Science.gov

Sample records for algorithm numerical studies

  1. Numerical comparison of Kalman filter algorithms - Orbit determination case study

    NASA Technical Reports Server (NTRS)

    Bierman, G. J.; Thornton, C. L.

    1977-01-01

    Numerical characteristics of various Kalman filter algorithms are illustrated with a realistic orbit determination study. The case study of this paper highlights the numerical deficiencies of the conventional and stabilized Kalman algorithms. Computational errors associated with these algorithms are found to be so large as to obscure important mismodeling effects and thus cause misleading estimates of filter accuracy. The positive result of this study is that the U-D covariance factorization algorithm has excellent numerical properties and is computationally efficient, having CPU costs that differ negligibly from the conventional Kalman costs. Accuracies of the U-D filter using single precision arithmetic consistently match the double precision reference results. Numerical stability of the U-D filter is further demonstrated by its insensitivity to variations in the a priori statistics.

  2. A numerical comparison of discrete Kalman filtering algorithms: An orbit determination case study

    NASA Technical Reports Server (NTRS)

    Thornton, C. L.; Bierman, G. J.

    1976-01-01

    The numerical stability and accuracy of various Kalman filter algorithms are thoroughly studied. Numerical results and conclusions are based on a realistic planetary approach orbit determination study. The case study results of this report highlight the numerical instability of the conventional and stabilized Kalman algorithms. Numerical errors associated with these algorithms can be so large as to obscure important mismodeling effects and thus give misleading estimates of filter accuracy. The positive result of this study is that the Bierman-Thornton U-D covariance factorization algorithm is computationally efficient, with CPU costs that differ negligibly from the conventional Kalman costs. In addition, accuracy of the U-D filter using single-precision arithmetic consistently matches the double-precision reference results. Numerical stability of the U-D filter is further demonstrated by its insensitivity of variations in the a priori statistics.

  3. Numerical comparison of discrete Kalman filter algorithms - Orbit determination case study

    NASA Technical Reports Server (NTRS)

    Bierman, G. J.; Thornton, C. L.

    1976-01-01

    Numerical characteristics of various Kalman filter algorithms are illustrated with a realistic orbit determination study. The case study of this paper highlights the numerical deficiencies of the conventional and stabilized Kalman algorithms. Computational errors associated with these algorithms are found to be so large as to obscure important mismodeling effects and thus cause misleading estimates of filter accuracy. The positive result of this study is that the U-D covariance factorization algorithm has excellent numerical properties and is computationally efficient, having CPU costs that differ negligibly from the conventional Kalman costs. Accuracies of the U-D filter using single precision arithmetic consistently match the double precision reference results. Numerical stability of the U-D filter is further demonstrated by its insensitivity to variations in the a priori statistics.

  4. Numerical study of variational data assimilation algorithms based on decomposition methods in atmospheric chemistry models

    NASA Astrophysics Data System (ADS)

    Penenko, Alexey; Antokhin, Pavel

    2016-11-01

    The performance of a variational data assimilation algorithm for a transport and transformation model of atmospheric chemical composition is studied numerically in the case where the emission inventories are missing while there are additional in situ indirect concentration measurements. The algorithm is based on decomposition and splitting methods with a direct solution of the data assimilation problems at the splitting stages. This design allows avoiding iterative processes and working in real-time. In numerical experiments we study the sensitivity of data assimilation to measurement data quantity and quality.

  5. Comparative Study of Algorithms for the Numerical Simulation of Lattice QCD

    SciTech Connect

    Luz, Fernando H. P.; Mendes, Tereza

    2010-11-12

    Large-scale numerical simulations are the prime method for a nonperturbative study of QCD from first principles. Although the lattice simulation of the pure-gauge (or quenched-QCD) case may be performed very efficiently on parallel machines, there are several additional difficulties in the simulation of the full-QCD case, i.e. when dynamical quark effects are taken into account. We discuss the main aspects of full-QCD simulations, describing the most common algorithms. We present a comparative analysis of performance for two versions of the hybrid Monte Carlo method (the so-called R and RHMC algorithms), as provided in the MILC software package. We consider two degenerate flavors of light quarks in the staggered formulation, having in mind the case of finite-temperature QCD.

  6. A numerical comparison of discrete Kalman filtering algorithms - An orbit determination case study

    NASA Technical Reports Server (NTRS)

    Thornton, C. L.; Bierman, G. J.

    1976-01-01

    An improved Kalman filter algorithm based on a modified Givens matrix triangularization technique is proposed for solving a nonstationary discrete-time linear filtering problem. The proposed U-D covariance factorization filter uses orthogonal transformation technique; measurement and time updating of the U-D factors involve separate application of Gentleman's fast square-root-free Givens rotations. Numerical stability and accuracy of the algorithm are compared with those of the conventional and stabilized Kalman filters and the Potter-Schmidt square-root filter, by applying these techniques to a realistic planetary navigation problem (orbit determination for the Saturn approach phase of the Mariner Jupiter-Saturn Mission, 1977). The new algorithm is shown to combine the numerical precision of square root filtering with the efficiency of the original Kalman algorithm.

  7. Numerical study of a finite volume scheme for incompressible Navier-Stokes equations based on SIMPLE-family algorithms

    NASA Astrophysics Data System (ADS)

    Alahyane, M.; Hakim, A.; Raghay, S.

    2017-01-01

    In this work, we present a numerical study of a finite volume scheme based on SIMPLE algorithm for incompressible Navier-Stokes problem. However, this algorithm still not applicable to a large category of problems this could be understood from its stability and convergence, which depends strongly on the parameter of relaxation, in some cases this algorithm could have an unexpected behavior. Therefore, in our work we focus on this particular point to overcome this respected choice of relaxation parameter and to find a sufficient condition for the convergence of the algorithm in general cases. This will be followed by numerical applications in image processing variety of fluid flow problems described by incompressible Navier-Stokes equations.

  8. Numerical simulation study of the dynamical behavior of the Niedermayer algorithm

    NASA Astrophysics Data System (ADS)

    Girardi, D.; Branco, N. S.

    2010-04-01

    We calculate the dynamic critical exponent for the Niedermayer algorithm applied to the two-dimensional Ising and XY models, for various values of the free parameter E0. For E0 = - 1 we regain the Metropolis algorithm and for E0 = 1 we regain the Wolff algorithm. For - 1 < E0 < 1, we show that the mean size of the clusters of (possibly) turned spins initially grows with the linear size of the lattice, L, but eventually saturates at a given lattice size \\widetilde {L} , which depends on E0. For L\\gt \\widetilde {L} , the Niedermayer algorithm is equivalent to the Metropolis one, i.e., they have the same dynamic exponent. For E0 > 1, the autocorrelation time is always greater than for E0 = 1 (Wolff) and, more important, it also grows faster than a power of L. Therefore, we show that the best choice of cluster algorithm is the Wolff one, when comparing against the Niedermayer generalization. We also obtain the dynamic behavior of the Wolff algorithm: although not conclusively, we propose a scaling law for the dependence of the autocorrelation time on L.

  9. Numerical Algorithms and Parallel Tasking.

    DTIC Science & Technology

    1984-07-01

    34 Principal Investigator, Virginia Klema, Research Staff, George Cybenko and Elizabeth Ducot . During the period, May 15, 1983 through May 14, 1984...Virginia Klema and Elizabeth Ducot have been supported for four months, and George Cybenko has been supported for one month. During this time system...algorithms or applications is the responsibility of the user. Virginia Klema and Elizabeth Ducot presented a description of the concurrent computing

  10. Numerical Study of Equilibrium, Stability, and Advanced Resistive Wall Mode Feedback Algorithms on KSTAR

    NASA Astrophysics Data System (ADS)

    Katsuro-Hopkins, Oksana; Sabbagh, S. A.; Bialek, J. M.; Park, H. K.; Kim, J. Y.; You, K.-I.; Glasser, A. H.; Lao, L. L.

    2007-11-01

    Stability to ideal MHD kink/ballooning modes and the resistive wall mode (RWM) is investigated for the KSTAR tokamak. Free-boundary equilibria that comply with magnetic field coil current constraints are computed for monotonic and reversed shear safety factor profiles and H-mode tokamak pressure profiles. Advanced tokamak operation at moderate to low plasma internal inductance shows that a factor of two improvement in the plasma beta limit over the no-wall beta limit is possible for toroidal mode number of unity. The KSTAR conducting structure, passive stabilizers, and in-vessel control coils are modeled by the VALEN-3D code and the active RWM stabilization performance of the device is evaluated using both standard and advanced feedback algorithms. Steady-state power and voltage requirements for the system are estimated based on the expected noise on the RWM sensor signals. Using NSTX experimental RWM sensors noise data as input, a reduced VALEN state-space LQG controller is designed to realistically assess KSTAR stabilization system performance.

  11. Trees, bialgebras and intrinsic numerical algorithms

    NASA Technical Reports Server (NTRS)

    Crouch, Peter; Grossman, Robert; Larson, Richard

    1990-01-01

    Preliminary work about intrinsic numerical integrators evolving on groups is described. Fix a finite dimensional Lie group G; let g denote its Lie algebra, and let Y(sub 1),...,Y(sub N) denote a basis of g. A class of numerical algorithms is presented that approximate solutions to differential equations evolving on G of the form: dot-x(t) = F(x(t)), x(0) = p is an element of G. The algorithms depend upon constants c(sub i) and c(sub ij), for i = 1,...,k and j is less than i. The algorithms have the property that if the algorithm starts on the group, then it remains on the group. In addition, they also have the property that if G is the abelian group R(N), then the algorithm becomes the classical Runge-Kutta algorithm. The Cayley algebra generated by labeled, ordered trees is used to generate the equations that the coefficients c(sub i) and c(sub ij) must satisfy in order for the algorithm to yield an rth order numerical integrator and to analyze the resulting algorithms.

  12. Numerical linear algebra algorithms and software

    NASA Astrophysics Data System (ADS)

    Dongarra, Jack J.; Eijkhout, Victor

    2000-11-01

    The increasing availability of advanced-architecture computers has a significant effect on all spheres of scientific computation, including algorithm research and software development in numerical linear algebra. Linear algebra - in particular, the solution of linear systems of equations - lies at the heart of most calculations in scientific computing. This paper discusses some of the recent developments in linear algebra designed to exploit these advanced-architecture computers. We discuss two broad classes of algorithms: those for dense, and those for sparse matrices.

  13. Numerical Algorithms Based on Biorthogonal Wavelets

    NASA Technical Reports Server (NTRS)

    Ponenti, Pj.; Liandrat, J.

    1996-01-01

    Wavelet bases are used to generate spaces of approximation for the resolution of bidimensional elliptic and parabolic problems. Under some specific hypotheses relating the properties of the wavelets to the order of the involved operators, it is shown that an approximate solution can be built. This approximation is then stable and converges towards the exact solution. It is designed such that fast algorithms involving biorthogonal multi resolution analyses can be used to resolve the corresponding numerical problems. Detailed algorithms are provided as well as the results of numerical tests on partial differential equations defined on the bidimensional torus.

  14. The 3D Kasteleyn transition in dipolar spin ice: a numerical study with the conserved monopoles algorithm.

    PubMed

    Baez, M L; Borzi, R A

    2017-02-08

    We study the three-dimensional Kasteleyn transition in both nearest neighbours and dipolar spin ice models using an algorithm that conserves the number of excitations. We first limit the interactions range to nearest neighbours to test the method in the presence of a field applied along [Formula: see text], and then focus on the dipolar spin ice model. The effect of dipolar interactions, which is known to be greatly self screened at zero field, is particularly strong near full polarization. It shifts the Kasteleyn transition to lower temperatures, which decreases  ≈0.4 K for the parameters corresponding to the best known spin ice materials, [Formula: see text] and [Formula: see text]. This shift implies effective dipolar fields as big as 0.05 T opposing the applied field, and thus favouring the creation of 'strings' of reversed spins. We compare the reduction in the transition temperature with results in previous experiments, and study the phenomenon quantitatively using a simple molecular field approach. Finally, we relate the presence of the effective residual field to the appearance of string-ordered phases at low fields and temperatures, and we check numerically that for fields applied along [Formula: see text] there are only three different stable phases at zero temperature.

  15. The 3D Kasteleyn transition in dipolar spin ice: a numerical study with the conserved monopoles algorithm

    NASA Astrophysics Data System (ADS)

    Baez, M. L.; Borzi, R. A.

    2017-02-01

    We study the three-dimensional Kasteleyn transition in both nearest neighbours and dipolar spin ice models using an algorithm that conserves the number of excitations. We first limit the interactions range to nearest neighbours to test the method in the presence of a field applied along ≤ft[1 0 0\\right] , and then focus on the dipolar spin ice model. The effect of dipolar interactions, which is known to be greatly self screened at zero field, is particularly strong near full polarization. It shifts the Kasteleyn transition to lower temperatures, which decreases  ≈0.4 K for the parameters corresponding to the best known spin ice materials, \\text{D}{{\\text{y}}2}\\text{T}{{\\text{i}}2}{{\\text{O}}7} and \\text{H}{{\\text{o}}2}\\text{T}{{\\text{i}}2}{{\\text{O}}7} . This shift implies effective dipolar fields as big as 0.05 T opposing the applied field, and thus favouring the creation of ‘strings’ of reversed spins. We compare the reduction in the transition temperature with results in previous experiments, and study the phenomenon quantitatively using a simple molecular field approach. Finally, we relate the presence of the effective residual field to the appearance of string-ordered phases at low fields and temperatures, and we check numerically that for fields applied along ≤ft[1 0 0\\right] there are only three different stable phases at zero temperature.

  16. Experiences with an adaptive mesh refinement algorithm in numerical relativity.

    NASA Astrophysics Data System (ADS)

    Choptuik, M. W.

    An implementation of the Berger/Oliger mesh refinement algorithm for a model problem in numerical relativity is described. The principles of operation of the method are reviewed and its use in conjunction with leap-frog schemes is considered. The performance of the algorithm is illustrated with results from a study of the Einstein/massless scalar field equations in spherical symmetry.

  17. Numerical Algorithm for Delta of Asian Option.

    PubMed

    Zhang, Boxiang; Yu, Yang; Wang, Weiguo

    2015-01-01

    We study the numerical solution of the Greeks of Asian options. In particular, we derive a close form solution of Δ of Asian geometric option and use this analytical form as a control to numerically calculate Δ of Asian arithmetic option, which is known to have no explicit close form solution. We implement our proposed numerical method and compare the standard error with other classical variance reduction methods. Our method provides an efficient solution to the hedging strategy with Asian options.

  18. Stochastic Formal Correctness of Numerical Algorithms

    NASA Technical Reports Server (NTRS)

    Daumas, Marc; Lester, David; Martin-Dorel, Erik; Truffert, Annick

    2009-01-01

    We provide a framework to bound the probability that accumulated errors were never above a given threshold on numerical algorithms. Such algorithms are used for example in aircraft and nuclear power plants. This report contains simple formulas based on Levy's and Markov's inequalities and it presents a formal theory of random variables with a special focus on producing concrete results. We selected four very common applications that fit in our framework and cover the common practices of systems that evolve for a long time. We compute the number of bits that remain continuously significant in the first two applications with a probability of failure around one out of a billion, where worst case analysis considers that no significant bit remains. We are using PVS as such formal tools force explicit statement of all hypotheses and prevent incorrect uses of theorems.

  19. Adaptive Numerical Algorithms in Space Weather Modeling

    NASA Technical Reports Server (NTRS)

    Toth, Gabor; vanderHolst, Bart; Sokolov, Igor V.; DeZeeuw, Darren; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Nakib, Dalal; Powell, Kenneth G.; Stout, Quentin F.; Glocer, Alex; Ma, Ying-Juan; Opher, Merav

    2010-01-01

    Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different physics in different domains. A multi-physics system can be modeled by a software framework comprising of several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solar wind Roe Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamics (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit numerical

  20. Adaptive numerical algorithms in space weather modeling

    NASA Astrophysics Data System (ADS)

    Tóth, Gábor; van der Holst, Bart; Sokolov, Igor V.; De Zeeuw, Darren L.; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Najib, Dalal; Powell, Kenneth G.; Stout, Quentin F.; Glocer, Alex; Ma, Ying-Juan; Opher, Merav

    2012-02-01

    Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different relevant physics in different domains. A multi-physics system can be modeled by a software framework comprising several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solarwind Roe-type Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamic (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit

  1. Numerical algorithms for the atomistic dopant profiling of semiconductor materials

    NASA Astrophysics Data System (ADS)

    Aghaei Anvigh, Samira

    In this dissertation, we investigate the possibility to use scanning microscopy such as scanning capacitance microscopy (SCM) and scanning spreading resistance microscopy (SSRM) for the "atomistic" dopant profiling of semiconductor materials. For this purpose, we first analyze the discrete effects of random dopant fluctuations (RDF) on SCM and SSRM measurements with nanoscale probes and show that RDF significantly affects the differential capacitance and spreading resistance of the SCM and SSRM measurements if the dimension of the probe is below 50 nm. Then, we develop a mathematical algorithm to compute the spatial coordinates of the ionized impurities in the depletion region using a set of scanning microscopy measurements. The proposed numerical algorithm is then applied to extract the (x, y, z) coordinates of ionized impurities in the depletion region in the case of a few semiconductor materials with different doping configuration. The numerical algorithm developed to solve the above inverse problem is based on the evaluation of doping sensitivity functions of the differential capacitance, which show how sensitive the differential capacitance is to doping variations at different locations. To develop the numerical algorithm we first express the doping sensitivity functions in terms of the Gâteaux derivative of the differential capacitance, use Riesz representation theorem, and then apply a gradient optimization approach to compute the locations of the dopants. The algorithm is verified numerically using 2-D simulations, in which the C-V curves are measured at 3 different locations on the surface of the semiconductor. Although the cases studied in this dissertation are much idealized and, in reality, the C-V measurements are subject to noise and other experimental errors, it is shown that if the differential capacitance is measured precisely, SCM measurements can be potentially used for the "atomistic" profiling of ionized impurities in doped semiconductors.

  2. Research on numerical algorithms for large space structures

    NASA Technical Reports Server (NTRS)

    Denman, E. D.

    1982-01-01

    Numerical algorithms for large space structures were investigated with particular emphasis on decoupling method for analysis and design. Numerous aspects of the analysis of large systems ranging from the algebraic theory to lambda matrices to identification algorithms were considered. A general treatment of the algebraic theory of lambda matrices is presented and the theory is applied to second order lambda matrices.

  3. A Polynomial Time, Numerically Stable Integer Relation Algorithm

    NASA Technical Reports Server (NTRS)

    Ferguson, Helaman R. P.; Bailey, Daivd H.; Kutler, Paul (Technical Monitor)

    1998-01-01

    Let x = (x1, x2...,xn be a vector of real numbers. X is said to possess an integer relation if there exist integers a(sub i) not all zero such that a1x1 + a2x2 + ... a(sub n)Xn = 0. Beginning in 1977 several algorithms (with proofs) have been discovered to recover the a(sub i) given x. The most efficient of these existing integer relation algorithms (in terms of run time and the precision required of the input) has the drawback of being very unstable numerically. It often requires a numeric precision level in the thousands of digits to reliably recover relations in modest-sized test problems. We present here a new algorithm for finding integer relations, which we have named the "PSLQ" algorithm. It is proved in this paper that the PSLQ algorithm terminates with a relation in a number of iterations that is bounded by a polynomial in it. Because this algorithm employs a numerically stable matrix reduction procedure, it is free from the numerical difficulties, that plague other integer relation algorithms. Furthermore, its stability admits an efficient implementation with lower run times oil average than other algorithms currently in Use. Finally, this stability can be used to prove that relation bounds obtained from computer runs using this algorithm are numerically accurate.

  4. The association between symbolic and nonsymbolic numerical magnitude processing and mental versus algorithmic subtraction in adults.

    PubMed

    Linsen, Sarah; Torbeyns, Joke; Verschaffel, Lieven; Reynvoet, Bert; De Smedt, Bert

    2016-03-01

    There are two well-known computation methods for solving multi-digit subtraction items, namely mental and algorithmic computation. It has been contended that mental and algorithmic computation differentially rely on numerical magnitude processing, an assumption that has already been examined in children, but not yet in adults. Therefore, in this study, we examined how numerical magnitude processing was associated with mental and algorithmic computation, and whether this association with numerical magnitude processing was different for mental versus algorithmic computation. We also investigated whether the association between numerical magnitude processing and mental and algorithmic computation differed for measures of symbolic versus nonsymbolic numerical magnitude processing. Results showed that symbolic, and not nonsymbolic, numerical magnitude processing was associated with mental computation, but not with algorithmic computation. Additional analyses showed, however, that the size of this association with symbolic numerical magnitude processing was not significantly different for mental and algorithmic computation. We also tried to further clarify the association between numerical magnitude processing and complex calculation by also including relevant arithmetical subskills, i.e. arithmetic facts, needed for complex calculation that are also known to be dependent on numerical magnitude processing. Results showed that the associations between symbolic numerical magnitude processing and mental and algorithmic computation were fully explained by individual differences in elementary arithmetic fact knowledge.

