and 1 are associated with true and false, respectively. The polynomial is treated as a real-valued function and evaluated at its parameters, and the sign of the polynomial is then taken as the function value. The number of input lines for the modeled neuron is exactly the number of terms in the polynomial. This letter investigates the minimum number of terms, that is, the minimum threshold density, that is sufficient to represent a given BF and more generally aims to find the maximum over this quantity for all BFs in a given dimension. With this work, for the first time exact results for four- and five-variable BFs are obtained, and strong bounds for six-variable BFs are derived. In addition, some connections between the sign representation framework and bent functions are derived, which are generally studied for their desirable cryptographic properties. PMID:26079754
New formulations of monotonically convergent quantum control algorithms
NASA Astrophysics Data System (ADS)
Maday, Yvon; Turinici, Gabriel
2003-05-01
Most of the numerical simulation in quantum (bilinear) control have used one of the monotonically convergent algorithms of Krotov (introduced by Tannor et al.) or of Zhu and Rabitz. However, until now no explicit relationship has been revealed between the two algorithms in order to understand their common properties. Within this framework, we propose in this paper a unified formulation that comprises both algorithms and that extends to a new class of monotonically convergent algorithms. Numerical results show that the newly derived algorithms behave as well as (and sometimes better than) the well-known algorithms cited above.
NASA Astrophysics Data System (ADS)
Kareinen, Niko; Hobiger, Thomas; Haas, Rüdiger
2015-11-01
The time-dependent variations in the rotation and orientation of the Earth are represented by a set of Earth Orientation Parameters (EOP). Currently, Very Long Baseline Interferometry (VLBI) is the only technique able to measure all EOP simultaneously and to provide direct observation of universal time, usually expressed as UT1-UTC. To produce estimates for UT1-UTC on a daily basis, 1-h VLBI experiments involving two or three stations are organised by the International VLBI Service for Geodesy and Astrometry (IVS), the IVS Intensive (INT) series. There is an ongoing effort to minimise the turn-around time for the INT sessions in order to achieve near real-time and high quality UT1-UTC estimates. As a step further towards true fully automated real-time analysis of UT1-UTC, we carry out an extensive investigation with INT sessions on the Kokee-Wettzell baseline. Our analysis starts with the first versions of the observational files in S- and X-band and includes an automatic group delay ambiguity resolution and ionospheric calibration. Several different analysis strategies are investigated. In particular, we focus on the impact of external information, such as meteorological and cable delay data provided in the station log-files, and a priori EOP information. The latter is studied by extensive Monte Carlo simulations. Our main findings are that it is easily possible to analyse the INT sessions in a fully automated mode to provide UT1-UTC with very low latency. The information found in the station log-files is important for the accuracy of the UT1-UTC results, provided that the data in the station log-files are reliable. Furthermore, to guarantee UT1-UTC with an accuracy of less than 20 μs, it is necessary to use predicted a priori polar motion data in the analysis that are not older than 12 h.
NASA Astrophysics Data System (ADS)
Hand, J. W.; Li, Y.; Hajnal, J. V.
2010-02-01
Numerical simulations of specific absorption rate (SAR) and temperature changes in a 26-week pregnant woman model within typical birdcage body coils as used in 1.5 T and 3 T MRI scanners are described. Spatial distributions of SAR and the resulting spatial and temporal changes in temperature are determined using a finite difference time domain method and a finite difference bio-heat transfer solver that accounts for discrete vessels. Heat transfer from foetus to placenta via the umbilical vein and arteries as well as that across the foetal skin/amniotic fluid/uterine wall boundaries is modelled. Results suggest that for procedures compliant with IEC normal mode conditions (maternal whole-body averaged SARMWB <= 2 W kg-1 (continuous or time-averaged over 6 min)), whole foetal SAR, local foetal SAR10g and average foetal temperature are within international safety limits. For continuous RF exposure at SARMWB = 2 W kg-1 over periods of 7.5 min or longer, a maximum local foetal temperature >38 °C may occur. However, assessment of the risk posed by such maximum temperatures predicted in a static model is difficult because of frequent foetal movement. Results also confirm that when SARMWB = 2 W kg-1, some local SAR10g values in the mother's trunk and extremities exceed recommended limits.
Ermolaev, B.S.; Novozhilov, B.V.; Posvyanskii, V.S.; Sulimov, A.A.
1986-03-01
The authors analyze the results of a numerical simulation of the convective burning of explosive powders in the presence of increasing pressure. The formulation of the problem reproduces a typical experimental technique: a strong closed vessel with a channel uniformly filled with the explosive investigated is fitted with devices for initiating and recording the process of explosion. It is shown that the relation between the propagation velocities of the flame and the compression waves in the powder and the rate of pressure increase in the combustion zone is such that a narrow compaction zone is formed ahead of the ignition front. Another important result is obtained by analyzing the difference between the flame velocity and the gas flow velocity in the ignition front. A model of the process is given. The results of the investigation throw light on such aspects of the convective combustion mechanism and the transition from combustion to detonation as the role of compaction of the explosive in the process of flame propogation and the role of the rate of pressure increase and dissipative heating of the gas phase in the pores ahead of the ignition front.
NASA Astrophysics Data System (ADS)
Chen, R.; Pagonis, V.; Lawless, J. L.
2006-02-01
Nonmonotonic dose dependence of optically stimulated luminescence (OSL) has been reported in a number of materials including Al2O3:C which is one of the main dosimetric materials. In a recent work, the nonmonotonic effect has been shown to result, under certain circumstances, from the competition either during excitation or during readout between trapping states or recombination centers. In the present work, we report on a study of the effect in a more concrete framework of two trapping states and two kinds of recombination centers involved in the luminescence processes in Al2O3:C. Using sets of trapping parameters, based on available experimental data, previously utilized to explain the nonmonotonic dose dependence of thermoluminescence including nonzero initial occupancies of recombination centers (F+ centers), the OSL along with the occupancies of the relevant traps and centers are simulated numerically. The connection between these different resulting quantities is discussed, giving a better insight as to the ranges of the increase and decrease of the integral OSL as a function of dose, as well as the constant equilibrium value occurring at high doses.
NASA Technical Reports Server (NTRS)
Gomberg, Joan; Ellis, Michael
1994-01-01
We present results of a series of numerical experiments designed to test hypothetical mechanisms that derive deformation in the New Madrid seismic zone. Experiments are constrained by subtle topography and the distribution of seismicity in the region. We use a new boundary element algorithm that permits calcuation of the three-dimensional deformation field. Surface displacement fields are calculated for the New Madrid zone under both far-field (plate tectonics scale) and locally derived driving strains. Results demonstrate that surface displacement fields cannot distinguish between either a far-field simple or pure shear strain field or one that involves a deep shear zone beneath the upper crustal faults. Thus, neither geomorphic nor geodetic studies alone are expected to reveal the ultimate driving mechanism behind the present-day deformation. We have also tested hypotheses about strain accommodation within the New Madrid contractional step-over by including linking faults, two southwest dipping and one vertical, recently inferred from microearthquake data. Only those models with step-over faults are able to predict the observed topography. Surface displacement fields for long-term, relaxed deformation predict the distribution of uplift and subsidence in the contractional step-over remarkably well. Generation of these displacement fields appear to require slip on both the two northeast trending vertical faults and the two dipping faults in the step-over region, with very minor displacements occurring during the interseismic period when the northeast trending vertical faults are locked. These models suggest that the gently dippling central step-over fault is a reverse fault and that the steeper fault, extending to the southeast of the step-over, acts as a normal fault over the long term.
NASA Technical Reports Server (NTRS)
Peltier, L. J.; Biringen, S.
1993-01-01
The present numerical simulation explores a thermal-convective mechanism for oscillatory thermocapillary convection in a shallow Cartesian cavity for a Prandtl number 6.78 fluid. The computer program developed for this simulation integrates the two-dimensional, time-dependent Navier-Stokes equations and the energy equation by a time-accurate method on a stretched, staggered mesh. Flat free surfaces are assumed. The instability is shown to depend upon temporal coupling between large scale thermal structures within the flow field and the temperature sensitive free surface. A primary result of this study is the development of a stability diagram presenting the critical Marangoni number separating steady from the time-dependent flow states as a function of aspect ratio for the range of values between 2.3 and 3.8. Within this range, a minimum critical aspect ratio near 2.3 and a minimum critical Marangoni number near 20,000 are predicted below which steady convection is found.
NASA Astrophysics Data System (ADS)
Chirkov, V. A.; Komarov, D. K.; Stishkov, Y. K.; Vasilkov, S. A.
2015-10-01
The paper studies a particular electrode system, two flat parallel electrodes with a dielectric plate having a small circular hole between them. Its main feature is that the region of the strong electric field is located far from metal electrode surfaces, which permits one to preclude the injection charge formation and to observe field-enhanced dissociation (the Wien effect) leading to the emergence of electrohydrodynamic (EHD) flow. The described electrode system was studied by way of both computer simulation and experiment. The latter was conducted with the help of the particle image velocimetry (or PIV) technique. The numerical research used trusted software package COMSOL Multiphysics, which allows solving the complete set of EHD equations and obtaining the EHD flow structure. Basing on the computer simulation and the comparison with experimental investigation results, it was concluded that the Wien effect is capable of causing intense (several centimeters per second) EHD flows in low-conducting liquids and has to be taken into account when dealing with EHD devices.
Luo Xueli; Day, Christian; Haas, Horst; Varoutis, Stylianos
2011-07-15
For the torus of the nuclear fusion project ITER (originally the International Thermonuclear Experimental Reactor, but also Latin: the way), eight high-performance large-scale customized cryopumps must be designed and manufactured to accommodate the very high pumping speeds and throughputs of the fusion exhaust gas needed to maintain the plasma under stable vacuum conditions and comply with other criteria which cannot be met by standard commercial vacuum pumps. Under an earlier research and development program, a model pump of reduced scale based on active cryosorption on charcoal-coated panels at 4.5 K was manufactured and tested systematically. The present article focuses on the simulation of the true three-dimensional complex geometry of the model pump by the newly developed ProVac3D Monte Carlo code. It is shown for gas throughputs of up to 1000 sccm ({approx}1.69 Pa m{sup 3}/s at T = 0 deg. C) in the free molecular regime that the numerical simulation results are in good agreement with the pumping speeds measured. Meanwhile, the capture coefficient associated with the virtual region around the cryogenic panels and shields which holds for higher throughputs is calculated using this generic approach. This means that the test particle Monte Carlo simulations in free molecular flow can be used not only for the optimization of the pumping system but also for the supply of the input parameters necessary for the future direct simulation Monte Carlo in the full flow regime.
2010-01-01
Background The mitosporic fungus Trichoderma harzianum (Hypocrea, Ascomycota, Hypocreales, Hypocreaceae) is an ubiquitous species in the environment with some strains commercially exploited for the biological control of plant pathogenic fungi. Although T. harzianum is asexual (or anamorphic), its sexual stage (or teleomorph) has been described as Hypocrea lixii. Since recombination would be an important issue for the efficacy of an agent of the biological control in the field, we investigated the phylogenetic structure of the species. Results Using DNA sequence data from three unlinked loci for each of 93 strains collected worldwide, we detected a complex speciation process revealing overlapping reproductively isolated biological species, recent agamospecies and numerous relict lineages with unresolved phylogenetic positions. Genealogical concordance and recombination analyses confirm the existence of two genetically isolated agamospecies including T. harzianum sensu stricto and two hypothetical holomorphic species related to but different from H. lixii. The exact phylogenetic position of the majority of strains was not resolved and therefore attributed to a diverse network of recombining strains conventionally called 'pseudoharzianum matrix'. Since H. lixii and T. harzianum are evidently genetically isolated, the anamorph - teleomorph combination comprising H. lixii/T. harzianum in one holomorph must be rejected in favor of two separate species. Conclusions Our data illustrate a complex speciation within H. lixii - T. harzianum species group, which is based on coexistence and interaction of organisms with different evolutionary histories and on the absence of strict genetic borders between them. PMID:20359347
NASA Astrophysics Data System (ADS)
Pei, Chengquan; Tian, Jinshou; Wu, Shengli; He, Jiai; Liu, Zhen
2016-10-01
The transient response is of great influence on the electromagnetic compatibility of synchronous scanning streak cameras (SSSCs). In this paper we propose a numerical method to evaluate the transient response of the scanning deflection plate (SDP). First, we created a simplified circuit model for the SDP used in an SSSC, and then derived the Baum-Liu-Tesche (BLT) equation in the frequency domain. From the frequency-domain BLT equation, its transient counterpart was derived. These parameters, together with the transient-BLT equation, were used to compute the transient load voltage and load current, and then a novel numerical method to fulfill the continuity equation was used. Several numerical simulations were conducted to verify this proposed method. The computed results were then compared with transient responses obtained by a frequency-domain/fast Fourier transform (FFT) method, and the accordance was excellent for highly conducting cables. The benefit of deriving the BLT equation in the time domain is that it may be used with slight modifications to calculate the transient response and the error can be controlled by a computer program. The result showed that the transient voltage was up to 1000 V and the transient current was approximately 10 A, so some protective measures should be taken to improve the electromagnetic compatibility.
NASA Technical Reports Server (NTRS)
Knox, C. E.; Cannon, D. G.
1979-01-01
A flight management algorithm designed to improve the accuracy of delivering the airplane fuel efficiently to a metering fix at a time designated by air traffic control is discussed. The algorithm provides a 3-D path with time control (4-D) for a test B 737 airplane to make an idle thrust, clean configured descent to arrive at the metering fix at a predetermined time, altitude, and airspeed. The descent path is calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard pressure and temperature effects. The flight management descent algorithms and the results of the flight tests are discussed.
NASA Astrophysics Data System (ADS)
Trzaska, S.; Moron, V.; Fontaine, B.
1996-10-01
This article investigates through numerical experiments the controversial question of the impact of El Niño-Southern Oscillation (ENSO) phenomena on climate according to large-scale and regional-scale interhemispheric thermal contrast. Eight experiments (two considering only inversed Atlantic thermal anomalies and six combining ENSO warm phase with large-scale interhemispheric contrast and Atlantic anomaly patterns) were performed with the Météo-France atmospheric general circulation model. The definition of boundary conditions from observed composites and principal components is presented and preliminary results concerning the month of August, especially over West Africa and the equatorial Atlantic are discussed. Results are coherent with observations and show that interhemispheric and regional scale sea-surface-temperature anomaly (SST) patterns could significantly modulate the impact of ENSO phenomena: the impact of warm-phase ENSO, relative to the atmospheric model intercomparison project (AMIP) climatology, seems stronger when embedded in global and regional SSTA patterns representative of the post-1970 conditions [i.e. with temperatures warmer (colder) than the long-term mean in the southern hemisphere (northern hemisphere)]. Atlantic SSTAs may also play a significant role. Acknowledgements. We gratefully appreciate the on-line DMSP database facility at APL (Newell et al., 1991) from which this study has benefited greatly. We wish to thank E. Friis-Christensen for his encouragement and useful discussions. A. Y. would like to thank the Danish Meteorological Institute, where this work was done, for its hospitality during his stay there and the Nordic Baltic Scholarship Scheme for its financial support of this stay. Topical Editor K.-H. Glassmeier thanks M. J. Engebretson and H. Lühr for their help in evaluating this paper.--> Correspondence to: A. Yahnin-->
An algorithm for the automatic synchronization of Omega receivers
NASA Technical Reports Server (NTRS)
Stonestreet, W. M.; Marzetta, T. L.
1977-01-01
The Omega navigation system and the requirement for receiver synchronization are discussed. A description of the synchronization algorithm is provided. The numerical simulation and its associated assumptions were examined and results of the simulation are presented. The suggested form of the synchronization algorithm and the suggested receiver design values were surveyed. A Fortran of the synchronization algorithm used in the simulation was also included.
Spurious Numerical Solutions Of Differential Equations
NASA Technical Reports Server (NTRS)
Lafon, A.; Yee, H. C.
1995-01-01
Paper presents detailed study of spurious steady-state numerical solutions of differential equations that contain nonlinear source terms. Main objectives of this study are (1) to investigate how well numerical steady-state solutions of model nonlinear reaction/convection boundary-value problem mimic true steady-state solutions and (2) to relate findings of this investigation to implications for interpretation of numerical results from computational-fluid-dynamics algorithms and computer codes used to simulate reacting flows.
Jacobsen, S; Birkelund, Y
2010-01-01
Microwave breast cancer detection is based on the dielectric contrast between healthy and malignant tissue. This radar-based imaging method involves illumination of the breast with an ultra-wideband pulse. Detection of tumors within the breast is achieved by some selected focusing technique. Image formation algorithms are tailored to enhance tumor responses and reduce early-time and late-time clutter associated with skin reflections and heterogeneity of breast tissue. In this contribution, we evaluate the performance of the so-called cross-correlated back projection imaging scheme by using a scanning system in phantom experiments. Supplementary numerical modeling based on commercial software is also presented. The phantom is synthetically scanned with a broadband elliptical antenna in a mono-static configuration. The respective signals are pre-processed by a data-adaptive RLS algorithm in order to remove artifacts caused by antenna reverberations and signal clutter. Successful detection of a 7 mm diameter cylindrical tumor immersed in a low permittivity medium was achieved in all cases. Selecting the widely used delay-and-sum (DAS) beamforming algorithm as a benchmark, we show that correlation based imaging methods improve the signal-to-clutter ratio by at least 10 dB and improves spatial resolution through a reduction of the imaged peak full-width half maximum (FWHM) of about 40-50%.
NASA Astrophysics Data System (ADS)
Crow, W.; Gasda, S. E.; Williams, D. B.; Celia, M. A.; Carey, J. W.
