A numerical comparison of discrete Kalman filtering algorithms: An orbit determination case study
NASA Technical Reports Server (NTRS)
Thornton, C. L.; Bierman, G. J.
1976-01-01
The numerical stability and accuracy of various Kalman filter algorithms are thoroughly studied. Numerical results and conclusions are based on a realistic planetary approach orbit determination study. The case study results of this report highlight the numerical instability of the conventional and stabilized Kalman algorithms. Numerical errors associated with these algorithms can be so large as to obscure important mismodeling effects and thus give misleading estimates of filter accuracy. The positive result of this study is that the Bierman-Thornton U-D covariance factorization algorithm is computationally efficient, with CPU costs that differ negligibly from the conventional Kalman costs. In addition, accuracy of the U-D filter using single-precision arithmetic consistently matches the double-precision reference results. Numerical stability of the U-D filter is further demonstrated by its insensitivity of variations in the a priori statistics.
Implementing a GPU-based numerical algorithm for modelling dynamics of a high-speed train
NASA Astrophysics Data System (ADS)
Sytov, E. S.; Bratus, A. S.; Yurchenko, D.
2018-04-01
This paper discusses the initiative of implementing a GPU-based numerical algorithm for studying various phenomena associated with dynamics of a high-speed railway transport. The proposed numerical algorithm for calculating a critical speed of the bogie is based on the first Lyapunov number. Numerical algorithm is validated by analytical results, derived for a simple model. A dynamic model of a carriage connected to a new dual-wheelset flexible bogie is studied for linear and dry friction damping. Numerical results obtained by CPU, MPU and GPU approaches are compared and appropriateness of these methods is discussed.
NASA Astrophysics Data System (ADS)
Lee, Yang-Sub
A time-domain numerical algorithm for solving the KZK (Khokhlov-Zabolotskaya-Kuznetsov) nonlinear parabolic wave equation is developed for pulsed, axisymmetric, finite amplitude sound beams in thermoviscous fluids. The KZK equation accounts for the combined effects of diffraction, absorption, and nonlinearity at the same order of approximation. The accuracy of the algorithm is established via comparison with analytical solutions for several limiting cases, and with numerical results obtained from a widely used algorithm for solving the KZK equation in the frequency domain. The time domain algorithm is used to investigate waveform distortion and shock formation in directive sound beams radiated by pulsed circular piston sources. New results include predictions for the entire process of self-demodulation, and for the effect of frequency modulation on pulse envelope distortion. Numerical results are compared with measurements, and focused sources are investigated briefly.
Modifying a numerical algorithm for solving the matrix equation X + AX T B = C
NASA Astrophysics Data System (ADS)
Vorontsov, Yu. O.
2013-06-01
Certain modifications are proposed for a numerical algorithm solving the matrix equation X + AX T B = C. By keeping the intermediate results in storage and repeatedly using them, it is possible to reduce the total complexity of the algorithm from O( n 4) to O( n 3) arithmetic operations.
Trees, bialgebras and intrinsic numerical algorithms
NASA Technical Reports Server (NTRS)
Crouch, Peter; Grossman, Robert; Larson, Richard
1990-01-01
Preliminary work about intrinsic numerical integrators evolving on groups is described. Fix a finite dimensional Lie group G; let g denote its Lie algebra, and let Y(sub 1),...,Y(sub N) denote a basis of g. A class of numerical algorithms is presented that approximate solutions to differential equations evolving on G of the form: dot-x(t) = F(x(t)), x(0) = p is an element of G. The algorithms depend upon constants c(sub i) and c(sub ij), for i = 1,...,k and j is less than i. The algorithms have the property that if the algorithm starts on the group, then it remains on the group. In addition, they also have the property that if G is the abelian group R(N), then the algorithm becomes the classical Runge-Kutta algorithm. The Cayley algebra generated by labeled, ordered trees is used to generate the equations that the coefficients c(sub i) and c(sub ij) must satisfy in order for the algorithm to yield an rth order numerical integrator and to analyze the resulting algorithms.
Numerical simulation of steady supersonic flow. [spatial marching
NASA Technical Reports Server (NTRS)
Schiff, L. B.; Steger, J. L.
1981-01-01
A noniterative, implicit, space-marching, finite-difference algorithm was developed for the steady thin-layer Navier-Stokes equations in conservation-law form. The numerical algorithm is applicable to steady supersonic viscous flow over bodies of arbitrary shape. In addition, the same code can be used to compute supersonic inviscid flow or three-dimensional boundary layers. Computed results from two-dimensional and three-dimensional versions of the numerical algorithm are in good agreement with those obtained from more costly time-marching techniques.
A Parallel, Finite-Volume Algorithm for Large-Eddy Simulation of Turbulent Flows
NASA Technical Reports Server (NTRS)
Bui, Trong T.
1999-01-01
A parallel, finite-volume algorithm has been developed for large-eddy simulation (LES) of compressible turbulent flows. This algorithm includes piecewise linear least-square reconstruction, trilinear finite-element interpolation, Roe flux-difference splitting, and second-order MacCormack time marching. Parallel implementation is done using the message-passing programming model. In this paper, the numerical algorithm is described. To validate the numerical method for turbulence simulation, LES of fully developed turbulent flow in a square duct is performed for a Reynolds number of 320 based on the average friction velocity and the hydraulic diameter of the duct. Direct numerical simulation (DNS) results are available for this test case, and the accuracy of this algorithm for turbulence simulations can be ascertained by comparing the LES solutions with the DNS results. The effects of grid resolution, upwind numerical dissipation, and subgrid-scale dissipation on the accuracy of the LES are examined. Comparison with DNS results shows that the standard Roe flux-difference splitting dissipation adversely affects the accuracy of the turbulence simulation. For accurate turbulence simulations, only 3-5 percent of the standard Roe flux-difference splitting dissipation is needed.
Numerical Asymptotic Solutions Of Differential Equations
NASA Technical Reports Server (NTRS)
Thurston, Gaylen A.
1992-01-01
Numerical algorithms derived and compared with classical analytical methods. In method, expansions replaced with integrals evaluated numerically. Resulting numerical solutions retain linear independence, main advantage of asymptotic solutions.
Nonlinear Computational Aeroelasticity: Formulations and Solution Algorithms
2003-03-01
problem is proposed. Fluid-structure coupling algorithms are then discussed with some emphasis on distributed computing strategies. Numerical results...the structure and the exchange of structure motion to the fluid. The computational fluid dynamics code PFES is our finite element code for the numerical ...unstructured meshes). It was numerically demonstrated [1-3] that EBS can be less diffusive than SUPG [4-6] and the standard Finite Volume schemes
Resolution of the 1D regularized Burgers equation using a spatial wavelet approximation
NASA Technical Reports Server (NTRS)
Liandrat, J.; Tchamitchian, PH.
1990-01-01
The Burgers equation with a small viscosity term, initial and periodic boundary conditions is resolved using a spatial approximation constructed from an orthonormal basis of wavelets. The algorithm is directly derived from the notions of multiresolution analysis and tree algorithms. Before the numerical algorithm is described these notions are first recalled. The method uses extensively the localization properties of the wavelets in the physical and Fourier spaces. Moreover, the authors take advantage of the fact that the involved linear operators have constant coefficients. Finally, the algorithm can be considered as a time marching version of the tree algorithm. The most important point is that an adaptive version of the algorithm exists: it allows one to reduce in a significant way the number of degrees of freedom required for a good computation of the solution. Numerical results and description of the different elements of the algorithm are provided in combination with different mathematical comments on the method and some comparison with more classical numerical algorithms.
Doha, E.H.; Abd-Elhameed, W.M.; Youssri, Y.H.
2014-01-01
Two families of certain nonsymmetric generalized Jacobi polynomials with negative integer indexes are employed for solving third- and fifth-order two point boundary value problems governed by homogeneous and nonhomogeneous boundary conditions using a dual Petrov–Galerkin method. The idea behind our method is to use trial functions satisfying the underlying boundary conditions of the differential equations and the test functions satisfying the dual boundary conditions. The resulting linear systems from the application of our method are specially structured and they can be efficiently inverted. The use of generalized Jacobi polynomials simplify the theoretical and numerical analysis of the method and also leads to accurate and efficient numerical algorithms. The presented numerical results indicate that the proposed numerical algorithms are reliable and very efficient. PMID:26425358
The upwind control volume scheme for unstructured triangular grids
NASA Technical Reports Server (NTRS)
Giles, Michael; Anderson, W. Kyle; Roberts, Thomas W.
1989-01-01
A new algorithm for the numerical solution of the Euler equations is presented. This algorithm is particularly suited to the use of unstructured triangular meshes, allowing geometric flexibility. Solutions are second-order accurate in the steady state. Implementation of the algorithm requires minimal grid connectivity information, resulting in modest storage requirements, and should enhance the implementation of the scheme on massively parallel computers. A novel form of upwind differencing is developed, and is shown to yield sharp resolution of shocks. Two new artificial viscosity models are introduced that enhance the performance of the new scheme. Numerical results for transonic airfoil flows are presented, which demonstrate the performance of the algorithm.
On recent advances and future research directions for computational fluid dynamics
NASA Technical Reports Server (NTRS)
Baker, A. J.; Soliman, M. O.; Manhardt, P. D.
1986-01-01
This paper highlights some recent accomplishments regarding CFD numerical algorithm constructions for generation of discrete approximate solutions to classes of Reynolds-averaged Navier-Stokes equations. Following an overview of turbulent closure modeling, and development of appropriate conservation law systems, a Taylor weak-statement semi-discrete approximate solution algorithm is developed. Various forms for completion to the final linear algebra statement are cited, as are a range of candidate numerical linear algebra solution procedures. This development sequence emphasizes the key building blocks of a CFD RNS algorithm, including solution trial and test spaces, integration procedure and added numerical stability mechanisms. A range of numerical results are discussed focusing on key topics guiding future research directions.
A Comparison of Three Algorithms for Orion Drogue Parachute Release
NASA Technical Reports Server (NTRS)
Matz, Daniel A.; Braun, Robert D.
2015-01-01
The Orion Multi-Purpose Crew Vehicle is susceptible to ipping apex forward between drogue parachute release and main parachute in ation. A smart drogue release algorithm is required to select a drogue release condition that will not result in an apex forward main parachute deployment. The baseline algorithm is simple and elegant, but does not perform as well as desired in drogue failure cases. A simple modi cation to the baseline algorithm can improve performance, but can also sometimes fail to identify a good release condition. A new algorithm employing simpli ed rotational dynamics and a numeric predictor to minimize a rotational energy metric is proposed. A Monte Carlo analysis of a drogue failure scenario is used to compare the performance of the algorithms. The numeric predictor prevents more of the cases from ipping apex forward, and also results in an improvement in the capsule attitude at main bag extraction. The sensitivity of the numeric predictor to aerodynamic dispersions, errors in the navigated state, and execution rate is investigated, showing little degradation in performance.
Spiral trajectory design: a flexible numerical algorithm and base analytical equations.
Pipe, James G; Zwart, Nicholas R
2014-01-01
Spiral-based trajectories for magnetic resonance imaging can be advantageous, but are often cumbersome to design or create. This work presents a flexible numerical algorithm for designing trajectories based on explicit definition of radial undersampling, and also gives several analytical expressions for charactering the base (critically sampled) class of these trajectories. Expressions for the gradient waveform, based on slew and amplitude limits, are developed such that a desired pitch in the spiral k-space trajectory is followed. The source code for this algorithm, written in C, is publicly available. Analytical expressions approximating the spiral trajectory (ignoring the radial component) are given to characterize measurement time, gradient heating, maximum gradient amplitude, and off-resonance phase for slew-limited and gradient amplitude-limited cases. Several numerically calculated trajectories are illustrated, and base Archimedean spirals are compared with analytically obtained results. Several different waveforms illustrate that the desired slew and amplitude limits are reached, as are the desired undersampling patterns, using the numerical method. For base Archimedean spirals, the results of the numerical and analytical approaches are in good agreement. A versatile numerical algorithm was developed, and was written in publicly available code. Approximate analytical formulas are given that help characterize spiral trajectories. Copyright © 2013 Wiley Periodicals, Inc.
Numerical Algorithms Based on Biorthogonal Wavelets
NASA Technical Reports Server (NTRS)
Ponenti, Pj.; Liandrat, J.
1996-01-01
Wavelet bases are used to generate spaces of approximation for the resolution of bidimensional elliptic and parabolic problems. Under some specific hypotheses relating the properties of the wavelets to the order of the involved operators, it is shown that an approximate solution can be built. This approximation is then stable and converges towards the exact solution. It is designed such that fast algorithms involving biorthogonal multi resolution analyses can be used to resolve the corresponding numerical problems. Detailed algorithms are provided as well as the results of numerical tests on partial differential equations defined on the bidimensional torus.
Structure and structure-preserving algorithms for plasma physics
NASA Astrophysics Data System (ADS)
Morrison, P. J.
2016-10-01
Conventional simulation studies of plasma physics are based on numerically solving the underpinning differential (or integro-differential) equations. Usual algorithms in general do not preserve known geometric structure of the physical systems, such as the local energy-momentum conservation law, Casimir invariants, and the symplectic structure (Poincaré invariants). As a consequence, numerical errors may accumulate coherently with time and long-term simulation results may be unreliable. Recently, a series of geometric algorithms that preserve the geometric structures resulting from the Hamiltonian and action principle (HAP) form of theoretical models in plasma physics have been developed by several authors. The superiority of these geometric algorithms has been demonstrated with many test cases. For example, symplectic integrators for guiding-center dynamics have been constructed to preserve the noncanonical symplectic structures and bound the energy-momentum errors for all simulation time-steps; variational and symplectic algorithms have been discovered and successfully applied to the Vlasov-Maxwell system, MHD, and other magnetofluid equations as well. Hamiltonian truncations of the full Vlasov-Maxwell system have opened the field of discrete gyrokinetics and led to the GEMPIC algorithm. The vision that future numerical capabilities in plasma physics should be based on structure-preserving geometric algorithms will be presented. It will be argued that the geometric consequences of HAP form and resulting geometric algorithms suitable for plasma physics studies cannot be adapted from existing mathematical literature but, rather, need to be discovered and worked out by theoretical plasma physicists. The talk will review existing HAP structures of plasma physics for a variety of models, and how they have been adapted for numerical implementation. Supported by DOE DE-FG02-04ER-54742.
Design and Implementation of Hybrid CORDIC Algorithm Based on Phase Rotation Estimation for NCO
Zhang, Chaozhu; Han, Jinan; Li, Ke
2014-01-01
The numerical controlled oscillator has wide application in radar, digital receiver, and software radio system. Firstly, this paper introduces the traditional CORDIC algorithm. Then in order to improve computing speed and save resources, this paper proposes a kind of hybrid CORDIC algorithm based on phase rotation estimation applied in numerical controlled oscillator (NCO). Through estimating the direction of part phase rotation, the algorithm reduces part phase rotation and add-subtract unit, so that it decreases delay. Furthermore, the paper simulates and implements the numerical controlled oscillator by Quartus II software and Modelsim software. Finally, simulation results indicate that the improvement over traditional CORDIC algorithm is achieved in terms of ease of computation, resource utilization, and computing speed/delay while maintaining the precision. It is suitable for high speed and precision digital modulation and demodulation. PMID:25110750
Hasani, Mojtaba H; Gharibzadeh, Shahriar; Farjami, Yaghoub; Tavakkoli, Jahan
2013-09-01
Various numerical algorithms have been developed to solve the Khokhlov-Kuznetsov-Zabolotskaya (KZK) parabolic nonlinear wave equation. In this work, a generalized time-domain numerical algorithm is proposed to solve the diffraction term of the KZK equation. This algorithm solves the transverse Laplacian operator of the KZK equation in three-dimensional (3D) Cartesian coordinates using a finite-difference method based on the five-point implicit backward finite difference and the five-point Crank-Nicolson finite difference discretization techniques. This leads to a more uniform discretization of the Laplacian operator which in turn results in fewer calculation gridding nodes without compromising accuracy in the diffraction term. In addition, a new empirical algorithm based on the LU decomposition technique is proposed to solve the system of linear equations obtained from this discretization. The proposed empirical algorithm improves the calculation speed and memory usage, while the order of computational complexity remains linear in calculation of the diffraction term in the KZK equation. For evaluating the accuracy of the proposed algorithm, two previously published algorithms are used as comparison references: the conventional 2D Texas code and its generalization for 3D geometries. The results show that the accuracy/efficiency performance of the proposed algorithm is comparable with the established time-domain methods.
An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices, part 2
NASA Technical Reports Server (NTRS)
Freund, Roland W.; Nachtigal, Noel M.
1990-01-01
It is shown how the look-ahead Lanczos process (combined with a quasi-minimal residual QMR) approach) can be used to develop a robust black box solver for large sparse non-Hermitian linear systems. Details of an implementation of the resulting QMR algorithm are presented. It is demonstrated that the QMR method is closely related to the biconjugate gradient (BCG) algorithm; however, unlike BCG, the QMR algorithm has smooth convergence curves and good numerical properties. We report numerical experiments with our implementation of the look-ahead Lanczos algorithm, both for eigenvalue problem and linear systems. Also, program listings of FORTRAN implementations of the look-ahead algorithm and the QMR method are included.
A multi-level solution algorithm for steady-state Markov chains
NASA Technical Reports Server (NTRS)
Horton, Graham; Leutenegger, Scott T.
1993-01-01
A new iterative algorithm, the multi-level algorithm, for the numerical solution of steady state Markov chains is presented. The method utilizes a set of recursively coarsened representations of the original system to achieve accelerated convergence. It is motivated by multigrid methods, which are widely used for fast solution of partial differential equations. Initial results of numerical experiments are reported, showing significant reductions in computation time, often an order of magnitude or more, relative to the Gauss-Seidel and optimal SOR algorithms for a variety of test problems. The multi-level method is compared and contrasted with the iterative aggregation-disaggregation algorithm of Takahashi.
e-DMDAV: A new privacy preserving algorithm for wearable enterprise information systems
NASA Astrophysics Data System (ADS)
Zhang, Zhenjiang; Wang, Xiaoni; Uden, Lorna; Zhang, Peng; Zhao, Yingsi
2018-04-01
Wearable devices have been widely used in many fields to improve the quality of people's lives. More and more data on individuals and businesses are collected by statistical organizations though those devices. Almost all of this data holds confidential information. Statistical Disclosure Control (SDC) seeks to protect statistical data in such a way that it can be released without giving away confidential information that can be linked to specific individuals or entities. The MDAV (Maximum Distance to Average Vector) algorithm is an efficient micro-aggregation algorithm belonging to SDC. However, the MDAV algorithm cannot survive homogeneity and background knowledge attacks because it was designed for static numerical data. This paper proposes a systematic dynamic-updating anonymity algorithm based on MDAV called the e-DMDAV algorithm. This algorithm introduces a new parameter and a table to ensure that the k records in one cluster with the range of the distinct values in each cluster is no less than e for numerical and non-numerical datasets. This new algorithm has been evaluated and compared with the MDAV algorithm. The simulation results show that the new algorithm outperforms MDAV in terms of minimizing distortion and disclosure risk with a similar computational cost.
NASA Astrophysics Data System (ADS)
Park, Jun Kwon; Kang, Kwan Hyoung
2012-04-01
Contact angle (CA) hysteresis is important in many natural and engineering wetting processes, but predicting it numerically is difficult. We developed an algorithm that considers CA hysteresis when analyzing the motion of the contact line (CL). This algorithm employs feedback control of CA which decelerates CL speed to make the CL stationary in the hysteretic range of CA, and one control coefficient should be heuristically determined depending on characteristic time of the simulated system. The algorithm requires embedding only a simple additional routine with little modification of a code which considers the dynamic CA. The method is non-iterative and explicit, and also has less computational load than other algorithms. For a drop hanging on a wire, the proposed algorithm accurately predicts the theoretical equilibrium CA. For the drop impacting on a dry surface, the results of the proposed algorithm agree well with experimental results including the intermittent occurrence of the pinning of CL. The proposed algorithm is as accurate as other algorithms, but faster.
Multidisciplinary Optimization of a Transport Aircraft Wing using Particle Swarm Optimization
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, Jaroslaw; Venter, Gerhard
2002-01-01
The purpose of this paper is to demonstrate the application of particle swarm optimization to a realistic multidisciplinary optimization test problem. The paper's new contributions to multidisciplinary optimization is the application of a new algorithm for dealing with the unique challenges associated with multidisciplinary optimization problems, and recommendations as to the utility of the algorithm in future multidisciplinary optimization applications. The selected example is a bi-level optimization problem that demonstrates severe numerical noise and has a combination of continuous and truly discrete design variables. The use of traditional gradient-based optimization algorithms is thus not practical. The numerical results presented indicate that the particle swarm optimization algorithm is able to reliably find the optimum design for the problem presented here. The algorithm is capable of dealing with the unique challenges posed by multidisciplinary optimization as well as the numerical noise and truly discrete variables present in the current example problem.
Improving the Numerical Stability of Fast Matrix Multiplication
Ballard, Grey; Benson, Austin R.; Druinsky, Alex; ...
2016-10-04
Fast algorithms for matrix multiplication, namely those that perform asymptotically fewer scalar operations than the classical algorithm, have been considered primarily of theoretical interest. Apart from Strassen's original algorithm, few fast algorithms have been efficiently implemented or used in practical applications. However, there exist many practical alternatives to Strassen's algorithm with varying performance and numerical properties. Fast algorithms are known to be numerically stable, but because their error bounds are slightly weaker than the classical algorithm, they are not used even in cases where they provide a performance benefit. We argue in this study that the numerical sacrifice of fastmore » algorithms, particularly for the typical use cases of practical algorithms, is not prohibitive, and we explore ways to improve the accuracy both theoretically and empirically. The numerical accuracy of fast matrix multiplication depends on properties of the algorithm and of the input matrices, and we consider both contributions independently. We generalize and tighten previous error analyses of fast algorithms and compare their properties. We discuss algorithmic techniques for improving the error guarantees from two perspectives: manipulating the algorithms, and reducing input anomalies by various forms of diagonal scaling. In conclusion, we benchmark performance and demonstrate our improved numerical accuracy.« less
Wang, Peng; Zhu, Zhouquan; Huang, Shuai
2013-01-01
This paper presents a novel biologically inspired metaheuristic algorithm called seven-spot ladybird optimization (SLO). The SLO is inspired by recent discoveries on the foraging behavior of a seven-spot ladybird. In this paper, the performance of the SLO is compared with that of the genetic algorithm, particle swarm optimization, and artificial bee colony algorithms by using five numerical benchmark functions with multimodality. The results show that SLO has the ability to find the best solution with a comparatively small population size and is suitable for solving optimization problems with lower dimensions.
Zhu, Zhouquan
2013-01-01
This paper presents a novel biologically inspired metaheuristic algorithm called seven-spot ladybird optimization (SLO). The SLO is inspired by recent discoveries on the foraging behavior of a seven-spot ladybird. In this paper, the performance of the SLO is compared with that of the genetic algorithm, particle swarm optimization, and artificial bee colony algorithms by using five numerical benchmark functions with multimodality. The results show that SLO has the ability to find the best solution with a comparatively small population size and is suitable for solving optimization problems with lower dimensions. PMID:24385879
Numerical taxonomy on data: Experimental results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, J.; Farach, M.
1997-12-01
The numerical taxonomy problems associated with most of the optimization criteria described above are NP - hard [3, 5, 1, 4]. In, the first positive result for numerical taxonomy was presented. They showed that if e is the distance to the closest tree metric under the L{sub {infinity}} norm. i.e., e = min{sub T} [L{sub {infinity}} (T-D)], then it is possible to construct a tree T such that L{sub {infinity}} (T-D) {le} 3e, that is, they gave a 3-approximation algorithm for this problem. We will refer to this algorithm as the Single Pivot (SP) heuristic.
A numerical solution of Duffing's equations including the prediction of jump phenomena
NASA Technical Reports Server (NTRS)
Moyer, E. T., Jr.; Ghasghai-Abdi, E.
1987-01-01
Numerical methodology for the solution of Duffing's differential equation is presented. Algorithms for the prediction of multiple equilibrium solutions and jump phenomena are developed. In addition, a filtering algorithm for producing steady state solutions is presented. The problem of a rigidly clamped circular plate subjected to cosinusoidal pressure loading is solved using the developed algorithms (the plate is assumed to be in the geometrically nonlinear range). The results accurately predict regions of solution multiplicity and jump phenomena.
Highly uniform parallel microfabrication using a large numerical aperture system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zi-Yu; Su, Ya-Hui, E-mail: ustcsyh@ahu.edu.cn, E-mail: dongwu@ustc.edu.cn; Zhang, Chen-Chu
In this letter, we report an improved algorithm to produce accurate phase patterns for generating highly uniform diffraction-limited multifocal arrays in a large numerical aperture objective system. It is shown that based on the original diffraction integral, the uniformity of the diffraction-limited focal arrays can be improved from ∼75% to >97%, owing to the critical consideration of the aperture function and apodization effect associated with a large numerical aperture objective. The experimental results, e.g., 3 × 3 arrays of square and triangle, seven microlens arrays with high uniformity, further verify the advantage of the improved algorithm. This algorithm enables the laser parallelmore » processing technology to realize uniform microstructures and functional devices in the microfabrication system with a large numerical aperture objective.« less
Automatic Boosted Flood Mapping from Satellite Data
NASA Technical Reports Server (NTRS)
Coltin, Brian; McMichael, Scott; Smith, Trey; Fong, Terrence
2016-01-01
Numerous algorithms have been proposed to map floods from Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. However, most require human input to succeed, either to specify a threshold value or to manually annotate training data. We introduce a new algorithm based on Adaboost which effectively maps floods without any human input, allowing for a truly rapid and automatic response. The Adaboost algorithm combines multiple thresholds to achieve results comparable to state-of-the-art algorithms which do require human input. We evaluate Adaboost, as well as numerous previously proposed flood mapping algorithms, on multiple MODIS flood images, as well as on hundreds of non-flood MODIS lake images, demonstrating its effectiveness across a wide variety of conditions.
NASA Astrophysics Data System (ADS)
Mehdinejadiani, Behrouz
2017-08-01
This study represents the first attempt to estimate the solute transport parameters of the spatial fractional advection-dispersion equation using Bees Algorithm. The numerical studies as well as the experimental studies were performed to certify the integrity of Bees Algorithm. The experimental ones were conducted in a sandbox for homogeneous and heterogeneous soils. A detailed comparative study was carried out between the results obtained from Bees Algorithm and those from Genetic Algorithm and LSQNONLIN routines in FracFit toolbox. The results indicated that, in general, the Bees Algorithm much more accurately appraised the sFADE parameters in comparison with Genetic Algorithm and LSQNONLIN, especially in the heterogeneous soil and for α values near to 1 in the numerical study. Also, the results obtained from Bees Algorithm were more reliable than those from Genetic Algorithm. The Bees Algorithm showed the relative similar performances for all cases, while the Genetic Algorithm and the LSQNONLIN yielded different performances for various cases. The performance of LSQNONLIN strongly depends on the initial guess values so that, compared to the Genetic Algorithm, it can more accurately estimate the sFADE parameters by taking into consideration the suitable initial guess values. To sum up, the Bees Algorithm was found to be very simple, robust and accurate approach to estimate the transport parameters of the spatial fractional advection-dispersion equation.
Mehdinejadiani, Behrouz
2017-08-01
This study represents the first attempt to estimate the solute transport parameters of the spatial fractional advection-dispersion equation using Bees Algorithm. The numerical studies as well as the experimental studies were performed to certify the integrity of Bees Algorithm. The experimental ones were conducted in a sandbox for homogeneous and heterogeneous soils. A detailed comparative study was carried out between the results obtained from Bees Algorithm and those from Genetic Algorithm and LSQNONLIN routines in FracFit toolbox. The results indicated that, in general, the Bees Algorithm much more accurately appraised the sFADE parameters in comparison with Genetic Algorithm and LSQNONLIN, especially in the heterogeneous soil and for α values near to 1 in the numerical study. Also, the results obtained from Bees Algorithm were more reliable than those from Genetic Algorithm. The Bees Algorithm showed the relative similar performances for all cases, while the Genetic Algorithm and the LSQNONLIN yielded different performances for various cases. The performance of LSQNONLIN strongly depends on the initial guess values so that, compared to the Genetic Algorithm, it can more accurately estimate the sFADE parameters by taking into consideration the suitable initial guess values. To sum up, the Bees Algorithm was found to be very simple, robust and accurate approach to estimate the transport parameters of the spatial fractional advection-dispersion equation. Copyright © 2017 Elsevier B.V. All rights reserved.
Firefly Algorithm, Lévy Flights and Global Optimization
NASA Astrophysics Data System (ADS)
Yang, Xin-She
Nature-inspired algorithms such as Particle Swarm Optimization and Firefly Algorithm are among the most powerful algorithms for optimization. In this paper, we intend to formulate a new metaheuristic algorithm by combining Lévy flights with the search strategy via the Firefly Algorithm. Numerical studies and results suggest that the proposed Lévy-flight firefly algorithm is superior to existing metaheuristic algorithms. Finally implications for further research and wider applications will be discussed.
ERIC Educational Resources Information Center
Guerrero, Lourdes; Rivera, Antonio
Fourteen third graders were given numerical computation and division-with-remainder (DWR) problems both before and after they were taught the division algorithm in classrooms. Their solutions were examined. The results show that students' initial acquisition of the division algorithm did improve their performance in numerical division computations…
Translation and integration of numerical atomic orbitals in linear molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinäsmäki, Sami, E-mail: sami.heinasmaki@gmail.com
2014-02-14
We present algorithms for translation and integration of atomic orbitals for LCAO calculations in linear molecules. The method applies to arbitrary radial functions given on a numerical mesh. The algorithms are based on pseudospectral differentiation matrices in two dimensions and the corresponding two-dimensional Gaussian quadratures. As a result, multicenter overlap and Coulomb integrals can be evaluated effectively.
NASA Astrophysics Data System (ADS)
Liu, Shixing; Liu, Chang; Hua, Wei; Guo, Yongxin
2016-11-01
By using the discrete variational method, we study the numerical method of the general nonholonomic system in the generalized Birkhoffian framework, and construct a numerical method of generalized Birkhoffian equations called a self-adjoint-preserving algorithm. Numerical results show that it is reasonable to study the nonholonomic system by the structure-preserving algorithm in the generalized Birkhoffian framework. Project supported by the National Natural Science Foundation of China (Grant Nos. 11472124, 11572145, 11202090, and 11301350), the Doctor Research Start-up Fund of Liaoning Province, China (Grant No. 20141050), the China Postdoctoral Science Foundation (Grant No. 2014M560203), and the General Science and Technology Research Plans of Liaoning Educational Bureau, China (Grant No. L2013005).
1991-06-01
algorithms (for the analysis of mechanisms), traditional numerical simulation methods, and algorithms that examine the (continued on back) 14. SUBJECT TERMS ...7540-01-280.S500 )doo’c -O• 98 (; : 89) 2YB Block 13 continued: simulation results and reinterpret them in qualitative terms . Moreover...simulation results and reinterpret them in qualitative terms . Moreover, the Workbench can use symbolic procedures to help guide or simplify the task
Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models.
Yuan, Gonglin; Duan, Xiabin; Liu, Wenjie; Wang, Xiaoliang; Cui, Zengru; Sheng, Zhou
2015-01-01
Two new PRP conjugate Algorithms are proposed in this paper based on two modified PRP conjugate gradient methods: the first algorithm is proposed for solving unconstrained optimization problems, and the second algorithm is proposed for solving nonlinear equations. The first method contains two aspects of information: function value and gradient value. The two methods both possess some good properties, as follows: 1) βk ≥ 0 2) the search direction has the trust region property without the use of any line search method 3) the search direction has sufficient descent property without the use of any line search method. Under some suitable conditions, we establish the global convergence of the two algorithms. We conduct numerical experiments to evaluate our algorithms. The numerical results indicate that the first algorithm is effective and competitive for solving unconstrained optimization problems and that the second algorithm is effective for solving large-scale nonlinear equations.
Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models
Yuan, Gonglin; Duan, Xiabin; Liu, Wenjie; Wang, Xiaoliang; Cui, Zengru; Sheng, Zhou
2015-01-01
Two new PRP conjugate Algorithms are proposed in this paper based on two modified PRP conjugate gradient methods: the first algorithm is proposed for solving unconstrained optimization problems, and the second algorithm is proposed for solving nonlinear equations. The first method contains two aspects of information: function value and gradient value. The two methods both possess some good properties, as follows: 1)β k ≥ 0 2) the search direction has the trust region property without the use of any line search method 3) the search direction has sufficient descent property without the use of any line search method. Under some suitable conditions, we establish the global convergence of the two algorithms. We conduct numerical experiments to evaluate our algorithms. The numerical results indicate that the first algorithm is effective and competitive for solving unconstrained optimization problems and that the second algorithm is effective for solving large-scale nonlinear equations. PMID:26502409
A proximity algorithm accelerated by Gauss-Seidel iterations for L1/TV denoising models
NASA Astrophysics Data System (ADS)
Li, Qia; Micchelli, Charles A.; Shen, Lixin; Xu, Yuesheng
2012-09-01
Our goal in this paper is to improve the computational performance of the proximity algorithms for the L1/TV denoising model. This leads us to a new characterization of all solutions to the L1/TV model via fixed-point equations expressed in terms of the proximity operators. Based upon this observation we develop an algorithm for solving the model and establish its convergence. Furthermore, we demonstrate that the proposed algorithm can be accelerated through the use of the componentwise Gauss-Seidel iteration so that the CPU time consumed is significantly reduced. Numerical experiments using the proposed algorithm for impulsive noise removal are included, with a comparison to three recently developed algorithms. The numerical results show that while the proposed algorithm enjoys a high quality of the restored images, as the other three known algorithms do, it performs significantly better in terms of computational efficiency measured in the CPU time consumed.
Fast algorithm for bilinear transforms in optics
NASA Astrophysics Data System (ADS)
Ostrovsky, Andrey S.; Martinez-Niconoff, Gabriel C.; Ramos Romero, Obdulio; Cortes, Liliana
2000-10-01
The fast algorithm for calculating the bilinear transform in the optical system is proposed. This algorithm is based on the coherent-mode representation of the cross-spectral density function of the illumination. The algorithm is computationally efficient when the illumination is partially coherent. Numerical examples are studied and compared with the theoretical results.
A Food Chain Algorithm for Capacitated Vehicle Routing Problem with Recycling in Reverse Logistics
NASA Astrophysics Data System (ADS)
Song, Qiang; Gao, Xuexia; Santos, Emmanuel T.
2015-12-01
This paper introduces the capacitated vehicle routing problem with recycling in reverse logistics, and designs a food chain algorithm for it. Some illustrative examples are selected to conduct simulation and comparison. Numerical results show that the performance of the food chain algorithm is better than the genetic algorithm, particle swarm optimization as well as quantum evolutionary algorithm.
Algorithms and Application of Sparse Matrix Assembly and Equation Solvers for Aeroacoustics
NASA Technical Reports Server (NTRS)
Watson, W. R.; Nguyen, D. T.; Reddy, C. J.; Vatsa, V. N.; Tang, W. H.
2001-01-01
An algorithm for symmetric sparse equation solutions on an unstructured grid is described. Efficient, sequential sparse algorithms for degree-of-freedom reordering, supernodes, symbolic/numerical factorization, and forward backward solution phases are reviewed. Three sparse algorithms for the generation and assembly of symmetric systems of matrix equations are presented. The accuracy and numerical performance of the sequential version of the sparse algorithms are evaluated over the frequency range of interest in a three-dimensional aeroacoustics application. Results show that the solver solutions are accurate using a discretization of 12 points per wavelength. Results also show that the first assembly algorithm is impractical for high-frequency noise calculations. The second and third assembly algorithms have nearly equal performance at low values of source frequencies, but at higher values of source frequencies the third algorithm saves CPU time and RAM. The CPU time and the RAM required by the second and third assembly algorithms are two orders of magnitude smaller than that required by the sparse equation solver. A sequential version of these sparse algorithms can, therefore, be conveniently incorporated into a substructuring for domain decomposition formulation to achieve parallel computation, where different substructures are handles by different parallel processors.
On the efficient and reliable numerical solution of rate-and-state friction problems
NASA Astrophysics Data System (ADS)
Pipping, Elias; Kornhuber, Ralf; Rosenau, Matthias; Oncken, Onno
2016-03-01
We present a mathematically consistent numerical algorithm for the simulation of earthquake rupture with rate-and-state friction. Its main features are adaptive time stepping, a novel algebraic solution algorithm involving nonlinear multigrid and a fixed point iteration for the rate-and-state decoupling. The algorithm is applied to a laboratory scale subduction zone which allows us to compare our simulations with experimental results. Using physical parameters from the experiment, we find a good fit of recurrence time of slip events as well as their rupture width and peak slip. Computations in 3-D confirm efficiency and robustness of our algorithm.
An algorithm for the split-feasibility problems with application to the split-equality problem.
Chuang, Chih-Sheng; Chen, Chi-Ming
2017-01-01
In this paper, we study the split-feasibility problem in Hilbert spaces by using the projected reflected gradient algorithm. As applications, we study the convex linear inverse problem and the split-equality problem in Hilbert spaces, and we give new algorithms for these problems. Finally, numerical results are given for our main results.
Xu, Z N
2014-12-01
In this study, an error analysis is performed to study real water drop images and the corresponding numerically generated water drop profiles for three widely used static contact angle algorithms: the circle- and ellipse-fitting algorithms and the axisymmetric drop shape analysis-profile (ADSA-P) algorithm. The results demonstrate the accuracy of the numerically generated drop profiles based on the Laplace equation. A significant number of water drop profiles with different volumes, contact angles, and noise levels are generated, and the influences of the three factors on the accuracies of the three algorithms are systematically investigated. The results reveal that the above-mentioned three algorithms are complementary. In fact, the circle- and ellipse-fitting algorithms show low errors and are highly resistant to noise for water drops with small/medium volumes and contact angles, while for water drop with large volumes and contact angles just the ADSA-P algorithm can meet accuracy requirement. However, this algorithm introduces significant errors in the case of small volumes and contact angles because of its high sensitivity to noise. The critical water drop volumes of the circle- and ellipse-fitting algorithms corresponding to a certain contact angle error are obtained through a significant amount of computation. To improve the precision of the static contact angle measurement, a more accurate algorithm based on a combination of the three algorithms is proposed. Following a systematic investigation, the algorithm selection rule is described in detail, while maintaining the advantages of the three algorithms and overcoming their deficiencies. In general, static contact angles over the entire hydrophobicity range can be accurately evaluated using the proposed algorithm. The ease of erroneous judgment in static contact angle measurements is avoided. The proposed algorithm is validated by a static contact angle evaluation of real and numerically generated water drop images with different hydrophobicity values and volumes.
Li, Longxiang; Xue, Donglin; Deng, Weijie; Wang, Xu; Bai, Yang; Zhang, Feng; Zhang, Xuejun
2017-11-10
In deterministic computer-controlled optical surfacing, accurate dwell time execution by computer numeric control machines is crucial in guaranteeing a high-convergence ratio for the optical surface error. It is necessary to consider the machine dynamics limitations in the numerical dwell time algorithms. In this paper, these constraints on dwell time distribution are analyzed, and a model of the equal extra material removal is established. A positive dwell time algorithm with minimum equal extra material removal is developed. Results of simulations based on deterministic magnetorheological finishing demonstrate the necessity of considering machine dynamics performance and illustrate the validity of the proposed algorithm. Indeed, the algorithm effectively facilitates the determinacy of sub-aperture optical surfacing processes.
A combination chaotic system and application in color image encryption
NASA Astrophysics Data System (ADS)
Parvaz, R.; Zarebnia, M.
2018-05-01
In this paper, by using Logistic, Sine and Tent systems we define a combination chaotic system. Some properties of the chaotic system are studied by using figures and numerical results. A color image encryption algorithm is introduced based on new chaotic system. Also this encryption algorithm can be used for gray scale or binary images. The experimental results of the encryption algorithm show that the encryption algorithm is secure and practical.
A multistage time-stepping scheme for the Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Swanson, R. C.; Turkel, E.
1985-01-01
A class of explicit multistage time-stepping schemes is used to construct an algorithm for solving the compressible Navier-Stokes equations. Flexibility in treating arbitrary geometries is obtained with a finite-volume formulation. Numerical efficiency is achieved by employing techniques for accelerating convergence to steady state. Computer processing is enhanced through vectorization of the algorithm. The scheme is evaluated by solving laminar and turbulent flows over a flat plate and an NACA 0012 airfoil. Numerical results are compared with theoretical solutions or other numerical solutions and/or experimental data.
The Construction of 3-d Neutral Density for Arbitrary Data Sets
NASA Astrophysics Data System (ADS)
Riha, S.; McDougall, T. J.; Barker, P. M.
2014-12-01
The Neutral Density variable allows inference of water pathways from thermodynamic properties in the global ocean, and is therefore an essential component of global ocean circulation analysis. The widely used algorithm for the computation of Neutral Density yields accurate results for data sets which are close to the observed climatological ocean. Long-term numerical climate simulations, however, often generate a significant drift from present-day climate, which renders the existing algorithm inaccurate. To remedy this problem, new algorithms which operate on arbitrary data have been developed, which may potentially be used to compute Neutral Density during runtime of a numerical model.We review existing approaches for the construction of Neutral Density in arbitrary data sets, detail their algorithmic structure, and present an analysis of the computational cost for implementations on a single-CPU computer. We discuss possible strategies for the implementation in state-of-the-art numerical models, with a focus on distributed computing environments.
An algorithm for the numerical solution of linear differential games
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polovinkin, E S; Ivanov, G E; Balashov, M V
2001-10-31
A numerical algorithm for the construction of stable Krasovskii bridges, Pontryagin alternating sets, and also of piecewise program strategies solving two-person linear differential (pursuit or evasion) games on a fixed time interval is developed on the basis of a general theory. The aim of the first player (the pursuer) is to hit a prescribed target (terminal) set by the phase vector of the control system at the prescribed time. The aim of the second player (the evader) is the opposite. A description of numerical algorithms used in the solution of differential games of the type under consideration is presented andmore » estimates of the errors resulting from the approximation of the game sets by polyhedra are presented.« less
A hybrid artificial bee colony algorithm for numerical function optimization
NASA Astrophysics Data System (ADS)
Alqattan, Zakaria N.; Abdullah, Rosni
2015-02-01
Artificial Bee Colony (ABC) algorithm is one of the swarm intelligence algorithms; it has been introduced by Karaboga in 2005. It is a meta-heuristic optimization search algorithm inspired from the intelligent foraging behavior of the honey bees in nature. Its unique search process made it as one of the most competitive algorithm with some other search algorithms in the area of optimization, such as Genetic algorithm (GA) and Particle Swarm Optimization (PSO). However, the ABC performance of the local search process and the bee movement or the solution improvement equation still has some weaknesses. The ABC is good in avoiding trapping at the local optimum but it spends its time searching around unpromising random selected solutions. Inspired by the PSO, we propose a Hybrid Particle-movement ABC algorithm called HPABC, which adapts the particle movement process to improve the exploration of the original ABC algorithm. Numerical benchmark functions were used in order to experimentally test the HPABC algorithm. The results illustrate that the HPABC algorithm can outperform the ABC algorithm in most of the experiments (75% better in accuracy and over 3 times faster).
NASA Astrophysics Data System (ADS)
Block, Martin M.; Durand, Loyal
2011-11-01
We recently derived a very accurate and fast new algorithm for numerically inverting the Laplace transforms needed to obtain gluon distributions from the proton structure function F2^{γ p}(x,Q2). We numerically inverted the function g( s), s being the variable in Laplace space, to G( v), where v is the variable in ordinary space. We have since discovered that the algorithm does not work if g( s)→0 less rapidly than 1/ s as s→∞, e.g., as 1/ s β for 0< β<1. In this note, we derive a new numerical algorithm for such cases, which holds for all positive and non-integer negative values of β. The new algorithm is exact if the original function G( v) is given by the product of a power v β-1 and a polynomial in v. We test the algorithm numerically for very small positive β, β=10-6 obtaining numerical results that imitate the Dirac delta function δ( v). We also devolve the published MSTW2008LO gluon distribution at virtuality Q 2=5 GeV2 down to the lower virtuality Q 2=1.69 GeV2. For devolution, β is negative, giving rise to inverse Laplace transforms that are distributions and not proper functions. This requires us to introduce the concept of Hadamard Finite Part integrals, which we discuss in detail.
Wang, Jun; Zhou, Bihua; Zhou, Shudao
2016-01-01
This paper proposes an improved cuckoo search (ICS) algorithm to establish the parameters of chaotic systems. In order to improve the optimization capability of the basic cuckoo search (CS) algorithm, the orthogonal design and simulated annealing operation are incorporated in the CS algorithm to enhance the exploitation search ability. Then the proposed algorithm is used to establish parameters of the Lorenz chaotic system and Chen chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the algorithm can estimate parameters with high accuracy and reliability. Finally, the results are compared with the CS algorithm, genetic algorithm, and particle swarm optimization algorithm, and the compared results demonstrate the method is energy-efficient and superior. PMID:26880874
A Polynomial Time, Numerically Stable Integer Relation Algorithm
NASA Technical Reports Server (NTRS)
Ferguson, Helaman R. P.; Bailey, Daivd H.; Kutler, Paul (Technical Monitor)
1998-01-01
Let x = (x1, x2...,xn be a vector of real numbers. X is said to possess an integer relation if there exist integers a(sub i) not all zero such that a1x1 + a2x2 + ... a(sub n)Xn = 0. Beginning in 1977 several algorithms (with proofs) have been discovered to recover the a(sub i) given x. The most efficient of these existing integer relation algorithms (in terms of run time and the precision required of the input) has the drawback of being very unstable numerically. It often requires a numeric precision level in the thousands of digits to reliably recover relations in modest-sized test problems. We present here a new algorithm for finding integer relations, which we have named the "PSLQ" algorithm. It is proved in this paper that the PSLQ algorithm terminates with a relation in a number of iterations that is bounded by a polynomial in it. Because this algorithm employs a numerically stable matrix reduction procedure, it is free from the numerical difficulties, that plague other integer relation algorithms. Furthermore, its stability admits an efficient implementation with lower run times oil average than other algorithms currently in Use. Finally, this stability can be used to prove that relation bounds obtained from computer runs using this algorithm are numerically accurate.
Number Partitioning via Quantum Adiabatic Computation
NASA Technical Reports Server (NTRS)
Smelyanskiy, Vadim N.; Toussaint, Udo
2002-01-01
We study both analytically and numerically the complexity of the adiabatic quantum evolution algorithm applied to random instances of combinatorial optimization problems. We use as an example the NP-complete set partition problem and obtain an asymptotic expression for the minimal gap separating the ground and exited states of a system during the execution of the algorithm. We show that for computationally hard problem instances the size of the minimal gap scales exponentially with the problem size. This result is in qualitative agreement with the direct numerical simulation of the algorithm for small instances of the set partition problem. We describe the statistical properties of the optimization problem that are responsible for the exponential behavior of the algorithm.
Progress on a Taylor weak statement finite element algorithm for high-speed aerodynamic flows
NASA Technical Reports Server (NTRS)
Baker, A. J.; Freels, J. D.
1989-01-01
A new finite element numerical Computational Fluid Dynamics (CFD) algorithm has matured to the point of efficiently solving two-dimensional high speed real-gas compressible flow problems in generalized coordinates on modern vector computer systems. The algorithm employs a Taylor Weak Statement classical Galerkin formulation, a variably implicit Newton iteration, and a tensor matrix product factorization of the linear algebra Jacobian under a generalized coordinate transformation. Allowing for a general two-dimensional conservation law system, the algorithm has been exercised on the Euler and laminar forms of the Navier-Stokes equations. Real-gas fluid properties are admitted, and numerical results verify solution accuracy, efficiency, and stability over a range of test problem parameters.
An extension of the QZ algorithm for solving the generalized matrix eigenvalue problem
NASA Technical Reports Server (NTRS)
Ward, R. C.
1973-01-01
This algorithm is an extension of Moler and Stewart's QZ algorithm with some added features for saving time and operations. Also, some additional properties of the QR algorithm which were not practical to implement in the QZ algorithm can be generalized with the combination shift QZ algorithm. Numerous test cases are presented to give practical application tests for algorithm. Based on results, this algorithm should be preferred over existing algorithms which attempt to solve the class of generalized eigenproblems where both matrices are singular or nearly singular.
Performance-Based Seismic Design of Steel Frames Utilizing Colliding Bodies Algorithm
Veladi, H.
2014-01-01
A pushover analysis method based on semirigid connection concept is developed and the colliding bodies optimization algorithm is employed to find optimum seismic design of frame structures. Two numerical examples from the literature are studied. The results of the new algorithm are compared to the conventional design methods to show the power or weakness of the algorithm. PMID:25202717
Performance-based seismic design of steel frames utilizing colliding bodies algorithm.
Veladi, H
2014-01-01
A pushover analysis method based on semirigid connection concept is developed and the colliding bodies optimization algorithm is employed to find optimum seismic design of frame structures. Two numerical examples from the literature are studied. The results of the new algorithm are compared to the conventional design methods to show the power or weakness of the algorithm.
An improved cylindrical FDTD method and its application to field-tissue interaction study in MRI.
Chi, Jieru; Liu, Feng; Xia, Ling; Shao, Tingting; Mason, David G; Crozier, Stuart
2010-01-01
This paper presents a three dimensional finite-difference time-domain (FDTD) scheme in cylindrical coordinates with an improved algorithm for accommodating the numerical singularity associated with the polar axis. The regularization of this singularity problem is entirely based on Ampere's law. The proposed algorithm has been detailed and verified against a problem with a known solution obtained from a commercial electromagnetic simulation package. The numerical scheme is also illustrated by modeling high-frequency RF field-human body interactions in MRI. The results demonstrate the accuracy and capability of the proposed algorithm.
NASA Technical Reports Server (NTRS)
Bui, Trong T.; Mankbadi, Reda R.
1995-01-01
Numerical simulation of a very small amplitude acoustic wave interacting with a shock wave in a quasi-1D convergent-divergent nozzle is performed using an unstructured finite volume algorithm with a piece-wise linear, least square reconstruction, Roe flux difference splitting, and second-order MacCormack time marching. First, the spatial accuracy of the algorithm is evaluated for steady flows with and without the normal shock by running the simulation with a sequence of successively finer meshes. Then the accuracy of the Roe flux difference splitting near the sonic transition point is examined for different reconstruction schemes. Finally, the unsteady numerical solutions with the acoustic perturbation are presented and compared with linear theory results.
On the numeric integration of dynamic attitude equations
NASA Technical Reports Server (NTRS)
Crouch, P. E.; Yan, Y.; Grossman, Robert
1992-01-01
We describe new types of numerical integration algorithms developed by the authors. The main aim of the algorithms is to numerically integrate differential equations which evolve on geometric objects, such as the rotation group. The algorithms provide iterates which lie on the prescribed geometric object, either exactly, or to some prescribed accuracy, independent of the order of the algorithm. This paper describes applications of these algorithms to the evolution of the attitude of a rigid body.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jakeman, John D.; Narayan, Akil; Zhou, Tao
We propose an algorithm for recovering sparse orthogonal polynomial expansions via collocation. A standard sampling approach for recovering sparse polynomials uses Monte Carlo sampling, from the density of orthogonality, which results in poor function recovery when the polynomial degree is high. Our proposed approach aims to mitigate this limitation by sampling with respect to the weighted equilibrium measure of the parametric domain and subsequently solves a preconditionedmore » $$\\ell^1$$-minimization problem, where the weights of the diagonal preconditioning matrix are given by evaluations of the Christoffel function. Our algorithm can be applied to a wide class of orthogonal polynomial families on bounded and unbounded domains, including all classical families. We present theoretical analysis to motivate the algorithm and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest. In conclusion, numerical examples are also provided to demonstrate that our proposed algorithm leads to comparable or improved accuracy even when compared with Legendre- and Hermite-specific algorithms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jakeman, John D.; Narayan, Akil; Zhou, Tao
We propose an algorithm for recovering sparse orthogonal polynomial expansions via collocation. A standard sampling approach for recovering sparse polynomials uses Monte Carlo sampling, from the density of orthogonality, which results in poor function recovery when the polynomial degree is high. Our proposed approach aims to mitigate this limitation by sampling with respect to the weighted equilibrium measure of the parametric domain and subsequently solves a preconditionedmore » $$\\ell^1$$-minimization problem, where the weights of the diagonal preconditioning matrix are given by evaluations of the Christoffel function. Our algorithm can be applied to a wide class of orthogonal polynomial families on bounded and unbounded domains, including all classical families. We present theoretical analysis to motivate the algorithm and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest. In conclusion, numerical examples are also provided to demonstrate that our proposed algorithm leads to comparable or improved accuracy even when compared with Legendre- and Hermite-specific algorithms.« less
Jakeman, John D.; Narayan, Akil; Zhou, Tao
2017-06-22
We propose an algorithm for recovering sparse orthogonal polynomial expansions via collocation. A standard sampling approach for recovering sparse polynomials uses Monte Carlo sampling, from the density of orthogonality, which results in poor function recovery when the polynomial degree is high. Our proposed approach aims to mitigate this limitation by sampling with respect to the weighted equilibrium measure of the parametric domain and subsequently solves a preconditionedmore » $$\\ell^1$$-minimization problem, where the weights of the diagonal preconditioning matrix are given by evaluations of the Christoffel function. Our algorithm can be applied to a wide class of orthogonal polynomial families on bounded and unbounded domains, including all classical families. We present theoretical analysis to motivate the algorithm and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest. In conclusion, numerical examples are also provided to demonstrate that our proposed algorithm leads to comparable or improved accuracy even when compared with Legendre- and Hermite-specific algorithms.« less
An improved conjugate gradient scheme to the solution of least squares SVM.
Chu, Wei; Ong, Chong Jin; Keerthi, S Sathiya
2005-03-01
The least square support vector machines (LS-SVM) formulation corresponds to the solution of a linear system of equations. Several approaches to its numerical solutions have been proposed in the literature. In this letter, we propose an improved method to the numerical solution of LS-SVM and show that the problem can be solved using one reduced system of linear equations. Compared with the existing algorithm for LS-SVM, the approach used in this letter is about twice as efficient. Numerical results using the proposed method are provided for comparisons with other existing algorithms.
The 3-D numerical simulation research of vacuum injector for linear induction accelerator
NASA Astrophysics Data System (ADS)
Liu, Dagang; Xie, Mengjun; Tang, Xinbing; Liao, Shuqing
2017-01-01
Simulation method for voltage in-feed and electron injection of vacuum injector is given, and verification of the simulated voltage and current is carried out. The numerical simulation for the magnetic field of solenoid is implemented, and a comparative analysis is conducted between the simulation results and experimental results. A semi-implicit difference algorithm is adopted to suppress the numerical noise, and a parallel acceleration algorithm is used for increasing the computation speed. The RMS emittance calculation method of the beam envelope equations is analyzed. In addition, the simulated results of RMS emittance are compared with the experimental data. Finally, influences of the ferromagnetic rings on the radial and axial magnetic fields of solenoid as well as the emittance of beam are studied.
A method for data handling numerical results in parallel OpenFOAM simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anton, Alin; Muntean, Sebastian
Parallel computational fluid dynamics simulations produce vast amount of numerical result data. This paper introduces a method for reducing the size of the data by replaying the interprocessor traffic. The results are recovered only in certain regions of interest configured by the user. A known test case is used for several mesh partitioning scenarios using the OpenFOAM toolkit{sup ®}[1]. The space savings obtained with classic algorithms remain constant for more than 60 Gb of floating point data. Our method is most efficient on large simulation meshes and is much better suited for compressing large scale simulation results than the regular algorithms.
Simultaneous and semi-alternating projection algorithms for solving split equality problems.