  5. Clustering algorithm studies

    NASA Astrophysics Data System (ADS)

    Graf, Norman A.

    2001-07-01

    An object-oriented framework for undertaking clustering algorithm studies has been developed. We present here the definitions for the abstract Cells and Clusters as well as the interface for the algorithm. We intend to use this framework to investigate the interplay between various clustering algorithms and the resulting jet reconstruction efficiency and energy resolutions to assist in the design of the calorimeter detector.

  6. Algorithm Development and Application of High Order Numerical Methods for Shocked and Rapid Changing Solutions

    DTIC Science & Technology

    2007-12-06

    problems studied in this project involve numerically solving partial differential equations with either discontinuous or rapidly changing solutions ...REPORT Algorithm Development and Application of High Order Numerical Methods for Shocked and Rapid Changing Solutions 14. ABSTRACT 16. SECURITY...discontinuous Galerkin finite element methods, for solving partial differential equations with discontinuous or rapidly changing solutions . Algorithm

  7. A Numerical Instability in an ADI Algorithm for Gyrokinetics

    SciTech Connect

    E.A. Belli; G.W. Hammett

    2004-12-17

    We explore the implementation of an Alternating Direction Implicit (ADI) algorithm for a gyrokinetic plasma problem and its resulting numerical stability properties. This algorithm, which uses a standard ADI scheme to divide the field solve from the particle distribution function advance, has previously been found to work well for certain plasma kinetic problems involving one spatial and two velocity dimensions, including collisions and an electric field. However, for the gyrokinetic problem we find a severe stability restriction on the time step. Furthermore, we find that this numerical instability limitation also affects some other algorithms, such as a partially implicit Adams-Bashforth algorithm, where the parallel motion operator v{sub {parallel}} {partial_derivative}/{partial_derivative}z is treated implicitly and the field terms are treated with an Adams-Bashforth explicit scheme. Fully explicit algorithms applied to all terms can be better at long wavelengths than these ADI or partially implicit algorithms.

  8. Research on numerical algorithms for large space structures

    NASA Technical Reports Server (NTRS)

    Denman, E. D.

    1981-01-01

    Numerical algorithms for analysis and design of large space structures are investigated. The sign algorithm and its application to decoupling of differential equations are presented. The generalized sign algorithm is given and its application to several problems discussed. The Laplace transforms of matrix functions and the diagonalization procedure for a finite element equation are discussed. The diagonalization of matrix polynomials is considered. The quadrature method and Laplace transforms is discussed and the identification of linear systems by the quadrature method investigated.

  9. An efficient algorithm for numerical airfoil optimization

    NASA Technical Reports Server (NTRS)

    Vanderplaats, G. N.

    1979-01-01

    A new optimization algorithm is presented. The method is based on sequential application of a second-order Taylor's series approximation to the airfoil characteristics. Compared to previous methods, design efficiency improvements of more than a factor of 2 are demonstrated. If multiple optimizations are performed, the efficiency improvements are more dramatic due to the ability of the technique to utilize existing data. The method is demonstrated by application to subsonic and transonic airfoil design but is a general optimization technique and is not limited to a particular application or aerodynamic analysis.

  10. Technical Report: Scalable Parallel Algorithms for High Dimensional Numerical Integration

    SciTech Connect

    Masalma, Yahya; Jiao, Yu

    2010-10-01

    We implemented a scalable parallel quasi-Monte Carlo numerical high-dimensional integration for tera-scale data points. The implemented algorithm uses the Sobol s quasi-sequences to generate random samples. Sobol s sequence was used to avoid clustering effects in the generated random samples and to produce low-discrepancy random samples which cover the entire integration domain. The performance of the algorithm was tested. Obtained results prove the scalability and accuracy of the implemented algorithms. The implemented algorithm could be used in different applications where a huge data volume is generated and numerical integration is required. We suggest using the hyprid MPI and OpenMP programming model to improve the performance of the algorithms. If the mixed model is used, attention should be paid to the scalability and accuracy.

  11. Efficient Parallel Algorithm For Direct Numerical Simulation of Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Moitra, Stuti; Gatski, Thomas B.

    1997-01-01

    A distributed algorithm for a high-order-accurate finite-difference approach to the direct numerical simulation (DNS) of transition and turbulence in compressible flows is described. This work has two major objectives. The first objective is to demonstrate that parallel and distributed-memory machines can be successfully and efficiently used to solve computationally intensive and input/output intensive algorithms of the DNS class. The second objective is to show that the computational complexity involved in solving the tridiagonal systems inherent in the DNS algorithm can be reduced by algorithm innovations that obviate the need to use a parallelized tridiagonal solver.

  12. A hybrid artificial bee colony algorithm for numerical function optimization

    NASA Astrophysics Data System (ADS)

    Alqattan, Zakaria N.; Abdullah, Rosni

    2015-02-01

    Artificial Bee Colony (ABC) algorithm is one of the swarm intelligence algorithms; it has been introduced by Karaboga in 2005. It is a meta-heuristic optimization search algorithm inspired from the intelligent foraging behavior of the honey bees in nature. Its unique search process made it as one of the most competitive algorithm with some other search algorithms in the area of optimization, such as Genetic algorithm (GA) and Particle Swarm Optimization (PSO). However, the ABC performance of the local search process and the bee movement or the solution improvement equation still has some weaknesses. The ABC is good in avoiding trapping at the local optimum but it spends its time searching around unpromising random selected solutions. Inspired by the PSO, we propose a Hybrid Particle-movement ABC algorithm called HPABC, which adapts the particle movement process to improve the exploration of the original ABC algorithm. Numerical benchmark functions were used in order to experimentally test the HPABC algorithm. The results illustrate that the HPABC algorithm can outperform the ABC algorithm in most of the experiments (75% better in accuracy and over 3 times faster).

  13. Understanding disordered systems through numerical simulation and algorithm development

    NASA Astrophysics Data System (ADS)

    Sweeney, Sean Michael

    Disordered systems arise in many physical contexts. Not all matter is uniform, and impurities or heterogeneities can be modeled by fixed random disorder. Numerous complex networks also possess fixed disorder, leading to applications in transportation systems, telecommunications, social networks, and epidemic modeling, to name a few. Due to their random nature and power law critical behavior, disordered systems are difficult to study analytically. Numerical simulation can help overcome this hurdle by allowing for the rapid computation of system states. In order to get precise statistics and extrapolate to the thermodynamic limit, large systems must be studied over many realizations. Thus, innovative algorithm development is essential in order reduce memory or running time requirements of simulations. This thesis presents a review of disordered systems, as well as a thorough study of two particular systems through numerical simulation, algorithm development and optimization, and careful statistical analysis of scaling properties. Chapter 1 provides a thorough overview of disordered systems, the history of their study in the physics community, and the development of techniques used to study them. Topics of quenched disorder, phase transitions, the renormalization group, criticality, and scale invariance are discussed. Several prominent models of disordered systems are also explained. Lastly, analysis techniques used in studying disordered systems are covered. In Chapter 2, minimal spanning trees on critical percolation clusters are studied, motivated in part by an analytic perturbation expansion by Jackson and Read that I check against numerical calculations. This system has a direct mapping to the ground state of the strongly disordered spin glass. We compute the path length fractal dimension of these trees in dimensions d = {2, 3, 4, 5} and find our results to be compatible with the analytic results suggested by Jackson and Read. In Chapter 3, the random bond Ising

  14. An efficient cuckoo search algorithm for numerical function optimization

    NASA Astrophysics Data System (ADS)

    Ong, Pauline; Zainuddin, Zarita

    2013-04-01

    Cuckoo search algorithm which reproduces the breeding strategy of the best known brood parasitic bird, the cuckoos has demonstrated its superiority in obtaining the global solution for numerical optimization problems. However, the involvement of fixed step approach in its exploration and exploitation behavior might slow down the search process considerably. In this regards, an improved cuckoo search algorithm with adaptive step size adjustment is introduced and its feasibility on a variety of benchmarks is validated. The obtained results show that the proposed scheme outperforms the standard cuckoo search algorithm in terms of convergence characteristic while preserving the fascinating features of the original method.

  15. Multiresolution representation and numerical algorithms: A brief review

    NASA Technical Reports Server (NTRS)

    Harten, Amiram

    1994-01-01

    In this paper we review recent developments in techniques to represent data in terms of its local scale components. These techniques enable us to obtain data compression by eliminating scale-coefficients which are sufficiently small. This capability for data compression can be used to reduce the cost of many numerical solution algorithms by either applying it to the numerical solution operator in order to get an approximate sparse representation, or by applying it to the numerical solution itself in order to reduce the number of quantities that need to be computed.

  16. Fast Quantum Algorithms for Numerical Integrals and Stochastic Processes

    NASA Technical Reports Server (NTRS)

    Abrams, D.; Williams, C.

    1999-01-01

    We discuss quantum algorithms that calculate numerical integrals and descriptive statistics of stochastic processes. With either of two distinct approaches, one obtains an exponential speed increase in comparison to the fastest known classical deterministic algotithms and a quadratic speed increase incomparison to classical Monte Carlo methods.

  17. A novel bee swarm optimization algorithm for numerical function optimization

    NASA Astrophysics Data System (ADS)

    Akbari, Reza; Mohammadi, Alireza; Ziarati, Koorush

    2010-10-01

    The optimization algorithms which are inspired from intelligent behavior of honey bees are among the most recently introduced population based techniques. In this paper, a novel algorithm called bee swarm optimization, or BSO, and its two extensions for improving its performance are presented. The BSO is a population based optimization technique which is inspired from foraging behavior of honey bees. The proposed approach provides different patterns which are used by the bees to adjust their flying trajectories. As the first extension, the BSO algorithm introduces different approaches such as repulsion factor and penalizing fitness (RP) to mitigate the stagnation problem. Second, to maintain efficiently the balance between exploration and exploitation, time-varying weights (TVW) are introduced into the BSO algorithm. The proposed algorithm (BSO) and its two extensions (BSO-RP and BSO-RPTVW) are compared with existing algorithms which are based on intelligent behavior of honey bees, on a set of well known numerical test functions. The experimental results show that the BSO algorithms are effective and robust; produce excellent results, and outperform other algorithms investigated in this consideration.

  18. Determining the Numerical Stability of Quantum Chemistry Algorithms.

    PubMed

    Knizia, Gerald; Li, Wenbin; Simon, Sven; Werner, Hans-Joachim

    2011-08-09

    We present a simple, broadly applicable method for determining the numerical properties of quantum chemistry algorithms. The method deliberately introduces random numerical noise into computations, which is of the same order of magnitude as the floating point precision. Accordingly, repeated runs of an algorithm give slightly different results, which can be analyzed statistically to obtain precise estimates of its numerical stability. This noise is produced by automatic code injection into regular compiler output, so that no substantial programming effort is required, only a recompilation of the affected program sections. The method is applied to investigate: (i) the numerical stability of the three-center Obara-Saika integral evaluation scheme for high angular momenta, (ii) if coupled cluster perturbative triples can be evaluated with single precision arithmetic, (iii) how to implement the density fitting approximation in Møller-Plesset perturbation theory (MP2) most accurately, and (iv) which parts of density fitted MP2 can be safely evaluated with single precision arithmetic. In the integral case, we find a numerical instability in an equation that is used in almost all integral programs. Due to the results of (ii) and (iv), we conjecture that single precision arithmetic can be applied whenever a calculation is done in an orthogonal basis set and excessively long linear sums are avoided.

  19. An algorithm for the numerical solution of linear differential games

    SciTech Connect

    Polovinkin, E S; Ivanov, G E; Balashov, M V; Konstantinov, R V; Khorev, A V

    2001-10-31

    A numerical algorithm for the construction of stable Krasovskii bridges, Pontryagin alternating sets, and also of piecewise program strategies solving two-person linear differential (pursuit or evasion) games on a fixed time interval is developed on the basis of a general theory. The aim of the first player (the pursuer) is to hit a prescribed target (terminal) set by the phase vector of the control system at the prescribed time. The aim of the second player (the evader) is the opposite. A description of numerical algorithms used in the solution of differential games of the type under consideration is presented and estimates of the errors resulting from the approximation of the game sets by polyhedra are presented.

  20. Algorithms for the Fractional Calculus: A Selection of Numerical Methods

    NASA Technical Reports Server (NTRS)

    Diethelm, K.; Ford, N. J.; Freed, A. D.; Luchko, Yu.

    2003-01-01

    Many recently developed models in areas like viscoelasticity, electrochemistry, diffusion processes, etc. are formulated in terms of derivatives (and integrals) of fractional (non-integer) order. In this paper we present a collection of numerical algorithms for the solution of the various problems arising in this context. We believe that this will give the engineer the necessary tools required to work with fractional models in an efficient way.

  1. Canonical algorithms for numerical integration of charged particle motion equations

    NASA Astrophysics Data System (ADS)

    Efimov, I. N.; Morozov, E. A.; Morozova, A. R.

    2017-02-01

    A technique for numerically integrating the equation of charged particle motion in a magnetic field is considered. It is based on the canonical transformations of the phase space in Hamiltonian mechanics. The canonical transformations make the integration process stable against counting error accumulation. The integration algorithms contain a minimum possible amount of arithmetics and can be used to design accelerators and devices of electron and ion optics.

  2. The development and evaluation of numerical algorithms for MIMD computers

    NASA Technical Reports Server (NTRS)

    Voigt, Robert G.

    1990-01-01

    Two activities were pursued under this grant. The first was a visitor program to conduct research on numerical algorithms for MIMD computers. The program is summarized in the following attachments. Attachment A - List of Researchers Supported; Attachment B - List of Reports Completed; and Attachment C - Reports. The second activity was a workshop on the Control of fluid Dynamic Systems held on March 28 to 29, 1989. The workshop is summarized in attachments. Attachment D - Workshop Summary; and Attachment E - List of Workshop Participants.

  3. Predictive Lateral Logic for Numerical Entry Guidance Algorithms

    NASA Technical Reports Server (NTRS)

    Smith, Kelly M.

    2016-01-01

    Recent entry guidance algorithm development123 has tended to focus on numerical integration of trajectories onboard in order to evaluate candidate bank profiles. Such methods enjoy benefits such as flexibility to varying mission profiles and improved robustness to large dispersions. A common element across many of these modern entry guidance algorithms is a reliance upon the concept of Apollo heritage lateral error (or azimuth error) deadbands in which the number of bank reversals to be performed is non-deterministic. This paper presents a closed-loop bank reversal method that operates with a fixed number of bank reversals defined prior to flight. However, this number of bank reversals can be modified at any point, including in flight, based on contingencies such as fuel leaks where propellant usage must be minimized.

  4. A numerical algorithm for endochronic plasticity and comparison with experiment

    NASA Technical Reports Server (NTRS)

    Valanis, K. C.; Fan, J.

    1985-01-01

    A numerical algorithm based on the finite element method of analysis of the boundary value problem in a continuum is presented, in the case where the plastic response of the material is given in the context of endochronic plasticity. The relevant constitutive equation is expressed in incremental form and plastic effects are accounted for by the method of an induced pseudo-force in the matrix equations. The results of the analysis are compared with observed values in the case of a plate with two symmetric notches and loaded longitudinally in its own plane. The agreement between theory and experiment is excellent.

  5. Numerical Studies of Topological phases

    NASA Astrophysics Data System (ADS)

    Geraedts, Scott

    years ago, it can still produce novel phenomena. Of much recent interest is the existence of non-Abelian anyons in FQHE systems. Though it is possible to construct wave functions that realize such particles, whether these wavefunctions are the ground state is a difficult quantitative question that must be answered numerically. In this thesis I describe progress using a density-matrix renormalization group algorithm to study a bilayer system thought to host non-Abelian anyons. We find phase diagrams in terms of experimentally relevant parameters, and also find evidence for a non-Abelian phase known as the 'interlayer Pfaffian'.

  6. Algorithm-Based Fault Tolerance for Numerical Subroutines

    NASA Technical Reports Server (NTRS)

    Tumon, Michael; Granat, Robert; Lou, John

    2007-01-01

    A software library implements a new methodology of detecting faults in numerical subroutines, thus enabling application programs that contain the subroutines to recover transparently from single-event upsets. The software library in question is fault-detecting middleware that is wrapped around the numericalsubroutines. Conventional serial versions (based on LAPACK and FFTW) and a parallel version (based on ScaLAPACK) exist. The source code of the application program that contains the numerical subroutines is not modified, and the middleware is transparent to the user. The methodology used is a type of algorithm- based fault tolerance (ABFT). In ABFT, a checksum is computed before a computation and compared with the checksum of the computational result; an error is declared if the difference between the checksums exceeds some threshold. Novel normalization methods are used in the checksum comparison to ensure correct fault detections independent of algorithm inputs. In tests of this software reported in the peer-reviewed literature, this library was shown to enable detection of 99.9 percent of significant faults while generating no false alarms.

  7. Image reconstruction of single photon emission computed tomography (SPECT) on a pebble bed reactor (PBR) using expectation maximization and exact inversion algorithms: Comparison study by means of numerical phantom

    NASA Astrophysics Data System (ADS)

    Razali, Azhani Mohd; Abdullah, Jaafar

    2015-04-01

    Single Photon Emission Computed Tomography (SPECT) is a well-known imaging technique used in medical application, and it is part of medical imaging modalities that made the diagnosis and treatment of disease possible. However, SPECT technique is not only limited to the medical sector. Many works are carried out to adapt the same concept by using high-energy photon emission to diagnose process malfunctions in critical industrial systems such as in chemical reaction engineering research laboratories, as well as in oil and gas, petrochemical and petrochemical refining industries. Motivated by vast applications of SPECT technique, this work attempts to study the application of SPECT on a Pebble Bed Reactor (PBR) using numerical phantom of pebbles inside the PBR core. From the cross-sectional images obtained from SPECT, the behavior of pebbles inside the core can be analyzed for further improvement of the PBR design. As the quality of the reconstructed image is largely dependent on the algorithm used, this work aims to compare two image reconstruction algorithms for SPECT, namely the Expectation Maximization Algorithm and the Exact Inversion Formula. The results obtained from the Exact Inversion Formula showed better image contrast and sharpness, and shorter computational time compared to the Expectation Maximization Algorithm.

  8. Image reconstruction of single photon emission computed tomography (SPECT) on a pebble bed reactor (PBR) using expectation maximization and exact inversion algorithms: Comparison study by means of numerical phantom

    SciTech Connect

    Razali, Azhani Mohd Abdullah, Jaafar

    2015-04-29

    Single Photon Emission Computed Tomography (SPECT) is a well-known imaging technique used in medical application, and it is part of medical imaging modalities that made the diagnosis and treatment of disease possible. However, SPECT technique is not only limited to the medical sector. Many works are carried out to adapt the same concept by using high-energy photon emission to diagnose process malfunctions in critical industrial systems such as in chemical reaction engineering research laboratories, as well as in oil and gas, petrochemical and petrochemical refining industries. Motivated by vast applications of SPECT technique, this work attempts to study the application of SPECT on a Pebble Bed Reactor (PBR) using numerical phantom of pebbles inside the PBR core. From the cross-sectional images obtained from SPECT, the behavior of pebbles inside the core can be analyzed for further improvement of the PBR design. As the quality of the reconstructed image is largely dependent on the algorithm used, this work aims to compare two image reconstruction algorithms for SPECT, namely the Expectation Maximization Algorithm and the Exact Inversion Formula. The results obtained from the Exact Inversion Formula showed better image contrast and sharpness, and shorter computational time compared to the Expectation Maximization Algorithm.

  9. A Parallel Compact Multi-Dimensional Numerical Algorithm with Aeroacoustics Applications

    NASA Technical Reports Server (NTRS)

    Povitsky, Alex; Morris, Philip J.

    1999-01-01

    In this study we propose a novel method to parallelize high-order compact numerical algorithms for the solution of three-dimensional PDEs (Partial Differential Equations) in a space-time domain. For this numerical integration most of the computer time is spent in computation of spatial derivatives at each stage of the Runge-Kutta temporal update. The most efficient direct method to compute spatial derivatives on a serial computer is a version of Gaussian elimination for narrow linear banded systems known as the Thomas algorithm. In a straightforward pipelined implementation of the Thomas algorithm processors are idle due to the forward and backward recurrences of the Thomas algorithm. To utilize processors during this time, we propose to use them for either non-local data independent computations, solving lines in the next spatial direction, or local data-dependent computations by the Runge-Kutta method. To achieve this goal, control of processor communication and computations by a static schedule is adopted. Thus, our parallel code is driven by a communication and computation schedule instead of the usual "creative, programming" approach. The obtained parallelization speed-up of the novel algorithm is about twice as much as that for the standard pipelined algorithm and close to that for the explicit DRP algorithm.