2008-12-01
An important aspect of the risk associated with geological CO2 sequestration is the integrity of existing wellbores that penetrate geological layers targeted for CO2 injection. CO2 leakage may occur through multiple pathways along a wellbore, including through micro-fractures and micro-annuli within the "disturbed zone" surrounding the well casing. The effective permeability of this zone is a key parameter of wellbore integrity required for validation of numerical models. This parameter depends on a number of complex factors, including long-term attack by aggressive fluids, poor well completion and actions related to production of fluids through the wellbore. Recent studies have sought to replicate downhole conditions in the laboratory to identify the mechanisms and rates at which cement deterioration occurs. However, field tests are essential to understanding the in situ leakage properties of the millions of wells that exist in the mature sedimentary basins in North America. In this study, we present results from a field study of a 30-year-old production well from a natural CO2 reservoir. The wellbore was potentially exposed to a 96% CO2 fluid from the time of cement placement, and therefore cement degradation may be a significant factor leading to leakage pathways along this wellbore. A series of downhole tests was performed, including bond logs and extraction of sidewall cores. The cores were analyzed in the laboratory for mineralogical and hydrologic properties. A pressure test was conducted over an 11-ft section of well to determine the extent of hydraulic communication along the exterior of the well casing. Through analysis of this pressure test data, we are able estimate the effective permeability of the disturbed zone along the exterior of wellbore over this 11-ft section. We find the estimated range of effective permeability from the field test is consistent with laboratory analysis and bond log data. The cement interfaces with casing and/or formation are
A Food Chain Algorithm for Capacitated Vehicle Routing Problem with Recycling in Reverse Logistics
NASA Astrophysics Data System (ADS)
Song, Qiang; Gao, Xuexia; Santos, Emmanuel T.
2015-12-01
This paper introduces the capacitated vehicle routing problem with recycling in reverse logistics, and designs a food chain algorithm for it. Some illustrative examples are selected to conduct simulation and comparison. Numerical results show that the performance of the food chain algorithm is better than the genetic algorithm, particle swarm optimization as well as quantum evolutionary algorithm.
NASA Technical Reports Server (NTRS)
Susskind, Joel; Kouvaris, Louis; Iredell, Lena
2016-01-01
The AIRS Science Team Version 6 retrieval algorithm is currently producing high quality level-3 Climate Data Records (CDRs) from AIRSAMSU which are critical for understanding climate processes. The AIRS Science Team is finalizing an improved Version-7 retrieval algorithm to reprocess all old and future AIRS data. AIRS CDRs should eventually cover the period September 2002 through at least 2020. CrISATMS is the only scheduled follow on to AIRSAMSU. The objective of this research is to prepare for generation of a long term CrISATMS level-3 data using a finalized retrieval algorithm that is scientifically equivalent to AIRSAMSU Version-7.
NASA Technical Reports Server (NTRS)
Susskind, Joel; Kouvaris, Louis; Iredell, Lena
2016-01-01
The AIRS Science Team Version-6 retrieval algorithm is currently producing high quality level-3 Climate Data Records (CDRs) from AIRS/AMSU which are critical for understanding climate processes. The AIRS Science Team is finalizing an improved Version-7 retrieval algorithm to reprocess all old and future AIRS data. AIRS CDRs should eventually cover the period September 2002 through at least 2020. CrIS/ATMS is the only scheduled follow on to AIRS/AMSU. The objective of this research is to prepare for generation of long term CrIS/ATMS CDRs using a retrieval algorithm that is scientifically equivalent to AIRS/AMSU Version-7.
NASA Astrophysics Data System (ADS)
Lo Russo, S.; Taddia, G.; Gnavi, L.
2012-04-01
KEY WORDS: Open-loop ground water heat pump; Feflow; Low-enthalpy; Thermal Affected Zone; Turin; Italy The increasing diffusion of low-enthalpy geothermal open-loop Groundwater Heat Pumps (GWHP) providing buildings air conditioning requires a careful assessment of the overall effects on groundwater system, especially in the urban areas where several plants can be close together and interfere. One of the fundamental aspects in the realization of an open loop low-enthalpy geothermal system is therefore the capacity to forecast the effects of thermal alteration produced in the ground, induced by the geothermal system itself. The impact on the groundwater temperature in the surrounding area of the re-injection well (Thermal Affected Zone - TAZ) is directly linked to the aquifer properties. The transient dynamic of groundwater discharge and temperature variations should be also considered to assess the subsurface environmental effects of the plant. The experimental groundwater heat pump system used in this study is installed at the "Politecnico di Torino" (NW Italy, Piedmont Region). This plant provides summer cooling needs for the university buildings. This system is composed by a pumping well, a downgradient injection well and a control piezometer. The system is constantly monitored by multiparameter probes measuring the dynamic of groundwater temperature. A finite element subsurface flow and transport simulator (FEFLOW) was used to investigate the thermal aquifer alteration. Simulations were continuously performed during May-October 2010 (cooling period). The numerical simulation of the heat transport in the aquifer was solved with transient conditions. The simulation was performed by considering only the heat transfer within the saturated aquifer, without any heat dispersion above or below the saturated zone due to the lack of detailed information regarding the unsaturated zone. Model results were compared with experimental temperature data derived from groundwater
NASA Astrophysics Data System (ADS)
Declair, Stefan; Stephan, Klaus; Potthast, Roland
2015-04-01
Determining the amount of weather dependent renewable energy is a demanding task for transmission system operators (TSOs). In the project EWeLiNE funded by the German government, the German Weather Service and the Fraunhofer Institute on Wind Energy and Energy System Technology strongly support the TSOs by developing innovative weather- and power forecasting models and tools for grid integration of weather dependent renewable energy. The key in the energy prediction process chain is the numerical weather prediction (NWP) system. With focus on wind energy, we face the model errors in the planetary boundary layer, which is characterized by strong spatial and temporal fluctuations in wind speed, to improve the basis of the weather dependent renewable energy prediction. Model data can be corrected by postprocessing techniques such as model output statistics and calibration using historical observational data. On the other hand, latest observations can be used in a preprocessing technique called data assimilation (DA). In DA, the model output from a previous time step is combined such with observational data, that the new model data for model integration initialization (analysis) fits best to the latest model data and the observational data as well. Therefore, model errors can be already reduced before the model integration. In this contribution, the results of an impact study are presented. A so-called OSSE (Observation Simulation System Experiment) is performed using the convective-resoluted COSMO-DE model of the German Weather Service and a 4D-DA technique, a Newtonian relaxation method also called nudging. Starting from a nature run (treated as the truth), conventional observations and artificial wind observations at hub height are generated. In a control run, the basic model setup of the nature run is slightly perturbed to drag the model away from the beforehand generated truth and a free forecast is computed based on the analysis using only conventional
Frontiers in Numerical Relativity
NASA Astrophysics Data System (ADS)
Evans, Charles R.; Finn, Lee S.; Hobill, David W.
2011-06-01
Preface; Participants; Introduction; 1. Supercomputing and numerical relativity: a look at the past, present and future David W. Hobill and Larry L. Smarr; 2. Computational relativity in two and three dimensions Stuart L. Shapiro and Saul A. Teukolsky; 3. Slowly moving maximally charged black holes Robert C. Ferrell and Douglas M. Eardley; 4. Kepler's third law in general relativity Steven Detweiler; 5. Black hole spacetimes: testing numerical relativity David H. Bernstein, David W. Hobill and Larry L. Smarr; 6. Three dimensional initial data of numerical relativity Ken-ichi Oohara and Takashi Nakamura; 7. Initial data for collisions of black holes and other gravitational miscellany James W. York, Jr.; 8. Analytic-numerical matching for gravitational waveform extraction Andrew M. Abrahams; 9. Supernovae, gravitational radiation and the quadrupole formula L. S. Finn; 10. Gravitational radiation from perturbations of stellar core collapse models Edward Seidel and Thomas Moore; 11. General relativistic implicit radiation hydrodynamics in polar sliced space-time Paul J. Schinder; 12. General relativistic radiation hydrodynamics in spherically symmetric spacetimes A. Mezzacappa and R. A. Matzner; 13. Constraint preserving transport for magnetohydrodynamics John F. Hawley and Charles R. Evans; 14. Enforcing the momentum constraints during axisymmetric spacelike simulations Charles R. Evans; 15. Experiences with an adaptive mesh refinement algorithm in numerical relativity Matthew W. Choptuik; 16. The multigrid technique Gregory B. Cook; 17. Finite element methods in numerical relativity P. J. Mann; 18. Pseudo-spectral methods applied to gravitational collapse Silvano Bonazzola and Jean-Alain Marck; 19. Methods in 3D numerical relativity Takashi Nakamura and Ken-ichi Oohara; 20. Nonaxisymmetric rotating gravitational collapse and gravitational radiation Richard F. Stark; 21. Nonaxisymmetric neutron star collisions: initial results using smooth particle hydrodynamics
Sprenger, Lisa Lange, Adrian; Odenbach, Stefan
2013-12-15
Ferrofluids are colloidal suspensions consisting of magnetic nanoparticles dispersed in a carrier liquid. Their thermodiffusive behaviour is rather strong compared to molecular binary mixtures, leading to a Soret coefficient (S{sub T}) of 0.16 K{sup −1}. Former experiments with dilute magnetic fluids have been done with thermogravitational columns or horizontal thermodiffusion cells by different research groups. Considering the horizontal thermodiffusion cell, a former analytical approach has been used to solve the phenomenological diffusion equation in one dimension assuming a constant concentration gradient over the cell's height. The current experimental work is based on the horizontal separation cell and emphasises the comparison of the concentration development in different concentrated magnetic fluids and at different temperature gradients. The ferrofluid investigated is the kerosene-based EMG905 (Ferrotec) to be compared with the APG513A (Ferrotec), both containing magnetite nanoparticles. The experiments prove that the separation process linearly depends on the temperature gradient and that a constant concentration gradient develops in the setup due to the separation. Analytical one dimensional and numerical three dimensional approaches to solve the diffusion equation are derived to be compared with the solution used so far for dilute fluids to see if formerly made assumptions also hold for higher concentrated fluids. Both, the analytical and numerical solutions, either in a phenomenological or a thermodynamic description, are able to reproduce the separation signal gained from the experiments. The Soret coefficient can then be determined to 0.184 K{sup −1} in the analytical case and 0.29 K{sup −1} in the numerical case. Former theoretical approaches for dilute magnetic fluids underestimate the strength of the separation in the case of a concentrated ferrofluid.
NASA Astrophysics Data System (ADS)
Sprenger, Lisa; Lange, Adrian; Odenbach, Stefan
2013-12-01
Ferrofluids are colloidal suspensions consisting of magnetic nanoparticles dispersed in a carrier liquid. Their thermodiffusive behaviour is rather strong compared to molecular binary mixtures, leading to a Soret coefficient (ST) of 0.16 K-1. Former experiments with dilute magnetic fluids have been done with thermogravitational columns or horizontal thermodiffusion cells by different research groups. Considering the horizontal thermodiffusion cell, a former analytical approach has been used to solve the phenomenological diffusion equation in one dimension assuming a constant concentration gradient over the cell's height. The current experimental work is based on the horizontal separation cell and emphasises the comparison of the concentration development in different concentrated magnetic fluids and at different temperature gradients. The ferrofluid investigated is the kerosene-based EMG905 (Ferrotec) to be compared with the APG513A (Ferrotec), both containing magnetite nanoparticles. The experiments prove that the separation process linearly depends on the temperature gradient and that a constant concentration gradient develops in the setup due to the separation. Analytical one dimensional and numerical three dimensional approaches to solve the diffusion equation are derived to be compared with the solution used so far for dilute fluids to see if formerly made assumptions also hold for higher concentrated fluids. Both, the analytical and numerical solutions, either in a phenomenological or a thermodynamic description, are able to reproduce the separation signal gained from the experiments. The Soret coefficient can then be determined to 0.184 K-1 in the analytical case and 0.29 K-1 in the numerical case. Former theoretical approaches for dilute magnetic fluids underestimate the strength of the separation in the case of a concentrated ferrofluid.
NASA Astrophysics Data System (ADS)
Bourlier, C.; Berginc, G.
2004-07-01
This second part presents illustrative examples of the model developed in the companion paper, which is based on the first- and second-order optics approximation. The surface is assumed to be Gaussian and the correlation height is chosen as anisotropic Gaussian. The incoherent scattering coefficient is computed for a height rms range from 0.5lgr to 1lgr (where lgr is the electromagnetic wavelength), for a slope rms range from 0.5 to 1 and for an incidence angle range from 0 to 70°. In addition, simulations are presented for an anisotropic Gaussian surface and when the receiver is not located in the plane of incidence. For a metallic and dielectric isotropic Gaussian surfaces, the cross- and co-polarizations are also compared with a numerical approach obtained from the forward-backward method with a novel spectral acceleration algorithm developed by Torrungrueng and Johnson (2001, JOSA A 18).
NASA Technical Reports Server (NTRS)
Burt, Adam O.; Tinker, Michael L.
2014-01-01
In this paper, genetic algorithm based and gradient-based topology optimization is presented in application to a real hardware design problem. Preliminary design of a planetary lander mockup structure is accomplished using these methods that prove to provide major weight savings by addressing the structural efficiency during the design cycle. This paper presents two alternative formulations of the topology optimization problem. The first is the widely-used gradient-based implementation using commercially available algorithms. The second is formulated using genetic algorithms and internally developed capabilities. These two approaches are applied to a practical design problem for hardware that has been built, tested and proven to be functional. Both formulations converged on similar solutions and therefore were proven to be equally valid implementations of the process. This paper discusses both of these formulations at a high level.
NASA Technical Reports Server (NTRS)
Knox, C. E.; Vicroy, D. D.; Simmon, D. A.
1985-01-01
A simple, airborne, flight-management descent algorithm was developed and programmed into a small programmable calculator. The algorithm may be operated in either a time mode or speed mode. The time mode was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The speed model was designed for planning fuel-conservative descents when time is not a consideration. The descent path for both modes was calculated for a constant with considerations given for the descent Mach/airspeed schedule, gross weight, wind, wind gradient, and nonstandard temperature effects. Flight tests, using the algorithm on the programmable calculator, showed that the open-loop guidance could be useful to airline flight crews for planning and executing fuel-conservative descents.
Knox, C.E.; Vicroy, D.D.; Simmon, D.A.
1985-05-01
A simple, airborne, flight-management descent algorithm was developed and programmed into a small programmable calculator. The algorithm may be operated in either a time mode or speed mode. The time mode was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The speed model was designed for planning fuel-conservative descents when time is not a consideration. The descent path for both modes was calculated for a constant with considerations given for the descent Mach/airspeed schedule, gross weight, wind, wind gradient, and nonstandard temperature effects. Flight tests, using the algorithm on the programmable calculator, showed that the open-loop guidance could be useful to airline flight crews for planning and executing fuel-conservative descents.
NASA Astrophysics Data System (ADS)
Auletta, Gianluca; Ditommaso, Rocco; Iacovino, Chiara; Carlo Ponzo, Felice; Pina Limongelli, Maria
2016-04-01
Continuous monitoring based on vibrational identification methods is increasingly employed with the aim of evaluate the state of the health of existing structures and infrastructures and to evaluate the performance of safety interventions over time. In case of earthquakes, data acquired by means of continuous monitoring systems can be used to localize and quantify a possible damage occurred on a monitored structure using appropriate algorithms based on the variations of structural parameters. Most of the damage identification methods are based on the variation of few modal and/or non-modal parameters: the former, are strictly related to the structural eigenfrequencies, equivalent viscous damping factors and mode shapes; the latter, are based on the variation of parameters related to the geometric characteristics of the monitored structure whose variations could be correlated related to damage. In this work results retrieved from the application of a curvature evolution based method and an interpolation error based method are compared. The first method is based on the evaluation of the curvature variation (related to the fundamental mode of vibration) over time and compares the variations before, during and after the earthquake. The Interpolation Method is based on the detection of localized reductions of smoothness in the Operational Deformed Shapes (ODSs) of the structure. A damage feature is defined in terms of the error related to the use of a spline function in interpolating the ODSs of the structure: statistically significant variations of the interpolation error between two successive inspections of the structure indicate the onset of damage. Both methods have been applied using both numerical data retrieved from nonlinear FE models and experimental tests on scaled structures carried out on the shaking table of the University of Basilicata. Acknowledgements This study was partially funded by the Italian Civil Protection Department within the project DPC
Spencer, W.A.; Goode, S.R.
1997-10-01
ICP emission analyses are prone to errors due to changes in power level, nebulization rate, plasma temperature, and sample matrix. As a result, accurate analyses of complex samples often require frequent bracketing with matrix matched standards. Information needed to track and correct the matrix errors is contained in the emission spectrum. But most commercial software packages use only the analyte line emission to determine concentrations. Changes in plasma temperature and the nebulization rate are reflected by changes in the hydrogen line widths, the oxygen emission, and neutral ion line ratios. Argon and off-line emissions provide a measure to correct the power level and the background scattering occurring in the polychromator. The authors` studies indicated that changes in the intensity of the Ar 404.4 nm line readily flag most matrix and plasma condition modifications. Carbon lines can be used to monitor the impact of organics on the analyses and calcium and argon lines can be used to correct for spectral drift and alignment. Spectra of contaminated groundwater and simulated defense waste glasses were obtained using a Thermo Jarrell Ash ICP that has an echelle CID detector system covering the 190-850 nm range. The echelle images were translated to the FITS data format, which astronomers recommend for data storage. Data reduction packages such as those in the ESO-MIDAS/ECHELLE and DAOPHOT programs were tried with limited success. The radial point spread function was evaluated as a possible improved peak intensity measurement instead of the common pixel averaging approach used in the commercial ICP software. Several algorithms were evaluated to align and automatically scale the background and reference spectra. A new data reduction approach that utilizes standard reference images, successive subtractions, and residual analyses has been evaluated to correct for matrix effects.