Dong, Qiao-Li; Jiang, Dan
2018-01-01
In this article, we first introduce two simultaneous projection algorithms for solving the split equality problem by using a new choice of the stepsize, and then propose two semi-alternating projection algorithms. The weak convergence of the proposed algorithms is analyzed under standard conditions. As applications, we extend the results to solve the split feasibility problem. Finally, a numerical example is presented to illustrate the efficiency and advantage of the proposed algorithms.
Strong convergence of an extragradient-type algorithm for the multiple-sets split equality problem.
Zhao, Ying; Shi, Luoyi
2017-01-01
This paper introduces a new extragradient-type method to solve the multiple-sets split equality problem (MSSEP). Under some suitable conditions, the strong convergence of an algorithm can be verified in the infinite-dimensional Hilbert spaces. Moreover, several numerical results are given to show the effectiveness of our algorithm.
Numerical model updating technique for structures using firefly algorithm
NASA Astrophysics Data System (ADS)
Sai Kubair, K.; Mohan, S. C.
2018-03-01
Numerical model updating is a technique used for updating the existing experimental models for any structures related to civil, mechanical, automobiles, marine, aerospace engineering, etc. The basic concept behind this technique is updating the numerical models to closely match with experimental data obtained from real or prototype test structures. The present work involves the development of numerical model using MATLAB as a computational tool and with mathematical equations that define the experimental model. Firefly algorithm is used as an optimization tool in this study. In this updating process a response parameter of the structure has to be chosen, which helps to correlate the numerical model developed with the experimental results obtained. The variables for the updating can be either material or geometrical properties of the model or both. In this study, to verify the proposed technique, a cantilever beam is analyzed for its tip deflection and a space frame has been analyzed for its natural frequencies. Both the models are updated with their respective response values obtained from experimental results. The numerical results after updating show that there is a close relationship that can be brought between the experimental and the numerical models.
Hu, Shaoxing; Xu, Shike; Wang, Duhu; Zhang, Aiwu
2015-11-11
Aiming at addressing the problem of high computational cost of the traditional Kalman filter in SINS/GPS, a practical optimization algorithm with offline-derivation and parallel processing methods based on the numerical characteristics of the system is presented in this paper. The algorithm exploits the sparseness and/or symmetry of matrices to simplify the computational procedure. Thus plenty of invalid operations can be avoided by offline derivation using a block matrix technique. For enhanced efficiency, a new parallel computational mechanism is established by subdividing and restructuring calculation processes after analyzing the extracted "useful" data. As a result, the algorithm saves about 90% of the CPU processing time and 66% of the memory usage needed in a classical Kalman filter. Meanwhile, the method as a numerical approach needs no precise-loss transformation/approximation of system modules and the accuracy suffers little in comparison with the filter before computational optimization. Furthermore, since no complicated matrix theories are needed, the algorithm can be easily transplanted into other modified filters as a secondary optimization method to achieve further efficiency.
An algorithm for the automatic synchronization of Omega receivers
NASA Technical Reports Server (NTRS)
Stonestreet, W. M.; Marzetta, T. L.
1977-01-01
The Omega navigation system and the requirement for receiver synchronization are discussed. A description of the synchronization algorithm is provided. The numerical simulation and its associated assumptions were examined and results of the simulation are presented. The suggested form of the synchronization algorithm and the suggested receiver design values were surveyed. A Fortran of the synchronization algorithm used in the simulation was also included.
Probabilistic numerics and uncertainty in computations
Hennig, Philipp; Osborne, Michael A.; Girolami, Mark
2015-01-01
We deliver a call to arms for probabilistic numerical methods: algorithms for numerical tasks, including linear algebra, integration, optimization and solving differential equations, that return uncertainties in their calculations. Such uncertainties, arising from the loss of precision induced by numerical calculation with limited time or hardware, are important for much contemporary science and industry. Within applications such as climate science and astrophysics, the need to make decisions on the basis of computations with large and complex data have led to a renewed focus on the management of numerical uncertainty. We describe how several seminal classic numerical methods can be interpreted naturally as probabilistic inference. We then show that the probabilistic view suggests new algorithms that can flexibly be adapted to suit application specifics, while delivering improved empirical performance. We provide concrete illustrations of the benefits of probabilistic numeric algorithms on real scientific problems from astrometry and astronomical imaging, while highlighting open problems with these new algorithms. Finally, we describe how probabilistic numerical methods provide a coherent framework for identifying the uncertainty in calculations performed with a combination of numerical algorithms (e.g. both numerical optimizers and differential equation solvers), potentially allowing the diagnosis (and control) of error sources in computations. PMID:26346321
Probabilistic numerics and uncertainty in computations.
Hennig, Philipp; Osborne, Michael A; Girolami, Mark
2015-07-08
We deliver a call to arms for probabilistic numerical methods : algorithms for numerical tasks, including linear algebra, integration, optimization and solving differential equations, that return uncertainties in their calculations. Such uncertainties, arising from the loss of precision induced by numerical calculation with limited time or hardware, are important for much contemporary science and industry. Within applications such as climate science and astrophysics, the need to make decisions on the basis of computations with large and complex data have led to a renewed focus on the management of numerical uncertainty. We describe how several seminal classic numerical methods can be interpreted naturally as probabilistic inference. We then show that the probabilistic view suggests new algorithms that can flexibly be adapted to suit application specifics, while delivering improved empirical performance. We provide concrete illustrations of the benefits of probabilistic numeric algorithms on real scientific problems from astrometry and astronomical imaging, while highlighting open problems with these new algorithms. Finally, we describe how probabilistic numerical methods provide a coherent framework for identifying the uncertainty in calculations performed with a combination of numerical algorithms (e.g. both numerical optimizers and differential equation solvers), potentially allowing the diagnosis (and control) of error sources in computations.
A split finite element algorithm for the compressible Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Baker, A. J.
1979-01-01
An accurate and efficient numerical solution algorithm is established for solution of the high Reynolds number limit of the Navier-Stokes equations governing the multidimensional flow of a compressible essentially inviscid fluid. Finite element interpolation theory is used within a dissipative formulation established using Galerkin criteria within the Method of Weighted Residuals. An implicit iterative solution algorithm is developed, employing tensor product bases within a fractional steps integration procedure, that significantly enhances solution economy concurrent with sharply reduced computer hardware demands. The algorithm is evaluated for resolution of steep field gradients and coarse grid accuracy using both linear and quadratic tensor product interpolation bases. Numerical solutions for linear and nonlinear, one, two and three dimensional examples confirm and extend the linearized theoretical analyses, and results are compared to competitive finite difference derived algorithms.
A spectral, quasi-cylindrical and dispersion-free Particle-In-Cell algorithm
Lehe, Remi; Kirchen, Manuel; Andriyash, Igor A.; ...
2016-02-17
We propose a spectral Particle-In-Cell (PIC) algorithm that is based on the combination of a Hankel transform and a Fourier transform. For physical problems that have close-to-cylindrical symmetry, this algorithm can be much faster than full 3D PIC algorithms. In addition, unlike standard finite-difference PIC codes, the proposed algorithm is free of spurious numerical dispersion, in vacuum. This algorithm is benchmarked in several situations that are of interest for laser-plasma interactions. These benchmarks show that it avoids a number of numerical artifacts, that would otherwise affect the physics in a standard PIC algorithm - including the zero-order numerical Cherenkov effect.
NASA Technical Reports Server (NTRS)
Baker, A. J.
1982-01-01
An order-of-magnitude analysis of the subsonic three dimensional steady time averaged Navier-Stokes equations, for semibounded aerodynamic juncture geometries, yields the parabolic Navier-Stokes simplification. The numerical solution of the resultant pressure Poisson equation is cast into complementary and particular parts, yielding an iterative interaction algorithm with an exterior three dimensional potential flow solution. A parabolic transverse momentum equation set is constructed, wherein robust enforcement of first order continuity effects is accomplished using a penalty differential constraint concept within a finite element solution algorithm. A Reynolds stress constitutive equation, with low turbulence Reynolds number wall functions, is employed for closure, using parabolic forms of the two-equation turbulent kinetic energy-dissipation equation system. Numerical results document accuracy, convergence, and utility of the developed finite element algorithm, and the CMC:3DPNS computer code applied to an idealized wing-body juncture region. Additional results document accuracy aspects of the algorithm turbulence closure model.
NASA Astrophysics Data System (ADS)
Chen, Jiaoxuan; Zhang, Maomao; Liu, Yinyan; Chen, Jiaoliao; Li, Yi
2017-03-01
Electrical capacitance tomography (ECT) is a promising technique applied in many fields. However, the solutions for ECT are not unique and highly sensitive to the measurement noise. To remain a good shape of reconstructed object and endure a noisy data, a Rudin-Osher-Fatemi (ROF) model with total variation regularization is applied to image reconstruction in ECT. Two numerical methods, which are simplified augmented Lagrangian (SAL) and accelerated alternating direction method of multipliers (AADMM), are innovatively introduced to try to solve the above mentioned problems in ECT. The effect of the parameters and the number of iterations for different algorithms, and the noise level in capacitance data are discussed. Both simulation and experimental tests were carried out to validate the feasibility of the proposed algorithms, compared to the Landweber iteration (LI) algorithm. The results show that the SAL and AADMM algorithms can handle a high level of noise and the AADMM algorithm outperforms other algorithms in identifying the object from its background.
Rank-k modification methods for recursive least squares problems
NASA Astrophysics Data System (ADS)
Olszanskyj, Serge; Lebak, James; Bojanczyk, Adam
1994-09-01
In least squares problems, it is often desired to solve the same problem repeatedly but with several rows of the data either added, deleted, or both. Methods for quickly solving a problem after adding or deleting one row of data at a time are known. In this paper we introduce fundamental rank-k updating and downdating methods and show how extensions of rank-1 downdating methods based on LINPACK, Corrected Semi-Normal Equations (CSNE), and Gram-Schmidt factorizations, as well as new rank-k downdating methods, can all be derived from these fundamental results. We then analyze the cost of each new algorithm and make comparisons tok applications of the corresponding rank-1 algorithms. We provide experimental results comparing the numerical accuracy of the various algorithms, paying particular attention to the downdating methods, due to their potential numerical difficulties for ill-conditioned problems. We then discuss the computation involved for each downdating method, measured in terms of operation counts and BLAS calls. Finally, we provide serial execution timing results for these algorithms, noting preferable points for improvement and optimization. From our experiments we conclude that the Gram-Schmidt methods perform best in terms of numerical accuracy, but may be too costly for serial execution for large problems.
NASA Astrophysics Data System (ADS)
Alfonso, Lester; Zamora, Jose; Cruz, Pedro
2015-04-01
The stochastic approach to coagulation considers the coalescence process going in a system of a finite number of particles enclosed in a finite volume. Within this approach, the full description of the system can be obtained from the solution of the multivariate master equation, which models the evolution of the probability distribution of the state vector for the number of particles of a given mass. Unfortunately, due to its complexity, only limited results were obtained for certain type of kernels and monodisperse initial conditions. In this work, a novel numerical algorithm for the solution of the multivariate master equation for stochastic coalescence that works for any type of kernels and initial conditions is introduced. The performance of the method was checked by comparing the numerically calculated particle mass spectrum with analytical solutions obtained for the constant and sum kernels, with an excellent correspondence between the analytical and numerical solutions. In order to increase the speedup of the algorithm, software parallelization techniques with OpenMP standard were used, along with an implementation in order to take advantage of new accelerator technologies. Simulations results show an important speedup of the parallelized algorithms. This study was funded by a grant from Consejo Nacional de Ciencia y Tecnologia de Mexico SEP-CONACYT CB-131879. The authors also thanks LUFAC® Computacion SA de CV for CPU time and all the support provided.
A new approach of watermarking technique by means multichannel wavelet functions
NASA Astrophysics Data System (ADS)
Agreste, Santa; Puccio, Luigia
2012-12-01
The digital piracy involving images, music, movies, books, and so on, is a legal problem that has not found a solution. Therefore it becomes crucial to create and to develop methods and numerical algorithms in order to solve the copyright problems. In this paper we focus the attention on a new approach of watermarking technique applied to digital color images. Our aim is to describe the realized watermarking algorithm based on multichannel wavelet functions with multiplicity r = 3, called MCWM 1.0. We report a large experimentation and some important numerical results in order to show the robustness of the proposed algorithm to geometrical attacks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fawley, William M.
We discuss the underlying reasoning behind and the details of the numerical algorithm used in the GINGER free-electron laser(FEL) simulation code to load the initial shot noise microbunching on the electron beam. In particular, we point out that there are some additional subtleties which must be followed for multi-dimensional codes which are not necessary for one-dimensional formulations. Moreover, requiring that the higher harmonics of the microbunching also be properly initialized with the correct statistics leads to additional complexities. We present some numerical results including the predicted incoherent, spontaneous emission as tests of the shot noise algorithm's correctness.
Adaptive Wavelet Modeling of Geophysical Data
NASA Astrophysics Data System (ADS)
Plattner, A.; Maurer, H.; Dahmen, W.; Vorloeper, J.
2009-12-01
Despite the ever-increasing power of modern computers, realistic modeling of complex three-dimensional Earth models is still a challenging task and requires substantial computing resources. The overwhelming majority of current geophysical modeling approaches includes either finite difference or non-adaptive finite element algorithms, and variants thereof. These numerical methods usually require the subsurface to be discretized with a fine mesh to accurately capture the behavior of the physical fields. However, this may result in excessive memory consumption and computing times. A common feature of most of these algorithms is that the modeled data discretizations are independent of the model complexity, which may be wasteful when there are only minor to moderate spatial variations in the subsurface parameters. Recent developments in the theory of adaptive numerical solvers have the potential to overcome this problem. Here, we consider an adaptive wavelet based approach that is applicable to a large scope of problems, also including nonlinear problems. To the best of our knowledge such algorithms have not yet been applied in geophysics. Adaptive wavelet algorithms offer several attractive features: (i) for a given subsurface model, they allow the forward modeling domain to be discretized with a quasi minimal number of degrees of freedom, (ii) sparsity of the associated system matrices is guaranteed, which makes the algorithm memory efficient, and (iii) the modeling accuracy scales linearly with computing time. We have implemented the adaptive wavelet algorithm for solving three-dimensional geoelectric problems. To test its performance, numerical experiments were conducted with a series of conductivity models exhibiting varying degrees of structural complexity. Results were compared with a non-adaptive finite element algorithm, which incorporates an unstructured mesh to best fit subsurface boundaries. Such algorithms represent the current state-of-the-art in geoelectrical modeling. An analysis of the numerical accuracy as a function of the number of degrees of freedom revealed that the adaptive wavelet algorithm outperforms the finite element solver for simple and moderately complex models, whereas the results become comparable for models with spatially highly variable electrical conductivities. The linear dependency of the modeling error and the computing time proved to be model-independent. This feature will allow very efficient computations using large-scale models as soon as our experimental code is optimized in terms of its implementation.
An iterative method for the Helmholtz equation
NASA Technical Reports Server (NTRS)
Bayliss, A.; Goldstein, C. I.; Turkel, E.
1983-01-01
An iterative algorithm for the solution of the Helmholtz equation is developed. The algorithm is based on a preconditioned conjugate gradient iteration for the normal equations. The preconditioning is based on an SSOR sweep for the discrete Laplacian. Numerical results are presented for a wide variety of problems of physical interest and demonstrate the effectiveness of the algorithm.
Evaluation of a transfinite element numerical solution method for nonlinear heat transfer problems
NASA Technical Reports Server (NTRS)
Cerro, J. A.; Scotti, S. J.
1991-01-01
Laplace transform techniques have been widely used to solve linear, transient field problems. A transform-based algorithm enables calculation of the response at selected times of interest without the need for stepping in time as required by conventional time integration schemes. The elimination of time stepping can substantially reduce computer time when transform techniques are implemented in a numerical finite element program. The coupling of transform techniques with spatial discretization techniques such as the finite element method has resulted in what are known as transfinite element methods. Recently attempts have been made to extend the transfinite element method to solve nonlinear, transient field problems. This paper examines the theoretical basis and numerical implementation of one such algorithm, applied to nonlinear heat transfer problems. The problem is linearized and solved by requiring a numerical iteration at selected times of interest. While shown to be acceptable for weakly nonlinear problems, this algorithm is ineffective as a general nonlinear solution method.
Exploring the spectrum of planar AdS4 /CFT3 at finite coupling
NASA Astrophysics Data System (ADS)
Bombardelli, Diego; Cavaglià, Andrea; Conti, Riccardo; Tateo, Roberto
2018-04-01
The Quantum Spectral Curve (QSC) equations for planar N=6 super-conformal Chern-Simons (SCS) are solved numerically at finite values of the coupling constant for states in the sl(2\\Big|1) sector. New weak coupling results for conformal dimensions of operators outside the sl(2) -like sector are obtained by adapting a recently proposed algorithm for the QSC perturbative solution. Besides being interesting in their own right, these perturbative results are necessary initial inputs for the numerical algorithm to converge on the correct solution. The non-perturbative numerical outcomes nicely interpolate between the weak coupling and the known semiclassical expansions, and novel strong coupling exact results are deduced from the numerics. Finally, the existence of contour crossing singularities in the TBA equations for the operator 20 is ruled out by our analysis. The results of this paper are an important test of the QSC formalism for this model, open the way to new quantitative studies and provide further evidence in favour of the conjectured weak/strong coupling duality between N=6 SCS and type IIA superstring theory on AdS4 × CP 3. Attached to the arXiv submission, a Mathematica implementation of the numerical method and ancillary files containing the numerical results are provided.
NASA Astrophysics Data System (ADS)
Lashkin, S. V.; Kozelkov, A. S.; Yalozo, A. V.; Gerasimov, V. Yu.; Zelensky, D. K.
2017-12-01
This paper describes the details of the parallel implementation of the SIMPLE algorithm for numerical solution of the Navier-Stokes system of equations on arbitrary unstructured grids. The iteration schemes for the serial and parallel versions of the SIMPLE algorithm are implemented. In the description of the parallel implementation, special attention is paid to computational data exchange among processors under the condition of the grid model decomposition using fictitious cells. We discuss the specific features for the storage of distributed matrices and implementation of vector-matrix operations in parallel mode. It is shown that the proposed way of matrix storage reduces the number of interprocessor exchanges. A series of numerical experiments illustrates the effect of the multigrid SLAE solver tuning on the general efficiency of the algorithm; the tuning involves the types of the cycles used (V, W, and F), the number of iterations of a smoothing operator, and the number of cells for coarsening. Two ways (direct and indirect) of efficiency evaluation for parallelization of the numerical algorithm are demonstrated. The paper presents the results of solving some internal and external flow problems with the evaluation of parallelization efficiency by two algorithms. It is shown that the proposed parallel implementation enables efficient computations for the problems on a thousand processors. Based on the results obtained, some general recommendations are made for the optimal tuning of the multigrid solver, as well as for selecting the optimal number of cells per processor.
Abd-Elhameed, Waleed M.; Doha, Eid H.; Bassuony, Mahmoud A.
2014-01-01
Two numerical algorithms based on dual-Petrov-Galerkin method are developed for solving the integrated forms of high odd-order boundary value problems (BVPs) governed by homogeneous and nonhomogeneous boundary conditions. Two different choices of trial functions and test functions which satisfy the underlying boundary conditions of the differential equations and the dual boundary conditions are used for this purpose. These choices lead to linear systems with specially structured matrices that can be efficiently inverted, hence greatly reducing the cost. The various matrix systems resulting from these discretizations are carefully investigated, especially their complexities and their condition numbers. Numerical results are given to illustrate the efficiency of the proposed algorithms, and some comparisons with some other methods are made. PMID:24616620
Adaptive Grid Refinement for Atmospheric Boundary Layer Simulations
NASA Astrophysics Data System (ADS)
van Hooft, Antoon; van Heerwaarden, Chiel; Popinet, Stephane; van der linden, Steven; de Roode, Stephan; van de Wiel, Bas
2017-04-01
We validate and benchmark an adaptive mesh refinement (AMR) algorithm for numerical simulations of the atmospheric boundary layer (ABL). The AMR technique aims to distribute the computational resources efficiently over a domain by refining and coarsening the numerical grid locally and in time. This can be beneficial for studying cases in which length scales vary significantly in time and space. We present the results for a case describing the growth and decay of a convective boundary layer. The AMR results are benchmarked against two runs using a fixed, fine meshed grid. First, with the same numerical formulation as the AMR-code and second, with a code dedicated to ABL studies. Compared to the fixed and isotropic grid runs, the AMR algorithm can coarsen and refine the grid such that accurate results are obtained whilst using only a fraction of the grid cells. Performance wise, the AMR run was cheaper than the fixed and isotropic grid run with similar numerical formulations. However, for this specific case, the dedicated code outperformed both aforementioned runs.
Wang, Hua; Liu, Feng; Xia, Ling; Crozier, Stuart
2008-11-21
This paper presents a stabilized Bi-conjugate gradient algorithm (BiCGstab) that can significantly improve the performance of the impedance method, which has been widely applied to model low-frequency field induction phenomena in voxel phantoms. The improved impedance method offers remarkable computational advantages in terms of convergence performance and memory consumption over the conventional, successive over-relaxation (SOR)-based algorithm. The scheme has been validated against other numerical/analytical solutions on a lossy, multilayered sphere phantom excited by an ideal coil loop. To demonstrate the computational performance and application capability of the developed algorithm, the induced fields inside a human phantom due to a low-frequency hyperthermia device is evaluated. The simulation results show the numerical accuracy and superior performance of the method.
Real Time Optima Tracking Using Harvesting Models of the Genetic Algorithm
NASA Technical Reports Server (NTRS)
Baskaran, Subbiah; Noever, D.
1999-01-01
Tracking optima in real time propulsion control, particularly for non-stationary optimization problems is a challenging task. Several approaches have been put forward for such a study including the numerical method called the genetic algorithm. In brief, this approach is built upon Darwinian-style competition between numerical alternatives displayed in the form of binary strings, or by analogy to 'pseudogenes'. Breeding of improved solution is an often cited parallel to natural selection in.evolutionary or soft computing. In this report we present our results of applying a novel model of a genetic algorithm for tracking optima in propulsion engineering and in real time control. We specialize the algorithm to mission profiling and planning optimizations, both to select reduced propulsion needs through trajectory planning and to explore time or fuel conservation strategies.
NASA Astrophysics Data System (ADS)
Penenko, Alexey; Penenko, Vladimir; Nuterman, Roman; Baklanov, Alexander; Mahura, Alexander
2015-11-01
Atmospheric chemistry dynamics is studied with convection-diffusion-reaction model. The numerical Data Assimilation algorithm presented is based on the additive-averaged splitting schemes. It carries out ''fine-grained'' variational data assimilation on the separate splitting stages with respect to spatial dimensions and processes i.e. the same measurement data is assimilated to different parts of the split model. This design has efficient implementation due to the direct data assimilation algorithms of the transport process along coordinate lines. Results of numerical experiments with chemical data assimilation algorithm of in situ concentration measurements on real data scenario have been presented. In order to construct the scenario, meteorological data has been taken from EnviroHIRLAM model output, initial conditions from MOZART model output and measurements from Airbase database.
A Christoffel function weighted least squares algorithm for collocation approximations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayan, Akil; Jakeman, John D.; Zhou, Tao
Here, we propose, theoretically investigate, and numerically validate an algorithm for the Monte Carlo solution of least-squares polynomial approximation problems in a collocation framework. Our investigation is motivated by applications in the collocation approximation of parametric functions, which frequently entails construction of surrogates via orthogonal polynomials. A standard Monte Carlo approach would draw samples according to the density defining the orthogonal polynomial family. Our proposed algorithm instead samples with respect to the (weighted) pluripotential equilibrium measure of the domain, and subsequently solves a weighted least-squares problem, with weights given by evaluations of the Christoffel function. We present theoretical analysis tomore » motivate the algorithm, and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest.« less
A Christoffel function weighted least squares algorithm for collocation approximations
Narayan, Akil; Jakeman, John D.; Zhou, Tao
2016-11-28
Here, we propose, theoretically investigate, and numerically validate an algorithm for the Monte Carlo solution of least-squares polynomial approximation problems in a collocation framework. Our investigation is motivated by applications in the collocation approximation of parametric functions, which frequently entails construction of surrogates via orthogonal polynomials. A standard Monte Carlo approach would draw samples according to the density defining the orthogonal polynomial family. Our proposed algorithm instead samples with respect to the (weighted) pluripotential equilibrium measure of the domain, and subsequently solves a weighted least-squares problem, with weights given by evaluations of the Christoffel function. We present theoretical analysis tomore » motivate the algorithm, and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest.« less
The foamed structures in numerical testing
NASA Astrophysics Data System (ADS)
John, Antoni; John, Małgorzata
2018-01-01
In the paper numerical simulation of the foamed metal structures using numerical homogenization algorithm is prescribed. From the beginning, numerical model of heterogeneous porous simplified structures of typical foamed metal, based on the FEM was built and material parameters (coefficients of elasticity matrix of the considered structure) were determined with use of numerical homogenization algorithm. During the work the different RVE models of structure were created and their properties were compared at different relative density, different numbers and the size and structure of the arrangement of voids. Finally, obtained results were used in modeling of typical elements made from foam metals structures - sandwich structure and profile filled with metal foam. Simulation were performed for different dimensions of cladding and core. Additionally, the test of influence material orientation (arrangement of voids in RVE element) on the maximum stresses and displacement during bending test was performed.
NASA Astrophysics Data System (ADS)
Bang, Jeongho; Lee, Seung-Woo; Lee, Chang-Woo; Jeong, Hyunseok
2015-01-01
We propose a quantum algorithm to obtain the lowest eigenstate of any Hamiltonian simulated by a quantum computer. The proposed algorithm begins with an arbitrary initial state of the simulated system. A finite series of transforms is iteratively applied to the initial state assisted with an ancillary qubit. The fraction of the lowest eigenstate in the initial state is then amplified up to 1. We prove that our algorithm can faithfully work for any arbitrary Hamiltonian in the theoretical analysis. Numerical analyses are also carried out. We firstly provide a numerical proof-of-principle demonstration with a simple Hamiltonian in order to compare our scheme with the so-called "Demon-like algorithmic cooling (DLAC)", recently proposed in Xu (Nat Photonics 8:113, 2014). The result shows a good agreement with our theoretical analysis, exhibiting the comparable behavior to the best `cooling' with the DLAC method. We then consider a random Hamiltonian model for further analysis of our algorithm. By numerical simulations, we show that the total number of iterations is proportional to , where is the difference between the two lowest eigenvalues and is an error defined as the probability that the finally obtained system state is in an unexpected (i.e., not the lowest) eigenstate.
Inviscid flux-splitting algorithms for real gases with non-equilibrium chemistry
NASA Technical Reports Server (NTRS)
Shuen, Jian-Shun; Liou, Meng-Sing; Van Leer, Bram
1990-01-01
Formulations of inviscid flux splitting algorithms for chemical nonequilibrium gases are presented. A chemical system for air dissociation and recombination is described. Numerical results for one-dimensional shock tube and nozzle flows of air in chemical nonequilibrium are examined.
NASA Astrophysics Data System (ADS)
Lu, Wei-Tao; Zhang, Hua; Wang, Shun-Jin
2008-07-01
Symplectic algebraic dynamics algorithm (SADA) for ordinary differential equations is applied to solve numerically the circular restricted three-body problem (CR3BP) in dynamical astronomy for both stable motion and chaotic motion. The result is compared with those of Runge-Kutta algorithm and symplectic algorithm under the fourth order, which shows that SADA has higher accuracy than the others in the long-term calculations of the CR3BP.
Analytical approximation and numerical simulations for periodic travelling water waves
NASA Astrophysics Data System (ADS)
Kalimeris, Konstantinos
2017-12-01
We present recent analytical and numerical results for two-dimensional periodic travelling water waves with constant vorticity. The analytical approach is based on novel asymptotic expansions. We obtain numerical results in two different ways: the first is based on the solution of a constrained optimization problem, and the second is realized as a numerical continuation algorithm. Both methods are applied on some examples of non-constant vorticity. This article is part of the theme issue 'Nonlinear water waves'.
Reliable numerical computation in an optimal output-feedback design
NASA Technical Reports Server (NTRS)
Vansteenwyk, Brett; Ly, Uy-Loi
1991-01-01
A reliable algorithm is presented for the evaluation of a quadratic performance index and its gradients with respect to the controller design parameters. The algorithm is a part of a design algorithm for optimal linear dynamic output-feedback controller that minimizes a finite-time quadratic performance index. The numerical scheme is particularly robust when it is applied to the control-law synthesis for systems with densely packed modes and where there is a high likelihood of encountering degeneracies in the closed-loop eigensystem. This approach through the use of an accurate Pade series approximation does not require the closed-loop system matrix to be diagonalizable. The algorithm was included in a control design package for optimal robust low-order controllers. Usefulness of the proposed numerical algorithm was demonstrated using numerous practical design cases where degeneracies occur frequently in the closed-loop system under an arbitrary controller design initialization and during the numerical search.
Wang, Jun; Zhou, Bi-hua; Zhou, Shu-dao; Sheng, Zheng
2015-01-01
The paper proposes a novel function expression method to forecast chaotic time series, using an improved genetic-simulated annealing (IGSA) algorithm to establish the optimum function expression that describes the behavior of time series. In order to deal with the weakness associated with the genetic algorithm, the proposed algorithm incorporates the simulated annealing operation which has the strong local search ability into the genetic algorithm to enhance the performance of optimization; besides, the fitness function and genetic operators are also improved. Finally, the method is applied to the chaotic time series of Quadratic and Rossler maps for validation. The effect of noise in the chaotic time series is also studied numerically. The numerical results verify that the method can forecast chaotic time series with high precision and effectiveness, and the forecasting precision with certain noise is also satisfactory. It can be concluded that the IGSA algorithm is energy-efficient and superior. PMID:26000011
Wang, Jun; Zhou, Bi-hua; Zhou, Shu-dao; Sheng, Zheng
2015-01-01
The paper proposes a novel function expression method to forecast chaotic time series, using an improved genetic-simulated annealing (IGSA) algorithm to establish the optimum function expression that describes the behavior of time series. In order to deal with the weakness associated with the genetic algorithm, the proposed algorithm incorporates the simulated annealing operation which has the strong local search ability into the genetic algorithm to enhance the performance of optimization; besides, the fitness function and genetic operators are also improved. Finally, the method is applied to the chaotic time series of Quadratic and Rossler maps for validation. The effect of noise in the chaotic time series is also studied numerically. The numerical results verify that the method can forecast chaotic time series with high precision and effectiveness, and the forecasting precision with certain noise is also satisfactory. It can be concluded that the IGSA algorithm is energy-efficient and superior.
A new algorithm for DNS of turbulent polymer solutions using the FENE-P model
NASA Astrophysics Data System (ADS)
Vaithianathan, T.; Collins, Lance; Robert, Ashish; Brasseur, James
2004-11-01
Direct numerical simulations (DNS) of polymer solutions based on the finite extensible nonlinear elastic model with the Peterlin closure (FENE-P) solve for a conformation tensor with properties that must be maintained by the numerical algorithm. In particular, the eigenvalues of the tensor are all positive (to maintain positive definiteness) and the sum is bounded by the maximum extension length. Loss of either of these properties will give rise to unphysical instabilities. In earlier work, Vaithianathan & Collins (2003) devised an algorithm based on an eigendecomposition that allows you to update the eigenvalues of the conformation tensor directly, making it easier to maintain the necessary conditions for a stable calculation. However, simple fixes (such as ceilings and floors) yield results that violate overall conservation. The present finite-difference algorithm is inherently designed to satisfy all of the bounds on the eigenvalues, and thus restores overall conservation. New results suggest that the earlier algorithm may have exaggerated the energy exchange at high wavenumbers. In particular, feedback of the polymer elastic energy to the isotropic turbulence is now greatly reduced.
Effects of illumination on image reconstruction via Fourier ptychography
NASA Astrophysics Data System (ADS)
Cao, Xinrui; Sinzinger, Stefan
2017-12-01
The Fourier ptychographic microscopy (FPM) technique provides high-resolution images by combining a traditional imaging system, e.g. a microscope or a 4f-imaging system, with a multiplexing illumination system, e.g. an LED array and numerical image processing for enhanced image reconstruction. In order to numerically combine images that are captured under varying illumination angles, an iterative phase-retrieval algorithm is often applied. However, in practice, the performance of the FPM algorithm degrades due to the imperfections of the optical system, the image noise caused by the camera, etc. To eliminate the influence of the aberrations of the imaging system, an embedded pupil function recovery (EPRY)-FPM algorithm has been proposed [Opt. Express 22, 4960-4972 (2014)]. In this paper, we study how the performance of FPM and EPRY-FPM algorithms are affected by imperfections of the illumination system using both numerical simulations and experiments. The investigated imperfections include varying and non-uniform intensities, and wavefront aberrations. Our study shows that the aberrations of the illumination system significantly affect the performance of both FPM and EPRY-FPM algorithms. Hence, in practice, aberrations in the illumination system gain significant influence on the resulting image quality.
Analytical and numerical analysis of frictional damage in quasi brittle materials
NASA Astrophysics Data System (ADS)
Zhu, Q. Z.; Zhao, L. Y.; Shao, J. F.
2016-07-01
Frictional sliding and crack growth are two main dissipation processes in quasi brittle materials. The frictional sliding along closed cracks is the origin of macroscopic plastic deformation while the crack growth induces a material damage. The main difficulty of modeling is to consider the inherent coupling between these two processes. Various models and associated numerical algorithms have been proposed. But there are so far no analytical solutions even for simple loading paths for the validation of such algorithms. In this paper, we first present a micro-mechanical model taking into account the damage-friction coupling for a large class of quasi brittle materials. The model is formulated by combining a linear homogenization procedure with the Mori-Tanaka scheme and the irreversible thermodynamics framework. As an original contribution, a series of analytical solutions of stress-strain relations are developed for various loading paths. Based on the micro-mechanical model, two numerical integration algorithms are exploited. The first one involves a coupled friction/damage correction scheme, which is consistent with the coupling nature of the constitutive model. The second one contains a friction/damage decoupling scheme with two consecutive steps: the friction correction followed by the damage correction. With the analytical solutions as reference results, the two algorithms are assessed through a series of numerical tests. It is found that the decoupling correction scheme is efficient to guarantee a systematic numerical convergence.
A Self Adaptive Differential Evolution Algorithm for Global Optimization
NASA Astrophysics Data System (ADS)
Kumar, Pravesh; Pant, Millie
This paper presents a new Differential Evolution algorithm based on hybridization of adaptive control parameters and trigonometric mutation. First we propose a self adaptive DE named ADE where choice of control parameter F and Cr is not fixed at some constant value but is taken iteratively. The proposed algorithm is further modified by applying trigonometric mutation in it and the corresponding algorithm is named as ATDE. The performance of ATDE is evaluated on the set of 8 benchmark functions and the results are compared with the classical DE algorithm in terms of average fitness function value, number of function evaluations, convergence time and success rate. The numerical result shows the competence of the proposed algorithm.
Fast algorithms for Quadrature by Expansion I: Globally valid expansions
NASA Astrophysics Data System (ADS)
Rachh, Manas; Klöckner, Andreas; O'Neil, Michael
2017-09-01
The use of integral equation methods for the efficient numerical solution of PDE boundary value problems requires two main tools: quadrature rules for the evaluation of layer potential integral operators with singular kernels, and fast algorithms for solving the resulting dense linear systems. Classically, these tools were developed separately. In this work, we present a unified numerical scheme based on coupling Quadrature by Expansion, a recent quadrature method, to a customized Fast Multipole Method (FMM) for the Helmholtz equation in two dimensions. The method allows the evaluation of layer potentials in linear-time complexity, anywhere in space, with a uniform, user-chosen level of accuracy as a black-box computational method. Providing this capability requires geometric and algorithmic considerations beyond the needs of standard FMMs as well as careful consideration of the accuracy of multipole translations. We illustrate the speed and accuracy of our method with various numerical examples.
Research on numerical algorithms for large space structures
NASA Technical Reports Server (NTRS)
Denman, E. D.
1982-01-01
Numerical algorithms for large space structures were investigated with particular emphasis on decoupling method for analysis and design. Numerous aspects of the analysis of large systems ranging from the algebraic theory to lambda matrices to identification algorithms were considered. A general treatment of the algebraic theory of lambda matrices is presented and the theory is applied to second order lambda matrices.
A numerical algorithm for the explicit calculation of SU(N) and SL(N,C) Clebsch-Gordan coefficients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alex, Arne; Delft, Jan von; Kalus, Matthias
2011-02-15
We present an algorithm for the explicit numerical calculation of SU(N) and SL(N,C) Clebsch-Gordan coefficients, based on the Gelfand-Tsetlin pattern calculus. Our algorithm is well suited for numerical implementation; we include a computer code in an appendix. Our exposition presumes only familiarity with the representation theory of SU(2).
NASA Technical Reports Server (NTRS)
Powell, Richard W.
1998-01-01
This paper describes the development and evaluation of a numerical roll reversal predictor-corrector guidance algorithm for the atmospheric flight portion of the Mars Surveyor Program 2001 Orbiter and Lander missions. The Lander mission utilizes direct entry and has a demanding requirement to deploy its parachute within 10 km of the target deployment point. The Orbiter mission utilizes aerocapture to achieve a precise captured orbit with a single atmospheric pass. Detailed descriptions of these predictor-corrector algorithms are given. Also, results of three and six degree-of-freedom Monte Carlo simulations which include navigation, aerodynamics, mass properties and atmospheric density uncertainties are presented.
Model of a Frame of Dynamic Routing and Its Equilibrium
NASA Astrophysics Data System (ADS)
Zhang, Shu; Yuan, Yuan; Xu, Jian
Dynamic routing algorithm based on the shortest path principle is criticized due to the oscillation induced by such routing scheme. In the present work, we propose the model of TCP/RED algorithm by a new frame of dynamic routing, based on the measurement of occupation ratio of router buffer for different links, which only requires the information of the queue size at the buffer of the router, to stabilize the system. We classify several types of equilibrium and employ the numerical method to study the stability of the steady state. Our numerical results show that the careful selection of the parameters characterizing the dynamic routing algorithm can stabilize the system in some cases.
NASA Astrophysics Data System (ADS)
Doha, E. H.; Abd-Elhameed, W. M.; Youssri, Y. H.
2013-10-01
In this paper, we present a new second kind Chebyshev (S2KC) operational matrix of derivatives. With the aid of S2KC, an algorithm is described to obtain numerical solutions of a class of linear and nonlinear Lane-Emden type singular initial value problems (IVPs). The idea of obtaining such solutions is essentially based on reducing the differential equation with its initial conditions to a system of algebraic equations. Two illustrative examples concern relevant physical problems (the Lane-Emden equations of the first and second kind) are discussed to demonstrate the validity and applicability of the suggested algorithm. Numerical results obtained are comparing favorably with the analytical known solutions.
A parallel Jacobson-Oksman optimization algorithm. [parallel processing (computers)
NASA Technical Reports Server (NTRS)
Straeter, T. A.; Markos, A. T.
1975-01-01
A gradient-dependent optimization technique which exploits the vector-streaming or parallel-computing capabilities of some modern computers is presented. The algorithm, derived by assuming that the function to be minimized is homogeneous, is a modification of the Jacobson-Oksman serial minimization method. In addition to describing the algorithm, conditions insuring the convergence of the iterates of the algorithm and the results of numerical experiments on a group of sample test functions are presented. The results of these experiments indicate that this algorithm will solve optimization problems in less computing time than conventional serial methods on machines having vector-streaming or parallel-computing capabilities.
Wavelet-based Adaptive Mesh Refinement Method for Global Atmospheric Chemical Transport Modeling
NASA Astrophysics Data System (ADS)
Rastigejev, Y.
2011-12-01
Numerical modeling of global atmospheric chemical transport presents enormous computational difficulties, associated with simulating a wide range of time and spatial scales. The described difficulties are exacerbated by the fact that hundreds of chemical species and thousands of chemical reactions typically are used for chemical kinetic mechanism description. These computational requirements very often forces researches to use relatively crude quasi-uniform numerical grids with inadequate spatial resolution that introduces significant numerical diffusion into the system. It was shown that this spurious diffusion significantly distorts the pollutant mixing and transport dynamics for typically used grid resolution. The described numerical difficulties have to be systematically addressed considering that the demand for fast, high-resolution chemical transport models will be exacerbated over the next decade by the need to interpret satellite observations of tropospheric ozone and related species. In this study we offer dynamically adaptive multilevel Wavelet-based Adaptive Mesh Refinement (WAMR) method for numerical modeling of atmospheric chemical evolution equations. The adaptive mesh refinement is performed by adding and removing finer levels of resolution in the locations of fine scale development and in the locations of smooth solution behavior accordingly. The algorithm is based on the mathematically well established wavelet theory. This allows us to provide error estimates of the solution that are used in conjunction with an appropriate threshold criteria to adapt the non-uniform grid. Other essential features of the numerical algorithm include: an efficient wavelet spatial discretization that allows to minimize the number of degrees of freedom for a prescribed accuracy, a fast algorithm for computing wavelet amplitudes, and efficient and accurate derivative approximations on an irregular grid. The method has been tested for a variety of benchmark problems including numerical simulation of transpacific traveling pollution plumes. The generated pollution plumes are diluted due to turbulent mixing as they are advected downwind. Despite this dilution, it was recently discovered that pollution plumes in the remote troposphere can preserve their identity as well-defined structures for two weeks or more as they circle the globe. Present Global Chemical Transport Models (CTMs) implemented for quasi-uniform grids are completely incapable of reproducing these layered structures due to high numerical plume dilution caused by numerical diffusion combined with non-uniformity of atmospheric flow. It is shown that WAMR algorithm solutions of comparable accuracy as conventional numerical techniques are obtained with more than an order of magnitude reduction in number of grid points, therefore the adaptive algorithm is capable to produce accurate results at a relatively low computational cost. The numerical simulations demonstrate that WAMR algorithm applied the traveling plume problem accurately reproduces the plume dynamics unlike conventional numerical methods that utilizes quasi-uniform numerical grids.
NASA Technical Reports Server (NTRS)
Beers, B. L.; Pine, V. W.; Hwang, H. C.; Bloomberg, H. W.; Lin, D. L.; Schmidt, M. J.; Strickland, D. J.
1979-01-01
The model consists of four phases: single electron dynamics, single electron avalanche, negative streamer development, and tree formation. Numerical algorithms and computer code implementations are presented for the first three phases. An approach to developing a code description of fourth phase is discussed. Numerical results are presented for a crude material model of Teflon.
Mass Conservation and Positivity Preservation with Ensemble-type Kalman Filter Algorithms
NASA Technical Reports Server (NTRS)
Janjic, Tijana; McLaughlin, Dennis B.; Cohn, Stephen E.; Verlaan, Martin
2013-01-01
Maintaining conservative physical laws numerically has long been recognized as being important in the development of numerical weather prediction (NWP) models. In the broader context of data assimilation, concerted efforts to maintain conservation laws numerically and to understand the significance of doing so have begun only recently. In order to enforce physically based conservation laws of total mass and positivity in the ensemble Kalman filter, we incorporate constraints to ensure that the filter ensemble members and the ensemble mean conserve mass and remain nonnegative through measurement updates. We show that the analysis steps of ensemble transform Kalman filter (ETKF) algorithm and ensemble Kalman filter algorithm (EnKF) can conserve the mass integral, but do not preserve positivity. Further, if localization is applied or if negative values are simply set to zero, then the total mass is not conserved either. In order to ensure mass conservation, a projection matrix that corrects for localization effects is constructed. In order to maintain both mass conservation and positivity preservation through the analysis step, we construct a data assimilation algorithms based on quadratic programming and ensemble Kalman filtering. Mass and positivity are both preserved by formulating the filter update as a set of quadratic programming problems that incorporate constraints. Some simple numerical experiments indicate that this approach can have a significant positive impact on the posterior ensemble distribution, giving results that are more physically plausible both for individual ensemble members and for the ensemble mean. The results show clear improvements in both analyses and forecasts, particularly in the presence of localized features. Behavior of the algorithm is also tested in presence of model error.
Variational Algorithms for Test Particle Trajectories
NASA Astrophysics Data System (ADS)
Ellison, C. Leland; Finn, John M.; Qin, Hong; Tang, William M.
2015-11-01
The theory of variational integration provides a novel framework for constructing conservative numerical methods for magnetized test particle dynamics. The retention of conservation laws in the numerical time advance captures the correct qualitative behavior of the long time dynamics. For modeling the Lorentz force system, new variational integrators have been developed that are both symplectic and electromagnetically gauge invariant. For guiding center test particle dynamics, discretization of the phase-space action principle yields multistep variational algorithms, in general. Obtaining the desired long-term numerical fidelity requires mitigation of the multistep method's parasitic modes or applying a discretization scheme that possesses a discrete degeneracy to yield a one-step method. Dissipative effects may be modeled using Lagrange-D'Alembert variational principles. Numerical results will be presented using a new numerical platform that interfaces with popular equilibrium codes and utilizes parallel hardware to achieve reduced times to solution. This work was supported by DOE Contract DE-AC02-09CH11466.
Multi-objective optimal design of sandwich panels using a genetic algorithm
NASA Astrophysics Data System (ADS)
Xu, Xiaomei; Jiang, Yiping; Pueh Lee, Heow
2017-10-01
In this study, an optimization problem concerning sandwich panels is investigated by simultaneously considering the two objectives of minimizing the panel mass and maximizing the sound insulation performance. First of all, the acoustic model of sandwich panels is discussed, which provides a foundation to model the acoustic objective function. Then the optimization problem is formulated as a bi-objective programming model, and a solution algorithm based on the non-dominated sorting genetic algorithm II (NSGA-II) is provided to solve the proposed model. Finally, taking an example of a sandwich panel that is expected to be used as an automotive roof panel, numerical experiments are carried out to verify the effectiveness of the proposed model and solution algorithm. Numerical results demonstrate in detail how the core material, geometric constraints and mechanical constraints impact the optimal designs of sandwich panels.
A numerical algorithm for MHD of free surface flows at low magnetic Reynolds numbers
NASA Astrophysics Data System (ADS)
Samulyak, Roman; Du, Jian; Glimm, James; Xu, Zhiliang
2007-10-01
We have developed a numerical algorithm and computational software for the study of magnetohydrodynamics (MHD) of free surface flows at low magnetic Reynolds numbers. The governing system of equations is a coupled hyperbolic-elliptic system in moving and geometrically complex domains. The numerical algorithm employs the method of front tracking and the Riemann problem for material interfaces, second order Godunov-type hyperbolic solvers, and the embedded boundary method for the elliptic problem in complex domains. The numerical algorithm has been implemented as an MHD extension of FronTier, a hydrodynamic code with free interface support. The code is applicable for numerical simulations of free surface flows of conductive liquids or weakly ionized plasmas. The code has been validated through the comparison of numerical simulations of a liquid metal jet in a non-uniform magnetic field with experiments and theory. Simulations of the Muon Collider/Neutrino Factory target have also been discussed.
The Evolution of Random Number Generation in MUVES
2017-01-01
mathematical basis and statistical justification for algorithms used in the code. The working code provided produces results identical to the current...MUVES, includ- ing the mathematical basis and statistical justification for algorithms used in the code. The working code provided produces results...questionable numerical and statistical properties. The development of the modern system is traced through software change requests, resulting in a random number
Discontinuous Galerkin methods for Hamiltonian ODEs and PDEs
NASA Astrophysics Data System (ADS)
Tang, Wensheng; Sun, Yajuan; Cai, Wenjun
2017-02-01
In this article, we present a unified framework of discontinuous Galerkin (DG) discretizations for Hamiltonian ODEs and PDEs. We show that with appropriate numerical fluxes the numerical algorithms deduced from DG discretizations can be combined with the symplectic methods in time to derive the multi-symplectic PRK schemes. The resulting numerical discretizations are applied to the linear and nonlinear Schrödinger equations. Some conservative properties of the numerical schemes are investigated and confirmed in the numerical experiments.
Block structured adaptive mesh and time refinement for hybrid, hyperbolic + N-body systems
NASA Astrophysics Data System (ADS)
Miniati, Francesco; Colella, Phillip
2007-11-01
We present a new numerical algorithm for the solution of coupled collisional and collisionless systems, based on the block structured adaptive mesh and time refinement strategy (AMR). We describe the issues associated with the discretization of the system equations and the synchronization of the numerical solution on the hierarchy of grid levels. We implement a code based on a higher order, conservative and directionally unsplit Godunov’s method for hydrodynamics; a symmetric, time centered modified symplectic scheme for collisionless component; and a multilevel, multigrid relaxation algorithm for the elliptic equation coupling the two components. Numerical results that illustrate the accuracy of the code and the relative merit of various implemented schemes are also presented.
NASA Astrophysics Data System (ADS)
Kim, Juhye; Nam, Haewon; Lee, Rena
2015-07-01
CT (computed tomography) images, metal materials such as tooth supplements or surgical clips can cause metal artifact and degrade image quality. In severe cases, this may lead to misdiagnosis. In this research, we developed a new MAR (metal artifact reduction) algorithm by using an edge preserving filter and the MATLAB program (Mathworks, version R2012a). The proposed algorithm consists of 6 steps: image reconstruction from projection data, metal segmentation, forward projection, interpolation, applied edge preserving smoothing filter, and new image reconstruction. For an evaluation of the proposed algorithm, we obtained both numerical simulation data and data for a Rando phantom. In the numerical simulation data, four metal regions were added into the Shepp Logan phantom for metal artifacts. The projection data of the metal-inserted Rando phantom were obtained by using a prototype CBCT scanner manufactured by medical engineering and medical physics (MEMP) laboratory research group in medical science at Ewha Womans University. After these had been adopted the proposed algorithm was performed, and the result were compared with the original image (with metal artifact without correction) and with a corrected image based on linear interpolation. Both visual and quantitative evaluations were done. Compared with the original image with metal artifacts and with the image corrected by using linear interpolation, both the numerical and the experimental phantom data demonstrated that the proposed algorithm reduced the metal artifact. In conclusion, the evaluation in this research showed that the proposed algorithm outperformed the interpolation based MAR algorithm. If an optimization and a stability evaluation of the proposed algorithm can be performed, the developed algorithm is expected to be an effective tool for eliminating metal artifacts even in commercial CT systems.
NASA Astrophysics Data System (ADS)
Fouladi, Ehsan; Mojallali, Hamed
2018-01-01
In this paper, an adaptive backstepping controller has been tuned to synchronise two chaotic Colpitts oscillators in a master-slave configuration. The parameters of the controller are determined using shark smell optimisation (SSO) algorithm. Numerical results are presented and compared with those of particle swarm optimisation (PSO) algorithm. Simulation results show better performance in terms of accuracy and convergence for the proposed optimised method compared to PSO optimised controller or any non-optimised backstepping controller.
Stochastic optimization algorithms for barrier dividend strategies
NASA Astrophysics Data System (ADS)
Yin, G.; Song, Q. S.; Yang, H.
2009-01-01
This work focuses on finding optimal barrier policy for an insurance risk model when the dividends are paid to the share holders according to a barrier strategy. A new approach based on stochastic optimization methods is developed. Compared with the existing results in the literature, more general surplus processes are considered. Precise models of the surplus need not be known; only noise-corrupted observations of the dividends are used. Using barrier-type strategies, a class of stochastic optimization algorithms are developed. Convergence of the algorithm is analyzed; rate of convergence is also provided. Numerical results are reported to demonstrate the performance of the algorithm.
Convergence Results on Iteration Algorithms to Linear Systems
Wang, Zhuande; Yang, Chuansheng; Yuan, Yubo
2014-01-01
In order to solve the large scale linear systems, backward and Jacobi iteration algorithms are employed. The convergence is the most important issue. In this paper, a unified backward iterative matrix is proposed. It shows that some well-known iterative algorithms can be deduced with it. The most important result is that the convergence results have been proved. Firstly, the spectral radius of the Jacobi iterative matrix is positive and the one of backward iterative matrix is strongly positive (lager than a positive constant). Secondly, the mentioned two iterations have the same convergence results (convergence or divergence simultaneously). Finally, some numerical experiments show that the proposed algorithms are correct and have the merit of backward methods. PMID:24991640
NASA Astrophysics Data System (ADS)
Plattner, A.; Maurer, H. R.; Vorloeper, J.; Dahmen, W.
2010-08-01
Despite the ever-increasing power of modern computers, realistic modelling of complex 3-D earth models is still a challenging task and requires substantial computing resources. The overwhelming majority of current geophysical modelling approaches includes either finite difference or non-adaptive finite element algorithms and variants thereof. These numerical methods usually require the subsurface to be discretized with a fine mesh to accurately capture the behaviour of the physical fields. However, this may result in excessive memory consumption and computing times. A common feature of most of these algorithms is that the modelled data discretizations are independent of the model complexity, which may be wasteful when there are only minor to moderate spatial variations in the subsurface parameters. Recent developments in the theory of adaptive numerical solvers have the potential to overcome this problem. Here, we consider an adaptive wavelet-based approach that is applicable to a large range of problems, also including nonlinear problems. In comparison with earlier applications of adaptive solvers to geophysical problems we employ here a new adaptive scheme whose core ingredients arose from a rigorous analysis of the overall asymptotically optimal computational complexity, including in particular, an optimal work/accuracy rate. Our adaptive wavelet algorithm offers several attractive features: (i) for a given subsurface model, it allows the forward modelling domain to be discretized with a quasi minimal number of degrees of freedom, (ii) sparsity of the associated system matrices is guaranteed, which makes the algorithm memory efficient and (iii) the modelling accuracy scales linearly with computing time. We have implemented the adaptive wavelet algorithm for solving 3-D geoelectric problems. To test its performance, numerical experiments were conducted with a series of conductivity models exhibiting varying degrees of structural complexity. Results were compared with a non-adaptive finite element algorithm, which incorporates an unstructured mesh to best-fitting subsurface boundaries. Such algorithms represent the current state-of-the-art in geoelectric modelling. An analysis of the numerical accuracy as a function of the number of degrees of freedom revealed that the adaptive wavelet algorithm outperforms the finite element solver for simple and moderately complex models, whereas the results become comparable for models with high spatial variability of electrical conductivities. The linear dependence of the modelling error and the computing time proved to be model-independent. This feature will allow very efficient computations using large-scale models as soon as our experimental code is optimized in terms of its implementation.
2017-01-01
Computational scientists have designed many useful algorithms by exploring a biological process or imitating natural evolution. These algorithms can be used to solve engineering optimization problems. Inspired by the change of matter state, we proposed a novel optimization algorithm called differential cloud particles evolution algorithm based on data-driven mechanism (CPDD). In the proposed algorithm, the optimization process is divided into two stages, namely, fluid stage and solid stage. The algorithm carries out the strategy of integrating global exploration with local exploitation in fluid stage. Furthermore, local exploitation is carried out mainly in solid stage. The quality of the solution and the efficiency of the search are influenced greatly by the control parameters. Therefore, the data-driven mechanism is designed for obtaining better control parameters to ensure good performance on numerical benchmark problems. In order to verify the effectiveness of CPDD, numerical experiments are carried out on all the CEC2014 contest benchmark functions. Finally, two application problems of artificial neural network are examined. The experimental results show that CPDD is competitive with respect to other eight state-of-the-art intelligent optimization algorithms. PMID:28761438
NASA Astrophysics Data System (ADS)
Jia, Shouqing; La, Dongsheng; Ma, Xuelian
2018-04-01
The finite difference time domain (FDTD) algorithm and Green function algorithm are implemented into the numerical simulation of electromagnetic waves in Schwarzschild space-time. FDTD method in curved space-time is developed by filling the flat space-time with an equivalent medium. Green function in curved space-time is obtained by solving transport equations. Simulation results validate both the FDTD code and Green function code. The methods developed in this paper offer a tool to solve electromagnetic scattering problems.
Optimal placement of excitations and sensors for verification of large dynamical systems
NASA Technical Reports Server (NTRS)
Salama, M.; Rose, T.; Garba, J.