  10. Stochastic models and numerical algorithms for a class of regulatory gene networks.

    PubMed

    Fournier, Thomas; Gabriel, Jean-Pierre; Pasquier, Jerôme; Mazza, Christian; Galbete, José; Mermod, Nicolas

    2009-08-01

    Regulatory gene networks contain generic modules, like those involving feedback loops, which are essential for the regulation of many biological functions (Guido et al. in Nature 439:856-860, 2006). We consider a class of self-regulated genes which are the building blocks of many regulatory gene networks, and study the steady-state distribution of the associated Gillespie algorithm by providing efficient numerical algorithms. We also study a regulatory gene network of interest in gene therapy, using mean-field models with time delays. Convergence of the related time-nonhomogeneous Markov chain is established for a class of linear catalytic networks with feedback loops.

  11. Variational Bayesian approximation with scale mixture prior for inverse problems: A numerical comparison between three algorithms

    NASA Astrophysics Data System (ADS)

    Gharsalli, Leila; Mohammad-Djafari, Ali; Fraysse, Aurélia; Rodet, Thomas

    2013-08-01

    Our aim is to solve a linear inverse problem using various methods based on the Variational Bayesian Approximation (VBA). We choose to take sparsity into account via a scale mixture prior, more precisely a student-t model. The joint posterior of the unknown and hidden variable of the mixtures is approximated via the VBA. To do this approximation, classically the alternate algorithm is used. But this method is not the most efficient. Recently other optimization algorithms have been proposed; indeed classical iterative algorithms of optimization such as the steepest descent method and the conjugate gradient have been studied in the space of the probability densities involved in the Bayesian methodology to treat this problem. The main object of this work is to present these three algorithms and a numerical comparison of their performances.

  12. Fourier analysis of numerical algorithms for the Maxwell equations

    NASA Technical Reports Server (NTRS)

    Liu, Yen

    1993-01-01

    The Fourier method is used to analyze the dispersive, dissipative, and isotropy errors of various spatial and time discretizations applied to the Maxwell equations on multi-dimensional grids. Both Cartesian grids and non-Cartesian grids based on hexagons and tetradecahedra are studied and compared. The numerical errors are quantitatively determined in terms of phase speed, wave number, propagation direction, gridspacings, and CFL number. The study shows that centered schemes are more efficient than upwind schemes. The non-Cartesian grids yield superior isotropy and higher accuracy than the Cartesian ones. For the centered schemes, the staggered grids produce less errors than the unstaggered ones. A new unstaggered scheme which has all the best properties is introduced. The study also demonstrates that a proper choice of time discretization can reduce the overall numerical errors due to the spatial discretization.

  13. Case study of isosurface extraction algorithm performance

    SciTech Connect

    Sutton, P M; Hansen, C D; Shen, H; Schikore, D

    1999-12-14

    Isosurface extraction is an important and useful visualization method. Over the past ten years, the field has seen numerous isosurface techniques published leaving the user in a quandary about which one should be used. Some papers have published complexity analysis of the techniques yet empirical evidence comparing different methods is lacking. This case study presents a comparative study of several representative isosurface extraction algorithms. It reports and analyzes empirical measurements of execution times and memory behavior for each algorithm. The results show that asymptotically optimal techniques may not be the best choice when implemented on modern computer architectures.

  14. Predicting regional emissions and near-field air concentrations of soil fumigants using modest numerical algorithms: a case study using 1,3-dichloropropene.

    PubMed

    Cryer, S A; van Wesenbeeck, I J; Knuteson, J A

    2003-05-21

    Soil fumigants, used to control nematodes and crop disease, can volatilize from the soil application zone and into the atmosphere to create the potential for human inhalation exposure. An objective for this work is to illustrate the ability of simple numerical models to correctly predict pesticide volatilization rates from agricultural fields and to expand emission predictions to nearby air concentrations for use in the exposure component of a risk assessment. This work focuses on a numerical system using two U.S. EPA models (PRZM3 and ISCST3) to predict regional volatilization and nearby air concentrations for the soil fumigant 1,3-dichloropropene. New approaches deal with links to regional databases, seamless coupling of emission and dispersion models, incorporation of Monte Carlo sampling techniques to account for parametric uncertainty, and model input sensitivity analysis. Predicted volatility flux profiles of 1,3-dichloropropene (1,3-D) from soil for tarped and untarped fields were compared against field data and used as source terms for ISCST3. PRZM3 can successfully estimate correct order of magnitude regional soil volatilization losses of 1,3-D when representative regional input parameters are used (soil, weather, chemical, and management practices). Estimated 1,3-D emission losses and resulting air concentrations were investigated for five geographically diverse regions. Air concentrations (15-day averages) are compared with the current U.S. EPA's criteria for human exposure and risk assessment to determine appropriate setback distances from treated fields. Sensitive input parameters for volatility losses were functions of the region being simulated.

  15. Recent numerical and algorithmic advances within the volume tracking framework for modeling interfacial flows

    DOE PAGES

    François, Marianne M.

    2015-05-28

    A review of recent advances made in numerical methods and algorithms within the volume tracking framework is presented. The volume tracking method, also known as the volume-of-fluid method has become an established numerical approach to model and simulate interfacial flows. Its advantage is its strict mass conservation. However, because the interface is not explicitly tracked but captured via the material volume fraction on a fixed mesh, accurate estimation of the interface position, its geometric properties and modeling of interfacial physics in the volume tracking framework remain difficult. Several improvements have been made over the last decade to address these challenges.more » In this study, the multimaterial interface reconstruction method via power diagram, curvature estimation via heights and mean values and the balanced-force algorithm for surface tension are highlighted.« less

  16. A fast algorithm for numerical solutions to Fortet's equation

    NASA Astrophysics Data System (ADS)

    Brumen, Gorazd

    2008-10-01

    A fast algorithm for computation of default times of multiple firms in a structural model is presented. The algorithm uses a multivariate extension of the Fortet's equation and the structure of Toeplitz matrices to significantly improve the computation time. In a financial market consisting of M[not double greater-than sign]1 firms and N discretization points in every dimension the algorithm uses O(nlogn·M·M!·NM(M-1)/2) operations, where n is the number of discretization points in the time domain. The algorithm is applied to firm survival probability computation and zero coupon bond pricing.

  17. Particle-In-Cell Multi-Algorithm Numerical Test-Bed

    NASA Astrophysics Data System (ADS)

    Meyers, M. D.; Yu, P.; Tableman, A.; Decyk, V. K.; Mori, W. B.

    2015-11-01

    We describe a numerical test-bed that allows for the direct comparison of different numerical simulation schemes using only a single code. It is built from the UPIC Framework, which is a set of codes and modules for constructing parallel PIC codes. In this test-bed code, Maxwell's equations are solved in Fourier space in two dimensions. One can readily examine the numerical properties of a real space finite difference scheme by including its operators' Fourier space representations in the Maxwell solver. The fields can be defined at the same location in a simulation cell or can be offset appropriately by half-cells, as in the Yee finite difference time domain scheme. This allows for the accurate comparison of numerical properties (dispersion relations, numerical stability, etc.) across finite difference schemes, or against the original spectral scheme. We have also included different options for the charge and current deposits, including a strict charge conserving current deposit. The test-bed also includes options for studying the analytic time domain scheme, which eliminates numerical dispersion errors in vacuum. We will show examples from the test-bed that illustrate how the properties of some numerical instabilities vary between different PIC algorithms. Work supported by the NSF grant ACI 1339893 and DOE grant DE-SC0008491.

  18. Numerical algorithms for steady and unsteady incompressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Hafez, Mohammed; Dacles, Jennifer

    1989-01-01

    The numerical analysis of the incompressible Navier-Stokes equations are becoming important tools in the understanding of some fluid flow problems which are encountered in research as well as in industry. With the advent of the supercomputers, more realistic problems can be studied with a wider choice of numerical algorithms. An alternative formulation is presented for viscous incompressible flows. The incompressible Navier-Stokes equations are cast in a velocity/vorticity formulation. This formulation consists of solving the Poisson equations for the velocity components and the vorticity transport equation. Two numerical algorithms for the steady two-dimensional laminar flows are presented. The first method is based on the actual partial differential equations. This uses a finite-difference approximation of the governing equations on a staggered grid. The second method uses a finite element discretization with the vorticity transport equation approximated using a Galerkin approximation and the Poisson equations are obtained using a least squares method. The equations are solved efficiently using Newton's method and a banded direct matrix solver (LINPACK). The method is extended to steady three-dimensional laminar flows and applied to a cubic driven cavity using finite difference schemes and a staggered grid arrangement on a Cartesian mesh. The equations are solved iteratively using a plane zebra relaxation scheme. Currently, a two-dimensional, unsteady algorithm is being developed using a generalized coordinate system. The equations are discretized using a finite-volume approach. This work will then be extended to three-dimensional flows.

  19. Stochastic coalescence in finite systems: an algorithm for the numerical solution of the multivariate master equation.

    NASA Astrophysics Data System (ADS)

    Alfonso, Lester; Zamora, Jose; Cruz, Pedro

    2015-04-01

    The stochastic approach to coagulation considers the coalescence process going in a system of a finite number of particles enclosed in a finite volume. Within this approach, the full description of the system can be obtained from the solution of the multivariate master equation, which models the evolution of the probability distribution of the state vector for the number of particles of a given mass. Unfortunately, due to its complexity, only limited results were obtained for certain type of kernels and monodisperse initial conditions. In this work, a novel numerical algorithm for the solution of the multivariate master equation for stochastic coalescence that works for any type of kernels and initial conditions is introduced. The performance of the method was checked by comparing the numerically calculated particle mass spectrum with analytical solutions obtained for the constant and sum kernels, with an excellent correspondence between the analytical and numerical solutions. In order to increase the speedup of the algorithm, software parallelization techniques with OpenMP standard were used, along with an implementation in order to take advantage of new accelerator technologies. Simulations results show an important speedup of the parallelized algorithms. This study was funded by a grant from Consejo Nacional de Ciencia y Tecnologia de Mexico SEP-CONACYT CB-131879. The authors also thanks LUFAC® Computacion SA de CV for CPU time and all the support provided.

  20. An Adaptive Cauchy Differential Evolution Algorithm for Global Numerical Optimization

    PubMed Central

    Choi, Tae Jong; Ahn, Chang Wook; An, Jinung

    2013-01-01

    Adaptation of control parameters, such as scaling factor (F), crossover rate (CR), and population size (NP), appropriately is one of the major problems of Differential Evolution (DE) literature. Well-designed adaptive or self-adaptive parameter control method can highly improve the performance of DE. Although there are many suggestions for adapting the control parameters, it is still a challenging task to properly adapt the control parameters for problem. In this paper, we present an adaptive parameter control DE algorithm. In the proposed algorithm, each individual has its own control parameters. The control parameters of each individual are adapted based on the average parameter value of successfully evolved individuals' parameter values by using the Cauchy distribution. Through this, the control parameters of each individual are assigned either near the average parameter value or far from that of the average parameter value which might be better parameter value for next generation. The experimental results show that the proposed algorithm is more robust than the standard DE algorithm and several state-of-the-art adaptive DE algorithms in solving various unimodal and multimodal problems. PMID:23935445

  1. An adaptive Cauchy differential evolution algorithm for global numerical optimization.

    PubMed

    Choi, Tae Jong; Ahn, Chang Wook; An, Jinung

    2013-01-01

    Adaptation of control parameters, such as scaling factor (F), crossover rate (CR), and population size (NP), appropriately is one of the major problems of Differential Evolution (DE) literature. Well-designed adaptive or self-adaptive parameter control method can highly improve the performance of DE. Although there are many suggestions for adapting the control parameters, it is still a challenging task to properly adapt the control parameters for problem. In this paper, we present an adaptive parameter control DE algorithm. In the proposed algorithm, each individual has its own control parameters. The control parameters of each individual are adapted based on the average parameter value of successfully evolved individuals' parameter values by using the Cauchy distribution. Through this, the control parameters of each individual are assigned either near the average parameter value or far from that of the average parameter value which might be better parameter value for next generation. The experimental results show that the proposed algorithm is more robust than the standard DE algorithm and several state-of-the-art adaptive DE algorithms in solving various unimodal and multimodal problems.

  2. Numerical Algorithms and Mathematical Software for Linear Control and Estimation Theory.

    DTIC Science & Technology

    1985-05-30

    RD -R157 525 NUMERICAL ALGORITHMS AND MATHEMATICAL SOFTWJARE FOR i/i LINEAR CONTROL AND EST..U) MASSACHUSETTS INST OF TECH CAMBRIDGE STATISTICS...PERIOD COVERED"~~ "ia--Dec. 14, 1981-- LD Numerical Algorithms and Mathematical Dec. 13, 1984*Software for Linear Control and 1.0 Estimation Theory...THIS PAGE (Wten Date Entered) .. :..0 70 FINAL REPORT--ARO Grant DAAG29-82-K-0028,"Numerical Algorithms and Mathematical Software for Linear Control and

  3. Numerical Optimization Algorithms and Software for Systems Biology

    SciTech Connect

    Saunders, Michael

    2013-02-02

    The basic aims of this work are: to develop reliable algorithms for solving optimization problems involving large stoi- chiometric matrices; to investigate cyclic dependency between metabolic and macromolecular biosynthetic networks; and to quantify the significance of thermodynamic constraints on prokaryotic metabolism.

  4. Determining residual reduction algorithm kinematic tracking weights for a sidestep cut via numerical optimization.

    PubMed

    Samaan, Michael A; Weinhandl, Joshua T; Bawab, Sebastian Y; Ringleb, Stacie I

    2016-12-01

    Musculoskeletal modeling allows for the determination of various parameters during dynamic maneuvers by using in vivo kinematic and ground reaction force (GRF) data as inputs. Differences between experimental and model marker data and inconsistencies in the GRFs applied to these musculoskeletal models may not produce accurate simulations. Therefore, residual forces and moments are applied to these models in order to reduce these differences. Numerical optimization techniques can be used to determine optimal tracking weights of each degree of freedom of a musculoskeletal model in order to reduce differences between the experimental and model marker data as well as residual forces and moments. In this study, the particle swarm optimization (PSO) and simplex simulated annealing (SIMPSA) algorithms were used to determine optimal tracking weights for the simulation of a sidestep cut. The PSO and SIMPSA algorithms were able to produce model kinematics that were within 1.4° of experimental kinematics with residual forces and moments of less than 10 N and 18 Nm, respectively. The PSO algorithm was able to replicate the experimental kinematic data more closely and produce more dynamically consistent kinematic data for a sidestep cut compared to the SIMPSA algorithm. Future studies should use external optimization routines to determine dynamically consistent kinematic data and report the differences between experimental and model data for these musculoskeletal simulations.

  5. An application of fast algorithms to numerical electromagnetic modeling

    SciTech Connect

    Bezvoda, V.; Segeth, K.

    1987-03-01

    Numerical electromagnetic modeling by the finite-difference or finite-element methods leads to a large sparse system of linear algebraic equations. Fast direct methods, requiring an order of at most q log q arithmetic operations to solve a system of q equations, cannot easily be applied to such a system. This paper describes the iterative application of a fast method, namely cyclic reduction, to the numerical solution of the Helmholtz equation with a piecewise constant imaginary coefficient of the absolute term in a plane domain. By means of numerical tests the advantages and limitations of the method compared with classical direct methods are discussed. The iterative application of the cyclic reduction method is very efficient if one can exploit a known solution of a similar (e.g., simpler) problem as the initial approximation. This makes cyclic reduction a powerful tool in solving the inverse problem by trial-and-error.

  6. An efficient numerical algorithm for transverse impact problems

    NASA Technical Reports Server (NTRS)

    Sankar, B. V.; Sun, C. T.

    1985-01-01

    Transverse impact problems in which the elastic and plastic indentation effects are considered, involve a nonlinear integral equation for the contact force, which, in practice, is usually solved by an iterative scheme with small increments in time. In this paper, a numerical method is proposed wherein the iterations of the nonlinear problem are separated from the structural response computations. This makes the numerical procedures much simpler and also efficient. The proposed method is applied to some impact problems for which solutions are available, and they are found to be in good agreement. The effect of the magnitude of time increment on the results is also discussed.

  7. Numerical stability analysis of the pseudo-spectral analytical time-domain PIC algorithm

    SciTech Connect

    Godfrey, Brendan B.; Vay, Jean-Luc; Haber, Irving

    2014-02-01

    The pseudo-spectral analytical time-domain (PSATD) particle-in-cell (PIC) algorithm solves the vacuum Maxwell's equations exactly, has no Courant time-step limit (as conventionally defined), and offers substantial flexibility in plasma and particle beam simulations. It is, however, not free of the usual numerical instabilities, including the numerical Cherenkov instability, when applied to relativistic beam simulations. This paper derives and solves the numerical dispersion relation for the PSATD algorithm and compares the results with corresponding behavior of the more conventional pseudo-spectral time-domain (PSTD) and finite difference time-domain (FDTD) algorithms. In general, PSATD offers superior stability properties over a reasonable range of time steps. More importantly, one version of the PSATD algorithm, when combined with digital filtering, is almost completely free of the numerical Cherenkov instability for time steps (scaled to the speed of light) comparable to or smaller than the axial cell size.

  8. Computational Fluid Dynamics. [numerical methods and algorithm development

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This collection of papers was presented at the Computational Fluid Dynamics (CFD) Conference held at Ames Research Center in California on March 12 through 14, 1991. It is an overview of CFD activities at NASA Lewis Research Center. The main thrust of computational work at Lewis is aimed at propulsion systems. Specific issues related to propulsion CFD and associated modeling will also be presented. Examples of results obtained with the most recent algorithm development will also be presented.

  9. A numeric comparison of variable selection algorithms for supervised learning

    NASA Astrophysics Data System (ADS)

    Palombo, G.; Narsky, I.

    2009-12-01

    Datasets in modern High Energy Physics (HEP) experiments are often described by dozens or even hundreds of input variables. Reducing a full variable set to a subset that most completely represents information about data is therefore an important task in analysis of HEP data. We compare various variable selection algorithms for supervised learning using several datasets such as, for instance, imaging gamma-ray Cherenkov telescope (MAGIC) data found at the UCI repository. We use classifiers and variable selection methods implemented in the statistical package StatPatternRecognition (SPR), a free open-source C++ package developed in the HEP community ( http://sourceforge.net/projects/statpatrec/). For each dataset, we select a powerful classifier and estimate its learning accuracy on variable subsets obtained by various selection algorithms. When possible, we also estimate the CPU time needed for the variable subset selection. The results of this analysis are compared with those published previously for these datasets using other statistical packages such as R and Weka. We show that the most accurate, yet slowest, method is a wrapper algorithm known as generalized sequential forward selection ("Add N Remove R") implemented in SPR.

  10. A bibliography on parallel and vector numerical algorithms

    NASA Technical Reports Server (NTRS)

    Ortega, James M.; Voigt, Robert G.; Romine, Charles H.

    1988-01-01

    This is a bibliography on numerical methods. It also includes a number of other references on machine architecture, programming language, and other topics of interest to scientific computing. Certain conference proceedings and anthologies which have been published in book form are also listed.

  11. A bibliography on parallel and vector numerical algorithms

    NASA Technical Reports Server (NTRS)

    Ortega, J. M.; Voigt, R. G.

    1987-01-01

    This is a bibliography of numerical methods. It also includes a number of other references on machine architecture, programming language, and other topics of interest to scientific computing. Certain conference proceedings and anthologies which have been published in book form are listed also.

  12. Numerical Laplace Transform Inversion Employing the Gaver-Stehfest Algorithm.

    ERIC Educational Resources Information Center

    Jacquot, Raymond G.; And Others

    1985-01-01

    Presents a technique for the numerical inversion of Laplace Transforms and several examples employing this technique. Limitations of the method in terms of available computer word length and the effects of these limitations on approximate inverse functions are also discussed. (JN)

  13. Thrombosis modeling in intracranial aneurysms: a lattice Boltzmann numerical algorithm

    NASA Astrophysics Data System (ADS)

    Ouared, R.; Chopard, B.; Stahl, B.; Rüfenacht, D. A.; Yilmaz, H.; Courbebaisse, G.

    2008-07-01

    The lattice Boltzmann numerical method is applied to model blood flow (plasma and platelets) and clotting in intracranial aneurysms at a mesoscopic level. The dynamics of blood clotting (thrombosis) is governed by mechanical variations of shear stress near wall that influence platelets-wall interactions. Thrombosis starts and grows below a shear rate threshold, and stops above it. Within this assumption, it is possible to account qualitatively well for partial, full or no occlusion of the aneurysm, and to explain why spontaneous thrombosis is more likely to occur in giant aneurysms than in small or medium sized aneurysms.