NASA Technical Reports Server (NTRS)
Scalapino, D. J.; Sugar, R. L.; White, S. R.; Bickers, N. E.; Scalettar, R. T.
1989-01-01
Numerical simulations on the half-filled three-dimensional Hubbard model clearly show the onset of Neel order. Simulations of the two-dimensional electron-phonon Holstein model show the competition between the formation of a Peierls-CDW state and a superconducting state. However, the behavior of the partly filled two-dimensional Hubbard model is more difficult to determine. At half-filling, the antiferromagnetic correlations grow as T is reduced. Doping away from half-filling suppresses these correlations, and it is found that there is a weak attractive pairing interaction in the d-wave channel. However, the strength of the pair field susceptibility is weak at the temperatures and lattice sizes that have been simulated, and the nature of the low-temperature state of the nearly half-filled Hubbard model remains open.
Algorithms and Algorithmic Languages.
ERIC Educational Resources Information Center
Veselov, V. M.; Koprov, V. M.
This paper is intended as an introduction to a number of problems connected with the description of algorithms and algorithmic languages, particularly the syntaxes and semantics of algorithmic languages. The terms "letter, word, alphabet" are defined and described. The concept of the algorithm is defined and the relation between the algorithm and…
Performance Comparison Of Evolutionary Algorithms For Image Clustering
NASA Astrophysics Data System (ADS)
Civicioglu, P.; Atasever, U. H.; Ozkan, C.; Besdok, E.; Karkinli, A. E.; Kesikoglu, A.
2014-09-01
Evolutionary computation tools are able to process real valued numerical sets in order to extract suboptimal solution of designed problem. Data clustering algorithms have been intensively used for image segmentation in remote sensing applications. Despite of wide usage of evolutionary algorithms on data clustering, their clustering performances have been scarcely studied by using clustering validation indexes. In this paper, the recently proposed evolutionary algorithms (i.e., Artificial Bee Colony Algorithm (ABC), Gravitational Search Algorithm (GSA), Cuckoo Search Algorithm (CS), Adaptive Differential Evolution Algorithm (JADE), Differential Search Algorithm (DSA) and Backtracking Search Optimization Algorithm (BSA)) and some classical image clustering techniques (i.e., k-means, fcm, som networks) have been used to cluster images and their performances have been compared by using four clustering validation indexes. Experimental test results exposed that evolutionary algorithms give more reliable cluster-centers than classical clustering techniques, but their convergence time is quite long.
NASA Astrophysics Data System (ADS)
Khan, Sheema; Morton, Thomas L.; Ronis, David
1987-05-01
The static correlations in highly charged colloidal and micellar suspensions, with and without added electrolyte, are examined using the hypernetted-chain approximation (HNC) for the macro-ion-macro-ion correlations and the mean-spherical approximation for the other correlations. By taking the point-ion limit for the counter-ions, an analytic solution for the counter-ion part of the problem can be obtained; this maps the macro-ion part of the problem onto a one-component problem where the macro-ions interact via a screened Coulomb potential with the Gouy-Chapman form for the screening length and an effective charge that depends on the macro-ion-macro-ion pair correlations. Numerical solutions of the effective one-component equation in the HNC approximation are presented, and in particular, the effects of macro-ion charge, nonadditive core diameters, and added electrolyte are examined. As we show, there can be a strong renormalization of the effective macro-ion charge and reentrant melting in colloidal crystals.
NASA Astrophysics Data System (ADS)
Deplano, V.; Pelissier, R.; Rieu, R.; Bontoux, P.
1994-01-01
Bifurcations are vascular singularities of interest because they are the privileged sites of atherosclerosis deposits, particularly the sites corresponding to wall shear stress extrema. The purpose of this paper is to compare the two- and three-dimensional characteristics of the velocity fields, the shear stress distributions and the secondary flows in a symmetrical aortic bifurcation. The branching angle is equal to 60^{circ} and the branch-to-trunk area ratio to 0.8. The numerical simulations are performed using the FIDAP programme. Although restrictive by the hypotheses of steady flow and rigid channel, with rectangular cross-sections, this study shows the importance of the three-dimensional effects in particular as far as concerned the wall shear stress behaviours. Les bifurcations sont des singularités vasculaires présentant un intérêt particulier car elles sont le site privilégié de dépôts athéromateux ; la localisation de ces dépôts dépendant des valeurs maximum du cisaillement en paroi. L'objectif de cette étude est de comparer les caractéristiques bidimensionnels et tridimensionnels des champs de vitesse, de la distribution du cisaillement pariétal et des écoulements secondaires dans un modèle de bifurcation aortique. L'angle de bifurcation est de 60^{circ} et le rapport des sections branche fille branche mère est de 0,8. Les simulations numériques sont effectuées sur la base du logiciel FIDAP. Bien que restrictifs de part certaines hypothèses, écoulement permanent dans un modèle de bifurcation rigide avec des sections rectangulaires, ces travaux montrent l'importance des effets tridimensionnels notamment au niveau du cisaillement pariétal.
NASA Astrophysics Data System (ADS)
Losiak, Anna; Czechowski, Leszek; Velbel, Michael A.
2015-12-01
Gypsum, a mineral that requires water to form, is common on the surface of Mars. Most of it originated before 3.5 Gyr when the Red Planet was more humid than now. However, occurrences of gypsum dune deposits around the North Polar Residual Cap (NPRC) seem to be surprisingly young: late Amazonian in age. This shows that liquid water was present on Mars even at times when surface conditions were as cold and dry as the present-day. A recently proposed mechanism for gypsum formation involves weathering of dust within ice (e.g., Niles, P.B., Michalski, J. [2009]. Nat. Geosci. 2, 215-220.). However, none of the previous studies have determined if this process is possible under current martian conditions. Here, we use numerical modelling of heat transfer to show that during the warmest days of the summer, solar irradiation may be sufficient to melt pure water ice located below a layer of dark dust particles (albedo ⩽ 0.13) lying on the steepest sections of the equator-facing slopes of the spiral troughs within martian NPRC. During the times of high irradiance at the north pole (every 51 ka; caused by variation of orbital and rotational parameters of Mars e.g., Laskar, J. et al. [2002]. Nature 419, 375-377.) this process could have taken place over larger parts of the spiral troughs. The existence of small amounts of liquid water close to the surface, even under current martian conditions, fulfils one of the main requirements necessary to explain the formation of the extensive gypsum deposits around the NPRC. It also changes our understanding of the degree of current geological activity on Mars and has important implications for estimating the astrobiological potential of Mars.
NASA Astrophysics Data System (ADS)
Rawat, A.; Aucan, J.; Ardhuin, F.
2012-12-01
All sea level variations of the order of 1 cm at scales under 30 km are of great interest for the future Surface Water Ocean Topography (SWOT) satellite mission. That satellite should provide high-resolution maps of the sea surface height for analysis of meso to sub-mesoscale currents, but that will require a filtering of all gravity wave motions in the data. Free infragravity waves (FIGWs) are generated and radiate offshore when swells and/or wind seas and their associated bound infragravity waves impact exposed coastlines. Free infragravity waves have dominant periods comprised between 1 and 10 minutes and horizontal wavelengths of up to tens of kilometers. Given the length scales of the infragravity waves wavelength and amplitude, the infragravity wave field will can a significant fraction the signal measured by the future SWOT mission. In this study, we analyze the data from recovered bottom pressure recorders of the Deep-ocean Assessment and Reporting of Tsunami (DART) program. This analysis includes data spanning several years between 2006 and 2010, from stations at different latitudes in the North and South Pacific, the North Atlantic, the Gulf of Mexico and the Caribbean Sea. We present and discuss the following conclusions: (1) The amplitude of free infragravity waves can reach several centimeters, higher than the precision sought for the SWOT mission. (2) The free infragravity signal is higher in the Eastern North Pacific than in the Western North Pacific, possibly due to smaller incident swell and seas impacting the nearby coastlines. (3) Free infragravity waves are higher in the North Pacific than in the North Atlantic, possibly owing to different average continental shelves configurations in the two basins. (4) There is a clear seasonal cycle at the high latitudes North Atlantic and Pacific stations that is much less pronounced or absent at the tropical stations, consistent with the generation mechanism of free infragravity waves. Our numerical model
NASA Astrophysics Data System (ADS)
Wildman, R. D.; Jenkins, J. T.; Krouskop, P. E.; Talbot, J.
2006-07-01
A comparison of the predictions of a simple kinetic theory with experimental and numerical results for a vibrated granular bed consisting of nearly elastic particles of two sizes has been performed. The results show good agreement between the data sets for a range of numbers of each size of particle, and are particularly good for particle beds containing similar proportions of each species. The agreement suggests that such a model may be a good starting point for describing polydisperse systems of granular flows.
NASA Technical Reports Server (NTRS)
Knox, C. E.
1983-01-01
A simplified flight-management descent algorithm, programmed on a small programmable calculator, was developed and flight tested. It was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The algorithm may also be used for planning fuel-conservative descents when time is not a consideration. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard temperature effects. The flight-management descent algorithm is described. The results of flight tests flown with a T-39A (Sabreliner) airplane are presented.
NASA Technical Reports Server (NTRS)
Knox, C. E.; Cannon, D. G.
1980-01-01
A simple flight management descent algorithm designed to improve the accuracy of delivering an airplane in a fuel-conservative manner to a metering fix at a time designated by air traffic control was developed and flight tested. This algorithm provides a three dimensional path with terminal area time constraints (four dimensional) for an airplane to make an idle thrust, clean configured (landing gear up, flaps zero, and speed brakes retracted) descent to arrive at the metering fix at a predetermined time, altitude, and airspeed. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard pressure and temperature effects. The flight management descent algorithm is described. The results of the flight tests flown with the Terminal Configured Vehicle airplane are presented.
NASA Astrophysics Data System (ADS)
Bushenkova, N.; Chervov, V.; Koulakov, I.
2010-12-01
In this study we investigate recent structure of the lithosphere and dynamics of the sub-lithosphere mantle beneath a large part of Eurasia based on results of seismic tomography and numerical modeling. The study area includes rigid old lithospheric blocks, such as Siberian Craton, Tarim plate, remnant parts of the Tuva-Mongolia continent, as well as more recent structures such as West-Siberian plate and orogenic belts in southern Siberia. Thickness of the lithosphere was estimated based on the regional tomographic model by Koulakov and Bushenkova (2010) using a method described by Bushenkova et al., (2008). These estimates were used to define the boundary conditions in numerical modeling. To reduce the marginal effects, the modeling area was considerably enlarged with Russian, North- and South China plates. However, the Indian plate and its movement were not taken into account in this model. The numerical modeling was performed in a spherical segment limited by latitude 0 E-150 E, longitude 0-80 N and depth 0-700 km using a regular grid of 151x81x36 and time step of 10 Ma. Here we solve numerically the Navier-Stokes equations using the Oberbeck-Boussinesq approximation in spherical coordinates. In our model viscosity depends on the pressure and temperature. The modeling shows that ascending flows and higher temperature (up to 100 degrees) are usually associated with thick lithosphere of cratons. These flows determine the shapes of convective cells far outside the craton and generate another ascending flow in non-cratonic areas. The areas with thin lithosphere are usually associated with descending flows and colder mantle. One of examples is an area between Siberian craton to the north and Tarim and North China plates to the south where the estimated thickness of the lithosphere is between 40-75 km. There we observe descending flows in the numerical model and lower temperatures according to the tomography result. Besides the tomography results, the numerical model
Lane, J.W.; Buursink, M.L.; Haeni, F.P.; Versteeg, R.J.
2000-01-01
The suitability of common-offset ground-penetrating radar (GPR) to detect free-phase hydrocarbons in bedrock fractures was evaluated using numerical modeling and physical experiments. The results of one- and two-dimensional numerical modeling at 100 megahertz indicate that GPR reflection amplitudes are relatively insensitive to fracture apertures ranging from 1 to 4 mm. The numerical modeling and physical experiments indicate that differences in the fluids that fill fractures significantly affect the amplitude and the polarity of electromagnetic waves reflected by subhorizontal fractures. Air-filled and hydrocarbon-filled fractures generate low-amplitude reflections that are in-phase with the transmitted pulse. Water-filled fractures create reflections with greater amplitude and opposite polarity than those reflections created by air-filled or hydrocarbon-filled fractures. The results from the numerical modeling and physical experiments demonstrate it is possible to distinguish water-filled fracture reflections from air- or hydrocarbon-filled fracture reflections, nevertheless subsurface heterogeneity, antenna coupling changes, and other sources of noise will likely make it difficult to observe these changes in GPR field data. This indicates that the routine application of common-offset GPR reflection methods for detection of hydrocarbon-filled fractures will be problematic. Ideal cases will require appropriately processed, high-quality GPR data, ground-truth information, and detailed knowledge of subsurface physical properties. Conversely, the sensitivity of GPR methods to changes in subsurface physical properties as demonstrated by the numerical and experimental results suggests the potential of using GPR methods as a monitoring tool. GPR methods may be suited for monitoring pumping and tracer tests, changes in site hydrologic conditions, and remediation activities.The suitability of common-offset ground-penetrating radar (GPR) to detect free-phase hydrocarbons
NASA Astrophysics Data System (ADS)
van Poppel, Bret; Owkes, Mark; Nelson, Thomas; Lee, Zachary; Sowell, Tyler; Benson, Michael; Vasquez Guzman, Pablo; Fahrig, Rebecca; Eaton, John; Kurman, Matthew; Kweon, Chol-Bum; Bravo, Luis
2014-11-01
In this work, we present high-fidelity Computational Fluid Dynamics (CFD) results of liquid fuel injection from a pressure-swirl atomizer and compare the simulations to experimental results obtained using both shadowgraphy and phase-averaged X-ray computed tomography (CT) scans. The CFD and experimental results focus on the dense near-nozzle region to identify the dominant mechanisms of breakup during primary atomization. Simulations are performed using the NGA code of Desjardins et al (JCP 227 (2008)) and employ the volume of fluid (VOF) method proposed by Owkes and Desjardins (JCP 270 (2013)), a second order accurate, un-split, conservative, three-dimensional VOF scheme providing second order density fluxes and capable of robust and accurate high density ratio simulations. Qualitative features and quantitative statistics are assessed and compared for the simulation and experimental results, including the onset of atomization, spray cone angle, and drop size and distribution.
NASA Technical Reports Server (NTRS)
Platnick, Steven; King, Michael D.; Wind, Galina; Amarasinghe, Nandana; Marchant, Benjamin; Arnold, G. Thomas
2012-01-01
Operational Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals of cloud optical and microphysical properties (part of the archived products MOD06 and MYD06, for MODIS Terra and Aqua, respectively) are currently being reprocessed along with other MODIS Atmosphere Team products. The latest "Collection 6" processing stream, which is expected to begin production by summer 2012, includes updates to the previous cloud retrieval algorithm along with new capabilities. The 1 km retrievals, based on well-known solar reflectance techniques, include cloud optical thickness, effective particle radius, and water path, as well as thermodynamic phase derived from a combination of solar and infrared tests. Being both global and of high spatial resolution requires an algorithm that is computationally efficient and can perform over all surface types. Collection 6 additions and enhancements include: (i) absolute effective particle radius retrievals derived separately from the 1.6 and 3.7 !-lm bands (instead of differences relative to the standard 2.1 !-lm retrieval), (ii) comprehensive look-up tables for cloud reflectance and emissivity (no asymptotic theory) with a wind-speed interpolated Cox-Munk BRDF for ocean surfaces, (iii) retrievals for both liquid water and ice phases for each pixel, and a subsequent determination of the phase based, in part, on effective radius retrieval outcomes for the two phases, (iv) new ice cloud radiative models using roughened particles with a specified habit, (v) updated spatially-complete global spectral surface albedo maps derived from MODIS Collection 5, (vi) enhanced pixel-level uncertainty calculations incorporating additional radiative error sources including the MODIS L1 B uncertainty index for assessing band and scene-dependent radiometric uncertainties, (v) and use of a new 1 km cloud top pressure/temperature algorithm (also part of MOD06) for atmospheric corrections and low cloud non-unity emissivity temperature adjustments.
NASA Astrophysics Data System (ADS)
Won, Jihye; Park, Kwan-Dong
2015-04-01
Real-time PPP-RTK positioning algorithms were developed for the purpose of getting precise coordinates of moving platforms. In this implementation, corrections for the satellite orbit and satellite clock were taken from the IGS-RTS products while the ionospheric delay was removed through ionosphere-free combination and the tropospheric delay was either taken care of using the Global Pressure and Temperature (GPT) model or estimated as a stochastic parameter. To improve the convergence speed, all the available GPS and GLONASS measurements were used and Extended Kalman Filter parameters were optimized. To validate our algorithms, we collected the GPS and GLONASS data from a geodetic-quality receiver installed on a roof of a moving vehicle in an open-sky environment and used IGS final products of satellite orbits and clock offsets. The horizontal positioning error got less than 10 cm within 5 minutes, and the error stayed below 10 cm even after the vehicle start moving. When the IGS-RTS product and the GPT model were used instead of the IGS precise product, the positioning accuracy of the moving vehicle was maintained at better than 20 cm once convergence was achieved at around 6 minutes.
NASA Astrophysics Data System (ADS)
Grigorov, Igor V.