1987-01-01
The computationally difficult problem of the optimal placement of excitations and sensors to maximize the observed measurements is studied within the framework of combinatorial optimization, and is solved numerically using a variation of the simulated annealing heuristic algorithm. Results of numerical experiments including a square plate and a 960 degrees-of-freedom Control of Flexible Structure (COFS) truss structure, are presented. Though the algorithm produces suboptimal solutions, its generality and simplicity allow the treatment of complex dynamical systems which would otherwise be difficult to handle.
A necessary condition for applying MUSIC algorithm in limited-view inverse scattering problem
NASA Astrophysics Data System (ADS)
Park, Taehoon; Park, Won-Kwang
2015-09-01
Throughout various results of numerical simulations, it is well-known that MUltiple SIgnal Classification (MUSIC) algorithm can be applied in the limited-view inverse scattering problems. However, the application is somehow heuristic. In this contribution, we identify a necessary condition of MUSIC for imaging of collection of small, perfectly conducting cracks. This is based on the fact that MUSIC imaging functional can be represented as an infinite series of Bessel function of integer order of the first kind. Numerical experiments from noisy synthetic data supports our investigation.
Numerical solution of 2D-vector tomography problem using the method of approximate inverse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svetov, Ivan; Maltseva, Svetlana; Polyakova, Anna
2016-08-10
We propose a numerical solution of reconstruction problem of a two-dimensional vector field in a unit disk from the known values of the longitudinal and transverse ray transforms. The algorithm is based on the method of approximate inverse. Numerical simulations confirm that the proposed method yields good results of reconstruction of vector fields.
Convergence of Proximal Iteratively Reweighted Nuclear Norm Algorithm for Image Processing.
Sun, Tao; Jiang, Hao; Cheng, Lizhi
2017-08-25
The nonsmooth and nonconvex regularization has many applications in imaging science and machine learning research due to its excellent recovery performance. A proximal iteratively reweighted nuclear norm algorithm has been proposed for the nonsmooth and nonconvex matrix minimizations. In this paper, we aim to investigate the convergence of the algorithm. With the Kurdyka-Łojasiewicz property, we prove the algorithm globally converges to a critical point of the objective function. The numerical results presented in this paper coincide with our theoretical findings.
A second order derivative scheme based on Bregman algorithm class
NASA Astrophysics Data System (ADS)
Campagna, Rosanna; Crisci, Serena; Cuomo, Salvatore; Galletti, Ardelio; Marcellino, Livia
2016-10-01
The algorithms based on the Bregman iterative regularization are known for efficiently solving convex constraint optimization problems. In this paper, we introduce a second order derivative scheme for the class of Bregman algorithms. Its properties of convergence and stability are investigated by means of numerical evidences. Moreover, we apply the proposed scheme to an isotropic Total Variation (TV) problem arising out of the Magnetic Resonance Image (MRI) denoising. Experimental results confirm that our algorithm has good performance in terms of denoising quality, effectiveness and robustness.
PolyPole-1: An accurate numerical algorithm for intra-granular fission gas release
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pizzocri, D.; Rabiti, C.; Luzzi, L.
2016-09-01
This paper describes the development of a new numerical algorithm (called PolyPole-1) to efficiently solve the equation for intra-granular fission gas release in nuclear fuel. The work was carried out in collaboration with Politecnico di Milano and Institute for Transuranium Elements. The PolyPole-1 algorithms is being implemented in INL's fuels code BISON code as part of BISON's fission gas release model. The transport of fission gas from within the fuel grains to the grain boundaries (intra-granular fission gas release) is a fundamental controlling mechanism of fission gas release and gaseous swelling in nuclear fuel. Hence, accurate numerical solution of themore » corresponding mathematical problem needs to be included in fission gas behaviour models used in fuel performance codes. Under the assumption of equilibrium between trapping and resolution, the process can be described mathematically by a single diffusion equation for the gas atom concentration in a grain. In this work, we propose a new numerical algorithm (PolyPole-1) to efficiently solve the fission gas diffusion equation in time-varying conditions. The PolyPole-1 algorithm is based on the analytic modal solution of the diffusion equation for constant conditions, with the addition of polynomial corrective terms that embody the information on the deviation from constant conditions. The new algorithm is verified by comparing the results to a finite difference solution over a large number of randomly generated operation histories. Furthermore, comparison to state-of-the-art algorithms used in fuel performance codes demonstrates that the accuracy of the PolyPole-1 solution is superior to other algorithms, with similar computational effort. Finally, the concept of PolyPole-1 may be extended to the solution of the general problem of intra-granular fission gas diffusion during non-equilibrium trapping and resolution, which will be the subject of future work.« less
A Taylor weak-statement algorithm for hyperbolic conservation laws
NASA Technical Reports Server (NTRS)
Baker, A. J.; Kim, J. W.
1987-01-01
Finite element analysis, applied to computational fluid dynamics (CFD) problem classes, presents a formal procedure for establishing the ingredients of a discrete approximation numerical solution algorithm. A classical Galerkin weak-statement formulation, formed on a Taylor series extension of the conservation law system, is developed herein that embeds a set of parameters eligible for constraint according to specification of suitable norms. The derived family of Taylor weak statements is shown to contain, as special cases, over one dozen independently derived CFD algorithms published over the past several decades for the high speed flow problem class. A theoretical analysis is completed that facilitates direct qualitative comparisons. Numerical results for definitive linear and nonlinear test problems permit direct quantitative performance comparisons.
Simplified method for numerical modeling of fiber lasers.
Shtyrina, O V; Yarutkina, I A; Fedoruk, M P
2014-12-29
A simplified numerical approach to modeling of dissipative dispersion-managed fiber lasers is examined. We present a new numerical iteration algorithm for finding the periodic solutions of the system of nonlinear ordinary differential equations describing the intra-cavity dynamics of the dissipative soliton characteristics in dispersion-managed fiber lasers. We demonstrate that results obtained using simplified model are in good agreement with full numerical modeling based on the corresponding partial differential equations.
Spurious Numerical Solutions Of Differential Equations
NASA Technical Reports Server (NTRS)
Lafon, A.; Yee, H. C.
1995-01-01
Paper presents detailed study of spurious steady-state numerical solutions of differential equations that contain nonlinear source terms. Main objectives of this study are (1) to investigate how well numerical steady-state solutions of model nonlinear reaction/convection boundary-value problem mimic true steady-state solutions and (2) to relate findings of this investigation to implications for interpretation of numerical results from computational-fluid-dynamics algorithms and computer codes used to simulate reacting flows.
NASA Astrophysics Data System (ADS)
Havemann, Frank; Heinz, Michael; Struck, Alexander; Gläser, Jochen
2011-01-01
We propose a new local, deterministic and parameter-free algorithm that detects fuzzy and crisp overlapping communities in a weighted network and simultaneously reveals their hierarchy. Using a local fitness function, the algorithm greedily expands natural communities of seeds until the whole graph is covered. The hierarchy of communities is obtained analytically by calculating resolution levels at which communities grow rather than numerically by testing different resolution levels. This analytic procedure is not only more exact than its numerical alternatives such as LFM and GCE but also much faster. Critical resolution levels can be identified by searching for intervals in which large changes of the resolution do not lead to growth of communities. We tested our algorithm on benchmark graphs and on a network of 492 papers in information science. Combined with a specific post-processing, the algorithm gives much more precise results on LFR benchmarks with high overlap compared to other algorithms and performs very similarly to GCE.
Verification of Numerical Programs: From Real Numbers to Floating Point Numbers
NASA Technical Reports Server (NTRS)
Goodloe, Alwyn E.; Munoz, Cesar; Kirchner, Florent; Correnson, Loiec
2013-01-01
Numerical algorithms lie at the heart of many safety-critical aerospace systems. The complexity and hybrid nature of these systems often requires the use of interactive theorem provers to verify that these algorithms are logically correct. Usually, proofs involving numerical computations are conducted in the infinitely precise realm of the field of real numbers. However, numerical computations in these algorithms are often implemented using floating point numbers. The use of a finite representation of real numbers introduces uncertainties as to whether the properties veri ed in the theoretical setting hold in practice. This short paper describes work in progress aimed at addressing these concerns. Given a formally proven algorithm, written in the Program Verification System (PVS), the Frama-C suite of tools is used to identify sufficient conditions and verify that under such conditions the rounding errors arising in a C implementation of the algorithm do not affect its correctness. The technique is illustrated using an algorithm for detecting loss of separation among aircraft.
Solution procedure of dynamical contact problems with friction
NASA Astrophysics Data System (ADS)
Abdelhakim, Lotfi
2017-07-01
Dynamical contact is one of the common research topics because of its wide applications in the engineering field. The main goal of this work is to develop a time-stepping algorithm for dynamic contact problems. We propose a finite element approach for elastodynamics contact problems [1]. Sticking, sliding and frictional contact can be taken into account. Lagrange multipliers are used to enforce non-penetration condition. For the time discretization, we propose a scheme equivalent to the explicit Newmark scheme. Each time step requires solving a nonlinear problem similar to a static friction problem. The nonlinearity of the system of equation needs an iterative solution procedure based on Uzawa's algorithm [2][3]. The applicability of the algorithm is illustrated by selected sample numerical solutions to static and dynamic contact problems. Results obtained with the model have been compared and verified with results from an independent numerical method.
A splitting algorithm for the wavelet transform of cubic splines on a nonuniform grid
NASA Astrophysics Data System (ADS)
Sulaimanov, Z. M.; Shumilov, B. M.
2017-10-01
For cubic splines with nonuniform nodes, splitting with respect to the even and odd nodes is used to obtain a wavelet expansion algorithm in the form of the solution to a three-diagonal system of linear algebraic equations for the coefficients. Computations by hand are used to investigate the application of this algorithm for numerical differentiation. The results are illustrated by solving a prediction problem.
A block-based algorithm for the solution of compressible flows in rotor-stator combinations
NASA Technical Reports Server (NTRS)
Akay, H. U.; Ecer, A.; Beskok, A.
1990-01-01
A block-based solution algorithm is developed for the solution of compressible flows in rotor-stator combinations. The method allows concurrent solution of multiple solution blocks in parallel machines. It also allows a time averaged interaction at the stator-rotor interfaces. Numerical results are presented to illustrate the performance of the algorithm. The effect of the interaction between the stator and rotor is evaluated.
A Multiuser Detector Based on Artificial Bee Colony Algorithm for DS-UWB Systems
Liu, Xiaohui
2013-01-01
Artificial Bee Colony (ABC) algorithm is an optimization algorithm based on the intelligent behavior of honey bee swarm. The ABC algorithm was developed to solve optimizing numerical problems and revealed premising results in processing time and solution quality. In ABC, a colony of artificial bees search for rich artificial food sources; the optimizing numerical problems are converted to the problem of finding the best parameter which minimizes an objective function. Then, the artificial bees randomly discover a population of initial solutions and then iteratively improve them by employing the behavior: moving towards better solutions by means of a neighbor search mechanism while abandoning poor solutions. In this paper, an efficient multiuser detector based on a suboptimal code mapping multiuser detector and artificial bee colony algorithm (SCM-ABC-MUD) is proposed and implemented in direct-sequence ultra-wideband (DS-UWB) systems under the additive white Gaussian noise (AWGN) channel. The simulation results demonstrate that the BER and the near-far effect resistance performances of this proposed algorithm are quite close to those of the optimum multiuser detector (OMD) while its computational complexity is much lower than that of OMD. Furthermore, the BER performance of SCM-ABC-MUD is not sensitive to the number of active users and can obtain a large system capacity. PMID:23983638
A novel algorithm using an orthotropic material model for topology optimization
NASA Astrophysics Data System (ADS)
Tong, Liyong; Luo, Quantian
2017-09-01
This article presents a novel algorithm for topology optimization using an orthotropic material model. Based on the virtual work principle, mathematical formulations for effective orthotropic material properties of an element containing two materials are derived. An algorithm is developed for structural topology optimization using four orthotropic material properties, instead of one density or area ratio, in each element as design variables. As an illustrative example, minimum compliance problems for linear and nonlinear structures are solved using the present algorithm in conjunction with the moving iso-surface threshold method. The present numerical results reveal that: (1) chequerboards and single-node connections are not present even without filtering; (2) final topologies do not contain large grey areas even using a unity penalty factor; and (3) the well-known numerical issues caused by low-density material when considering geometric nonlinearity are resolved by eliminating low-density elements in finite element analyses.
CONORBIT: constrained optimization by radial basis function interpolation in trust regions
Regis, Rommel G.; Wild, Stefan M.
2016-09-26
Here, this paper presents CONORBIT (CONstrained Optimization by Radial Basis function Interpolation in Trust regions), a derivative-free algorithm for constrained black-box optimization where the objective and constraint functions are computationally expensive. CONORBIT employs a trust-region framework that uses interpolating radial basis function (RBF) models for the objective and constraint functions, and is an extension of the ORBIT algorithm. It uses a small margin for the RBF constraint models to facilitate the generation of feasible iterates, and extensive numerical tests confirm that such a margin is helpful in improving performance. CONORBIT is compared with other algorithms on 27 test problems, amore » chemical process optimization problem, and an automotive application. Numerical results show that CONORBIT performs better than COBYLA, a sequential penalty derivative-free method, an augmented Lagrangian method, a direct search method, and another RBF-based algorithm on the test problems and on the automotive application.« less
Splitting algorithm for numerical simulation of Li-ion battery electrochemical processes
NASA Astrophysics Data System (ADS)
Iliev, Oleg; Nikiforova, Marina A.; Semenov, Yuri V.; Zakharov, Petr E.
2017-11-01
In this paper we present a splitting algorithm for a numerical simulation of Li-ion battery electrochemical processes. Liion battery consists of three domains: anode, cathode and electrolyte. Mathematical model of electrochemical processes is described on a microscopic scale, and contains nonlinear equations for concentration and potential in each domain. On the interface of electrodes and electrolyte there are the Lithium ions intercalation and deintercalation processes, which are described by Butler-Volmer nonlinear equation. To approximate in spatial coordinates we use finite element methods with discontinues Galerkin elements. To simplify numerical simulations we develop the splitting algorithm, which split the original problem into three independent subproblems. We investigate the numerical convergence of the algorithm on 2D model problem.
Numerical study of time domain analogy applied to noise prediction from rotating blades
NASA Astrophysics Data System (ADS)
Fedala, D.; Kouidri, S.; Rey, R.
2009-04-01
Aeroacoustic formulations in time domain are frequently used to model the aerodynamic sound of airfoils, the time data being more accessible. The formulation 1A developed by Farassat, an integral solution of the Ffowcs Williams and Hawkings equation, holds great interest because of its ability to handle surfaces in arbitrary motion. The aim of this work is to study the numerical sensitivity of this model to specified parameters used in the calculation. The numerical algorithms, spatial and time discretizations, and approximations used for far-field acoustic simulation are presented. An approach of quantifying of the numerical errors resulting from implementation of formulation 1A is carried out based on Isom's and Tam's test cases. A helicopter blade airfoil, as defined by Farassat to investigate Isom's case, is used in this work. According to Isom, the acoustic response of a dipole source with a constant aerodynamic load, ρ0c02, is equal to the thickness noise contribution. Discrepancies are observed when the two contributions are computed numerically. In this work, variations of these errors, which depend on the temporal resolution, Mach number, source-observer distance, and interpolation algorithm type, are investigated. The results show that the spline interpolating algorithm gives the minimum error. The analysis is then extended to Tam's test case. Tam's test case has the advantage of providing an analytical solution for the first harmonic of the noise produced by a specific force distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Kok Foong; Patterson, Robert I.A.; Wagner, Wolfgang
2015-12-15
Graphical abstract: -- Highlights: •Problems concerning multi-compartment population balance equations are studied. •A class of fragmentation weight transfer functions is presented. •Three stochastic weighted algorithms are compared against the direct simulation algorithm. •The numerical errors of the stochastic solutions are assessed as a function of fragmentation rate. •The algorithms are applied to a multi-dimensional granulation model. -- Abstract: This paper introduces stochastic weighted particle algorithms for the solution of multi-compartment population balance equations. In particular, it presents a class of fragmentation weight transfer functions which are constructed such that the number of computational particles stays constant during fragmentation events. Themore » weight transfer functions are constructed based on systems of weighted computational particles and each of it leads to a stochastic particle algorithm for the numerical treatment of population balance equations. Besides fragmentation, the algorithms also consider physical processes such as coagulation and the exchange of mass with the surroundings. The numerical properties of the algorithms are compared to the direct simulation algorithm and an existing method for the fragmentation of weighted particles. It is found that the new algorithms show better numerical performance over the two existing methods especially for systems with significant amount of large particles and high fragmentation rates.« less
NASA Astrophysics Data System (ADS)
Sheloput, Tatiana; Agoshkov, Valery
2017-04-01
The problem of modeling water areas with `liquid' (open) lateral boundaries is discussed. There are different known methods dealing with open boundaries in limited-area models, and one of the most efficient is data assimilation. Although this method is popular, there are not so many articles concerning its implementation for recovering boundary functions. However, the problem of specifying boundary conditions at the open boundary of a limited area is still actual and important. The mathematical model of the Baltic Sea circulation, developed in INM RAS, is considered. It is based on the system of thermo-hydrodynamic equations in the Boussinesq and hydrostatic approximations. The splitting method that is used for time approximation in the model allows to consider the data assimilation problem as a sequence of linear problems. One of such `simple' temperature (salinity) assimilation problem is investigated in the study. Using well known techniques of study and solution of inverse problems and optimal control problems [1], we propose an iterative solution algorithm and we obtain conditions for existence of the solution, for unique and dense solvability of the problem and for convergence of the iterative algorithm. The investigation shows that if observations satisfy certain conditions, the proposed algorithm converges to the solution of the boundary control problem. Particularly, it converges when observational data are given on the `liquid' boundary [2]. Theoretical results are confirmed by the results of numerical experiments. The numerical algorithm was implemented to water area of the Baltic Sea. Two numerical experiments were carried out in the Gulf of Finland: one with the application of the assimilation procedure and the other without. The analyses have shown that the surface temperature field in the first experiment is close to the observed one, while the result of the second experiment misfits. Number of iterations depends on the regularisation parameter, but generally the algorithm converges after 10 iterations. The results of the numerical experiments show that the usage of the proposed method makes sense. The work was supported by the Russian Science Foundation (project 14-11-00609, the formulation of the iterative process and numerical experiments) and by the Russian Foundation for Basic Research (project 16-01-00548, the formulation of the problem and its study). [1] Agoshkov V. I. Methods of Optimal Control and Adjoint Equations in Problems of Mathematical Physics. INM RAS, Moscow, 2003 (in Russian). [2] Agoshkov V.I., Sheloput T.O. The study and numerical solution of the problem of heat and salinity transfer assuming 'liquid' boundaries // Russ. J. Numer. Anal. Math. Modelling. 2016. Vol. 31, No. 2. P. 71-80.
Advanced rotorcraft control using parameter optimization
NASA Technical Reports Server (NTRS)
Vansteenwyk, Brett; Ly, Uy-Loi
1991-01-01
A reliable algorithm for the evaluation of a quadratic performance index and its gradients with respect to the controller design parameters is presented. The algorithm is part of a design algorithm for an optimal linear dynamic output feedback controller that minimizes a finite time quadratic performance index. The numerical scheme is particularly robust when it is applied to the control law synthesis for systems with densely packed modes and where there is a high likelihood of encountering degeneracies in the closed loop eigensystem. This approach through the use of a accurate Pade series approximation does not require the closed loop system matrix to be diagonalizable. The algorithm has been included in a control design package for optimal robust low order controllers. Usefulness of the proposed numerical algorithm has been demonstrated using numerous practical design cases where degeneracies occur frequently in the closed loop system under an arbitrary controller design initialization and during the numerical search.
NASA Astrophysics Data System (ADS)
Boyko, Oleksiy; Zheleznyak, Mark
2015-04-01
The original numerical code TOPKAPI-IMMS of the distributed rainfall-runoff model TOPKAPI ( Todini et al, 1996-2014) is developed and implemented in Ukraine. The parallel version of the code has been developed recently to be used on multiprocessors systems - multicore/processors PC and clusters. Algorithm is based on binary-tree decomposition of the watershed for the balancing of the amount of computation for all processors/cores. Message passing interface (MPI) protocol is used as a parallel computing framework. The numerical efficiency of the parallelization algorithms is demonstrated for the case studies for the flood predictions of the mountain watersheds of the Ukrainian Carpathian regions. The modeling results is compared with the predictions based on the lumped parameters models.
Numerical approach of the quantum circuit theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, J.J.B., E-mail: jaedsonfisica@hotmail.com; Duarte-Filho, G.C.; Almeida, F.A.G.
2017-03-15
In this paper we develop a numerical method based on the quantum circuit theory to approach the coherent electronic transport in a network of quantum dots connected with arbitrary topology. The algorithm was employed in a circuit formed by quantum dots connected each other in a shape of a linear chain (associations in series), and of a ring (associations in series, and in parallel). For both systems we compute two current observables: conductance and shot noise power. We find an excellent agreement between our numerical results and the ones found in the literature. Moreover, we analyze the algorithm efficiency formore » a chain of quantum dots, where the mean processing time exhibits a linear dependence with the number of quantum dots in the array.« less
Numerical heating in Particle-In-Cell simulations with Monte Carlo binary collisions
NASA Astrophysics Data System (ADS)
Alves, E. Paulo; Mori, Warren; Fiuza, Frederico
2017-10-01
The binary Monte Carlo collision (BMCC) algorithm is a robust and popular method to include Coulomb collision effects in Particle-in-Cell (PIC) simulations of plasmas. While a number of works have focused on extending the validity of the model to different physical regimes of temperature and density, little attention has been given to the fundamental coupling between PIC and BMCC algorithms. Here, we show that the coupling between PIC and BMCC algorithms can give rise to (nonphysical) numerical heating of the system, that can be far greater than that observed when these algorithms operate independently. This deleterious numerical heating effect can significantly impact the evolution of the simulated system particularly for long simulation times. In this work, we describe the source of this numerical heating, and derive scaling laws for the numerical heating rates based on the numerical parameters of PIC-BMCC simulations. We compare our theoretical scalings with PIC-BMCC numerical experiments, and discuss strategies to minimize this parasitic effect. This work is supported by DOE FES under FWP 100237 and 100182.
Parareal in time 3D numerical solver for the LWR Benchmark neutron diffusion transient model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baudron, Anne-Marie, E-mail: anne-marie.baudron@cea.fr; CEA-DRN/DMT/SERMA, CEN-Saclay, 91191 Gif sur Yvette Cedex; Lautard, Jean-Jacques, E-mail: jean-jacques.lautard@cea.fr
2014-12-15
In this paper we present a time-parallel algorithm for the 3D neutrons calculation of a transient model in a nuclear reactor core. The neutrons calculation consists in numerically solving the time dependent diffusion approximation equation, which is a simplified transport equation. The numerical resolution is done with finite elements method based on a tetrahedral meshing of the computational domain, representing the reactor core, and time discretization is achieved using a θ-scheme. The transient model presents moving control rods during the time of the reaction. Therefore, cross-sections (piecewise constants) are taken into account by interpolations with respect to the velocity ofmore » the control rods. The parallelism across the time is achieved by an adequate use of the parareal in time algorithm to the handled problem. This parallel method is a predictor corrector scheme that iteratively combines the use of two kinds of numerical propagators, one coarse and one fine. Our method is made efficient by means of a coarse solver defined with large time step and fixed position control rods model, while the fine propagator is assumed to be a high order numerical approximation of the full model. The parallel implementation of our method provides a good scalability of the algorithm. Numerical results show the efficiency of the parareal method on large light water reactor transient model corresponding to the Langenbuch–Maurer–Werner benchmark.« less
Ellison, C. L.; Burby, J. W.; Qin, H.
2015-11-01
One popular technique for the numerical time advance of charged particles interacting with electric and magnetic fields according to the Lorentz force law [1], [2], [3] and [4] is the Boris algorithm. Its popularity stems from simple implementation, rapid iteration, and excellent long-term numerical fidelity [1] and [5]. Excellent long-term behavior strongly suggests the numerical dynamics exhibit conservation laws analogous to those governing the continuous Lorentz force system [6]. Moreover, without conserved quantities to constrain the numerical dynamics, algorithms typically dissipate or accumulate important observables such as energy and momentum over long periods of simulated time [6]. Identification of themore » conservative properties of an algorithm is important for establishing rigorous expectations on the long-term behavior; energy-preserving, symplectic, and volume-preserving methods each have particular implications for the qualitative numerical behavior [6], [7], [8], [9], [10] and [11].« less
Algorithm-Based Fault Tolerance for Numerical Subroutines
NASA Technical Reports Server (NTRS)
Tumon, Michael; Granat, Robert; Lou, John
2007-01-01
A software library implements a new methodology of detecting faults in numerical subroutines, thus enabling application programs that contain the subroutines to recover transparently from single-event upsets. The software library in question is fault-detecting middleware that is wrapped around the numericalsubroutines. Conventional serial versions (based on LAPACK and FFTW) and a parallel version (based on ScaLAPACK) exist. The source code of the application program that contains the numerical subroutines is not modified, and the middleware is transparent to the user. The methodology used is a type of algorithm- based fault tolerance (ABFT). In ABFT, a checksum is computed before a computation and compared with the checksum of the computational result; an error is declared if the difference between the checksums exceeds some threshold. Novel normalization methods are used in the checksum comparison to ensure correct fault detections independent of algorithm inputs. In tests of this software reported in the peer-reviewed literature, this library was shown to enable detection of 99.9 percent of significant faults while generating no false alarms.
Parallel Algorithms for Computational Models of Geophysical Systems
NASA Astrophysics Data System (ADS)
Carrillo Ledesma, A.; Herrera, I.; de la Cruz, L. M.; Hernández, G.; Grupo de Modelacion Matematica y Computacional
2013-05-01
Mathematical models of many systems of interest, including very important continuous systems of Earth Sciences and Engineering, lead to a great variety of partial differential equations (PDEs) whose solution methods are based on the computational processing of large-scale algebraic systems. Furthermore, the incredible expansion experienced by the existing computational hardware and software has made amenable to effective treatment problems of an ever increasing diversity and complexity, posed by scientific and engineering applications. Parallel computing is outstanding among the new computational tools and, in order to effectively use the most advanced computers available today, massively parallel software is required. Domain decomposition methods (DDMs) have been developed precisely for effectively treating PDEs in paralle. Ideally, the main objective of domain decomposition research is to produce algorithms capable of 'obtaining the global solution by exclusively solving local problems', but up-to-now this has only been an aspiration; that is, a strong desire for achieving such a property and so we call it 'the DDM-paradigm'. In recent times, numerically competitive DDM-algorithms are non-overlapping, preconditioned and necessarily incorporate constraints which pose an additional challenge for achieving the DDM-paradigm. Recently a group of four algorithms, referred to as the 'DVS-algorithms', which fulfill the DDM-paradigm, was developed. To derive them a new discretization method, which uses a non-overlapping system of nodes (the derived-nodes), was introduced. This discretization procedure can be applied to any boundary-value problem, or system of such equations. In turn, the resulting system of discrete equations can be treated using any available DDM-algorithm. In particular, two of the four DVS-algorithms mentioned above were obtained by application of the well-known and very effective algorithms BDDC and FETI-DP; these will be referred to as the DVS-BDDC and DVS-FETI-DP algorithms. The other two, which will be referred to as the DVS-PRIMAL and DVS-DUAL algorithms, were obtained by application of two new algorithms that had not been previously reported in the literature. As said before, the four DVS-algorithms constitute a group of preconditioned and constrained algorithms that, for the first time, fulfill the DDM-paradigm. Both, BDDC and FETI-DP, are very well-known; and both are highly efficient. Recently, it was established that these two methods are closely related and its numerical performance is quite similar. On the other hand, through numerical experiments, we have established that the numerical performances of each one of the members of DVS-algorithms group (DVS-BDDC, DVS-FETI-DP, DVS-PRIMAL and DVS-DUAL) are very similar too. Furthermore, we have carried out comparisons of the performances of the standard versions of BDDC and FETI-DP with DVS-BDDC and DVS-FETI-DP, and in all such numerical experiments the DVS algorithms have performed significantly better.
Parallel Algorithm Solves Coupled Differential Equations
NASA Technical Reports Server (NTRS)
Hayashi, A.
1987-01-01
Numerical methods adapted to concurrent processing. Algorithm solves set of coupled partial differential equations by numerical integration. Adapted to run on hypercube computer, algorithm separates problem into smaller problems solved concurrently. Increase in computing speed with concurrent processing over that achievable with conventional sequential processing appreciable, especially for large problems.
Addition of Improved Shock-Capturing Schemes to OVERFLOW 2.1
NASA Technical Reports Server (NTRS)
Burning, Pieter G.; Nichols, Robert H.; Tramel, Robert W.
2009-01-01
Existing approximate Riemann solvers do not perform well when the grid is not aligned with strong shocks in the flow field. Three new approximate Riemann algorithms are investigated to improve solution accuracy and stability in the vicinity of strong shocks. The new algorithms are compared to the existing upwind algorithms in OVERFLOW 2.1. The new algorithms use a multidimensional pressure gradient based switch to transition to a more numerically dissipative algorithm in the vicinity of strong shocks. One new algorithm also attempts to artificially thicken captured shocks in order to alleviate the errors in the solution introduced by "stair-stepping" of the shock resulting from the approximate Riemann solver. This algorithm performed well for all the example cases and produced results that were almost insensitive to the alignment of the grid and the shock.
NASA Astrophysics Data System (ADS)
Mahlmann, J. F.; Cerdá-Durán, P.; Aloy, M. A.
2018-07-01
The study of the electrodynamics of static, axisymmetric, and force-free Kerr magnetospheres relies vastly on solutions of the so-called relativistic Grad-Shafranov equation (GSE). Different numerical approaches to the solution of the GSE have been introduced in the literature, but none of them has been fully assessed from the numerical point of view in terms of efficiency and quality of the solutions found. We present a generalization of these algorithms and give a detailed background on the algorithmic implementation. We assess the numerical stability of the implemented algorithms and quantify the convergence of the presented methodology for the most established set-ups (split-monopole, paraboloidal, BH disc, uniform).
NASA Astrophysics Data System (ADS)
Mahlmann, J. F.; Cerdá-Durán, P.; Aloy, M. A.
2018-04-01
The study of the electrodynamics of static, axisymmetric and force-free Kerr magnetospheres relies vastly on solutions of the so called relativistic Grad-Shafranov equation (GSE). Different numerical approaches to the solution of the GSE have been introduced in the literature, but none of them has been fully assessed from the numerical point of view in terms of efficiency and quality of the solutions found. We present a generalization of these algorithms and give detailed background on the algorithmic implementation. We assess the numerical stability of the implemented algorithms and quantify the convergence of the presented methodology for the most established setups (split-monopole, paraboloidal, BH-disk, uniform).
A Collaborative Recommend Algorithm Based on Bipartite Community
Fu, Yuchen; Liu, Quan; Cui, Zhiming
2014-01-01
The recommendation algorithm based on bipartite network is superior to traditional methods on accuracy and diversity, which proves that considering the network topology of recommendation systems could help us to improve recommendation results. However, existing algorithms mainly focus on the overall topology structure and those local characteristics could also play an important role in collaborative recommend processing. Therefore, on account of data characteristics and application requirements of collaborative recommend systems, we proposed a link community partitioning algorithm based on the label propagation and a collaborative recommendation algorithm based on the bipartite community. Then we designed numerical experiments to verify the algorithm validity under benchmark and real database. PMID:24955393
Wang, Jindong; Chen, Peng; Deng, Yufen; Guo, Junjie
2018-01-01
As a three-dimensional measuring instrument, the laser tracker is widely used in industrial measurement. To avoid the influence of angle measurement error on the overall measurement accuracy, the multi-station and time-sharing measurement with a laser tracker is introduced on the basis of the global positioning system (GPS) principle in this paper. For the proposed method, how to accurately determine the coordinates of each measuring point by using a large amount of measured data is a critical issue. Taking detecting motion error of a numerical control machine tool, for example, the corresponding measurement algorithms are investigated thoroughly. By establishing the mathematical model of detecting motion error of a machine tool with this method, the analytical algorithm concerning on base station calibration and measuring point determination is deduced without selecting the initial iterative value in calculation. However, when the motion area of the machine tool is in a 2D plane, the coefficient matrix of base station calibration is singular, which generates a distortion result. In order to overcome the limitation of the original algorithm, an improved analytical algorithm is also derived. Meanwhile, the calibration accuracy of the base station with the improved algorithm is compared with that with the original analytical algorithm and some iterative algorithms, such as the Gauss-Newton algorithm and Levenberg-Marquardt algorithm. The experiment further verifies the feasibility and effectiveness of the improved algorithm. In addition, the different motion areas of the machine tool have certain influence on the calibration accuracy of the base station, and the corresponding influence of measurement error on the calibration result of the base station depending on the condition number of coefficient matrix are analyzed.
NASA Astrophysics Data System (ADS)
Wang, Jindong; Chen, Peng; Deng, Yufen; Guo, Junjie
2018-01-01
As a three-dimensional measuring instrument, the laser tracker is widely used in industrial measurement. To avoid the influence of angle measurement error on the overall measurement accuracy, the multi-station and time-sharing measurement with a laser tracker is introduced on the basis of the global positioning system (GPS) principle in this paper. For the proposed method, how to accurately determine the coordinates of each measuring point by using a large amount of measured data is a critical issue. Taking detecting motion error of a numerical control machine tool, for example, the corresponding measurement algorithms are investigated thoroughly. By establishing the mathematical model of detecting motion error of a machine tool with this method, the analytical algorithm concerning on base station calibration and measuring point determination is deduced without selecting the initial iterative value in calculation. However, when the motion area of the machine tool is in a 2D plane, the coefficient matrix of base station calibration is singular, which generates a distortion result. In order to overcome the limitation of the original algorithm, an improved analytical algorithm is also derived. Meanwhile, the calibration accuracy of the base station with the improved algorithm is compared with that with the original analytical algorithm and some iterative algorithms, such as the Gauss-Newton algorithm and Levenberg-Marquardt algorithm. The experiment further verifies the feasibility and effectiveness of the improved algorithm. In addition, the different motion areas of the machine tool have certain influence on the calibration accuracy of the base station, and the corresponding influence of measurement error on the calibration result of the base station depending on the condition number of coefficient matrix are analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudiarta, I. Wayan; Angraini, Lily Maysari, E-mail: lilyangraini@unram.ac.id
We have applied the finite difference time domain (FDTD) method with the supersymmetric quantum mechanics (SUSY-QM) procedure to determine excited energies of one dimensional quantum systems. The theoretical basis of FDTD, SUSY-QM, a numerical algorithm and an illustrative example for a particle in a one dimensional square-well potential were given in this paper. It was shown that the numerical results were in excellent agreement with theoretical results. Numerical errors produced by the SUSY-QM procedure was due to errors in estimations of superpotentials and supersymmetric partner potentials.
Parallel algorithms for placement and routing in VLSI design. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Brouwer, Randall Jay
1991-01-01
The computational requirements for high quality synthesis, analysis, and verification of very large scale integration (VLSI) designs have rapidly increased with the fast growing complexity of these designs. Research in the past has focused on the development of heuristic algorithms, special purpose hardware accelerators, or parallel algorithms for the numerous design tasks to decrease the time required for solution. Two new parallel algorithms are proposed for two VLSI synthesis tasks, standard cell placement and global routing. The first algorithm, a parallel algorithm for global routing, uses hierarchical techniques to decompose the routing problem into independent routing subproblems that are solved in parallel. Results are then presented which compare the routing quality to the results of other published global routers and which evaluate the speedups attained. The second algorithm, a parallel algorithm for cell placement and global routing, hierarchically integrates a quadrisection placement algorithm, a bisection placement algorithm, and the previous global routing algorithm. Unique partitioning techniques are used to decompose the various stages of the algorithm into independent tasks which can be evaluated in parallel. Finally, results are presented which evaluate the various algorithm alternatives and compare the algorithm performance to other placement programs. Measurements are presented on the parallel speedups available.
Space shuttle propulsion parameter estimation using optimal estimation techniques
NASA Technical Reports Server (NTRS)
1983-01-01
The first twelve system state variables are presented with the necessary mathematical developments for incorporating them into the filter/smoother algorithm. Other state variables, i.e., aerodynamic coefficients can be easily incorporated into the estimation algorithm, representing uncertain parameters, but for initial checkout purposes are treated as known quantities. An approach for incorporating the NASA propulsion predictive model results into the optimal estimation algorithm was identified. This approach utilizes numerical derivatives and nominal predictions within the algorithm with global iterations of the algorithm. The iterative process is terminated when the quality of the estimates provided no longer significantly improves.
NASA Technical Reports Server (NTRS)
Barth, Timothy J.; Lomax, Harvard
1987-01-01
The past decade has seen considerable activity in algorithm development for the Navier-Stokes equations. This has resulted in a wide variety of useful new techniques. Some examples for the numerical solution of the Navier-Stokes equations are presented, divided into two parts. One is devoted to the incompressible Navier-Stokes equations, and the other to the compressible form.
Navigation strategy and filter design for solar electric missions
NASA Technical Reports Server (NTRS)
Tapley, B. D.; Hagar, H., Jr.
1972-01-01
Methods which have been proposed to improve the navigation accuracy for the low-thrust space vehicle include modifications to the standard Sequential- and Batch-type orbit determination procedures and the use of inertial measuring units (IMU) which measures directly the acceleration applied to the vehicle. The navigation accuracy obtained using one of the more promising modifications to the orbit determination procedures is compared with a combined IMU-Standard. The unknown accelerations are approximated as both first-order and second-order Gauss-Markov processes. The comparison is based on numerical results obtained in a study of the navigation requirements of a numerically simulated 152-day low-thrust mission to the asteroid Eros. The results obtained in the simulation indicate that the DMC algorithm will yield a significant improvement over the navigation accuracies achieved with previous estimation algorithms. In addition, the DMC algorithms will yield better navigation accuracies than the IMU-Standard Orbit Determination algorithm, except for extremely precise IMU measurements, i.e., gyroplatform alignment .01 deg and accelerometer signal-to-noise ratio .07. Unless these accuracies are achieved, the IMU navigation accuracies are generally unacceptable.
Structure-preserving and rank-revealing QR-factorizations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bischof, C.H.; Hansen, P.C.
1991-11-01
The rank-revealing QR-factorization (RRQR-factorization) is a special QR-factorization that is guaranteed to reveal the numerical rank of the matrix under consideration. This makes the RRQR-factorization a useful tool in the numerical treatment of many rank-deficient problems in numerical linear algebra. In this paper, a framework is presented for the efficient implementation of RRQR algorithms, in particular, for sparse matrices. A sparse RRQR-algorithm should seek to preserve the structure and sparsity of the matrix as much as possible while retaining the ability to capture safely the numerical rank. To this end, the paper proposes to compute an initial QR-factorization using amore » restricted pivoting strategy guarded by incremental condition estimation (ICE), and then applies the algorithm suggested by Chan and Foster to this QR-factorization. The column exchange strategy used in the initial QR factorization will exploit the fact that certain column exchanges do not change the sparsity structure, and compute a sparse QR-factorization that is a good approximation of the sought-after RRQR-factorization. Due to quantities produced by ICE, the Chan/Foster RRQR algorithm can be implemented very cheaply, thus verifying that the sought-after RRQR-factorization has indeed been computed. Experimental results on a model problem show that the initial QR-factorization is indeed very likely to produce RRQR-factorization.« less
Solving Fractional Programming Problems based on Swarm Intelligence
NASA Astrophysics Data System (ADS)
Raouf, Osama Abdel; Hezam, Ibrahim M.
2014-04-01
This paper presents a new approach to solve Fractional Programming Problems (FPPs) based on two different Swarm Intelligence (SI) algorithms. The two algorithms are: Particle Swarm Optimization, and Firefly Algorithm. The two algorithms are tested using several FPP benchmark examples and two selected industrial applications. The test aims to prove the capability of the SI algorithms to solve any type of FPPs. The solution results employing the SI algorithms are compared with a number of exact and metaheuristic solution methods used for handling FPPs. Swarm Intelligence can be denoted as an effective technique for solving linear or nonlinear, non-differentiable fractional objective functions. Problems with an optimal solution at a finite point and an unbounded constraint set, can be solved using the proposed approach. Numerical examples are given to show the feasibility, effectiveness, and robustness of the proposed algorithm. The results obtained using the two SI algorithms revealed the superiority of the proposed technique among others in computational time. A better accuracy was remarkably observed in the solution results of the industrial application problems.
NASA Astrophysics Data System (ADS)
Leal, Allan M. M.; Kulik, Dmitrii A.; Kosakowski, Georg
2016-02-01
We present a numerical method for multiphase chemical equilibrium calculations based on a Gibbs energy minimization approach. The method can accurately and efficiently determine the stable phase assemblage at equilibrium independently of the type of phases and species that constitute the chemical system. We have successfully applied our chemical equilibrium algorithm in reactive transport simulations to demonstrate its effective use in computationally intensive applications. We used FEniCS to solve the governing partial differential equations of mass transport in porous media using finite element methods in unstructured meshes. Our equilibrium calculations were benchmarked with GEMS3K, the numerical kernel of the geochemical package GEMS. This allowed us to compare our results with a well-established Gibbs energy minimization algorithm, as well as their performance on every mesh node, at every time step of the transport simulation. The benchmark shows that our novel chemical equilibrium algorithm is accurate, robust, and efficient for reactive transport applications, and it is an improvement over the Gibbs energy minimization algorithm used in GEMS3K. The proposed chemical equilibrium method has been implemented in Reaktoro, a unified framework for modeling chemically reactive systems, which is now used as an alternative numerical kernel of GEMS.
NASA Astrophysics Data System (ADS)
Xu, Xiaoyang; Deng, Xiao-Long
2016-04-01
In this paper, an improved weakly compressible smoothed particle hydrodynamics (SPH) method is proposed to simulate transient free surface flows of viscous and viscoelastic fluids. The improved SPH algorithm includes the implementation of (i) the mixed symmetric correction of kernel gradient to improve the accuracy and stability of traditional SPH method and (ii) the Rusanov flux in the continuity equation for improving the computation of pressure distributions in the dynamics of liquids. To assess the effectiveness of the improved SPH algorithm, a number of numerical examples including the stretching of an initially circular water drop, dam breaking flow against a vertical wall, the impact of viscous and viscoelastic fluid drop with a rigid wall, and the extrudate swell of viscoelastic fluid have been presented and compared with available numerical and experimental data in literature. The convergent behavior of the improved SPH algorithm has also been studied by using different number of particles. All numerical results demonstrate that the improved SPH algorithm proposed here is capable of modeling free surface flows of viscous and viscoelastic fluids accurately and stably, and even more important, also computing an accurate and little oscillatory pressure field.
NASA Technical Reports Server (NTRS)
Bruno, John
1984-01-01
The results of an investigation into the feasibility of using the MPP for direct and large eddy simulations of the Navier-Stokes equations is presented. A major part of this study was devoted to the implementation of two of the standard numerical algorithms for CFD. These implementations were not run on the Massively Parallel Processor (MPP) since the machine delivered to NASA Goddard does not have sufficient capacity. Instead, a detailed implementation plan was designed and from these were derived estimates of the time and space requirements of the algorithms on a suitably configured MPP. In addition, other issues related to the practical implementation of these algorithms on an MPP-like architecture were considered; namely, adaptive grid generation, zonal boundary conditions, the table lookup problem, and the software interface. Performance estimates show that the architectural components of the MPP, the Staging Memory and the Array Unit, appear to be well suited to the numerical algorithms of CFD. This combined with the prospect of building a faster and larger MMP-like machine holds the promise of achieving sustained gigaflop rates that are required for the numerical simulations in CFD.
A quasi-Newton algorithm for large-scale nonlinear equations.
Huang, Linghua
2017-01-01
In this paper, the algorithm for large-scale nonlinear equations is designed by the following steps: (i) a conjugate gradient (CG) algorithm is designed as a sub-algorithm to obtain the initial points of the main algorithm, where the sub-algorithm's initial point does not have any restrictions; (ii) a quasi-Newton algorithm with the initial points given by sub-algorithm is defined as main algorithm, where a new nonmonotone line search technique is presented to get the step length [Formula: see text]. The given nonmonotone line search technique can avoid computing the Jacobian matrix. The global convergence and the [Formula: see text]-order convergent rate of the main algorithm are established under suitable conditions. Numerical results show that the proposed method is competitive with a similar method for large-scale problems.
Semi-implicit finite difference methods for three-dimensional shallow water flow
Casulli, Vincenzo; Cheng, Ralph T.
1992-01-01
A semi-implicit finite difference method for the numerical solution of three-dimensional shallow water flows is presented and discussed. The governing equations are the primitive three-dimensional turbulent mean flow equations where the pressure distribution in the vertical has been assumed to be hydrostatic. In the method of solution a minimal degree of implicitness has been adopted in such a fashion that the resulting algorithm is stable and gives a maximal computational efficiency at a minimal computational cost. At each time step the numerical method requires the solution of one large linear system which can be formally decomposed into a set of small three-diagonal systems coupled with one five-diagonal system. All these linear systems are symmetric and positive definite. Thus the existence and uniquencess of the numerical solution are assured. When only one vertical layer is specified, this method reduces as a special case to a semi-implicit scheme for solving the corresponding two-dimensional shallow water equations. The resulting two- and three-dimensional algorithm has been shown to be fast, accurate and mass-conservative and can also be applied to simulate flooding and drying of tidal mud-flats in conjunction with three-dimensional flows. Furthermore, the resulting algorithm is fully vectorizable for an efficient implementation on modern vector computers.
Numerical Optimization Strategy for Determining 3D Flow Fields in Microfluidics
NASA Astrophysics Data System (ADS)
Eden, Alex; Sigurdson, Marin; Mezic, Igor; Meinhart, Carl
2015-11-01
We present a hybrid experimental-numerical method for generating 3D flow fields from 2D PIV experimental data. An optimization algorithm is applied to a theory-based simulation of an alternating current electrothermal (ACET) micromixer in conjunction with 2D PIV data to generate an improved representation of 3D steady state flow conditions. These results can be used to investigate mixing phenomena. Experimental conditions were simulated using COMSOL Multiphysics to solve the temperature and velocity fields, as well as the quasi-static electric fields. The governing equations were based on a theoretical model for ac electrothermal flows. A Nelder-Mead optimization algorithm was used to achieve a better fit by minimizing the error between 2D PIV experimental velocity data and numerical simulation results at the measurement plane. By applying this hybrid method, the normalized RMS velocity error between the simulation and experimental results was reduced by more than an order of magnitude. The optimization algorithm altered 3D fluid circulation patterns considerably, providing a more accurate representation of the 3D experimental flow field. This method can be generalized to a wide variety of flow problems. This research was supported by the Institute for Collaborative Biotechnologies through grant W911NF-09-0001 from the U.S. Army Research Office.
Pebay, Philippe; Terriberry, Timothy B.; Kolla, Hemanth; ...
2016-03-29
Formulas for incremental or parallel computation of second order central moments have long been known, and recent extensions of these formulas to univariate and multivariate moments of arbitrary order have been developed. Such formulas are of key importance in scenarios where incremental results are required and in parallel and distributed systems where communication costs are high. We survey these recent results, and improve them with arbitrary-order, numerically stable one-pass formulas which we further extend with weighted and compound variants. We also develop a generalized correction factor for standard two-pass algorithms that enables the maintenance of accuracy over nearly the fullmore » representable range of the input, avoiding the need for extended-precision arithmetic. We then empirically examine algorithm correctness for pairwise update formulas up to order four as well as condition number and relative error bounds for eight different central moment formulas, each up to degree six, to address the trade-offs between numerical accuracy and speed of the various algorithms. Finally, we demonstrate the use of the most elaborate among the above mentioned formulas, with the utilization of the compound moments for a practical large-scale scientific application.« less
Imaging of isotropic and anisotropic conductivities from power densities in three dimensions
NASA Astrophysics Data System (ADS)
Monard, François; Rim, Donsub
2018-07-01
We present numerical reconstructions of anisotropic conductivity tensors in three dimensions, from knowledge of a finite family of power density functionals. Such a problem arises in the coupled-physics imaging modality ultrasound modulated electrical impedance tomography for instance. We improve on the algorithms previously derived in Bal et al (2013 Inverse Problems Imaging 7 353–75) Monard and Bal (2013 Commun. PDE 38 1183–207) for both isotropic and anisotropic cases, and we address the well-known issue of vanishing determinants in particular. The algorithm is implemented and we provide numerical results that illustrate the improvements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheng, Zheng, E-mail: 19994035@sina.com; Wang, Jun; Zhou, Bihua
2014-03-15
This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented tomore » tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.« less
Shen, Peiping; Zhang, Tongli; Wang, Chunfeng
2017-01-01
This article presents a new approximation algorithm for globally solving a class of generalized fractional programming problems (P) whose objective functions are defined as an appropriate composition of ratios of affine functions. To solve this problem, the algorithm solves an equivalent optimization problem (Q) via an exploration of a suitably defined nonuniform grid. The main work of the algorithm involves checking the feasibility of linear programs associated with the interesting grid points. It is proved that the proposed algorithm is a fully polynomial time approximation scheme as the ratio terms are fixed in the objective function to problem (P), based on the computational complexity result. In contrast to existing results in literature, the algorithm does not require the assumptions on quasi-concavity or low-rank of the objective function to problem (P). Numerical results are given to illustrate the feasibility and effectiveness of the proposed algorithm.
An approach of traffic signal control based on NLRSQP algorithm
NASA Astrophysics Data System (ADS)
Zou, Yuan-Yang; Hu, Yu
2017-11-01
This paper presents a linear program model with linear complementarity constraints (LPLCC) to solve traffic signal optimization problem. The objective function of the model is to obtain the minimization of total queue length with weight factors at the end of each cycle. Then, a combination algorithm based on the nonlinear least regression and sequence quadratic program (NLRSQP) is proposed, by which the local optimal solution can be obtained. Furthermore, four numerical experiments are proposed to study how to set the initial solution of the algorithm that can get a better local optimal solution more quickly. In particular, the results of numerical experiments show that: The model is effective for different arrival rates and weight factors; and the lower bound of the initial solution is, the better optimal solution can be obtained.
A globally well-posed finite element algorithm for aerodynamics applications
NASA Technical Reports Server (NTRS)
Iannelli, G. S.; Baker, A. J.
1991-01-01
A finite element CFD algorithm is developed for Euler and Navier-Stokes aerodynamic applications. For the linear basis, the resultant approximation is at least second-order-accurate in time and space for synergistic use of three procedures: (1) a Taylor weak statement, which provides for derivation of companion conservation law systems with embedded dispersion-error control mechanisms; (2) a stiffly stable second-order-accurate implicit Rosenbrock-Runge-Kutta temporal algorithm; and (3) a matrix tensor product factorization that permits efficient numerical linear algebra handling of the terminal large-matrix statement. Thorough analyses are presented regarding well-posed boundary conditions for inviscid and viscous flow specifications. Numerical solutions are generated and compared for critical evaluation of quasi-one- and two-dimensional Euler and Navier-Stokes benchmark test problems.
Numerical stability of the error diffusion concept
NASA Astrophysics Data System (ADS)
Weissbach, Severin; Wyrowski, Frank
1992-10-01
The error diffusion algorithm is an easy implementable mean to handle nonlinearities in signal processing, e.g. in picture binarization and coding of diffractive elements. The numerical stability of the algorithm depends on the choice of the diffusion weights. A criterion for the stability of the algorithm is presented and evaluated for some examples.
Robust and real-time rotor control with magnetic bearings
NASA Technical Reports Server (NTRS)
Sinha, A.; Wang, K. W.; Mease, K. L.
1991-01-01
This paper deals with the sliding mode control of a rigid rotor via radial magnetic bearings. The digital control algorithm and the results from numerical simulations are presented for an experimental rig. The experimental system which has been set up to digitally implement and validate the sliding mode control algorithm is described. Two methods for the development of control softwares are presented. Experimental results for individual rotor axis are discussed.
NASA Astrophysics Data System (ADS)
He, Jianbin; Yu, Simin; Cai, Jianping
2016-12-01
Lyapunov exponent is an important index for describing chaotic systems behavior, and the largest Lyapunov exponent can be used to determine whether a system is chaotic or not. For discrete-time dynamical systems, the Lyapunov exponents are calculated by an eigenvalue method. In theory, according to eigenvalue method, the more accurate calculations of Lyapunov exponent can be obtained with the increment of iterations, and the limits also exist. However, due to the finite precision of computer and other reasons, the results will be numeric overflow, unrecognized, or inaccurate, which can be stated as follows: (1) The iterations cannot be too large, otherwise, the simulation result will appear as an error message of NaN or Inf; (2) If the error message of NaN or Inf does not appear, then with the increment of iterations, all Lyapunov exponents will get close to the largest Lyapunov exponent, which leads to inaccurate calculation results; (3) From the viewpoint of numerical calculation, obviously, if the iterations are too small, then the results are also inaccurate. Based on the analysis of Lyapunov-exponent calculation in discrete-time systems, this paper investigates two improved algorithms via QR orthogonal decomposition and SVD orthogonal decomposition approaches so as to solve the above-mentioned problems. Finally, some examples are given to illustrate the feasibility and effectiveness of the improved algorithms.
Dynamic Inertia Weight Binary Bat Algorithm with Neighborhood Search
2017-01-01
Binary bat algorithm (BBA) is a binary version of the bat algorithm (BA). It has been proven that BBA is competitive compared to other binary heuristic algorithms. Since the update processes of velocity in the algorithm are consistent with BA, in some cases, this algorithm also faces the premature convergence problem. This paper proposes an improved binary bat algorithm (IBBA) to solve this problem. To evaluate the performance of IBBA, standard benchmark functions and zero-one knapsack problems have been employed. The numeric results obtained by benchmark functions experiment prove that the proposed approach greatly outperforms the original BBA and binary particle swarm optimization (BPSO). Compared with several other heuristic algorithms on zero-one knapsack problems, it also verifies that the proposed algorithm is more able to avoid local minima. PMID:28634487
Dynamic Inertia Weight Binary Bat Algorithm with Neighborhood Search.
Huang, Xingwang; Zeng, Xuewen; Han, Rui
2017-01-01
Binary bat algorithm (BBA) is a binary version of the bat algorithm (BA). It has been proven that BBA is competitive compared to other binary heuristic algorithms. Since the update processes of velocity in the algorithm are consistent with BA, in some cases, this algorithm also faces the premature convergence problem. This paper proposes an improved binary bat algorithm (IBBA) to solve this problem. To evaluate the performance of IBBA, standard benchmark functions and zero-one knapsack problems have been employed. The numeric results obtained by benchmark functions experiment prove that the proposed approach greatly outperforms the original BBA and binary particle swarm optimization (BPSO). Compared with several other heuristic algorithms on zero-one knapsack problems, it also verifies that the proposed algorithm is more able to avoid local minima.
NASA Astrophysics Data System (ADS)
Harmon, Michael; Gamba, Irene M.; Ren, Kui
2016-12-01
This work concerns the numerical solution of a coupled system of self-consistent reaction-drift-diffusion-Poisson equations that describes the macroscopic dynamics of charge transport in photoelectrochemical (PEC) solar cells with reactive semiconductor and electrolyte interfaces. We present three numerical algorithms, mainly based on a mixed finite element and a local discontinuous Galerkin method for spatial discretization, with carefully chosen numerical fluxes, and implicit-explicit time stepping techniques, for solving the time-dependent nonlinear systems of partial differential equations. We perform computational simulations under various model parameters to demonstrate the performance of the proposed numerical algorithms as well as the impact of these parameters on the solution to the model.
Least-squares Legendre spectral element solutions to sound propagation problems.