  14. A Numerical Algorithm for the Solution of a Phase-Field Model of Polycrystalline Materials

    SciTech Connect

    Dorr, M R; Fattebert, J; Wickett, M E; Belak, J F; Turchi, P A

    2008-12-04

    We describe an algorithm for the numerical solution of a phase-field model (PFM) of microstructure evolution in polycrystalline materials. The PFM system of equations includes a local order parameter, a quaternion representation of local orientation and a species composition parameter. The algorithm is based on the implicit integration of a semidiscretization of the PFM system using a backward difference formula (BDF) temporal discretization combined with a Newton-Krylov algorithm to solve the nonlinear system at each time step. The BDF algorithm is combined with a coordinate projection method to maintain quaternion unit length, which is related to an important solution invariant. A key element of the Newton-Krylov algorithm is the selection of a preconditioner to accelerate the convergence of the Generalized Minimum Residual algorithm used to solve the Jacobian linear system in each Newton step. Results are presented for the application of the algorithm to 2D and 3D examples.

  15. A direct numerical reconstruction algorithm for the 3D Calderón problem

    NASA Astrophysics Data System (ADS)

    Delbary, Fabrice; Hansen, Per Christian; Knudsen, Kim

    2011-04-01

    In three dimensions Calderón's problem was addressed and solved in theory in the 1980s in a series of papers, but only recently the numerical implementation of the algorithm was initiated. The main ingredients in the solution of the problem are complex geometrical optics solutions to the conductivity equation and a (non-physical) scattering transform. The resulting reconstruction algorithm is in principle direct and addresses the full non-linear problem immediately. In this paper we will outline the theoretical reconstruction method and describe how the method can be implemented numerically. We will give three different implementations, and compare their performance on a numerical phantom.

  16. Numerical Algorithms for Precise and Efficient Orbit Propagation and Positioning

    NASA Astrophysics Data System (ADS)

    Bradley, Ben K.

    Motivated by the growing space catalog and the demands for precise orbit determination with shorter latency for science and reconnaissance missions, this research improves the computational performance of orbit propagation through more efficient and precise numerical integration and frame transformation implementations. Propagation of satellite orbits is required for astrodynamics applications including mission design, orbit determination in support of operations and payload data analysis, and conjunction assessment. Each of these applications has somewhat different requirements in terms of accuracy, precision, latency, and computational load. This dissertation develops procedures to achieve various levels of accuracy while minimizing computational cost for diverse orbit determination applications. This is done by addressing two aspects of orbit determination: (1) numerical integration used for orbit propagation and (2) precise frame transformations necessary for force model evaluation and station coordinate rotations. This dissertation describes a recently developed method for numerical integration, dubbed Bandlimited Collocation Implicit Runge-Kutta (BLC-IRK), and compare its efficiency in propagating orbits to existing techniques commonly used in astrodynamics. The BLC-IRK scheme uses generalized Gaussian quadratures for bandlimited functions. It requires significantly fewer force function evaluations than explicit Runge-Kutta schemes and approaches the efficiency of the 8th-order Gauss-Jackson multistep method. Converting between the Geocentric Celestial Reference System (GCRS) and International Terrestrial Reference System (ITRS) is necessary for many applications in astrodynamics, such as orbit propagation, orbit determination, and analyzing geoscience data from satellite missions. This dissertation provides simplifications to the Celestial Intermediate Origin (CIO) transformation scheme and Earth orientation parameter (EOP) storage for use in positioning and

  17. A stable and efficient numerical algorithm for unconfined aquifer analysis

    SciTech Connect

    Keating, Elizabeth; Zyvoloski, George

    2008-01-01

    The non-linearity of equations governing flow in unconfined aquifers poses challenges for numerical models, particularly in field-scale applications. Existing methods are often unstable, do not converge, or require extremely fine grids and small time steps. Standard modeling procedures such as automated model calibration and Monte Carlo uncertainty analysis typically require thousands of forward model runs. Stable and efficient model performance is essential to these analyses. We propose a new method that offers improvements in stability and efficiency, and is relatively tolerant of coarse grids. It applies a strategy similar to that in the MODFLOW code to solution of Richard's Equation with a grid-dependent pressure/saturation relationship. The method imposes a contrast between horizontal and vertical permeability in gridblocks containing the water table. We establish the accuracy of the method by comparison to an analytical solution for radial flow to a well in an unconfined aquifer with delayed yield. Using a suite of test problems, we demonstrate the efficiencies gained in speed and accuracy over two-phase simulations, and improved stability when compared to MODFLOW. The advantages for applications to transient unconfined aquifer analysis are clearly demonstrated by our examples. We also demonstrate applicability to mixed vadose zone/saturated zone applications, including transport, and find that the method shows great promise for these types of problem, as well.

  18. A stable and efficient numerical algorithm for unconfined aquifer analysis.

    PubMed

    Keating, Elizabeth; Zyvoloski, George

    2009-01-01

    The nonlinearity of equations governing flow in unconfined aquifers poses challenges for numerical models, particularly in field-scale applications. Existing methods are often unstable, do not converge, or require extremely fine grids and small time steps. Standard modeling procedures such as automated model calibration and Monte Carlo uncertainty analysis typically require thousands of model runs. Stable and efficient model performance is essential to these analyses. We propose a new method that offers improvements in stability and efficiency and is relatively tolerant of coarse grids. It applies a strategy similar to that in the MODFLOW code to the solution of Richard's equation with a grid-dependent pressure/saturation relationship. The method imposes a contrast between horizontal and vertical permeability in gridblocks containing the water table, does not require "dry" cells to convert to inactive cells, and allows recharge to flow through relatively dry cells to the water table. We establish the accuracy of the method by comparison to an analytical solution for radial flow to a well in an unconfined aquifer with delayed yield. Using a suite of test problems, we demonstrate the efficiencies gained in speed and accuracy over two-phase simulations, and improved stability when compared to MODFLOW. The advantages for applications to transient unconfined aquifer analysis are clearly demonstrated by our examples. We also demonstrate applicability to mixed vadose zone/saturated zone applications, including transport, and find that the method shows great promise for these types of problem as well.

  19. A novel wavefront-based algorithm for numerical simulation of quasi-optical systems

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoling; Lou, Zheng; Hu, Jie; Zhou, Kangmin; Zuo, Yingxi; Shi, Shengcai

    2016-11-01

    A novel wavefront-based algorithm for the beam simulation of both reflective and refractive optics in a complicated quasi-optical system is proposed. The algorithm can be regarded as the extension to the conventional Physical Optics algorithm to handle dielectrics. Internal reflections are modeled in an accurate fashion, and coating and flossy materials can be treated in a straightforward manner. A parallel implementation of the algorithm has been developed and numerical examples show that the algorithm yields sufficient accuracy by comparing with experimental results, while the computational complexity is much less than the full-wave methods. The algorithm offers an alternative approach to the modeling of quasi-optical systems in addition to the Geometrical Optics modeling and full-wave methods.

  20. Image reconstruction algorithms for electrical capacitance tomography based on ROF model using new numerical techniques

    NASA Astrophysics Data System (ADS)

    Chen, Jiaoxuan; Zhang, Maomao; Liu, Yinyan; Chen, Jiaoliao; Li, Yi

    2017-03-01

    Electrical capacitance tomography (ECT) is a promising technique applied in many fields. However, the solutions for ECT are not unique and highly sensitive to the measurement noise. To remain a good shape of reconstructed object and endure a noisy data, a Rudin–Osher–Fatemi (ROF) model with total variation regularization is applied to image reconstruction in ECT. Two numerical methods, which are simplified augmented Lagrangian (SAL) and accelerated alternating direction method of multipliers (AADMM), are innovatively introduced to try to solve the above mentioned problems in ECT. The effect of the parameters and the number of iterations for different algorithms, and the noise level in capacitance data are discussed. Both simulation and experimental tests were carried out to validate the feasibility of the proposed algorithms, compared to the Landweber iteration (LI) algorithm. The results show that the SAL and AADMM algorithms can handle a high level of noise and the AADMM algorithm outperforms other algorithms in identifying the object from its background.

  1. Gyrotactic trapping: A numerical study

    NASA Astrophysics Data System (ADS)

    Ghorai, S.

    2016-04-01

    Gyrotactic trapping is a mechanism proposed by Durham et al. ["Disruption of vertical motility by shear triggers formation of thin Phytoplankton layers," Science 323, 1067-1070 (2009)] to explain the formation of thin phytoplankton layer just below the ocean surface. This mechanism is examined numerically using a rational model based on the generalized Taylor dispersion theory. The crucial role of sedimentation speed in the thin layer formation is demonstrated. The effects of variation in different parameters on the thin layer formation are also investigated.

  2. Variationally consistent discretization schemes and numerical algorithms for contact problems

    NASA Astrophysics Data System (ADS)

    Wohlmuth, Barbara

    We consider variationally consistent discretization schemes for mechanical contact problems. Most of the results can also be applied to other variational inequalities, such as those for phase transition problems in porous media, for plasticity or for option pricing applications from finance. The starting point is to weakly incorporate the constraint into the setting and to reformulate the inequality in the displacement in terms of a saddle-point problem. Here, the Lagrange multiplier represents the surface forces, and the constraints are restricted to the boundary of the simulation domain. Having a uniform inf-sup bound, one can then establish optimal low-order a priori convergence rates for the discretization error in the primal and dual variables. In addition to the abstract framework of linear saddle-point theory, complementarity terms have to be taken into account. The resulting inequality system is solved by rewriting it equivalently by means of the non-linear complementarity function as a system of equations. Although it is not differentiable in the classical sense, semi-smooth Newton methods, yielding super-linear convergence rates, can be applied and easily implemented in terms of a primal-dual active set strategy. Quite often the solution of contact problems has a low regularity, and the efficiency of the approach can be improved by using adaptive refinement techniques. Different standard types, such as residual- and equilibrated-based a posteriori error estimators, can be designed based on the interpretation of the dual variable as Neumann boundary condition. For the fully dynamic setting it is of interest to apply energy-preserving time-integration schemes. However, the differential algebraic character of the system can result in high oscillations if standard methods are applied. A possible remedy is to modify the fully discretized system by a local redistribution of the mass. Numerical results in two and three dimensions illustrate the wide range of

  3. Numerical optimization algorithm for rotationally invariant multi-orbital slave-boson method

    NASA Astrophysics Data System (ADS)

    Quan, Ya-Min; Wang, Qing-wei; Liu, Da-Yong; Yu, Xiang-Long; Zou, Liang-Jian

    2015-06-01

    We develop a generalized numerical optimization algorithm for the rotationally invariant multi-orbital slave boson approach, which is applicable for arbitrary boundary constraints of high-dimensional objective function by combining several classical optimization techniques. After constructing the calculation architecture of rotationally invariant multi-orbital slave boson model, we apply this optimization algorithm to find the stable ground state and magnetic configuration of two-orbital Hubbard models. The numerical results are consistent with available solutions, confirming the correctness and accuracy of our present algorithm. Furthermore, we utilize it to explore the effects of the transverse Hund's coupling terms on metal-insulator transition, orbital selective Mott phase and magnetism. These results show the quick convergency and robust stable character of our algorithm in searching the optimized solution of strongly correlated electron systems.

  4. Multislice algorithms revisited: solving the Schrödinger equation numerically for imaging with electrons.

    PubMed

    Wacker, C; Schröder, R R

    2015-04-01

    For a long time, the high-energy approximation was sufficient for any image simulation in electron microscopy. This changed with the advent of aberration correctors that allow high-resolution imaging at low electron energies. To deal with this fact, we present a numerical solution of the exact Schrödinger equation that is novel in the field of electron microscopy. Furthermore, we investigate systematically the advantages and problems of several multislice algorithms, especially the real-space algorithms.

  5. Fast algorithms for numerical, conservative, and entropy approximations of the Fokker-Planck-Landau equation

    SciTech Connect

    Buet, C.; Cordier; Degond, P.; Lemou, M.

    1997-05-15

    We present fast numerical algorithms to solve the nonlinear Fokker-Planck-Landau equation in 3D velocity space. The discretization of the collision operator preserves the properties required by the physical nature of the Fokker-Planck-Landau equation, such as the conservation of mass, momentum, and energy, the decay of the entropy, and the fact that the steady states are Maxwellians. At the end of this paper, we give numerical results illustrating the efficiency of these fast algorithms in terms of accuracy and CPU time. 20 refs., 7 figs.

  6. On the impact of communication complexity in the design of parallel numerical algorithms

    NASA Technical Reports Server (NTRS)

    Gannon, D.; Vanrosendale, J.

    1984-01-01

    This paper describes two models of the cost of data movement in parallel numerical algorithms. One model is a generalization of an approach due to Hockney, and is suitable for shared memory multiprocessors where each processor has vector capabilities. The other model is applicable to highly parallel nonshared memory MIMD systems. In the second model, algorithm performance is characterized in terms of the communication network design. Techniques used in VLSI complexity theory are also brought in, and algorithm independent upper bounds on system performance are derived for several problems that are important to scientific computation.

  7. Numerical linked-cluster algorithms. I. Spin systems on square, triangular, and kagomé lattices.

    PubMed

    Rigol, Marcos; Bryant, Tyler; Singh, Rajiv R P

    2007-06-01

    We discuss recently introduced numerical linked-cluster (NLC) algorithms that allow one to obtain temperature-dependent properties of quantum lattice models, in the thermodynamic limit, from exact diagonalization of finite clusters. We present studies of thermodynamic observables for spin models on square, triangular, and kagomé lattices. Results for several choices of clusters and extrapolations methods, that accelerate the convergence of NLCs, are presented. We also include a comparison of NLC results with those obtained from exact analytical expressions (where available), high-temperature expansions (HTE), exact diagonalization (ED) of finite periodic systems, and quantum Monte Carlo simulations. For many models and properties NLC results are substantially more accurate than HTE and ED.

  8. Extremal polynomials and methods of optimization of numerical algorithms

    SciTech Connect

    Lebedev, V I

    2004-10-31

    Chebyshev-Markov-Bernstein-Szegoe polynomials C{sub n}(x) extremal on [-1,1] with weight functions w(x)=(1+x){sup {alpha}}(1- x){sup {beta}}/{radical}(S{sub l}(x)) where {alpha},{beta}=0,1/2 and S{sub l}(x)={pi}{sub k=1}{sup m}(1-c{sub k}T{sub l{sub k}}(x))>0 are considered. A universal formula for their representation in trigonometric form is presented. Optimal distributions of the nodes of the weighted interpolation and explicit quadrature formulae of Gauss, Markov, Lobatto, and Rado types are obtained for integrals with weight p(x)=w{sup 2}(x)(1-x{sup 2}){sup -1/2}. The parameters of optimal Chebyshev iterative methods reducing the error optimally by comparison with the initial error defined in another norm are determined. For each stage of the Fedorenko-Bakhvalov method iteration parameters are determined which take account of the results of the previous calculations. Chebyshev filters with weight are constructed. Iterative methods of the solution of equations containing compact operators are studied.

  9. Dynamical approach study of spurious steady-state numerical solutions of nonlinear differential equations. I - The dynamics of time discretization and its implications for algorithm development in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.; Griffiths, D. F.

    1991-01-01

    Spurious stable as well as unstable steady state numerical solutions, spurious asymptotic numerical solutions of higher period, and even stable chaotic behavior can occur when finite difference methods are used to solve nonlinear differential equations (DE) numerically. The occurrence of spurious asymptotes is independent of whether the DE possesses a unique steady state or has additional periodic solutions and/or exhibits chaotic phenomena. The form of the nonlinear DEs and the type of numerical schemes are the determining factor. In addition, the occurrence of spurious steady states is not restricted to the time steps that are beyond the linearized stability limit of the scheme. In many instances, it can occur below the linearized stability limit. Therefore, it is essential for practitioners in computational sciences to be knowledgeable about the dynamical behavior of finite difference methods for nonlinear scalar DEs before the actual application of these methods to practical computations. It is also important to change the traditional way of thinking and practices when dealing with genuinely nonlinear problems. In the past, spurious asymptotes were observed in numerical computations but tended to be ignored because they all were assumed to lie beyond the linearized stability limits of the time step parameter delta t. As can be seen from the study, bifurcations to and from spurious asymptotic solutions and transitions to computational instability not only are highly scheme dependent and problem dependent, but also initial data and boundary condition dependent, and not limited to time steps that are beyond the linearized stability limit.

  10. Dynamical approach study of spurious steady-state numerical solutions of nonlinear differential equations. Part 1: The ODE connection and its implications for algorithm development in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.; Griffiths, D. F.

    1990-01-01

    Spurious stable as well as unstable steady state numerical solutions, spurious asymptotic numerical solutions of higher period, and even stable chaotic behavior can occur when finite difference methods are used to solve nonlinear differential equations (DE) numerically. The occurrence of spurious asymptotes is independent of whether the DE possesses a unique steady state or has additional periodic solutions and/or exhibits chaotic phenomena. The form of the nonlinear DEs and the type of numerical schemes are the determining factor. In addition, the occurrence of spurious steady states is not restricted to the time steps that are beyond the linearized stability limit of the scheme. In many instances, it can occur below the linearized stability limit. Therefore, it is essential for practitioners in computational sciences to be knowledgeable about the dynamical behavior of finite difference methods for nonlinear scalar DEs before the actual application of these methods to practical computations. It is also important to change the traditional way of thinking and practices when dealing with genuinely nonlinear problems. In the past, spurious asymptotes were observed in numerical computations but tended to be ignored because they all were assumed to lie beyond the linearized stability limits of the time step parameter delta t. As can be seen from the study, bifurcations to and from spurious asymptotic solutions and transitions to computational instability not only are highly scheme dependent and problem dependent, but also initial data and boundary condition dependent, and not limited to time steps that are beyond the linearized stability limit.

  11. A new free-surface stabilization algorithm for geodynamical modelling: Theory and numerical tests

    NASA Astrophysics Data System (ADS)

    Andrés-Martínez, Miguel; Morgan, Jason P.; Pérez-Gussinyé, Marta; Rüpke, Lars

    2015-09-01

    The surface of the solid Earth is effectively stress free in its subaerial portions, and hydrostatic beneath the oceans. Unfortunately, this type of boundary condition is difficult to treat computationally, and for computational convenience, numerical models have often used simpler approximations that do not involve a normal stress-loaded, shear-stress free top surface that is free to move. Viscous flow models with a computational free surface typically confront stability problems when the time step is bigger than the viscous relaxation time. The small time step required for stability (< 2 Kyr) makes this type of model computationally intensive, so there remains a need to develop strategies that mitigate the stability problem by making larger (at least ∼10 Kyr) time steps stable and accurate. Here we present a new free-surface stabilization algorithm for finite element codes which solves the stability problem by adding to the Stokes formulation an intrinsic penalization term equivalent to a portion of the future load at the surface nodes. Our algorithm is straightforward to implement and can be used with both Eulerian or Lagrangian grids. It includes α and β parameters to respectively control both the vertical and the horizontal slope-dependent penalization terms, and uses Uzawa-like iterations to solve the resulting system at a cost comparable to a non-stress free surface formulation. Four tests were carried out in order to study the accuracy and the stability of the algorithm: (1) a decaying first-order sinusoidal topography test, (2) a decaying high-order sinusoidal topography test, (3) a Rayleigh-Taylor instability test, and (4) a steep-slope test. For these tests, we investigate which α and β parameters give the best results in terms of both accuracy and stability. We also compare the accuracy and the stability of our algorithm with a similar implicit approach recently developed by Kaus et al. (2010). We find that our algorithm is slightly more accurate

  12. Numerical convergence and interpretation of the fuzzy c-shells clustering algorithm.

    PubMed

    Bezdek, J C; Hathaway, R J

    1992-01-01

    R. N. Dave's (1990) version of fuzzy c-shells is an iterative clustering algorithm which requires the application of Newton's method or a similar general optimization technique at each half step in any sequence of iterates for minimizing the associated objective function. An important computational question concerns the accuracy of the solution required at each half step within the overall iteration. The general convergence theory for grouped coordination minimization is applied to this question to show that numerically exact solution of the half-step subproblems in Dave's algorithm is not necessary. One iteration of Newton's method in each coordinate minimization half step yields a sequence obtained using the fuzzy c-shells algorithm with numerically exact coordinate minimization at each half step. It is shown that fuzzy c-shells generates hyperspherical prototypes to the clusters it finds for certain special cases of the measure of dissimilarity used.

  13. A Parallel Numerical Algorithm To Solve Linear Systems Of Equations Emerging From 3D Radiative Transfer

    NASA Astrophysics Data System (ADS)

    Wichert, Viktoria; Arkenberg, Mario; Hauschildt, Peter H.