2009-12-01
In article the algorithm of numerical modelling of the nonlinear equation of Korteweg-de Vrieze which generates nonlinear algorithm of digital processing of signals is considered. For realisation of the specified algorithm it is offered to use a inverse scattering method (ISM). Algorithms of direct and return spectral problems, and also problems of evolution of the spectral data are in detail considered. Results of modelling are resulted.
NASA Astrophysics Data System (ADS)
Ji, B.; Peng, X. X.; Long, X. P.; Luo, X. W.; Wu, Y. L.
2015-12-01
Results of cavitating turbulent flow simulation around a twisted hydrofoil were presented in the paper using the Partially-Averaged Navier-Stokes (PANS) method (Ji et al. 2013a), Large-Eddy Simulation (LES) (Ji et al. 2013b) and Reynolds-Averaged Navier-Stokes (RANS). The results are compared with available experimental data (Foeth 2008). The PANS and LES reasonably reproduce the cavitation shedding patterns around the twisted hydrofoil with primary and secondary shedding, while the RANS model fails to simulate the unsteady cavitation shedding phenomenon and yields an almost steady flow with a constant cavity shape and vapor volume. Besides, it is noted that the predicted shedding vapor cavity by PANS is more turbulent and the shedding vortex is stronger than that by LES, which is more consistent with experimental photos.
Influence of the quantum well models on the numerical simulation of planar InGaN/GaN LED results
NASA Astrophysics Data System (ADS)
Podgórski, J.; Woźny, J.; Lisik, Z.
2016-04-01
Within this paper, we present electric model of a light emitting diode (LED) made of gallium nitride (GaN) followed by examples of simulation results obtained by means of Sentaurus software, which is the part of the TCAD package. The aim of this work is to answer the question of whether physical models of quantum wells used in commercial software are suitable for a correct analysis of the lateral LEDs made of GaN.
2011-01-01
Background Envenomation by crotaline snakes (rattlesnake, cottonmouth, copperhead) is a complex, potentially lethal condition affecting thousands of people in the United States each year. Treatment of crotaline envenomation is not standardized, and significant variation in practice exists. Methods A geographically diverse panel of experts was convened for the purpose of deriving an evidence-informed unified treatment algorithm. Research staff analyzed the extant medical literature and performed targeted analyses of existing databases to inform specific clinical decisions. A trained external facilitator used modified Delphi and structured consensus methodology to achieve consensus on the final treatment algorithm. Results A unified treatment algorithm was produced and endorsed by all nine expert panel members. This algorithm provides guidance about clinical and laboratory observations, indications for and dosing of antivenom, adjunctive therapies, post-stabilization care, and management of complications from envenomation and therapy. Conclusions Clinical manifestations and ideal treatment of crotaline snakebite differ greatly, and can result in severe complications. Using a modified Delphi method, we provide evidence-informed treatment guidelines in an attempt to reduce variation in care and possibly improve clinical outcomes. PMID:21291549
NASA Technical Reports Server (NTRS)
Guo, Li-Wen; Cardullo, Frank M.; Telban, Robert J.; Houck, Jacob A.; Kelly, Lon C.
2003-01-01
A study was conducted employing the Visual Motion Simulator (VMS) at the NASA Langley Research Center, Hampton, Virginia. This study compared two motion cueing algorithms, the NASA adaptive algorithm and a new optimal control based algorithm. Also, the study included the effects of transport delays and the compensation thereof. The delay compensation algorithm employed is one developed by Richard McFarland at NASA Ames Research Center. This paper reports on the analyses of the results of analyzing the experimental data collected from preliminary simulation tests. This series of tests was conducted to evaluate the protocols and the methodology of data analysis in preparation for more comprehensive tests which will be conducted during the spring of 2003. Therefore only three pilots were used. Nevertheless some useful results were obtained. The experimental conditions involved three maneuvers; a straight-in approach with a rotating wind vector, an offset approach with turbulence and gust, and a takeoff with and without an engine failure shortly after liftoff. For each of the maneuvers the two motion conditions were combined with four delay conditions (0, 50, 100 & 200ms), with and without compensation.
Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models
Yuan, Gonglin; Duan, Xiabin; Liu, Wenjie; Wang, Xiaoliang; Cui, Zengru; Sheng, Zhou
2015-01-01
Two new PRP conjugate Algorithms are proposed in this paper based on two modified PRP conjugate gradient methods: the first algorithm is proposed for solving unconstrained optimization problems, and the second algorithm is proposed for solving nonlinear equations. The first method contains two aspects of information: function value and gradient value. The two methods both possess some good properties, as follows: 1)βk ≥ 0 2) the search direction has the trust region property without the use of any line search method 3) the search direction has sufficient descent property without the use of any line search method. Under some suitable conditions, we establish the global convergence of the two algorithms. We conduct numerical experiments to evaluate our algorithms. The numerical results indicate that the first algorithm is effective and competitive for solving unconstrained optimization problems and that the second algorithm is effective for solving large-scale nonlinear equations. PMID:26502409
NASA Astrophysics Data System (ADS)
Perez-Poch, Antoni
Computer simulations are becoming a promising research line of work, as physiological models become more and more sophisticated and reliable. Technological advances in state-of-the-art hardware technology and software allow nowadays for better and more accurate simulations of complex phenomena, such as the response of the human cardiovascular system to long-term exposure to microgravity. Experimental data for long-term missions are difficult to achieve and reproduce, therefore the predictions of computer simulations are of a major importance in this field. Our approach is based on a previous model developed and implemented in our laboratory (NELME: Numercial Evaluation of Long-term Microgravity Effects). The software simulates the behaviour of the cardiovascular system and different human organs, has a modular archi-tecture, and allows to introduce perturbations such as physical exercise or countermeasures. The implementation is based on a complex electrical-like model of this control system, using inexpensive development frameworks, and has been tested and validated with the available experimental data. The objective of this work is to analyse and simulate long-term effects and gender differences when individuals are exposed to long-term microgravity. Risk probability of a health impairement which may put in jeopardy a long-term mission is also evaluated. . Gender differences have been implemented for this specific work, as an adjustment of a number of parameters that are included in the model. Women versus men physiological differences have been therefore taken into account, based upon estimations from the physiology bibliography. A number of simulations have been carried out for long-term exposure to microgravity. Gravity varying continuosly from Earth-based to zero, and time exposure are the two main variables involved in the construction of results, including responses to patterns of physical aerobic ex-ercise and thermal stress simulating an extra
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Dumas, Catherine
1993-01-01
A computational fluid dynamics (CFD) model has been applied to study the transient flow phenomena of the nozzle and exhaust plume of the Space Shuttle Main Engine (SSME), fired at sea level. The CFD model is a time accurate, pressure based, reactive flow solver. A six-species hydrogen/oxygen equilibrium chemistry is used to describe the chemical-thermodynamics. An adaptive upwinding scheme is employed for the spatial discretization, and a predictor, multiple corrector method is used for the temporal solution. Both engine start-up and shut-down processes were simulated. The elapse time is approximately five seconds for both cases. The computed results were animated and compared with the test. The images for the animation were created with PLOT3D and FAST and then animated with ABEKAS. The hysteresis effects, and the issues of free-shock separation, restricted-shock separation and the end-effects were addressed.
NASA Technical Reports Server (NTRS)
Boville, Byron A.; Baumhefner, David P.
1990-01-01
Using an NCAR community climate model, Version I, the forecast error growth and the climate drift resulting from the omission of the upper stratosphere are investigated. In the experiment, the control simulation is a seasonal integration of a medium horizontal general circulation model with 30 levels extending from the surface to the upper mesosphere, while the main experiment uses an identical model, except that only the bottom 15 levels (below 10 mb) are retained. It is shown that both random and systematic errors develop rapidly in the lower stratosphere with some local propagation into the troposphere in the 10-30-day time range. The random growth rate in the troposphere in the case of the altered upper boundary was found to be slightly faster than that for the initial-condition uncertainty alone. However, this is not likely to make a significant impact in operational forecast models, because the initial-condition uncertainty is very large.
Ndiaye, L G; Caillat, S; Chinnayya, A; Gambier, D; Baudoin, B
2010-07-01
In order to simulate granular materials structure in a rotary kiln under the steady-state regime, a mathematical model has been developed by Saeman (1951). This model enables the calculation of the bed profiles, the axial velocity and solids flow rate along the kiln. This model can be coupled with a thermochemical model, in the case of a reacting moving bed. This dynamic model was used to calculate the bed profile for an industrial size kiln and the model projections were validated by measurements in a 4 m diameter by 16 m long industrial rotary kiln. The effect of rotation speed under solids bed profile and the effect of the feed rate under filling degree were established. On the basis of the calculations and the experimental results a phenomenological relation for the residence time estimation was proposed for the rotary kiln.
NASA Technical Reports Server (NTRS)
Durisen, R. H.
1975-01-01
Improved viscous evolutionary sequences of differentially rotating, axisymmetric, nonmagnetic, zero-temperature white-dwarf models are constructed using the relativistically corrected degenerate electron viscosity. The results support the earlier conclusion that angular momentum transport due to viscosity does not lead to overall uniform rotation in many interesting cases. Qualitatively different behaviors are obtained, depending on how the total mass M and angular momentum J compare with the M and J values for which uniformly rotating models exist. Evolutions roughly determine the region in M and J for which models with a particular initial angular momentum distribution can reach carbon-ignition densities in 10 b.y. Such models may represent Type I supernova precursors.
NASA Astrophysics Data System (ADS)
Randol, Brent M.; Christian, Eric R.
2016-03-01
A parametric study is performed using the electrostatic simulations of Randol and Christian in which the number density, n, and initial thermal speed, θ, are varied. The range of parameters covers an extremely broad plasma regime, all the way from the very weak coupling of space plasmas to the very strong coupling of solid plasmas. The first result is that simulations at the same ΓD, where ΓD (∝ n1/3θ-2) is the plasma coupling parameter, but at different combinations of n and θ, behave exactly the same. As a function of ΓD, the form of p(v), the velocity distribution function of v, the magnitude of v, the velocity vector, is studied. For intermediate to high ΓD, heating is observed in p(v) that obeys conservation of energy, and a suprathermal tail is formed, with a spectral index that depends on ΓD. For strong coupling (ΓD≫1), the form of the tail is v-5, consistent with the findings of Randol and Christian). For weak coupling (ΓD≪1), no acceleration or heating occurs, as there is no free energy. The dependence on N, the number of particles in the simulation, is also explored. There is a subtle dependence in the index of the tail, such that v-5 appears to be the N→∞ limit.
NASA Technical Reports Server (NTRS)
Uslenghi, Piergiorgio L. E.; Laxpati, Sharad R.; Kawalko, Stephen F.
1993-01-01
The third phase of the development of the computer codes for scattering by coated bodies that has been part of an ongoing effort in the Electromagnetics Laboratory of the Electrical Engineering and Computer Science Department at the University of Illinois at Chicago is described. The work reported discusses the analytical and numerical results for the scattering of an obliquely incident plane wave by impedance bodies of revolution with phi variation of the surface impedance. Integral equation formulation of the problem is considered. All three types of integral equations, electric field, magnetic field, and combined field, are considered. These equations are solved numerically via the method of moments with parametric elements. Both TE and TM polarization of the incident plane wave are considered. The surface impedance is allowed to vary along both the profile of the scatterer and in the phi direction. Computer code developed for this purpose determines the electric surface current as well as the bistatic radar cross section. The results obtained with this code were validated by comparing the results with available results for specific scatterers such as the perfectly conducting sphere. Results for the cone-sphere and cone-cylinder-sphere for the case of an axially incident plane were validated by comparing the results with the results with those obtained in the first phase of this project. Results for body of revolution scatterers with an abrupt change in the surface impedance along both the profile of the scatterer and the phi direction are presented.
SLAC E155 and E155x Numeric Data Results and Data Plots: Nucleon Spin Structure Functions
The nucleon spin structure functions g1 and g2 are important tools for testing models of nucleon structure and QCD. Experiments at CERN, DESY, and SLAC have measured g1 and g2 using deep inelastic scattering of polarized leptons on polarized nucleon targets. The results of these experiments have established that the quark component of the nucleon helicity is much smaller than naive quark-parton model predictions. The Bjorken sum rule has been confirmed within the uncertainties of experiment and theory. The experiment E155 at SLAC collected data in March and April of 1997. Approximately 170 million scattered electron events were recorded to tape. (Along with several billion inclusive hadron events.) The data were collected using three independent fixed-angle magnetic spectrometers, at approximately 2.75, 5.5, and 10.5 degrees. The momentum acceptance of the 2.75 and 5.5 degree spectrometers ranged from 10 to 40 GeV, with momentum resolution of 2-4%. The 10.5 degree spectrometer, new for E155, accepted events of 7 GeV to 20 GeV. Each spectrometer used threshold gas Cerenkov counters (for particle ID), a segmented lead-glass calorimeter (for energy measurement and particle ID), and plastic scintillator hodoscopes (for tracking and momentum measurement). The polarized targets used for E155 were 15NH3 and 6LiD, as targets for measuring the proton and deuteron spin structure functions respectively. Experiment E155x recently concluded a successful two-month run at SLAC. The experiment was designed to measure the transverse spin structure functions of the proton and deuteron. The E155 target was also recently in use at TJNAF's Hall C (E93-026) and was returned to SLAC for E155x. E155x hopes to reduce the world data set errors on g2 by a factor of three. [Copied from http://www.slac.stanford.edu/exp/e155/e155_nickeltour.html, an information summary linked off the E155 home page at http://www.slac.stanford.edu/exp/e155/e155_home.html. The extension run, E155x, also makes
Modified OMP Algorithm for Exponentially Decaying Signals
Kazimierczuk, Krzysztof; Kasprzak, Paweł
2015-01-01
A group of signal reconstruction methods, referred to as compressed sensing (CS), has recently found a variety of applications in numerous branches of science and technology. However, the condition of the applicability of standard CS algorithms (e.g., orthogonal matching pursuit, OMP), i.e., the existence of the strictly sparse representation of a signal, is rarely met. Thus, dedicated algorithms for solving particular problems have to be developed. In this paper, we introduce a modification of OMP motivated by nuclear magnetic resonance (NMR) application of CS. The algorithm is based on the fact that the NMR spectrum consists of Lorentzian peaks and matches a single Lorentzian peak in each of its iterations. Thus, we propose the name Lorentzian peak matching pursuit (LPMP). We also consider certain modification of the algorithm by introducing the allowed positions of the Lorentzian peaks' centers. Our results show that the LPMP algorithm outperforms other CS algorithms when applied to exponentially decaying signals. PMID:25609044
ERIC Educational Resources Information Center
Zemsky, Robert; Shaman, Susan; Shapiro, Daniel B.
2001-01-01
Describes the Collegiate Results Instrument (CRI), which measures a range of collegiate outcomes for alumni 6 years after graduation. The CRI was designed to target alumni from institutions across market segments and assess their values, abilities, work skills, occupations, and pursuit of lifelong learning. (EV)
Performance-Based Seismic Design of Steel Frames Utilizing Colliding Bodies Algorithm
Veladi, H.
2014-01-01
A pushover analysis method based on semirigid connection concept is developed and the colliding bodies optimization algorithm is employed to find optimum seismic design of frame structures. Two numerical examples from the literature are studied. The results of the new algorithm are compared to the conventional design methods to show the power or weakness of the algorithm. PMID:25202717
NASA Astrophysics Data System (ADS)
Malobabic, M.; Buttschardt, W.; Rautenberg, M.
The paper presents a theoretical derivation of the relationship between a variable geometry turbocharger and the combustion engine, using simplified boundary conditions and model restraints and taking into account the combustion process itself as well as the nonadiabatic operating conditions for the turbine and the compressor. The simulation algorithm is described, and the results computed using this algorithm are compared with measurements performed on a test engine in combination with a controllable turbocharger with adjustable turbine inlet guide vanes. In addition, the results of theoretical parameter studies are presented, which include the simulation of a given turbocharger with variable geometry in combination with different sized combustion engines and the simulation of different sized variable-geometry turbochargers in combination with a given combustion engine.
Numerical simulation of steady supersonic flow. [spatial marching
NASA Technical Reports Server (NTRS)
Schiff, L. B.; Steger, J. L.
1981-01-01
A noniterative, implicit, space-marching, finite-difference algorithm was developed for the steady thin-layer Navier-Stokes equations in conservation-law form. The numerical algorithm is applicable to steady supersonic viscous flow over bodies of arbitrary shape. In addition, the same code can be used to compute supersonic inviscid flow or three-dimensional boundary layers. Computed results from two-dimensional and three-dimensional versions of the numerical algorithm are in good agreement with those obtained from more costly time-marching techniques.
Comprehensive eye evaluation algorithm
NASA Astrophysics Data System (ADS)
Agurto, C.; Nemeth, S.; Zamora, G.; Vahtel, M.; Soliz, P.; Barriga, S.
2016-03-01
In recent years, several research groups have developed automatic algorithms to detect diabetic retinopathy (DR) in individuals with diabetes (DM), using digital retinal images. Studies have indicated that diabetics have 1.5 times the annual risk of developing primary open angle glaucoma (POAG) as do people without DM. Moreover, DM patients have 1.8 times the risk for age-related macular degeneration (AMD). Although numerous investigators are developing automatic DR detection algorithms, there have been few successful efforts to create an automatic algorithm that can detect other ocular diseases, such as POAG and AMD. Consequently, our aim in the current study was to develop a comprehensive eye evaluation algorithm that not only detects DR in retinal images, but also automatically identifies glaucoma suspects and AMD by integrating other personal medical information with the retinal features. The proposed system is fully automatic and provides the likelihood of each of the three eye disease. The system was evaluated in two datasets of 104 and 88 diabetic cases. For each eye, we used two non-mydriatic digital color fundus photographs (macula and optic disc centered) and, when available, information about age, duration of diabetes, cataracts, hypertension, gender, and laboratory data. Our results show that the combination of multimodal features can increase the AUC by up to 5%, 7%, and 8% in the detection of AMD, DR, and glaucoma respectively. Marked improvement was achieved when laboratory results were combined with retinal image features.