Lin, W H
2001-02-01
This paper presents a novel algorithm and numerical results of sound wave propagation. The method is based on a least-squares Legendre spectral element approach for spatial discretization and the Crank-Nicolson [Proc. Cambridge Philos. Soc. 43, 50-67 (1947)] and Adams-Bashforth [D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications (CBMS-NSF Monograph, Siam 1977)] schemes for temporal discretization to solve the linearized acoustic field equations for sound propagation. Two types of NASA Computational Aeroacoustics (CAA) Workshop benchmark problems [ICASE/LaRC Workshop on Benchmark Problems in Computational Aeroacoustics, edited by J. C. Hardin, J. R. Ristorcelli, and C. K. W. Tam, NASA Conference Publication 3300, 1995a] are considered: a narrow Gaussian sound wave propagating in a one-dimensional space without flows, and the reflection of a two-dimensional acoustic pulse off a rigid wall in the presence of a uniform flow of Mach 0.5 in a semi-infinite space. The first problem was used to examine the numerical dispersion and dissipation characteristics of the proposed algorithm. The second problem was to demonstrate the capability of the algorithm in treating sound propagation in a flow. Comparisons were made of the computed results with analytical results and results obtained by other methods. It is shown that all results computed by the present method are in good agreement with the analytical solutions and results of the first problem agree very well with those predicted by other schemes.
1993-03-10
template which runs a Romberg algorithm in the background to numerically integrate the BVN [12:257]. Appendix A als- lists the results from two other...for computing these values: a Taylor series expansion, the Romberg algorithm , and the CBN technique. Appendix A lists CEPpop. values for eleven...determining factor in this selection process. Of the 175 populations ex- amined in the experiment, the MathCAD version of the Romberg algorithm failed
SIMULATIONS OF 2D AND 3D THERMOCAPILLARY FLOWS BY A LEAST-SQUARES FINITE ELEMENT METHOD. (R825200)
Numerical results for time-dependent 2D and 3D thermocapillary flows are presented in this work. The numerical algorithm is based on the Crank-Nicolson scheme for time integration, Newton's method for linearization, and a least-squares finite element method, together with a matri...
Analytic reconstruction algorithms for triple-source CT with horizontal data truncation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Ming; Yu, Hengyong, E-mail: hengyong-yu@ieee.org
2015-10-15
Purpose: This paper explores a triple-source imaging method with horizontal data truncation to enlarge the field of view (FOV) for big objects. Methods: The study is conducted by using theoretical analysis, mathematical deduction, and numerical simulations. The proposed algorithms are implemented in c + + and MATLAB. While the basic platform is constructed in MATLAB, the computationally intensive segments are coded in c + +, which are linked via a MEX interface. Results: A triple-source circular scanning configuration with horizontal data truncation is developed, where three pairs of x-ray sources and detectors are unevenly distributed on the same circle tomore » cover the whole imaging object. For this triple-source configuration, a fan-beam filtered backprojection-type algorithm is derived for truncated full-scan projections without data rebinning. The algorithm is also extended for horizontally truncated half-scan projections and cone-beam projections in a Feldkamp-type framework. Using their method, the FOV is enlarged twofold to threefold to scan bigger objects with high speed and quality. The numerical simulation results confirm the correctness and effectiveness of the developed algorithms. Conclusions: The triple-source scanning configuration with horizontal data truncation cannot only keep most of the advantages of a traditional multisource system but also cover a larger FOV for big imaging objects. In addition, because the filtering is shift-invariant, the proposed algorithms are very fast and easily parallelized on graphic processing units.« less
A spline-based parameter and state estimation technique for static models of elastic surfaces
NASA Technical Reports Server (NTRS)
Banks, H. T.; Daniel, P. L.; Armstrong, E. S.
1983-01-01
Parameter and state estimation techniques for an elliptic system arising in a developmental model for the antenna surface in the Maypole Hoop/Column antenna are discussed. A computational algorithm based on spline approximations for the state and elastic parameters is given and numerical results obtained using this algorithm are summarized.
Miranda, David A; Rivera, S A López
2008-05-01
An algorithm is presented to determine the Cole-Cole parameters of electrical impedivity using only measurements of its real part. The algorithm is based on two multi-fold direct inversion methods for the Cole-Cole and Debye equations, respectively, and a genetic algorithm for the optimization of the mean square error between experimental and calculated data. The algorithm has been developed to obtain the Cole-Cole parameters from experimental data, which were used to screen cervical intra-epithelial neoplasia. The proposed algorithm was compared with different numerical integrations of the Kramers-Kronig relation and the result shows that this algorithm is the best. A high immunity to noise was obtained.
NASA Astrophysics Data System (ADS)
Lu, Li; Sheng, Wen; Liu, Shihua; Zhang, Xianzhi
2014-10-01
The ballistic missile hyperspectral data of imaging spectrometer from the near-space platform are generated by numerical method. The characteristic of the ballistic missile hyperspectral data is extracted and matched based on two different kinds of algorithms, which called transverse counting and quantization coding, respectively. The simulation results show that two algorithms extract the characteristic of ballistic missile adequately and accurately. The algorithm based on the transverse counting has the low complexity and can be implemented easily compared to the algorithm based on the quantization coding does. The transverse counting algorithm also shows the good immunity to the disturbance signals and speed up the matching and recognition of subsequent targets.
A modified three-term PRP conjugate gradient algorithm for optimization models.
Wu, Yanlin
2017-01-01
The nonlinear conjugate gradient (CG) algorithm is a very effective method for optimization, especially for large-scale problems, because of its low memory requirement and simplicity. Zhang et al. (IMA J. Numer. Anal. 26:629-649, 2006) firstly propose a three-term CG algorithm based on the well known Polak-Ribière-Polyak (PRP) formula for unconstrained optimization, where their method has the sufficient descent property without any line search technique. They proved the global convergence of the Armijo line search but this fails for the Wolfe line search technique. Inspired by their method, we will make a further study and give a modified three-term PRP CG algorithm. The presented method possesses the following features: (1) The sufficient descent property also holds without any line search technique; (2) the trust region property of the search direction is automatically satisfied; (3) the steplengh is bounded from below; (4) the global convergence will be established under the Wolfe line search. Numerical results show that the new algorithm is more effective than that of the normal method.
Algorithm for computing descriptive statistics for very large data sets and the exa-scale era
NASA Astrophysics Data System (ADS)
Beekman, Izaak
2017-11-01
An algorithm for Single-point, Parallel, Online, Converging Statistics (SPOCS) is presented. It is suited for in situ analysis that traditionally would be relegated to post-processing, and can be used to monitor the statistical convergence and estimate the error/residual in the quantity-useful for uncertainty quantification too. Today, data may be generated at an overwhelming rate by numerical simulations and proliferating sensing apparatuses in experiments and engineering applications. Monitoring descriptive statistics in real time lets costly computations and experiments be gracefully aborted if an error has occurred, and monitoring the level of statistical convergence allows them to be run for the shortest amount of time required to obtain good results. This algorithm extends work by Pébay (Sandia Report SAND2008-6212). Pébay's algorithms are recast into a converging delta formulation, with provably favorable properties. The mean, variance, covariances and arbitrary higher order statistical moments are computed in one pass. The algorithm is tested using Sillero, Jiménez, & Moser's (2013, 2014) publicly available UPM high Reynolds number turbulent boundary layer data set, demonstrating numerical robustness, efficiency and other favorable properties.
Investigation of BPF algorithm in cone-beam CT with 2D general trajectories.
Zou, Jing; Gui, Jianbao; Rong, Junyan; Hu, Zhanli; Zhang, Qiyang; Xia, Dan
2012-01-01
A mathematical derivation was conducted to illustrate that exact 3D image reconstruction could be achieved for z-homogeneous phantoms from data acquired with 2D general trajectories using the back projection filtration (BPF) algorithm. The conclusion was verified by computer simulation and experimental result with a circular scanning trajectory. Furthermore, the effect of the non-uniform degree along z-axis of the phantoms on the accuracy of the 3D reconstruction by BPF algorithm was investigated by numerical simulation with a gradual-phantom and a disk-phantom. The preliminary result showed that the performance of BPF algorithm improved with the z-axis homogeneity of the scanned object.
Numerical phase retrieval from beam intensity measurements in three planes
NASA Astrophysics Data System (ADS)
Bruel, Laurent
2003-05-01
A system and method have been developed at CEA to retrieve phase information from multiple intensity measurements along a laser beam. The device has been patented. Commonly used devices for beam measurement provide phase and intensity information separately or with a rather poor resolution whereas the MIROMA method provides both at the same time, allowing direct use of the results in numerical models. Usual phase retrieval algorithms use two intensity measurements, typically the image plane and the focal plane (Gerschberg-Saxton algorithm) related by a Fourier transform, or the image plane and a lightly defocus plane (D.L. Misell). The principal drawback of such iterative algorithms is their inability to provide unambiguous convergence in all situations. The algorithms can stagnate on bad solutions and the error between measured and calculated intensities remains unacceptable. If three planes rather than two are used, the data redundancy created confers to the method good convergence capability and noise immunity. It provides an excellent agreement between intensity determined from the retrieved phase data set in the image plane and intensity measurements in any diffraction plane. The method employed for MIROMA is inspired from GS algorithm, replacing Fourier transforms by a beam-propagating kernel with gradient search accelerating techniques and special care for phase branch cuts. A fast one dimensional algorithm provides an initial guess for the iterative algorithm. Applications of the algorithm on synthetic data find out the best reconstruction planes that have to be chosen. Robustness and sensibility are evaluated. Results on collimated and distorted laser beams are presented.
NASA Astrophysics Data System (ADS)
Jiang, J.; Kaloti, A. P.; Levinson, H. R.; Nguyen, N.; Puckett, E. G.; Lokavarapu, H. V.
2016-12-01
We present the results of three standard benchmarks for the new active tracer particle algorithm in ASPECT. The three benchmarks are SolKz, SolCx, and SolVI (also known as the 'inclusion benchmark') first proposed by Duretz, May, Gerya, and Tackley (G Cubed, 2011) and in subsequent work by Theilman, May, and Kaus (Pure and Applied Geophysics, 2014). Each of the three benchmarks compares the accuracy of the numerical solution to a steady (time-independent) solution of the incompressible Stokes equations with a known exact solution. These benchmarks are specifically designed to test the accuracy and effectiveness of the numerical method when the viscosity varies up to six orders of magnitude. ASPECT has been shown to converge to the exact solution of each of these benchmarks at the correct design rate when all of the flow variables, including the density and viscosity, are discretized on the underlying finite element grid (Krobichler, Heister, and Bangerth, GJI, 2012). In our work we discretize the density and viscosity by initially placing the true values of the density and viscosity at the intial particle positions. At each time step, including the initialization step, the density and viscosity are interpolated from the particles onto the finite element grid. The resulting Stokes system is solved for the velocity and pressure, and the particle positions are advanced in time according to this new, numerical, velocity field. Note that this procedure effectively changes a steady solution of the Stokes equaton (i.e., one that is independent of time) to a solution of the Stokes equations that is time dependent. Furthermore, the accuracy of the active tracer particle algorithm now also depends on the accuracy of the interpolation algorithm and of the numerical method one uses to advance the particle positions in time. Finally, we will present new interpolation algorithms designed to increase the overall accuracy of the active tracer algorithms in ASPECT and interpolation algotithms designed to conserve properties, such as mass density, that are being carried by the particles.
NASA Astrophysics Data System (ADS)
Lezina, Natalya; Agoshkov, Valery
2017-04-01
Domain decomposition method (DDM) allows one to present a domain with complex geometry as a set of essentially simpler subdomains. This method is particularly applied for the hydrodynamics of oceans and seas. In each subdomain the system of thermo-hydrodynamic equations in the Boussinesq and hydrostatic approximations is solved. The problem of obtaining solution in the whole domain is that it is necessary to combine solutions in subdomains. For this purposes iterative algorithm is created and numerical experiments are conducted to investigate an effectiveness of developed algorithm using DDM. For symmetric operators in DDM, Poincare-Steklov's operators [1] are used, but for the problems of the hydrodynamics, it is not suitable. In this case for the problem, adjoint equation method [2] and inverse problem theory are used. In addition, it is possible to create algorithms for the parallel calculations using DDM on multiprocessor computer system. DDM for the model of the Baltic Sea dynamics is numerically studied. The results of numerical experiments using DDM are compared with the solution of the system of hydrodynamic equations in the whole domain. The work was supported by the Russian Science Foundation (project 14-11-00609, the formulation of the iterative process and numerical experiments). [1] V.I. Agoshkov, Domain Decompositions Methods in the Mathematical Physics Problem // Numerical processes and systems, No 8, Moscow, 1991 (in Russian). [2] V.I. Agoshkov, Optimal Control Approaches and Adjoint Equations in the Mathematical Physics Problem, Institute of Numerical Mathematics, RAS, Moscow, 2003 (in Russian).
Heberton, C.I.; Russell, T.F.; Konikow, Leonard F.; Hornberger, G.Z.
2000-01-01
This report documents the U.S. Geological Survey Eulerian-Lagrangian Localized Adjoint Method (ELLAM) algorithm that solves an integral form of the solute-transport equation, incorporating an implicit-in-time difference approximation for the dispersive and sink terms. Like the algorithm in the original version of the U.S. Geological Survey MOC3D transport model, ELLAM uses a method of characteristics approach to solve the transport equation on the basis of the velocity field. The ELLAM algorithm, however, is based on an integral formulation of conservation of mass and uses appropriate numerical techniques to obtain global conservation of mass. The implicit procedure eliminates several stability criteria required for an explicit formulation. Consequently, ELLAM allows large transport time increments to be used. ELLAM can produce qualitatively good results using a small number of transport time steps. A description of the ELLAM numerical method, the data-input requirements and output options, and the results of simulator testing and evaluation are presented. The ELLAM algorithm was evaluated for the same set of problems used to test and evaluate Version 1 and Version 2 of MOC3D. These test results indicate that ELLAM offers a viable alternative to the explicit and implicit solvers in MOC3D. Its use is desirable when mass balance is imperative or a fast, qualitative model result is needed. Although accurate solutions can be generated using ELLAM, its efficiency relative to the two previously documented solution algorithms is problem dependent.
A study of metaheuristic algorithms for high dimensional feature selection on microarray data
NASA Astrophysics Data System (ADS)
Dankolo, Muhammad Nasiru; Radzi, Nor Haizan Mohamed; Sallehuddin, Roselina; Mustaffa, Noorfa Haszlinna
2017-11-01
Microarray systems enable experts to examine gene profile at molecular level using machine learning algorithms. It increases the potentials of classification and diagnosis of many diseases at gene expression level. Though, numerous difficulties may affect the efficiency of machine learning algorithms which includes vast number of genes features comprised in the original data. Many of these features may be unrelated to the intended analysis. Therefore, feature selection is necessary to be performed in the data pre-processing. Many feature selection algorithms are developed and applied on microarray which including the metaheuristic optimization algorithms. This paper discusses the application of the metaheuristics algorithms for feature selection in microarray dataset. This study reveals that, the algorithms have yield an interesting result with limited resources thereby saving computational expenses of machine learning algorithms.
Superiorization-based multi-energy CT image reconstruction
Yang, Q; Cong, W; Wang, G
2017-01-01
The recently-developed superiorization approach is efficient and robust for solving various constrained optimization problems. This methodology can be applied to multi-energy CT image reconstruction with the regularization in terms of the prior rank, intensity and sparsity model (PRISM). In this paper, we propose a superiorized version of the simultaneous algebraic reconstruction technique (SART) based on the PRISM model. Then, we compare the proposed superiorized algorithm with the Split-Bregman algorithm in numerical experiments. The results show that both the Superiorized-SART and the Split-Bregman algorithms generate good results with weak noise and reduced artefacts. PMID:28983142
Development of homotopy algorithms for fixed-order mixed H2/H(infinity) controller synthesis
NASA Technical Reports Server (NTRS)
Whorton, M.; Buschek, H.; Calise, A. J.
1994-01-01
A major difficulty associated with H-infinity and mu-synthesis methods is the order of the resulting compensator. Whereas model and/or controller reduction techniques are sometimes applied, performance and robustness properties are not preserved. By directly constraining compensator order during the optimization process, these properties are better preserved, albeit at the expense of computational complexity. This paper presents a novel homotopy algorithm to synthesize fixed-order mixed H2/H-infinity compensators. Numerical results are presented for a four-disk flexible structure to evaluate the efficiency of the algorithm.
Numerical computation of linear instability of detonations
NASA Astrophysics Data System (ADS)
Kabanov, Dmitry; Kasimov, Aslan
2017-11-01
We propose a method to study linear stability of detonations by direct numerical computation. The linearized governing equations together with the shock-evolution equation are solved in the shock-attached frame using a high-resolution numerical algorithm. The computed results are processed by the Dynamic Mode Decomposition technique to generate dispersion relations. The method is applied to the reactive Euler equations with simple-depletion chemistry as well as more complex multistep chemistry. The results are compared with those known from normal-mode analysis. We acknowledge financial support from King Abdullah University of Science and Technology.
Bayesian cloud detection for MERIS, AATSR, and their combination
NASA Astrophysics Data System (ADS)
Hollstein, A.; Fischer, J.; Carbajal Henken, C.; Preusker, R.
2014-11-01
A broad range of different of Bayesian cloud detection schemes is applied to measurements from the Medium Resolution Imaging Spectrometer (MERIS), the Advanced Along-Track Scanning Radiometer (AATSR), and their combination. The cloud masks were designed to be numerically efficient and suited for the processing of large amounts of data. Results from the classical and naive approach to Bayesian cloud masking are discussed for MERIS and AATSR as well as for their combination. A sensitivity study on the resolution of multidimensional histograms, which were post-processed by Gaussian smoothing, shows how theoretically insufficient amounts of truth data can be used to set up accurate classical Bayesian cloud masks. Sets of exploited features from single and derived channels are numerically optimized and results for naive and classical Bayesian cloud masks are presented. The application of the Bayesian approach is discussed in terms of reproducing existing algorithms, enhancing existing algorithms, increasing the robustness of existing algorithms, and on setting up new classification schemes based on manually classified scenes.
Bayesian cloud detection for MERIS, AATSR, and their combination
NASA Astrophysics Data System (ADS)
Hollstein, A.; Fischer, J.; Carbajal Henken, C.; Preusker, R.
2015-04-01
A broad range of different of Bayesian cloud detection schemes is applied to measurements from the Medium Resolution Imaging Spectrometer (MERIS), the Advanced Along-Track Scanning Radiometer (AATSR), and their combination. The cloud detection schemes were designed to be numerically efficient and suited for the processing of large numbers of data. Results from the classical and naive approach to Bayesian cloud masking are discussed for MERIS and AATSR as well as for their combination. A sensitivity study on the resolution of multidimensional histograms, which were post-processed by Gaussian smoothing, shows how theoretically insufficient numbers of truth data can be used to set up accurate classical Bayesian cloud masks. Sets of exploited features from single and derived channels are numerically optimized and results for naive and classical Bayesian cloud masks are presented. The application of the Bayesian approach is discussed in terms of reproducing existing algorithms, enhancing existing algorithms, increasing the robustness of existing algorithms, and on setting up new classification schemes based on manually classified scenes.
Triangular covariance factorizations for. Ph.D. Thesis. - Calif. Univ.
NASA Technical Reports Server (NTRS)
Thornton, C. L.
1976-01-01
An improved computational form of the discrete Kalman filter is derived using an upper triangular factorization of the error covariance matrix. The covariance P is factored such that P = UDUT where U is unit upper triangular and D is diagonal. Recursions are developed for propagating the U-D covariance factors together with the corresponding state estimate. The resulting algorithm, referred to as the U-D filter, combines the superior numerical precision of square root filtering techniques with an efficiency comparable to that of Kalman's original formula. Moreover, this method is easily implemented and involves no more computer storage than the Kalman algorithm. These characteristics make the U-D method an attractive realtime filtering technique. A new covariance error analysis technique is obtained from an extension of the U-D filter equations. This evaluation method is flexible and efficient and may provide significantly improved numerical results. Cost comparisons show that for a large class of problems the U-D evaluation algorithm is noticeably less expensive than conventional error analysis methods.
Faster PET reconstruction with a stochastic primal-dual hybrid gradient method
NASA Astrophysics Data System (ADS)
Ehrhardt, Matthias J.; Markiewicz, Pawel; Chambolle, Antonin; Richtárik, Peter; Schott, Jonathan; Schönlieb, Carola-Bibiane
2017-08-01
Image reconstruction in positron emission tomography (PET) is computationally challenging due to Poisson noise, constraints and potentially non-smooth priors-let alone the sheer size of the problem. An algorithm that can cope well with the first three of the aforementioned challenges is the primal-dual hybrid gradient algorithm (PDHG) studied by Chambolle and Pock in 2011. However, PDHG updates all variables in parallel and is therefore computationally demanding on the large problem sizes encountered with modern PET scanners where the number of dual variables easily exceeds 100 million. In this work, we numerically study the usage of SPDHG-a stochastic extension of PDHG-but is still guaranteed to converge to a solution of the deterministic optimization problem with similar rates as PDHG. Numerical results on a clinical data set show that by introducing randomization into PDHG, similar results as the deterministic algorithm can be achieved using only around 10 % of operator evaluations. Thus, making significant progress towards the feasibility of sophisticated mathematical models in a clinical setting.
The high performance parallel algorithm for Unified Gas-Kinetic Scheme
NASA Astrophysics Data System (ADS)
Li, Shiyi; Li, Qibing; Fu, Song; Xu, Jinxiu
2016-11-01
A high performance parallel algorithm for UGKS is developed to simulate three-dimensional flows internal and external on arbitrary grid system. The physical domain and velocity domain are divided into different blocks and distributed according to the two-dimensional Cartesian topology with intra-communicators in physical domain for data exchange and other intra-communicators in velocity domain for sum reduction to moment integrals. Numerical results of three-dimensional cavity flow and flow past a sphere agree well with the results from the existing studies and validate the applicability of the algorithm. The scalability of the algorithm is tested both on small (1-16) and large (729-5832) scale processors. The tested speed-up ratio is near linear ashind thus the efficiency is around 1, which reveals the good scalability of the present algorithm.
An approach toward the numerical evaluation of multi-loop Feynman diagrams
NASA Astrophysics Data System (ADS)
Passarino, Giampiero
2001-12-01
A scheme for systematically achieving accurate numerical evaluation of multi-loop Feynman diagrams is developed. This shows the feasibility of a project aimed to produce a complete calculation for two-loop predictions in the Standard Model. As a first step an algorithm, proposed by F.V. Tkachov and based on the so-called generalized Bernstein functional relation, is applied to one-loop multi-leg diagrams with particular emphasis to the presence of infrared singularities, to the problem of tensorial reduction and to the classification of all singularities of a given diagram. Successively, the extension of the algorithm to two-loop diagrams is examined. The proposed solution consists in applying the functional relation to the one-loop sub-diagram which has the largest number of internal lines. In this way the integrand can be made smooth, a part from a factor which is a polynomial in xS, the vector of Feynman parameters needed for the complementary sub-diagram with the smallest number of internal lines. Since the procedure does not introduce new singularities one can distort the xS-integration hyper-contour into the complex hyper-plane, thus achieving numerical stability. The algorithm is then modified to deal with numerical evaluation around normal thresholds. Concise and practical formulas are assembled and presented, numerical results and comparisons with the available literature are shown and discussed for the so-called sunset topology.
Generalization of von Neumann analysis for a model of two discrete half-spaces: The acoustic case
Haney, M.M.
2007-01-01
Evaluating the performance of finite-difference algorithms typically uses a technique known as von Neumann analysis. For a given algorithm, application of the technique yields both a dispersion relation valid for the discrete time-space grid and a mathematical condition for stability. In practice, a major shortcoming of conventional von Neumann analysis is that it can be applied only to an idealized numerical model - that of an infinite, homogeneous whole space. Experience has shown that numerical instabilities often arise in finite-difference simulations of wave propagation at interfaces with strong material contrasts. These interface instabilities occur even though the conventional von Neumann stability criterion may be satisfied at each point of the numerical model. To address this issue, I generalize von Neumann analysis for a model of two half-spaces. I perform the analysis for the case of acoustic wave propagation using a standard staggered-grid finite-difference numerical scheme. By deriving expressions for the discrete reflection and transmission coefficients, I study under what conditions the discrete reflection and transmission coefficients become unbounded. I find that instabilities encountered in numerical modeling near interfaces with strong material contrasts are linked to these cases and develop a modified stability criterion that takes into account the resulting instabilities. I test and verify the stability criterion by executing a finite-difference algorithm under conditions predicted to be stable and unstable. ?? 2007 Society of Exploration Geophysicists.
Hypersonic research at Stanford University
NASA Technical Reports Server (NTRS)
Candler, Graham; Maccormack, Robert
1988-01-01
The status of the hypersonic research program at Stanford University is discussed and recent results are highlighted. The main areas of interest in the program are the numerical simulation of radiating, reacting and thermally excited flows, the investigation and numerical solution of hypersonic shock wave physics, the extension of the continuum fluid dynamic equations to the transition regime between continuum and free-molecule flow, and the development of novel numerical algorithms for efficient particulate simulations of flowfields.
UDU/T/ covariance factorization for Kalman filtering
NASA Technical Reports Server (NTRS)
Thornton, C. L.; Bierman, G. J.
1980-01-01
There has been strong motivation to produce numerically stable formulations of the Kalman filter algorithms because it has long been known that the original discrete-time Kalman formulas are numerically unreliable. Numerical instability can be avoided by propagating certain factors of the estimate error covariance matrix rather than the covariance matrix itself. This paper documents filter algorithms that correspond to the covariance factorization P = UDU(T), where U is a unit upper triangular matrix and D is diagonal. Emphasis is on computational efficiency and numerical stability, since these properties are of key importance in real-time filter applications. The history of square-root and U-D covariance filters is reviewed. Simple examples are given to illustrate the numerical inadequacy of the Kalman covariance filter algorithms; these examples show how factorization techniques can give improved computational reliability.
A mixed-mode traffic assignment model with new time-flow impedance function
NASA Astrophysics Data System (ADS)
Lin, Gui-Hua; Hu, Yu; Zou, Yuan-Yang
2018-01-01
Recently, with the wide adoption of electric vehicles, transportation network has shown different characteristics and been further developed. In this paper, we present a new time-flow impedance function, which may be more realistic than the existing time-flow impedance functions. Based on this new impedance function, we present an optimization model for a mixed-mode traffic network in which battery electric vehicles (BEVs) and gasoline vehicles (GVs) are chosen. We suggest two approaches to handle the model: One is to use the interior point (IP) algorithm and the other is to employ the sequential quadratic programming (SQP) algorithm. Three numerical examples are presented to illustrate the efficiency of these approaches. In particular, our numerical results show that more travelers prefer to choosing BEVs when the distance limit of BEVs is long enough and the unit operating cost of GVs is higher than that of BEVs, and the SQP algorithm is faster than the IP algorithm.
Development of an upwind, finite-volume code with finite-rate chemistry
NASA Technical Reports Server (NTRS)
Molvik, Gregory A.
1994-01-01
Under this grant, two numerical algorithms were developed to predict the flow of viscous, hypersonic, chemically reacting gases over three-dimensional bodies. Both algorithms take advantage of the benefits of upwind differencing, total variation diminishing techniques, and a finite-volume framework, but obtain their solution in two separate manners. The first algorithm is a zonal, time-marching scheme, and is generally used to obtain solutions in the subsonic portions of the flow field. The second algorithm is a much less expensive, space-marching scheme and can be used for the computation of the larger, supersonic portion of the flow field. Both codes compute their interface fluxes with a temporal Riemann solver and the resulting schemes are made fully implicit including the chemical source terms and boundary conditions. Strong coupling is used between the fluid dynamic, chemical, and turbulence equations. These codes have been validated on numerous hypersonic test cases and have provided excellent comparison with existing data.
NASA Astrophysics Data System (ADS)
Karami, Fahd; Ziad, Lamia; Sadik, Khadija
2017-12-01
In this paper, we focus on a numerical method of a problem called the Perona-Malik inequality which we use for image denoising. This model is obtained as the limit of the Perona-Malik model and the p-Laplacian operator with p→ ∞. In Atlas et al., (Nonlinear Anal. Real World Appl 18:57-68, 2014), the authors have proved the existence and uniqueness of the solution of the proposed model. However, in their work, they used the explicit numerical scheme for approximated problem which is strongly dependent to the parameter p. To overcome this, we use in this work an efficient algorithm which is a combination of the classical additive operator splitting and a nonlinear relaxation algorithm. At last, we have presented the experimental results in image filtering show, which demonstrate the efficiency and effectiveness of our algorithm and finally, we have compared it with the previous scheme presented in Atlas et al., (Nonlinear Anal. Real World Appl 18:57-68, 2014).
Second-order Poisson Nernst-Planck solver for ion channel transport
Zheng, Qiong; Chen, Duan; Wei, Guo-Wei
2010-01-01
The Poisson Nernst-Planck (PNP) theory is a simplified continuum model for a wide variety of chemical, physical and biological applications. Its ability of providing quantitative explanation and increasingly qualitative predictions of experimental measurements has earned itself much recognition in the research community. Numerous computational algorithms have been constructed for the solution of the PNP equations. However, in the realistic ion-channel context, no second order convergent PNP algorithm has ever been reported in the literature, due to many numerical obstacles, including discontinuous coefficients, singular charges, geometric singularities, and nonlinear couplings. The present work introduces a number of numerical algorithms to overcome the abovementioned numerical challenges and constructs the first second-order convergent PNP solver in the ion-channel context. First, a Dirichlet to Neumann mapping (DNM) algorithm is designed to alleviate the charge singularity due to the protein structure. Additionally, the matched interface and boundary (MIB) method is reformulated for solving the PNP equations. The MIB method systematically enforces the interface jump conditions and achieves the second order accuracy in the presence of complex geometry and geometric singularities of molecular surfaces. Moreover, two iterative schemes are utilized to deal with the coupled nonlinear equations. Furthermore, extensive and rigorous numerical validations are carried out over a number of geometries, including a sphere, two proteins and an ion channel, to examine the numerical accuracy and convergence order of the present numerical algorithms. Finally, application is considered to a real transmembrane protein, the Gramicidin A channel protein. The performance of the proposed numerical techniques is tested against a number of factors, including mesh sizes, diffusion coefficient profiles, iterative schemes, ion concentrations, and applied voltages. Numerical predictions are compared with experimental measurements. PMID:21552336
NASA Technical Reports Server (NTRS)
Kaplan, Michael L.; Lin, Yuh-Lang
2005-01-01
The purpose of the research was to develop and test improved hazard algorithms that could result in the development of sensors that are better able to anticipate potentially severe atmospheric turbulence, which affects aircraft safety. The research focused on employing numerical simulation models to develop improved algorithms for the prediction of aviation turbulence. This involved producing both research simulations and real-time simulations of environments predisposed to moderate and severe aviation turbulence. The research resulted in the following fundamental advancements toward the aforementioned goal: 1) very high resolution simulations of turbulent environments indicated how predictive hazard indices could be improved resulting in a candidate hazard index that indicated the potential for improvement over existing operational indices, 2) a real-time turbulence hazard numerical modeling system was improved by correcting deficiencies in its simulation of moist convection and 3) the same real-time predictive system was tested by running the code twice daily and the hazard prediction indices updated and improved. Additionally, a simple validation study was undertaken to determine how well a real time hazard predictive index performed when compared to commercial pilot observations of aviation turbulence. Simple statistical analyses were performed in this validation study indicating potential skill in employing the hazard prediction index to predict regions of varying intensities of aviation turbulence. Data sets from a research numerical model where provided to NASA for use in a large eddy simulation numerical model. A NASA contractor report and several refereed journal articles where prepared and submitted for publication during the course of this research.
Optimization of Straight Cylindrical Turning Using Artificial Bee Colony (ABC) Algorithm
NASA Astrophysics Data System (ADS)
Prasanth, Rajanampalli Seshasai Srinivasa; Hans Raj, Kandikonda
2017-04-01
Artificial bee colony (ABC) algorithm, that mimics the intelligent foraging behavior of honey bees, is increasingly gaining acceptance in the field of process optimization, as it is capable of handling nonlinearity, complexity and uncertainty. Straight cylindrical turning is a complex and nonlinear machining process which involves the selection of appropriate cutting parameters that affect the quality of the workpiece. This paper presents the estimation of optimal cutting parameters of the straight cylindrical turning process using the ABC algorithm. The ABC algorithm is first tested on four benchmark problems of numerical optimization and its performance is compared with genetic algorithm (GA) and ant colony optimization (ACO) algorithm. Results indicate that, the rate of convergence of ABC algorithm is better than GA and ACO. Then, the ABC algorithm is used to predict optimal cutting parameters such as cutting speed, feed rate, depth of cut and tool nose radius to achieve good surface finish. Results indicate that, the ABC algorithm estimated a comparable surface finish when compared with real coded genetic algorithm and differential evolution algorithm.
Calculating observables in inhomogeneous cosmologies. Part I: general framework
NASA Astrophysics Data System (ADS)
Hellaby, Charles; Walters, Anthony
2018-02-01
We lay out a general framework for calculating the variation of a set of cosmological observables, down the past null cone of an arbitrarily placed observer, in a given arbitrary inhomogeneous metric. The observables include redshift, proper motions, area distance and redshift-space density. Of particular interest are observables that are zero in the spherically symmetric case, such as proper motions. The algorithm is based on the null geodesic equation and the geodesic deviation equation, and it is tailored to creating a practical numerical implementation. The algorithm provides a method for tracking which light rays connect moving objects to the observer at successive times. Our algorithm is applied to the particular case of the Szekeres metric. A numerical implementation has been created and some results will be presented in a subsequent paper. Future work will explore the range of possibilities.
Stochastic Formal Correctness of Numerical Algorithms
NASA Technical Reports Server (NTRS)
Daumas, Marc; Lester, David; Martin-Dorel, Erik; Truffert, Annick
2009-01-01
We provide a framework to bound the probability that accumulated errors were never above a given threshold on numerical algorithms. Such algorithms are used for example in aircraft and nuclear power plants. This report contains simple formulas based on Levy's and Markov's inequalities and it presents a formal theory of random variables with a special focus on producing concrete results. We selected four very common applications that fit in our framework and cover the common practices of systems that evolve for a long time. We compute the number of bits that remain continuously significant in the first two applications with a probability of failure around one out of a billion, where worst case analysis considers that no significant bit remains. We are using PVS as such formal tools force explicit statement of all hypotheses and prevent incorrect uses of theorems.
NASA Astrophysics Data System (ADS)
Doha, Eid H.; Bhrawy, Ali H.; Abdelkawy, Mohammed A.
2014-09-01
In this paper, we propose an efficient spectral collocation algorithm to solve numerically wave type equations subject to initial, boundary and non-local conservation conditions. The shifted Jacobi pseudospectral approximation is investigated for the discretization of the spatial variable of such equations. It possesses spectral accuracy in the spatial variable. The shifted Jacobi-Gauss-Lobatto (SJ-GL) quadrature rule is established for treating the non-local conservation conditions, and then the problem with its initial and non-local boundary conditions are reduced to a system of second-order ordinary differential equations in temporal variable. This system is solved by two-stage forth-order A-stable implicit RK scheme. Five numerical examples with comparisons are given. The computational results demonstrate that the proposed algorithm is more accurate than finite difference method, method of lines and spline collocation approach
Efficient computer algebra algorithms for polynomial matrices in control design
NASA Technical Reports Server (NTRS)
Baras, J. S.; Macenany, D. C.; Munach, R.
1989-01-01
The theory of polynomial matrices plays a key role in the design and analysis of multi-input multi-output control and communications systems using frequency domain methods. Examples include coprime factorizations of transfer functions, cannonical realizations from matrix fraction descriptions, and the transfer function design of feedback compensators. Typically, such problems abstract in a natural way to the need to solve systems of Diophantine equations or systems of linear equations over polynomials. These and other problems involving polynomial matrices can in turn be reduced to polynomial matrix triangularization procedures, a result which is not surprising given the importance of matrix triangularization techniques in numerical linear algebra. Matrices with entries from a field and Gaussian elimination play a fundamental role in understanding the triangularization process. In the case of polynomial matrices, matrices with entries from a ring for which Gaussian elimination is not defined and triangularization is accomplished by what is quite properly called Euclidean elimination. Unfortunately, the numerical stability and sensitivity issues which accompany floating point approaches to Euclidean elimination are not very well understood. New algorithms are presented which circumvent entirely such numerical issues through the use of exact, symbolic methods in computer algebra. The use of such error-free algorithms guarantees that the results are accurate to within the precision of the model data--the best that can be hoped for. Care must be taken in the design of such algorithms due to the phenomenon of intermediate expressions swell.
Numerical simulations of detonation propagation in gaseous fuel-air mixtures
NASA Astrophysics Data System (ADS)
Honhar, Praveen; Kaplan, Carolyn; Houim, Ryan; Oran, Elaine
2017-11-01
Unsteady multidimensional numerical simulations of detonation propagation and survival in mixtures of fuel (hydrogen or methane) diluted with air were carried out with a fully compressible Navier-Stokes solver using a simplified chemical-diffusive model (CDM). The CDM was derived using a genetic algorithm combined with the Nelder-Mead optimization algorithm and reproduces physically correct laminar flame and detonation properties. Cases studied are overdriven detonations propagating through confined mediums, with or without gradients in composition. Results from simulations confirm that the survival of the detonation depends on the channel heights. In addition, the simulations show that the propagation of the detonation waves depends on the steepness in composition gradients.
NASA Astrophysics Data System (ADS)
Kotlan, Václav; Hamar, Roman; Pánek, David; Doležel, Ivo
2017-12-01
A model of hybrid cladding on a cylindrical surface is built and numerically solved. Heating of both substrate and the powder material to be deposited on its surface is realized by laser beam and preheating inductor. The task represents a hard-coupled electromagnetic-thermal problem with time-varying geometry. Two specific algorithms are developed to incorporate this effect into the model, driven by local distribution of temperature and its gradients. The algorithms are implemented into the COMSOL Multiphysics 5.2 code that is used for numerical computations of the task. The methodology is illustrated with a typical example whose results are discussed.
Modeling flow at the nozzle of a solid rocket motor
NASA Technical Reports Server (NTRS)
Chow, Alan S.; Jin, Kang-Ren
1991-01-01
The mechanical behavior of a rocket motor internal flow field results in a system of nonlinear partial differential equations which can be solved numerically. The accuracy and the convergence of the solution of the system of equations depends largely on how precisely the sharp gradients can be resolved. An adaptive grid generation scheme is incorporated into the computer algorithm to enhance the capability of numerical modeling. With this scheme, the grid is refined as the solution evolves. This scheme significantly improves the methodology of solving flow problems in rocket nozzle by putting the refinement part of grid generation into the computer algorithm.
Aspects of GPU perfomance in algorithms with random memory access
NASA Astrophysics Data System (ADS)
Kashkovsky, Alexander V.; Shershnev, Anton A.; Vashchenkov, Pavel V.
2017-10-01
The numerical code for solving the Boltzmann equation on the hybrid computational cluster using the Direct Simulation Monte Carlo (DSMC) method showed that on Tesla K40 accelerators computational performance drops dramatically with increase of percentage of occupied GPU memory. Testing revealed that memory access time increases tens of times after certain critical percentage of memory is occupied. Moreover, it seems to be the common problem of all NVidia's GPUs arising from its architecture. Few modifications of the numerical algorithm were suggested to overcome this problem. One of them, based on the splitting the memory into "virtual" blocks, resulted in 2.5 times speed up.
Li, Yong; Yuan, Gonglin; Wei, Zengxin
2015-01-01
In this paper, a trust-region algorithm is proposed for large-scale nonlinear equations, where the limited-memory BFGS (L-M-BFGS) update matrix is used in the trust-region subproblem to improve the effectiveness of the algorithm for large-scale problems. The global convergence of the presented method is established under suitable conditions. The numerical results of the test problems show that the method is competitive with the norm method.
NASA Astrophysics Data System (ADS)
Avetisyan, H.; Bruna, O.; Holub, J.
2016-11-01
A numerous techniques and algorithms are dedicated to extract emotions from input data. In our investigation it was stated that emotion-detection approaches can be classified into 3 following types: Keyword based / lexical-based, learning based, and hybrid. The most commonly used techniques, such as keyword-spotting method, Support Vector Machines, Naïve Bayes Classifier, Hidden Markov Model and hybrid algorithms, have impressive results in this sphere and can reach more than 90% determining accuracy.
A generalized Condat's algorithm of 1D total variation regularization
NASA Astrophysics Data System (ADS)
Makovetskii, Artyom; Voronin, Sergei; Kober, Vitaly
2017-09-01
A common way for solving the denosing problem is to utilize the total variation (TV) regularization. Many efficient numerical algorithms have been developed for solving the TV regularization problem. Condat described a fast direct algorithm to compute the processed 1D signal. Also there exists a direct algorithm with a linear time for 1D TV denoising referred to as the taut string algorithm. The Condat's algorithm is based on a dual problem to the 1D TV regularization. In this paper, we propose a variant of the Condat's algorithm based on the direct 1D TV regularization problem. The usage of the Condat's algorithm with the taut string approach leads to a clear geometric description of the extremal function. Computer simulation results are provided to illustrate the performance of the proposed algorithm for restoration of degraded signals.
Constraint treatment techniques and parallel algorithms for multibody dynamic analysis. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Chiou, Jin-Chern
1990-01-01
Computational procedures for kinematic and dynamic analysis of three-dimensional multibody dynamic (MBD) systems are developed from the differential-algebraic equations (DAE's) viewpoint. Constraint violations during the time integration process are minimized and penalty constraint stabilization techniques and partitioning schemes are developed. The governing equations of motion, a two-stage staggered explicit-implicit numerical algorithm, are treated which takes advantage of a partitioned solution procedure. A robust and parallelizable integration algorithm is developed. This algorithm uses a two-stage staggered central difference algorithm to integrate the translational coordinates and the angular velocities. The angular orientations of bodies in MBD systems are then obtained by using an implicit algorithm via the kinematic relationship between Euler parameters and angular velocities. It is shown that the combination of the present solution procedures yields a computationally more accurate solution. To speed up the computational procedures, parallel implementation of the present constraint treatment techniques, the two-stage staggered explicit-implicit numerical algorithm was efficiently carried out. The DAE's and the constraint treatment techniques were transformed into arrowhead matrices to which Schur complement form was derived. By fully exploiting the sparse matrix structural analysis techniques, a parallel preconditioned conjugate gradient numerical algorithm is used to solve the systems equations written in Schur complement form. A software testbed was designed and implemented in both sequential and parallel computers. This testbed was used to demonstrate the robustness and efficiency of the constraint treatment techniques, the accuracy of the two-stage staggered explicit-implicit numerical algorithm, and the speed up of the Schur-complement-based parallel preconditioned conjugate gradient algorithm on a parallel computer.
Fractal dimension of interfaces in Edwards-Anderson spin glasses for up to six space dimensions.
Wang, Wenlong; Moore, M A; Katzgraber, Helmut G
2018-03-01
The fractal dimension of domain walls produced by changing the boundary conditions from periodic to antiperiodic in one spatial direction is studied using both the strong-disorder renormalization group algorithm and the greedy algorithm for the Edwards-Anderson Ising spin-glass model for up to six space dimensions. We find that for five or fewer space dimensions, the fractal dimension is lower than the space dimension. This means that interfaces are not space filling, thus implying that replica symmetry breaking is absent in space dimensions fewer than six. However, the fractal dimension approaches the space dimension in six dimensions, indicating that replica symmetry breaking occurs above six dimensions. In two space dimensions, the strong-disorder renormalization group results for the fractal dimension are in good agreement with essentially exact numerical results, but the small difference is significant. We discuss the origin of this close agreement. For the greedy algorithm there is analytical expectation that the fractal dimension is equal to the space dimension in six dimensions and our numerical results are consistent with this expectation.
Numerical Algorithms for Acoustic Integrals - The Devil is in the Details
NASA Technical Reports Server (NTRS)
Brentner, Kenneth S.
1996-01-01
The accurate prediction of the aeroacoustic field generated by aerospace vehicles or nonaerospace machinery is necessary for designers to control and reduce source noise. Powerful computational aeroacoustic methods, based on various acoustic analogies (primarily the Lighthill acoustic analogy) and Kirchhoff methods, have been developed for prediction of noise from complicated sources, such as rotating blades. Both methods ultimately predict the noise through a numerical evaluation of an integral formulation. In this paper, we consider three generic acoustic formulations and several numerical algorithms that have been used to compute the solutions to these formulations. Algorithms for retarded-time formulations are the most efficient and robust, but they are difficult to implement for supersonic-source motion. Collapsing-sphere and emission-surface formulations are good alternatives when supersonic-source motion is present, but the numerical implementations of these formulations are more computationally demanding. New algorithms - which utilize solution adaptation to provide a specified error level - are needed.
NASA Astrophysics Data System (ADS)
Bu, Sunyoung; Huang, Jingfang; Boyer, Treavor H.; Miller, Cass T.
2010-07-01
The focus of this work is on the modeling of an ion exchange process that occurs in drinking water treatment applications. The model formulation consists of a two-scale model in which a set of microscale diffusion equations representing ion exchange resin particles that vary in size and age are coupled through a boundary condition with a macroscopic ordinary differential equation (ODE), which represents the concentration of a species in a well-mixed reactor. We introduce a new age-averaged model (AAM) that averages all ion exchange particle ages for a given size particle to avoid the expensive Monte-Carlo simulation associated with previous modeling applications. We discuss two different numerical schemes to approximate both the original Monte-Carlo algorithm and the new AAM for this two-scale problem. The first scheme is based on the finite element formulation in space coupled with an existing backward difference formula-based ODE solver in time. The second scheme uses an integral equation based Krylov deferred correction (KDC) method and a fast elliptic solver (FES) for the resulting elliptic equations. Numerical results are presented to validate the new AAM algorithm, which is also shown to be more computationally efficient than the original Monte-Carlo algorithm. We also demonstrate that the higher order KDC scheme is more efficient than the traditional finite element solution approach and this advantage becomes increasingly important as the desired accuracy of the solution increases. We also discuss issues of smoothness, which affect the efficiency of the KDC-FES approach, and outline additional algorithmic changes that would further improve the efficiency of these developing methods for a wide range of applications.
2012-01-01
Background Chaos Game Representation (CGR) is an iterated function that bijectively maps discrete sequences into a continuous domain. As a result, discrete sequences can be object of statistical and topological analyses otherwise reserved to numerical systems. Characteristically, CGR coordinates of substrings sharing an L-long suffix will be located within 2-L distance of each other. In the two decades since its original proposal, CGR has been generalized beyond its original focus on genomic sequences and has been successfully applied to a wide range of problems in bioinformatics. This report explores the possibility that it can be further extended to approach algorithms that rely on discrete, graph-based representations. Results The exploratory analysis described here consisted of selecting foundational string problems and refactoring them using CGR-based algorithms. We found that CGR can take the role of suffix trees and emulate sophisticated string algorithms, efficiently solving exact and approximate string matching problems such as finding all palindromes and tandem repeats, and matching with mismatches. The common feature of these problems is that they use longest common extension (LCE) queries as subtasks of their procedures, which we show to have a constant time solution with CGR. Additionally, we show that CGR can be used as a rolling hash function within the Rabin-Karp algorithm. Conclusions The analysis of biological sequences relies on algorithmic foundations facing mounting challenges, both logistic (performance) and analytical (lack of unifying mathematical framework). CGR is found to provide the latter and to promise the former: graph-based data structures for sequence analysis operations are entailed by numerical-based data structures produced by CGR maps, providing a unifying analytical framework for a diversity of pattern matching problems. PMID:22551152
Advancing MODFLOW Applying the Derived Vector Space Method
NASA Astrophysics Data System (ADS)
Herrera, G. S.; Herrera, I.; Lemus-García, M.; Hernandez-Garcia, G. D.
2015-12-01
The most effective domain decomposition methods (DDM) are non-overlapping DDMs. Recently a new approach, the DVS-framework, based on an innovative discretization method that uses a non-overlapping system of nodes (the derived-nodes), was introduced and developed by I. Herrera et al. [1, 2]. Using the DVS-approach a group of four algorithms, referred to as the 'DVS-algorithms', which fulfill the DDM-paradigm (i.e. the solution of global problems is obtained by resolution of local problems exclusively) has been derived. Such procedures are applicable to any boundary-value problem, or system of such equations, for which a standard discretization method is available and then software with a high degree of parallelization can be constructed. In a parallel talk, in this AGU Fall Meeting, Ismael Herrera will introduce the general DVS methodology. The application of the DVS-algorithms has been demonstrated in the solution of several boundary values problems of interest in Geophysics. Numerical examples for a single-equation, for the cases of symmetric, non-symmetric and indefinite problems were demonstrated before [1,2]. For these problems DVS-algorithms exhibited significantly improved numerical performance with respect to standard versions of DDM algorithms. In view of these results our research group is in the process of applying the DVS method to a widely used simulator for the first time, here we present the advances of the application of this method for the parallelization of MODFLOW. Efficiency results for a group of tests will be presented. References [1] I. Herrera, L.M. de la Cruz and A. Rosas-Medina. Non overlapping discretization methods for partial differential equations, Numer Meth Part D E, (2013). [2] Herrera, I., & Contreras Iván "An Innovative Tool for Effectively Applying Highly Parallelized Software To Problems of Elasticity". Geofísica Internacional, 2015 (In press)
NASA Astrophysics Data System (ADS)
Chemla (林力娜), Karine
The texts of algorithms fall under the general rubric of instructional texts, discussed by J. Virbel in this book. An algorithm has two facets. It has a text—a written text—, which usually appears to be an enumerated list of operations. In addition, whenever an algorithm is applied to a specific set of numerical values, practitioners derive from its text a sequence of actions, or operations, to be carried out. In the execution of the algorithm, these actions generate events that constitute a flow of computations eventually yielding numerical results. This chapter aims mainly to develop some reflections on the relationship between these two facets: the text and the different sequences of actions that practitioners derive from it. I use two tools in my argumentation. Firstly, I use the description of textual enumerations, as developed by Jacques Virbel, to find out how enumerations of operations were carried out in the text of algorithms and how these enumerations were used. Then I focus on the language acts carried out in some of the sentences composing the texts, since, when prescribing operations, the texts of the algorithms differ in that they use distinct ways of carrying out directives. The conclusion highlights different ways in which the text of an algorithm can be general and convey meanings that go beyond simply prescribing operations.
Finite-time stabilization of chaotic gyros based on a homogeneous supertwisting-like algorithm
NASA Astrophysics Data System (ADS)
Khamsuwan, Pitcha; Sangpet, Teerawat; Kuntanapreeda, Suwat
2018-01-01
This paper presents a finite-time stabilization scheme for nonlinear chaotic gyros. The scheme utilizes a supertwisting-like continuous control algorithm for the systems of dimension more than one with a Lipschitz disturbance. The algorithm yields finite-time convergence similar to that produces by discontinuous sliding mode control algorithms. To design the controller, the nonlinearities in the gyro are treated as a disturbance in the system. Thanks to the dissipativeness of chaotic systems, the nonlinearities also possess the Lipschitz property. Numerical results are provided to illustrate the effectiveness of the scheme.
NASA Astrophysics Data System (ADS)
Ramírez-López, A.; Romero-Romo, M. A.; Muñoz-Negron, D.; López-Ramírez, S.; Escarela-Pérez, R.; Duran-Valencia, C.
2012-10-01
Computational models are developed to create grain structures using mathematical algorithms based on the chaos theory such as cellular automaton, geometrical models, fractals, and stochastic methods. Because of the chaotic nature of grain structures, some of the most popular routines are based on the Monte Carlo method, statistical distributions, and random walk methods, which can be easily programmed and included in nested loops. Nevertheless, grain structures are not well defined as the results of computational errors and numerical inconsistencies on mathematical methods. Due to the finite definition of numbers or the numerical restrictions during the simulation of solidification, damaged images appear on the screen. These images must be repaired to obtain a good measurement of grain geometrical properties. Some mathematical algorithms were developed to repair, measure, and characterize grain structures obtained from cellular automata in the present work. An appropriate measurement of grain size and the corrected identification of interfaces and length are very important topics in materials science because they are the representation and validation of mathematical models with real samples. As a result, the developed algorithms are tested and proved to be appropriate and efficient to eliminate the errors and characterize the grain structures.
Research on numerical algorithms for large space structures
NASA Technical Reports Server (NTRS)
Denman, E. D.
1981-01-01
Numerical algorithms for analysis and design of large space structures are investigated. The sign algorithm and its application to decoupling of differential equations are presented. The generalized sign algorithm is given and its application to several problems discussed. The Laplace transforms of matrix functions and the diagonalization procedure for a finite element equation are discussed. The diagonalization of matrix polynomials is considered. The quadrature method and Laplace transforms is discussed and the identification of linear systems by the quadrature method investigated.
Chan, Eugene; Rose, L R Francis; Wang, Chun H
2015-05-01
Existing damage imaging algorithms for detecting and quantifying structural defects, particularly those based on diffraction tomography, assume far-field conditions for the scattered field data. This paper presents a major extension of diffraction tomography that can overcome this limitation and utilises a near-field multi-static data matrix as the input data. This new algorithm, which employs numerical solutions of the dynamic Green's functions, makes it possible to quantitatively image laminar damage even in complex structures for which the dynamic Green's functions are not available analytically. To validate this new method, the numerical Green's functions and the multi-static data matrix for laminar damage in flat and stiffened isotropic plates are first determined using finite element models. Next, these results are time-gated to remove boundary reflections, followed by discrete Fourier transform to obtain the amplitude and phase information for both the baseline (damage-free) and the scattered wave fields. Using these computationally generated results and experimental verification, it is shown that the new imaging algorithm is capable of accurately determining the damage geometry, size and severity for a variety of damage sizes and shapes, including multi-site damage. Some aspects of minimal sensors requirement pertinent to image quality and practical implementation are also briefly discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Application of a flux-split algorithm to chemically relaxing, hypervelocity blunt-body flows
NASA Technical Reports Server (NTRS)
Balakrishnan, A.
1987-01-01
Viscous, nonequilibrium, hypervelocity flow fields over two axisymmetric configurations are numerically simulated using a factored, implicit, flux-split algorithm. The governing gas-dynamic and species-continuity equations for laminar flow are presented. The gas-dynamics/nonequilibrium-chemistry coupling procedure is developed as part of the solution procedure and is described in detail. Numerical solutions are presented for hypervelocity flows over a hemisphere and over an axisymmetric aeroassisted orbital transfer vehicle using three different chemistry models. The gas models considered are those for an ideal gas, for a frozen gas, and for chemically relaxing air consisting of five species. The calculated results are compared with existing numerical solutions in the literature along the stagnation line of the hemisphere. The effects of free-stream Reynolds number on the nonequilibrium flow field are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bian, Lei, E-mail: bianlei@pku.edu.cn; Pang, Gang, E-mail: 1517191281@qq.com; Tang, Shaoqiang, E-mail: maotang@pku.edu.cn
For the Schrödinger–Poisson system, we propose an ALmost EXact (ALEX) boundary condition to treat accurately the numerical boundaries. Being local in both space and time, the ALEX boundary conditions are demonstrated to be effective in suppressing spurious numerical reflections. Together with the Crank–Nicolson scheme, we simulate a resonant tunneling diode. The algorithm produces numerical results in excellent agreement with those in Mennemann et al. [1], yet at a much reduced complexity. Primary peaks in wave function profile appear as a consequence of quantum resonance, and should be considered in selecting the cut-off wave number for numerical simulations.
Efficient Parallel Algorithm For Direct Numerical Simulation of Turbulent Flows
NASA Technical Reports Server (NTRS)
Moitra, Stuti; Gatski, Thomas B.
1997-01-01
A distributed algorithm for a high-order-accurate finite-difference approach to the direct numerical simulation (DNS) of transition and turbulence in compressible flows is described. This work has two major objectives. The first objective is to demonstrate that parallel and distributed-memory machines can be successfully and efficiently used to solve computationally intensive and input/output intensive algorithms of the DNS class. The second objective is to show that the computational complexity involved in solving the tridiagonal systems inherent in the DNS algorithm can be reduced by algorithm innovations that obviate the need to use a parallelized tridiagonal solver.