    2016-10-01

    Highly resolved state-of-the-art 3D atmosphere simulations will remain computationally extremely expensive for years to come. In addition to the need for more computing power, rethinking coding practices is necessary. We take a dual approach by introducing especially adapted, parallel numerical methods and correspondingly parallelizing critical code passages. In the following, we present our respective work on PHOENIX/3D. With new parallel numerical algorithms, there is a big opportunity for improvement when iteratively solving the system of equations emerging from the operator splitting of the radiative transfer equation J = ΛS. The narrow-banded approximate Λ-operator Λ* , which is used in PHOENIX/3D, occurs in each iteration step. By implementing a numerical algorithm which takes advantage of its characteristic traits, the parallel code's efficiency is further increased and a speed-up in computational time can be achieved.

  14. Numerical study of polyampholyte configuration

    SciTech Connect

    Bratko, D.; Chakraborty, A.K.

    1996-01-25

    Monte Carlo simulation and variational mean field calculations are used to study the structure of isolated polyampholyte chains at conditions roughly corresponding to dilute aqueous solutions. The simulations are performed by modeling the polymer as a necklace of charged hard spheres connected by rigid bonds with free rotations. A random distribution of cationic and anionic groups on the chain is assumed and average properties for samples with restricted or fluctuating net charge on individual chains are computed. The chains swell with increasing net charge while they are contracted when a balance of positive and negative charges is attained. The variational mean field theory successfully describes the swelling at high net charge while it underestimates the attractive effects characteristic of neutral or nearly neutral chains. This difference is interpreted as a result of spatial correlations among ionized polyampholyte beads in compact coils. The effects studied by determining the structure of ionic atmospheres surrounding individual charges in the coil in analogy with the known behavior of simple ionic solutions. The mean field model neglects this effect but still captures the essential features of the temperature dependence of the average coil for both the ensemble with enforced chain neutrality and the unrestricted ensemble with fluctuations of charge on individual chains. 77 refs., 7 figs., 1 tab.

  15. PolyPole-1: An accurate numerical algorithm for intra-granular fission gas release

    NASA Astrophysics Data System (ADS)

    Pizzocri, D.; Rabiti, C.; Luzzi, L.; Barani, T.; Van Uffelen, P.; Pastore, G.

    2016-09-01

    The transport of fission gas from within the fuel grains to the grain boundaries (intra-granular fission gas release) is a fundamental controlling mechanism of fission gas release and gaseous swelling in nuclear fuel. Hence, accurate numerical solution of the corresponding mathematical problem needs to be included in fission gas behaviour models used in fuel performance codes. Under the assumption of equilibrium between trapping and resolution, the process can be described mathematically by a single diffusion equation for the gas atom concentration in a grain. In this paper, we propose a new numerical algorithm (PolyPole-1) to efficiently solve the fission gas diffusion equation in time-varying conditions. The PolyPole-1 algorithm is based on the analytic modal solution of the diffusion equation for constant conditions, combined with polynomial corrective terms that embody the information on the deviation from constant conditions. The new algorithm is verified by comparing the results to a finite difference solution over a large number of randomly generated operation histories. Furthermore, comparison to state-of-the-art algorithms used in fuel performance codes demonstrates that the accuracy of PolyPole-1 is superior to other algorithms, with similar computational effort. Finally, the concept of PolyPole-1 may be extended to the solution of the general problem of intra-granular fission gas diffusion during non-equilibrium trapping and resolution, which will be the subject of future work.

  16. Numerical Study of Orbital Trajectories about Phobos

    DTIC Science & Technology

    1988-12-01

    COF NUMERICAL STUDY OF ORBITAL TRAJECTORIES ABOUT PHOBOS THESIS Robert B. Teets Captain, USAF AFIT/GS0/AA/8 8D- 16 ..................D TIC SELECTEh...ful em t%... . 𔄂 9 ... 3 ...29 ...058_... AFIT/GSO/AA/88D-16 0 NUMERICAL STUDY OF ORBITAL TRAJECTORIES ABOUT PHOBOS THESIS Robert B. Teets Captain...ORBITAL TRAJECTORIES ABOUT PHOBOS THESIS Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology Air University In

  17. A numerical algorithm for the explicit calculation of SU(N) and SL(N,C) Clebsch-Gordan coefficients

    SciTech Connect

    Alex, Arne; Delft, Jan von; Kalus, Matthias; Huckleberry, Alan

    2011-02-15

    We present an algorithm for the explicit numerical calculation of SU(N) and SL(N,C) Clebsch-Gordan coefficients, based on the Gelfand-Tsetlin pattern calculus. Our algorithm is well suited for numerical implementation; we include a computer code in an appendix. Our exposition presumes only familiarity with the representation theory of SU(2).

  18. Analysis of V-cycle multigrid algorithms for forms defined by numerical quadrature

    SciTech Connect

    Bramble, J.H. . Dept. of Mathematics); Goldstein, C.I.; Pasciak, J.E. . Applied Mathematics Dept.)

    1994-05-01

    The authors describe and analyze certain V-cycle multigrid algorithms with forms defined by numerical quadrature applied to the approximation of symmetric second-order elliptic boundary value problems. This approach can be used for the efficient solution of finite element systems resulting from numerical quadrature as well as systems arising from finite difference discretizations. The results are based on a regularity free theory and hence apply to meshes with local grid refinement as well as the quasi-uniform case. It is shown that uniform (independent of the number of levels) convergence rates often hold for appropriately defined V-cycle algorithms with as few as one smoothing per grid. These results hold even on applications without full elliptic regularity, e.g., a domain in R[sup 2] with a crack.

  19. A modeling and numerical algorithm for thermoporomechanics in multiple porosity media for naturally fractured reservoirs

    NASA Astrophysics Data System (ADS)

    Kim, J.; Sonnenthal, E. L.; Rutqvist, J.

    2011-12-01

    Rigorous modeling of coupling between fluid, heat, and geomechanics (thermo-poro-mechanics), in fractured porous media is one of the important and difficult topics in geothermal reservoir simulation, because the physics are highly nonlinear and strongly coupled. Coupled fluid/heat flow and geomechanics are investigated using the multiple interacting continua (MINC) method as applied to naturally fractured media. In this study, we generalize constitutive relations for the isothermal elastic dual porosity model proposed by Berryman (2002) to those for the non-isothermal elastic/elastoplastic multiple porosity model, and derive the coupling coefficients of coupled fluid/heat flow and geomechanics and constraints of the coefficients. When the off-diagonal terms of the total compressibility matrix for the flow problem are zero, the upscaled drained bulk modulus for geomechanics becomes the harmonic average of drained bulk moduli of the multiple continua. In this case, the drained elastic/elastoplastic moduli for mechanics are determined by a combination of the drained moduli and volume fractions in multiple porosity materials. We also determine a relation between local strains of all multiple porosity materials in a gridblock and the global strain of the gridblock, from which we can track local and global elastic/plastic variables. For elastoplasticity, the return mapping is performed for all multiple porosity materials in the gridblock. For numerical implementation, we employ and extend the fixed-stress sequential method of the single porosity model to coupled fluid/heat flow and geomechanics in multiple porosity systems, because it provides numerical stability and high accuracy. This sequential scheme can be easily implemented by using a porosity function and its corresponding porosity correction, making use of the existing robust flow and geomechanics simulators. We implemented the proposed modeling and numerical algorithm to the reaction transport simulator

  20. Evaluation of a new parallel numerical parameter optimization algorithm for a dynamical system

    NASA Astrophysics Data System (ADS)

    Duran, Ahmet; Tuncel, Mehmet

    2016-10-01

    It is important to have a scalable parallel numerical parameter optimization algorithm for a dynamical system used in financial applications where time limitation is crucial. We use Message Passing Interface parallel programming and present such a new parallel algorithm for parameter estimation. For example, we apply the algorithm to the asset flow differential equations that have been developed and analyzed since 1989 (see [3-6] and references contained therein). We achieved speed-up for some time series to run up to 512 cores (see [10]). Unlike [10], we consider more extensive financial market situations, for example, in presence of low volatility, high volatility and stock market price at a discount/premium to its net asset value with varying magnitude, in this work. Moreover, we evaluated the convergence of the model parameter vector, the nonlinear least squares error and maximum improvement factor to quantify the success of the optimization process depending on the number of initial parameter vectors.

  1. A universal framework for non-deteriorating time-domain numerical algorithms in Maxwell's electrodynamics

    NASA Astrophysics Data System (ADS)

    Fedoseyev, A.; Kansa, E. J.; Tsynkov, S.; Petropavlovskiy, S.; Osintcev, M.; Shumlak, U.; Henshaw, W. D.

    2016-10-01

    We present the implementation of the Lacuna method, that removes a key diffculty that currently hampers many existing methods for computing unsteady electromagnetic waves on unbounded regions. Numerical accuracy and/or stability may deterio-rate over long times due to the treatment of artificial outer boundaries. We describe a developed universal algorithm and software that correct this problem by employing the Huygens' principle and lacunae of Maxwell's equations. The algorithm provides a temporally uniform guaranteed error bound (no deterioration at all), and the software will enable robust electromagnetic simulations in a high-performance computing environment. The methodology applies to any geometry, any scheme, and any boundary condition. It eliminates the long-time deterioration regardless of its origin and how it manifests itself. In retrospect, the lacunae method was first proposed by V. Ryaben'kii and subsequently developed by S. Tsynkov. We have completed development of an innovative numerical methodology for high fidelity error-controlled modeling of a broad variety of electromagnetic and other wave phenomena. Proof-of-concept 3D computations have been conducted that con-vincingly demonstrate the feasibility and effciency of the proposed approach. Our algorithms are being implemented as robust commercial software tools in a standalone module to be combined with existing numerical schemes in several widely used computational electromagnetic codes.

  2. Optimization Algorithm for Kalman Filter Exploiting the Numerical Characteristics of SINS/GPS Integrated Navigation Systems.

    PubMed

    Hu, Shaoxing; Xu, Shike; Wang, Duhu; Zhang, Aiwu

    2015-11-11

    Aiming at addressing the problem of high computational cost of the traditional Kalman filter in SINS/GPS, a practical optimization algorithm with offline-derivation and parallel processing methods based on the numerical characteristics of the system is presented in this paper. The algorithm exploits the sparseness and/or symmetry of matrices to simplify the computational procedure. Thus plenty of invalid operations can be avoided by offline derivation using a block matrix technique. For enhanced efficiency, a new parallel computational mechanism is established by subdividing and restructuring calculation processes after analyzing the extracted "useful" data. As a result, the algorithm saves about 90% of the CPU processing time and 66% of the memory usage needed in a classical Kalman filter. Meanwhile, the method as a numerical approach needs no precise-loss transformation/approximation of system modules and the accuracy suffers little in comparison with the filter before computational optimization. Furthermore, since no complicated matrix theories are needed, the algorithm can be easily transplanted into other modified filters as a secondary optimization method to achieve further efficiency.

  3. Optimization Algorithm for Kalman Filter Exploiting the Numerical Characteristics of SINS/GPS Integrated Navigation Systems

    PubMed Central

    Hu, Shaoxing; Xu, Shike; Wang, Duhu; Zhang, Aiwu

    2015-01-01

    Aiming at addressing the problem of high computational cost of the traditional Kalman filter in SINS/GPS, a practical optimization algorithm with offline-derivation and parallel processing methods based on the numerical characteristics of the system is presented in this paper. The algorithm exploits the sparseness and/or symmetry of matrices to simplify the computational procedure. Thus plenty of invalid operations can be avoided by offline derivation using a block matrix technique. For enhanced efficiency, a new parallel computational mechanism is established by subdividing and restructuring calculation processes after analyzing the extracted “useful” data. As a result, the algorithm saves about 90% of the CPU processing time and 66% of the memory usage needed in a classical Kalman filter. Meanwhile, the method as a numerical approach needs no precise-loss transformation/approximation of system modules and the accuracy suffers little in comparison with the filter before computational optimization. Furthermore, since no complicated matrix theories are needed, the algorithm can be easily transplanted into other modified filters as a secondary optimization method to achieve further efficiency. PMID:26569247

  4. Cell light scattering characteristic numerical simulation research based on FDTD algorithm

    NASA Astrophysics Data System (ADS)

    Lin, Xiaogang; Wan, Nan; Zhu, Hao; Weng, Lingdong

    2017-01-01

    In this study, finite-difference time-domain (FDTD) algorithm has been used to work out the cell light scattering problem. Before beginning to do the simulation contrast, finding out the changes or the differences between normal cells and abnormal cells which may be cancerous or maldevelopment is necessary. The preparation of simulation are building up the simple cell model of cell which consists of organelles, nucleus and cytoplasm and setting up the suitable precision of mesh. Meanwhile, setting up the total field scattering field source as the excitation source and far field projection analysis group is also important. Every step need to be explained by the principles of mathematic such as the numerical dispersion, perfect matched layer boundary condition and near-far field extrapolation. The consequences of simulation indicated that the position of nucleus changed will increase the back scattering intensity and the significant difference on the peak value of scattering intensity may result from the changes of the size of cytoplasm. The study may help us find out the regulations based on the simulation consequences and the regulations can be meaningful for early diagnosis of cancers.

  5. Parametric effects of CFL number and artificial smoothing on numerical solutions using implicit approximate factorization algorithm

    NASA Technical Reports Server (NTRS)

    Daso, E. O.

    1986-01-01

    An implicit approximate factorization algorithm is employed to quantify the parametric effects of Courant number and artificial smoothing on numerical solutions of the unsteady 3-D Euler equations for a windmilling propeller (low speed) flow field. The results show that propeller global or performance chracteristics vary strongly with Courant number and artificial dissipation parameters, though the variation is such less severe at high Courant numbers. Candidate sets of Courant number and dissipation parameters could result in parameter-dependent solutions. Parameter-independent numerical solutions can be obtained if low values of the dissipation parameter-time step ratio are used in the computations. Furthermore, it is realized that too much artificial damping can degrade numerical stability. Finally, it is demonstrated that highly resolved meshes may, in some cases, delay convergence, thereby suggesting some optimum cell size for a given flow solution. It is suspected that improper boundary treatment may account for the cell size constraint.

  6. Coordinate Systems, Numerical Objects and Algorithmic Operations of Computational Experiment in Fluid Mechanics

    NASA Astrophysics Data System (ADS)

    Degtyarev, Alexander; Khramushin, Vasily

    2016-02-01

    The paper deals with the computer implementation of direct computational experiments in fluid mechanics, constructed on the basis of the approach developed by the authors. The proposed approach allows the use of explicit numerical scheme, which is an important condition for increasing the effciency of the algorithms developed by numerical procedures with natural parallelism. The paper examines the main objects and operations that let you manage computational experiments and monitor the status of the computation process. Special attention is given to a) realization of tensor representations of numerical schemes for direct simulation; b) realization of representation of large particles of a continuous medium motion in two coordinate systems (global and mobile); c) computing operations in the projections of coordinate systems, direct and inverse transformation in these systems. Particular attention is paid to the use of hardware and software of modern computer systems.

  7. Numerical studies of solar chromospheric jets

    NASA Astrophysics Data System (ADS)

    Iijima, Haruhisa

    2016-03-01

    The solar chromospheric jet is one of the most characteristic structures near the solar surface. The quantitative understanding of chromospheric jets is of substantial importance for not only the partially ionized phenomena in the chromosphere but also the energy input and dissipation processes in the corona. In this dissertation, the formation and dynamics of chromospheric jets are investigated using the radiation magnetohydrodynamic simulations. We newly develop a numerical code for the radiation magnetohydrodynamic simulations of the comprehensive modeling of solar atmosphere. Because the solar chromosphere is highly nonlinear, magnetic pressure dominated, and turbulent, a robust and high-resolution numerical scheme is required. In Chapter 2, we propose a new algorithm for the simulation of magnetohydrodynamics. Through the test problems and accuracy analyses, the proposed scheme is proved to satisfy the requirements. In Chapter 3, the effect of the non-local radiation energy transport, Spitzer-type thermal conduction, latent heat of partial ionization and molecule formation, and gravity are implemented to the magnetohydrodynamic code. The numerical schemes for the radiation transport and thermal conduction is carefully chosen in a view of the efficiency and compatibility with the parallel computation. Based on the developed radiation magnetohydrodynamic code, the formation and dynamics of chromospheric jets are investigated. In Chapter 4, we investigate the dependence of chromospheric jets on the coronal temperature in the two-dimensional simulations. Various scale of chromospheric jets with the parabolic trajectory are found with the maximum height of 2-8 Mm, lifetime of 2-7 min, maximum upward velocity of 10- 50 km/s, and deceleration of 100-350 m/s2. We find that chromospheric jets are more elongated under the cool corona and shorter under the hot corona. We also find that the pressure gradient force caused by the periodic shock waves accelerates some of the

  8. Algorithms for verbal autopsies: a validation study in Kenyan children.

    PubMed Central

    Quigley, M. A.; Armstrong Schellenberg, J. R.; Snow, R. W.

    1996-01-01

    The verbal autopsy (VA) questionnaire is a widely used method for collecting information on cause-specific mortality where the medical certification of deaths in childhood is incomplete. This paper discusses review by physicians and expert algorithms as approaches to ascribing cause of deaths from the VA questionnaire and proposes an alternative, data-derived approach. In this validation study, the relatives of 295 children who had died in hospital were interviewed using a VA questionnaire. The children were assigned causes of death using data-derived algorithms obtained under logistic regression and using expert algorithms. For most causes of death, the data-derived algorithms and expert algorithms yielded similar levels of diagnostic accuracy. However, a data-derived algorithm for malaria gave a sensitivity of 71% (95% Cl: 58-84%), which was significantly higher than the sensitivity of 47% obtained under an expert algorithm. The need for exploring this and other ways in which the VA technique can be improved are discussed. The implications of less-than-perfect sensitivity and specificity are explored using numerical examples. Misclassification bias should be taken into consideration when planning and evaluating epidemiological studies. PMID:8706229

  9. Study of Cardiac Defibrillation Through Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Bragard, J.; Marin, S.; Cherry, E. M.; Fenton, F. H.

    Three-dimensional numerical simulations of the defibrillation problem are presented. In particular, in this study we use the rabbit ventricular geometry as a realistic model system for evaluating the efficacy of defibrillatory shocks. Statistical data obtained from the simulations were analyzed in term of a dose-response curve. Good quantitative agreement between our numerical results and clinically relevant values is obtained. An electric field strength of about 6.6 V/cm indicates a fifty percent probability of successful defibrillation for a 12-ms monophasic shock. Our validated model will be useful for optimizing defibrillation protocols.

  10. Numerical algorithms for computations of feedback laws arising in control of flexible systems

    NASA Technical Reports Server (NTRS)

    Lasiecka, Irena

    1989-01-01

    Several continuous models will be examined, which describe flexible structures with boundary or point control/observation. Issues related to the computation of feedback laws are examined (particularly stabilizing feedbacks) with sensors and actuators located either on the boundary or at specific point locations of the structure. One of the main difficulties is due to the great sensitivity of the system (hyperbolic systems with unbounded control actions), with respect to perturbations caused either by uncertainty of the model or by the errors introduced in implementing numerical algorithms. Thus, special care must be taken in the choice of the appropriate numerical schemes which eventually lead to implementable finite dimensional solutions. Finite dimensional algorithms are constructed on a basis of a priority analysis of the properties of the original, continuous (infinite diversional) systems with the following criteria in mind: (1) convergence and stability of the algorithms and (2) robustness (reasonable insensitivity with respect to the unknown parameters of the systems). Examples with mixed finite element methods and spectral methods are provided.

  11. A Numerical Study on Microwave Coagulation Therapy

    DTIC Science & Technology

    2013-01-01

    improvement of therapeutic effect. References [1] P. Prakash, “Theoretical Modeling for Hepatic Microwave Ablation ,” The Open Biomedical...A Numerical Study on Microwave Coagulation Therapy Amy J. Liu † , Hong Zhou * and Wei Kang * Department of Applied Mathematics Naval...is properly cited. Abstract Microwave coagulation therapy is a clinical technique for treating hepatocellular carcinoma (small size liver

  12. Numerical study of localization in antidot lattices

    NASA Astrophysics Data System (ADS)

    Uryu, Seiji; Ando, Tsuneya

    1998-10-01

    Localization effects in antidot lattices in weak magnetic fields are numerically studied with the use of a Thouless-number method. In hexagonal antidot lattices, both conductance and inverse localization length oscillate as a function of a magnetic flux with the same period as an Al'tshuler-Aronov-Spivak oscillation, in qualitative agreement with recent experiments.