NASA Technical Reports Server (NTRS)
Westphalen, H.; Spjeldvik, W. N.
1982-01-01
A theoretical method by which the energy dependence of the radial diffusion coefficient may be deduced from spectral observations of the particle population at the inner edge of the earth's radiation belts is presented. This region has previously been analyzed with numerical techniques; in this report an analytical treatment that illustrates characteristic limiting cases in the L shell range where the time scale of Coulomb losses is substantially shorter than that of radial diffusion (L approximately 1-2) is given. It is demonstrated both analytically and numerically that the particle spectra there are shaped by the energy dependence of the radial diffusion coefficient regardless of the spectral shapes of the particle populations diffusing inward from the outer radiation zone, so that from observed spectra the energy dependence of the diffusion coefficient can be determined. To insure realistic simulations, inner zone data obtained from experiments on the DIAL, AZUR, and ESRO 2 spacecraft have been used as boundary conditions. Excellent agreement between analytic and numerical results is reported.
Grover's algorithm and the secant varieties
NASA Astrophysics Data System (ADS)
Holweck, Frédéric; Jaffali, Hamza; Nounouh, Ismaël
2016-09-01
In this paper we investigate the entanglement nature of quantum states generated by Grover's search algorithm by means of algebraic geometry. More precisely we establish a link between entanglement of states generated by the algorithm and auxiliary algebraic varieties built from the set of separable states. This new perspective enables us to propose qualitative interpretations of earlier numerical results obtained by M. Rossi et al. We also illustrate our purpose with a couple of examples investigated in details.
Algorithm for in-flight gyroscope calibration
NASA Technical Reports Server (NTRS)
Davenport, P. B.; Welter, G. L.
1988-01-01
An optimal algorithm for the in-flight calibration of spacecraft gyroscope systems is presented. Special consideration is given to the selection of the loss function weight matrix in situations in which the spacecraft attitude sensors provide significantly more accurate information in pitch and yaw than in roll, such as will be the case in the Hubble Space Telescope mission. The results of numerical tests that verify the accuracy of the algorithm are discussed.
Supercomputers and biological sequence comparison algorithms.
Core, N G; Edmiston, E W; Saltz, J H; Smith, R M
1989-12-01
Comparison of biological (DNA or protein) sequences provides insight into molecular structure, function, and homology and is increasingly important as the available databases become larger and more numerous. One method of increasing the speed of the calculations is to perform them in parallel. We present the results of initial investigations using two dynamic programming algorithms on the Intel iPSC hypercube and the Connection Machine as well as an inexpensive, heuristically-based algorithm on the Encore Multimax.
Simplified method for numerical modeling of fiber lasers.
Shtyrina, O V; Yarutkina, I A; Fedoruk, M P
2014-12-29
A simplified numerical approach to modeling of dissipative dispersion-managed fiber lasers is examined. We present a new numerical iteration algorithm for finding the periodic solutions of the system of nonlinear ordinary differential equations describing the intra-cavity dynamics of the dissipative soliton characteristics in dispersion-managed fiber lasers. We demonstrate that results obtained using simplified model are in good agreement with full numerical modeling based on the corresponding partial differential equations.
High order hybrid numerical simulations of two dimensional detonation waves
NASA Technical Reports Server (NTRS)
Cai, Wei
1993-01-01
In order to study multi-dimensional unstable detonation waves, a high order numerical scheme suitable for calculating the detailed transverse wave structures of multidimensional detonation waves was developed. The numerical algorithm uses a multi-domain approach so different numerical techniques can be applied for different components of detonation waves. The detonation waves are assumed to undergo an irreversible, unimolecular reaction A yields B. Several cases of unstable two dimensional detonation waves are simulated and detailed transverse wave interactions are documented. The numerical results show the importance of resolving the detonation front without excessive numerical viscosity in order to obtain the correct cellular patterns.
NASA Technical Reports Server (NTRS)
Vardi, A.
1984-01-01
The representation min t s.t. F(I)(x). - t less than or equal to 0 for all i is examined. An active set strategy is designed of functions: active, semi-active, and non-active. This technique will help in preventing zigzagging which often occurs when an active set strategy is used. Some of the inequality constraints are handled with slack variables. Also a trust region strategy is used in which at each iteration there is a sphere around the current point in which the local approximation of the function is trusted. The algorithm is implemented into a successful computer program. Numerical results are provided.
NASA Technical Reports Server (NTRS)
Baker, John G.
2009-01-01
Recent advances in numerical relativity have fueled an explosion of progress in understanding the predictions of Einstein's theory of gravity, General Relativity, for the strong field dynamics, the gravitational radiation wave forms, and consequently the state of the remnant produced from the merger of compact binary objects. I will review recent results from the field, focusing on mergers of two black holes.
Guidance algorithms for a free-flying space robot
NASA Technical Reports Server (NTRS)
Brindle, A. F.; Viggh, H. E. M.; Albert, J. H.
1989-01-01
Robotics is a promising technology for assembly, servicing, and maintenance of platforms in space. Several aspects of planning and guidance for telesupervised and fully autonomous robotic servicers are investigated. Guidance algorithms for proximity operation of a free flyer are described. Numeric trajectory optimization is combined with artificial intelligence based obstacle avoidance. An initial algorithm and the results of its simulating platform servicing scenario are discussed. A second algorithm experiment is then proposed.
NASA Technical Reports Server (NTRS)
Back, L. H.
1972-01-01
The laminar flow equations in differential form are solved numerically on a digital computer for flow of a very high temperature gas through the entrance region of an externally cooled tube. The solution method is described and calculations are carried out in conjunction with experimental measurements. The agreement with experiment is good, with the result indicating relatively large energy and momentum losses in the highly cooled flows considered where the pressure is nearly uniform along the flow and the core flow becomes non-adiabatic a few diameters downstream of the inlet. The effects of a large range of Reynolds number and Mach number (viscous dissipation) are also investigated.
NASA Astrophysics Data System (ADS)
Rijkhorst, Erik-Jan
2005-12-01
The late stages of evolution of stars like our Sun are dominated by several episodes of violent mass loss. Space based observations of the resulting objects, known as Planetary Nebulae, show a bewildering array of highly symmetric shapes. The interplay between gasdynamics and radiative processes determines the morphological outcome of these objects, and numerical models for astrophysical gasdynamics have to incorporate these effects. This thesis presents new numerical techniques for carrying out high-resolution three-dimensional radiation hydrodynamical simulations. Such calculations require parallelization of computer codes, and the use of state-of-the-art supercomputer technology. Numerical models in the context of the shaping of Planetary Nebulae are presented, providing insight into their origin and fate.
Fast proximity algorithm for MAP ECT reconstruction
NASA Astrophysics Data System (ADS)
Li, Si; Krol, Andrzej; Shen, Lixin; Xu, Yuesheng
2012-03-01
We arrived at the fixed-point formulation of the total variation maximum a posteriori (MAP) regularized emission computed tomography (ECT) reconstruction problem and we proposed an iterative alternating scheme to numerically calculate the fixed point. We theoretically proved that our algorithm converges to unique solutions. Because the obtained algorithm exhibits slow convergence speed, we further developed the proximity algorithm in the transformed image space, i.e. the preconditioned proximity algorithm. We used the bias-noise curve method to select optimal regularization hyperparameters for both our algorithm and expectation maximization with total variation regularization (EM-TV). We showed in the numerical experiments that our proposed algorithms, with an appropriately selected preconditioner, outperformed conventional EM-TV algorithm in many critical aspects, such as comparatively very low noise and bias for Shepp-Logan phantom. This has major ramification for nuclear medicine because clinical implementation of our preconditioned fixed-point algorithms might result in very significant radiation dose reduction in the medical applications of emission tomography.
Improved local linearization algorithm for solving the quaternion equations
NASA Technical Reports Server (NTRS)
Yen, K.; Cook, G.
1980-01-01
The objective of this paper is to develop a new and more accurate local linearization algorithm for numerically solving sets of linear time-varying differential equations. Of special interest is the application of this algorithm to the quaternion rate equations. The results are compared, both analytically and experimentally, with previous results using local linearization methods. The new algorithm requires approximately one-third more calculations per step than the previously developed local linearization algorithm; however, this disadvantage could be reduced by using parallel implementation. For some cases the new algorithm yields significant improvement in accuracy, even with an enlarged sampling interval. The reverse is true in other cases. The errors depend on the values of angular velocity, angular acceleration, and integration step size. One important result is that for the worst case the new algorithm can guarantee eigenvalues nearer the region of stability than can the previously developed algorithm.
NASA Astrophysics Data System (ADS)
van Gent, H. W.; Abe, S.; Urai, J. L.; Holland, M.
2009-04-01
The formation of open cavities as a result of (normal) faulting of a brittle material under low effective stress has profound effects on the hydraulic properties of rocks both near the surface and at depth. It is however often difficult to access the fault zone directly. Here we present the results from a series of analogue models of normal faults in brittle rocks. Fine grained, dry Hemihydrate powder (CaSO4 * 1/2 H2O) was used as the truly cohesive analogue material. An extensive characterization of material properties, including the porosity dependency of both tensile strength and cohesion, showed the increase of strength of the powder with burial in the experimental box. In side view observations of the analogue models three structural zones were distinguished; a pure tensile failure zone at the surface and pure shear failure zone near the bottom of the box. At mid-depths we observed a transitional zone with mixed mode failure and the formation of fault cavities. These cavities initiate at local dip-changes of the fault and can collapse with progressive deformation. The transitions between these zones can be directly related to the increase of material strength due to burial compaction. The intercalation of relatively softer sand layers and relatively stronger layers of a hemihydrate and graphite mixture resulted in a marked increase of the complexity of the fault zone, but the three structural zones remain clearly visible. The sand layers can form decollement surfaces and "sand-smears". The observed structures compare well with fault outcrops and fault related cave systems in carbonates, basalts and consolidated sandstone. We used Particle Image Velocimetry (PIV) to quantify deformation and strain and observed plastic deformation prior to brittle failure at increments to small for visual inspection. However, the forces involved remain largely unknown. Therefore we have used the Discrete Element Method (DEM) to numerically model the formation of open fractures
Numerical methods: Analytical benchmarking in transport theory
Ganapol, B.D. )
1988-01-01
Numerical methods applied to reactor technology have reached a high degree of maturity. Certainly one- and two-dimensional neutron transport calculations have become routine, with several programs available on personal computer and the most widely used programs adapted to workstation and minicomputer computational environments. With the introduction of massive parallelism and as experience with multitasking increases, even more improvement in the development of transport algorithms can be expected. Benchmarking an algorithm is usually not a very pleasant experience for the code developer. Proper algorithmic verification by benchmarking involves the following considerations: (1) conservation of particles, (2) confirmation of intuitive physical behavior, and (3) reproduction of analytical benchmark results. By using today's computational advantages, new basic numerical methods have been developed that allow a wider class of benchmark problems to be considered.
NASA Technical Reports Server (NTRS)
Cabra, R.; Chen, J. Y.; Dibble, R. W.; Myhrvold, T.; Karpetis, A. N.; Barlow, R. S.
2002-01-01
An experiment and numerical investigation is presented of a lifted turbulent H2/N2 jet flame in a coflow of hot, vitiated gases. The vitiated coflow burner emulates the coupling of turbulent mixing and chemical kinetics exemplary of the reacting flow in the recirculation region of advanced combustors. It also simplifies numerical investigation of this coupled problem by removing the complexity of recirculating flow. Scalar measurements are reported for a lifted turbulent jet flame of H2/N2 (Re = 23,600, H/d = 10) in a coflow of hot combustion products from a lean H2/Air flame ((empty set) = 0.25, T = 1,045 K). The combination of Rayleigh scattering, Raman scattering, and laser-induced fluorescence is used to obtain simultaneous measurements of temperature and concentrations of the major species, OH, and NO. The data attest to the success of the experimental design in providing a uniform vitiated coflow throughout the entire test region. Two combustion models (PDF: joint scalar Probability Density Function and EDC: Eddy Dissipation Concept) are used in conjunction with various turbulence models to predict the lift-off height (H(sub PDF)/d = 7,H(sub EDC)/d = 8.5). Kalghatgi's classic phenomenological theory, which is based on scaling arguments, yields a reasonably accurate prediction (H(sub K)/d = 11.4) of the lift-off height for the present flame. The vitiated coflow admits the possibility of auto-ignition of mixed fluid, and the success of the present parabolic implementation of the PDF model in predicting a stable lifted flame is attributable to such ignition. The measurements indicate a thickened turbulent reaction zone at the flame base. Experimental results and numerical investigations support the plausibility of turbulent premixed flame propagation by small scale (on the order of the flame thickness) recirculation and mixing of hot products into reactants and subsequent rapid ignition of the mixture.
NASA Astrophysics Data System (ADS)
Dellacherie, Stéphane
2003-05-01
To describe the uranium gas expansion in the field of the Atomic Vapor Laser Isotopic Separation (AVLIS; SILVA in french) with a reasonable CPU time, we have to couple the resolution of the Boltzmann equation with the resolution of the Euler system. The resolution of the Euler system uses a kinetic scheme and the boundary condition at the kinetic - fluid interface — which defines the boundary between the Boltzmann area and the Euler area — is defined with the positive and negative half fluxes of the kinetic scheme. Moreover, in order to take into account the effect of the Knudsen layer through the resolution of the Euler system, we propose to use a Marshak condition to asymptoticaly match the Euler area with the uranium source. Numerical results show an excellent agreement between the results obtained with and without kinetic - fluid coupling.
NASA Astrophysics Data System (ADS)
Ku, B.; Nam, M.
2012-12-01
Neutron logging has been widely used to estimate neutron porosity to evaluate formation properties in oil industry. More recently, neutron logging has been highlighted for monitoring the behavior of CO2 injected into reservoir for geological CO2 sequestration. For a better understanding of neutron log interpretation, Monte Carlo N-Particle (MCNP) algorithm is used to illustrate the response of a neutron tool. In order to obtain calibration curves for the neutron tool, neutron responses are simulated in water-filled limestone, sandstone and dolomite formations of various porosities. Since the salinities (concentration of NaCl) of borehole fluid and formation water are important factors for estimating formation porosity, we first compute and analyze neutron responses for brine-filled formations with different porosities. Further, we consider changes in brine saturation of a reservoir due to hydrocarbon production or geological CO2 sequestration to simulate corresponding neutron logging data. As gas saturation decreases, measured neutron porosity confirms gas effects on neutron logging, which is attributed to the fact that gas has slightly smaller number of hydrogen than brine water. In the meantime, increase in CO2 saturation due to CO2 injection reduces measured neutron porosity giving a clue to estimation the CO2 saturation, since the injected CO2 substitute for the brine water. A further analysis on the reduction gives a strategy for estimating CO2 saturation based on time-lapse neutron logging. This strategy can help monitoring not only geological CO2 sequestration but also CO2 flood for enhanced-oil-recovery. Acknowledgements: This work was supported by the Energy Efficiency & Resources of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 2012T100201588). Myung Jin Nam was partially supported by the National Research Foundation of Korea(NRF) grant funded by the Korea
NASA Astrophysics Data System (ADS)
Agus, M.; Mascia, M. L.; Fastame, M. C.; Melis, V.; Pilloni, M. C.; Penna, M. P.
2015-02-01
A body of literature shows the significant role of visual-spatial skills played in the improvement of mathematical skills in the primary school. The main goal of the current study was to investigate the impact of a combined visuo-spatial and mathematical training on the improvement of mathematical skills in 146 second graders of several schools located in Italy. Participants were presented single pencil-and-paper visuo-spatial or mathematical trainings, computerised version of the above mentioned treatments, as well as a combined version of computer-assisted and pencil-and-paper visuo-spatial and mathematical trainings, respectively. Experimental groups were presented with training for 3 months, once a week. All children were treated collectively both in computer-assisted or pencil-and-paper modalities. At pre and post-test all our participants were presented with a battery of objective tests assessing numerical and visuo-spatial abilities. Our results suggest the positive effect of different types of training for the empowerment of visuo-spatial and numerical abilities. Specifically, the combination of computerised and pencil-and-paper versions of visuo-spatial and mathematical trainings are more effective than the single execution of the software or of the pencil-and-paper treatment.
Numerical recipes for mold filling simulation
Kothe, D.; Juric, D.; Lam, K.; Lally, B.
1998-07-01
Has the ability to simulate the filling of a mold progressed to a point where an appropriate numerical recipe achieves the desired results? If results are defined to be topological robustness, computational efficiency, quantitative accuracy, and predictability, all within a computational domain that faithfully represents complex three-dimensional foundry molds, then the answer unfortunately remains no. Significant interfacial flow algorithm developments have occurred over the last decade, however, that could bring this answer closer to maybe. These developments have been both evolutionary and revolutionary, will continue to transpire for the near future. Might they become useful numerical recipes for mold filling simulations? Quite possibly. Recent progress in algorithms for interface kinematics and dynamics, linear solution methods, computer science issues such as parallelization and object-oriented programming, high resolution Navier-Stokes (NS) solution methods, and unstructured mesh techniques, must all be pursued as possible paths toward higher fidelity mold filling simulations. A detailed exposition of these algorithmic developments is beyond the scope of this paper, hence the authors choose to focus here exclusively on algorithms for interface kinematics. These interface tracking algorithms are designed to model the movement of interfaces relative to a reference frame such as a fixed mesh. Current interface tracking algorithm choices are numerous, so is any one best suited for mold filling simulation? Although a clear winner is not (yet) apparent, pros and cons are given in the following brief, critical review. Highlighted are those outstanding interface tracking algorithm issues the authors feel can hamper the reliable modeling of today`s foundry mold filling processes.