Improved Collaborative Filtering Algorithm via Information Transformation
NASA Astrophysics Data System (ADS)
Liu, Jian-Guo; Wang, Bing-Hong; Guo, Qiang
In this paper, we propose a spreading activation approach for collaborative filtering (SA-CF). By using the opinion spreading process, the similarity between any users can be obtained. The algorithm has remarkably higher accuracy than the standard collaborative filtering using the Pearson correlation. Furthermore, we introduce a free parameter β to regulate the contributions of objects to user-user correlations. The numerical results indicate that decreasing the influence of popular objects can further improve the algorithmic accuracy and personality. We argue that a better algorithm should simultaneously require less computation and generate higher accuracy. Accordingly, we further propose an algorithm involving only the top-N similar neighbors for each target user, which has both less computational complexity and higher algorithmic accuracy.
Compression of multispectral Landsat imagery using the Embedded Zerotree Wavelet (EZW) algorithm
NASA Technical Reports Server (NTRS)
Shapiro, Jerome M.; Martucci, Stephen A.; Czigler, Martin
1994-01-01
The Embedded Zerotree Wavelet (EZW) algorithm has proven to be an extremely efficient and flexible compression algorithm for low bit rate image coding. The embedding algorithm attempts to order the bits in the bit stream in numerical importance and thus a given code contains all lower rate encodings of the same algorithm. Therefore, precise bit rate control is achievable and a target rate or distortion metric can be met exactly. Furthermore, the technique is fully image adaptive. An algorithm for multispectral image compression which combines the spectral redundancy removal properties of the image-dependent Karhunen-Loeve Transform (KLT) with the efficiency, controllability, and adaptivity of the embedded zerotree wavelet algorithm is presented. Results are shown which illustrate the advantage of jointly encoding spectral components using the KLT and EZW.
Singular perturbation techniques for real time aircraft trajectory optimization and control
NASA Technical Reports Server (NTRS)
Calise, A. J.; Moerder, D. D.
1982-01-01
The usefulness of singular perturbation methods for developing real time computer algorithms to control and optimize aircraft flight trajectories is examined. A minimum time intercept problem using F-8 aerodynamic and propulsion data is used as a baseline. This provides a framework within which issues relating to problem formulation, solution methodology and real time implementation are examined. Theoretical questions relating to separability of dynamics are addressed. With respect to implementation, situations leading to numerical singularities are identified, and procedures for dealing with them are outlined. Also, particular attention is given to identifying quantities that can be precomputed and stored, thus greatly reducing the on-board computational load. Numerical results are given to illustrate the minimum time algorithm, and the resulting flight paths. An estimate is given for execution time and storage requirements.
Traffic Flow Management Using Aggregate Flow Models and the Development of Disaggregation Methods
NASA Technical Reports Server (NTRS)
Sun, Dengfeng; Sridhar, Banavar; Grabbe, Shon
2010-01-01
A linear time-varying aggregate traffic flow model can be used to develop Traffic Flow Management (tfm) strategies based on optimization algorithms. However, there are no methods available in the literature to translate these aggregate solutions into actions involving individual aircraft. This paper describes and implements a computationally efficient disaggregation algorithm, which converts an aggregate (flow-based) solution to a flight-specific control action. Numerical results generated by the optimization method and the disaggregation algorithm are presented and illustrated by applying them to generate TFM schedules for a typical day in the U.S. National Airspace System. The results show that the disaggregation algorithm generates control actions for individual flights while keeping the air traffic behavior very close to the optimal solution.
In Praise of Numerical Computation
NASA Astrophysics Data System (ADS)
Yap, Chee K.
Theoretical Computer Science has developed an almost exclusively discrete/algebraic persona. We have effectively shut ourselves off from half of the world of computing: a host of problems in Computational Science & Engineering (CS&E) are defined on the continuum, and, for them, the discrete viewpoint is inadequate. The computational techniques in such problems are well-known to numerical analysis and applied mathematics, but are rarely discussed in theoretical algorithms: iteration, subdivision and approximation. By various case studies, I will indicate how our discrete/algebraic view of computing has many shortcomings in CS&E. We want embrace the continuous/analytic view, but in a new synthesis with the discrete/algebraic view. I will suggest a pathway, by way of an exact numerical model of computation, that allows us to incorporate iteration and approximation into our algorithms’ design. Some recent results give a peek into how this view of algorithmic development might look like, and its distinctive form suggests the name “numerical computational geometry” for such activities.
Comparison of NACA 0012 Laminar Flow Solutions: Structured and Unstructured Grid Methods
NASA Technical Reports Server (NTRS)
Swanson, R. C.; Langer, S.
2016-01-01
In this paper we consider the solution of the compressible Navier-Stokes equations for a class of laminar airfoil flows. The principal objective of this paper is to demonstrate that members of this class of laminar flows have steady-state solutions. These laminar airfoil flow cases are often used to evaluate accuracy, stability and convergence of numerical solution algorithms for the Navier-Stokes equations. In recent years, such flows have also been used as test cases for high-order numerical schemes. While generally consistent steady-state solutions have been obtained for these flows using higher order schemes, a number of results have been published with various solutions, including unsteady ones. We demonstrate with two different numerical methods and a range of meshes with a maximum density that exceeds 8 × 106 grid points that steady-state solutions are obtained. Furthermore, numerical evidence is presented that even when solving the equations with an unsteady algorithm, one obtains steady-state solutions.
Algorithms for computing the geopotential using a simple density layer
NASA Technical Reports Server (NTRS)
Morrison, F.
1976-01-01
Several algorithms have been developed for computing the potential and attraction of a simple density layer. These are numerical cubature, Taylor series, and a mixed analytic and numerical integration using a singularity-matching technique. A computer program has been written to combine these techniques for computing the disturbing acceleration on an artificial earth satellite. A total of 1640 equal-area, constant surface density blocks on an oblate spheroid are used. The singularity-matching algorithm is used in the subsatellite region, Taylor series in the surrounding zone, and numerical cubature on the rest of the earth.
Chen, Ying-ping; Chen, Chao-Hong
2010-01-01
An adaptive discretization method, called split-on-demand (SoD), enables estimation of distribution algorithms (EDAs) for discrete variables to solve continuous optimization problems. SoD randomly splits a continuous interval if the number of search points within the interval exceeds a threshold, which is decreased at every iteration. After the split operation, the nonempty intervals are assigned integer codes, and the search points are discretized accordingly. As an example of using SoD with EDAs, the integration of SoD and the extended compact genetic algorithm (ECGA) is presented and numerically examined. In this integration, we adopt a local search mechanism as an optional component of our back end optimization engine. As a result, the proposed framework can be considered as a memetic algorithm, and SoD can potentially be applied to other memetic algorithms. The numerical experiments consist of two parts: (1) a set of benchmark functions on which ECGA with SoD and ECGA with two well-known discretization methods: the fixed-height histogram (FHH) and the fixed-width histogram (FWH) are compared; (2) a real-world application, the economic dispatch problem, on which ECGA with SoD is compared to other methods. The experimental results indicate that SoD is a better discretization method to work with ECGA. Moreover, ECGA with SoD works quite well on the economic dispatch problem and delivers solutions better than the best known results obtained by other methods in existence.
Progress on a generalized coordinates tensor product finite element 3DPNS algorithm for subsonic
NASA Technical Reports Server (NTRS)
Baker, A. J.; Orzechowski, J. A.
1983-01-01
A generalized coordinates form of the penalty finite element algorithm for the 3-dimensional parabolic Navier-Stokes equations for turbulent subsonic flows was derived. This algorithm formulation requires only three distinct hypermatrices and is applicable using any boundary fitted coordinate transformation procedure. The tensor matrix product approximation to the Jacobian of the Newton linear algebra matrix statement was also derived. Tne Newton algorithm was restructured to replace large sparse matrix solution procedures with grid sweeping using alpha-block tridiagonal matrices, where alpha equals the number of dependent variables. Numerical experiments were conducted and the resultant data gives guidance on potentially preferred tensor product constructions for the penalty finite element 3DPNS algorithm.
NASA Astrophysics Data System (ADS)
Shirazi, Abolfazl
2016-10-01
This article introduces a new method to optimize finite-burn orbital manoeuvres based on a modified evolutionary algorithm. Optimization is carried out based on conversion of the orbital manoeuvre into a parameter optimization problem by assigning inverse tangential functions to the changes in direction angles of the thrust vector. The problem is analysed using boundary delimitation in a common optimization algorithm. A method is introduced to achieve acceptable values for optimization variables using nonlinear simulation, which results in an enlarged convergence domain. The presented algorithm benefits from high optimality and fast convergence time. A numerical example of a three-dimensional optimal orbital transfer is presented and the accuracy of the proposed algorithm is shown.
Wang, Rui; Zhou, Yongquan; Zhao, Chengyan; Wu, Haizhou
2015-01-01
Multi-threshold image segmentation is a powerful image processing technique that is used for the preprocessing of pattern recognition and computer vision. However, traditional multilevel thresholding methods are computationally expensive because they involve exhaustively searching the optimal thresholds to optimize the objective functions. To overcome this drawback, this paper proposes a flower pollination algorithm with a randomized location modification. The proposed algorithm is used to find optimal threshold values for maximizing Otsu's objective functions with regard to eight medical grayscale images. When benchmarked against other state-of-the-art evolutionary algorithms, the new algorithm proves itself to be robust and effective through numerical experimental results including Otsu's objective values and standard deviations.
An Explicit Upwind Algorithm for Solving the Parabolized Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Korte, John J.
1991-01-01
An explicit, upwind algorithm was developed for the direct (noniterative) integration of the 3-D Parabolized Navier-Stokes (PNS) equations in a generalized coordinate system. The new algorithm uses upwind approximations of the numerical fluxes for the pressure and convection terms obtained by combining flux difference splittings (FDS) formed from the solution of an approximate Riemann (RP). The approximate RP is solved using an extension of the method developed by Roe for steady supersonic flow of an ideal gas. Roe's method is extended for use with the 3-D PNS equations expressed in generalized coordinates and to include Vigneron's technique of splitting the streamwise pressure gradient. The difficulty associated with applying Roe's scheme in the subsonic region is overcome. The second-order upwind differencing of the flux derivatives are obtained by adding FDS to either an original forward or backward differencing of the flux derivative. This approach is used to modify an explicit MacCormack differencing scheme into an upwind differencing scheme. The second order upwind flux approximations, applied with flux limiters, provide a method for numerically capturing shocks without the need for additional artificial damping terms which require adjustment by the user. In addition, a cubic equation is derived for determining Vegneron's pressure splitting coefficient using the updated streamwise flux vector. Decoding the streamwise flux vector with the updated value of Vigneron's pressure splitting improves the stability of the scheme. The new algorithm is applied to 2-D and 3-D supersonic and hypersonic laminar flow test cases. Results are presented for the experimental studies of Holden and of Tracy. In addition, a flow field solution is presented for a generic hypersonic aircraft at a Mach number of 24.5 and angle of attack of 1 degree. The computed results compare well to both experimental data and numerical results from other algorithms. Computational times required for the upwind PNS code are approximately equal to an explicit PNS MacCormack's code and existing implicit PNS solvers.
NASA Technical Reports Server (NTRS)
Balla, R. Jeffrey; Miller, Corey A.
2008-01-01
This study seeks a numerical algorithm which optimizes frequency precision for the damped sinusoids generated by the nonresonant LITA technique. It compares computed frequencies, frequency errors, and fit errors obtained using five primary signal analysis methods. Using variations on different algorithms within each primary method, results from 73 fits are presented. Best results are obtained using an AutoRegressive method. Compared to previous results using Prony s method, single shot waveform frequencies are reduced approx.0.4% and frequency errors are reduced by a factor of approx.20 at 303K to approx. 0.1%. We explore the advantages of high waveform sample rates and potential for measurements in low density gases.
Equal Area Logistic Estimation for Item Response Theory
NASA Astrophysics Data System (ADS)
Lo, Shih-Ching; Wang, Kuo-Chang; Chang, Hsin-Li
2009-08-01
Item response theory (IRT) models use logistic functions exclusively as item response functions (IRFs). Applications of IRT models require obtaining the set of values for logistic function parameters that best fit an empirical data set. However, success in obtaining such set of values does not guarantee that the constructs they represent actually exist, for the adequacy of a model is not sustained by the possibility of estimating parameters. In this study, an equal area based two-parameter logistic model estimation algorithm is proposed. Two theorems are given to prove that the results of the algorithm are equivalent to the results of fitting data by logistic model. Numerical results are presented to show the stability and accuracy of the algorithm.
NASA Technical Reports Server (NTRS)
Goodrich, John W.
2017-01-01
This paper presents results from numerical experiments for controlling the error caused by a damping layer boundary treatment when simulating the propagation of an acoustic signal from a continuous pressure source. The computations are with the 2D Linearized Euler Equations (LEE) for both a uniform mean flow and a steady parallel jet. The numerical experiments are with algorithms that are third, fifth, seventh and ninth order accurate in space and time. The numerical domain is enclosed in a damping layer boundary treatment. The damping is implemented in a time accurate manner, with simple polynomial damping profiles of second, fourth, sixth and eighth power. At the outer boundaries of the damping layer the propagating solution is uniformly set to zero. The complete boundary treatment is remarkably simple and intrinsically independant from the dimension of the spatial domain. The reported results show the relative effect on the error from the boundary treatment by varying the damping layer width, damping profile power, damping amplitude, propagtion time, grid resolution and algorithm order. The issue that is being addressed is not the accuracy of the numerical solution when compared to a mathematical solution, but the effect of the complete boundary treatment on the numerical solution, and to what degree the error in the numerical solution from the complete boundary treatment can be controlled. We report maximum relative absolute errors from just the boundary treatment that range from O[10-2] to O[10-7].
An efficient hybrid method for stochastic reaction-diffusion biochemical systems with delay
NASA Astrophysics Data System (ADS)
Sayyidmousavi, Alireza; Ilie, Silvana
2017-12-01
Many chemical reactions, such as gene transcription and translation in living cells, need a certain time to finish once they are initiated. Simulating stochastic models of reaction-diffusion systems with delay can be computationally expensive. In the present paper, a novel hybrid algorithm is proposed to accelerate the stochastic simulation of delayed reaction-diffusion systems. The delayed reactions may be of consuming or non-consuming delay type. The algorithm is designed for moderately stiff systems in which the events can be partitioned into slow and fast subsets according to their propensities. The proposed algorithm is applied to three benchmark problems and the results are compared with those of the delayed Inhomogeneous Stochastic Simulation Algorithm. The numerical results show that the new hybrid algorithm achieves considerable speed-up in the run time and very good accuracy.
Variational data assimilation for the initial-value dynamo problem.
Li, Kuan; Jackson, Andrew; Livermore, Philip W
2011-11-01
The secular variation of the geomagnetic field as observed at the Earth's surface results from the complex magnetohydrodynamics taking place in the fluid core of the Earth. One way to analyze this system is to use the data in concert with an underlying dynamical model of the system through the technique of variational data assimilation, in much the same way as is employed in meteorology and oceanography. The aim is to discover an optimal initial condition that leads to a trajectory of the system in agreement with observations. Taking the Earth's core to be an electrically conducting fluid sphere in which convection takes place, we develop the continuous adjoint forms of the magnetohydrodynamic equations that govern the dynamical system together with the corresponding numerical algorithms appropriate for a fully spectral method. These adjoint equations enable a computationally fast iterative improvement of the initial condition that determines the system evolution. The initial condition depends on the three dimensional form of quantities such as the magnetic field in the entire sphere. For the magnetic field, conservation of the divergence-free condition for the adjoint magnetic field requires the introduction of an adjoint pressure term satisfying a zero boundary condition. We thus find that solving the forward and adjoint dynamo system requires different numerical algorithms. In this paper, an efficient algorithm for numerically solving this problem is developed and tested for two illustrative problems in a whole sphere: one is a kinematic problem with prescribed velocity field, and the second is associated with the Hall-effect dynamo, exhibiting considerable nonlinearity. The algorithm exhibits reliable numerical accuracy and stability. Using both the analytical and the numerical techniques of this paper, the adjoint dynamo system can be solved directly with the same order of computational complexity as that required to solve the forward problem. These numerical techniques form a foundation for ultimate application to observations of the geomagnetic field over the time scale of centuries.
Gong, Mali; Yuan, Yanyang; Li, Chen; Yan, Ping; Zhang, Haitao; Liao, Suying
2007-03-19
A model based on propagation-rate equations with consideration of transverse gain distribution is built up to describe the transverse mode competition in strongly pumped multimode fiber lasers and amplifiers. An approximate practical numerical algorithm by multilayer method is presented. Based on the model and the numerical algorithm, the behaviors of multitransverse mode competition are demonstrated and individual transverse modes power distributions of output are simulated numerically for both fiber lasers and amplifiers under various conditions.
Chaudhry, Jehanzeb Hameed; Estep, Don; Tavener, Simon; Carey, Varis; Sandelin, Jeff
2016-01-01
We consider numerical methods for initial value problems that employ a two stage approach consisting of solution on a relatively coarse discretization followed by solution on a relatively fine discretization. Examples include adaptive error control, parallel-in-time solution schemes, and efficient solution of adjoint problems for computing a posteriori error estimates. We describe a general formulation of two stage computations then perform a general a posteriori error analysis based on computable residuals and solution of an adjoint problem. The analysis accommodates various variations in the two stage computation and in formulation of the adjoint problems. We apply the analysis to compute "dual-weighted" a posteriori error estimates, to develop novel algorithms for efficient solution that take into account cancellation of error, and to the Parareal Algorithm. We test the various results using several numerical examples.
Simulation of two-dimensional turbulent flows in a rotating annulus
NASA Astrophysics Data System (ADS)
Storey, Brian D.
2004-05-01
Rotating water tank experiments have been used to study fundamental processes of atmospheric and geophysical turbulence in a controlled laboratory setting. When these tanks are undergoing strong rotation the forced turbulent flow becomes highly two dimensional along the axis of rotation. An efficient numerical method has been developed for simulating the forced quasi-geostrophic equations in an annular geometry to model current laboratory experiments. The algorithm employs a spectral method with Fourier series and Chebyshev polynomials as basis functions. The algorithm has been implemented on a parallel architecture to allow modelling of a wide range of spatial scales over long integration times. This paper describes the derivation of the model equations, numerical method, testing and performance of the algorithm. Results provide reasonable agreement with the experimental data, indicating that such computations can be used as a predictive tool to design future experiments.
NASA Astrophysics Data System (ADS)
Zhang, Zhen; Chen, Siqing; Zheng, Huadong; Sun, Tao; Yu, Yingjie; Gao, Hongyue; Asundi, Anand K.
2017-06-01
Computer holography has made a notably progress in recent years. The point-based method and slice-based method are chief calculation algorithms for generating holograms in holographic display. Although both two methods are validated numerically and optically, the differences of the imaging quality of these methods have not been specifically analyzed. In this paper, we analyze the imaging quality of computer-generated phase holograms generated by point-based Fresnel zone plates (PB-FZP), point-based Fresnel diffraction algorithm (PB-FDA) and slice-based Fresnel diffraction algorithm (SB-FDA). The calculation formula and hologram generation with three methods are demonstrated. In order to suppress the speckle noise, sequential phase-only holograms are generated in our work. The results of reconstructed images numerically and experimentally are also exhibited. By comparing the imaging quality, the merits and drawbacks with three methods are analyzed. Conclusions are given by us finally.
Magnetometer bias determination and attitude determination for near-earth spacecraft
NASA Technical Reports Server (NTRS)
Lerner, G. M.; Shuster, M. D.
1979-01-01
A simple linear-regression algorithm is used to determine simultaneously magnetometer biases, misalignments, and scale factor corrections, as well as the dependence of the measured magnetic field on magnetic control systems. This algorithm has been applied to data from the Seasat-1 and the Atmosphere Explorer Mission-1/Heat Capacity Mapping Mission (AEM-1/HCMM) spacecraft. Results show that complete inflight calibration as described here can improve significantly the accuracy of attitude solutions obtained from magnetometer measurements. This report discusses the difficulties involved in obtaining attitude information from three-axis magnetometers, briefly derives the calibration algorithm, and presents numerical results for the Seasat-1 and AEM-1/HCMM spacecraft.
Symbolic Processing Combined with Model-Based Reasoning
NASA Technical Reports Server (NTRS)
James, Mark
2009-01-01
A computer program for the detection of present and prediction of future discrete states of a complex, real-time engineering system utilizes a combination of symbolic processing and numerical model-based reasoning. One of the biggest weaknesses of a purely symbolic approach is that it enables prediction of only future discrete states while missing all unmodeled states or leading to incorrect identification of an unmodeled state as a modeled one. A purely numerical approach is based on a combination of statistical methods and mathematical models of the applicable physics and necessitates development of a complete model to the level of fidelity required for prediction. In addition, a purely numerical approach does not afford the ability to qualify its results without some form of symbolic processing. The present software implements numerical algorithms to detect unmodeled events and symbolic algorithms to predict expected behavior, correlate the expected behavior with the unmodeled events, and interpret the results in order to predict future discrete states. The approach embodied in this software differs from that of the BEAM methodology (aspects of which have been discussed in several prior NASA Tech Briefs articles), which provides for prediction of future measurements in the continuous-data domain.
NASA Technical Reports Server (NTRS)
Dongarra, Jack
1998-01-01
This exploratory study initiated our inquiry into algorithms and applications that would benefit by latency tolerant approach to algorithm building, including the construction of new algorithms where appropriate. In a multithreaded execution, when a processor reaches a point where remote memory access is necessary, the request is sent out on the network and a context--switch occurs to a new thread of computation. This effectively masks a long and unpredictable latency due to remote loads, thereby providing tolerance to remote access latency. We began to develop standards to profile various algorithm and application parameters, such as the degree of parallelism, granularity, precision, instruction set mix, interprocessor communication, latency etc. These tools will continue to develop and evolve as the Information Power Grid environment matures. To provide a richer context for this research, the project also focused on issues of fault-tolerance and computation migration of numerical algorithms and software. During the initial phase we tried to increase our understanding of the bottlenecks in single processor performance. Our work began by developing an approach for the automatic generation and optimization of numerical software for processors with deep memory hierarchies and pipelined functional units. Based on the results we achieved in this study we are planning to study other architectures of interest, including development of cost models, and developing code generators appropriate to these architectures.
PROCESS SIMULATION OF COLD PRESSING OF ARMSTRONG CP-Ti POWDERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabau, Adrian S; Gorti, Sarma B; Peter, William H
A computational methodology is presented for the process simulation of cold pressing of Armstrong CP-Ti Powders. The computational model was implemented in the commercial finite element program ABAQUSTM. Since the powder deformation and consolidation is governed by specific pressure-dependent constitutive equations, several solution algorithms were developed for the ABAQUS user material subroutine, UMAT. The solution algorithms were developed for computing the plastic strain increments based on an implicit integration of the nonlinear yield function, flow rule, and hardening equations that describe the evolution of the state variables. Since ABAQUS requires the use of a full Newton-Raphson algorithm for the stress-strainmore » equations, an algorithm for obtaining the tangent/linearization moduli, which is consistent with the return-mapping algorithm, also was developed. Numerical simulation results are presented for the cold compaction of the Ti powders. Several simulations were conducted for cylindrical samples with different aspect ratios. The numerical simulation results showed that for the disk samples, the minimum von Mises stress was approximately half than its maximum value. The hydrostatic stress distribution exhibits a variation smaller than that of the von Mises stress. It was found that for the disk and cylinder samples the minimum hydrostatic stresses were approximately 23 and 50% less than its maximum value, respectively. It was also found that the minimum density was noticeably affected by the sample height.« less
NASA Astrophysics Data System (ADS)
Taitano, W. T.; Chacón, L.; Simakov, A. N.; Molvig, K.
2015-09-01
In this study, we demonstrate a fully implicit algorithm for the multi-species, multidimensional Rosenbluth-Fokker-Planck equation which is exactly mass-, momentum-, and energy-conserving, and which preserves positivity. Unlike most earlier studies, we base our development on the Rosenbluth (rather than Landau) form of the Fokker-Planck collision operator, which reduces complexity while allowing for an optimal fully implicit treatment. Our discrete conservation strategy employs nonlinear constraints that force the continuum symmetries of the collision operator to be satisfied upon discretization. We converge the resulting nonlinear system iteratively using Jacobian-free Newton-Krylov methods, effectively preconditioned with multigrid methods for efficiency. Single- and multi-species numerical examples demonstrate the advertised accuracy properties of the scheme, and the superior algorithmic performance of our approach. In particular, the discretization approach is numerically shown to be second-order accurate in time and velocity space and to exhibit manifestly positive entropy production. That is, H-theorem behavior is indicated for all the examples we have tested. The solution approach is demonstrated to scale optimally with respect to grid refinement (with CPU time growing linearly with the number of mesh points), and timestep (showing very weak dependence of CPU time with time-step size). As a result, the proposed algorithm delivers several orders-of-magnitude speedup vs. explicit algorithms.
A numerically-stable algorithm for calibrating single six-ports for national microwave reflectometry
NASA Astrophysics Data System (ADS)
Hodgetts, T. E.
1990-11-01
A full description and analysis of the numerically stable algorithm currently used for calibrating single six ports or multi states for national microwave reflectometry, employing as standards four one port devices having known voltage reflection coefficients, is given.
NASA Astrophysics Data System (ADS)
Wang, Pan; Zhang, Yi; Yan, Dong
2018-05-01
Ant Colony Algorithm (ACA) is a powerful and effective algorithm for solving the combination optimization problem. Moreover, it was successfully used in traveling salesman problem (TSP). But it is easy to prematurely converge to the non-global optimal solution and the calculation time is too long. To overcome those shortcomings, a new method is presented-An improved self-adaptive Ant Colony Algorithm based on genetic strategy. The proposed method adopts adaptive strategy to adjust the parameters dynamically. And new crossover operation and inversion operation in genetic strategy was used in this method. We also make an experiment using the well-known data in TSPLIB. The experiment results show that the performance of the proposed method is better than the basic Ant Colony Algorithm and some improved ACA in both the result and the convergence time. The numerical results obtained also show that the proposed optimization method can achieve results close to the theoretical best known solutions at present.
Automatic extraction of numeric strings in unconstrained handwritten document images
NASA Astrophysics Data System (ADS)
Haji, M. Mehdi; Bui, Tien D.; Suen, Ching Y.
2011-01-01
Numeric strings such as identification numbers carry vital pieces of information in documents. In this paper, we present a novel algorithm for automatic extraction of numeric strings in unconstrained handwritten document images. The algorithm has two main phases: pruning and verification. In the pruning phase, the algorithm first performs a new segment-merge procedure on each text line, and then using a new regularity measure, it prunes all sequences of characters that are unlikely to be numeric strings. The segment-merge procedure is composed of two modules: a new explicit character segmentation algorithm which is based on analysis of skeletal graphs and a merging algorithm which is based on graph partitioning. All the candidate sequences that pass the pruning phase are sent to a recognition-based verification phase for the final decision. The recognition is based on a coarse-to-fine approach using probabilistic RBF networks. We developed our algorithm for the processing of real-world documents where letters and digits may be connected or broken in a document. The effectiveness of the proposed approach is shown by extensive experiments done on a real-world database of 607 documents which contains handwritten, machine-printed and mixed documents with different types of layouts and levels of noise.
NASA Astrophysics Data System (ADS)
Wang, Jinting; Lu, Liqiao; Zhu, Fei
2018-01-01
Finite element (FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations (RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy, of numerical integrations in solving FE numerical substructure in RTHSs. First, sparse matrix storage schemes are adopted to decrease the computational time of FE numerical substructure. In this way, the task execution time (TET) decreases such that the scale of the numerical substructure model increases. Subsequently, several commonly used explicit numerical integration algorithms, including the central difference method (CDM), the Newmark explicit method, the Chang method and the Gui-λ method, are comprehensively compared to evaluate their computational time in solving FE numerical substructure. CDM is better than the other explicit integration algorithms when the damping matrix is diagonal, while the Gui-λ (λ = 4) method is advantageous when the damping matrix is non-diagonal. Finally, the effect of time delay on the computational accuracy of RTHSs is investigated by simulating structure-foundation systems. Simulation results show that the influences of time delay on the displacement response become obvious with the mass ratio increasing, and delay compensation methods may reduce the relative error of the displacement peak value to less than 5% even under the large time-step and large time delay.
A Novel Quantum-Behaved Bat Algorithm with Mean Best Position Directed for Numerical Optimization
Zhu, Wenyong; Liu, Zijuan; Duan, Qingyan; Cao, Long
2016-01-01
This paper proposes a novel quantum-behaved bat algorithm with the direction of mean best position (QMBA). In QMBA, the position of each bat is mainly updated by the current optimal solution in the early stage of searching and in the late search it also depends on the mean best position which can enhance the convergence speed of the algorithm. During the process of searching, quantum behavior of bats is introduced which is beneficial to jump out of local optimal solution and make the quantum-behaved bats not easily fall into local optimal solution, and it has better ability to adapt complex environment. Meanwhile, QMBA makes good use of statistical information of best position which bats had experienced to generate better quality solutions. This approach not only inherits the characteristic of quick convergence, simplicity, and easy implementation of original bat algorithm, but also increases the diversity of population and improves the accuracy of solution. Twenty-four benchmark test functions are tested and compared with other variant bat algorithms for numerical optimization the simulation results show that this approach is simple and efficient and can achieve a more accurate solution. PMID:27293424
The use of image analysis in evaluation of the fibers orientation in Wood-polymer composites (WPC)
NASA Astrophysics Data System (ADS)
Bednarz, Arkadiusz; Frącz, Wiesław; Janowski, Grzegorz
2016-12-01
In this paper a novel way of a digital analysis of fibers orientation with a five-step algorithmwas presented. In the study, a molded piece with a dumbbell shape prepared from wood-polymer composite was used. The injection molding process was examined in experimental and numerical way. Based on the developed mathematical algorithm, a significant compliance of fiber orientation in different areas of the molded piece was obtained. The main aim of thisworkwas fiber orientation analysis of wood-polymer composites. An additional goal of thiswork was the comparison of the results reached in numerical analysis with results obtained from an experiment. The results of this research were important for the scientific and also from the practical point of view. In future works the prepared algorithm could be used to reach optimal parameters of the injection molding process.
Global Artificial Boundary Conditions for Computation of External Flow Problems with Propulsive Jets
NASA Technical Reports Server (NTRS)
Tsynkov, Semyon; Abarbanel, Saul; Nordstrom, Jan; Ryabenkii, Viktor; Vatsa, Veer
1998-01-01
We propose new global artificial boundary conditions (ABC's) for computation of flows with propulsive jets. The algorithm is based on application of the difference potentials method (DPM). Previously, similar boundary conditions have been implemented for calculation of external compressible viscous flows around finite bodies. The proposed modification substantially extends the applicability range of the DPM-based algorithm. In the paper, we present the general formulation of the problem, describe our numerical methodology, and discuss the corresponding computational results. The particular configuration that we analyze is a slender three-dimensional body with boat-tail geometry and supersonic jet exhaust in a subsonic external flow under zero angle of attack. Similarly to the results obtained earlier for the flows around airfoils and wings, current results for the jet flow case corroborate the superiority of the DPM-based ABC's over standard local methodologies from the standpoints of accuracy, overall numerical performance, and robustness.
Compliance matrices for cracked bodies
NASA Technical Reports Server (NTRS)
Ballarini, R.
1986-01-01
An algorithm is developed to construct the compliance matrix for a cracked solid in the integral-equation formulation of two-dimensional linear-elastic fracture mechanics. The integral equation is reduced to a system of algebraic equations for unknown values of the dislocation-density function at discrete points on the interval from -1 to 1, using the numerical procedure described by Gerasoulis (1982). Sample numerical results are presented, and it is suggested that the algorithm is especially useful in cases where iterative solutions are required; e.g., models of fiber-reinforced concrete, rocks, or ceramics where microcracking, fiber bridging, and other nonlinear effects are treated as nonlinear springs along the crack surfaces (Ballarini et al., 1984).
NASA Astrophysics Data System (ADS)
Jiang, Daijun; Li, Zhiyuan; Liu, Yikan; Yamamoto, Masahiro
2017-05-01
In this paper, we first establish a weak unique continuation property for time-fractional diffusion-advection equations. The proof is mainly based on the Laplace transform and the unique continuation properties for elliptic and parabolic equations. The result is weaker than its parabolic counterpart in the sense that we additionally impose the homogeneous boundary condition. As a direct application, we prove the uniqueness for an inverse problem on determining the spatial component in the source term by interior measurements. Numerically, we reformulate our inverse source problem as an optimization problem, and propose an iterative thresholding algorithm. Finally, several numerical experiments are presented to show the accuracy and efficiency of the algorithm.
An improved flux-split algorithm applied to hypersonic flows in chemical equilibrium
NASA Technical Reports Server (NTRS)
Palmer, Grant
1988-01-01
An explicit, finite-difference, shock-capturing numerical algorithm is presented and applied to hypersonic flows assumed to be in thermochemical equilibrium. Real-gas chemistry is either loosely coupled to the gasdynamics by way of a Gibbs free energy minimization package or fully coupled using species mass conservation equations with finite-rate chemical reactions. A scheme is developed that maintains stability in the explicit, finite-rate formulation while allowing relatively high time steps. The codes use flux vector splitting to difference the inviscid fluxes and employ real-gas corrections to viscosity and thermal conductivity. Numerical results are compared against existing ballistic range and flight data. Flows about complex geometries are also computed.
A time-accurate algorithm for chemical non-equilibrium viscous flows at all speeds
NASA Technical Reports Server (NTRS)
Shuen, J.-S.; Chen, K.-H.; Choi, Y.
1992-01-01
A time-accurate, coupled solution procedure is described for the chemical nonequilibrium Navier-Stokes equations over a wide range of Mach numbers. This method employs the strong conservation form of the governing equations, but uses primitive variables as unknowns. Real gas properties and equilibrium chemistry are considered. Numerical tests include steady convergent-divergent nozzle flows with air dissociation/recombination chemistry, dump combustor flows with n-pentane-air chemistry, nonreacting flow in a model double annular combustor, and nonreacting unsteady driven cavity flows. Numerical results for both the steady and unsteady flows demonstrate the efficiency and robustness of the present algorithm for Mach numbers ranging from the incompressible limit to supersonic speeds.
Real-time feedback control of the plasma density profile on ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Mlynek, A.; Reich, M.; Giannone, L.; Treutterer, W.; Behler, K.; Blank, H.; Buhler, A.; Cole, R.; Eixenberger, H.; Fischer, R.; Lohs, A.; Lüddecke, K.; Merkel, R.; Neu, G.; Ryter, F.; Zasche, D.; ASDEX Upgrade Team
2011-04-01
The spatial distribution of density in a fusion experiment is of significant importance as it enters in numerous analyses and contributes to the fusion performance. The reconstruction of the density profile is therefore commonly done in offline data analysis. In this paper, we present an algorithm which allows for density profile reconstruction from the data of the submillimetre interferometer and the magnetic equilibrium in real-time. We compare the obtained results to the profiles yielded by a numerically more complex offline algorithm. Furthermore, we present recent ASDEX Upgrade experiments in which we used the real-time density profile for active feedback control of the shape of the density profile.
Grid adaption based on modified anisotropic diffusion equations formulated in the parametic domain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagmeijer, R.
1994-11-01
A new grid-adaption algorithm for problems in computational fluid dynamics is presented. The basic equations are derived from a variational problem formulated in the parametric domain of the mapping that defines the existing grid. Modification of the basic equations provides desirable properties in boundary layers. The resulting modified anisotropic diffusion equations are solved for the computational coordinates as functions of the parametric coordinates and these functions are numerically inverted. Numerical examples show that the algorithm is robust, that shocks and boundary layers are well-resolved on the adapted grid, and that the flow solution becomes a globally smooth function of themore » computational coordinates.« less
Li, Ying; Shi, Xiaohu; Liang, Yanchun; Xie, Juan; Zhang, Yu; Ma, Qin
2017-01-21
RNAs have been found to carry diverse functionalities in nature. Inferring the similarity between two given RNAs is a fundamental step to understand and interpret their functional relationship. The majority of functional RNAs show conserved secondary structures, rather than sequence conservation. Those algorithms relying on sequence-based features usually have limitations in their prediction performance. Hence, integrating RNA structure features is very critical for RNA analysis. Existing algorithms mainly fall into two categories: alignment-based and alignment-free. The alignment-free algorithms of RNA comparison usually have lower time complexity than alignment-based algorithms. An alignment-free RNA comparison algorithm was proposed, in which novel numerical representations RNA-TVcurve (triple vector curve representation) of RNA sequence and corresponding secondary structure features are provided. Then a multi-scale similarity score of two given RNAs was designed based on wavelet decomposition of their numerical representation. In support of RNA mutation and phylogenetic analysis, a web server (RNA-TVcurve) was designed based on this alignment-free RNA comparison algorithm. It provides three functional modules: 1) visualization of numerical representation of RNA secondary structure; 2) detection of single-point mutation based on secondary structure; and 3) comparison of pairwise and multiple RNA secondary structures. The inputs of the web server require RNA primary sequences, while corresponding secondary structures are optional. For the primary sequences alone, the web server can compute the secondary structures using free energy minimization algorithm in terms of RNAfold tool from Vienna RNA package. RNA-TVcurve is the first integrated web server, based on an alignment-free method, to deliver a suite of RNA analysis functions, including visualization, mutation analysis and multiple RNAs structure comparison. The comparison results with two popular RNA comparison tools, RNApdist and RNAdistance, showcased that RNA-TVcurve can efficiently capture subtle relationships among RNAs for mutation detection and non-coding RNA classification. All the relevant results were shown in an intuitive graphical manner, and can be freely downloaded from this server. RNA-TVcurve, along with test examples and detailed documents, are available at: http://ml.jlu.edu.cn/tvcurve/ .
Performance of the split-symbol moments SNR estimator in the presence of inter-symbol interference
NASA Technical Reports Server (NTRS)
Shah, B.; Hinedi, S.
1989-01-01
The Split-Symbol Moments Estimator (SSME) is an algorithm that is designed to estimate symbol signal-to-noise ratio (SNR) in the presence of additive white Gaussian noise (AWGN). The performance of the SSME algorithm in band-limited channels is examined. The effects of the resulting inter-symbol interference (ISI) are quantified. All results obtained are in closed form and can be easily evaluated numerically for performance prediction purposes. Furthermore, they are validated through digital simulations.
Chaotic Teaching-Learning-Based Optimization with Lévy Flight for Global Numerical Optimization.
He, Xiangzhu; Huang, Jida; Rao, Yunqing; Gao, Liang
2016-01-01
Recently, teaching-learning-based optimization (TLBO), as one of the emerging nature-inspired heuristic algorithms, has attracted increasing attention. In order to enhance its convergence rate and prevent it from getting stuck in local optima, a novel metaheuristic has been developed in this paper, where particular characteristics of the chaos mechanism and Lévy flight are introduced to the basic framework of TLBO. The new algorithm is tested on several large-scale nonlinear benchmark functions with different characteristics and compared with other methods. Experimental results show that the proposed algorithm outperforms other algorithms and achieves a satisfactory improvement over TLBO.
Parameter estimation for chaotic systems using improved bird swarm algorithm
NASA Astrophysics Data System (ADS)
Xu, Chuangbiao; Yang, Renhuan
2017-12-01
Parameter estimation of chaotic systems is an important problem in nonlinear science and has aroused increasing interest of many research fields, which can be basically reduced to a multidimensional optimization problem. In this paper, an improved boundary bird swarm algorithm is used to estimate the parameters of chaotic systems. This algorithm can combine the good global convergence and robustness of the bird swarm algorithm and the exploitation capability of improved boundary learning strategy. Experiments are conducted on the Lorenz system and the coupling motor system. Numerical simulation results reveal the effectiveness and with desirable performance of IBBSA for parameter estimation of chaotic systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Youngjoon, E-mail: hongy@uic.edu; Nicholls, David P., E-mail: davidn@uic.edu
The accurate numerical simulation of linear waves interacting with periodic layered media is a crucial capability in engineering applications. In this contribution we study the stable and high-order accurate numerical simulation of the interaction of linear, time-harmonic waves with a periodic, triply layered medium with irregular interfaces. In contrast with volumetric approaches, High-Order Perturbation of Surfaces (HOPS) algorithms are inexpensive interfacial methods which rapidly and recursively estimate scattering returns by perturbation of the interface shape. In comparison with Boundary Integral/Element Methods, the stable HOPS algorithm we describe here does not require specialized quadrature rules, periodization strategies, or the solution ofmore » dense non-symmetric positive definite linear systems. In addition, the algorithm is provably stable as opposed to other classical HOPS approaches. With numerical experiments we show the remarkable efficiency, fidelity, and accuracy one can achieve with an implementation of this algorithm.« less
Numerical Simulation of Partially-Coherent Broadband Optical Imaging Using the FDTD Method
Çapoğlu, İlker R.; White, Craig A.; Rogers, Jeremy D.; Subramanian, Hariharan; Taflove, Allen; Backman, Vadim
2012-01-01
Rigorous numerical modeling of optical systems has attracted interest in diverse research areas ranging from biophotonics to photolithography. We report the full-vector electromagnetic numerical simulation of a broadband optical imaging system with partially-coherent and unpolarized illumination. The scattering of light from the sample is calculated using the finite-difference time-domain (FDTD) numerical method. Geometrical optics principles are applied to the scattered light to obtain the intensity distribution at the image plane. Multilayered object spaces are also supported by our algorithm. For the first time, numerical FDTD calculations are directly compared to and shown to agree well with broadband experimental microscopy results. PMID:21540939
An Improved Neutron Transport Algorithm for HZETRN
NASA Technical Reports Server (NTRS)
Slaba, Tony C.; Blattnig, Steve R.; Clowdsley, Martha S.; Walker, Steven A.; Badavi, Francis F.
2010-01-01
Long term human presence in space requires the inclusion of radiation constraints in mission planning and the design of shielding materials, structures, and vehicles. In this paper, the numerical error associated with energy discretization in HZETRN is addressed. An inadequate numerical integration scheme in the transport algorithm is shown to produce large errors in the low energy portion of the neutron and light ion fluence spectra. It is further shown that the errors result from the narrow energy domain of the neutron elastic cross section spectral distributions, and that an extremely fine energy grid is required to resolve the problem under the current formulation. Two numerical methods are developed to provide adequate resolution in the energy domain and more accurately resolve the neutron elastic interactions. Convergence testing is completed by running the code for various environments and shielding materials with various energy grids to ensure stability of the newly implemented method.
NASA Astrophysics Data System (ADS)
Radchenko, P. A.; Batuev, S. P.; Radchenko, A. V.; Plevkov, V. S.
2015-11-01
This paper presents results of numerical simulation of interaction between aircraft Boeing 747-400 and protective shell of nuclear power plant. The shell is presented as complex multilayered cellular structure comprising layers of concrete and fiber concrete bonded with steel trusses. Numerical simulation was held three-dimensionally using the author's algorithm and software taking into account algorithms for building grids of complex geometric objects and parallel computations. The dynamics of stress-strain state and fracture of structure were studied. Destruction is described using two-stage model that allows taking into account anisotropy of elastic and strength properties of concrete and fiber concrete. It is shown that wave processes initiate destruction of shell cellular structure—cells start to destruct in unloading wave, originating after output of compression wave to the free surfaces of cells.
On the solution of the Helmholtz equation on regions with corners.
Serkh, Kirill; Rokhlin, Vladimir
2016-08-16
In this paper we solve several boundary value problems for the Helmholtz equation on polygonal domains. We observe that when the problems are formulated as the boundary integral equations of potential theory, the solutions are representable by series of appropriately chosen Bessel functions. In addition to being analytically perspicuous, the resulting expressions lend themselves to the construction of accurate and efficient numerical algorithms. The results are illustrated by a number of numerical examples.
On the solution of the Helmholtz equation on regions with corners
Serkh, Kirill; Rokhlin, Vladimir
2016-01-01
In this paper we solve several boundary value problems for the Helmholtz equation on polygonal domains. We observe that when the problems are formulated as the boundary integral equations of potential theory, the solutions are representable by series of appropriately chosen Bessel functions. In addition to being analytically perspicuous, the resulting expressions lend themselves to the construction of accurate and efficient numerical algorithms. The results are illustrated by a number of numerical examples. PMID:27482110
Ghosh, A
1988-08-01
Lanczos and conjugate gradient algorithms are important in computational linear algebra. In this paper, a parallel pipelined realization of these algorithms on a ring of optical linear algebra processors is described. The flow of data is designed to minimize the idle times of the optical multiprocessor and the redundancy of computations. The effects of optical round-off errors on the solutions obtained by the optical Lanczos and conjugate gradient algorithms are analyzed, and it is shown that optical preconditioning can improve the accuracy of these algorithms substantially. Algorithms for optical preconditioning and results of numerical experiments on solving linear systems of equations arising from partial differential equations are discussed. Since the Lanczos algorithm is used mostly with sparse matrices, a folded storage scheme to represent sparse matrices on spatial light modulators is also described.
Tests of a Semi-Analytical Case 1 and Gelbstoff Case 2 SeaWiFS Algorithm with a Global Data Set
NASA Technical Reports Server (NTRS)
Carder, Kendall L.; Hawes, Steve K.; Lee, Zhongping
1997-01-01
A semi-analytical algorithm was tested with a total of 733 points of either unpackaged or packaged-pigment data, with corresponding algorithm parameters for each data type. The 'unpackaged' type consisted of data sets that were generally consistent with the Case 1 CZCS algorithm and other well calibrated data sets. The 'packaged' type consisted of data sets apparently containing somewhat more packaged pigments, requiring modification of the absorption parameters of the model consistent with the CalCOFI study area. This resulted in two equally divided data sets. A more thorough scrutiny of these and other data sets using a semianalytical model requires improved knowledge of the phytoplankton and gelbstoff of the specific environment studied. Since the semi-analytical algorithm is dependent upon 4 spectral channels including the 412 nm channel, while most other algorithms are not, a means of testing data sets for consistency was sought. A numerical filter was developed to classify data sets into the above classes. The filter uses reflectance ratios, which can be determined from space. The sensitivity of such numerical filters to measurement resulting from atmospheric correction and sensor noise errors requires further study. The semi-analytical algorithm performed superbly on each of the data sets after classification, resulting in RMS1 errors of 0.107 and 0.121, respectively, for the unpackaged and packaged data-set classes, with little bias and slopes near 1.0. In combination, the RMS1 performance was 0.114. While these numbers appear rather sterling, one must bear in mind what mis-classification does to the results. Using an average or compromise parameterization on the modified global data set yielded an RMS1 error of 0.171, while using the unpackaged parameterization on the global evaluation data set yielded an RMS1 error of 0.284. So, without classification, the algorithm performs better globally using the average parameters than it does using the unpackaged parameters. Finally, the effects of even more extreme pigment packaging must be examined in order to improve algorithm performance at high latitudes. Note, however, that the North Sea and Mississippi River plume studies contributed data to the packaged and unpackaged classess, respectively, with little effect on algorithm performance. This suggests that gelbstoff-rich Case 2 waters do not seriously degrade performance of the semi-analytical algorithm.
An Effective Hybrid Evolutionary Algorithm for Solving the Numerical Optimization Problems
NASA Astrophysics Data System (ADS)
Qian, Xiaohong; Wang, Xumei; Su, Yonghong; He, Liu
2018-04-01
There are many different algorithms for solving complex optimization problems. Each algorithm has been applied successfully in solving some optimization problems, but not efficiently in other problems. In this paper the Cauchy mutation and the multi-parent hybrid operator are combined to propose a hybrid evolutionary algorithm based on the communication (Mixed Evolutionary Algorithm based on Communication), hereinafter referred to as CMEA. The basic idea of the CMEA algorithm is that the initial population is divided into two subpopulations. Cauchy mutation operators and multiple paternal crossover operators are used to perform two subpopulations parallelly to evolve recursively until the downtime conditions are met. While subpopulation is reorganized, the individual is exchanged together with information. The algorithm flow is given and the performance of the algorithm is compared using a number of standard test functions. Simulation results have shown that this algorithm converges significantly faster than FEP (Fast Evolutionary Programming) algorithm, has good performance in global convergence and stability and is superior to other compared algorithms.
Discrete size optimization of steel trusses using a refined big bang-big crunch algorithm
NASA Astrophysics Data System (ADS)
Hasançebi, O.; Kazemzadeh Azad, S.
2014-01-01
This article presents a methodology that provides a method for design optimization of steel truss structures based on a refined big bang-big crunch (BB-BC) algorithm. It is shown that a standard formulation of the BB-BC algorithm occasionally falls short of producing acceptable solutions to problems from discrete size optimum design of steel trusses. A reformulation of the algorithm is proposed and implemented for design optimization of various discrete truss structures according to American Institute of Steel Construction Allowable Stress Design (AISC-ASD) specifications. Furthermore, the performance of the proposed BB-BC algorithm is compared to its standard version as well as other well-known metaheuristic techniques. The numerical results confirm the efficiency of the proposed algorithm in practical design optimization of truss structures.
Fidelity-Based Ant Colony Algorithm with Q-learning of Quantum System
NASA Astrophysics Data System (ADS)
Liao, Qin; Guo, Ying; Tu, Yifeng; Zhang, Hang
2018-03-01
Quantum ant colony algorithm (ACA) has potential applications in quantum information processing, such as solutions of traveling salesman problem, zero-one knapsack problem, robot route planning problem, and so on. To shorten the search time of the ACA, we suggest the fidelity-based ant colony algorithm (FACA) for the control of quantum system. Motivated by structure of the Q-learning algorithm, we demonstrate the combination of a FACA with the Q-learning algorithm and suggest the design of a fidelity-based ant colony algorithm with the Q-learning to improve the performance of the FACA in a spin-1/2 quantum system. The numeric simulation results show that the FACA with the Q-learning can efficiently avoid trapping into local optimal policies and increase the speed of convergence process of quantum system.
Fidelity-Based Ant Colony Algorithm with Q-learning of Quantum System
NASA Astrophysics Data System (ADS)
Liao, Qin; Guo, Ying; Tu, Yifeng; Zhang, Hang
2017-12-01
Quantum ant colony algorithm (ACA) has potential applications in quantum information processing, such as solutions of traveling salesman problem, zero-one knapsack problem, robot route planning problem, and so on. To shorten the search time of the ACA, we suggest the fidelity-based ant colony algorithm (FACA) for the control of quantum system. Motivated by structure of the Q-learning algorithm, we demonstrate the combination of a FACA with the Q-learning algorithm and suggest the design of a fidelity-based ant colony algorithm with the Q-learning to improve the performance of the FACA in a spin-1/2 quantum system. The numeric simulation results show that the FACA with the Q-learning can efficiently avoid trapping into local optimal policies and increase the speed of convergence process of quantum system.
NASA Astrophysics Data System (ADS)
Zhang, Ye; Gong, Rongfang; Cheng, Xiaoliang; Gulliksson, Mårten
2018-06-01
This study considers the inverse source problem for elliptic partial differential equations with both Dirichlet and Neumann boundary data. The unknown source term is to be determined by additional boundary conditions. Unlike the existing methods found in the literature, which usually employ the first-order in time gradient-like system (such as the steepest descent methods) for numerically solving the regularized optimization problem with a fixed regularization parameter, we propose a novel method with a second-order in time dissipative gradient-like system and a dynamical selected regularization parameter. A damped symplectic scheme is proposed for the numerical solution. Theoretical analysis is given for both the continuous model and the numerical algorithm. Several numerical examples are provided to show the robustness of the proposed algorithm.
A new improved artificial bee colony algorithm for ship hull form optimization
NASA Astrophysics Data System (ADS)
Huang, Fuxin; Wang, Lijue; Yang, Chi
2016-04-01
The artificial bee colony (ABC) algorithm is a relatively new swarm intelligence-based optimization algorithm. Its simplicity of implementation, relatively few parameter settings and promising optimization capability make it widely used in different fields. However, it has problems of slow convergence due to its solution search equation. Here, a new solution search equation based on a combination of the elite solution pool and the block perturbation scheme is proposed to improve the performance of the algorithm. In addition, two different solution search equations are used by employed bees and onlooker bees to balance the exploration and exploitation of the algorithm. The developed algorithm is validated by a set of well-known numerical benchmark functions. It is then applied to optimize two ship hull forms with minimum resistance. The tested results show that the proposed new improved ABC algorithm can outperform the ABC algorithm in most of the tested problems.
A reconstruction method for cone-beam differential x-ray phase-contrast computed tomography.
Fu, Jian; Velroyen, Astrid; Tan, Renbo; Zhang, Junwei; Chen, Liyuan; Tapfer, Arne; Bech, Martin; Pfeiffer, Franz
2012-09-10
Most existing differential phase-contrast computed tomography (DPC-CT) approaches are based on three kinds of scanning geometries, described by parallel-beam, fan-beam and cone-beam. Due to the potential of compact imaging systems with magnified spatial resolution, cone-beam DPC-CT has attracted significant interest. In this paper, we report a reconstruction method based on a back-projection filtration (BPF) algorithm for cone-beam DPC-CT. Due to the differential nature of phase contrast projections, the algorithm restrains from differentiation of the projection data prior to back-projection, unlike BPF algorithms commonly used for absorption-based CT data. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured with a three-grating interferometer and a micro-focus x-ray tube source. Moreover, the numerical simulation and experimental results demonstrate that the proposed method can deal with several classes of truncated cone-beam datasets. We believe that this feature is of particular interest for future medical cone-beam phase-contrast CT imaging applications.
NASA Technical Reports Server (NTRS)
Taylor, Robert P.; Luck, Rogelio
1995-01-01
The view factors which are used in diffuse-gray radiation enclosure calculations are often computed by approximate numerical integrations. These approximately calculated view factors will usually not satisfy the important physical constraints of reciprocity and closure. In this paper several view-factor rectification algorithms are reviewed and a rectification algorithm based on a least-squares numerical filtering scheme is proposed with both weighted and unweighted classes. A Monte-Carlo investigation is undertaken to study the propagation of view-factor and surface-area uncertainties into the heat transfer results of the diffuse-gray enclosure calculations. It is found that the weighted least-squares algorithm is vastly superior to the other rectification schemes for the reduction of the heat-flux sensitivities to view-factor uncertainties. In a sample problem, which has proven to be very sensitive to uncertainties in view factor, the heat transfer calculations with weighted least-squares rectified view factors are very good with an original view-factor matrix computed to only one-digit accuracy. All of the algorithms had roughly equivalent effects on the reduction in sensitivity to area uncertainty in this case study.
Efficient Numerical Diagonalization of Hermitian 3 × 3 Matrices
NASA Astrophysics Data System (ADS)
Kopp, Joachim
A very common problem in science is the numerical diagonalization of symmetric or hermitian 3 × 3 matrices. Since standard "black box" packages may be too inefficient if the number of matrices is large, we study several alternatives. We consider optimized implementations of the Jacobi, QL, and Cuppen algorithms and compare them with an alytical method relying on Cardano's formula for the eigenvalues and on vector cross products for the eigenvectors. Jacobi is the most accurate, but also the slowest method, while QL and Cuppen are good general purpose algorithms. The analytical algorithm outperforms the others by more than a factor of 2, but becomes inaccurate or may even fail completely if the matrix entries differ greatly in magnitude. This can mostly be circumvented by using a hybrid method, which falls back to QL if conditions are such that the analytical calculation might become too inaccurate. For all algorithms, we give an overview of the underlying mathematical ideas, and present detailed benchmark results. C and Fortran implementations of our code are available for download from .
Development of an upwind, finite-volume code with finite-rate chemistry
NASA Technical Reports Server (NTRS)
Molvik, Gregory A.
1995-01-01
Under this grant, two numerical algorithms were developed to predict the flow of viscous, hypersonic, chemically reacting gases over three-dimensional bodies. Both algorithms take advantage of the benefits of upwind differencing, total variation diminishing techniques and of a finite-volume framework, but obtain their solution in two separate manners. The first algorithm is a zonal, time-marching scheme, and is generally used to obtain solutions in the subsonic portions of the flow field. The second algorithm is a much less expensive, space-marching scheme and can be used for the computation of the larger, supersonic portion of the flow field. Both codes compute their interface fluxes with a temporal Riemann solver and the resulting schemes are made fully implicit including the chemical source terms and boundary conditions. Strong coupling is used between the fluid dynamic, chemical and turbulence equations. These codes have been validated on numerous hypersonic test cases and have provided excellent comparison with existing data. This report summarizes the research that took place from August 1,1994 to January 1, 1995.