  13. Consumers' Kansei Needs Clustering Method for Product Emotional Design Based on Numerical Design Structure Matrix and Genetic Algorithms

    PubMed Central

    Chen, Deng-kai; Gu, Rong; Gu, Yu-feng; Yu, Sui-huai

    2016-01-01

    Consumers' Kansei needs reflect their perception about a product and always consist of a large number of adjectives. Reducing the dimension complexity of these needs to extract primary words not only enables the target product to be explicitly positioned, but also provides a convenient design basis for designers engaging in design work. Accordingly, this study employs a numerical design structure matrix (NDSM) by parameterizing a conventional DSM and integrating genetic algorithms to find optimum Kansei clusters. A four-point scale method is applied to assign link weights of every two Kansei adjectives as values of cells when constructing an NDSM. Genetic algorithms are used to cluster the Kansei NDSM and find optimum clusters. Furthermore, the process of the proposed method is presented. The details of the proposed approach are illustrated using an example of electronic scooter for Kansei needs clustering. The case study reveals that the proposed method is promising for clustering Kansei needs adjectives in product emotional design. PMID:27630709

  14. Consumers' Kansei Needs Clustering Method for Product Emotional Design Based on Numerical Design Structure Matrix and Genetic Algorithms.

    PubMed

    Yang, Yan-Pu; Chen, Deng-Kai; Gu, Rong; Gu, Yu-Feng; Yu, Sui-Huai

    2016-01-01

    Consumers' Kansei needs reflect their perception about a product and always consist of a large number of adjectives. Reducing the dimension complexity of these needs to extract primary words not only enables the target product to be explicitly positioned, but also provides a convenient design basis for designers engaging in design work. Accordingly, this study employs a numerical design structure matrix (NDSM) by parameterizing a conventional DSM and integrating genetic algorithms to find optimum Kansei clusters. A four-point scale method is applied to assign link weights of every two Kansei adjectives as values of cells when constructing an NDSM. Genetic algorithms are used to cluster the Kansei NDSM and find optimum clusters. Furthermore, the process of the proposed method is presented. The details of the proposed approach are illustrated using an example of electronic scooter for Kansei needs clustering. The case study reveals that the proposed method is promising for clustering Kansei needs adjectives in product emotional design.

  15. Numerical stability of relativistic beam multidimensional PIC simulations employing the Esirkepov algorithm

    SciTech Connect

    Godfrey, Brendan B.; Vay, Jean-Luc

    2013-09-01

    Rapidly growing numerical instabilities routinely occur in multidimensional particle-in-cell computer simulations of plasma-based particle accelerators, astrophysical phenomena, and relativistic charged particle beams. Reducing instability growth to acceptable levels has necessitated higher resolution grids, high-order field solvers, current filtering, etc. except for certain ratios of the time step to the axial cell size, for which numerical growth rates and saturation levels are reduced substantially. This paper derives and solves the cold beam dispersion relation for numerical instabilities in multidimensional, relativistic, electromagnetic particle-in-cell programs employing either the standard or the Cole–Karkkainnen finite difference field solver on a staggered mesh and the common Esirkepov current-gathering algorithm. Good overall agreement is achieved with previously reported results of the WARP code. In particular, the existence of select time steps for which instabilities are minimized is explained. Additionally, an alternative field interpolation algorithm is proposed for which instabilities are almost completely eliminated for a particular time step in ultra-relativistic simulations.

  16. A Novel Quantum-Behaved Bat Algorithm with Mean Best Position Directed for Numerical Optimization.

    PubMed

    Zhu, Binglian; Zhu, Wenyong; Liu, Zijuan; Duan, Qingyan; Cao, Long

    2016-01-01

    This paper proposes a novel quantum-behaved bat algorithm with the direction of mean best position (QMBA). In QMBA, the position of each bat is mainly updated by the current optimal solution in the early stage of searching and in the late search it also depends on the mean best position which can enhance the convergence speed of the algorithm. During the process of searching, quantum behavior of bats is introduced which is beneficial to jump out of local optimal solution and make the quantum-behaved bats not easily fall into local optimal solution, and it has better ability to adapt complex environment. Meanwhile, QMBA makes good use of statistical information of best position which bats had experienced to generate better quality solutions. This approach not only inherits the characteristic of quick convergence, simplicity, and easy implementation of original bat algorithm, but also increases the diversity of population and improves the accuracy of solution. Twenty-four benchmark test functions are tested and compared with other variant bat algorithms for numerical optimization the simulation results show that this approach is simple and efficient and can achieve a more accurate solution.

  17. A Novel Quantum-Behaved Bat Algorithm with Mean Best Position Directed for Numerical Optimization

    PubMed Central

    Zhu, Wenyong; Liu, Zijuan; Duan, Qingyan; Cao, Long

    2016-01-01

    This paper proposes a novel quantum-behaved bat algorithm with the direction of mean best position (QMBA). In QMBA, the position of each bat is mainly updated by the current optimal solution in the early stage of searching and in the late search it also depends on the mean best position which can enhance the convergence speed of the algorithm. During the process of searching, quantum behavior of bats is introduced which is beneficial to jump out of local optimal solution and make the quantum-behaved bats not easily fall into local optimal solution, and it has better ability to adapt complex environment. Meanwhile, QMBA makes good use of statistical information of best position which bats had experienced to generate better quality solutions. This approach not only inherits the characteristic of quick convergence, simplicity, and easy implementation of original bat algorithm, but also increases the diversity of population and improves the accuracy of solution. Twenty-four benchmark test functions are tested and compared with other variant bat algorithms for numerical optimization the simulation results show that this approach is simple and efficient and can achieve a more accurate solution. PMID:27293424

  18. Differential evolution algorithm based photonic structure design: numerical and experimental verification of subwavelength λ/5 focusing of light.

    PubMed

    Bor, E; Turduev, M; Kurt, H

    2016-08-01

    Photonic structure designs based on optimization algorithms provide superior properties compared to those using intuition-based approaches. In the present study, we numerically and experimentally demonstrate subwavelength focusing of light using wavelength scale absorption-free dielectric scattering objects embedded in an air background. An optimization algorithm based on differential evolution integrated into the finite-difference time-domain method was applied to determine the locations of each circular dielectric object with a constant radius and refractive index. The multiobjective cost function defined inside the algorithm ensures strong focusing of light with low intensity side lobes. The temporal and spectral responses of the designed compact photonic structure provided a beam spot size in air with a full width at half maximum value of 0.19λ, where λ is the wavelength of light. The experiments were carried out in the microwave region to verify numerical findings, and very good agreement between the two approaches was found. The subwavelength light focusing is associated with a strong interference effect due to nonuniformly arranged scatterers and an irregular index gradient. Improving the focusing capability of optical elements by surpassing the diffraction limit of light is of paramount importance in optical imaging, lithography, data storage, and strong light-matter interaction.

  19. Differential evolution algorithm based photonic structure design: numerical and experimental verification of subwavelength λ/5 focusing of light

    PubMed Central

    Bor, E.; Turduev, M.; Kurt, H.

    2016-01-01

    Photonic structure designs based on optimization algorithms provide superior properties compared to those using intuition-based approaches. In the present study, we numerically and experimentally demonstrate subwavelength focusing of light using wavelength scale absorption-free dielectric scattering objects embedded in an air background. An optimization algorithm based on differential evolution integrated into the finite-difference time-domain method was applied to determine the locations of each circular dielectric object with a constant radius and refractive index. The multiobjective cost function defined inside the algorithm ensures strong focusing of light with low intensity side lobes. The temporal and spectral responses of the designed compact photonic structure provided a beam spot size in air with a full width at half maximum value of 0.19λ, where λ is the wavelength of light. The experiments were carried out in the microwave region to verify numerical findings, and very good agreement between the two approaches was found. The subwavelength light focusing is associated with a strong interference effect due to nonuniformly arranged scatterers and an irregular index gradient. Improving the focusing capability of optical elements by surpassing the diffraction limit of light is of paramount importance in optical imaging, lithography, data storage, and strong light-matter interaction. PMID:27477060

  20. Differential evolution algorithm based photonic structure design: numerical and experimental verification of subwavelength λ/5 focusing of light

    NASA Astrophysics Data System (ADS)

    Bor, E.; Turduev, M.; Kurt, H.

    2016-08-01

    Photonic structure designs based on optimization algorithms provide superior properties compared to those using intuition-based approaches. In the present study, we numerically and experimentally demonstrate subwavelength focusing of light using wavelength scale absorption-free dielectric scattering objects embedded in an air background. An optimization algorithm based on differential evolution integrated into the finite-difference time-domain method was applied to determine the locations of each circular dielectric object with a constant radius and refractive index. The multiobjective cost function defined inside the algorithm ensures strong focusing of light with low intensity side lobes. The temporal and spectral responses of the designed compact photonic structure provided a beam spot size in air with a full width at half maximum value of 0.19λ, where λ is the wavelength of light. The experiments were carried out in the microwave region to verify numerical findings, and very good agreement between the two approaches was found. The subwavelength light focusing is associated with a strong interference effect due to nonuniformly arranged scatterers and an irregular index gradient. Improving the focusing capability of optical elements by surpassing the diffraction limit of light is of paramount importance in optical imaging, lithography, data storage, and strong light-matter interaction.

  1. A semi-numerical algorithm for instability of compressible multilayered structures

    NASA Astrophysics Data System (ADS)

    Tang, Shan; Yang, Yang; Peng, Xiang He; Liu, Wing Kam; Huang, Xiao Xu; Elkhodary, Khalil

    2015-07-01

    A computational method is proposed for the analysis and prediction of instability (wrinkling or necking) of multilayered compressible plates and sheets made by metals or polymers under plane strain conditions. In previous works, a basic assumption (or a physical argument) that has been frequently made is that materials are incompressible to simplify mathematical derivations. To account for the compressibility of metals and polymers (the lower Poisson's ratio leads to the more compressible material), we propose a combined semi-numerical algorithm and finite element method for instability analysis. Our proposed algorithm is herein verified by comparing its predictions with published results in literature for thin films with polymer/metal substrates and for polymer/metal systems. The new combined method is then used to predict the effects of compressibility on instability behaviors. Results suggest potential utility for compressibility in the design of multilayered structures.

  2. An evaluation of solution algorithms and numerical approximation methods for modeling an ion exchange process

    SciTech Connect

    Bu Sunyoung Huang Jingfang Boyer, Treavor H. Miller, Cass T.

    2010-07-01

    The focus of this work is on the modeling of an ion exchange process that occurs in drinking water treatment applications. The model formulation consists of a two-scale model in which a set of microscale diffusion equations representing ion exchange resin particles that vary in size and age are coupled through a boundary condition with a macroscopic ordinary differential equation (ODE), which represents the concentration of a species in a well-mixed reactor. We introduce a new age-averaged model (AAM) that averages all ion exchange particle ages for a given size particle to avoid the expensive Monte-Carlo simulation associated with previous modeling applications. We discuss two different numerical schemes to approximate both the original Monte-Carlo algorithm and the new AAM for this two-scale problem. The first scheme is based on the finite element formulation in space coupled with an existing backward difference formula-based ODE solver in time. The second scheme uses an integral equation based Krylov deferred correction (KDC) method and a fast elliptic solver (FES) for the resulting elliptic equations. Numerical results are presented to validate the new AAM algorithm, which is also shown to be more computationally efficient than the original Monte-Carlo algorithm. We also demonstrate that the higher order KDC scheme is more efficient than the traditional finite element solution approach and this advantage becomes increasingly important as the desired accuracy of the solution increases. We also discuss issues of smoothness, which affect the efficiency of the KDC-FES approach, and outline additional algorithmic changes that would further improve the efficiency of these developing methods for a wide range of applications.

  3. An Evaluation of Solution Algorithms and Numerical Approximation Methods for Modeling an Ion Exchange Process.

    PubMed

    Bu, Sunyoung; Huang, Jingfang; Boyer, Treavor H; Miller, Cass T

    2010-07-01

    The focus of this work is on the modeling of an ion exchange process that occurs in drinking water treatment applications. The model formulation consists of a two-scale model in which a set of microscale diffusion equations representing ion exchange resin particles that vary in size and age are coupled through a boundary condition with a macroscopic ordinary differential equation (ODE), which represents the concentration of a species in a well-mixed reactor. We introduce a new age-averaged model (AAM) that averages all ion exchange particle ages for a given size particle to avoid the expensive Monte-Carlo simulation associated with previous modeling applications. We discuss two different numerical schemes to approximate both the original Monte Carlo algorithm and the new AAM for this two-scale problem. The first scheme is based on the finite element formulation in space coupled with an existing backward-difference-formula-based ODE solver in time. The second scheme uses an integral equation based Krylov deferred correction (KDC) method and a fast elliptic solver (FES) for the resulting elliptic equations. Numerical results are presented to validate the new AAM algorithm, which is also shown to be more computationally efficient than the original Monte Carlo algorithm. We also demonstrate that the higher order KDC scheme is more efficient than the traditional finite element solution approach and this advantage becomes increasingly important as the desired accuracy of the solution increases. We also discuss issues of smoothness, which affect the efficiency of the KDC-FES approach, and outline additional algorithmic changes that would further improve the efficiency of these developing methods for a wide range of applications.

  4. An Evaluation of Solution Algorithms and Numerical Approximation Methods for Modeling an Ion Exchange Process

    PubMed Central

    Bu, Sunyoung; Huang, Jingfang; Boyer, Treavor H.; Miller, Cass T.

    2010-01-01

    The focus of this work is on the modeling of an ion exchange process that occurs in drinking water treatment applications. The model formulation consists of a two-scale model in which a set of microscale diffusion equations representing ion exchange resin particles that vary in size and age are coupled through a boundary condition with a macroscopic ordinary differential equation (ODE), which represents the concentration of a species in a well-mixed reactor. We introduce a new age-averaged model (AAM) that averages all ion exchange particle ages for a given size particle to avoid the expensive Monte-Carlo simulation associated with previous modeling applications. We discuss two different numerical schemes to approximate both the original Monte Carlo algorithm and the new AAM for this two-scale problem. The first scheme is based on the finite element formulation in space coupled with an existing backward-difference-formula-based ODE solver in time. The second scheme uses an integral equation based Krylov deferred correction (KDC) method and a fast elliptic solver (FES) for the resulting elliptic equations. Numerical results are presented to validate the new AAM algorithm, which is also shown to be more computationally efficient than the original Monte Carlo algorithm. We also demonstrate that the higher order KDC scheme is more efficient than the traditional finite element solution approach and this advantage becomes increasingly important as the desired accuracy of the solution increases. We also discuss issues of smoothness, which affect the efficiency of the KDC-FES approach, and outline additional algorithmic changes that would further improve the efficiency of these developing methods for a wide range of applications. PMID:20577570

  5. New Concepts in Breast Cancer Emerge from Analyzing Clinical Data Using Numerical Algorithms

    PubMed Central

    Retsky, Michael

    2009-01-01

    A small international group has recently challenged fundamental concepts in breast cancer. As a guiding principle in therapy, it has long been assumed that breast cancer growth is continuous. However, this group suggests tumor growth commonly includes extended periods of quasi-stable dormancy. Furthermore, surgery to remove the primary tumor often awakens distant dormant micrometastases. Accordingly, over half of all relapses in breast cancer are accelerated in this manner. This paper describes how a numerical algorithm was used to come to these conclusions. Based on these findings, a dormancy preservation therapy is proposed. PMID:19440287

  6. Numerical arc segmentation algorithm for a radio conference - A software tool for communication satellite systems planning

    NASA Technical Reports Server (NTRS)

    Whyte, W. A.; Heyward, A. O.; Ponchak, D. S.; Spence, R. L.; Zuzek, J. E.

    1988-01-01

    A detailed description of a Numerical Arc Segmentation Algorithm for a Radio Conference (NASARC) software package for communication satellite systems planning is presented. This software provides a method of generating predetermined arc segments for use in the development of an allotment planning procedure to be carried out at the 1988 World Administrative Radio Conference (WARC - 88) on the use of the GEO and the planning of space services utilizing GEO. The features of the NASARC software package are described, and detailed information is given about the function of each of the four NASARC program modules. The results of a sample world scenario are presented and discussed.

  7. Numerical simulation of three-dimensional unsteady vortex flow using a compact vorticity-velocity algorithm

    NASA Technical Reports Server (NTRS)

    Gatski, T. B.; Grosch, C. E.; Rose, M. E.; Spall, R. E.

    1987-01-01

    A numerical algorithm is presented which is used to solve the unsteady, fully three-dimensional, incompressible Navier-Stokes equations in vorticity-velocity variables. A discussion of the discrete approximation scheme is presented as well as the solution method used to solve the resulting algebraic set of difference equations. Second order spatial and temporal accuracy is verified through solution comparisons with exact results obtained for steady three-dimensional stagnation point flow and unsteady axisymmetric vortex spin-up. In addition, results are presented for the problem of unsteady bubble-type vortex breakdown with emphasis on internal bubble dynamics and structure.

  8. Model of stacked long Josephson junctions: Parallel algorithm and numerical results in case of weak coupling

    NASA Astrophysics Data System (ADS)

    Zemlyanaya, E. V.; Bashashin, M. V.; Rahmonov, I. R.; Shukrinov, Yu. M.; Atanasova, P. Kh.; Volokhova, A. V.

    2016-10-01

    We consider a model of system of long Josephson junctions (LJJ) with inductive and capacitive coupling. Corresponding system of nonlinear partial differential equations is solved by means of the standard three-point finite-difference approximation in the spatial coordinate and utilizing the Runge-Kutta method for solution of the resulting Cauchy problem. A parallel algorithm is developed and implemented on a basis of the MPI (Message Passing Interface) technology. Effect of the coupling between the JJs on the properties of LJJ system is demonstrated. Numerical results are discussed from the viewpoint of effectiveness of parallel implementation.

  9. Two-dimensional atmospheric transport and chemistry model - Numerical experiments with a new advection algorithm

    NASA Technical Reports Server (NTRS)

    Shia, Run-Lie; Ha, Yuk Lung; Wen, Jun-Shan; Yung, Yuk L.

    1990-01-01

    Extensive testing of the advective scheme proposed by Prather (1986) has been carried out in support of the California Institute of Technology-Jet Propulsion Laboratory two-dimensional model of the middle atmosphere. The original scheme is generalized to include higher-order moments. In addition, it is shown how well the scheme works in the presence of chemistry as well as eddy diffusion. Six types of numerical experiments including simple clock motion and pure advection in two dimensions have been investigated in detail. By comparison with analytic solutions, it is shown that the new algorithm can faithfully preserve concentration profiles, has essentially no numerical diffusion, and is superior to a typical fourth-order finite difference scheme.

  10. A Numerical Algorithm for Complex Biological Flow in Irregular Microdevice Geometries

    SciTech Connect

    Nonaka, A; Miller, G H; Marshall, T; Liepmann, D; Gulati, S; Trebotich, D; Colella, P

    2003-12-15

    We present a numerical algorithm to simulate non-Newtonian flow in complex microdevice components. The model consists of continuum viscoelastic incompressible flow in irregular microscale geometries. Our numerical approach is the projection method of Bell, Colella and Glaz (BCG) to impose the incompressibility constraint coupled with the polymeric stress splitting discretization of Trebotich, Colella and Miller (TCM). In this approach we exploit the hyperbolic structure of the equations of motion to achieve higher resolution in the presence of strong gradients and to gain an order of magnitude in the timestep. We also extend BCG and TCM to an embedded boundary method to treat irregular domain geometries which exist in microdevices. Our method allows for particle representation in a continuum fluid. We present preliminary results for incompressible viscous flow with comparison to flow of DNA and simulants in microchannels and other components used in chem/bio microdevices.

  11. Zone Based Hybrid Feature Extraction Algorithm for Handwritten Numeral Recognition of South Indian Scripts

    NASA Astrophysics Data System (ADS)

    Rajashekararadhya, S. V.; Ranjan, P. Vanaja

    India is a multi-lingual multi script country, where eighteen official scripts are accepted and have over hundred regional languages. In this paper we propose a zone based hybrid feature extraction algorithm scheme towards the recognition of off-line handwritten numerals of south Indian scripts. The character centroid is computed and the image (character/numeral) is further divided in to n equal zones. Average distance and Average angle from the character centroid to the pixels present in the zone are computed (two features). Similarly zone centroid is computed (two features). This procedure is repeated sequentially for all the zones/grids/boxes present in the numeral image. There could be some zones that are empty, and then the value of that particular zone image value in the feature vector is zero. Finally 4*n such features are extracted. Nearest neighbor classifier is used for subsequent classification and recognition purpose. We obtained 97.55 %, 94 %, 92.5% and 95.2 % recognition rate for Kannada, Telugu, Tamil and Malayalam numerals respectively.