NASA Technical Reports Server (NTRS)
Entekhabi, Dara; Njoku, Eni E.; O'Neill, Peggy E.; Kellogg, Kent H.; Entin, Jared K.
2010-01-01
Talk outline 1. Derivation of SMAP basic and applied science requirements from the NRC Earth Science Decadal Survey applications 2. Data products and latencies 3. Algorithm highlights 4. SMAP Algorithm Testbed 5. SMAP Working Groups and community engagement
A parallel Jacobson-Oksman optimization algorithm. [parallel processing (computers)
NASA Technical Reports Server (NTRS)
Straeter, T. A.; Markos, A. T.
1975-01-01
A gradient-dependent optimization technique which exploits the vector-streaming or parallel-computing capabilities of some modern computers is presented. The algorithm, derived by assuming that the function to be minimized is homogeneous, is a modification of the Jacobson-Oksman serial minimization method. In addition to describing the algorithm, conditions insuring the convergence of the iterates of the algorithm and the results of numerical experiments on a group of sample test functions are presented. The results of these experiments indicate that this algorithm will solve optimization problems in less computing time than conventional serial methods on machines having vector-streaming or parallel-computing capabilities.
Subsurface biological activity zone detection using genetic search algorithms
Mahinthakumar, G.; Gwo, J.P.; Moline, G.R.; Webb, O.F.
1999-12-01
Use of generic search algorithms for detection of subsurface biological activity zones (BAZ) is investigated through a series of hypothetical numerical biostimulation experiments. Continuous injection of dissolved oxygen and methane with periodically varying concentration stimulates the cometabolism of indigenous methanotropic bacteria. The observed breakthroughs of methane are used to deduce possible BAZ in the subsurface. The numerical experiments are implemented in a parallel computing environment to make possible the large number of simultaneous transport simulations required by the algorithm. The results show that genetic algorithms are very efficient in locating multiple activity zones, provided the observed signals adequately sample the BAZ.
Symbalisty, E.M.D.; Zinn, J.; Whitaker, R.W.
1995-09-01
This paper describes the history, physics, and algorithms of the computer code RADFLO and its extension HYCHEM. RADFLO is a one-dimensional, radiation-transport hydrodynamics code that is used to compute early-time fireball behavior for low-altitude nuclear bursts. The primary use of the code is the prediction of optical signals produced by nuclear explosions. It has also been used to predict thermal and hydrodynamic effects that are used for vulnerability and lethality applications. Another closely related code, HYCHEM, is an extension of RADFLO which includes the effects of nonequilibrium chemistry. Some examples of numerical results will be shown, along with scaling expressions derived from those results. We describe new computations of the structures and luminosities of steady-state shock waves and radiative thermal waves, which have been extended to cover a range of ambient air densities for high-altitude applications. We also describe recent modifications of the codes to use a one-dimensional analog of the CAVEAT fluid-dynamics algorithm in place of the former standard Richtmyer-von Neumann algorithm.
NASA Technical Reports Server (NTRS)
Newman, P. A.; Allison, D. O.
1974-01-01
Numerical results obtained from two computer programs recently developed with NASA support and now available for use by others are compared with some sample experimental data taken on a rectangular-wing configuration in the AEDC 16-Foot Transonic Tunnel at transonic and subsonic flow conditions. This data was used in an AEDC investigation as reference data to deduce the tunnel-wall interference effects for corresponding data taken in a smaller tunnel. The comparisons were originally intended to see how well a current state-of-the-art transonic flow calculation for a simple 3-D wing agreed with data which was felt by experimentalists to be relatively interference-free. As a result of the discrepancies between the experimental data and computational results at the quoted angle of attack, it was then deduced from an approximate stress analysis that the sting had deflected appreciably. Thus, the comparisons themselves are not so meaningful, since the calculations must be repeated at the proper angle of attack. Of more importance, however, is a demonstration of the utility of currently available computational tools in the analysis and correlation of transonic experimental data.
NASA Astrophysics Data System (ADS)
Baneshi, Mehdi; Gonome, Hiroki; Komiya, Atsuki; Maruyama, Shigenao
2012-05-01
A new approach in designing pigmented coatings considering both visual and thermal concerns was introduced by authors in previous works. The objective was to design a pigmented coating with dark appearance which can stay cool while exposed to sunlight. This behavior can be achieved by coating a typical black substrate with a pigmented coating with controlled size and concentration of particles and coating thickness. In present work, the spectral behaviour of polydisperse TiO2 pigmented coatings was studied. The radiative properties of polydisperse TiO2 powders were evaluated and the radiative transfer in the pigmented coating was modelled using the radiation element method by ray emission model (REM2). The effects of particles size distribution on spectral reflectivity, optimization parameter, and color coordinates were discussed. The results of numerical calculation were validated by experimental reflectivity measurements of several TiO2 pigmented coating samples made from two different TiO2 powders with different size distributions of particles. The results show that our model can reasonably predict the spectral reflectivity of TiO2 pigmented coating samples. Moreover, the results of optimized monodisperse TiO2 pigmented coatings were again validated.
Last-passage Monte Carlo algorithm for mutual capacitance.
Hwang, Chi-Ok; Given, James A
2006-08-01
We develop and test the last-passage diffusion algorithm, a charge-based Monte Carlo algorithm, for the mutual capacitance of a system of conductors. The first-passage algorithm is highly efficient because it is charge based and incorporates importance sampling; it averages over the properties of Brownian paths that initiate outside the conductor and terminate on its surface. However, this algorithm does not seem to generalize to mutual capacitance problems. The last-passage algorithm, in a sense, is the time reversal of the first-passage algorithm; it involves averages over particles that initiate on an absorbing surface, leave that surface, and diffuse away to infinity. To validate this algorithm, we calculate the mutual capacitance matrix of the circular-disk parallel-plate capacitor and compare with the known numerical results. Good agreement is obtained.
In Praise of Numerical Computation
NASA Astrophysics Data System (ADS)
Yap, Chee K.
Theoretical Computer Science has developed an almost exclusively discrete/algebraic persona. We have effectively shut ourselves off from half of the world of computing: a host of problems in Computational Science & Engineering (CS&E) are defined on the continuum, and, for them, the discrete viewpoint is inadequate. The computational techniques in such problems are well-known to numerical analysis and applied mathematics, but are rarely discussed in theoretical algorithms: iteration, subdivision and approximation. By various case studies, I will indicate how our discrete/algebraic view of computing has many shortcomings in CS&E. We want embrace the continuous/analytic view, but in a new synthesis with the discrete/algebraic view. I will suggest a pathway, by way of an exact numerical model of computation, that allows us to incorporate iteration and approximation into our algorithms’ design. Some recent results give a peek into how this view of algorithmic development might look like, and its distinctive form suggests the name “numerical computational geometry” for such activities.
NASA Astrophysics Data System (ADS)
Hegedűs, Árpád; Konczer, József
2016-08-01
In this paper, we solved numerically the Quantum Spectral Curve (QSC) equations corresponding to some twist-2 single trace operators with even spin from the sl(2) sector of AdS 5 /CFT 4 correspondence. We describe all technical details of the numerical method which are necessary to implement it in C++ language.
Efficient Homotopy Continuation Algorithms with Application to Computational Fluid Dynamics
NASA Astrophysics Data System (ADS)
Brown, David A.
New homotopy continuation algorithms are developed and applied to a parallel implicit finite-difference Newton-Krylov-Schur external aerodynamic flow solver for the compressible Euler, Navier-Stokes, and Reynolds-averaged Navier-Stokes equations with the Spalart-Allmaras one-equation turbulence model. Many new analysis tools, calculations, and numerical algorithms are presented for the study and design of efficient and robust homotopy continuation algorithms applicable to solving very large and sparse nonlinear systems of equations. Several specific homotopies are presented and studied and a methodology is presented for assessing the suitability of specific homotopies for homotopy continuation. . A new class of homotopy continuation algorithms, referred to as monolithic homotopy continuation algorithms, is developed. These algorithms differ from classical predictor-corrector algorithms by combining the predictor and corrector stages into a single update, significantly reducing the amount of computation and avoiding wasted computational effort resulting from over-solving in the corrector phase. The new algorithms are also simpler from a user perspective, with fewer input parameters, which also improves the user's ability to choose effective parameters on the first flow solve attempt. Conditional convergence is proved analytically and studied numerically for the new algorithms. The performance of a fully-implicit monolithic homotopy continuation algorithm is evaluated for several inviscid, laminar, and turbulent flows over NACA 0012 airfoils and ONERA M6 wings. The monolithic algorithm is demonstrated to be more efficient than the predictor-corrector algorithm for all applications investigated. It is also demonstrated to be more efficient than the widely-used pseudo-transient continuation algorithm for all inviscid and laminar cases investigated, and good performance scaling with grid refinement is demonstrated for the inviscid cases. Performance is also demonstrated
Gregoire, C.; Joesten, P.K.; Lane, J.W.
2006-01-01
Ground penetrating radar is an efficient geophysical method for the detection and location of fractures and fracture zones in electrically resistive rocks. In this study, the use of down-hole (borehole) radar reflection logs to monitor the injection of steam in fractured rocks was tested as part of a field-scale, steam-enhanced remediation pilot study conducted at a fractured limestone quarry contaminated with chlorinated hydrocarbons at the former Loring Air Force Base, Limestone, Maine, USA. In support of the pilot study, borehole radar reflection logs were collected three times (before, during, and near the end of steam injection) using broadband 100 MHz electric dipole antennas. Numerical modelling was performed to predict the effect of heating on radar-frequency electromagnetic (EM) wave velocity, attenuation, and fracture reflectivity. The modelling results indicate that EM wave velocity and attenuation change substantially if heating increases the electrical conductivity of the limestone matrix. Furthermore, the net effect of heat-induced variations in fracture-fluid dielectric properties on average medium velocity is insignificant because the expected total fracture porosity is low. In contrast, changes in fracture fluid electrical conductivity can have a significant effect on EM wave attenuation and fracture reflectivity. Total replacement of water by steam in a fracture decreases fracture reflectivity of a factor of 10 and induces a change in reflected wave polarity. Based on the numerical modelling results, a reflection amplitude analysis method was developed to delineate fractures where steam has displaced water. Radar reflection logs collected during the three acquisition periods were analysed in the frequency domain to determine if steam had replaced water in the fractures (after normalizing the logs to compensate for differences in antenna performance between logging runs). Analysis of the radar reflection logs from a borehole where the temperature
Numerical simulation of photoexcited polaron states in water
Zemlyanaya, E. V. Volokhova, A. V.; Amirkhanov, I. V.; Puzynin, I. V.; Puzynina, T. P.; Rikhvitskiy, V. S.; Lakhno, V. D.; Atanasova, P. Kh.
2015-10-28
We consider the dynamic polaron model of the hydrated electron state on the basis of a system of three nonlinear partial differential equations with appropriate initial and boundary conditions. A parallel numerical algorithm for the numerical solution of this system has been developed. Its effectiveness has been tested on a few multi-processor systems. A numerical simulation of the polaron states formation in water under the action of the ultraviolet range laser irradiation has been performed. The numerical results are shown to be in a reasonable agreement with experimental data and theoretical predictions.
NASA Technical Reports Server (NTRS)
Benyo, Theresa L.
2011-01-01
Flow matching has been successfully achieved for an MHD energy bypass system on a supersonic turbojet engine. The Numerical Propulsion System Simulation (NPSS) environment helped perform a thermodynamic cycle analysis to properly match the flows from an inlet employing a MHD energy bypass system (consisting of an MHD generator and MHD accelerator) on a supersonic turbojet engine. Working with various operating conditions (such as the applied magnetic field, MHD generator length and flow conductivity), interfacing studies were conducted between the MHD generator, the turbojet engine, and the MHD accelerator. This paper briefly describes the NPSS environment used in this analysis. This paper further describes the analysis of a supersonic turbojet engine with an MHD generator/accelerator energy bypass system. Results from this study have shown that using MHD energy bypass in the flow path of a supersonic turbojet engine increases the useful Mach number operating range from 0 to 3.0 Mach (not using MHD) to a range of 0 to 7.0 Mach with specific net thrust range of 740 N-s/kg (at ambient Mach = 3.25) to 70 N-s/kg (at ambient Mach = 7). These results were achieved with an applied magnetic field of 2.5 Tesla and conductivity levels in a range from 2 mhos/m (ambient Mach = 7) to 5.5 mhos/m (ambient Mach = 3.5) for an MHD generator length of 3 m.
X Liu; E Garboczi; m Grigoriu; Y Lu; S Erdogan
2011-12-31
Many parameters affect the cyclone efficiency, and these parameters can have different effects in different flow regimes. Therefore the maximum-efficiency cyclone length is a function of the specific geometry and operating conditions in use. In this study, we obtained a relationship describing the minimum particle diameter or maximum cyclone efficiency by using a theoretical approach based on cyclone geometry and fluid properties. We have compared the empirical predictions with corresponding literature data and observed good agreement. The results address the importance of fluid properties. Inlet and vortex finder cross-sections, cone-apex diameter, inlet Reynolds number and surface roughness are found to be the other important parameters affecting cyclone height. The surface friction coefficient, on the other hand, is difficult to employ in the calculations.We developed a theoretical approach to find the maximum-efficiency heights for cyclones with tangential inlet and we suggested a relation for this height as a function of cyclone geometry and operating parameters. In order to generalize use of the relation, two dimensionless parameters, namely for geometric and operational variables, we defined and results were presented in graphical form such that one can calculate and enter the values of these dimensionless parameters and then can find the maximum efficiency height of his own specific cyclone.
QPSO-based adaptive DNA computing algorithm.
Karakose, Mehmet; Cigdem, Ugur
2013-01-01
DNA (deoxyribonucleic acid) computing that is a new computation model based on DNA molecules for information storage has been increasingly used for optimization and data analysis in recent years. However, DNA computing algorithm has some limitations in terms of convergence speed, adaptability, and effectiveness. In this paper, a new approach for improvement of DNA computing is proposed. This new approach aims to perform DNA computing algorithm with adaptive parameters towards the desired goal using quantum-behaved particle swarm optimization (QPSO). Some contributions provided by the proposed QPSO based on adaptive DNA computing algorithm are as follows: (1) parameters of population size, crossover rate, maximum number of operations, enzyme and virus mutation rate, and fitness function of DNA computing algorithm are simultaneously tuned for adaptive process, (2) adaptive algorithm is performed using QPSO algorithm for goal-driven progress, faster operation, and flexibility in data, and (3) numerical realization of DNA computing algorithm with proposed approach is implemented in system identification. Two experiments with different systems were carried out to evaluate the performance of the proposed approach with comparative results. Experimental results obtained with Matlab and FPGA demonstrate ability to provide effective optimization, considerable convergence speed, and high accuracy according to DNA computing algorithm.
Numerical solution of hybrid fuzzy differential equations using improved predictor-corrector method
NASA Astrophysics Data System (ADS)
Kim, Hyunsoo; Sakthivel, Rathinasamy
2012-10-01
The hybrid fuzzy differential equations have a wide range of applications in science and engineering. This paper considers numerical solution for hybrid fuzzy differential equations. The improved predictor-corrector method is adapted and modified for solving the hybrid fuzzy differential equations. The proposed algorithm is illustrated by numerical examples and the results obtained using the scheme presented here agree well with the analytical solutions. The computer symbolic systems such as Maple and Mathematica allow us to perform complicated calculations of algorithm.
Numerical Computation of the Tau Approximation for the Delayed Burgers Equation
NASA Astrophysics Data System (ADS)
Khaksar, Haghani F.; Karimi, Vanani S.; Sedighi, Hafshejani J.
2013-02-01
We investigate an efficient extension of the operational Tau method for solving the delayed Burgers equation(DBE) arising in physical problems. This extension gives a useful numerical algorithm for the DBE including linear and nonlinear terms. The orthogonality of the Laguerre polynomials as the basis function is the main characteristic behind the method to decrease the volume of computations and runtime of the method. Numerical results are also presented for some experiments to demonstrate the usefulness and accuracy of the proposed algorithm.
Vafaeian, B; Le, L H; Tran, T N H T; El-Rich, M; El-Bialy, T; Adeeb, S
2016-05-01
The present study investigated the accuracy of micro-scale finite element modeling for simulating broadband ultrasound propagation in water-saturated trabecular bone-mimicking phantoms. To this end, five commercially manufactured aluminum foam samples as trabecular bone-mimicking phantoms were utilized for ultrasonic immersion through-transmission experiments. Based on micro-computed tomography images of the same physical samples, three-dimensional high-resolution computational samples were generated to be implemented in the micro-scale finite element models. The finite element models employed the standard Galerkin finite element method (FEM) in time domain to simulate the ultrasonic experiments. The numerical simulations did not include energy dissipative mechanisms of ultrasonic attenuation; however, they expectedly simulated reflection, refraction, scattering, and wave mode conversion. The accuracy of the finite element simulations were evaluated by comparing the simulated ultrasonic attenuation and velocity with the experimental data. The maximum and the average relative errors between the experimental and simulated attenuation coefficients in the frequency range of 0.6-1.4 MHz were 17% and 6% respectively. Moreover, the simulations closely predicted the time-of-flight based velocities and the phase velocities of ultrasound with maximum relative errors of 20 m/s and 11 m/s respectively. The results of this study strongly suggest that micro-scale finite element modeling can effectively simulate broadband ultrasound propagation in water-saturated trabecular bone-mimicking structures.