NASA Technical Reports Server (NTRS)
Childs, A. G.
1971-01-01
A discrete steepest ascent method which allows controls which are not piecewise constant (for example, it allows all continuous piecewise linear controls) was derived for the solution of optimal programming problems. This method is based on the continuous steepest ascent method of Bryson and Denham and new concepts introduced by Kelley and Denham in their development of compatible adjoints for taking into account the effects of numerical integration. The method is a generalization of the algorithm suggested by Canon, Cullum, and Polak with the details of the gradient computation given. The discrete method was compared with the continuous method for an aerodynamics problem for which an analytic solution is given by Pontryagin's maximum principle, and numerical results are presented. The discrete method converges more rapidly than the continuous method at first, but then for some undetermined reason, loses its exponential convergence rate. A comparsion was also made for the algorithm of Canon, Cullum, and Polak using piecewise constant controls. This algorithm is very competitive with the continuous algorithm.
NASA Technical Reports Server (NTRS)
Baker, A. J.; Orzechowski, J. A.
1980-01-01
A theoretical analysis is presented yielding sets of partial differential equations for determination of turbulent aerodynamic flowfields in the vicinity of an airfoil trailing edge. A four phase interaction algorithm is derived to complete the analysis. Following input, the first computational phase is an elementary viscous corrected two dimensional potential flow solution yielding an estimate of the inviscid-flow induced pressure distribution. Phase C involves solution of the turbulent two dimensional boundary layer equations over the trailing edge, with transition to a two dimensional parabolic Navier-Stokes equation system describing the near-wake merging of the upper and lower surface boundary layers. An iteration provides refinement of the potential flow induced pressure coupling to the viscous flow solutions. The final phase is a complete two dimensional Navier-Stokes analysis of the wake flow in the vicinity of a blunt-bases airfoil. A finite element numerical algorithm is presented which is applicable to solution of all partial differential equation sets of inviscid-viscous aerodynamic interaction algorithm. Numerical results are discussed.
Parallel language constructs for tensor product computations on loosely coupled architectures
NASA Technical Reports Server (NTRS)
Mehrotra, Piyush; Van Rosendale, John
1989-01-01
A set of language primitives designed to allow the specification of parallel numerical algorithms at a higher level is described. The authors focus on tensor product array computations, a simple but important class of numerical algorithms. They consider first the problem of programming one-dimensional kernel routines, such as parallel tridiagonal solvers, and then look at how such parallel kernels can be combined to form parallel tensor product algorithms.
A study on directional resistivity logging-while-drilling based on self-adaptive hp-FEM
NASA Astrophysics Data System (ADS)
Liu, Dejun; Li, Hui; Zhang, Yingying; Zhu, Gengxue; Ai, Qinghui
2014-12-01
Numerical simulation of resistivity logging-while-drilling (LWD) tool response provides guidance for designing novel logging instruments and interpreting real-time logging data. In this paper, based on self-adaptive hp-finite element method (hp-FEM) algorithm, we analyze LWD tool response against model parameters and briefly illustrate geosteering capabilities of directional resistivity LWD. Numerical simulation results indicate that the change of source spacing is of obvious influence on the investigation depth and detecting precision of resistivity LWD tool; the change of frequency can improve the resolution of low-resistivity formation and high-resistivity formation. The simulation results also indicate that the self-adaptive hp-FEM algorithm has good convergence speed and calculation accuracy to guide the geologic steering drilling and it is suitable to simulate the response of resistivity LWD tools.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pebay, Philippe; Terriberry, Timothy B.; Kolla, Hemanth
Formulas for incremental or parallel computation of second order central moments have long been known, and recent extensions of these formulas to univariate and multivariate moments of arbitrary order have been developed. Formulas such as these, are of key importance in scenarios where incremental results are required and in parallel and distributed systems where communication costs are high. We survey these recent results, and improve them with arbitrary-order, numerically stable one-pass formulas which we further extend with weighted and compound variants. We also develop a generalized correction factor for standard two-pass algorithms that enables the maintenance of accuracy over nearlymore » the full representable range of the input, avoiding the need for extended-precision arithmetic. We then empirically examine algorithm correctness for pairwise update formulas up to order four as well as condition number and relative error bounds for eight different central moment formulas, each up to degree six, to address the trade-offs between numerical accuracy and speed of the various algorithms. Finally, we demonstrate the use of the most elaborate among the above mentioned formulas, with the utilization of the compound moments for a practical large-scale scientific application.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pebay, Philippe; Terriberry, Timothy B.; Kolla, Hemanth
Formulas for incremental or parallel computation of second order central moments have long been known, and recent extensions of these formulas to univariate and multivariate moments of arbitrary order have been developed. Such formulas are of key importance in scenarios where incremental results are required and in parallel and distributed systems where communication costs are high. We survey these recent results, and improve them with arbitrary-order, numerically stable one-pass formulas which we further extend with weighted and compound variants. We also develop a generalized correction factor for standard two-pass algorithms that enables the maintenance of accuracy over nearly the fullmore » representable range of the input, avoiding the need for extended-precision arithmetic. We then empirically examine algorithm correctness for pairwise update formulas up to order four as well as condition number and relative error bounds for eight different central moment formulas, each up to degree six, to address the trade-offs between numerical accuracy and speed of the various algorithms. Finally, we demonstrate the use of the most elaborate among the above mentioned formulas, with the utilization of the compound moments for a practical large-scale scientific application.« less
NASA Astrophysics Data System (ADS)
Maginnis, P. A.; West, M.; Dullerud, G. E.
2016-10-01
We propose an algorithm to accelerate Monte Carlo simulation for a broad class of stochastic processes. Specifically, the class of countable-state, discrete-time Markov chains driven by additive Poisson noise, or lattice discrete-time Markov chains. In particular, this class includes simulation of reaction networks via the tau-leaping algorithm. To produce the speedup, we simulate pairs of fair-draw trajectories that are negatively correlated. Thus, when averaged, these paths produce an unbiased Monte Carlo estimator that has reduced variance and, therefore, reduced error. Numerical results for three example systems included in this work demonstrate two to four orders of magnitude reduction of mean-square error. The numerical examples were chosen to illustrate different application areas and levels of system complexity. The areas are: gene expression (affine state-dependent rates), aerosol particle coagulation with emission and human immunodeficiency virus infection (both with nonlinear state-dependent rates). Our algorithm views the system dynamics as a ;black-box;, i.e., we only require control of pseudorandom number generator inputs. As a result, typical codes can be retrofitted with our algorithm using only minor changes. We prove several analytical results. Among these, we characterize the relationship of covariances between paths in the general nonlinear state-dependent intensity rates case, and we prove variance reduction of mean estimators in the special case of affine intensity rates.
Three numerical algorithms were compared to provide a solution of a radiative transfer equation (RTE) for plane albedo (hemispherical reflectance) in semi-infinite one-dimensional plane-parallel layer. Algorithms were based on the invariant imbedding method and two different var...
Understanding disordered systems through numerical simulation and algorithm development
NASA Astrophysics Data System (ADS)
Sweeney, Sean Michael
Disordered systems arise in many physical contexts. Not all matter is uniform, and impurities or heterogeneities can be modeled by fixed random disorder. Numerous complex networks also possess fixed disorder, leading to applications in transportation systems, telecommunications, social networks, and epidemic modeling, to name a few. Due to their random nature and power law critical behavior, disordered systems are difficult to study analytically. Numerical simulation can help overcome this hurdle by allowing for the rapid computation of system states. In order to get precise statistics and extrapolate to the thermodynamic limit, large systems must be studied over many realizations. Thus, innovative algorithm development is essential in order reduce memory or running time requirements of simulations. This thesis presents a review of disordered systems, as well as a thorough study of two particular systems through numerical simulation, algorithm development and optimization, and careful statistical analysis of scaling properties. Chapter 1 provides a thorough overview of disordered systems, the history of their study in the physics community, and the development of techniques used to study them. Topics of quenched disorder, phase transitions, the renormalization group, criticality, and scale invariance are discussed. Several prominent models of disordered systems are also explained. Lastly, analysis techniques used in studying disordered systems are covered. In Chapter 2, minimal spanning trees on critical percolation clusters are studied, motivated in part by an analytic perturbation expansion by Jackson and Read that I check against numerical calculations. This system has a direct mapping to the ground state of the strongly disordered spin glass. We compute the path length fractal dimension of these trees in dimensions d = {2, 3, 4, 5} and find our results to be compatible with the analytic results suggested by Jackson and Read. In Chapter 3, the random bond Ising ferromagnet is studied, which is especially useful since it serves as a prototype for more complicated disordered systems such as the random field Ising model and spin glasses. We investigate the effect that changing boundary spins has on the locations of domain walls in the interior of the random ferromagnet system. We provide an analytic proof that ground state domain walls in the two dimensional system are decomposable, and we map these domain walls to a shortest paths problem. By implementing a multiple-source shortest paths algorithm developed by Philip Klein, we are able to efficiently probe domain wall locations for all possible configurations of boundary spins. We consider lattices with uncorrelated dis- order, as well as disorder that is spatially correlated according to a power law. We present numerical results for the scaling exponent governing the probability that a domain wall can be induced that passes through a particular location in the system's interior, and we compare these results to previous results on the directed polymer problem.
NASA Astrophysics Data System (ADS)
Sun, Xiuqiao; Wang, Jian
2018-07-01
Freeway service patrol (FSP), is considered to be an effective method for incident management and can help transportation agency decision-makers alter existing route coverage and fleet allocation. This paper investigates the FSP problem of patrol routing design and fleet allocation, with the objective of minimizing the overall average incident response time. While the simulated annealing (SA) algorithm and its improvements have been applied to solve this problem, they often become trapped in local optimal solution. Moreover, the issue of searching efficiency remains to be further addressed. In this paper, we employ the genetic algorithm (GA) and SA to solve the FSP problem. To maintain population diversity and avoid premature convergence, niche strategy is incorporated into the traditional genetic algorithm. We also employ elitist strategy to speed up the convergence. Numerical experiments have been conducted with the help of the Sioux Falls network. Results show that the GA slightly outperforms the dual-based greedy (DBG) algorithm, the very large-scale neighborhood searching (VLNS) algorithm, the SA algorithm and the scenario algorithm.
Adaptive recurrence quantum entanglement distillation for two-Kraus-operator channels
NASA Astrophysics Data System (ADS)
Ruan, Liangzhong; Dai, Wenhan; Win, Moe Z.
2018-05-01
Quantum entanglement serves as a valuable resource for many important quantum operations. A pair of entangled qubits can be shared between two agents by first preparing a maximally entangled qubit pair at one agent, and then sending one of the qubits to the other agent through a quantum channel. In this process, the deterioration of entanglement is inevitable since the noise inherent in the channel contaminates the qubit. To address this challenge, various quantum entanglement distillation (QED) algorithms have been developed. Among them, recurrence algorithms have advantages in terms of implementability and robustness. However, the efficiency of recurrence QED algorithms has not been investigated thoroughly in the literature. This paper puts forth two recurrence QED algorithms that adapt to the quantum channel to tackle the efficiency issue. The proposed algorithms have guaranteed convergence for quantum channels with two Kraus operators, which include phase-damping and amplitude-damping channels. Analytical results show that the convergence speed of these algorithms is improved from linear to quadratic and one of the algorithms achieves the optimal speed. Numerical results confirm that the proposed algorithms significantly improve the efficiency of QED.
Elements of an algorithm for optimizing a parameter-structural neural network
NASA Astrophysics Data System (ADS)
Mrówczyńska, Maria
2016-06-01
The field of processing information provided by measurement results is one of the most important components of geodetic technologies. The dynamic development of this field improves classic algorithms for numerical calculations in the aspect of analytical solutions that are difficult to achieve. Algorithms based on artificial intelligence in the form of artificial neural networks, including the topology of connections between neurons have become an important instrument connected to the problem of processing and modelling processes. This concept results from the integration of neural networks and parameter optimization methods and makes it possible to avoid the necessity to arbitrarily define the structure of a network. This kind of extension of the training process is exemplified by the algorithm called the Group Method of Data Handling (GMDH), which belongs to the class of evolutionary algorithms. The article presents a GMDH type network, used for modelling deformations of the geometrical axis of a steel chimney during its operation.
Random sequential adsorption of cubes
NASA Astrophysics Data System (ADS)
Cieśla, Michał; Kubala, Piotr
2018-01-01
Random packings built of cubes are studied numerically using a random sequential adsorption algorithm. To compare the obtained results with previous reports, three different models of cube orientation sampling were used. Also, three different cube-cube intersection algorithms were tested to find the most efficient one. The study focuses on the mean saturated packing fraction as well as kinetics of packing growth. Microstructural properties of packings were analyzed using density autocorrelation function.
Numerical Simulation of 3-D Supersonic Viscous Flow in an Experimental MHD Channel
NASA Technical Reports Server (NTRS)
Kato, Hiromasa; Tannehill, John C.; Gupta, Sumeet; Mehta, Unmeel B.
2004-01-01
The 3-D supersonic viscous flow in an experimental MHD channel has been numerically simulated. The experimental MHD channel is currently in operation at NASA Ames Research Center. The channel contains a nozzle section, a center section, and an accelerator section where magnetic and electric fields can be imposed on the flow. In recent tests, velocity increases of up to 40% have been achieved in the accelerator section. The flow in the channel is numerically computed using a new 3-D parabolized Navier-Stokes (PNS) algorithm that has been developed to efficiently compute MHD flows in the low magnetic Reynolds number regime. The MHD effects are modeled by introducing source terms into the PNS equations which can then be solved in a very e5uent manner. To account for upstream (elliptic) effects, the flowfield can be computed using multiple streamwise sweeps with an iterated PNS algorithm. The new algorithm has been used to compute two test cases that match the experimental conditions. In both cases, magnetic and electric fields are applied to the flow. The computed results are in good agreement with the available experimental data.
Numerical Analysis of Ginzburg-Landau Models for Superconductivity.
NASA Astrophysics Data System (ADS)
Coskun, Erhan
Thin film conventional, as well as High T _{c} superconductors of various geometric shapes placed under both uniform and variable strength magnetic field are studied using the universially accepted macroscopic Ginzburg-Landau model. A series of new theoretical results concerning the properties of solution is presented using the semi -discrete time-dependent Ginzburg-Landau equations, staggered grid setup and natural boundary conditions. Efficient serial algorithms including a novel adaptive algorithm is developed and successfully implemented for solving the governing highly nonlinear parabolic system of equations. Refinement technique used in the adaptive algorithm is based on modified forward Euler method which was also developed by us to ease the restriction on time step size for stability considerations. Stability and convergence properties of forward and modified forward Euler schemes are studied. Numerical simulations of various recent physical experiments of technological importance such as vortes motion and pinning are performed. The numerical code for solving time-dependent Ginzburg-Landau equations is parallelized using BlockComm -Chameleon and PCN. The parallel code was run on the distributed memory multiprocessors intel iPSC/860, IBM-SP1 and cluster of Sun Sparc workstations, all located at Mathematics and Computer Science Division, Argonne National Laboratory.
Multiresolution representation and numerical algorithms: A brief review
NASA Technical Reports Server (NTRS)
Harten, Amiram
1994-01-01
In this paper we review recent developments in techniques to represent data in terms of its local scale components. These techniques enable us to obtain data compression by eliminating scale-coefficients which are sufficiently small. This capability for data compression can be used to reduce the cost of many numerical solution algorithms by either applying it to the numerical solution operator in order to get an approximate sparse representation, or by applying it to the numerical solution itself in order to reduce the number of quantities that need to be computed.
A Parallel Compact Multi-Dimensional Numerical Algorithm with Aeroacoustics Applications
NASA Technical Reports Server (NTRS)
Povitsky, Alex; Morris, Philip J.
1999-01-01
In this study we propose a novel method to parallelize high-order compact numerical algorithms for the solution of three-dimensional PDEs (Partial Differential Equations) in a space-time domain. For this numerical integration most of the computer time is spent in computation of spatial derivatives at each stage of the Runge-Kutta temporal update. The most efficient direct method to compute spatial derivatives on a serial computer is a version of Gaussian elimination for narrow linear banded systems known as the Thomas algorithm. In a straightforward pipelined implementation of the Thomas algorithm processors are idle due to the forward and backward recurrences of the Thomas algorithm. To utilize processors during this time, we propose to use them for either non-local data independent computations, solving lines in the next spatial direction, or local data-dependent computations by the Runge-Kutta method. To achieve this goal, control of processor communication and computations by a static schedule is adopted. Thus, our parallel code is driven by a communication and computation schedule instead of the usual "creative, programming" approach. The obtained parallelization speed-up of the novel algorithm is about twice as much as that for the standard pipelined algorithm and close to that for the explicit DRP algorithm.
Analysis of data mining classification by comparison of C4.5 and ID algorithms
NASA Astrophysics Data System (ADS)
Sudrajat, R.; Irianingsih, I.; Krisnawan, D.
2017-01-01
The rapid development of information technology, triggered by the intensive use of information technology. For example, data mining widely used in investment. Many techniques that can be used assisting in investment, the method that used for classification is decision tree. Decision tree has a variety of algorithms, such as C4.5 and ID3. Both algorithms can generate different models for similar data sets and different accuracy. C4.5 and ID3 algorithms with discrete data provide accuracy are 87.16% and 99.83% and C4.5 algorithm with numerical data is 89.69%. C4.5 and ID3 algorithms with discrete data provides 520 and 598 customers and C4.5 algorithm with numerical data is 546 customers. From the analysis of the both algorithm it can classified quite well because error rate less than 15%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walstrom, Peter Lowell
A numerical algorithm for computing the field components B r and B z and their r and z derivatives with open boundaries in cylindrical coordinates for circular current loops is described. An algorithm for computing the vector potential is also described. For the convenience of the reader, derivations of the final expressions from their defining integrals are given in detail, since their derivations (especially for the field derivatives) are not all easily found in textbooks. Numerical calculations are based on evaluation of complete elliptic integrals using the Bulirsch algorithm cel. Since cel can evaluate complete elliptic integrals of a fairlymore » general type, in some cases the elliptic integrals can be evaluated without first reducing them to forms containing standard Legendre forms. The algorithms avoid the numerical difficulties that many of the textbook solutions have for points near the axis because of explicit factors of 1=r or 1=r 2 in the some of the expressions.« less
Research on the control of large space structures
NASA Technical Reports Server (NTRS)
Denman, E. D.
1983-01-01
The research effort on the control of large space structures at the University of Houston has concentrated on the mathematical theory of finite-element models; identification of the mass, damping, and stiffness matrix; assignment of damping to structures; and decoupling of structure dynamics. The objective of the work has been and will continue to be the development of efficient numerical algorithms for analysis, control, and identification of large space structures. The major consideration in the development of the algorithms has been the large number of equations that must be handled by the algorithm as well as sensitivity of the algorithms to numerical errors.
On the impact of communication complexity in the design of parallel numerical algorithms
NASA Technical Reports Server (NTRS)
Gannon, D.; Vanrosendale, J.
1984-01-01
This paper describes two models of the cost of data movement in parallel numerical algorithms. One model is a generalization of an approach due to Hockney, and is suitable for shared memory multiprocessors where each processor has vector capabilities. The other model is applicable to highly parallel nonshared memory MIMD systems. In the second model, algorithm performance is characterized in terms of the communication network design. Techniques used in VLSI complexity theory are also brought in, and algorithm independent upper bounds on system performance are derived for several problems that are important to scientific computation.
Xiao, Li; Cai, Qin; Li, Zhilin; Zhao, Hongkai; Luo, Ray
2014-11-25
A multi-scale framework is proposed for more realistic molecular dynamics simulations in continuum solvent models by coupling a molecular mechanics treatment of solute with a fluid mechanics treatment of solvent. This article reports our initial efforts to formulate the physical concepts necessary for coupling the two mechanics and develop a 3D numerical algorithm to simulate the solvent fluid via the Navier-Stokes equation. The numerical algorithm was validated with multiple test cases. The validation shows that the algorithm is effective and stable, with observed accuracy consistent with our design.
Effects of high-order correlations on personalized recommendations for bipartite networks
NASA Astrophysics Data System (ADS)
Liu, Jian-Guo; Zhou, Tao; Che, Hong-An; Wang, Bing-Hong; Zhang, Yi-Cheng
2010-02-01
In this paper, we introduce a modified collaborative filtering (MCF) algorithm, which has remarkably higher accuracy than the standard collaborative filtering. In the MCF, instead of the cosine similarity index, the user-user correlations are obtained by a diffusion process. Furthermore, by considering the second-order correlations, we design an effective algorithm that depresses the influence of mainstream preferences. Simulation results show that the algorithmic accuracy, measured by the average ranking score, is further improved by 20.45% and 33.25% in the optimal cases of MovieLens and Netflix data. More importantly, the optimal value λ depends approximately monotonously on the sparsity of the training set. Given a real system, we could estimate the optimal parameter according to the data sparsity, which makes this algorithm easy to be applied. In addition, two significant criteria of algorithmic performance, diversity and popularity, are also taken into account. Numerical results show that as the sparsity increases, the algorithm considering the second-order correlation can outperform the MCF simultaneously in all three criteria.
NASA Astrophysics Data System (ADS)
Unaldi, Numan; Asari, Vijayan K.; Rahman, Zia-ur
2009-05-01
Recently we proposed a wavelet-based dynamic range compression algorithm to improve the visual quality of digital images captured from high dynamic range scenes with non-uniform lighting conditions. The fast image enhancement algorithm that provides dynamic range compression, while preserving the local contrast and tonal rendition, is also a good candidate for real time video processing applications. Although the colors of the enhanced images produced by the proposed algorithm are consistent with the colors of the original image, the proposed algorithm fails to produce color constant results for some "pathological" scenes that have very strong spectral characteristics in a single band. The linear color restoration process is the main reason for this drawback. Hence, a different approach is required for the final color restoration process. In this paper the latest version of the proposed algorithm, which deals with this issue is presented. The results obtained by applying the algorithm to numerous natural images show strong robustness and high image quality.
NASA Astrophysics Data System (ADS)
Doha, E. H.; Bhrawy, A. H.; Abdelkawy, M. A.; Van Gorder, Robert A.
2014-03-01
A Jacobi-Gauss-Lobatto collocation (J-GL-C) method, used in combination with the implicit Runge-Kutta method of fourth order, is proposed as a numerical algorithm for the approximation of solutions to nonlinear Schrödinger equations (NLSE) with initial-boundary data in 1+1 dimensions. Our procedure is implemented in two successive steps. In the first one, the J-GL-C is employed for approximating the functional dependence on the spatial variable, using (N-1) nodes of the Jacobi-Gauss-Lobatto interpolation which depends upon two general Jacobi parameters. The resulting equations together with the two-point boundary conditions induce a system of 2(N-1) first-order ordinary differential equations (ODEs) in time. In the second step, the implicit Runge-Kutta method of fourth order is applied to solve this temporal system. The proposed J-GL-C method, used in combination with the implicit Runge-Kutta method of fourth order, is employed to obtain highly accurate numerical approximations to four types of NLSE, including the attractive and repulsive NLSE and a Gross-Pitaevskii equation with space-periodic potential. The numerical results obtained by this algorithm have been compared with various exact solutions in order to demonstrate the accuracy and efficiency of the proposed method. Indeed, for relatively few nodes used, the absolute error in our numerical solutions is sufficiently small.
Topological properties of the limited penetrable horizontal visibility graph family
NASA Astrophysics Data System (ADS)
Wang, Minggang; Vilela, André L. M.; Du, Ruijin; Zhao, Longfeng; Dong, Gaogao; Tian, Lixin; Stanley, H. Eugene
2018-05-01
The limited penetrable horizontal visibility graph algorithm was recently introduced to map time series in complex networks. In this work, we extend this algorithm to create a directed-limited penetrable horizontal visibility graph and an image-limited penetrable horizontal visibility graph. We define two algorithms and provide theoretical results on the topological properties of these graphs associated with different types of real-value series. We perform several numerical simulations to check the accuracy of our theoretical results. Finally, we present an application of the directed-limited penetrable horizontal visibility graph to measure real-value time series irreversibility and an application of the image-limited penetrable horizontal visibility graph that discriminates noise from chaos. We also propose a method to measure the systematic risk using the image-limited penetrable horizontal visibility graph, and the empirical results show the effectiveness of our proposed algorithms.
Numerical solution of the Hele-Shaw equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitaker, N.
1987-04-01
An algorithm is presented for approximating the motion of the interface between two immiscible fluids in a Hele-Shaw cell. The interface is represented by a set of volume fractions. We use the Simple Line Interface Calculation method along with the method of fractional steps to transport the interface. The equation of continuity leads to a Poisson equation for the pressure. The Poisson equation is discretized. Near the interface where the velocity field is discontinuous, the discretization is based on a weak formulation of the continuity equation. Interpolation is used on each side of the interface to increase the accuracy ofmore » the algorithm. The weak formulation as well as the interpolation are based on the computed volume fractions. This treatment of the interface is new. The discretized equations are solved by a modified conjugate gradient method. Surface tension is included and the curvature is computed through the use of osculating circles. For perturbations of small amplitude, a surprisingly good agreement is found between the numerical results and linearized perturbation theory. Numerical results are presented for the finite amplitude growth of unstable fingers. 62 refs., 13 figs.« less
Random element method for numerical modeling of diffusional processes
NASA Technical Reports Server (NTRS)
Ghoniem, A. F.; Oppenheim, A. K.
1982-01-01
The random element method is a generalization of the random vortex method that was developed for the numerical modeling of momentum transport processes as expressed in terms of the Navier-Stokes equations. The method is based on the concept that random walk, as exemplified by Brownian motion, is the stochastic manifestation of diffusional processes. The algorithm based on this method is grid-free and does not require the diffusion equation to be discritized over a mesh, it is thus devoid of numerical diffusion associated with finite difference methods. Moreover, the algorithm is self-adaptive in space and explicit in time, resulting in an improved numerical resolution of gradients as well as a simple and efficient computational procedure. The method is applied here to an assortment of problems of diffusion of momentum and energy in one-dimension as well as heat conduction in two-dimensions in order to assess its validity and accuracy. The numerical solutions obtained are found to be in good agreement with exact solution except for a statistical error introduced by using a finite number of elements, the error can be reduced by increasing the number of elements or by using ensemble averaging over a number of solutions.
Real gas flow fields about three dimensional configurations
NASA Technical Reports Server (NTRS)
Balakrishnan, A.; Lombard, C. K.; Davy, W. C.
1983-01-01
Real gas, inviscid supersonic flow fields over a three-dimensional configuration are determined using a factored implicit algorithm. Air in chemical equilibrium is considered and its local thermodynamic properties are computed by an equilibrium composition method. Numerical solutions are presented for both real and ideal gases at three different Mach numbers and at two different altitudes. Selected results are illustrated by contour plots and are also tabulated for future reference. Results obtained compare well with existing tabulated numerical solutions and hence validate the solution technique.
Optimized random phase only holograms.
Zea, Alejandro Velez; Barrera Ramirez, John Fredy; Torroba, Roberto
2018-02-15
We propose a simple and efficient technique capable of generating Fourier phase only holograms with a reconstruction quality similar to the results obtained with the Gerchberg-Saxton (G-S) algorithm. Our proposal is to use the traditional G-S algorithm to optimize a random phase pattern for the resolution, pixel size, and target size of the general optical system without any specific amplitude data. This produces an optimized random phase (ORAP), which is used for fast generation of phase only holograms of arbitrary amplitude targets. This ORAP needs to be generated only once for a given optical system, avoiding the need for costly iterative algorithms for each new target. We show numerical and experimental results confirming the validity of the proposal.
Wavelet Algorithms for Illumination Computations
NASA Astrophysics Data System (ADS)
Schroder, Peter
One of the core problems of computer graphics is the computation of the equilibrium distribution of light in a scene. This distribution is given as the solution to a Fredholm integral equation of the second kind involving an integral over all surfaces in the scene. In the general case such solutions can only be numerically approximated, and are generally costly to compute, due to the geometric complexity of typical computer graphics scenes. For this computation both Monte Carlo and finite element techniques (or hybrid approaches) are typically used. A simplified version of the illumination problem is known as radiosity, which assumes that all surfaces are diffuse reflectors. For this case hierarchical techniques, first introduced by Hanrahan et al. (32), have recently gained prominence. The hierarchical approaches lead to an asymptotic improvement when only finite precision is required. The resulting algorithms have cost proportional to O(k^2 + n) versus the usual O(n^2) (k is the number of input surfaces, n the number of finite elements into which the input surfaces are meshed). Similarly a hierarchical technique has been introduced for the more general radiance problem (which allows glossy reflectors) by Aupperle et al. (6). In this dissertation we show the equivalence of these hierarchical techniques to the use of a Haar wavelet basis in a general Galerkin framework. By so doing, we come to a deeper understanding of the properties of the numerical approximations used and are able to extend the hierarchical techniques to higher orders. In particular, we show the correspondence of the geometric arguments underlying hierarchical methods to the theory of Calderon-Zygmund operators and their sparse realization in wavelet bases. The resulting wavelet algorithms for radiosity and radiance are analyzed and numerical results achieved with our implementation are reported. We find that the resulting algorithms achieve smaller and smoother errors at equivalent work.
Standardized Radiation Shield Design Methods: 2005 HZETRN
NASA Technical Reports Server (NTRS)
Wilson, John W.; Tripathi, Ram K.; Badavi, Francis F.; Cucinotta, Francis A.
2006-01-01
Research committed by the Langley Research Center through 1995 resulting in the HZETRN code provides the current basis for shield design methods according to NASA STD-3000 (2005). With this new prominence, the database, basic numerical procedures, and algorithms are being re-examined with new methods of verification and validation being implemented to capture a well defined algorithm for engineering design processes to be used in this early development phase of the Bush initiative. This process provides the methodology to transform the 1995 HZETRN research code into the 2005 HZETRN engineering code to be available for these early design processes. In this paper, we will review the basic derivations including new corrections to the codes to insure improved numerical stability and provide benchmarks for code verification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krein, Gastao; Leme, Rafael R.; Woitek, Marcio
Traditional Monte Carlo simulations of QCD in the presence of a baryon chemical potential are plagued by the complex phase problem and new numerical approaches are necessary for studying the phase diagram of the theory. In this work we consider a Z{sub 3} Polyakov loop model for the deconfining phase transition in QCD and discuss how a flux representation of the model in terms of dimer and monomer variable solves the complex action problem. We present results of numerical simulations using a worm algorithm for the specific heat and two-point correlation function of Polyakov loops. Evidences of a first ordermore » deconfinement phase transition are discussed.« less
Dynamical analysis of the avian-human influenza epidemic model using the semi-analytical method
NASA Astrophysics Data System (ADS)
Jabbari, Azizeh; Kheiri, Hossein; Bekir, Ahmet
2015-03-01
In this work, we present a dynamic behavior of the avian-human influenza epidemic model by using efficient computational algorithm, namely the multistage differential transform method(MsDTM). The MsDTM is used here as an algorithm for approximating the solutions of the avian-human influenza epidemic model in a sequence of time intervals. In order to show the efficiency of the method, the obtained numerical results are compared with the fourth-order Runge-Kutta method (RK4M) and differential transform method(DTM) solutions. It is shown that the MsDTM has the advantage of giving an analytical form of the solution within each time interval which is not possible in purely numerical techniques like RK4M.
NASA Astrophysics Data System (ADS)
Bremer, James
2018-05-01
We describe a method for the numerical evaluation of normalized versions of the associated Legendre functions Pν- μ and Qν- μ of degrees 0 ≤ ν ≤ 1, 000, 000 and orders - ν ≤ μ ≤ ν for arguments in the interval (- 1 , 1). Our algorithm, which runs in time independent of ν and μ, is based on the fact that while the associated Legendre functions themselves are extremely expensive to represent via polynomial expansions, the logarithms of certain solutions of the differential equation defining them are not. We exploit this by numerically precomputing the logarithms of carefully chosen solutions of the associated Legendre differential equation and representing them via piecewise trivariate Chebyshev expansions. These precomputed expansions, which allow for the rapid evaluation of the associated Legendre functions over a large swath of parameter domain mentioned above, are supplemented with asymptotic and series expansions in order to cover it entirely. The results of numerical experiments demonstrating the efficacy of our approach are presented, and our code for evaluating the associated Legendre functions is publicly available.
QPSO-Based Adaptive DNA Computing Algorithm
Karakose, Mehmet; Cigdem, Ugur
2013-01-01
DNA (deoxyribonucleic acid) computing that is a new computation model based on DNA molecules for information storage has been increasingly used for optimization and data analysis in recent years. However, DNA computing algorithm has some limitations in terms of convergence speed, adaptability, and effectiveness. In this paper, a new approach for improvement of DNA computing is proposed. This new approach aims to perform DNA computing algorithm with adaptive parameters towards the desired goal using quantum-behaved particle swarm optimization (QPSO). Some contributions provided by the proposed QPSO based on adaptive DNA computing algorithm are as follows: (1) parameters of population size, crossover rate, maximum number of operations, enzyme and virus mutation rate, and fitness function of DNA computing algorithm are simultaneously tuned for adaptive process, (2) adaptive algorithm is performed using QPSO algorithm for goal-driven progress, faster operation, and flexibility in data, and (3) numerical realization of DNA computing algorithm with proposed approach is implemented in system identification. Two experiments with different systems were carried out to evaluate the performance of the proposed approach with comparative results. Experimental results obtained with Matlab and FPGA demonstrate ability to provide effective optimization, considerable convergence speed, and high accuracy according to DNA computing algorithm. PMID:23935409
An algorithm for the solution of dynamic linear programs
NASA Technical Reports Server (NTRS)
Psiaki, Mark L.
1989-01-01
The algorithm's objective is to efficiently solve Dynamic Linear Programs (DLP) by taking advantage of their special staircase structure. This algorithm constitutes a stepping stone to an improved algorithm for solving Dynamic Quadratic Programs, which, in turn, would make the nonlinear programming method of Successive Quadratic Programs more practical for solving trajectory optimization problems. The ultimate goal is to being trajectory optimization solution speeds into the realm of real-time control. The algorithm exploits the staircase nature of the large constraint matrix of the equality-constrained DLPs encountered when solving inequality-constrained DLPs by an active set approach. A numerically-stable, staircase QL factorization of the staircase constraint matrix is carried out starting from its last rows and columns. The resulting recursion is like the time-varying Riccati equation from multi-stage LQR theory. The resulting factorization increases the efficiency of all of the typical LP solution operations over that of a dense matrix LP code. At the same time numerical stability is ensured. The algorithm also takes advantage of dynamic programming ideas about the cost-to-go by relaxing active pseudo constraints in a backwards sweeping process. This further decreases the cost per update of the LP rank-1 updating procedure, although it may result in more changes of the active set that if pseudo constraints were relaxed in a non-stagewise fashion. The usual stability of closed-loop Linear/Quadratic optimally-controlled systems, if it carries over to strictly linear cost functions, implies that the saving due to reduced factor update effort may outweigh the cost of an increased number of updates. An aerospace example is presented in which a ground-to-ground rocket's distance is maximized. This example demonstrates the applicability of this class of algorithms to aerospace guidance. It also sheds light on the efficacy of the proposed pseudo constraint relaxation scheme.
Analytic reconstruction algorithms for triple-source CT with horizontal data truncation.
Chen, Ming; Yu, Hengyong
2015-10-01
This paper explores a triple-source imaging method with horizontal data truncation to enlarge the field of view (FOV) for big objects. The study is conducted by using theoretical analysis, mathematical deduction, and numerical simulations. The proposed algorithms are implemented in c + + and matlab. While the basic platform is constructed in matlab, the computationally intensive segments are coded in c + +, which are linked via a mex interface. A triple-source circular scanning configuration with horizontal data truncation is developed, where three pairs of x-ray sources and detectors are unevenly distributed on the same circle to cover the whole imaging object. For this triple-source configuration, a fan-beam filtered backprojection-type algorithm is derived for truncated full-scan projections without data rebinning. The algorithm is also extended for horizontally truncated half-scan projections and cone-beam projections in a Feldkamp-type framework. Using their method, the FOV is enlarged twofold to threefold to scan bigger objects with high speed and quality. The numerical simulation results confirm the correctness and effectiveness of the developed algorithms. The triple-source scanning configuration with horizontal data truncation cannot only keep most of the advantages of a traditional multisource system but also cover a larger FOV for big imaging objects. In addition, because the filtering is shift-invariant, the proposed algorithms are very fast and easily parallelized on graphic processing units.
A memetic optimization algorithm for multi-constrained multicast routing in ad hoc networks
Hammad, Karim; El Bakly, Ahmed M.
2018-01-01
A mobile ad hoc network is a conventional self-configuring network where the routing optimization problem—subject to various Quality-of-Service (QoS) constraints—represents a major challenge. Unlike previously proposed solutions, in this paper, we propose a memetic algorithm (MA) employing an adaptive mutation parameter, to solve the multicast routing problem with higher search ability and computational efficiency. The proposed algorithm utilizes an updated scheme, based on statistical analysis, to estimate the best values for all MA parameters and enhance MA performance. The numerical results show that the proposed MA improved the delay and jitter of the network, while reducing computational complexity as compared to existing algorithms. PMID:29509760
A memetic optimization algorithm for multi-constrained multicast routing in ad hoc networks.
Ramadan, Rahab M; Gasser, Safa M; El-Mahallawy, Mohamed S; Hammad, Karim; El Bakly, Ahmed M
2018-01-01
A mobile ad hoc network is a conventional self-configuring network where the routing optimization problem-subject to various Quality-of-Service (QoS) constraints-represents a major challenge. Unlike previously proposed solutions, in this paper, we propose a memetic algorithm (MA) employing an adaptive mutation parameter, to solve the multicast routing problem with higher search ability and computational efficiency. The proposed algorithm utilizes an updated scheme, based on statistical analysis, to estimate the best values for all MA parameters and enhance MA performance. The numerical results show that the proposed MA improved the delay and jitter of the network, while reducing computational complexity as compared to existing algorithms.
A New Adaptive H-Infinity Filtering Algorithm for the GPS/INS Integrated Navigation
Jiang, Chen; Zhang, Shu-Bi; Zhang, Qiu-Zhao
2016-01-01
The Kalman filter is an optimal estimator with numerous applications in technology, especially in systems with Gaussian distributed noise. Moreover, the adaptive Kalman filtering algorithms, based on the Kalman filter, can control the influence of dynamic model errors. In contrast to the adaptive Kalman filtering algorithms, the H-infinity filter is able to address the interference of the stochastic model by minimization of the worst-case estimation error. In this paper, a novel adaptive H-infinity filtering algorithm, which integrates the adaptive Kalman filter and the H-infinity filter in order to perform a comprehensive filtering algorithm, is presented. In the proposed algorithm, a robust estimation method is employed to control the influence of outliers. In order to verify the proposed algorithm, experiments with real data of the Global Positioning System (GPS) and Inertial Navigation System (INS) integrated navigation, were conducted. The experimental results have shown that the proposed algorithm has multiple advantages compared to the other filtering algorithms. PMID:27999361
A New Adaptive H-Infinity Filtering Algorithm for the GPS/INS Integrated Navigation.
Jiang, Chen; Zhang, Shu-Bi; Zhang, Qiu-Zhao
2016-12-19
The Kalman filter is an optimal estimator with numerous applications in technology, especially in systems with Gaussian distributed noise. Moreover, the adaptive Kalman filtering algorithms, based on the Kalman filter, can control the influence of dynamic model errors. In contrast to the adaptive Kalman filtering algorithms, the H-infinity filter is able to address the interference of the stochastic model by minimization of the worst-case estimation error. In this paper, a novel adaptive H-infinity filtering algorithm, which integrates the adaptive Kalman filter and the H-infinity filter in order to perform a comprehensive filtering algorithm, is presented. In the proposed algorithm, a robust estimation method is employed to control the influence of outliers. In order to verify the proposed algorithm, experiments with real data of the Global Positioning System (GPS) and Inertial Navigation System (INS) integrated navigation, were conducted. The experimental results have shown that the proposed algorithm has multiple advantages compared to the other filtering algorithms.
The Refinement-Tree Partition for Parallel Solution of Partial Differential Equations
Mitchell, William F.
1998-01-01
Dynamic load balancing is considered in the context of adaptive multilevel methods for partial differential equations on distributed memory multiprocessors. An approach that periodically repartitions the grid is taken. The important properties of a partitioning algorithm are presented and discussed in this context. A partitioning algorithm based on the refinement tree of the adaptive grid is presented and analyzed in terms of these properties. Theoretical and numerical results are given. PMID:28009355
The Refinement-Tree Partition for Parallel Solution of Partial Differential Equations.
Mitchell, William F
1998-01-01
Dynamic load balancing is considered in the context of adaptive multilevel methods for partial differential equations on distributed memory multiprocessors. An approach that periodically repartitions the grid is taken. The important properties of a partitioning algorithm are presented and discussed in this context. A partitioning algorithm based on the refinement tree of the adaptive grid is presented and analyzed in terms of these properties. Theoretical and numerical results are given.
Algorithms and a short description of the D1_Flow program for numerical modeling of one-dimensional steady-state flow in horizontally heterogeneous aquifers with uneven sloping bases are presented. The algorithms are based on the Dupuit-Forchheimer approximations. The program per...
Faster and More Accurate Transport Procedures for HZETRN
NASA Technical Reports Server (NTRS)
Slaba, Tony C.; Blattnig, Steve R.; Badavi, Francis F.
2010-01-01
Several aspects of code verification are examined for HZETRN. First, a detailed derivation of the numerical marching algorithms is given. Next, a new numerical method for light particle transport is presented, and improvements to the heavy ion transport algorithm are discussed. A summary of various coding errors is also given, and the impact of these errors on exposure quantities is shown. Finally, a coupled convergence study is conducted. From this study, it is shown that past efforts in quantifying the numerical error in HZETRN were hindered by single precision calculations and computational resources. It is also determined that almost all of the discretization error in HZETRN is caused by charged target fragments below 50 AMeV. Total discretization errors are given for the old and new algorithms, and the improved accuracy of the new numerical methods is demonstrated. Run time comparisons are given for three applications in which HZETRN is commonly used. The new algorithms are found to be almost 100 times faster for solar particle event simulations and almost 10 times faster for galactic cosmic ray simulations.
A Leap-Frog Discontinuous Galerkin Method for the Time-Domain Maxwell's Equations in Metamaterials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, J., Waters, J. W., Machorro, E. A.
2012-06-01
Numerical simulation of metamaterials play a very important role in the design of invisibility cloak, and sub-wavelength imaging. In this paper, we propose a leap-frog discontinuous Galerkin method to solve the time-dependent Maxwell’s equations in metamaterials. Conditional stability and error estimates are proved for the scheme. The proposed algorithm is implemented and numerical results supporting the analysis are provided.
Finite element analysis of wrinkling membranes
NASA Technical Reports Server (NTRS)
Miller, R. K.; Hedgepeth, J. M.; Weingarten, V. I.; Das, P.; Kahyai, S.
1984-01-01
The development of a nonlinear numerical algorithm for the analysis of stresses and displacements in partly wrinkled flat membranes, and its implementation on the SAP VII finite-element code are described. A comparison of numerical results with exact solutions of two benchmark problems reveals excellent agreement, with good convergence of the required iterative procedure. An exact solution of a problem involving axisymmetric deformations of a partly wrinkled shallow curved membrane is also reported.
On the Solution of Elliptic Partial Differential Equations on Regions with Corners
2015-07-09
In this report we investigate the solution of boundary value problems on polygonal domains for elliptic partial differential equations . We observe...that when the problems are formulated as the boundary integral equations of classical potential theory, the solutions are representable by series of...efficient numerical algorithms. The results are illustrated by a number of numerical examples. On the solution of elliptic partial differential equations on
NASA Technical Reports Server (NTRS)
Steger, J. L.; Caradonna, F. X.
1980-01-01
An implicit finite difference procedure is developed to solve the unsteady full potential equation in conservation law form. Computational efficiency is maintained by use of approximate factorization techniques. The numerical algorithm is first order in time and second order in space. A circulation model and difference equations are developed for lifting airfoils in unsteady flow; however, thin airfoil body boundary conditions have been used with stretching functions to simplify the development of the numerical algorithm.
Density-matrix-based algorithm for solving eigenvalue problems
NASA Astrophysics Data System (ADS)
Polizzi, Eric
2009-03-01
A fast and stable numerical algorithm for solving the symmetric eigenvalue problem is presented. The technique deviates fundamentally from the traditional Krylov subspace iteration based techniques (Arnoldi and Lanczos algorithms) or other Davidson-Jacobi techniques and takes its inspiration from the contour integration and density-matrix representation in quantum mechanics. It will be shown that this algorithm—named FEAST—exhibits high efficiency, robustness, accuracy, and scalability on parallel architectures. Examples from electronic structure calculations of carbon nanotubes are presented, and numerical performances and capabilities are discussed.
Modeling of turbulent separated flows for aerodynamic applications
NASA Technical Reports Server (NTRS)
Marvin, J. G.
1983-01-01
Steady, high speed, compressible separated flows modeled through numerical simulations resulting from solutions of the mass-averaged Navier-Stokes equations are reviewed. Emphasis is placed on benchmark flows that represent simplified (but realistic) aerodynamic phenomena. These include impinging shock waves, compression corners, glancing shock waves, trailing edge regions, and supersonic high angle of attack flows. A critical assessment of modeling capabilities is provided by comparing the numerical simulations with experiment. The importance of combining experiment, numerical algorithm, grid, and turbulence model to effectively develop this potentially powerful simulation technique is stressed.
A direct method for nonlinear ill-posed problems
NASA Astrophysics Data System (ADS)
Lakhal, A.
2018-02-01
We propose a direct method for solving nonlinear ill-posed problems in Banach-spaces. The method is based on a stable inversion formula we explicitly compute by applying techniques for analytic functions. Furthermore, we investigate the convergence and stability of the method and prove that the derived noniterative algorithm is a regularization. The inversion formula provides a systematic sensitivity analysis. The approach is applicable to a wide range of nonlinear ill-posed problems. We test the algorithm on a nonlinear problem of travel-time inversion in seismic tomography. Numerical results illustrate the robustness and efficiency of the algorithm.
Optimization of multicast optical networks with genetic algorithm
NASA Astrophysics Data System (ADS)
Lv, Bo; Mao, Xiangqiao; Zhang, Feng; Qin, Xi; Lu, Dan; Chen, Ming; Chen, Yong; Cao, Jihong; Jian, Shuisheng
2007-11-01
In this letter, aiming to obtain the best multicast performance of optical network in which the video conference information is carried by specified wavelength, we extend the solutions of matrix games with the network coding theory and devise a new method to solve the complex problems of multicast network switching. In addition, an experimental optical network has been testified with best switching strategies by employing the novel numerical solution designed with an effective way of genetic algorithm. The result shows that optimal solutions with genetic algorithm are accordance with the ones with the traditional fictitious play method.
Shortest path problem on a grid network with unordered intermediate points
NASA Astrophysics Data System (ADS)
Saw, Veekeong; Rahman, Amirah; Eng Ong, Wen
2017-10-01
We consider a shortest path problem with single cost factor on a grid network with unordered intermediate points. A two stage heuristic algorithm is proposed to find a feasible solution path within a reasonable amount of time. To evaluate the performance of the proposed algorithm, computational experiments are performed on grid maps of varying size and number of intermediate points. Preliminary results for the problem are reported. Numerical comparisons against brute forcing show that the proposed algorithm consistently yields solutions that are within 10% of the optimal solution and uses significantly less computation time.
Algorithm For Hypersonic Flow In Chemical Equilibrium
NASA Technical Reports Server (NTRS)
Palmer, Grant
1989-01-01
Implicit, finite-difference, shock-capturing algorithm calculates inviscid, hypersonic flows in chemical equilibrium. Implicit formulation chosen because overcomes limitation on mathematical stability encountered in explicit formulations. For dynamical portion of problem, Euler equations written in conservation-law form in Cartesian coordinate system for two-dimensional or axisymmetric flow. For chemical portion of problem, equilibrium state of gas at each point in computational grid determined by minimizing local Gibbs free energy, subject to local conservation of molecules, atoms, ions, and total enthalpy. Major advantage: resulting algorithm naturally stable and captures strong shocks without help of artificial-dissipation terms to damp out spurious numerical oscillations.
Homotopy Algorithm for Fixed Order Mixed H2/H(infinity) Design
NASA Technical Reports Server (NTRS)
Whorton, Mark; Buschek, Harald; Calise, Anthony J.
1996-01-01
Recent developments in the field of robust multivariable control have merged the theories of H-infinity and H-2 control. This mixed H-2/H-infinity compensator formulation allows design for nominal performance by H-2 norm minimization while guaranteeing robust stability to unstructured uncertainties by constraining the H-infinity norm. A key difficulty associated with mixed H-2/H-infinity compensation is compensator synthesis. A homotopy algorithm is presented for synthesis of fixed order mixed H-2/H-infinity compensators. Numerical results are presented for a four disk flexible structure to evaluate the efficiency of the algorithm.
Optimal pattern synthesis for speech recognition based on principal component analysis
NASA Astrophysics Data System (ADS)
Korsun, O. N.; Poliyev, A. V.
2018-02-01
The algorithm for building an optimal pattern for the purpose of automatic speech recognition, which increases the probability of correct recognition, is developed and presented in this work. The optimal pattern forming is based on the decomposition of an initial pattern to principal components, which enables to reduce the dimension of multi-parameter optimization problem. At the next step the training samples are introduced and the optimal estimates for principal components decomposition coefficients are obtained by a numeric parameter optimization algorithm. Finally, we consider the experiment results that show the improvement in speech recognition introduced by the proposed optimization algorithm.
A pheromone-rate-based analysis on the convergence time of ACO algorithm.
Huang, Han; Wu, Chun-Guo; Hao, Zhi-Feng
2009-08-01
Ant colony optimization (ACO) has widely been applied to solve combinatorial optimization problems in recent years. There are few studies, however, on its convergence time, which reflects how many iteration times ACO algorithms spend in converging to the optimal solution. Based on the absorbing Markov chain model, we analyze the ACO convergence time in this paper. First, we present a general result for the estimation of convergence time to reveal the relationship between convergence time and pheromone rate. This general result is then extended to a two-step analysis of the convergence time, which includes the following: 1) the iteration time that the pheromone rate spends on reaching the objective value and 2) the convergence time that is calculated with the objective pheromone rate in expectation. Furthermore, four brief ACO algorithms are investigated by using the proposed theoretical results as case studies. Finally, the conclusions of the case studies that the pheromone rate and its deviation determine the expected convergence time are numerically verified with the experiment results of four one-ant ACO algorithms and four ten-ant ACO algorithms.
NASA Astrophysics Data System (ADS)
Lu, Jianbo; Xi, Yugeng; Li, Dewei; Xu, Yuli; Gan, Zhongxue
2018-01-01
A common objective of model predictive control (MPC) design is the large initial feasible region, low online computational burden as well as satisfactory control performance of the resulting algorithm. It is well known that interpolation-based MPC can achieve a favourable trade-off among these different aspects. However, the existing results are usually based on fixed prediction scenarios, which inevitably limits the performance of the obtained algorithms. So by replacing the fixed prediction scenarios with the time-varying multi-step prediction scenarios, this paper provides a new insight into improvement of the existing MPC designs. The adopted control law is a combination of predetermined multi-step feedback control laws, based on which two MPC algorithms with guaranteed recursive feasibility and asymptotic stability are presented. The efficacy of the proposed algorithms is illustrated by a numerical example.
VCSEL Applications and Simulation
NASA Technical Reports Server (NTRS)
Cheung, Samson; Goorjian, Peter; Ning, Cun-Zheng; Li, Jian-Zhong
2000-01-01
This viewgraph presentation gives an overview of Vertical Cavity Surface Emitting Laser (VCSEL) simulation and its applications. Details are given on the optical interconnection in information technology of VCSEL, the formulation of the simulation, its numeric algorithm, and the computational results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2017-05-17
PeleC is an adaptive-mesh compressible hydrodynamics code for reacting flows. It solves the compressible Navier-Stokes with multispecies transport in a block structured framework. The resulting algorithm is well suited for flows with localized resolution requirements and robust to discontinuities. User controllable refinement crieteria has the potential to result in extremely small numerical dissipation and dispersion, making this code appropriate for both research and applied usage. The code is built on the AMReX library which facilitates hierarchical parallelism and manages distributed memory parallism. PeleC algorithms are implemented to express shared memory parallelism.
Convergence of the Graph Allen-Cahn Scheme
NASA Astrophysics Data System (ADS)
Luo, Xiyang; Bertozzi, Andrea L.
2017-05-01
The graph Laplacian and the graph cut problem are closely related to Markov random fields, and have many applications in clustering and image segmentation. The diffuse interface model is widely used for modeling in material science, and can also be used as a proxy to total variation minimization. In Bertozzi and Flenner (Multiscale Model Simul 10(3):1090-1118, 2012), an algorithm was developed to generalize the diffuse interface model to graphs to solve the graph cut problem. This work analyzes the conditions for the graph diffuse interface algorithm to converge. Using techniques from numerical PDE and convex optimization, monotonicity in function value and convergence under an a posteriori condition are shown for a class of schemes under a graph-independent stepsize condition. We also generalize our results to incorporate spectral truncation, a common technique used to save computation cost, and also to the case of multiclass classification. Various numerical experiments are done to compare theoretical results with practical performance.
A Rotational Pressure-Correction Scheme for Incompressible Two-Phase Flows with Open Boundaries
Dong, S.; Wang, X.
2016-01-01
Two-phase outflows refer to situations where the interface formed between two immiscible incompressible fluids passes through open portions of the domain boundary. We present several new forms of open boundary conditions for two-phase outflow simulations within the phase field framework, as well as a rotational pressure correction based algorithm for numerically treating these open boundary conditions. Our algorithm gives rise to linear algebraic systems for the velocity and the pressure that involve only constant and time-independent coefficient matrices after discretization, despite the variable density and variable viscosity of the two-phase mixture. By comparing simulation results with theory and the experimental data, we show that the method produces physically accurate results. We also present numerical experiments to demonstrate the long-term stability of the method in situations where large density contrast, large viscosity contrast, and backflows occur at the two-phase open boundaries. PMID:27163909
Hu, Cong; Li, Zhi; Zhou, Tian; Zhu, Aijun; Xu, Chuanpei
2016-01-01
We propose a new meta-heuristic algorithm named Levy flights multi-verse optimizer (LFMVO), which incorporates Levy flights into multi-verse optimizer (MVO) algorithm to solve numerical and engineering optimization problems. The Original MVO easily falls into stagnation when wormholes stochastically re-span a number of universes (solutions) around the best universe achieved over the course of iterations. Since Levy flights are superior in exploring unknown, large-scale search space, they are integrated into the previous best universe to force MVO out of stagnation. We test this method on three sets of 23 well-known benchmark test functions and an NP complete problem of test scheduling for Network-on-Chip (NoC). Experimental results prove that the proposed LFMVO is more competitive than its peers in both the quality of the resulting solutions and convergence speed.