  12. Numerical Analysis and Improved Algorithms for Lyapunov-Exponent Calculation of Discrete-Time Chaotic Systems

    NASA Astrophysics Data System (ADS)

    He, Jianbin; Yu, Simin; Cai, Jianping

    2016-12-01

    Lyapunov exponent is an important index for describing chaotic systems behavior, and the largest Lyapunov exponent can be used to determine whether a system is chaotic or not. For discrete-time dynamical systems, the Lyapunov exponents are calculated by an eigenvalue method. In theory, according to eigenvalue method, the more accurate calculations of Lyapunov exponent can be obtained with the increment of iterations, and the limits also exist. However, due to the finite precision of computer and other reasons, the results will be numeric overflow, unrecognized, or inaccurate, which can be stated as follows: (1) The iterations cannot be too large, otherwise, the simulation result will appear as an error message of NaN or Inf; (2) If the error message of NaN or Inf does not appear, then with the increment of iterations, all Lyapunov exponents will get close to the largest Lyapunov exponent, which leads to inaccurate calculation results; (3) From the viewpoint of numerical calculation, obviously, if the iterations are too small, then the results are also inaccurate. Based on the analysis of Lyapunov-exponent calculation in discrete-time systems, this paper investigates two improved algorithms via QR orthogonal decomposition and SVD orthogonal decomposition approaches so as to solve the above-mentioned problems. Finally, some examples are given to illustrate the feasibility and effectiveness of the improved algorithms.

  13. A numerical algorithm with preference statements to evaluate the performance of scientists.

    PubMed

    Ricker, Martin

    Academic evaluation committees have been increasingly receptive for using the number of published indexed articles, as well as citations, to evaluate the performance of scientists. It is, however, impossible to develop a stand-alone, objective numerical algorithm for the evaluation of academic activities, because any evaluation necessarily includes subjective preference statements. In a market, the market prices represent preference statements, but scientists work largely in a non-market context. I propose a numerical algorithm that serves to determine the distribution of reward money in Mexico's evaluation system, which uses relative prices of scientific goods and services as input. The relative prices would be determined by an evaluation committee. In this way, large evaluation systems (like Mexico's Sistema Nacional de Investigadores) could work semi-automatically, but not arbitrarily or superficially, to determine quantitatively the academic performance of scientists every few years. Data of 73 scientists from the Biology Institute of Mexico's National University are analyzed, and it is shown that the reward assignation and academic priorities depend heavily on those preferences. A maximum number of products or activities to be evaluated is recommended, to encourage quality over quantity.

  14. Comparative Study of Two Automatic Registration Algorithms

    NASA Astrophysics Data System (ADS)

    Grant, D.; Bethel, J.; Crawford, M.

    2013-10-01

    The Iterative Closest Point (ICP) algorithm is prevalent for the automatic fine registration of overlapping pairs of terrestrial laser scanning (TLS) data. This method along with its vast number of variants, obtains the least squares parameters that are necessary to align the TLS data by minimizing some distance metric between the scans. The ICP algorithm uses a "model-data" concept in which the scans obtain differential treatment in the registration process depending on whether they were assigned to be the "model" or "data". For each of the "data" points, corresponding points from the "model" are sought. Another concept of "symmetric correspondence" was proposed in the Point-to-Plane (P2P) algorithm, where both scans are treated equally in the registration process. The P2P method establishes correspondences on both scans and minimizes the point-to-plane distances between the scans by simultaneously considering the stochastic properties of both scans. This paper studies both the ICP and P2P algorithms in terms of their consistency in registration parameters for pairs of TLS data. The question being investigated in this paper is, should scan A be registered to scan B, will the parameters be the same if scan B were registered to scan A? Experiments were conducted with eight pairs of real TLS data which were registered by the two algorithms in the forward (scan A to scan B) and backward (scan B to scan A) modes and the results were compared. The P2P algorithm was found to be more consistent than the ICP algorithm. The differences in registration accuracy between the forward and backward modes were negligible when using the P2P algorithm (mean difference of 0.03 mm). However, the ICP had a mean difference of 4.26 mm. Each scan was also transformed by the forward and backward parameters of the two algorithms and the misclosure computed. The mean misclosure for the P2P algorithm was 0.80 mm while that for the ICP algorithm was 5.39 mm. The conclusion from this study is

  15. A Numerical Study of Feathering Instability

    NASA Astrophysics Data System (ADS)

    Lee, Wing-Kit; Wang, Hsiang-Hsu

    2016-06-01

    The stability of a spiral shock of self-gravitating, magnetized interstellar medium is studied by performing two-dimensional numerical simulations of a local patch of tight-winding spiral arm. As previously suggested by the linear studies, two types of instabilities are identified, namely, wiggle instability and feathering instability. The former instability occurs in the hydrodynamics limit and results in short wavelength perturbations. On the other hand, the feathering instability requires both self-gravitating and magnetic fields and results in wider structures.

  16. Numerical Study of Tip Vortex Flows

    NASA Technical Reports Server (NTRS)

    Dacles-Mariani, Jennifer; Hafez, Mohamed

    1998-01-01

    This paper presents an overview and summary of the many different research work related to tip vortex flows and wake/trailing vortices as applied to practical engineering problems. As a literature survey paper, it outlines relevant analytical, theoretical, experimental and computational study found in literature. It also discusses in brief some of the fundamental aspects of the physics and its complexities. An appendix is also included. The topics included in this paper are: 1) Analytical Vortices; 2) Experimental Studies; 3) Computational Studies; 4) Wake Vortex Control and Management; 5) Wake Modeling; 6) High-Lift Systems; 7) Issues in Numerical Studies; 8) Instabilities; 9) Related Topics; 10) Visualization Tools for Vertical Flows; 11) Further Work Needed; 12) Acknowledgements; 13) References; and 14) Appendix.

  17. A Numerical Climate Observing Network Design Study

    NASA Technical Reports Server (NTRS)

    Stammer, Detlef

    2003-01-01

    This project was concerned with three related questions of an optimal design of a climate observing system: 1. The spatial sampling characteristics required from an ARGO system. 2. The degree to which surface observations from ARGO can be used to calibrate and test satellite remote sensing observations of sea surface salinity (SSS) as it is anticipated now. 3. The more general design of an climate observing system as it is required in the near future for CLIVAR in the Atlantic. An important question in implementing an observing system is that of the sampling density required to observe climate-related variations in the ocean. For that purpose this project was concerned with the sampling requirements for the ARGO float system, but investigated also other elements of a climate observing system. As part of this project we studied the horizontal and vertical sampling characteristics of a global ARGO system which is required to make it fully complementary to altimeter data with the goal to capture climate related variations on large spatial scales (less thanAttachment: 1000 km). We addressed this question in the framework of a numerical model study in the North Atlantic with an 1/6 horizontal resolution. The advantage of a numerical design study is the knowledge of the full model state. Sampled by a synthetic float array, model results will therefore allow to test and improve existing deployment strategies with the goal to make the system as optimal and cost-efficient as possible. Attachment: "Optimal observations for variational data assimilation".

  18. Empirical Studies of the Value of Algorithm Animation in Algorithm Understanding

    DTIC Science & Technology

    1993-08-01

    A series of studies is presented using algorithm animation to teach computer algorithms . These studies are organized into three components: eliciting...lecture with experimenter-preprepared data sets. This work has implications for the design and use of animated algorithms in teaching computer algorithms and

  19. Numerical algorithms for highly oscillatory dynamic system based on commutator-free method

    NASA Astrophysics Data System (ADS)

    Li, Wencheng; Deng, Zichen; Zhang, Suying

    2007-04-01

    In the present paper, an efficiently improved modified Magnus integrator algorithm based on commutator-free method is proposed for the second-order dynamic systems with time-dependent high frequencies. Firstly, the second-order dynamic systems are transferred to the frame of reference by introducing new variable so that highly oscillatory behaviour inherited from the entries. Then the modified Magnus integrator method based on local linearization is appropriately designed for solving the above new form. And some optimized strategies for reducing the number of function evaluations and matrix operations are also suggested. Finally, several numerical examples for highly oscillatory dynamic systems, such as Airy equation, Bessel equation, Mathieu equation, are presented to demonstrate the validity and effectiveness of the proposed method.

  20. A numerical algorithm for optimal feedback gains in high dimensional LQR problems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Ito, K.

    1986-01-01

    A hybrid method for computing the feedback gains in linear quadratic regulator problems is proposed. The method, which combines the use of a Chandrasekhar type system with an iteration of the Newton-Kleinman form with variable acceleration parameter Smith schemes, is formulated so as to efficiently compute directly the feedback gains rather than solutions of an associated Riccati equation. The hybrid method is particularly appropriate when used with large dimensional systems such as those arising in approximating infinite dimensional (distributed parameter) control systems (e.g., those governed by delay-differential and partial differential equations). Computational advantage of the proposed algorithm over the standard eigenvector (Potter, Laub-Schur) based techniques are discussed and numerical evidence of the efficacy of our ideas presented.

  1. Analysis of the distribution of pitch angles in model galactic disks - Numerical methods and algorithms

    NASA Technical Reports Server (NTRS)

    Russell, William S.; Roberts, William W., Jr.

    1993-01-01

    An automated mathematical method capable of successfully isolating the many different features in prototype and observed spiral galaxies and of accurately measuring the pitch angles and lengths of these individual features is developed. The method is applied to analyze the evolution of specific features in a prototype galaxy exhibiting flocculent spiral structure. The mathematical-computational method was separated into two components. Initially, the galaxy was partitioned into dense regions constituting features using two different methods. The results obtained using these two partitioning algorithms were very similar, from which it is inferred that no numerical biasing was evident and that capturing of the features was consistent. Standard least-squares methods underestimated the true slope of the cloud distribution and were incapable of approximating an orientation of 45 deg. The problems were overcome by introducing a superior fit least-squares method, developed with the intention of calculating true orientation rather than a regression line.

  2. International Symposium on Computational Electronics—Physical Modeling, Mathematical Theory, and Numerical Algorithm

    NASA Astrophysics Data System (ADS)

    Li, Yiming

    2007-12-01

    This symposium is an open forum for discussion on the current trends and future directions of physical modeling, mathematical theory, and numerical algorithm in electrical and electronic engineering. The goal is for computational scientists and engineers, computer scientists, applied mathematicians, physicists, and researchers to present their recent advances and exchange experience. We welcome contributions from researchers of academia and industry. All papers to be presented in this symposium have carefully been reviewed and selected. They include semiconductor devices, circuit theory, statistical signal processing, design optimization, network design, intelligent transportation system, and wireless communication. Welcome to this interdisciplinary symposium in International Conference of Computational Methods in Sciences and Engineering (ICCMSE 2007). Look forward to seeing you in Corfu, Greece!

  3. Physical formulation and numerical algorithm for simulating N immiscible incompressible fluids involving general order parameters

    SciTech Connect

    Dong, S.

    2015-02-15

    We present a family of physical formulations, and a numerical algorithm, based on a class of general order parameters for simulating the motion of a mixture of N (N⩾2) immiscible incompressible fluids with given densities, dynamic viscosities, and pairwise surface tensions. The N-phase formulations stem from a phase field model we developed in a recent work based on the conservations of mass/momentum, and the second law of thermodynamics. The introduction of general order parameters leads to an extremely strongly-coupled system of (N−1) phase field equations. On the other hand, the general form enables one to compute the N-phase mixing energy density coefficients in an explicit fashion in terms of the pairwise surface tensions. We show that the increased complexity in the form of the phase field equations associated with general order parameters in actuality does not cause essential computational difficulties. Our numerical algorithm reformulates the (N−1) strongly-coupled phase field equations for general order parameters into 2(N−1) Helmholtz-type equations that are completely de-coupled from one another. This leads to a computational complexity comparable to that for the simplified phase field equations associated with certain special choice of the order parameters. We demonstrate the capabilities of the method developed herein using several test problems involving multiple fluid phases and large contrasts in densities and viscosities among the multitude of fluids. In particular, by comparing simulation results with the Langmuir–de Gennes theory of floating liquid lenses we show that the method using general order parameters produces physically accurate results for multiple fluid phases.

  4. Numerical study of acoustic modes in ducted shear flow

    NASA Astrophysics Data System (ADS)

    Vilenski, Gregory G.; Rienstra, Sjoerd W.

    2007-11-01

    The propagation of small-amplitude modes in an inviscid but sheared mean flow inside a duct is studied numerically. For isentropic flow in a circular duct with zero swirl and constant mean flow density the pressure modes are described in terms of the eigenvalue problem for the Pridmore-Brown equation. Since for sufficiently high Helmholtz and wavenumbers, which are of great interest for applications, the field equation is inherently stiff, special care is taken to insure the stability of the numerical algorithm designed to tackle this problem. The accuracy of the method is checked against the well-known analytical solution for uniform flow. The numerical method is shown to be consistent with the analytical predictions at least for Helmholtz numbers up to 100 and circumferential wavenumbers as large as 50, typical Mach numbers being up to 0.65. In order to gain further insight into the possible structure of the modal solutions and to obtain an independent verification of the robustness of the numerical scheme, comparison to the asymptotic solution of the problem based on the WKB method is performed. The asymptotic solution is also used as a benchmark for computations with high Helmholtz numbers, where numerical solutions of other authors are not available. The bulk of the analysis concentrates on the influence of the wall lining. The proposed numerical procedure is adapted in order to include Ingard-Myers boundary conditions. In parallel with this, the WKB solution is used to check the numerical predictions of the typical behaviour of the axial wavenumber in the complex plane, when the wall impedance varies in the complex plane. Numerical analysis of the problem with zero mean flow at the wall and acoustic lining shows that the use of Ingard-Myers condition in combination with an appropriate slip-stream approximation instead of the actual no-slip mean flow profile gives valid results in the limit of vanishing boundary-layer thickness, although the boundary layer

  5. Numerical Arc Segmentation Algorithm for a Radio Conference-NASARC, Version 2.0: User's Manual

    NASA Technical Reports Server (NTRS)

    Whyte, Wayne A., Jr.; Heyward, Ann O.; Ponchak, Denise S.; Spence, Rodney L.; Zuzek, John E.

    1987-01-01

    The information contained in the NASARC (Version 2.0) Technical Manual (NASA TM-100160) and the NASARC (Version 2.0) User's Manual (NASA TM-100161) relates to the state of the Numerical Arc Segmentation Algorithm for a Radio Conference (NASARC) software development through October 16, 1987. The technical manual describes the NASARC concept and the algorithms which are used to implement it. The User's Manual provides information on computer system considerations, installation instructions, description of input files, and program operation instructions. Significant revisions have been incorporated in the Version 2.0 software over prior versions. These revisions have enhanced the modeling capabilities of the NASARC procedure while greatly reducing the computer run time and memory requirements. Array dimensions within the software have been structured to fit into the currently available 6-megabyte memory capacity of the International Frequency Registration Board (IFRB) computer facility. A piecewise approach to predetermined arc generation in NASARC (Version 2.0) allows worldwide scenarios to be accommodated within these memory constraints while at the same time reducing computer run time.

  6. Numerical arc segmentation algorithm for a radio conference-NASARC (version 2.0) technical manual

    NASA Technical Reports Server (NTRS)

    Whyte, Wayne A., Jr.; Heyward, Ann O.; Ponchak, Denise S.; Spence, Rodney L.; Zuzek, John E.

    1987-01-01

    The information contained in the NASARC (Version 2.0) Technical Manual (NASA TM-100160) and NASARC (Version 2.0) User's Manual (NASA TM-100161) relates to the state of NASARC software development through October 16, 1987. The Technical Manual describes the Numerical Arc Segmentation Algorithm for a Radio Conference (NASARC) concept and the algorithms used to implement the concept. The User's Manual provides information on computer system considerations, installation instructions, description of input files, and program operating instructions. Significant revisions have been incorporated in the Version 2.0 software. These revisions have enhanced the modeling capabilities of the NASARC procedure while greatly reducing the computer run time and memory requirements. Array dimensions within the software have been structured to fit within the currently available 6-megabyte memory capacity of the International Frequency Registration Board (IFRB) computer facility. A piecewise approach to predetermined arc generation in NASARC (Version 2.0) allows worldwide scenarios to be accommodated within these memory constraints while at the same time effecting an overall reduction in computer run time.

  7. Numerical Arc Segmentation Algorithm for a Radio Conference-NASARC (version 4.0) technical manual

    NASA Technical Reports Server (NTRS)

    Whyte, Wayne A., Jr.; Heyward, Ann O.; Ponchak, Denise S.; Spence, Rodney L.; Zuzek, John E.

    1988-01-01

    The information contained in the NASARC (Version 4.0) Technical Manual and NASARC (Version 4.0) User's Manual relates to the Numerical Arc Segmentation Algorithm for a Radio Conference (NASARC) software development through November 1, 1988. The Technical Manual describes the NASARC concept and the algorithms used to implement the concept. The User's Manual provides information on computer system considerations, installation instructions, description of input files, and program operation instructions. Significant revisions were incorporated in the Version 4.0 software over prior versions. These revisions have further enhanced the modeling capabilities of the NASARC procedure and provide improved arrangements of predetermined arcs within the geostationary orbits. Array dimensions within the software were structured to fit within the currently available 12 megabyte memory capacity of the International Frequency Registration Board (IFRB) computer facility. A piecewise approach to predetermined arc generation in NASARC (Version 4.0) allows worldwide planning problem scenarios to be accommodated within computer run time and memory constraints with enhanced likelihood and ease of solution.

  8. Numerical Arc Segmentation Algorithm for a Radio Conference (NASARC), version 4.0: User's manual

    NASA Technical Reports Server (NTRS)

    Whyte, Wayne A., Jr.; Heyward, Ann O.; Ponchak, Denise S.; Spence, Rodney L.; Zuzek, John E.

    1988-01-01

    The information in the NASARC (Version 4.0) Technical Manual (NASA-TM-101453) and NASARC (Version 4.0) User's Manual (NASA-TM-101454) relates to the state of Numerical Arc Segmentation Algorithm for a Radio Conference (NASARC) software development through November 1, 1988. The Technical Manual describes the NASARC concept and the algorithms used to implement the concept. The User's Manual provides information on computer system considerations, installation instructions, description of input files, and program operation instructions. Significant revisions were incorporated in the Version 4.0 software over prior versions. These revisions have further enhanced the modeling capabilities of the NASARC procedure and provide improved arrangements of predetermined arcs within the geostationary orbit. Array dimensions within the software were structured to fit within the currently available 12-megabyte memory capacity of the International Frequency Registration Board (IFRB) computer facility. A piecewise approach to predetermined arc generation in NASARC (Version 4.) allows worldwide planning problem scenarios to be accommodated within computer run time and memory constraints with enhanced likelihood and ease of solution.

  9. Numerical aerodynamic simulation facility feasibility study

    NASA Technical Reports Server (NTRS)

    1979-01-01

    There were three major issues examined in the feasibility study. First, the ability of the proposed system architecture to support the anticipated workload was evaluated. Second, the throughput of the computational engine (the flow model processor) was studied using real application programs. Third, the availability reliability, and maintainability of the system were modeled. The evaluations were based on the baseline systems. The results show that the implementation of the Numerical Aerodynamic Simulation Facility, in the form considered, would indeed be a feasible project with an acceptable level of risk. The technology required (both hardware and software) either already exists or, in the case of a few parts, is expected to be announced this year. Facets of the work described include the hardware configuration, software, user language, and fault tolerance.

  10. An Implicit Algorithm for the Numerical Simulation of Shape-Memory Alloys

    SciTech Connect

    Becker, R; Stolken, J; Jannetti, C; Bassani, J

    2003-10-16

    Shape-memory alloys (SMA) have the potential to be used in a variety of interesting applications due to their unique properties of pseudoelasticity and the shape-memory effect. However, in order to design SMA devices efficiently, a physics-based constitutive model is required to accurately simulate the behavior of shape-memory alloys. The scope of this work is to extend the numerical capabilities of the SMA constitutive model developed by Jannetti et. al. (2003), to handle large-scale polycrystalline simulations. The constitutive model is implemented within the finite-element software ABAQUS/Standard using a user defined material subroutine, or UMAT. To improve the efficiency of the numerical simulations, so that polycrystalline specimens of shape-memory alloys can be modeled, a fully implicit algorithm has been implemented to integrate the constitutive equations. Using an implicit integration scheme increases the efficiency of the UMAT over the previously implemented explicit integration method by a factor of more than 100 for single crystal simulations.

  11. Bayesian reconstruction of the cosmological large-scale structure: methodology, inverse algorithms and numerical optimization

    NASA Astrophysics Data System (ADS)

    Kitaura, F. S.; Enßlin, T. A.