NASA Technical Reports Server (NTRS)
Benyo, Theresa L.
2010-01-01
Preliminary flow matching has been demonstrated for a MHD energy bypass system on a supersonic turbojet engine. The Numerical Propulsion System Simulation (NPSS) environment was used to perform a thermodynamic cycle analysis to properly match the flows from an inlet to a MHD generator and from the exit of a supersonic turbojet to a MHD accelerator. Working with various operating conditions such as the enthalpy extraction ratio and isentropic efficiency of the MHD generator and MHD accelerator, interfacing studies were conducted between the pre-ionizers, the MHD generator, the turbojet engine, and the MHD accelerator. This paper briefly describes the NPSS environment used in this analysis and describes the NPSS analysis of a supersonic turbojet engine with a MHD generator/accelerator energy bypass system. Results from this study have shown that using MHD energy bypass in the flow path of a supersonic turbojet engine increases the useful Mach number operating range from 0 to 3.0 Mach (not using MHD) to an explored and desired range of 0 to 7.0 Mach.
Vafaeian, B; Le, L H; Tran, T N H T; El-Rich, M; El-Bialy, T; Adeeb, S
2016-05-01
The present study investigated the accuracy of micro-scale finite element modeling for simulating broadband ultrasound propagation in water-saturated trabecular bone-mimicking phantoms. To this end, five commercially manufactured aluminum foam samples as trabecular bone-mimicking phantoms were utilized for ultrasonic immersion through-transmission experiments. Based on micro-computed tomography images of the same physical samples, three-dimensional high-resolution computational samples were generated to be implemented in the micro-scale finite element models. The finite element models employed the standard Galerkin finite element method (FEM) in time domain to simulate the ultrasonic experiments. The numerical simulations did not include energy dissipative mechanisms of ultrasonic attenuation; however, they expectedly simulated reflection, refraction, scattering, and wave mode conversion. The accuracy of the finite element simulations were evaluated by comparing the simulated ultrasonic attenuation and velocity with the experimental data. The maximum and the average relative errors between the experimental and simulated attenuation coefficients in the frequency range of 0.6-1.4 MHz were 17% and 6% respectively. Moreover, the simulations closely predicted the time-of-flight based velocities and the phase velocities of ultrasound with maximum relative errors of 20 m/s and 11 m/s respectively. The results of this study strongly suggest that micro-scale finite element modeling can effectively simulate broadband ultrasound propagation in water-saturated trabecular bone-mimicking structures. PMID:26894840
A multi-level solution algorithm for steady-state Markov chains
NASA Technical Reports Server (NTRS)
Horton, Graham; Leutenegger, Scott T.
1993-01-01
A new iterative algorithm, the multi-level algorithm, for the numerical solution of steady state Markov chains is presented. The method utilizes a set of recursively coarsened representations of the original system to achieve accelerated convergence. It is motivated by multigrid methods, which are widely used for fast solution of partial differential equations. Initial results of numerical experiments are reported, showing significant reductions in computation time, often an order of magnitude or more, relative to the Gauss-Seidel and optimal SOR algorithms for a variety of test problems. The multi-level method is compared and contrasted with the iterative aggregation-disaggregation algorithm of Takahashi.
NASA Astrophysics Data System (ADS)
Sarkadi, N.; Geresdi, I.; Thompson, G.
2016-11-01
In this study, results of bulk and bin microphysical schemes are compared in the case of idealized simulations of pre-frontal orographic clouds with enhanced embedded convection. The description graupel formation by intensive riming of snowflakes was improved compared to prior versions of each scheme. Two methods of graupel melting coincident with collisions with water drops were considered: (1) all simulated melting and collected water drops increase the amount of melted water on the surface of graupel particles with no shedding permitted; (2) also no shedding permitted due to melting, but the collision with the water drops can induce shedding from the surface of the graupel particles. The results of the numerical experiments show: (i) The bin schemes generate graupel particles more efficiently by riming than the bulk scheme does; the intense riming of snowflakes was the most dominant process for the graupel formation. (ii) The collision-induced shedding significantly affects the evolution of the size distribution of graupel particles and water drops below the melting level. (iii) The three microphysical schemes gave similar values for the domain integrated surface precipitation, but the patterns reveal meaningful differences. (iv) Sensitivity tests using the bulk scheme show that the depth of the melting layer is sensitive to the description of the terminal velocity of the melting snow. (v) Comparisons against Convair-580 flight measurements suggest that the bin schemes simulate well the evolution of the pristine ice particles and liquid drops, while some inaccuracy can occur in the description of snowflakes riming. (vi) The bin scheme with collision-induced shedding reproduced well the quantitative characteristics of the observed bright band.
A novel algorithm for Bluetooth ECG.
Pandya, Utpal T; Desai, Uday B
2012-11-01
In wireless transmission of ECG, data latency will be significant when battery power level and data transmission distance are not maintained. In applications like home monitoring or personalized care, to overcome the joint effect of previous issues of wireless transmission and other ECG measurement noises, a novel filtering strategy is required. Here, a novel algorithm, identified as peak rejection adaptive sampling modified moving average (PRASMMA) algorithm for wireless ECG is introduced. This algorithm first removes error in bit pattern of received data if occurred in wireless transmission and then removes baseline drift. Afterward, a modified moving average is implemented except in the region of each QRS complexes. The algorithm also sets its filtering parameters according to different sampling rate selected for acquisition of signals. To demonstrate the work, a prototyped Bluetooth-based ECG module is used to capture ECG with different sampling rate and in different position of patient. This module transmits ECG wirelessly to Bluetooth-enabled devices where the PRASMMA algorithm is applied on captured ECG. The performance of PRASMMA algorithm is compared with moving average and S-Golay algorithms visually as well as numerically. The results show that the PRASMMA algorithm can significantly improve the ECG reconstruction by efficiently removing the noise and its use can be extended to any parameters where peaks are importance for diagnostic purpose.
Numerical simulation of droplet impact on interfaces
NASA Astrophysics Data System (ADS)
Kahouadji, Lyes; Che, Zhizhao; Matar, Omar; Shin, Seungwon; Chergui, Jalel; Juric, Damir
2015-11-01
Simulations of three-dimensional droplet impact on interfaces are carried out using BLUE, a massively-parallel code based on a hybrid Front-Tracking/Level-Set algorithm for Lagrangian tracking of arbitrarily deformable phase interfaces. High resolution numerical results show fine details and features of droplet ejection, crown formation and rim instability observed under similar experimental conditions. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.
Numerical quadrature for slab geometry transport algorithms
Hennart, J.P.; Valle, E. del
1995-12-31
In recent papers, a generalized nodal finite element formalism has been presented for virtually all known linear finite difference approximations to the discrete ordinates equations in slab geometry. For a particular angular directions {mu}, the neutron flux {Phi} is approximated by a piecewise function Oh, which over each space interval can be polynomial or quasipolynomial. Here we shall restrict ourselves to the polynomial case. Over each space interval, {Phi} is a polynomial of degree k, interpolating parameters given by in the continuous and discontinuous cases, respectively. The angular flux at the left and right ends and the k`th Legendre moment of {Phi} over the cell considered are represented as.
A numerical solution of Duffing's equations including the prediction of jump phenomena
NASA Technical Reports Server (NTRS)
Moyer, E. T., Jr.; Ghasghai-Abdi, E.
1987-01-01
Numerical methodology for the solution of Duffing's differential equation is presented. Algorithms for the prediction of multiple equilibrium solutions and jump phenomena are developed. In addition, a filtering algorithm for producing steady state solutions is presented. The problem of a rigidly clamped circular plate subjected to cosinusoidal pressure loading is solved using the developed algorithms (the plate is assumed to be in the geometrically nonlinear range). The results accurately predict regions of solution multiplicity and jump phenomena.
NASA Astrophysics Data System (ADS)
Li, Zhaokun; Cao, Jingtai; Liu, Wei; Feng, Jianfeng; Zhao, Xiaohui
2015-03-01
We use conventional adaptive optical system to compensate atmospheric turbulence in free space optical (FSO) communication system under strong scintillation circumstances, undesired wave-front measurements based on Shark-Hartman sensor (SH). Since wavefront sensor-less adaptive optics is a feasible option, we propose several swarm intelligence algorithms to compensate the wavefront aberration from atmospheric interference in FSO and mainly discuss the algorithm principle, basic flows, and simulation result. The numerical simulation experiment and result analysis show that compared with SPGD algorithm, the proposed algorithms can effectively restrain wavefront aberration, and improve convergence rate of the algorithms and the coupling efficiency of receiver in large extent.
Note on symmetric BCJ numerator
NASA Astrophysics Data System (ADS)
Fu, Chih-Hao; Du, Yi-Jian; Feng, Bo
2014-08-01
We present an algorithm that leads to BCJ numerators satisfying manifestly the three properties proposed by Broedel and Carrasco in [42]. We explicitly calculate the numerators at 4, 5 and 6-points and show that the relabeling property is generically satisfied.
NASA Astrophysics Data System (ADS)
Sheng, Zheng; Wang, Jun; Zhou, Shudao; Zhou, Bihua
2014-03-01
This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.
Sheng, Zheng; Wang, Jun; Zhou, Shudao; Zhou, Bihua
2014-03-01
This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.
Sheng, Zheng; Wang, Jun; Zhou, Shudao; Zhou, Bihua
2014-03-01
This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm. PMID:24697395
Sheng, Zheng; Wang, Jun; Zhou, Bihua; Zhou, Shudao
2014-03-15
This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.
Wang, Jun; Zhou, Bihua; Zhou, Shudao
2016-01-01
This paper proposes an improved cuckoo search (ICS) algorithm to establish the parameters of chaotic systems. In order to improve the optimization capability of the basic cuckoo search (CS) algorithm, the orthogonal design and simulated annealing operation are incorporated in the CS algorithm to enhance the exploitation search ability. Then the proposed algorithm is used to establish parameters of the Lorenz chaotic system and Chen chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the algorithm can estimate parameters with high accuracy and reliability. Finally, the results are compared with the CS algorithm, genetic algorithm, and particle swarm optimization algorithm, and the compared results demonstrate the method is energy-efficient and superior. PMID:26880874
Wang, Jun; Zhou, Bihua; Zhou, Shudao
2016-01-01
This paper proposes an improved cuckoo search (ICS) algorithm to establish the parameters of chaotic systems. In order to improve the optimization capability of the basic cuckoo search (CS) algorithm, the orthogonal design and simulated annealing operation are incorporated in the CS algorithm to enhance the exploitation search ability. Then the proposed algorithm is used to establish parameters of the Lorenz chaotic system and Chen chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the algorithm can estimate parameters with high accuracy and reliability. Finally, the results are compared with the CS algorithm, genetic algorithm, and particle swarm optimization algorithm, and the compared results demonstrate the method is energy-efficient and superior. PMID:26880874
Wang, Jun; Zhou, Bihua; Zhou, Shudao
2016-01-01
This paper proposes an improved cuckoo search (ICS) algorithm to establish the parameters of chaotic systems. In order to improve the optimization capability of the basic cuckoo search (CS) algorithm, the orthogonal design and simulated annealing operation are incorporated in the CS algorithm to enhance the exploitation search ability. Then the proposed algorithm is used to establish parameters of the Lorenz chaotic system and Chen chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the algorithm can estimate parameters with high accuracy and reliability. Finally, the results are compared with the CS algorithm, genetic algorithm, and particle swarm optimization algorithm, and the compared results demonstrate the method is energy-efficient and superior.
NASA Astrophysics Data System (ADS)
Dordevic, Mladen; Georgen, Jennifer
2016-03-01
Mantle plumes rising in the vicinity of mid-ocean ridges often generate anomalies in melt production and seafloor depth. This study investigates the dynamical interactions between a mantle plume and a ridge-ridge-ridge triple junction, using a parameter space approach and a suite of steady state, three-dimensional finite element numerical models. The top domain boundary is composed of three diverging plates, with each assigned half-spreading rates with respect to a fixed triple junction point. The bottom boundary is kept at a constant temperature of 1350°C except where a two-dimensional, Gaussian-shaped thermal anomaly simulating a plume is imposed. Models vary plume diameter, plume location, the viscosity contrast between plume and ambient mantle material, and the use of dehydration rheology in calculating viscosity. Importantly, the model results quantify how plume-related anomalies in mantle temperature pattern, seafloor depth, and crustal thickness depend on the specific set of parameters. To provide an example, one way of assessing the effect of conduit position is to calculate normalized area, defined to be the spatial dispersion of a given plume at specific depth (here selected to be 50 km) divided by the area occupied by the same plume when it is located under the triple junction. For one particular case modeled where the plume is centered in an intraplate position 100 km from the triple junction, normalized area is just 55%. Overall, these models provide a framework for better understanding plateau formation at triple junctions in the natural setting and a tool for constraining subsurface geodynamical processes and plume properties.
A parallel variable metric optimization algorithm
NASA Technical Reports Server (NTRS)
Straeter, T. A.
1973-01-01
An algorithm, designed to exploit the parallel computing or vector streaming (pipeline) capabilities of computers is presented. When p is the degree of parallelism, then one cycle of the parallel variable metric algorithm is defined as follows: first, the function and its gradient are computed in parallel at p different values of the independent variable; then the metric is modified by p rank-one corrections; and finally, a single univariant minimization is carried out in the Newton-like direction. Several properties of this algorithm are established. The convergence of the iterates to the solution is proved for a quadratic functional on a real separable Hilbert space. For a finite-dimensional space the convergence is in one cycle when p equals the dimension of the space. Results of numerical experiments indicate that the new algorithm will exploit parallel or pipeline computing capabilities to effect faster convergence than serial techniques.
NASA Technical Reports Server (NTRS)
Beers, B. L.; Pine, V. W.; Hwang, H. C.; Bloomberg, H. W.; Lin, D. L.; Schmidt, M. J.; Strickland, D. J.
1979-01-01
The model consists of four phases: single electron dynamics, single electron avalanche, negative streamer development, and tree formation. Numerical algorithms and computer code implementations are presented for the first three phases. An approach to developing a code description of fourth phase is discussed. Numerical results are presented for a crude material model of Teflon.
Numerical solution of 2D-vector tomography problem using the method of approximate inverse
NASA Astrophysics Data System (ADS)
Svetov, Ivan; Maltseva, Svetlana; Polyakova, Anna
2016-08-01
We propose a numerical solution of reconstruction problem of a two-dimensional vector field in a unit disk from the known values of the longitudinal and transverse ray transforms. The algorithm is based on the method of approximate inverse. Numerical simulations confirm that the proposed method yields good results of reconstruction of vector fields.
Genetic optimization of the HSTAMIDS landmine detection algorithm
NASA Astrophysics Data System (ADS)
Konduri, Ravi K.; Solomon, Geoff Z.; DeJong, Keith; Duvoisin, Herbert A.; Bartosz, Elizabeth E.
2004-09-01
CyTerra's dual sensor HSTAMIDS system has demonstrated exceptional landmine detection capabilities in extensive government-run field tests. Further optimization of the highly successful PentAD-class algorithms for Humanitarian Demining (HD) use (to enhance detection (Pd) and to lower the false alarm rate (FAR)) may be possible. PentAD contains several input parameters, making such optimization computationally intensive. Genetic algorithm techniques, which formerly provided substantial improvement in the detection performance of the metal detector sensor algorithm alone, have been applied to optimize the numerical values of the dual-sensor algorithm parameters. Genetic algorithm techniques have also been applied to choose among several sub-models and fusion techniques to potentially train the HSTAMIDS HD system in new ways. In this presentation we discuss the performance of the resulting algorithm as applied to field data.
Decoherence in optimized quantum random-walk search algorithm
NASA Astrophysics Data System (ADS)
Zhang, Yu-Chao; Bao, Wan-Su; Wang, Xiang; Fu, Xiang-Qun
2015-08-01
This paper investigates the effects of decoherence generated by broken-link-type noise in the hypercube on an optimized quantum random-walk search algorithm. When the hypercube occurs with random broken links, the optimized quantum random-walk search algorithm with decoherence is depicted through defining the shift operator which includes the possibility of broken links. For a given database size, we obtain the maximum success rate of the algorithm and the required number of iterations through numerical simulations and analysis when the algorithm is in the presence of decoherence. Then the computational complexity of the algorithm with decoherence is obtained. The results show that the ultimate effect of broken-link-type decoherence on the optimized quantum random-walk search algorithm is negative. Project supported by the National Basic Research Program of China (Grant No. 2013CB338002).
Talamo, Alberto
2013-05-01
This study presents three numerical algorithms to solve the time dependent neutron transport equation by the method of the characteristics. The algorithms have been developed taking into account delayed neutrons and they have been implemented into the novel MCART code, which solves the neutron transport equation for two-dimensional geometry and an arbitrary number of energy groups. The MCART code uses regular mesh for the representation of the spatial domain, it models up-scattering, and takes advantage of OPENMP and OPENGL algorithms for parallel computing and plotting, respectively. The code has been benchmarked with the multiplication factor results of a Boiling Water Reactor, with the analytical results for a prompt jump transient in an infinite medium, and with PARTISN and TDTORT results for cross section and source transients. The numerical simulations have shown that only two numerical algorithms are stable for small time steps.
Accurate Finite Difference Algorithms
NASA Technical Reports Server (NTRS)
Goodrich, John W.
1996-01-01
Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.
NASA Astrophysics Data System (ADS)
Sweeney, Matthew R.; Valentine, Greg A.