Hu, Cong; Li, Zhi; Zhou, Tian; Zhu, Aijun; Xu, Chuanpei
2016-01-01
We propose a new meta-heuristic algorithm named Levy flights multi-verse optimizer (LFMVO), which incorporates Levy flights into multi-verse optimizer (MVO) algorithm to solve numerical and engineering optimization problems. The Original MVO easily falls into stagnation when wormholes stochastically re-span a number of universes (solutions) around the best universe achieved over the course of iterations. Since Levy flights are superior in exploring unknown, large-scale search space, they are integrated into the previous best universe to force MVO out of stagnation. We test this method on three sets of 23 well-known benchmark test functions and an NP complete problem of test scheduling for Network-on-Chip (NoC). Experimental results prove that the proposed LFMVO is more competitive than its peers in both the quality of the resulting solutions and convergence speed. PMID:27926946
Salari, Nader; Shohaimi, Shamarina; Najafi, Farid; Nallappan, Meenakshii; Karishnarajah, Isthrinayagy
2014-01-01
Among numerous artificial intelligence approaches, k-Nearest Neighbor algorithms, genetic algorithms, and artificial neural networks are considered as the most common and effective methods in classification problems in numerous studies. In the present study, the results of the implementation of a novel hybrid feature selection-classification model using the above mentioned methods are presented. The purpose is benefitting from the synergies obtained from combining these technologies for the development of classification models. Such a combination creates an opportunity to invest in the strength of each algorithm, and is an approach to make up for their deficiencies. To develop proposed model, with the aim of obtaining the best array of features, first, feature ranking techniques such as the Fisher's discriminant ratio and class separability criteria were used to prioritize features. Second, the obtained results that included arrays of the top-ranked features were used as the initial population of a genetic algorithm to produce optimum arrays of features. Third, using a modified k-Nearest Neighbor method as well as an improved method of backpropagation neural networks, the classification process was advanced based on optimum arrays of the features selected by genetic algorithms. The performance of the proposed model was compared with thirteen well-known classification models based on seven datasets. Furthermore, the statistical analysis was performed using the Friedman test followed by post-hoc tests. The experimental findings indicated that the novel proposed hybrid model resulted in significantly better classification performance compared with all 13 classification methods. Finally, the performance results of the proposed model was benchmarked against the best ones reported as the state-of-the-art classifiers in terms of classification accuracy for the same data sets. The substantial findings of the comprehensive comparative study revealed that performance of the proposed model in terms of classification accuracy is desirable, promising, and competitive to the existing state-of-the-art classification models. PMID:25419659
Communication-avoiding symmetric-indefinite factorization
Ballard, Grey Malone; Becker, Dulcenia; Demmel, James; ...
2014-11-13
We describe and analyze a novel symmetric triangular factorization algorithm. The algorithm is essentially a block version of Aasen's triangular tridiagonalization. It factors a dense symmetric matrix A as the product A=PLTL TP T where P is a permutation matrix, L is lower triangular, and T is block tridiagonal and banded. The algorithm is the first symmetric-indefinite communication-avoiding factorization: it performs an asymptotically optimal amount of communication in a two-level memory hierarchy for almost any cache-line size. Adaptations of the algorithm to parallel computers are likely to be communication efficient as well; one such adaptation has been recently published. Asmore » a result, the current paper describes the algorithm, proves that it is numerically stable, and proves that it is communication optimal.« less
An Optimization Study of Hot Stamping Operation
NASA Astrophysics Data System (ADS)
Ghoo, Bonyoung; Umezu, Yasuyoshi; Watanabe, Yuko; Ma, Ninshu; Averill, Ron
2010-06-01
In the present study, 3-dimensional finite element analyses for hot-stamping processes of Audi B-pillar product are conducted using JSTAMP/NV and HEEDS. Special attention is paid to the optimization of simulation technology coupling with thermal-mechanical formulations. Numerical simulation based on FEM technology and optimization design using the hybrid adaptive SHERPA algorithm are applied to hot stamping operation to improve productivity. The robustness of the SHERPA algorithm is found through the results of the benchmark example. The SHERPA algorithm is shown to be far superior to the GA (Genetic Algorithm) in terms of efficiency, whose calculation time is about 7 times faster than that of the GA. The SHERPA algorithm could show high performance in a large scale problem having complicated design space and long calculation time.
A multi-group firefly algorithm for numerical optimization
NASA Astrophysics Data System (ADS)
Tong, Nan; Fu, Qiang; Zhong, Caiming; Wang, Pengjun
2017-08-01
To solve the problem of premature convergence of firefly algorithm (FA), this paper analyzes the evolution mechanism of the algorithm, and proposes an improved Firefly algorithm based on modified evolution model and multi-group learning mechanism (IMGFA). A Firefly colony is divided into several subgroups with different model parameters. Within each subgroup, the optimal firefly is responsible for leading the others fireflies to implement the early global evolution, and establish the information mutual system among the fireflies. And then, each firefly achieves local search by following the brighter firefly in its neighbors. At the same time, learning mechanism among the best fireflies in various subgroups to exchange information can help the population to obtain global optimization goals more effectively. Experimental results verify the effectiveness of the proposed algorithm.
A Spectral Algorithm for Envelope Reduction of Sparse Matrices
NASA Technical Reports Server (NTRS)
Barnard, Stephen T.; Pothen, Alex; Simon, Horst D.
1993-01-01
The problem of reordering a sparse symmetric matrix to reduce its envelope size is considered. A new spectral algorithm for computing an envelope-reducing reordering is obtained by associating a Laplacian matrix with the given matrix and then sorting the components of a specified eigenvector of the Laplacian. This Laplacian eigenvector solves a continuous relaxation of a discrete problem related to envelope minimization called the minimum 2-sum problem. The permutation vector computed by the spectral algorithm is a closest permutation vector to the specified Laplacian eigenvector. Numerical results show that the new reordering algorithm usually computes smaller envelope sizes than those obtained from the current standard algorithms such as Gibbs-Poole-Stockmeyer (GPS) or SPARSPAK reverse Cuthill-McKee (RCM), in some cases reducing the envelope by more than a factor of two.
Communication-avoiding symmetric-indefinite factorization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballard, Grey Malone; Becker, Dulcenia; Demmel, James
We describe and analyze a novel symmetric triangular factorization algorithm. The algorithm is essentially a block version of Aasen's triangular tridiagonalization. It factors a dense symmetric matrix A as the product A=PLTL TP T where P is a permutation matrix, L is lower triangular, and T is block tridiagonal and banded. The algorithm is the first symmetric-indefinite communication-avoiding factorization: it performs an asymptotically optimal amount of communication in a two-level memory hierarchy for almost any cache-line size. Adaptations of the algorithm to parallel computers are likely to be communication efficient as well; one such adaptation has been recently published. Asmore » a result, the current paper describes the algorithm, proves that it is numerically stable, and proves that it is communication optimal.« less
Stoykov, Nikolay S; Kuiken, Todd A; Lowery, Madeleine M; Taflove, Allen
2003-09-01
We present what we believe to be the first algorithms that use a simple scalar-potential formulation to model linear Debye and Lorentz dielectric dispersions at low frequencies in the context of finite-element time-domain (FETD) numerical solutions of electric potential. The new algorithms, which permit treatment of multiple-pole dielectric relaxations, are based on the auxiliary differential equation method and are unconditionally stable. We validate the algorithms by comparison with the results of a previously reported method based on the Fourier transform. The new algorithms should be useful in calculating the transient response of biological materials subject to impulsive excitation. Potential applications include FETD modeling of electromyography, functional electrical stimulation, defibrillation, and effects of lightning and impulsive electric shock.
Mizutani, Eiji; Demmel, James W
2003-01-01
This paper briefly introduces our numerical linear algebra approaches for solving structured nonlinear least squares problems arising from 'multiple-output' neural-network (NN) models. Our algorithms feature trust-region regularization, and exploit sparsity of either the 'block-angular' residual Jacobian matrix or the 'block-arrow' Gauss-Newton Hessian (or Fisher information matrix in statistical sense) depending on problem scale so as to render a large class of NN-learning algorithms 'efficient' in both memory and operation costs. Using a relatively large real-world nonlinear regression application, we shall explain algorithmic strengths and weaknesses, analyzing simulation results obtained by both direct and iterative trust-region algorithms with two distinct NN models: 'multilayer perceptrons' (MLP) and 'complementary mixtures of MLP-experts' (or neuro-fuzzy modular networks).
NASA Technical Reports Server (NTRS)
Spratlin, Kenneth Milton
1987-01-01
An adaptive numeric predictor-corrector guidance is developed for atmospheric entry vehicles which utilize lift to achieve maximum footprint capability. Applicability of the guidance design to vehicles with a wide range of performance capabilities is desired so as to reduce the need for algorithm redesign with each new vehicle. Adaptability is desired to minimize mission-specific analysis and planning. The guidance algorithm motivation and design are presented. Performance is assessed for application of the algorithm to the NASA Entry Research Vehicle (ERV). The dispersions the guidance must be designed to handle are presented. The achievable operational footprint for expected worst-case dispersions is presented. The algorithm performs excellently for the expected dispersions and captures most of the achievable footprint.
NASA Astrophysics Data System (ADS)
Kim, Sungwon; Uprety, Bibhisha; Mathews, V. John; Adams, Daniel O.
2015-03-01
Structural Health Monitoring (SHM) based on Acoustic Emission (AE) is dependent on both the sensors to detect an impact event as well as an algorithm to determine the impact location. The propagation of Lamb waves produced by an impact event in thin composite structures is affected by several unique aspects including material anisotropy, ply orientations, and geometric discontinuities within the structure. The development of accurate numerical models of Lamb wave propagation has important benefits towards the development of AE-based SHM systems for impact location estimation. Currently, many impact location algorithms utilize the time of arrival or velocities of Lamb waves. Therefore the numerical prediction of characteristic wave velocities is of great interest. Additionally, the propagation of the initial symmetric (S0) and asymmetric (A0) wave modes is important, as these wave modes are used for time of arrival estimation. In this investigation, finite element analyses were performed to investigate aspects of Lamb wave propagation in composite plates with active signal excitation. A comparative evaluation of two three-dimensional modeling approaches was performed, with emphasis placed on the propagation and velocity of both the S0 and A0 wave modes. Results from numerical simulations are compared to experimental results obtained from active AE testing. Of particular interest is the directional dependence of Lamb waves in quasi-isotropic carbon/epoxy composite plates. Numerical and experimental results suggest that although a quasi-isotropic composite plate may have the same effective elastic modulus in all in-plane directions, the Lamb wave velocity may have some directional dependence. Further numerical analyses were performed to investigate Lamb wave propagation associated with circular cutouts in composite plates.
NASA Technical Reports Server (NTRS)
Podolske, James R.; Sachse, Glen W.; Diskin, Glenn S.; Hipskino, R. Stephen (Technical Monitor)
2002-01-01
This paper describes the procedures and algorithms for the laboratory calibration and the field data retrieval of the NASA Langley / Ames Diode Laser Hygrometer as implemented during the NASA Trace-P mission during February to April 2000. The calibration is based on a NIST traceable dewpoint hygrometer using relatively high humidity and short pathlength. Two water lines of widely different strengths are used to increase the dynamic range of the instrument in the course of a flight. The laboratory results are incorporated into a numerical model of the second harmonic spectrum for each of the two spectral window regions using spectroscopic parameters from the HITRAN database and other sources, allowing water vapor retrieval at upper tropospheric and lower stratospheric temperatures and humidity levels. The data retrieval algorithm is simple, numerically stable, and accurate. A comparison with other water vapor instruments on board the NASA DC-8 and ER-2 aircraft is presented.
NASA Astrophysics Data System (ADS)
Wang, Xiaowei; Li, Huiping; Li, Zhichao
2018-04-01
The interfacial heat transfer coefficient (IHTC) is one of the most important thermal physical parameters which have significant effects on the calculation accuracy of physical fields in the numerical simulation. In this study, the artificial fish swarm algorithm (AFSA) was used to evaluate the IHTC between the heated sample and the quenchant in a one-dimensional heat conduction problem. AFSA is a global optimization method. In order to speed up the convergence speed, a hybrid method which is the combination of AFSA and normal distribution method (ZAFSA) was presented. The IHTC evaluated by ZAFSA were compared with those attained by AFSA and the advanced-retreat method and golden section method. The results show that the reasonable IHTC is obtained by using ZAFSA, the convergence of hybrid method is well. The algorithm based on ZAFSA can not only accelerate the convergence speed, but also reduce the numerical oscillation in the evaluation of IHTC.
Liu, S X; Zou, M S
2018-03-01
The radiation loading on a vibratory finite cylindrical shell is conventionally evaluated through the direct numerical integration (DNI) method. An alternative strategy via the fast Fourier transform algorithm is put forward in this work based on the general expression of radiation impedance. To check the feasibility and efficiency of the proposed method, a comparison with DNI is presented through numerical cases. The results obtained using the present method agree well with those calculated by DNI. More importantly, the proposed calculating strategy can significantly save the time cost compared with the conventional approach of straightforward numerical integration.
Xiao, Li; Cai, Qin; Li, Zhilin; Zhao, Hongkai; Luo, Ray
2014-01-01
A multi-scale framework is proposed for more realistic molecular dynamics simulations in continuum solvent models by coupling a molecular mechanics treatment of solute with a fluid mechanics treatment of solvent. This article reports our initial efforts to formulate the physical concepts necessary for coupling the two mechanics and develop a 3D numerical algorithm to simulate the solvent fluid via the Navier-Stokes equation. The numerical algorithm was validated with multiple test cases. The validation shows that the algorithm is effective and stable, with observed accuracy consistent with our design. PMID:25404761
DYNAMIC STABILITY OF THE SOLAR SYSTEM: STATISTICALLY INCONCLUSIVE RESULTS FROM ENSEMBLE INTEGRATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeebe, Richard E., E-mail: zeebe@soest.hawaii.edu
Due to the chaotic nature of the solar system, the question of its long-term stability can only be answered in a statistical sense, for instance, based on numerical ensemble integrations of nearby orbits. Destabilization of the inner planets, leading to close encounters and/or collisions can be initiated through a large increase in Mercury's eccentricity, with a currently assumed likelihood of ∼1%. However, little is known at present about the robustness of this number. Here I report ensemble integrations of the full equations of motion of the eight planets and Pluto over 5 Gyr, including contributions from general relativity. The resultsmore » show that different numerical algorithms lead to statistically different results for the evolution of Mercury's eccentricity (e{sub M}). For instance, starting at present initial conditions (e{sub M}≃0.21), Mercury's maximum eccentricity achieved over 5 Gyr is, on average, significantly higher in symplectic ensemble integrations using heliocentric rather than Jacobi coordinates and stricter error control. In contrast, starting at a possible future configuration (e{sub M}≃0.53), Mercury's maximum eccentricity achieved over the subsequent 500 Myr is, on average, significantly lower using heliocentric rather than Jacobi coordinates. For example, the probability for e{sub M} to increase beyond 0.53 over 500 Myr is >90% (Jacobi) versus only 40%-55% (heliocentric). This poses a dilemma because the physical evolution of the real system—and its probabilistic behavior—cannot depend on the coordinate system or the numerical algorithm chosen to describe it. Some tests of the numerical algorithms suggest that symplectic integrators using heliocentric coordinates underestimate the odds for destabilization of Mercury's orbit at high initial e{sub M}.« less
NASA Astrophysics Data System (ADS)
Abbiati, Giuseppe; La Salandra, Vincenzo; Bursi, Oreste S.; Caracoglia, Luca
2018-02-01
Successful online hybrid (numerical/physical) dynamic substructuring simulations have shown their potential in enabling realistic dynamic analysis of almost any type of non-linear structural system (e.g., an as-built/isolated viaduct, a petrochemical piping system subjected to non-stationary seismic loading, etc.). Moreover, owing to faster and more accurate testing equipment, a number of different offline experimental substructuring methods, operating both in time (e.g. the impulse-based substructuring) and frequency domains (i.e. the Lagrange multiplier frequency-based substructuring), have been employed in mechanical engineering to examine dynamic substructure coupling. Numerous studies have dealt with the above-mentioned methods and with consequent uncertainty propagation issues, either associated with experimental errors or modelling assumptions. Nonetheless, a limited number of publications have systematically cross-examined the performance of the various Experimental Dynamic Substructuring (EDS) methods and the possibility of their exploitation in a complementary way to expedite a hybrid experiment/numerical simulation. From this perspective, this paper performs a comparative uncertainty propagation analysis of three EDS algorithms for coupling physical and numerical subdomains with a dual assembly approach based on localized Lagrange multipliers. The main results and comparisons are based on a series of Monte Carlo simulations carried out on a five-DoF linear/non-linear chain-like systems that include typical aleatoric uncertainties emerging from measurement errors and excitation loads. In addition, we propose a new Composite-EDS (C-EDS) method to fuse both online and offline algorithms into a unique simulator. Capitalizing from the results of a more complex case study composed of a coupled isolated tank-piping system, we provide a feasible way to employ the C-EDS method when nonlinearities and multi-point constraints are present in the emulated system.
New matrix bounds and iterative algorithms for the discrete coupled algebraic Riccati equation
NASA Astrophysics Data System (ADS)
Liu, Jianzhou; Wang, Li; Zhang, Juan
2017-11-01
The discrete coupled algebraic Riccati equation (DCARE) has wide applications in control theory and linear system. In general, for the DCARE, one discusses every term of the coupled term, respectively. In this paper, we consider the coupled term as a whole, which is different from the recent results. When applying eigenvalue inequalities to discuss the coupled term, our method has less error. In terms of the properties of special matrices and eigenvalue inequalities, we propose several upper and lower matrix bounds for the solution of DCARE. Further, we discuss the iterative algorithms for the solution of the DCARE. In the fixed point iterative algorithms, the scope of Lipschitz factor is wider than the recent results. Finally, we offer corresponding numerical examples to illustrate the effectiveness of the derived results.
Evolutionary Optimization of Yagi-Uda Antennas
NASA Technical Reports Server (NTRS)
Lohn, Jason D.; Kraus, William F.; Linden, Derek S.; Colombano, Silvano P.
2001-01-01
Yagi-Uda antennas are known to be difficult to design and optimize due to their sensitivity at high gain, and the inclusion of numerous parasitic elements. We present a genetic algorithm-based automated antenna optimization system that uses a fixed Yagi-Uda topology and a byte-encoded antenna representation. The fitness calculation allows the implicit relationship between power gain and sidelobe/backlobe loss to emerge naturally, a technique that is less complex than previous approaches. The genetic operators used are also simpler. Our results include Yagi-Uda antennas that have excellent bandwidth and gain properties with very good impedance characteristics. Results exceeded previous Yagi-Uda antennas produced via evolutionary algorithms by at least 7.8% in mainlobe gain. We also present encouraging preliminary results where a coevolutionary genetic algorithm is used.
NASA Astrophysics Data System (ADS)
Wichert, Viktoria; Arkenberg, Mario; Hauschildt, Peter H.
2016-10-01
Highly resolved state-of-the-art 3D atmosphere simulations will remain computationally extremely expensive for years to come. In addition to the need for more computing power, rethinking coding practices is necessary. We take a dual approach by introducing especially adapted, parallel numerical methods and correspondingly parallelizing critical code passages. In the following, we present our respective work on PHOENIX/3D. With new parallel numerical algorithms, there is a big opportunity for improvement when iteratively solving the system of equations emerging from the operator splitting of the radiative transfer equation J = ΛS. The narrow-banded approximate Λ-operator Λ* , which is used in PHOENIX/3D, occurs in each iteration step. By implementing a numerical algorithm which takes advantage of its characteristic traits, the parallel code's efficiency is further increased and a speed-up in computational time can be achieved.
NASA Astrophysics Data System (ADS)
Voytishek, Anton V.; Shipilov, Nikolay M.
2017-11-01
In this paper, the systematization of numerical (implemented on a computer) randomized functional algorithms for approximation of a solution of Fredholm integral equation of the second kind is carried out. Wherein, three types of such algorithms are distinguished: the projection, the mesh and the projection-mesh methods. The possibilities for usage of these algorithms for solution of practically important problems is investigated in detail. The disadvantages of the mesh algorithms, related to the necessity of calculation values of the kernels of integral equations in fixed points, are identified. On practice, these kernels have integrated singularities, and calculation of their values is impossible. Thus, for applied problems, related to solving Fredholm integral equation of the second kind, it is expedient to use not mesh, but the projection and the projection-mesh randomized algorithms.
The MINERVA Software Development Process
NASA Technical Reports Server (NTRS)
Narkawicz, Anthony; Munoz, Cesar A.; Dutle, Aaron M.
2017-01-01
This paper presents a software development process for safety-critical software components of cyber-physical systems. The process is called MINERVA, which stands for Mirrored Implementation Numerically Evaluated against Rigorously Verified Algorithms. The process relies on formal methods for rigorously validating code against its requirements. The software development process uses: (1) a formal specification language for describing the algorithms and their functional requirements, (2) an interactive theorem prover for formally verifying the correctness of the algorithms, (3) test cases that stress the code, and (4) numerical evaluation on these test cases of both the algorithm specifications and their implementations in code. The MINERVA process is illustrated in this paper with an application to geo-containment algorithms for unmanned aircraft systems. These algorithms ensure that the position of an aircraft never leaves a predetermined polygon region and provide recovery maneuvers when the region is inadvertently exited.
Preconditioned Alternating Projection Algorithms for Maximum a Posteriori ECT Reconstruction
Krol, Andrzej; Li, Si; Shen, Lixin; Xu, Yuesheng
2012-01-01
We propose a preconditioned alternating projection algorithm (PAPA) for solving the maximum a posteriori (MAP) emission computed tomography (ECT) reconstruction problem. Specifically, we formulate the reconstruction problem as a constrained convex optimization problem with the total variation (TV) regularization. We then characterize the solution of the constrained convex optimization problem and show that it satisfies a system of fixed-point equations defined in terms of two proximity operators raised from the convex functions that define the TV-norm and the constrain involved in the problem. The characterization (of the solution) via the proximity operators that define two projection operators naturally leads to an alternating projection algorithm for finding the solution. For efficient numerical computation, we introduce to the alternating projection algorithm a preconditioning matrix (the EM-preconditioner) for the dense system matrix involved in the optimization problem. We prove theoretically convergence of the preconditioned alternating projection algorithm. In numerical experiments, performance of our algorithms, with an appropriately selected preconditioning matrix, is compared with performance of the conventional MAP expectation-maximization (MAP-EM) algorithm with TV regularizer (EM-TV) and that of the recently developed nested EM-TV algorithm for ECT reconstruction. Based on the numerical experiments performed in this work, we observe that the alternating projection algorithm with the EM-preconditioner outperforms significantly the EM-TV in all aspects including the convergence speed, the noise in the reconstructed images and the image quality. It also outperforms the nested EM-TV in the convergence speed while providing comparable image quality. PMID:23271835
NASA Astrophysics Data System (ADS)
Stellmach, Stephan; Hansen, Ulrich
2008-05-01
Numerical simulations of the process of convection and magnetic field generation in planetary cores still fail to reach geophysically realistic control parameter values. Future progress in this field depends crucially on efficient numerical algorithms which are able to take advantage of the newest generation of parallel computers. Desirable features of simulation algorithms include (1) spectral accuracy, (2) an operation count per time step that is small and roughly proportional to the number of grid points, (3) memory requirements that scale linear with resolution, (4) an implicit treatment of all linear terms including the Coriolis force, (5) the ability to treat all kinds of common boundary conditions, and (6) reasonable efficiency on massively parallel machines with tens of thousands of processors. So far, algorithms for fully self-consistent dynamo simulations in spherical shells do not achieve all these criteria simultaneously, resulting in strong restrictions on the possible resolutions. In this paper, we demonstrate that local dynamo models in which the process of convection and magnetic field generation is only simulated for a small part of a planetary core in Cartesian geometry can achieve the above goal. We propose an algorithm that fulfills the first five of the above criteria and demonstrate that a model implementation of our method on an IBM Blue Gene/L system scales impressively well for up to O(104) processors. This allows for numerical simulations at rather extreme parameter values.
Introduction to Numerical Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoonover, Joseph A.
2016-06-14
These are slides for a lecture for the Parallel Computing Summer Research Internship at the National Security Education Center. This gives an introduction to numerical methods. Repetitive algorithms are used to obtain approximate solutions to mathematical problems, using sorting, searching, root finding, optimization, interpolation, extrapolation, least squares regresion, Eigenvalue problems, ordinary differential equations, and partial differential equations. Many equations are shown. Discretizations allow us to approximate solutions to mathematical models of physical systems using a repetitive algorithm and introduce errors that can lead to numerical instabilities if we are not careful.
NASA Astrophysics Data System (ADS)
Steckiewicz, Adam; Butrylo, Boguslaw
2017-08-01
In this paper we discussed the results of a multi-criteria optimization scheme as well as numerical calculations of periodic conductive structures with selected geometry. Thin printed structures embedded on a flexible dielectric substrate may be applied as simple, cheap, passive low-pass filters with an adjustable cutoff frequency in low (up to 1 MHz) radio frequency range. The analysis of an electromagnetic phenomena in presented structures was realized on the basis of a three-dimensional numerical model of three proposed geometries of periodic elements. The finite element method (FEM) was used to obtain a solution of an electromagnetic harmonic field. Equivalent lumped electrical parameters of printed cells obtained in such manner determine the shape of an amplitude transmission characteristic of a low-pass filter. A nonlinear influence of a printed cell geometry on equivalent parameters of cells electric model, makes it difficult to find the desired optimal solution. Therefore an optimization problem of optimal cell geometry estimation with regard to an approximation of the determined amplitude transmission characteristic with an adjusted cutoff frequency, was obtained by the particle swarm optimization (PSO) algorithm. A dynamically suitable inertia factor was also introduced into the algorithm to improve a convergence to a global extremity of a multimodal objective function. Numerical results as well as PSO simulation results were characterized in terms of approximation accuracy of predefined amplitude characteristics in a pass-band, stop-band and cutoff frequency. Three geometries of varying degrees of complexity were considered and their use in signal processing systems was evaluated.
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.
1987-01-01
An exponential finite difference algorithm, as first presented by Bhattacharya for one-dimensianal steady-state, heat conduction in Cartesian coordinates, has been extended. The finite difference algorithm developed was used to solve the diffusion equation in one-dimensional cylindrical coordinates and applied to two- and three-dimensional problems in Cartesian coordinates. The method was also used to solve nonlinear partial differential equations in one (Burger's equation) and two (Boundary Layer equations) dimensional Cartesian coordinates. Predicted results were compared to exact solutions where available, or to results obtained by other numerical methods. It was found that the exponential finite difference method produced results that were more accurate than those obtained by other numerical methods, especially during the initial transient portion of the solution. Other applications made using the exponential finite difference technique included unsteady one-dimensional heat transfer with temperature varying thermal conductivity and the development of the temperature field in a laminar Couette flow.
exponential finite difference technique for solving partial differential equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Handschuh, R.F.
1987-01-01
An exponential finite difference algorithm, as first presented by Bhattacharya for one-dimensianal steady-state, heat conduction in Cartesian coordinates, has been extended. The finite difference algorithm developed was used to solve the diffusion equation in one-dimensional cylindrical coordinates and applied to two- and three-dimensional problems in Cartesian coordinates. The method was also used to solve nonlinear partial differential equations in one (Burger's equation) and two (Boundary Layer equations) dimensional Cartesian coordinates. Predicted results were compared to exact solutions where available, or to results obtained by other numerical methods. It was found that the exponential finite difference method produced results that weremore » more accurate than those obtained by other numerical methods, especially during the initial transient portion of the solution. Other applications made using the exponential finite difference technique included unsteady one-dimensional heat transfer with temperature varying thermal conductivity and the development of the temperature field in a laminar Couette flow.« less
Minimal-scan filtered backpropagation algorithms for diffraction tomography.
Pan, X; Anastasio, M A
1999-12-01
The filtered backpropagation (FBPP) algorithm, originally developed by Devaney [Ultrason. Imaging 4, 336 (1982)], has been widely used for reconstructing images in diffraction tomography. It is generally known that the FBPP algorithm requires scattered data from a full angular range of 2 pi for exact reconstruction of a generally complex-valued object function. However, we reveal that one needs scattered data only over the angular range 0 < or = phi < or = 3 pi/2 for exact reconstruction of a generally complex-valued object function. Using this insight, we develop and analyze a family of minimal-scan filtered backpropagation (MS-FBPP) algorithms, which, unlike the FBPP algorithm, use scattered data acquired from view angles over the range 0 < or = phi < or = 3 pi/2. We show analytically that these MS-FBPP algorithms are mathematically identical to the FBPP algorithm. We also perform computer simulation studies for validation, demonstration, and comparison of these MS-FBPP algorithms. The numerical results in these simulation studies corroborate our theoretical assertions.
Optimization of High-Dimensional Functions through Hypercube Evaluation
Abiyev, Rahib H.; Tunay, Mustafa
2015-01-01
A novel learning algorithm for solving global numerical optimization problems is proposed. The proposed learning algorithm is intense stochastic search method which is based on evaluation and optimization of a hypercube and is called the hypercube optimization (HO) algorithm. The HO algorithm comprises the initialization and evaluation process, displacement-shrink process, and searching space process. The initialization and evaluation process initializes initial solution and evaluates the solutions in given hypercube. The displacement-shrink process determines displacement and evaluates objective functions using new points, and the search area process determines next hypercube using certain rules and evaluates the new solutions. The algorithms for these processes have been designed and presented in the paper. The designed HO algorithm is tested on specific benchmark functions. The simulations of HO algorithm have been performed for optimization of functions of 1000-, 5000-, or even 10000 dimensions. The comparative simulation results with other approaches demonstrate that the proposed algorithm is a potential candidate for optimization of both low and high dimensional functions. PMID:26339237
A fast marching algorithm for the factored eikonal equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Treister, Eran, E-mail: erantreister@gmail.com; Haber, Eldad, E-mail: haber@math.ubc.ca; Department of Mathematics, The University of British Columbia, Vancouver, BC
The eikonal equation is instrumental in many applications in several fields ranging from computer vision to geoscience. This equation can be efficiently solved using the iterative Fast Sweeping (FS) methods and the direct Fast Marching (FM) methods. However, when used for a point source, the original eikonal equation is known to yield inaccurate numerical solutions, because of a singularity at the source. In this case, the factored eikonal equation is often preferred, and is known to yield a more accurate numerical solution. One application that requires the solution of the eikonal equation for point sources is travel time tomography. Thismore » inverse problem may be formulated using the eikonal equation as a forward problem. While this problem has been solved using FS in the past, the more recent choice for applying it involves FM methods because of the efficiency in which sensitivities can be obtained using them. However, while several FS methods are available for solving the factored equation, the FM method is available only for the original eikonal equation. In this paper we develop a Fast Marching algorithm for the factored eikonal equation, using both first and second order finite-difference schemes. Our algorithm follows the same lines as the original FM algorithm and requires the same computational effort. In addition, we show how to obtain sensitivities using this FM method and apply travel time tomography, formulated as an inverse factored eikonal equation. Numerical results in two and three dimensions show that our algorithm solves the factored eikonal equation efficiently, and demonstrate the achieved accuracy for computing the travel time. We also demonstrate a recovery of a 2D and 3D heterogeneous medium by travel time tomography using the eikonal equation for forward modeling and inversion by Gauss–Newton.« less
NASA Astrophysics Data System (ADS)
Jokisaari, Andrea M.
Hydride precipitation in zirconium is a significant factor limiting the lifetime of nuclear fuel cladding, because hydride microstructures play a key role in the degradation of fuel cladding. However, the behavior of hydrogen in zirconium has typically been modeled using mean field approaches, which do not consider microstructural evolution. This thesis describes a quantitative microstructural evolution model for the alpha-zirconium/delta-hydride system and the associated numerical methods and algorithms that were developed. The multiphysics, phase field-based model incorporates CALPHAD free energy descriptions, linear elastic solid mechanics, and classical nucleation theory. A flexible simulation software implementing the model, Hyrax, is built on the Multiphysics Object Oriented Simulation Environment (MOOSE) finite element framework. Hyrax is open-source and freely available; moreover, the numerical methods and algorithms that have been developed are generalizable to other systems. The algorithms are described in detail, and verification studies for each are discussed. In addition, analyses of the sensitivity of the simulation results to the choice of numerical parameters are presented. For example, threshold values for the CALPHAD free energy algorithm and the use of mesh and time adaptivity when employing the nucleation algorithm are studied. Furthermore, preliminary insights into the nucleation behavior of delta-hydrides are described. These include a) the sensitivities of the nucleation rate to temperature, interfacial energy, composition and elastic energy, b) the spatial variation of the nucleation rate around a single precipitate, and c) the effect of interfacial energy and nucleation rate on the precipitate microstructure. Finally, several avenues for future work are discussed. Topics encompass the terminal solid solubility hysteresis of hydrogen in zirconium and the effects of the alpha/delta interfacial energy, as well as thermodiffusion, plasticity, and irradiation, which are not yet accounted for in the model.
A novel approach to solve nonlinear Fredholm integral equations of the second kind.
Li, Hu; Huang, Jin
2016-01-01
In this paper, we present a novel approach to solve nonlinear Fredholm integral equations of the second kind. This algorithm is constructed by the integral mean value theorem and Newton iteration. Convergence and error analysis of the numerical solutions are given. Moreover, Numerical examples show the algorithm is very effective and simple.
ERIC Educational Resources Information Center
Gonzalez-Vega, Laureano
1999-01-01
Using a Computer Algebra System (CAS) to help with the teaching of an elementary course in linear algebra can be one way to introduce computer algebra, numerical analysis, data structures, and algorithms. Highlights the advantages and disadvantages of this approach to the teaching of linear algebra. (Author/MM)
The minimal residual QR-factorization algorithm for reliably solving subset regression problems
NASA Technical Reports Server (NTRS)
Verhaegen, M. H.
1987-01-01
A new algorithm to solve test subset regression problems is described, called the minimal residual QR factorization algorithm (MRQR). This scheme performs a QR factorization with a new column pivoting strategy. Basically, this strategy is based on the change in the residual of the least squares problem. Furthermore, it is demonstrated that this basic scheme might be extended in a numerically efficient way to combine the advantages of existing numerical procedures, such as the singular value decomposition, with those of more classical statistical procedures, such as stepwise regression. This extension is presented as an advisory expert system that guides the user in solving the subset regression problem. The advantages of the new procedure are highlighted by a numerical example.
Numerical Aspects of Atomic Physics: Helium Basis Sets and Matrix Diagonalization
NASA Astrophysics Data System (ADS)
Jentschura, Ulrich; Noble, Jonathan
2014-03-01
We present a matrix diagonalization algorithm for complex symmetric matrices, which can be used in order to determine the resonance energies of auto-ionizing states of comparatively simple quantum many-body systems such as helium. The algorithm is based in multi-precision arithmetic and proceeds via a tridiagonalization of the complex symmetric (not necessarily Hermitian) input matrix using generalized Householder transformations. Example calculations involving so-called PT-symmetric quantum systems lead to reference values which pertain to the imaginary cubic perturbation (the imaginary cubic anharmonic oscillator). We then proceed to novel basis sets for the helium atom and present results for Bethe logarithms in hydrogen and helium, obtained using the enhanced numerical techniques. Some intricacies of ``canned'' algorithms such as those used in LAPACK will be discussed. Our algorithm, for complex symmetric matrices such as those describing cubic resonances after complex scaling, is faster than LAPACK's built-in routines, for specific classes of input matrices. It also offer flexibility in terms of the calculation of the so-called implicit shift, which is used in order to ``pivot'' the system toward the convergence to diagonal form. We conclude with a wider overview.
Using adaptive grid in modeling rocket nozzle flow
NASA Technical Reports Server (NTRS)
Chow, Alan S.; Jin, Kang-Ren
1992-01-01
The mechanical behavior of a rocket motor internal flow field results in a system of nonlinear partial differential equations which cannot be solved analytically. However, this system of equations called the Navier-Stokes equations can be solved numerically. The accuracy and the convergence of the solution of the system of equations will depend largely on how precisely the sharp gradients in the domain of interest can be resolved. With the advances in computer technology, more sophisticated algorithms are available to improve the accuracy and convergence of the solutions. An adaptive grid generation is one of the schemes which can be incorporated into the algorithm to enhance the capability of numerical modeling. It is equivalent to putting intelligence into the algorithm to optimize the use of computer memory. With this scheme, the finite difference domain of the flow field called the grid does neither have to be very fine nor strategically placed at the location of sharp gradients. The grid is self adapting as the solution evolves. This scheme significantly improves the methodology of solving flow problems in rocket nozzles by taking the refinement part of grid generation out of the hands of computational fluid dynamics (CFD) specialists and place it into the computer algorithm itself.
A fully implicit Hall MHD algorithm based on the ion Ohm's law
NASA Astrophysics Data System (ADS)
Chacón, Luis
2010-11-01
Hall MHD is characterized by extreme hyperbolic numerical stiffness stemming from fast dispersive waves. Implicit algorithms are potentially advantageous, but of very difficult efficient implementation due to the condition numbers of associated matrices. Here, we explore the extension of a successful fully implicit, fully nonlinear algorithm for resistive MHD,ootnotetextL. Chac'on, Phys. Plasmas, 15 (2008) based on Jacobian-free Newton-Krylov methods with physics-based preconditioning, to Hall MHD. Traditionally, Hall MHD has been formulated using the electron equation of motion (EOM) to determine the electric field in the plasma (the so-called Ohm's law). However, given that the center-of-mass EOM, the ion EOM, and the electron EOM are linearly dependent, one could equivalently employ the ion EOM as the Ohm's law for a Hall MHD formulation. While, from a physical standpoint, there is no a priori advantage for using one Ohm's law vs. the other, we argue in this poster that there is an algorithmic one. We will show that, while the electron Ohm's law prevents the extension of the resistive MHD preconditioning strategy to Hall MHD, an ion Ohm's law allows it trivially. Verification and performance numerical results on relevant problems will be presented.
An Empirical Comparison of Seven Iterative and Evolutionary Function Optimization Heuristics
NASA Technical Reports Server (NTRS)
Baluja, Shumeet
1995-01-01
This report is a repository of the results obtained from a large scale empirical comparison of seven iterative and evolution-based optimization heuristics. Twenty-seven static optimization problems, spanning six sets of problem classes which are commonly explored in genetic algorithm literature, are examined. The problem sets include job-shop scheduling, traveling salesman, knapsack, binpacking, neural network weight optimization, and standard numerical optimization. The search spaces in these problems range from 2368 to 22040. The results indicate that using genetic algorithms for the optimization of static functions does not yield a benefit, in terms of the final answer obtained, over simpler optimization heuristics. Descriptions of the algorithms tested and the encodings of the problems are described in detail for reproducibility.
Fast Optimization for Aircraft Descent and Approach Trajectory
NASA Technical Reports Server (NTRS)
Luchinsky, Dmitry G.; Schuet, Stefan; Brenton, J.; Timucin, Dogan; Smith, David; Kaneshige, John
2017-01-01
We address problem of on-line scheduling of the aircraft descent and approach trajectory. We formulate a general multiphase optimal control problem for optimization of the descent trajectory and review available methods of its solution. We develop a fast algorithm for solution of this problem using two key components: (i) fast inference of the dynamical and control variables of the descending trajectory from the low dimensional flight profile data and (ii) efficient local search for the resulting reduced dimensionality non-linear optimization problem. We compare the performance of the proposed algorithm with numerical solution obtained using optimal control toolbox General Pseudospectral Optimal Control Software. We present results of the solution of the scheduling problem for aircraft descent using novel fast algorithm and discuss its future applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall-Anese, Emiliano; Simonetto, Andrea
This paper focuses on the design of online algorithms based on prediction-correction steps to track the optimal solution of a time-varying constrained problem. Existing prediction-correction methods have been shown to work well for unconstrained convex problems and for settings where obtaining the inverse of the Hessian of the cost function can be computationally affordable. The prediction-correction algorithm proposed in this paper addresses the limitations of existing methods by tackling constrained problems and by designing a first-order prediction step that relies on the Hessian of the cost function (and do not require the computation of its inverse). Analytical results are establishedmore » to quantify the tracking error. Numerical simulations corroborate the analytical results and showcase performance and benefits of the algorithms.« less
NASA Technical Reports Server (NTRS)
An, S. H.; Yao, K.
1986-01-01
Lattice algorithm has been employed in numerous adaptive filtering applications such as speech analysis/synthesis, noise canceling, spectral analysis, and channel equalization. In this paper the application to adaptive-array processing is discussed. The advantages are fast convergence rate as well as computational accuracy independent of the noise and interference conditions. The results produced by this technique are compared to those obtained by the direct matrix inverse method.
NASA Astrophysics Data System (ADS)
Bai, Yunru; Baleanu, Dumitru; Wu, Guo-Cheng
2018-06-01
We investigate a class of generalized differential optimization problems driven by the Caputo derivative. Existence of weak Carathe ´odory solution is proved by using Weierstrass existence theorem, fixed point theorem and Filippov implicit function lemma etc. Then a numerical approximation algorithm is introduced, and a convergence theorem is established. Finally, a nonlinear programming problem constrained by the fractional differential equation is illustrated and the results verify the validity of the algorithm.
Application of a Chimera Full Potential Algorithm for Solving Aerodynamic Problems
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Kwak, Dochan (Technical Monitor)
1997-01-01
A numerical scheme utilizing a chimera zonal grid approach for solving the three dimensional full potential equation is described. Special emphasis is placed on describing the spatial differencing algorithm around the chimera interface. Results from two spatial discretization variations are presented; one using a hybrid first-order/second-order-accurate scheme and the second using a fully second-order-accurate scheme. The presentation is highlighted with a number of transonic wing flow field computations.
Computational Fluid Dynamics. [numerical methods and algorithm development
NASA Technical Reports Server (NTRS)
1992-01-01
This collection of papers was presented at the Computational Fluid Dynamics (CFD) Conference held at Ames Research Center in California on March 12 through 14, 1991. It is an overview of CFD activities at NASA Lewis Research Center. The main thrust of computational work at Lewis is aimed at propulsion systems. Specific issues related to propulsion CFD and associated modeling will also be presented. Examples of results obtained with the most recent algorithm development will also be presented.
A Fast MHD Code for Gravitationally Stratified Media using Graphical Processing Units: SMAUG
NASA Astrophysics Data System (ADS)
Griffiths, M. K.; Fedun, V.; Erdélyi, R.
2015-03-01
Parallelization techniques have been exploited most successfully by the gaming/graphics industry with the adoption of graphical processing units (GPUs), possessing hundreds of processor cores. The opportunity has been recognized by the computational sciences and engineering communities, who have recently harnessed successfully the numerical performance of GPUs. For example, parallel magnetohydrodynamic (MHD) algorithms are important for numerical modelling of highly inhomogeneous solar, astrophysical and geophysical plasmas. Here, we describe the implementation of SMAUG, the Sheffield Magnetohydrodynamics Algorithm Using GPUs. SMAUG is a 1-3D MHD code capable of modelling magnetized and gravitationally stratified plasma. The objective of this paper is to present the numerical methods and techniques used for porting the code to this novel and highly parallel compute architecture. The methods employed are justified by the performance benchmarks and validation results demonstrating that the code successfully simulates the physics for a range of test scenarios including a full 3D realistic model of wave propagation in the solar atmosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braumann, Andreas; Kraft, Markus, E-mail: mk306@cam.ac.u; Wagner, Wolfgang
2010-10-01
This paper is concerned with computational aspects of a multidimensional population balance model of a wet granulation process. Wet granulation is a manufacturing method to form composite particles, granules, from small particles and binders. A detailed numerical study of a stochastic particle algorithm for the solution of a five-dimensional population balance model for wet granulation is presented. Each particle consists of two types of solids (containing pores) and of external and internal liquid (located in the pores). Several transformations of particles are considered, including coalescence, compaction and breakage. A convergence study is performed with respect to the parameter that determinesmore » the number of numerical particles. Averaged properties of the system are computed. In addition, the ensemble is subdivided into practically relevant size classes and analysed with respect to the amount of mass and the particle porosity in each class. These results illustrate the importance of the multidimensional approach. Finally, the kinetic equation corresponding to the stochastic model is discussed.« less
A multispin algorithm for the Kob-Andersen stochastic dynamics on regular lattices
NASA Astrophysics Data System (ADS)
Boccagna, Roberto
2017-07-01
The aim of the paper is to propose an algorithm based on the Multispin Coding technique for the Kob-Andersen glassy dynamics. We first give motivations to speed up the numerical simulation in the context of spin glass models [M. Mezard, G. Parisi, M. Virasoro, Spin Glass Theory and Beyond (World Scientific, Singapore, 1987)]; after defining the Markovian dynamics as in [W. Kob, H.C. Andersen, Phys. Rev. E 48, 4364 (1993)] as well as the related interesting observables, we extend it to the more general framework of random regular graphs, listing at the same time some known analytical results [C. Toninelli, G. Biroli, D.S. Fisher, J. Stat. Phys. 120, 167 (2005)]. The purpose of this work is a dual one; firstly, we describe how bitwise operators can be used to build up the algorithm by carefully exploiting the way data are stored on a computer. Since it was first introduced [M. Creutz, L. Jacobs, C. Rebbi, Phys. Rev. D 20, 1915 (1979); C. Rebbi, R.H. Swendsen, Phys. Rev. D 21, 4094 (1980)], this technique has been widely used to perform Monte Carlo simulations for Ising and Potts spin systems; however, it can be successfully adapted to more complex systems in which microscopic parameters may assume boolean values. Secondly, we introduce a random graph in which a characteristic parameter allows to tune the possible transition point. A consistent part is devoted to listing the numerical results obtained by running numerical simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, B.; Misra, A.; Fricke, B.A.
1997-12-31
A computer algorithm was developed that estimates the latent and sensible heat loads due to the bulk refrigeration of fruits and vegetables. The algorithm also predicts the commodity moisture loss and temperature distribution which occurs during refrigeration. Part 1 focused upon the thermophysical properties of commodities and the flowfield parameters which govern the heat and mass transfer from fresh fruits and vegetables. This paper, Part 2, discusses the modeling methodology utilized in the current computer algorithm and describes the development of the heat and mass transfer models. Part 2 also compares the results of the computer algorithm to experimental datamore » taken from the literature and describes a parametric study which was performed with the algorithm. In addition, this paper also reviews existing numerical models for determining the heat and mass transfer in bulk loads of fruits and vegetables.« less
An experimental comparison of online object-tracking algorithms
NASA Astrophysics Data System (ADS)
Wang, Qing; Chen, Feng; Xu, Wenli; Yang, Ming-Hsuan
2011-09-01
This paper reviews and evaluates several state-of-the-art online object tracking algorithms. Notwithstanding decades of efforts, object tracking remains a challenging problem due to factors such as illumination, pose, scale, deformation, motion blur, noise, and occlusion. To account for appearance change, most recent tracking algorithms focus on robust object representations and effective state prediction. In this paper, we analyze the components of each tracking method and identify their key roles in dealing with specific challenges, thereby shedding light on how to choose and design algorithms for different situations. We compare state-of-the-art online tracking methods including the IVT,1 VRT,2 FragT,3 BoostT,4 SemiT,5 BeSemiT,6 L1T,7 MILT,8 VTD9 and TLD10 algorithms on numerous challenging sequences, and evaluate them with different performance metrics. The qualitative and quantitative comparative results demonstrate the strength and weakness of these algorithms.
A solution to the Navier-Stokes equations based upon the Newton Kantorovich method
NASA Technical Reports Server (NTRS)
Davis, J. E.; Gabrielsen, R. E.; Mehta, U. B.
1977-01-01
An implicit finite difference scheme based on the Newton-Kantorovich technique was developed for the numerical solution of the nonsteady, incompressible, two-dimensional Navier-Stokes equations in conservation-law form. The algorithm was second-order-time accurate, noniterative with regard to the nonlinear terms in the vorticity transport equation except at the earliest few time steps, and spatially factored. Numerical results were obtained with the technique for a circular cylinder at Reynolds number 15. Results indicate that the technique is in excellent agreement with other numerical techniques for all geometries and Reynolds numbers investigated, and indicates a potential for significant reduction in computation time over current iterative techniques.
Personal computer study of finite-difference methods for the transonic small disturbance equation
NASA Technical Reports Server (NTRS)
Bland, Samuel R.
1989-01-01
Calculation of unsteady flow phenomena requires careful attention to the numerical treatment of the governing partial differential equations. The personal computer provides a convenient and useful tool for the development of meshes, algorithms, and boundary conditions needed to provide time accurate solution of these equations. The one-dimensional equation considered provides a suitable model for the study of wave propagation in the equations of transonic small disturbance potential flow. Numerical results for effects of mesh size, extent, and stretching, time step size, and choice of far-field boundary conditions are presented. Analysis of the discretized model problem supports these numerical results. Guidelines for suitable mesh and time step choices are given.
Analytic algorithms for determining radiative transfer optical properties of ocean waters.
Kaskas, Ayse; Güleçyüz, Mustafa C; Tezcan, Cevdet; McCormick, Norman J
2006-10-10
A synthetic model for the scattering phase function is used to develop simple algebraic equations, valid for any water type, for evaluating the ratio of the backscattering to absorption coefficients of spatially uniform, very deep waters with data from upward and downward planar irradiances and the remotely sensed reflectance. The phase function is a variable combination of a forward-directed Dirac delta function plus isotropic scattering, which is an elementary model for strongly forward scattering such as that encountered in oceanic optics applications. The incident illumination at the surface is taken to be diffuse plus a collimated beam. The algorithms are compared with other analytic correlations that were previously derived from extensive numerical simulations, and they are also numerically tested with forward problem results computed with a modified FN method.
PSO-Based Smart Grid Application for Sizing and Optimization of Hybrid Renewable Energy Systems
Mohamed, Mohamed A.; Eltamaly, Ali M.; Alolah, Abdulrahman I.
2016-01-01
This paper introduces an optimal sizing algorithm for a hybrid renewable energy system using smart grid load management application based on the available generation. This algorithm aims to maximize the system energy production and meet the load demand with minimum cost and highest reliability. This system is formed by photovoltaic array, wind turbines, storage batteries, and diesel generator as a backup source of energy. Demand profile shaping as one of the smart grid applications is introduced in this paper using load shifting-based load priority. Particle swarm optimization is used in this algorithm to determine the optimum size of the system components. The results obtained from this algorithm are compared with those from the iterative optimization technique to assess the adequacy of the proposed algorithm. The study in this paper is performed in some of the remote areas in Saudi Arabia and can be expanded to any similar regions around the world. Numerous valuable results are extracted from this study that could help researchers and decision makers. PMID:27513000
PSO-Based Smart Grid Application for Sizing and Optimization of Hybrid Renewable Energy Systems.
Mohamed, Mohamed A; Eltamaly, Ali M; Alolah, Abdulrahman I
2016-01-01
This paper introduces an optimal sizing algorithm for a hybrid renewable energy system using smart grid load management application based on the available generation. This algorithm aims to maximize the system energy production and meet the load demand with minimum cost and highest reliability. This system is formed by photovoltaic array, wind turbines, storage batteries, and diesel generator as a backup source of energy. Demand profile shaping as one of the smart grid applications is introduced in this paper using load shifting-based load priority. Particle swarm optimization is used in this algorithm to determine the optimum size of the system components. The results obtained from this algorithm are compared with those from the iterative optimization technique to assess the adequacy of the proposed algorithm. The study in this paper is performed in some of the remote areas in Saudi Arabia and can be expanded to any similar regions around the world. Numerous valuable results are extracted from this study that could help researchers and decision makers.
Jiménez, Felipe; Monzón, Sergio; Naranjo, Jose Eugenio
2016-02-04
Vehicle positioning is a key factor for numerous information and assistance applications that are included in vehicles and for which satellite positioning is mainly used. However, this positioning process can result in errors and lead to measurement uncertainties. These errors come mainly from two sources: errors and simplifications of digital maps and errors in locating the vehicle. From that inaccurate data, the task of assigning the vehicle's location to a link on the digital map at every instant is carried out by map-matching algorithms. These algorithms have been developed to fulfil that need and attempt to amend these errors to offer the user a suitable positioning. In this research; an algorithm is developed that attempts to solve the errors in positioning when the Global Navigation Satellite System (GNSS) signal reception is frequently lost. The algorithm has been tested with satisfactory results in a complex urban environment of narrow streets and tall buildings where errors and signal reception losses of the GPS receiver are frequent.
NASA Technical Reports Server (NTRS)
Halyo, N.; Broussard, J. R.
1984-01-01
The stochastic, infinite time, discrete output feedback problem for time invariant linear systems is examined. Two sets of sufficient conditions for the existence of a stable, globally optimal solution are presented. An expression for the total change in the cost function due to a change in the feedback gain is obtained. This expression is used to show that a sequence of gains can be obtained by an algorithm, so that the corresponding cost sequence is monotonically decreasing and the corresponding sequence of the cost gradient converges to zero. The algorithm is guaranteed to obtain a critical point of the cost function. The computational steps necessary to implement the algorithm on a computer are presented. The results are applied to a digital outer loop flight control problem. The numerical results for this 13th order problem indicate a rate of convergence considerably faster than two other algorithms used for comparison.
Jiménez, Felipe; Monzón, Sergio; Naranjo, Jose Eugenio
2016-01-01
Vehicle positioning is a key factor for numerous information and assistance applications that are included in vehicles and for which satellite positioning is mainly used. However, this positioning process can result in errors and lead to measurement uncertainties. These errors come mainly from two sources: errors and simplifications of digital maps and errors in locating the vehicle. From that inaccurate data, the task of assigning the vehicle’s location to a link on the digital map at every instant is carried out by map-matching algorithms. These algorithms have been developed to fulfil that need and attempt to amend these errors to offer the user a suitable positioning. In this research; an algorithm is developed that attempts to solve the errors in positioning when the Global Navigation Satellite System (GNSS) signal reception is frequently lost. The algorithm has been tested with satisfactory results in a complex urban environment of narrow streets and tall buildings where errors and signal reception losses of the GPS receiver are frequent. PMID:26861320
Khoram, Nafiseh; Zayane, Chadia; Djellouli, Rabia; Laleg-Kirati, Taous-Meriem
2016-03-15
The calibration of the hemodynamic model that describes changes in blood flow and blood oxygenation during brain activation is a crucial step for successfully monitoring and possibly predicting brain activity. This in turn has the potential to provide diagnosis and treatment of brain diseases in early stages. We propose an efficient numerical procedure for calibrating the hemodynamic model using some fMRI measurements. The proposed solution methodology is a regularized iterative method equipped with a Kalman filtering-type procedure. The Newton component of the proposed method addresses the nonlinear aspect of the problem. The regularization feature is used to ensure the stability of the algorithm. The Kalman filter procedure is incorporated here to address the noise in the data. Numerical results obtained with synthetic data as well as with real fMRI measurements are presented to illustrate the accuracy, robustness to the noise, and the cost-effectiveness of the proposed method. We present numerical results that clearly demonstrate that the proposed method outperforms the Cubature Kalman Filter (CKF), one of the most prominent existing numerical methods. We have designed an iterative numerical technique, called the TNM-CKF algorithm, for calibrating the mathematical model that describes the single-event related brain response when fMRI measurements are given. The method appears to be highly accurate and effective in reconstructing the BOLD signal even when the measurements are tainted with high noise level (as high as 30%). Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Healy, John J.
2018-01-01
The linear canonical transforms (LCTs) are a parameterised group of linear integral transforms. The LCTs encompass a number of well-known transformations as special cases, including the Fourier transform, fractional Fourier transform, and the Fresnel integral. They relate the scalar wave fields at the input and output of systems composed of thin lenses and free space, along with other quadratic phase systems. In this paper, we perform a systematic search of all algorithms based on up to five stages of magnification, chirp multiplication and Fourier transforms. Based on that search, we propose a novel algorithm, for which we present numerical results. We compare the sampling requirements of three algorithms. Finally, we discuss some issues surrounding the composition of discrete LCTs.
Regularization iteration imaging algorithm for electrical capacitance tomography
NASA Astrophysics Data System (ADS)
Tong, Guowei; Liu, Shi; Chen, Hongyan; Wang, Xueyao
2018-03-01
The image reconstruction method plays a crucial role in real-world applications of the electrical capacitance tomography technique. In this study, a new cost function that simultaneously considers the sparsity and low-rank properties of the imaging targets is proposed to improve the quality of the reconstruction images, in which the image reconstruction task is converted into an optimization problem. Within the framework of the split Bregman algorithm, an iterative scheme that splits a complicated optimization problem into several simpler sub-tasks is developed to solve the proposed cost function efficiently, in which the fast-iterative shrinkage thresholding algorithm is introduced to accelerate the convergence. Numerical experiment results verify the effectiveness of the proposed algorithm in improving the reconstruction precision and robustness.