2015-09-01
Most volcanoes experience some degree of phreatomagmatism during their lifetime. However, the current understanding of such processes remains limited relative to their magmatic counterparts. Maar-diatremes are a common volcano type that form primarily from phreatomagmatic explosions and are an ideal candidate to further our knowledge of deposits and processes resulting from explosive magma-water interaction due to their abundance as well as their variable levels of field exposure, which allows for detailed mapping and componentry. Two conceptual models of maar-diatreme volcanoes explain the growth and evolution of the crater (maar) and subsurface vent (diatreme) through repeated explosions caused by the interaction of magma and groundwater. One model predicts progressively deepening explosions as water is used up by phreatomagmatic explosions while the other allows for explosions at any level in the diatreme, provided adequate hydrologic conditions are present. In the former, deep-seated lithics in the diatreme are directly ejected and their presence in tephra rings is often taken as a proxy for the depth at which that particular explosion occurred. In the latter, deep-seated lithics are incrementally transported toward the surface via upward directed debris jets. Here we present a novel application of multiphase numerical modeling to assess the controls on length scales of debris jets and their role in upward transport of intra-diatreme material to determine the validity of the two models. The volume of gas generated during a phreatomagmatic explosion is a first order control on the vertical distance a debris jet travels. Unless extremely large amounts of magma and water are involved, it is unlikely that most explosions deeper than ∼ 250 m breach the surface. Other factors such as pressure and temperature have lesser effects on the length scales assuming they are within realistic ranges. Redistribution of material within a diatreme is primarily driven by
NASA Astrophysics Data System (ADS)
Hibert, Clément; Provost, Floriane; Malet, Jean-Philippe; Stumpf, André; Maggi, Alessia; Ferrazzini, Valérie
2016-04-01
In the past decades the increasing quality of seismic sensors and capability to transfer remotely large quantity of data led to a fast densification of local, regional and global seismic networks for near real-time monitoring. This technological advance permits the use of seismology to document geological and natural/anthropogenic processes (volcanoes, ice-calving, landslides, snow and rock avalanches, geothermal fields), but also led to an ever-growing quantity of seismic data. This wealth of seismic data makes the construction of complete seismicity catalogs, that include earthquakes but also other sources of seismic waves, more challenging and very time-consuming as this critical pre-processing stage is classically done by human operators. To overcome this issue, the development of automatic methods for the processing of continuous seismic data appears to be a necessity. The classification algorithm should satisfy the need of a method that is robust, precise and versatile enough to be deployed to monitor the seismicity in very different contexts. We propose a multi-class detection method based on the random forests algorithm to automatically classify the source of seismic signals. Random forests is a supervised machine learning technique that is based on the computation of a large number of decision trees. The multiple decision trees are constructed from training sets including each of the target classes. In the case of seismic signals, these attributes may encompass spectral features but also waveform characteristics, multi-stations observations and other relevant information. The Random Forests classifier is used because it provides state-of-the-art performance when compared with other machine learning techniques (e.g. SVM, Neural Networks) and requires no fine tuning. Furthermore it is relatively fast, robust, easy to parallelize, and inherently suitable for multi-class problems. In this work, we present the first results of the classification method applied
NASA Astrophysics Data System (ADS)
Plach, A.; Proschek, V.; Kirchengast, G.
2015-01-01
The new mission concept of microwave and infrared-laser occultation between low-Earth-orbit satellites (LMIO) is designed to provide accurate and long-term stable profiles of atmospheric thermodynamic variables, greenhouse gases (GHGs), and line-of-sight (l.o.s.) wind speed with focus on the upper troposphere and lower stratosphere (UTLS). While the unique quality of GHG retrievals enabled by LMIO over the UTLS has been recently demonstrated based on end-to-end simulations, the promise of l.o.s. wind retrieval, and of joint GHG and wind retrieval, has not yet been analyzed in any realistic simulation setting so far. Here we describe a newly developed l.o.s. wind retrieval algorithm, which we embedded in an end-to-end simulation framework that also includes the retrieval of thermodynamic variables and GHGs, and analyze the performance of both standalone wind retrieval and joint wind and GHG retrieval. The wind algorithm utilizes LMIO laser signals placed on the inflection points at the wings of the highly symmetric C18OO absorption line near 4767 cm-1 and exploits transmission differences from wind-induced Doppler shift. Based on realistic example cases for a diversity of atmospheric conditions, ranging from tropical to high-latitude winter, we find that the retrieved l.o.s wind profiles are of high quality over the lower stratosphere under all conditions, i.e., unbiased and accurate to within about 2 m s-1 over about 15 to 35 km. The wind accuracy degrades into the upper troposphere due to decreasing signal-to-noise ratio of the wind-induced differential transmission signals. The GHG retrieval in windy air is not vulnerable to wind speed uncertainties up to about 10 m s-1 but is found to benefit in case of higher speeds from the integrated wind retrieval that enables correction of wind-induced Doppler shift of GHG signals. Overall both the l.o.s. wind and GHG retrieval results are strongly encouraging towards further development and implementation of a LMIO mission.
Pirracchio, Romain; Petersen, Maya L.; Carone, Marco; Rigon, Matthieu Resche; Chevret, Sylvie; van der LAAN, Mark J.
2015-01-01
Background Improved mortality prediction for patients in intensive care units (ICU) remains an important challenge. Many severity scores have been proposed but validation studies have concluded that they are not adequately calibrated. Many flexible algorithms are available, yet none of these individually outperform all others regardless of context. In contrast, the Super Learner (SL), an ensemble machine learning technique that leverages on multiple learning algorithms to obtain better prediction performance, has been shown to perform at least as well as the optimal member of its library. It might provide an ideal opportunity to construct a novel severity score with an improved performance profile. The aim of the present study was to provide a new mortality prediction algorithm for ICU patients using an implementation of the Super Learner, and to assess its performance relative to prediction based on the SAPS II, APACHE II and SOFA scores. Methods We used the Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II) database (v26) including all patients admitted to an ICU at Boston’s Beth Israel Deaconess Medical Center from 2001 to 2008. The calibration, discrimination and risk classification of predicted hospital mortality based on SAPS II, on APACHE II, on SOFA and on our Super Learned-based proposal were evaluated. Performance measures were calculated using cross-validation to avoid making biased assessments. Our proposed score was then externally validated on a dataset of 200 randomly selected patients admitted at the ICU of Hôpital Européen Georges-Pompidou in Paris, France between September 2013 and June 2014. The primary outcome was hospital mortality. The explanatory variables were the same as those included in the SAPS II score. Results 24,508 patients were included, with median SAPS II 38 (IQR: 27–51), median SOFA 5 (IQR: 2–8). A total of 3,002/24,508(12.2%) patients died in the hospital. The two versions of our Super Learner
NASA Technical Reports Server (NTRS)
Knox, C. E.
1984-01-01
A simple airborne flight management descent algorithm designed to define a flight profile subject to the constraints of using idle thrust, a clean airplane configuration (landing gear up, flaps zero, and speed brakes retracted), and fixed-time end conditions was developed and flight tested in the NASA TSRV B-737 research airplane. The research test flights, conducted in the Denver ARTCC automated time-based metering LFM/PD ATC environment, demonstrated that time guidance and control in the cockpit was acceptable to the pilots and ATC controllers and resulted in arrival of the airplane over the metering fix with standard deviations in airspeed error of 6.5 knots, in altitude error of 23.7 m (77.8 ft), and in arrival time accuracy of 12 sec. These accuracies indicated a good representation of airplane performance and wind modeling. Fuel savings will be obtained on a fleet-wide basis through a reduction of the time error dispersions at the metering fix and on a single-airplane basis by presenting the pilot with guidance for a fuel-efficient descent.
An implicit algorithm for a rate-dependent ductile failure model
NASA Astrophysics Data System (ADS)
Zuo, Q. H.; Rice, Jeremy R.
2008-10-01
An implicit numerical algorithm has been developed for a rate-dependent model for damage and failure of ductile materials under high-rate dynamic loading [F. L. Addessio and J. N. Johnson, J. Appl. Phys. 74, 1640 (1993)]. Over each time step, the algorithm first implicitly determines the equilibrium state on a Gurson surface, and then calculates the final state by solving viscous relaxation equations, also implicitly. Numerical examples are given to demonstrate the key features of the algorithm. Compared to the explicit algorithm used previously, the current algorithm allows significantly larger time steps that can be used in the analysis. As the viscosity of the material vanishes, the results of the rate-dependent model are shown here to converge to that of the corresponding rate-independent model, a result not achieved with the explicit algorithm.
A limited-memory algorithm for bound-constrained optimization
Byrd, R.H.; Peihuang, L.; Nocedal, J. |
1996-03-01
An algorithm for solving large nonlinear optimization problems with simple bounds is described. It is based on the gradient projection method and uses a limited-memory BFGS matrix to approximate the Hessian of the objective function. We show how to take advantage of the form of the limited-memory approximation to implement the algorithm efficiently. The results of numerical tests on a set of large problems are reported.
Case study of isosurface extraction algorithm performance
Sutton, P M; Hansen, C D; Shen, H; Schikore, D
1999-12-14
Isosurface extraction is an important and useful visualization method. Over the past ten years, the field has seen numerous isosurface techniques published leaving the user in a quandary about which one should be used. Some papers have published complexity analysis of the techniques yet empirical evidence comparing different methods is lacking. This case study presents a comparative study of several representative isosurface extraction algorithms. It reports and analyzes empirical measurements of execution times and memory behavior for each algorithm. The results show that asymptotically optimal techniques may not be the best choice when implemented on modern computer architectures.
Algorithm For Hypersonic Flow In Chemical Equilibrium
NASA Technical Reports Server (NTRS)
Palmer, Grant
1989-01-01
Implicit, finite-difference, shock-capturing algorithm calculates inviscid, hypersonic flows in chemical equilibrium. Implicit formulation chosen because overcomes limitation on mathematical stability encountered in explicit formulations. For dynamical portion of problem, Euler equations written in conservation-law form in Cartesian coordinate system for two-dimensional or axisymmetric flow. For chemical portion of problem, equilibrium state of gas at each point in computational grid determined by minimizing local Gibbs free energy, subject to local conservation of molecules, atoms, ions, and total enthalpy. Major advantage: resulting algorithm naturally stable and captures strong shocks without help of artificial-dissipation terms to damp out spurious numerical oscillations.
LCD motion blur: modeling, analysis, and algorithm.
Chan, Stanley H; Nguyen, Truong Q
2011-08-01
Liquid crystal display (LCD) devices are well known for their slow responses due to the physical limitations of liquid crystals. Therefore, fast moving objects in a scene are often perceived as blurred. This effect is known as the LCD motion blur. In order to reduce LCD motion blur, an accurate LCD model and an efficient deblurring algorithm are needed. However, existing LCD motion blur models are insufficient to reflect the limitation of human-eye-tracking system. Also, the spatiotemporal equivalence in LCD motion blur models has not been proven directly in the discrete 2-D spatial domain, although it is widely used. There are three main contributions of this paper: modeling, analysis, and algorithm. First, a comprehensive LCD motion blur model is presented, in which human-eye-tracking limits are taken into consideration. Second, a complete analysis of spatiotemporal equivalence is provided and verified using real video sequences. Third, an LCD motion blur reduction algorithm is proposed. The proposed algorithm solves an l(1)-norm regularized least-squares minimization problem using a subgradient projection method. Numerical results show that the proposed algorithm gives higher peak SNR, lower temporal error, and lower spatial error than motion-compensated inverse filtering and Lucy-Richardson deconvolution algorithm, which are two state-of-the-art LCD deblurring algorithms. PMID:21292596
NASA Astrophysics Data System (ADS)
Kanagaraj, G.; Ponnambalam, S. G.; Jawahar, N.; Mukund Nilakantan, J.
2014-10-01
This article presents an effective hybrid cuckoo search and genetic algorithm (HCSGA) for solving engineering design optimization problems involving problem-specific constraints and mixed variables such as integer, discrete and continuous variables. The proposed algorithm, HCSGA, is first applied to 13 standard benchmark constrained optimization functions and subsequently used to solve three well-known design problems reported in the literature. The numerical results obtained by HCSGA show competitive performance with respect to recent algorithms for constrained design optimization problems.
A covariance analysis algorithm for interconnected systems
NASA Technical Reports Server (NTRS)
Cheng, Victor H. L.; Curley, Robert D.; Lin, Ching-An
1987-01-01
A covariance analysis algorithm for propagation of signal statistics in arbitrarily interconnected nonlinear systems is presented which is applied to six-degree-of-freedom systems. The algorithm uses statistical linearization theory to linearize the nonlinear subsystems, and the resulting linearized subsystems are considered in the original interconnection framework for propagation of the signal statistics. Some nonlinearities commonly encountered in six-degree-of-freedom space-vehicle models are referred to in order to illustrate the limitations of this method, along with problems not encountered in standard deterministic simulation analysis. Moreover, the performance of the algorithm shall be numerically exhibited by comparing results using such techniques to Monte Carlo analysis results, both applied to a simple two-dimensional space-intercept problem.
ERIC Educational Resources Information Center
Siegler, Robert S.; Braithwaite, David W.
2016-01-01
In this review, we attempt to integrate two crucial aspects of numerical development: learning the magnitudes of individual numbers and learning arithmetic. Numerical magnitude development involves gaining increasingly precise knowledge of increasing ranges and types of numbers: from non-symbolic to small symbolic numbers, from smaller to larger…
An Improved Numerical Integration Method for Springback Predictions
NASA Astrophysics Data System (ADS)
Ibrahim, R.; Smith, L. M.; Golovashchenko, Sergey F.
2011-08-01
In this investigation, the focus is on the springback of steel sheets in V-die air bending. A full replication to a numerical integration algorithm presented rigorously in [1] to predict the springback in air bending was performed and confirmed successfully. Algorithm alteration and extensions were proposed here. The altered approach used in solving the moment equation numerically resulted in springback values much closer to the trend presented by the experimental data, Although investigation here extended to use a more realistic work-hardening model, the differences in the springback values obtained by both hardening models were almost negligible. The algorithm was extended to be applied on thin sheets down to 0.8 mm. Results show that this extension is possible as verified by FEA and other published experiments on TRIP steel sheets.
NASA Astrophysics Data System (ADS)
Tukaram Aghav, Sandip; Achyut Gangal, Shashikala
2014-06-01
In this paper, the main work is focused on designing and simplifying the orbit determination algorithm which will be used for Low Earth Orbit (LEO) navigation. The various data processing algorithms, state estimation algorithms and modeling forces were studied in detail, and simplified algorithm is selected to reduce hardware burden and computational cost. This is done by using raw navigation solution provided by GPS Navigation sensor. A fixed step-size Runge-Kutta 4th order numerical integration method is selected for orbit propagation. Both, the least square and Extended Kalman Filter (EKF) orbit estimation algorithms are developed and the results of the same are compared with each other. EKF algorithm converges faster than least square algorithm. EKF algorithm satisfies the criterions of low computation burden which is required for autonomous orbit determination. Simple static force models also feasible to reduce the hardware burden and computational cost.
Prexl, A.; Hoffmann, H.; Golle, M.; Kudrass, S.; Wahl, M.
2011-01-17
Springback prediction and compensation is nowadays a widely recommended discipline in finite element modeling. Many researches have shown an improvement of the accuracy in prediction of springback using advanced modeling techniques, e.g. by including the Bauschinger effect. In this work different models were investigated in the commercial simulation program AutoForm for a large series production part, manufactured from the dual phase steel HC340XD. The work shows the differences between numerical drawbead models and geometrically modeled drawbeads. Furthermore, a sensitivity analysis was made for a reduced kinematic hardening model, implemented in the finite element program AutoForm.
Carbon export algorithm advancements in models
NASA Astrophysics Data System (ADS)
Çağlar Yumruktepe, Veli; Salihoğlu, Barış
2015-04-01
The rate at which anthropogenic CO2 is absorbed by the oceans remains a critical question under investigation by climate researchers. Construction of a complete carbon budget, requires better understanding of air-sea exchanges and the processes controlling the vertical and horizontal transport of carbon in the ocean, particularly the biological carbon pump. Improved parameterization of carbon sequestration within ecosystem models is vital to better understand and predict changes in the global carbon cycle. Due to the complexity of processes controlling particle aggregation, sinking and decomposition, existing ecosystem models necessarily parameterize carbon sequestration using simple algorithms. Development of improved algorithms describing carbon export and sequestration, suitable for inclusion in numerical models is an ongoing work. Existing unique algorithms used in the state-of-the art ecosystem models and new experimental results obtained from mesocosm experiments and open ocean observations have been inserted into a common 1D pelagic ecosystem model for testing purposes. The model was implemented to the timeseries stations in the North Atlantic (BATS, PAP and ESTOC) and were evaluated with datasets of carbon export. Targetted topics of algorithms were PFT functional types, grazing and vertical movement of zooplankton, and remineralization, aggregation and ballasting dynamics of organic matter. Ultimately it is intended to feed improved algorithms to the 3D modelling community, for inclusion in coupled numerical models.
Artificial bee colony algorithm for solving optimal power flow problem.
Le Dinh, Luong; Vo Ngoc, Dieu; Vasant, Pandian
2013-01-01
This paper proposes an artificial bee colony (ABC) algorithm for solving optimal power flow (OPF) problem. The objective of the OPF problem is to minimize total cost of thermal units while satisfying the unit and system constraints such as generator capacity limits, power balance, line flow limits, bus voltages limits, and transformer tap settings limits. The ABC algorithm is an optimization method inspired from the foraging behavior of honey bees. The proposed algorithm has been tested on the IEEE 30-bus, 57-bus, and 118-bus systems. The numerical results have indicated that the proposed algorithm can find high quality solution for the problem in a fast manner via the result comparisons with other methods in the literature. Therefore, the proposed ABC algorithm can be a favorable method for solving the OPF problem.