NASA Astrophysics Data System (ADS)
Huang, Lei; Zhou, Chenlu; Gong, Mali; Ma, Xingkun; Bian, Qi
2016-07-01
Deformable mirror is a widely used wavefront corrector in adaptive optics system, especially in astronomical, image and laser optics. A new structure of DM-3D DM is proposed, which has removable actuators and can correct different aberrations with different actuator arrangements. A 3D DM consists of several reflection mirrors. Every mirror has a single actuator and is independent of each other. Two kinds of actuator arrangement algorithm are compared: random disturbance algorithm (RDA) and global arrangement algorithm (GAA). Correction effects of these two algorithms and comparison are analyzed through numerical simulation. The simulation results show that 3D DM with removable actuators can obviously improve the correction effects.
Super-Nyquist shaping and processing technologies for high-spectral-efficiency optical systems
NASA Astrophysics Data System (ADS)
Jia, Zhensheng; Chien, Hung-Chang; Zhang, Junwen; Dong, Ze; Cai, Yi; Yu, Jianjun
2013-12-01
The implementations of super-Nyquist pulse generation, both in a digital field using a digital-to-analog converter (DAC) or an optical filter at transmitter side, are introduced. Three corresponding signal processing algorithms at receiver are presented and compared for high spectral-efficiency (SE) optical systems employing the spectral prefiltering. Those algorithms are designed for the mitigation towards inter-symbol-interference (ISI) and inter-channel-interference (ICI) impairments by the bandwidth constraint, including 1-tap constant modulus algorithm (CMA) and 3-tap maximum likelihood sequence estimation (MLSE), regular CMA and digital filter with 2-tap MLSE, and constant multi-modulus algorithm (CMMA) with 2-tap MLSE. The principles and prefiltering tolerance are given through numerical and experimental results.
Comparison of evolutionary algorithms for LPDA antenna optimization
NASA Astrophysics Data System (ADS)
Lazaridis, Pavlos I.; Tziris, Emmanouil N.; Zaharis, Zaharias D.; Xenos, Thomas D.; Cosmas, John P.; Gallion, Philippe B.; Holmes, Violeta; Glover, Ian A.
2016-08-01
A novel approach to broadband log-periodic antenna design is presented, where some of the most powerful evolutionary algorithms are applied and compared for the optimal design of wire log-periodic dipole arrays (LPDA) using Numerical Electromagnetics Code. The target is to achieve an optimal antenna design with respect to maximum gain, gain flatness, front-to-rear ratio (F/R) and standing wave ratio. The parameters of the LPDA optimized are the dipole lengths, the spacing between the dipoles, and the dipole wire diameters. The evolutionary algorithms compared are the Differential Evolution (DE), Particle Swarm (PSO), Taguchi, Invasive Weed (IWO), and Adaptive Invasive Weed Optimization (ADIWO). Superior performance is achieved by the IWO (best results) and PSO (fast convergence) algorithms.
Coverage-maximization in networks under resource constraints.
Nandi, Subrata; Brusch, Lutz; Deutsch, Andreas; Ganguly, Niloy
2010-06-01
Efficient coverage algorithms are essential for information search or dispersal in all kinds of networks. We define an extended coverage problem which accounts for constrained resources of consumed bandwidth B and time T . Our solution to the network challenge is here studied for regular grids only. Using methods from statistical mechanics, we develop a coverage algorithm with proliferating message packets and temporally modulated proliferation rate. The algorithm performs as efficiently as a single random walker but O(B(d-2)/d) times faster, resulting in significant service speed-up on a regular grid of dimension d . The algorithm is numerically compared to a class of generalized proliferating random walk strategies and on regular grids shown to perform best in terms of the product metric of speed and efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chao; Pouransari, Hadi; Rajamanickam, Sivasankaran
We present a parallel hierarchical solver for general sparse linear systems on distributed-memory machines. For large-scale problems, this fully algebraic algorithm is faster and more memory-efficient than sparse direct solvers because it exploits the low-rank structure of fill-in blocks. Depending on the accuracy of low-rank approximations, the hierarchical solver can be used either as a direct solver or as a preconditioner. The parallel algorithm is based on data decomposition and requires only local communication for updating boundary data on every processor. Moreover, the computation-to-communication ratio of the parallel algorithm is approximately the volume-to-surface-area ratio of the subdomain owned by everymore » processor. We also provide various numerical results to demonstrate the versatility and scalability of the parallel algorithm.« less
Topology of large-scale structure. IV - Topology in two dimensions
NASA Technical Reports Server (NTRS)
Melott, Adrian L.; Cohen, Alexander P.; Hamilton, Andrew J. S.; Gott, J. Richard, III; Weinberg, David H.
1989-01-01
In a recent series of papers, an algorithm was developed for quantitatively measuring the topology of the large-scale structure of the universe and this algorithm was applied to numerical models and to three-dimensional observational data sets. In this paper, it is shown that topological information can be derived from a two-dimensional cross section of a density field, and analytic expressions are given for a Gaussian random field. The application of a two-dimensional numerical algorithm for measuring topology to cross sections of three-dimensional models is demonstrated.
Interior point techniques for LP and NLP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evtushenko, Y.
By using surjective mapping the initial constrained optimization problem is transformed to a problem in a new space with only equality constraints. For the numerical solution of the latter problem we use the generalized gradient-projection method and Newton`s method. After inverse transformation to the initial space we obtain the family of numerical methods for solving optimization problems with equality and inequality constraints. In the linear programming case after some simplification we obtain Dikin`s algorithm, affine scaling algorithm and generalized primal dual interior point linear programming algorithm.
Application of GA, PSO, and ACO algorithms to path planning of autonomous underwater vehicles
NASA Astrophysics Data System (ADS)
Aghababa, Mohammad Pourmahmood; Amrollahi, Mohammad Hossein; Borjkhani, Mehdi
2012-09-01
In this paper, an underwater vehicle was modeled with six dimensional nonlinear equations of motion, controlled by DC motors in all degrees of freedom. Near-optimal trajectories in an energetic environment for underwater vehicles were computed using a numerical solution of a nonlinear optimal control problem (NOCP). An energy performance index as a cost function, which should be minimized, was defined. The resulting problem was a two-point boundary value problem (TPBVP). A genetic algorithm (GA), particle swarm optimization (PSO), and ant colony optimization (ACO) algorithms were applied to solve the resulting TPBVP. Applying an Euler-Lagrange equation to the NOCP, a conjugate gradient penalty method was also adopted to solve the TPBVP. The problem of energetic environments, involving some energy sources, was discussed. Some near-optimal paths were found using a GA, PSO, and ACO algorithms. Finally, the problem of collision avoidance in an energetic environment was also taken into account.
NASA Astrophysics Data System (ADS)
Huang, Maosong; Qu, Xie; Lü, Xilin
2017-11-01
By solving a nonlinear complementarity problem for the consistency condition, an improved implicit stress return iterative algorithm for a generalized over-nonlocal strain softening plasticity was proposed, and the consistent tangent matrix was obtained. The proposed algorithm was embodied into existing finite element codes, and it enables the nonlocal regularization of ill-posed boundary value problem caused by the pressure independent and dependent strain softening plasticity. The algorithm was verified by the numerical modeling of strain localization in a plane strain compression test. The results showed that a fast convergence can be achieved and the mesh-dependency caused by strain softening can be effectively eliminated. The influences of hardening modulus and material characteristic length on the simulation were obtained. The proposed algorithm was further used in the simulations of the bearing capacity of a strip footing; the results are mesh-independent, and the progressive failure process of the soil was well captured.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisenbach, Markus; Li, Ying Wai
We report a new multicanonical Monte Carlo (MC) algorithm to obtain the density of states (DOS) for physical systems with continuous state variables in statistical mechanics. Our algorithm is able to obtain an analytical form for the DOS expressed in a chosen basis set, instead of a numerical array of finite resolution as in previous variants of this class of MC methods such as the multicanonical (MUCA) sampling and Wang-Landau (WL) sampling. This is enabled by storing the visited states directly in a data set and avoiding the explicit collection of a histogram. This practice also has the advantage ofmore » avoiding undesirable artificial errors caused by the discretization and binning of continuous state variables. Our results show that this scheme is capable of obtaining converged results with a much reduced number of Monte Carlo steps, leading to a significant speedup over existing algorithms.« less
NASA Technical Reports Server (NTRS)
Venter, Gerhard; Sobieszczanski-Sobieski Jaroslaw
2002-01-01
The purpose of this paper is to show how the search algorithm known as particle swarm optimization performs. Here, particle swarm optimization is applied to structural design problems, but the method has a much wider range of possible applications. The paper's new contributions are improvements to the particle swarm optimization algorithm and conclusions and recommendations as to the utility of the algorithm, Results of numerical experiments for both continuous and discrete applications are presented in the paper. The results indicate that the particle swarm optimization algorithm does locate the constrained minimum design in continuous applications with very good precision, albeit at a much higher computational cost than that of a typical gradient based optimizer. However, the true potential of particle swarm optimization is primarily in applications with discrete and/or discontinuous functions and variables. Additionally, particle swarm optimization has the potential of efficient computation with very large numbers of concurrently operating processors.
Streamline integration as a method for two-dimensional elliptic grid generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiesenberger, M., E-mail: Matthias.Wiesenberger@uibk.ac.at; Held, M.; Einkemmer, L.
We propose a new numerical algorithm to construct a structured numerical elliptic grid of a doubly connected domain. Our method is applicable to domains with boundaries defined by two contour lines of a two-dimensional function. Furthermore, we can adapt any analytically given boundary aligned structured grid, which specifically includes polar and Cartesian grids. The resulting coordinate lines are orthogonal to the boundary. Grid points as well as the elements of the Jacobian matrix can be computed efficiently and up to machine precision. In the simplest case we construct conformal grids, yet with the help of weight functions and monitor metricsmore » we can control the distribution of cells across the domain. Our algorithm is parallelizable and easy to implement with elementary numerical methods. We assess the quality of grids by considering both the distribution of cell sizes and the accuracy of the solution to elliptic problems. Among the tested grids these key properties are best fulfilled by the grid constructed with the monitor metric approach. - Graphical abstract: - Highlights: • Construct structured, elliptic numerical grids with elementary numerical methods. • Align coordinate lines with or make them orthogonal to the domain boundary. • Compute grid points and metric elements up to machine precision. • Control cell distribution by adaption functions or monitor metrics.« less
Cai, Jia; Tang, Yi
2018-02-01
Canonical correlation analysis (CCA) is a powerful statistical tool for detecting the linear relationship between two sets of multivariate variables. Kernel generalization of it, namely, kernel CCA is proposed to describe nonlinear relationship between two variables. Although kernel CCA can achieve dimensionality reduction results for high-dimensional data feature selection problem, it also yields the so called over-fitting phenomenon. In this paper, we consider a new kernel CCA algorithm via randomized Kaczmarz method. The main contributions of the paper are: (1) A new kernel CCA algorithm is developed, (2) theoretical convergence of the proposed algorithm is addressed by means of scaled condition number, (3) a lower bound which addresses the minimum number of iterations is presented. We test on both synthetic dataset and several real-world datasets in cross-language document retrieval and content-based image retrieval to demonstrate the effectiveness of the proposed algorithm. Numerical results imply the performance and efficiency of the new algorithm, which is competitive with several state-of-the-art kernel CCA methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
Photoacoustic image reconstruction via deep learning
NASA Astrophysics Data System (ADS)
Antholzer, Stephan; Haltmeier, Markus; Nuster, Robert; Schwab, Johannes
2018-02-01
Applying standard algorithms to sparse data problems in photoacoustic tomography (PAT) yields low-quality images containing severe under-sampling artifacts. To some extent, these artifacts can be reduced by iterative image reconstruction algorithms which allow to include prior knowledge such as smoothness, total variation (TV) or sparsity constraints. These algorithms tend to be time consuming as the forward and adjoint problems have to be solved repeatedly. Further, iterative algorithms have additional drawbacks. For example, the reconstruction quality strongly depends on a-priori model assumptions about the objects to be recovered, which are often not strictly satisfied in practical applications. To overcome these issues, in this paper, we develop direct and efficient reconstruction algorithms based on deep learning. As opposed to iterative algorithms, we apply a convolutional neural network, whose parameters are trained before the reconstruction process based on a set of training data. For actual image reconstruction, a single evaluation of the trained network yields the desired result. Our presented numerical results (using two different network architectures) demonstrate that the proposed deep learning approach reconstructs images with a quality comparable to state of the art iterative reconstruction methods.
Arterial cannula shape optimization by means of the rotational firefly algorithm
NASA Astrophysics Data System (ADS)
Tesch, K.; Kaczorowska, K.
2016-03-01
This article presents global optimization results of arterial cannula shapes by means of the newly modified firefly algorithm. The search for the optimal arterial cannula shape is necessary in order to minimize losses and prepare the flow that leaves the circulatory support system of a ventricle (i.e. blood pump) before it reaches the heart. A modification of the standard firefly algorithm, the so-called rotational firefly algorithm, is introduced. It is shown that the rotational firefly algorithm allows for better exploration of search spaces which results in faster convergence and better solutions in comparison with its standard version. This is particularly pronounced for smaller population sizes. Furthermore, it maintains greater diversity of populations for a longer time. A small population size and a low number of iterations are necessary to keep to a minimum the computational cost of the objective function of the problem, which comes from numerical solution of the nonlinear partial differential equations. Moreover, both versions of the firefly algorithm are compared to the state of the art, namely the differential evolution and covariance matrix adaptation evolution strategies.
Harmony search algorithm: application to the redundancy optimization problem
NASA Astrophysics Data System (ADS)
Nahas, Nabil; Thien-My, Dao
2010-09-01
The redundancy optimization problem is a well known NP-hard problem which involves the selection of elements and redundancy levels to maximize system performance, given different system-level constraints. This article presents an efficient algorithm based on the harmony search algorithm (HSA) to solve this optimization problem. The HSA is a new nature-inspired algorithm which mimics the improvization process of music players. Two kinds of problems are considered in testing the proposed algorithm, with the first limited to the binary series-parallel system, where the problem consists of a selection of elements and redundancy levels used to maximize the system reliability given various system-level constraints; the second problem for its part concerns the multi-state series-parallel systems with performance levels ranging from perfect operation to complete failure, and in which identical redundant elements are included in order to achieve a desirable level of availability. Numerical results for test problems from previous research are reported and compared. The results of HSA showed that this algorithm could provide very good solutions when compared to those obtained through other approaches.
A 1DVAR-based snowfall rate retrieval algorithm for passive microwave radiometers
NASA Astrophysics Data System (ADS)
Meng, Huan; Dong, Jun; Ferraro, Ralph; Yan, Banghua; Zhao, Limin; Kongoli, Cezar; Wang, Nai-Yu; Zavodsky, Bradley
2017-06-01
Snowfall rate retrieval from spaceborne passive microwave (PMW) radiometers has gained momentum in recent years. PMW can be so utilized because of its ability to sense in-cloud precipitation. A physically based, overland snowfall rate (SFR) algorithm has been developed using measurements from the Advanced Microwave Sounding Unit-A/Microwave Humidity Sounder sensor pair and the Advanced Technology Microwave Sounder. Currently, these instruments are aboard five polar-orbiting satellites, namely, NOAA-18, NOAA-19, Metop-A, Metop-B, and Suomi-NPP. The SFR algorithm relies on a separate snowfall detection algorithm that is composed of a satellite-based statistical model and a set of numerical weather prediction model-based filters. There are four components in the SFR algorithm itself: cloud properties retrieval, computation of ice particle terminal velocity, ice water content adjustment, and the determination of snowfall rate. The retrieval of cloud properties is the foundation of the algorithm and is accomplished using a one-dimensional variational (1DVAR) model. An existing model is adopted to derive ice particle terminal velocity. Since no measurement of cloud ice distribution is available when SFR is retrieved in near real time, such distribution is implicitly assumed by deriving an empirical function that adjusts retrieved SFR toward radar snowfall estimates. Finally, SFR is determined numerically from a complex integral. The algorithm has been validated against both radar and ground observations of snowfall events from the contiguous United States with satisfactory results. Currently, the SFR product is operationally generated at the National Oceanic and Atmospheric Administration and can be obtained from that organization.
Magnetotelluric inversion via reverse time migration algorithm of seismic data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ha, Taeyoung; Shin, Changsoo
2007-07-01
We propose a new algorithm for two-dimensional magnetotelluric (MT) inversion. Our algorithm is an MT inversion based on the steepest descent method, borrowed from the backpropagation technique of seismic inversion or reverse time migration, introduced in the middle 1980s by Lailly and Tarantola. The steepest descent direction can be calculated efficiently by using the symmetry of numerical Green's function derived from a mixed finite element method proposed by Nedelec for Maxwell's equation, without calculating the Jacobian matrix explicitly. We construct three different objective functions by taking the logarithm of the complex apparent resistivity as introduced in the recent waveform inversionmore » algorithm by Shin and Min. These objective functions can be naturally separated into amplitude inversion, phase inversion and simultaneous inversion. We demonstrate our algorithm by showing three inversion results for synthetic data.« less
Jacobi spectral Galerkin method for elliptic Neumann problems
NASA Astrophysics Data System (ADS)
Doha, E.; Bhrawy, A.; Abd-Elhameed, W.
2009-01-01
This paper is concerned with fast spectral-Galerkin Jacobi algorithms for solving one- and two-dimensional elliptic equations with homogeneous and nonhomogeneous Neumann boundary conditions. The paper extends the algorithms proposed by Shen (SIAM J Sci Comput 15:1489-1505, 1994) and Auteri et al. (J Comput Phys 185:427-444, 2003), based on Legendre polynomials, to Jacobi polynomials with arbitrary α and β. The key to the efficiency of our algorithms is to construct appropriate basis functions with zero slope at the endpoints, which lead to systems with sparse matrices for the discrete variational formulations. The direct solution algorithm developed for the homogeneous Neumann problem in two-dimensions relies upon a tensor product process. Nonhomogeneous Neumann data are accounted for by means of a lifting. Numerical results indicating the high accuracy and effectiveness of these algorithms are presented.
Hardware architecture design of image restoration based on time-frequency domain computation
NASA Astrophysics Data System (ADS)
Wen, Bo; Zhang, Jing; Jiao, Zipeng
2013-10-01
The image restoration algorithms based on time-frequency domain computation is high maturity and applied widely in engineering. To solve the high-speed implementation of these algorithms, the TFDC hardware architecture is proposed. Firstly, the main module is designed, by analyzing the common processing and numerical calculation. Then, to improve the commonality, the iteration control module is planed for iterative algorithms. In addition, to reduce the computational cost and memory requirements, the necessary optimizations are suggested for the time-consuming module, which include two-dimensional FFT/IFFT and the plural calculation. Eventually, the TFDC hardware architecture is adopted for hardware design of real-time image restoration system. The result proves that, the TFDC hardware architecture and its optimizations can be applied to image restoration algorithms based on TFDC, with good algorithm commonality, hardware realizability and high efficiency.
NASA Astrophysics Data System (ADS)
McEvoy, Erica L.
Stochastic differential equations are becoming a popular tool for modeling the transport and acceleration of cosmic rays in the heliosphere. In diffusive shock acceleration, cosmic rays diffuse across a region of discontinuity where the up- stream diffusion coefficient abruptly changes to the downstream value. Because the method of stochastic integration has not yet been developed to handle these types of discontinuities, I utilize methods and ideas from probability theory to develop a conceptual framework for the treatment of such discontinuities. Using this framework, I then produce some simple numerical algorithms that allow one to incorporate and simulate a variety of discontinuities (or boundary conditions) using stochastic integration. These algorithms were then modified to create a new algorithm which incorporates the discontinuous change in diffusion coefficient found in shock acceleration (known as Skew Brownian Motion). The originality of this algorithm lies in the fact that it is the first of its kind to be statistically exact, so that one obtains accuracy without the use of approximations (other than the machine precision error). I then apply this algorithm to model the problem of diffusive shock acceleration, modifying it to incorporate the additional effect of the discontinuous flow speed profile found at the shock. A steady-state solution is obtained that accurately simulates this phenomenon. This result represents a significant improvement over previous approximation algorithms, and will be useful for the simulation of discontinuous diffusion processes in other fields, such as biology and finance.
NASA Technical Reports Server (NTRS)
Challa, M.; Natanson, G.
1998-01-01
Two different algorithms - a deterministic magnetic-field-only algorithm and a Kalman filter for gyroless spacecraft - are used to estimate the attitude and rates of the Rossi X-Ray Timing Explorer (RXTE) using only measurements from a three-axis magnetometer. The performance of these algorithms is examined using in-flight data from various scenarios. In particular, significant enhancements in accuracies are observed when' the telemetered magnetometer data are accurately calibrated using a recently developed calibration algorithm. Interesting features observed in these studies of the inertial-pointing RXTE include a remarkable sensitivity of the filter to the numerical values of the noise parameters and relatively long convergence time spans. By analogy, the accuracy of the deterministic scheme is noticeably lower as a result of reduced rates of change of the body-fixed geomagnetic field. Preliminary results show the filter-per-axis attitude accuracies ranging between 0.1 and 0.5 deg and rate accuracies between 0.001 deg/sec and 0.005 deg./sec, whereas the deterministic method needs a more sophisticated techniques for smoothing time derivatives of the measured geomagnetic field to clearly distinguish both attitude and rate solutions from the numerical noise. Also included is a new theoretical development in the deterministic algorithm: the transformation of a transcendental equation in the original theory into an 8th-order polynomial equation. It is shown that this 8th-order polynomial reduces to quadratic equations in the two limiting cases-infinitely high wheel momentum, and constant rates-discussed in previous publications.
Silletta, Emilia V; Franzoni, María B; Monti, Gustavo A; Acosta, Rodolfo H
2018-01-01
Two-dimension (2D) Nuclear Magnetic Resonance relaxometry experiments are a powerful tool extensively used to probe the interaction among different pore structures, mostly in inorganic systems. The analysis of the collected experimental data generally consists of a 2D numerical inversion of time-domain data where T 2 -T 2 maps are generated. Through the years, different algorithms for the numerical inversion have been proposed. In this paper, two different algorithms for numerical inversion are tested and compared under different conditions of exchange dynamics; the method based on Butler-Reeds-Dawson (BRD) algorithm and the fast-iterative shrinkage-thresholding algorithm (FISTA) method. By constructing a theoretical model, the algorithms were tested for a two- and three-site porous media, varying the exchange rates parameters, the pore sizes and the signal to noise ratio. In order to test the methods under realistic experimental conditions, a challenging organic system was chosen. The molecular exchange rates of water confined in hierarchical porous polymeric networks were obtained, for a two- and three-site porous media. Data processed with the BRD method was found to be accurate only under certain conditions of the exchange parameters, while data processed with the FISTA method is precise for all the studied parameters, except when SNR conditions are extreme. Copyright © 2017 Elsevier Inc. All rights reserved.
Preconditioned alternating projection algorithms for maximum a posteriori ECT reconstruction
NASA Astrophysics Data System (ADS)
Krol, Andrzej; Li, Si; Shen, Lixin; Xu, Yuesheng
2012-11-01
We propose a preconditioned alternating projection algorithm (PAPA) for solving the maximum a posteriori (MAP) emission computed tomography (ECT) reconstruction problem. Specifically, we formulate the reconstruction problem as a constrained convex optimization problem with the total variation (TV) regularization. We then characterize the solution of the constrained convex optimization problem and show that it satisfies a system of fixed-point equations defined in terms of two proximity operators raised from the convex functions that define the TV-norm and the constraint involved in the problem. The characterization (of the solution) via the proximity operators that define two projection operators naturally leads to an alternating projection algorithm for finding the solution. For efficient numerical computation, we introduce to the alternating projection algorithm a preconditioning matrix (the EM-preconditioner) for the dense system matrix involved in the optimization problem. We prove theoretically convergence of the PAPA. In numerical experiments, performance of our algorithms, with an appropriately selected preconditioning matrix, is compared with performance of the conventional MAP expectation-maximization (MAP-EM) algorithm with TV regularizer (EM-TV) and that of the recently developed nested EM-TV algorithm for ECT reconstruction. Based on the numerical experiments performed in this work, we observe that the alternating projection algorithm with the EM-preconditioner outperforms significantly the EM-TV in all aspects including the convergence speed, the noise in the reconstructed images and the image quality. It also outperforms the nested EM-TV in the convergence speed while providing comparable image quality.
Accurate and diverse recommendations via eliminating redundant correlations
NASA Astrophysics Data System (ADS)
Zhou, Tao; Su, Ri-Qi; Liu, Run-Ran; Jiang, Luo-Luo; Wang, Bing-Hong; Zhang, Yi-Cheng
2009-12-01
In this paper, based on a weighted projection of a bipartite user-object network, we introduce a personalized recommendation algorithm, called network-based inference (NBI), which has higher accuracy than the classical algorithm, namely collaborative filtering. In NBI, the correlation resulting from a specific attribute may be repeatedly counted in the cumulative recommendations from different objects. By considering the higher order correlations, we design an improved algorithm that can, to some extent, eliminate the redundant correlations. We test our algorithm on two benchmark data sets, MovieLens and Netflix. Compared with NBI, the algorithmic accuracy, measured by the ranking score, can be further improved by 23 per cent for MovieLens and 22 per cent for Netflix. The present algorithm can even outperform the Latent Dirichlet Allocation algorithm, which requires much longer computational time. Furthermore, most previous studies considered the algorithmic accuracy only; in this paper, we argue that the diversity and popularity, as two significant criteria of algorithmic performance, should also be taken into account. With more or less the same accuracy, an algorithm giving higher diversity and lower popularity is more favorable. Numerical results show that the present algorithm can outperform the standard one simultaneously in all five adopted metrics: lower ranking score and higher precision for accuracy, larger Hamming distance and lower intra-similarity for diversity, as well as smaller average degree for popularity.
Kim, Kwangdon; Lee, Kisung; Lee, Hakjae; Joo, Sungkwan; Kang, Jungwon
2018-01-01
We aimed to develop a gap-filling algorithm, in particular the filter mask design method of the algorithm, which optimizes the filter to the imaging object by an adaptive and iterative process, rather than by manual means. Two numerical phantoms (Shepp-Logan and Jaszczak) were used for sinogram generation. The algorithm works iteratively, not only on the gap-filling iteration but also on the mask generation, to identify the object-dedicated low frequency area in the DCT-domain that is to be preserved. We redefine the low frequency preserving region of the filter mask at every gap-filling iteration, and the region verges on the property of the original image in the DCT domain. The previous DCT2 mask for each phantom case had been manually well optimized, and the results show little difference from the reference image and sinogram. We observed little or no difference between the results of the manually optimized DCT2 algorithm and those of the proposed algorithm. The proposed algorithm works well for various types of scanning object and shows results that compare to those of the manually optimized DCT2 algorithm without perfect or full information of the imaging object.
Analysis of composite ablators using massively parallel computation
NASA Technical Reports Server (NTRS)
Shia, David
1995-01-01
In this work, the feasibility of using massively parallel computation to study the response of ablative materials is investigated. Explicit and implicit finite difference methods are used on a massively parallel computer, the Thinking Machines CM-5. The governing equations are a set of nonlinear partial differential equations. The governing equations are developed for three sample problems: (1) transpiration cooling, (2) ablative composite plate, and (3) restrained thermal growth testing. The transpiration cooling problem is solved using a solution scheme based solely on the explicit finite difference method. The results are compared with available analytical steady-state through-thickness temperature and pressure distributions and good agreement between the numerical and analytical solutions is found. It is also found that a solution scheme based on the explicit finite difference method has the following advantages: incorporates complex physics easily, results in a simple algorithm, and is easily parallelizable. However, a solution scheme of this kind needs very small time steps to maintain stability. A solution scheme based on the implicit finite difference method has the advantage that it does not require very small times steps to maintain stability. However, this kind of solution scheme has the disadvantages that complex physics cannot be easily incorporated into the algorithm and that the solution scheme is difficult to parallelize. A hybrid solution scheme is then developed to combine the strengths of the explicit and implicit finite difference methods and minimize their weaknesses. This is achieved by identifying the critical time scale associated with the governing equations and applying the appropriate finite difference method according to this critical time scale. The hybrid solution scheme is then applied to the ablative composite plate and restrained thermal growth problems. The gas storage term is included in the explicit pressure calculation of both problems. Results from ablative composite plate problems are compared with previous numerical results which did not include the gas storage term. It is found that the through-thickness temperature distribution is not affected much by the gas storage term. However, the through-thickness pressure and stress distributions, and the extent of chemical reactions are different from the previous numerical results. Two types of chemical reaction models are used in the restrained thermal growth testing problem: (1) pressure-independent Arrhenius type rate equations and (2) pressure-dependent Arrhenius type rate equations. The numerical results are compared to experimental results and the pressure-dependent model is able to capture the trend better than the pressure-independent one. Finally, a performance study is done on the hybrid algorithm using the ablative composite plate problem. It is found that there is a good speedup of performance on the CM-5. For 32 CPU's, the speedup of performance is 20. The efficiency of the algorithm is found to be a function of the size and execution time of a given problem and the effective parallelization of the algorithm. It also seems that there is an optimum number of CPU's to use for a given problem.
Domain Decomposition Algorithms for First-Order System Least Squares Methods
NASA Technical Reports Server (NTRS)
Pavarino, Luca F.
1996-01-01
Least squares methods based on first-order systems have been recently proposed and analyzed for second-order elliptic equations and systems. They produce symmetric and positive definite discrete systems by using standard finite element spaces, which are not required to satisfy the inf-sup condition. In this paper, several domain decomposition algorithms for these first-order least squares methods are studied. Some representative overlapping and substructuring algorithms are considered in their additive and multiplicative variants. The theoretical and numerical results obtained show that the classical convergence bounds (on the iteration operator) for standard Galerkin discretizations are also valid for least squares methods.
A study of hydrogen diffusion flames using PDF turbulence model
NASA Technical Reports Server (NTRS)
Hsu, Andrew T.
1991-01-01
The application of probability density function (pdf) turbulence models is addressed. For the purpose of accurate prediction of turbulent combustion, an algorithm that combines a conventional computational fluid dynamic (CFD) flow solver with the Monte Carlo simulation of the pdf evolution equation was developed. The algorithm was validated using experimental data for a heated turbulent plane jet. The study of H2-F2 diffusion flames was carried out using this algorithm. Numerical results compared favorably with experimental data. The computations show that the flame center shifts as the equivalence ratio changes, and that for the same equivalence ratio, similarity solutions for flames exist.
A study of hydrogen diffusion flames using PDF turbulence model
NASA Technical Reports Server (NTRS)
Hsu, Andrew T.
1991-01-01
The application of probability density function (pdf) turbulence models is addressed in this work. For the purpose of accurate prediction of turbulent combustion, an algorithm that combines a conventional CFD flow solver with the Monte Carlo simulation of the pdf evolution equation has been developed. The algorithm has been validated using experimental data for a heated turbulent plane jet. The study of H2-F2 diffusion flames has been carried out using this algorithm. Numerical results compared favorably with experimental data. The computuations show that the flame center shifts as the equivalence ratio changes, and that for the same equivalence ratio, similarity solutions for flames exist.
Arteaga-Sierra, F R; Milián, C; Torres-Gómez, I; Torres-Cisneros, M; Moltó, G; Ferrando, A
2014-09-22
We present a numerical strategy to design fiber based dual pulse light sources exhibiting two predefined spectral peaks in the anomalous group velocity dispersion regime. The frequency conversion is based on the soliton fission and soliton self-frequency shift occurring during supercontinuum generation. The optimization process is carried out by a genetic algorithm that provides the optimum input pulse parameters: wavelength, temporal width and peak power. This algorithm is implemented in a Grid platform in order to take advantage of distributed computing. These results are useful for optical coherence tomography applications where bell-shaped pulses located in the second near-infrared window are needed.
The PX-EM algorithm for fast stable fitting of Henderson's mixed model
Foulley, Jean-Louis; Van Dyk, David A
2000-01-01
This paper presents procedures for implementing the PX-EM algorithm of Liu, Rubin and Wu to compute REML estimates of variance covariance components in Henderson's linear mixed models. The class of models considered encompasses several correlated random factors having the same vector length e.g., as in random regression models for longitudinal data analysis and in sire-maternal grandsire models for genetic evaluation. Numerical examples are presented to illustrate the procedures. Much better results in terms of convergence characteristics (number of iterations and time required for convergence) are obtained for PX-EM relative to the basic EM algorithm in the random regression. PMID:14736399
Matrix preconditioning: a robust operation for optical linear algebra processors.
Ghosh, A; Paparao, P
1987-07-15
Analog electrooptical processors are best suited for applications demanding high computational throughput with tolerance for inaccuracies. Matrix preconditioning is one such application. Matrix preconditioning is a preprocessing step for reducing the condition number of a matrix and is used extensively with gradient algorithms for increasing the rate of convergence and improving the accuracy of the solution. In this paper, we describe a simple parallel algorithm for matrix preconditioning, which can be implemented efficiently on a pipelined optical linear algebra processor. From the results of our numerical experiments we show that the efficacy of the preconditioning algorithm is affected very little by the errors of the optical system.
A genetic algorithm used for solving one optimization problem
NASA Astrophysics Data System (ADS)
Shipacheva, E. N.; Petunin, A. A.; Berezin, I. M.
2017-12-01
A problem of minimizing the length of the blank run for a cutting tool during cutting of sheet materials into shaped blanks is discussed. This problem arises during the preparation of control programs for computerized numerical control (CNC) machines. A discrete model of the problem is analogous in setting to the generalized travelling salesman problem with limitations in the form of precursor conditions determined by the technological features of cutting. A certain variant of a genetic algorithm for solving this problem is described. The effect of the parameters of the developed algorithm on the solution result for the problem with limitations is investigated.
Sokol, Serguei; Millard, Pierre; Portais, Jean-Charles
2012-03-01
The problem of stationary metabolic flux analysis based on isotope labelling experiments first appeared in the early 1950s and was basically solved in early 2000s. Several algorithms and software packages are available for this problem. However, the generic stochastic algorithms (simulated annealing or evolution algorithms) currently used in these software require a lot of time to achieve acceptable precision. For deterministic algorithms, a common drawback is the lack of convergence stability for ill-conditioned systems or when started from a random point. In this article, we present a new deterministic algorithm with significantly increased numerical stability and accuracy of flux estimation compared with commonly used algorithms. It requires relatively short CPU time (from several seconds to several minutes with a standard PC architecture) to estimate fluxes in the central carbon metabolism network of Escherichia coli. The software package influx_s implementing this algorithm is distributed under an OpenSource licence at http://metasys.insa-toulouse.fr/software/influx/. Supplementary data are available at Bioinformatics online.
A real-time guidance algorithm for aerospace plane optimal ascent to low earth orbit
NASA Technical Reports Server (NTRS)
Calise, A. J.; Flandro, G. A.; Corban, J. E.
1989-01-01
Problems of onboard trajectory optimization and synthesis of suitable guidance laws for ascent to low Earth orbit of an air-breathing, single-stage-to-orbit vehicle are addressed. A multimode propulsion system is assumed which incorporates turbojet, ramjet, Scramjet, and rocket engines. An algorithm for generating fuel-optimal climb profiles is presented. This algorithm results from the application of the minimum principle to a low-order dynamic model that includes angle-of-attack effects and the normal component of thrust. Maximum dynamic pressure and maximum aerodynamic heating rate constraints are considered. Switching conditions are derived which, under appropriate assumptions, govern optimal transition from one propulsion mode to another. A nonlinear transformation technique is employed to derived a feedback controller for tracking the computed trajectory. Numerical results illustrate the nature of the resulting fuel-optimal climb paths.
Lipinski, Doug; Mohseni, Kamran
2010-03-01
A ridge tracking algorithm for the computation and extraction of Lagrangian coherent structures (LCS) is developed. This algorithm takes advantage of the spatial coherence of LCS by tracking the ridges which form LCS to avoid unnecessary computations away from the ridges. We also make use of the temporal coherence of LCS by approximating the time dependent motion of the LCS with passive tracer particles. To justify this approximation, we provide an estimate of the difference between the motion of the LCS and that of tracer particles which begin on the LCS. In addition to the speedup in computational time, the ridge tracking algorithm uses less memory and results in smaller output files than the standard LCS algorithm. Finally, we apply our ridge tracking algorithm to two test cases, an analytically defined double gyre as well as the more complicated example of the numerical simulation of a swimming jellyfish. In our test cases, we find up to a 35 times speedup when compared with the standard LCS algorithm.
Theory and algorithms for image reconstruction on chords and within regions of interest
NASA Astrophysics Data System (ADS)
Zou, Yu; Pan, Xiaochuan; Sidky, Emilâ Y.
2005-11-01
We introduce a formula for image reconstruction on a chord of a general source trajectory. We subsequently develop three algorithms for exact image reconstruction on a chord from data acquired with the general trajectory. Interestingly, two of the developed algorithms can accommodate data containing transverse truncations. The widely used helical trajectory and other trajectories discussed in literature can be interpreted as special cases of the general trajectory, and the developed theory and algorithms are thus directly applicable to reconstructing images exactly from data acquired with these trajectories. For instance, chords on a helical trajectory are equivalent to the n-PI-line segments. In this situation, the proposed algorithms become the algorithms that we proposed previously for image reconstruction on PI-line segments. We have performed preliminary numerical studies, which include the study on image reconstruction on chords of two-circle trajectory, which is nonsmooth, and on n-PI lines of a helical trajectory, which is smooth. Quantitative results of these studies verify and demonstrate the proposed theory and algorithms.
An improved grey wolf optimizer algorithm for the inversion of geoelectrical data
NASA Astrophysics Data System (ADS)
Li, Si-Yu; Wang, Shu-Ming; Wang, Peng-Fei; Su, Xiao-Lu; Zhang, Xin-Song; Dong, Zhi-Hui
2018-05-01
The grey wolf optimizer (GWO) is a novel bionics algorithm inspired by the social rank and prey-seeking behaviors of grey wolves. The GWO algorithm is easy to implement because of its basic concept, simple formula, and small number of parameters. This paper develops a GWO algorithm with a nonlinear convergence factor and an adaptive location updating strategy and applies this improved grey wolf optimizer (improved grey wolf optimizer, IGWO) algorithm to geophysical inversion problems using magnetotelluric (MT), DC resistivity and induced polarization (IP) methods. Numerical tests in MATLAB 2010b for the forward modeling data and the observed data show that the IGWO algorithm can find the global minimum and rarely sinks to the local minima. For further study, inverted results using the IGWO are contrasted with particle swarm optimization (PSO) and the simulated annealing (SA) algorithm. The outcomes of the comparison reveal that the IGWO and PSO similarly perform better in counterpoising exploration and exploitation with a given number of iterations than the SA.
Numerical algorithms for computations of feedback laws arising in control of flexible systems
NASA Technical Reports Server (NTRS)
Lasiecka, Irena
1989-01-01
Several continuous models will be examined, which describe flexible structures with boundary or point control/observation. Issues related to the computation of feedback laws are examined (particularly stabilizing feedbacks) with sensors and actuators located either on the boundary or at specific point locations of the structure. One of the main difficulties is due to the great sensitivity of the system (hyperbolic systems with unbounded control actions), with respect to perturbations caused either by uncertainty of the model or by the errors introduced in implementing numerical algorithms. Thus, special care must be taken in the choice of the appropriate numerical schemes which eventually lead to implementable finite dimensional solutions. Finite dimensional algorithms are constructed on a basis of a priority analysis of the properties of the original, continuous (infinite diversional) systems with the following criteria in mind: (1) convergence and stability of the algorithms and (2) robustness (reasonable insensitivity with respect to the unknown parameters of the systems). Examples with mixed finite element methods and spectral methods are provided.
Random search optimization based on genetic algorithm and discriminant function
NASA Technical Reports Server (NTRS)
Kiciman, M. O.; Akgul, M.; Erarslanoglu, G.
1990-01-01
The general problem of optimization with arbitrary merit and constraint functions, which could be convex, concave, monotonic, or non-monotonic, is treated using stochastic methods. To improve the efficiency of the random search methods, a genetic algorithm for the search phase and a discriminant function for the constraint-control phase were utilized. The validity of the technique is demonstrated by comparing the results to published test problem results. Numerical experimentation indicated that for cases where a quick near optimum solution is desired, a general, user-friendly optimization code can be developed without serious penalties in both total computer time and accuracy.
Josiński, Henryk; Kostrzewa, Daniel; Michalczuk, Agnieszka; Switoński, Adam
2014-01-01
This paper introduces an expanded version of the Invasive Weed Optimization algorithm (exIWO) distinguished by the hybrid strategy of the search space exploration proposed by the authors. The algorithm is evaluated by solving three well-known optimization problems: minimization of numerical functions, feature selection, and the Mona Lisa TSP Challenge as one of the instances of the traveling salesman problem. The achieved results are compared with analogous outcomes produced by other optimization methods reported in the literature.
Spectral multigrid methods for the solution of homogeneous turbulence problems
NASA Technical Reports Server (NTRS)
Erlebacher, G.; Zang, T. A.; Hussaini, M. Y.
1987-01-01
New three-dimensional spectral multigrid algorithms are analyzed and implemented to solve the variable coefficient Helmholtz equation. Periodicity is assumed in all three directions which leads to a Fourier collocation representation. Convergence rates are theoretically predicted and confirmed through numerical tests. Residual averaging results in a spectral radius of 0.2 for the variable coefficient Poisson equation. In general, non-stationary Richardson must be used for the Helmholtz equation. The algorithms developed are applied to the large-eddy simulation of incompressible isotropic turbulence.
Research on numerical method for multiple pollution source discharge and optimal reduction program
NASA Astrophysics Data System (ADS)
Li, Mingchang; Dai, Mingxin; Zhou, Bin; Zou, Bin
2018-03-01
In this paper, the optimal method for reduction program is proposed by the nonlinear optimal algorithms named that genetic algorithm. The four main rivers in Jiangsu province, China are selected for reducing the environmental pollution in nearshore district. Dissolved inorganic nitrogen (DIN) is studied as the only pollutant. The environmental status and standard in the nearshore district is used to reduce the discharge of multiple river pollutant. The research results of reduction program are the basis of marine environmental management.
Implementation details of the coupled QMR algorithm
NASA Technical Reports Server (NTRS)
Freund, Roland W.; Nachtigal, Noel M.
1992-01-01
The original quasi-minimal residual method (QMR) relies on the three-term look-ahead Lanczos process, to generate basis vectors for the underlying Krylov subspaces. However, empirical observations indicate that, in finite precision arithmetic, three-term vector recurrences are less robust than mathematically equivalent coupled two-term recurrences. Therefore, we recently proposed a new implementation of the QMR method based on a coupled two-term look-ahead Lanczos procedure. In this paper, we describe implementation details of this coupled QMR algorithm, and we present results of numerical experiments.
NASA Technical Reports Server (NTRS)
Bennett, A.
1973-01-01
A guidance algorithm that provides precise rendezvous in the deterministic case while requiring only relative state information is developed. A navigation scheme employing only onboard relative measurements is built around a Kalman filter set in measurement coordinates. The overall guidance and navigation procedure is evaluated in the face of measurement errors by a detailed numerical simulation. Results indicate that onboard guidance and navigation for the terminal phase of rendezvous is possible with reasonable limits on measurement errors.
Numerical Recovering of a Speed of Sound by the BC-Method in 3D
NASA Astrophysics Data System (ADS)
Pestov, Leonid; Bolgova, Victoria; Danilin, Alexandr
We develop the numerical algorithm for solving the inverse problem for the wave equation by the Boundary Control method. The problem, which we refer to as a forward one, is an initial boundary value problem for the wave equation with zero initial data in the bounded domain. The inverse problem is to find the speed of sound c(x) by the measurements of waves induced by a set of boundary sources. The time of observation is assumed to be greater then two acoustical radius of the domain. The numerical algorithm for sound reconstruction is based on two steps. The first one is to find a (sufficiently large) number of controls {f_j} (the basic control is defined by the position of the source and some time delay), which generates the same number of known harmonic functions, i.e. Δ {u_j}(.,T) = 0 , where {u_j} is the wave generated by the control {f_j} . After that the linear integral equation w.r.t. the speed of sound is obtained. The piecewise constant model of the speed is used. The result of numerical testing of 3-dimensional model is presented.
Sabry, A H; W Hasan, W Z; Ab Kadir, M Z A; Radzi, M A M; Shafie, S
2018-01-01
The power system always has several variations in its profile due to random load changes or environmental effects such as device switching effects when generating further transients. Thus, an accurate mathematical model is important because most system parameters vary with time. Curve modeling of power generation is a significant tool for evaluating system performance, monitoring and forecasting. Several numerical techniques compete to fit the curves of empirical data such as wind, solar, and demand power rates. This paper proposes a new modified methodology presented as a parametric technique to determine the system's modeling equations based on the Bode plot equations and the vector fitting (VF) algorithm by fitting the experimental data points. The modification is derived from the familiar VF algorithm as a robust numerical method. This development increases the application range of the VF algorithm for modeling not only in the frequency domain but also for all power curves. Four case studies are addressed and compared with several common methods. From the minimal RMSE, the results show clear improvements in data fitting over other methods. The most powerful features of this method is the ability to model irregular or randomly shaped data and to be applied to any algorithms that estimating models using frequency-domain data to provide state-space or transfer function for the model.
W. Hasan, W. Z.
2018-01-01
The power system always has several variations in its profile due to random load changes or environmental effects such as device switching effects when generating further transients. Thus, an accurate mathematical model is important because most system parameters vary with time. Curve modeling of power generation is a significant tool for evaluating system performance, monitoring and forecasting. Several numerical techniques compete to fit the curves of empirical data such as wind, solar, and demand power rates. This paper proposes a new modified methodology presented as a parametric technique to determine the system’s modeling equations based on the Bode plot equations and the vector fitting (VF) algorithm by fitting the experimental data points. The modification is derived from the familiar VF algorithm as a robust numerical method. This development increases the application range of the VF algorithm for modeling not only in the frequency domain but also for all power curves. Four case studies are addressed and compared with several common methods. From the minimal RMSE, the results show clear improvements in data fitting over other methods. The most powerful features of this method is the ability to model irregular or randomly shaped data and to be applied to any algorithms that estimating models using frequency-domain data to provide state-space or transfer function for the model. PMID:29351554
Experimental Investigation of Hydrodynamic Self-Acting Gas Bearings at High Knudsen Numbers.
1980-07-01
Reynolds equation. Two finite - difference algorithms were used to solve the equation. Numerical results - the predicted load and pitch angle - from the two...that should be used. The majority of the numerical solution are still based on the finite difference approximation of the governing equation. But in... finite difference method. Reddi and Chu [26) also noted that it is very difficult to compare the two techniques on the same level since the solution
Methods, Software and Tools for Three Numerical Applications. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
E. R. Jessup
2000-03-01
This is a report of the results of the authors work supported by DOE contract DE-FG03-97ER25325. They proposed to study three numerical problems. They are: (1) the extension of the PMESC parallel programming library; (2) the development of algorithms and software for certain generalized eigenvalue and singular value (SVD) problems, and (3) the application of techniques of linear algebra to an information retrieval technique known as latent semantic indexing (LSI).
Using the Multilayer Free-Surface Flow Model to Solve Wave Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prokof’ev, V. A., E-mail: ProkofyevVA@vniig.ru
2017-01-15
A method is presented for changing over from a single-layer shallow-water model to a multilayer model with hydrostatic pressure profile and, then, to a multilayer model with nonhydrostatic pressure profile. The method does not require complex procedures for solving the discrete Poisson’s equation and features high computation efficiency. The results of validating the algorithm against experimental data critical for the numerical dissipation of the numerical scheme are presented. Examples are considered.
NASA Astrophysics Data System (ADS)
Oh, Sehyeong; Lee, Boogeon; Park, Hyungmin; Choi, Haecheon
2017-11-01
We investigate a hovering rhinoceros beetle using numerical simulation and blade element theory. Numerical simulations are performed using an immersed boundary method. In the simulation, the hindwings are modeled as a rigid flat plate, and three-dimensionally scanned elytra and body are used. The results of simulation indicate that the lift force generated by the hindwings alone is sufficient to support the weight, and the elytra generate negligible lift force. Considering the hindwings only, we present a blade element model based on quasi-steady assumptions to identify the mechanisms of aerodynamic force generation and power expenditure in the hovering flight of a rhinoceros beetle. We show that the results from the present blade element model are in excellent agreement with numerical ones. Based on the current blade element model, we find the optimal wing kinematics minimizing the aerodynamic power requirement using a hybrid optimization algorithm combining a clustering genetic algorithm with a gradient-based optimizer. We show that the optimal wing kinematics reduce the aerodynamic power consumption, generating enough lift force to support the weight. This research was supported by a Grant to Bio-Mimetic Robot Research Center Funded by Defense Acquisition Program Administration, and by Agency for Defense Development (UD130070ID) and NRF-2016R1E1A1A02921549 of the MSIP of Korea.
NASA Astrophysics Data System (ADS)
Bak, Roman; Matyja, Tomasz
An algorithm and a computer program have been developed for calculating the strength of pressure vessels made of laminated composites. Numerical results for pressure vessels of Kevlar 49 laminates are compared with experimental data in the literature.
NASA Astrophysics Data System (ADS)
Avitabile, Daniele; Bridges, Thomas J.
2010-06-01
Numerical integration of complex linear systems of ODEs depending analytically on an eigenvalue parameter are considered. Complex orthogonalization, which is required to stabilize the numerical integration, results in non-analytic systems. It is shown that properties of eigenvalues are still efficiently recoverable by extracting information from a non-analytic characteristic function. The orthonormal systems are constructed using the geometry of Stiefel bundles. Different forms of continuous orthogonalization in the literature are shown to correspond to different choices of connection one-form on the Stiefel bundle. For the numerical integration, Gauss-Legendre Runge-Kutta algorithms are the principal choice for preserving orthogonality, and performance results are shown for a range of GLRK methods. The theory and methods are tested by application to example boundary value problems including the Orr-Sommerfeld equation in hydrodynamic stability.
NASA Astrophysics Data System (ADS)
Castagnède, Bernard; Jenkins, James T.; Sachse, Wolfgang; Baste, Stéphane
1990-03-01
A method is described to optimally determine the elastic constants of anisotropic solids from wave-speeds measurements in arbitrary nonprincipal planes. For such a problem, the characteristic equation is a degree-three polynomial which generally does not factorize. By developing and rearranging this polynomial, a nonlinear system of equations is obtained. The elastic constants are then recovered by minimizing a functional derived from this overdetermined system of equations. Calculations of the functional are given for two specific cases, i.e., the orthorhombic and the hexagonal symmetries. Some numerical results showing the efficiency of the algorithm are presented. A numerical method is also described for the recovery of the orientation of the principal acoustical axes. This problem is solved through a double-iterative numerical scheme. Numerical as well as experimental results are presented for a unidirectional composite material.
Numerical algorithm for rigid body position estimation using the quaternion approach
NASA Astrophysics Data System (ADS)
Zigic, Miodrag; Grahovac, Nenad
2017-11-01
This paper deals with rigid body attitude estimation on the basis of the data obtained from an inertial measurement unit mounted on the body. The aim of this work is to present the numerical algorithm, which can be easily applied to the wide class of problems concerning rigid body positioning, arising in aerospace and marine engineering, or in increasingly popular robotic systems and unmanned aerial vehicles. Following the considerations of kinematics of rigid bodies, the relations between accelerations of different points of the body are given. A rotation matrix is formed using the quaternion approach to avoid singularities. We present numerical procedures for determination of the absolute accelerations of the center of mass and of an arbitrary point of the body expressed in the inertial reference frame, as well as its attitude. An application of the algorithm to the example of a heavy symmetrical gyroscope is presented, where input data for the numerical procedure are obtained from the solution of differential equations of motion, instead of using sensor measurements.
A Numerical Model for Trickle Bed Reactors
NASA Astrophysics Data System (ADS)
Propp, Richard M.; Colella, Phillip; Crutchfield, William Y.; Day, Marcus S.
2000-12-01
Trickle bed reactors are governed by equations of flow in porous media such as Darcy's law and the conservation of mass. Our numerical method for solving these equations is based on a total-velocity splitting, sequential formulation which leads to an implicit pressure equation and a semi-implicit mass conservation equation. We use high-resolution finite-difference methods to discretize these equations. Our solution scheme extends previous work in modeling porous media flows in two ways. First, we incorporate physical effects due to capillary pressure, a nonlinear inlet boundary condition, spatial porosity variations, and inertial effects on phase mobilities. In particular, capillary forces introduce a parabolic component into the recast evolution equation, and the inertial effects give rise to hyperbolic nonconvexity. Second, we introduce a modification of the slope-limiting algorithm to prevent our numerical method from producing spurious shocks. We present a numerical algorithm for accommodating these difficulties, show the algorithm is second-order accurate, and demonstrate its performance on a number of simplified problems relevant to trickle bed reactor modeling.
Fast numerics for the spin orbit equation with realistic tidal dissipation and constant eccentricity
NASA Astrophysics Data System (ADS)
Bartuccelli, Michele; Deane, Jonathan; Gentile, Guido
2017-08-01
We present an algorithm for the rapid numerical integration of a time-periodic ODE with a small dissipation term that is C^1 in the velocity. Such an ODE arises as a model of spin-orbit coupling in a star/planet system, and the motivation for devising a fast algorithm for its solution comes from the desire to estimate probability of capture in various solutions, via Monte Carlo simulation: the integration times are very long, since we are interested in phenomena occurring on timescales of the order of 10^6-10^7 years. The proposed algorithm is based on the high-order Euler method which was described in Bartuccelli et al. (Celest Mech Dyn Astron 121(3):233-260, 2015), and it requires computer algebra to set up the code for its implementation. The payoff is an overall increase in speed by a factor of about 7.5 compared to standard numerical methods. Means for accelerating the purely numerical computation are also discussed.
A novel hybrid algorithm for the design of the phase diffractive optical elements for beam shaping
NASA Astrophysics Data System (ADS)
Jiang, Wenbo; Wang, Jun; Dong, Xiucheng
2013-02-01
In this paper, a novel hybrid algorithm for the design of a phase diffractive optical elements (PDOE) is proposed. It combines the genetic algorithm (GA) with the transformable scale BFGS (Broyden, Fletcher, Goldfarb, Shanno) algorithm, the penalty function was used in the cost function definition. The novel hybrid algorithm has the global merits of the genetic algorithm as well as the local improvement capabilities of the transformable scale BFGS algorithm. We designed the PDOE using the conventional simulated annealing algorithm and the novel hybrid algorithm. To compare the performance of two algorithms, three indexes of the diffractive efficiency, uniformity error and the signal-to-noise ratio are considered in numerical simulation. The results show that the novel hybrid algorithm has good convergence property and good stability. As an application example, the PDOE was used for the Gaussian beam shaping; high diffractive efficiency, low uniformity error and high signal-to-noise were obtained. The PDOE can be used for high quality beam shaping such as inertial confinement fusion (ICF), excimer laser lithography, fiber coupling laser diode array, laser welding, etc. It shows wide application value.
Application of symbolic/numeric matrix solution techniques to the NASTRAN program
NASA Technical Reports Server (NTRS)
Buturla, E. M.; Burroughs, S. H.
1977-01-01
The matrix solving algorithm of any finite element algorithm is extremely important since solution of the matrix equations requires a large amount of elapse time due to null calculations and excessive input/output operations. An alternate method of solving the matrix equations is presented. A symbolic processing step followed by numeric solution yields the solution very rapidly and is especially useful for nonlinear problems.
A sensitivity equation approach to shape optimization in fluid flows
NASA Technical Reports Server (NTRS)
Borggaard, Jeff; Burns, John
1994-01-01
A sensitivity equation method to shape optimization problems is applied. An algorithm is developed and tested on a problem of designing optimal forebody simulators for a 2D, inviscid supersonic flow. The algorithm uses a BFGS/Trust Region optimization scheme with sensitivities computed by numerically approximating the linear partial differential equations that determine the flow sensitivities. Numerical examples are presented to illustrate the method.