    2008-09-01

    We address the inverse problem of cosmic large-scale structure reconstruction from a Bayesian perspective. For a linear data model, a number of known and novel reconstruction schemes, which differ in terms of the underlying signal prior, data likelihood and numerical inverse extraregularization schemes are derived and classified. The Bayesian methodology presented in this paper tries to unify and extend the following methods: Wiener filtering, Tikhonov regularization, ridge regression, maximum entropy and inverse regularization techniques. The inverse techniques considered here are the asymptotic regularization, the Jacobi, Steepest Descent, Newton-Raphson, Landweber-Fridman and both linear and non-linear Krylov methods based on Fletcher-Reeves, Polak-Ribière and Hestenes-Stiefel conjugate gradients. The structures of the up-to-date highest performing algorithms are presented, based on an operator scheme, which permits one to exploit the power of fast Fourier transforms. Using such an implementation of the generalized Wiener filter in the novel ARGO software package, the different numerical schemes are benchmarked with one-, two- and three-dimensional problems including structured white and Poissonian noise, data windowing and blurring effects. A novel numerical Krylov scheme is shown to be superior in terms of performance and fidelity. These fast inverse methods ultimately will enable the application of sampling techniques to explore complex joint posterior distributions. We outline how the space of the dark matter density field, the peculiar velocity field and the power spectrum can jointly be investigated by a Gibbs-sampling process. Such a method can be applied for the redshift distortions correction of the observed galaxies and for time-reversal reconstructions of the initial density field.

  12. Strong Coupling Unquenched QED. II --- Numerical Study ---

    NASA Astrophysics Data System (ADS)

    Kondo, K.; Nakatani, H.

    1992-10-01

    Dynamical chiral-symmetry-breaking in massless QED with N fermion species is studied through the numerical solution of the coupled Schwinger-Dyson (SD) equation. We have taken into account the fermion loop effect (at the 1-loop level) in the SD equation for the photon propagator through the vacuum polarization function Π (k2), with and without the standard approximation: Π((p-q)2) ≍ Π(max(p2, q2)). We have found that the scaling law is unchanged by this approximation and that, irrespective of the fermion flavor N, the dynamical fermion mass and chiral order parameter obey the same mean-field type scaling, while the quenched planar QED without the vacuum polarization (N = 0 limit) obeys the Miransky scaling with the essential singularity.

  13. A Nested Genetic Algorithm for the Numerical Solution of Non-Linear Coupled Equations in Water Quality Modeling

    NASA Astrophysics Data System (ADS)

    García, Hermes A.; Guerrero-Bolaño, Francisco J.; Obregón-Neira, Nelson

    2010-05-01

    Due to both mathematical tractability and efficiency on computational resources, it is very common to find in the realm of numerical modeling in hydro-engineering that regular linearization techniques have been applied to nonlinear partial differential equations properly obtained in environmental flow studies. Sometimes this simplification is also made along with omission of nonlinear terms involved in such equations which in turn diminishes the performance of any implemented approach. This is the case for example, for contaminant transport modeling in streams. Nowadays, a traditional and one of the most common used water quality model such as QUAL2k, preserves its original algorithm, which omits nonlinear terms through linearization techniques, in spite of the continuous algorithmic development and computer power enhancement. For that reason, the main objective of this research was to generate a flexible tool for non-linear water quality modeling. The solution implemented here was based on two genetic algorithms, used in a nested way in order to find two different types of solutions sets: the first set is composed by the concentrations of the physical-chemical variables used in the modeling approach (16 variables), which satisfies the non-linear equation system. The second set, is the typical solution of the inverse problem, the parameters and constants values for the model when it is applied to a particular stream. From a total of sixteen (16) variables, thirteen (13) was modeled by using non-linear coupled equation systems and three (3) was modeled in an independent way. The model used here had a requirement of fifty (50) parameters. The nested genetic algorithm used for the numerical solution of a non-linear equation system proved to serve as a flexible tool to handle with the intrinsic non-linearity that emerges from the interactions occurring between multiple variables involved in water quality studies. However because there is a strong data limitation in

  14. Artificial algae algorithm with multi-light source for numerical optimization and applications.

    PubMed

    Uymaz, Sait Ali; Tezel, Gulay; Yel, Esra

    2015-12-01

    Artificial algae algorithm (AAA), which is one of the recently developed bio-inspired optimization algorithms, has been introduced by inspiration from living behaviors of microalgae. In AAA, the modification of the algal colonies, i.e. exploration and exploitation is provided with a helical movement. In this study, AAA was modified by implementing multi-light source movement and artificial algae algorithm with multi-light source (AAAML) version was established. In this new version, we propose the selection of a different light source for each dimension that is modified with the helical movement for stronger balance between exploration and exploitation. These light sources have been selected by tournament method and each light source are different from each other. This gives different solutions in the search space. The best of these three light sources provides orientation to the better region of search space. Furthermore, the diversity in the source space is obtained with the worst light source. In addition, the other light source improves the balance. To indicate the performance of AAA with new proposed operators (AAAML), experiments were performed on two different sets. Firstly, the performance of AAA and AAAML was evaluated on the IEEE-CEC'13 benchmark set. The second set was real-world optimization problems used in the IEEE-CEC'11. To verify the effectiveness and efficiency of the proposed algorithm, the results were compared with other state-of-the-art hybrid and modified algorithms. Experimental results showed that the multi-light source movement (MLS) increases the success of the AAA.

  15. Numerical algorithms based on Galerkin methods for the modeling of reactive interfaces in photoelectrochemical (PEC) solar cells

    NASA Astrophysics Data System (ADS)

    Harmon, Michael; Gamba, Irene M.; Ren, Kui

    2016-12-01

    This work concerns the numerical solution of a coupled system of self-consistent reaction-drift-diffusion-Poisson equations that describes the macroscopic dynamics of charge transport in photoelectrochemical (PEC) solar cells with reactive semiconductor and electrolyte interfaces. We present three numerical algorithms, mainly based on a mixed finite element and a local discontinuous Galerkin method for spatial discretization, with carefully chosen numerical fluxes, and implicit-explicit time stepping techniques, for solving the time-dependent nonlinear systems of partial differential equations. We perform computational simulations under various model parameters to demonstrate the performance of the proposed numerical algorithms as well as the impact of these parameters on the solution to the model.

  16. Numerical Study of Suspension Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Farrokhpanah, Amirsaman; Coyle, Thomas W.; Mostaghimi, Javad

    2017-01-01

    A numerical study of suspension plasma spraying is presented in the current work. The liquid suspension jet is replaced with a train of droplets containing the suspension particles injected into the plasma flow. Atomization, evaporation, and melting of different components are considered for droplets and particles as they travel toward the substrate. Effect of different parameters on particle conditions during flight and upon impact on the substrate is investigated. Initially, influence of the torch operating conditions such as inlet flow rate and power is studied. Additionally, effect of injector parameters like injection location, flow rate, and angle is examined. The model used in the current study takes high-temperature gradients and non-continuum effects into account. Moreover, the important effect of change in physical properties of suspension droplets as a result of evaporation is included in the model. These mainly include variations in heat transfer properties and viscosity. Utilizing this improved model, several test cases have been considered to better evaluate the effect of different parameters on the quality of particles during flight and upon impact on the substrate.

  17. Unquenched Studies Using the Truncated Determinant Algorithm

    SciTech Connect

    A. Duncan, E. Eichten and H. Thacker

    2001-11-29

    A truncated determinant algorithm is used to study the physical effects of the quark eigenmodes associated with eigenvalues below 420 MeV. This initial high statistics study focuses on coarse (6{sup 4}) lattices (with O(a{sup 2}) improved gauge action), light internal quark masses and large physical volumes. Three features of full QCD are examined: topological charge distributions, string breaking as observed in the static energy and the eta prime mass.

  18. A numerical study of thin flame representations

    SciTech Connect

    Rotman, D.A.; Pindera, M.Z.

    1989-08-11

    In studies of reacting flows, the flame may be viewed as a moving discontinuity endowed with certain properties; notably, it acts as a source of velocity and vorticity. Asymptotic analysis shows this to be justified provided that the flame curvature is small compared to the flame thickness. Such an approach is useful when one is interested in the hydrodynamic effects of the flame on the surrounding flowfield. In numerical models of this kind it is customary to treat the discontinuity as a collection of discrete velocity blobs. In this study, we show that the velocities associated with such a representation can be very non-smooth, particularly very near to the flame surface. As an alternative, we propose the use of a finite line source as the basic flame element. Comparisons of the two flame representations are made for several simple test cases as well as for a flame propagating through an enclosure forming the tulip shape. The results show that the use of line sources eliminates spurious fluctuations in nearfield velocities thus allowing for a more accurate calculation of flame propagation and flame-flowfield interactions. 7 refs., 15 figs.

  19. Belief network algorithms: A study of performance

    SciTech Connect

    Jitnah, N.

    1996-12-31

    This abstract gives an overview of the work. We present a survey of Belief Network algorithms and propose a domain characterization system to be used as a basis for algorithm comparison and for predicting algorithm performance.

  20. The numerical study of first order wetting transition with two defect lines

    NASA Astrophysics Data System (ADS)

    Wu, X. T.

    2016-09-01

    The first order wetting transition with two defect lines, one near a wall and another at a distance N1, in the d = 2 Ising model is studied by the bond propagation algorithm. The numerical calculations are carried out on very large lattices with size up to 1602 × 160. The finite size effects of the first order transition in that model are discussed. The magnetization profile is also calculated. The numerical results agree with the exact results very well.

  1. Numerical Study of a Convective Turbulence Encounter

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Hamilton, David W.; Bowles, Roland L.

    2002-01-01

    A numerical simulation of a convective turbulence event is investigated and compared with observational data. The specific case was encountered during one of NASA's flight tests and was characterized by severe turbulence. The event was associated with overshooting convective turrets that contained low to moderate radar reflectivity. Model comparisons with observations are quite favorable. Turbulence hazard metrics are proposed and applied to the numerical data set. Issues such as adequate grid size are examined.

  2. Numerical arc segmentation algorithm for a radio conference: A software tool for communication satellite systems planning

    NASA Technical Reports Server (NTRS)

    Whyte, W. A.; Heyward, A. O.; Ponchak, D. S.; Spence, R. L.; Zuzek, J. E.

    1988-01-01

    The Numerical Arc Segmentation Algorithm for a Radio Conference (NASARC) provides a method of generating predetermined arc segments for use in the development of an allotment planning procedure to be carried out at the 1988 World Administrative Radio Conference (WARC) on the Use of the Geostationary Satellite Orbit and the Planning of Space Services Utilizing It. Through careful selection of the predetermined arc (PDA) for each administration, flexibility can be increased in terms of choice of system technical characteristics and specific orbit location while reducing the need for coordination among administrations. The NASARC software determines pairwise compatibility between all possible service areas at discrete arc locations. NASARC then exhaustively enumerates groups of administrations whose satellites can be closely located in orbit, and finds the arc segment over which each such compatible group exists. From the set of all possible compatible groupings, groups and their associated arc segments are selected using a heuristic procedure such that a PDA is identified for each administration. Various aspects of the NASARC concept and how the software accomplishes specific features of allotment planning are discussed.

  3. Numerical nonwavefront-guided algorithm for expansion or recentration of the optical zone

    NASA Astrophysics Data System (ADS)

    Arba Mosquera, Samuel; Verma, Shwetabh

    2014-08-01

    Complications may arise due to the decentered ablations during refractive surgery, resulting from human or mechanical errors. Decentration may cause over-/under-corrections, with patients complaining about seeing glares and halos after the procedure. Customized wavefront-guided treatments are often used to design retreatment procedures. However, due to the limitations of wavefront sensors in precisely measuring very large aberrations, some extreme cases may suffer when retreated with wavefront-guided treatments. We propose a simple and inexpensive numerical (nonwavefront-guided) algorithm to recenter the optical zone (OZ) and to correct the refractive error with minimal tissue removal. Due to its tissue-saving capabilities, this method can benefit patients with critical residual corneal thickness. Based on the reconstruction of ablation achieved in the first surgical procedure, we calculate a target ablation (by manipulating the achieved OZ) with adequate centration and an OZ sufficient enough to envelope the achieved ablation. The net ablation map for the retreatment procedure is calculated from the achieved and target ablations and is suitable to expand, recenter, and modulate the lower-order refractive components in a retreatment procedure. The results of our simulations suggest minimal tissue removal with OZ centration and expansion. Enlarging the OZ implies correcting spherical aberrations, whereas inducing centration implies correcting coma. This method shows the potential to improve visual outcomes in extreme cases of retreatment, possibly serving as an uncomplicated and inexpensive alternative to wavefront-guided retreatments.

  4. Numerical arc segmentation algorithm for a radio conference: A software tool for communication satellite systems planning

    NASA Astrophysics Data System (ADS)

    Whyte, W. A.; Heyward, A. O.; Ponchak, D. S.; Spence, R. L.; Zuzek, J. E.

    The Numerical Arc Segmentation Algorithm for a Radio Conference (NASARC) provides a method of generating predetermined arc segments for use in the development of an allotment planning procedure to be carried out at the 1988 World Administrative Radio Conference (WARC) on the Use of the Geostationary Satellite Orbit and the Planning of Space Services Utilizing It. Through careful selection of the predetermined arc (PDA) for each administration, flexibility can be increased in terms of choice of system technical characteristics and specific orbit location while reducing the need for coordination among administrations. The NASARC software determines pairwise compatibility between all possible service areas at discrete arc locations. NASARC then exhaustively enumerates groups of administrations whose satellites can be closely located in orbit, and finds the arc segment over which each such compatible group exists. From the set of all possible compatible groupings, groups and their associated arc segments are selected using a heuristic procedure such that a PDA is identified for each administration. Various aspects of the NASARC concept and how the software accomplishes specific features of allotment planning are discussed.

  5. Using Linear Algebra to Introduce Computer Algebra, Numerical Analysis, Data Structures and Algorithms (and To Teach Linear Algebra, Too).

    ERIC Educational Resources Information Center

    Gonzalez-Vega, Laureano

    1999-01-01

    Using a Computer Algebra System (CAS) to help with the teaching of an elementary course in linear algebra can be one way to introduce computer algebra, numerical analysis, data structures, and algorithms. Highlights the advantages and disadvantages of this approach to the teaching of linear algebra. (Author/MM)

  6. Elasto-mammography: Theory, Algorithm, and Phantom Study

    PubMed Central

    Liu, Y.; Sun, L. Z.; Wang, G.; Fajardo, L. L.

    2006-01-01

    A new imaging modality framework, called elasto-mammography, is proposed to generate the elastograms of breast tissues based on conventional X-ray mammography. The displacement information is extracted from mammography projections before and after breast compression. Incorporating the displacement measurement, an elastography reconstruction algorithm is specifically developed to estimate the elastic moduli of heterogeneous breast tissues. Case studies with numerical breast phantoms are conducted to demonstrate the capability of the proposed elasto-mammography. Effects of noise with measurement, geometric mismatch, and elastic contrast ratio are evaluated in the numerical simulations. It is shown that the proposed methodology is stable and robust for characterization of the elastic moduli of breast tissues from the projective displacement measurement. PMID:23165036

  7. A parallel hybrid numerical algorithm for simulating gas flow and gas discharge of an atmospheric-pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Lin, K.-M.; Hu, M.-H.; Hung, C.-T.; Wu, J.-S.; Hwang, F.-N.; Chen, Y.-S.; Cheng, G.

    2012-12-01

    Development of a hybrid numerical algorithm which couples weakly with the gas flow model (GFM) and the plasma fluid model (PFM) for simulating an atmospheric-pressure plasma jet (APPJ) and its acceleration by two approaches is presented. The weak coupling between gas flow and discharge is introduced by transferring between the results obtained from the steady-state solution of the GFM and cycle-averaged solution of the PFM respectively. Approaches of reducing the overall runtime include parallel computing of the GFM and the PFM solvers, and employing a temporal multi-scale method (TMSM) for PFM. Parallel computing of both solvers is realized using the domain decomposition method with the message passing interface (MPI) on distributed-memory machines. The TMSM considers only chemical reactions by ignoring the transport terms when integrating temporally the continuity equations of heavy species at each time step, and then the transport terms are restored only at an interval of time marching steps. The total reduction of runtime is 47% by applying the TMSM to the APPJ example presented in this study. Application of the proposed hybrid algorithm is demonstrated by simulating a parallel-plate helium APPJ impinging onto a substrate, which the cycle-averaged properties of the 200th cycle are presented. The distribution patterns of species densities are strongly correlated by the background gas flow pattern, which shows that consideration of gas flow in APPJ simulations is critical.

  8. Numerical study of a microscopic artificial swimmer

    NASA Astrophysics Data System (ADS)

    Gauger, Erik; Stark, Holger

    2006-08-01

    We present a detailed numerical study of a microscopic artificial swimmer realized recently by Dreyfus in experiments [Dreyfus , Nature 437, 862 (2005)]. It consists of an elastic filament composed of superparamagnetic particles that are linked together by DNA strands. Attached to a load particle, the resulting swimmer is actuated by an oscillating external magnetic field so that it performs a nonreciprocal motion in order to move forward. We model the superparamagnetic filament by a bead-spring configuration that resists bending like a rigid rod and whose beads experience friction with the surrounding fluid and hydrodynamic interactions with each other. We show that, aside from finite-size effects, its dynamics is governed by the dimensionless sperm number, the magnitude of the magnetic field, and the angular amplitude of the field’s oscillating direction. Then we study the mean velocity and the efficiency of the swimmer as a function of these parameters and the size of the load particle. In particular, we clarify that the real velocity of the swimmer is influenced by two main factors, namely the shape of the beating filament (determined by the sperm number and the magnetic-field strength) and the oscillation frequency. Furthermore, the load size influences the performance of the swimmer and has to be chosen as a compromise between the largest swimming velocity and the best efficiency. Finally, we demonstrate that the direction of the swimming velocity changes in a symmetry-breaking transition when the angular amplitude of the field’s oscillating direction is increased, in agreement with experiments.

  9. Numerical Study on Mixed-mode Fracture in Reinforced Concrete

    SciTech Connect

    Yu, Rena C.; Saucedo, Luis; Ruiz, Gonzalo

    2010-05-21

    The object of this work is to model the propagation of fracture in mixed-mode in lightly reinforced concrete beams. When a notched beam does not have enough shear reinforcement, fracture can initiate and propagate unstably and lead to failure through diagonal tension. In order to study this phenomenon numerically, a model capable of dealing with both static and dynamic crack propagation as well as the natural transition of those two regimes is necessary. We adopt a cohesive model for concrete fracture and an interface model for the deterioration between concrete and steel re-bar, both combined with an insertion algorithm. The static process is solved by dynamic relaxation (DR) method together with a modified technique to enhance convergence rate. The same DR method is used to detect a dynamic process and switch to a dynamic calculation. The numerically obtained load-displacement curves, load-CMOD curves and crack patterns fit reasonably well with their experimental counterparts, having in mind that we fed the calculations only with parameters measured experimentally.

  10. Numerical study of Taylor bubbles with adaptive unstructured meshes

    NASA Astrophysics Data System (ADS)

    Xie, Zhihua; Pavlidis, Dimitrios; Percival, James; Pain, Chris; Matar, Omar; Hasan, Abbas; Azzopardi, Barry

    2014-11-01

    The Taylor bubble is a single long bubble which nearly fills the entire cross section of a liquid-filled circular tube. This type of bubble flow regime often occurs in gas-liquid slug flows in many industrial applications, including oil-and-gas production, chemical and nuclear reactors, and heat exchangers. The objective of this study is to investigate the fluid dynamics of Taylor bubbles rising in a vertical pipe filled with oils of extremely high viscosity (mimicking the ``heavy oils'' found in the oil-and-gas industry). A modelling and simulation framework is presented here which can modify and adapt anisotropic unstructured meshes to better represent the underlying physics of bubble rise and reduce the computational effort without sacrificing accuracy. The numerical framework consists of a mixed control-volume and finite-element formulation, a ``volume of fluid''-type method for the interface capturing based on a compressive control volume advection method, and a force-balanced algorithm for the surface tension implementation. Numerical examples of some benchmark tests and the dynamics of Taylor bubbles are presented to show the capability of this method. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  11. An Adaptive Numeric Predictor-corrector Guidance Algorithm for Atmospheric Entry Vehicles. M.S. Thesis - MIT, Cambridge

    NASA Technical Reports Server (NTRS)

    Spratlin, Kenneth Milton

    1987-01-01

    An adaptive numeric predictor-corrector guidance is developed for atmospheric entry vehicles which utilize lift to achieve maximum footprint capability. Applicability of the guidance design to vehicles with a wide range of performance capabilities is desired so as to reduce the need for algorithm redesign with each new vehicle. Adaptability is desired to minimize mission-specific analysis and planning. The guidance algorithm motivation and design are presented. Performance is assessed for application of the algorithm to the NASA Entry Research Vehicle (ERV). The dispersions the guidance must be designed to handle are presented. The achievable operational footprint for expected worst-case dispersions is presented. The algorithm performs excellently for the expected dispersions and captures most of the achievable footprint.

  12. Numerical and Analytic Studies of Random-Walk Models.

    NASA Astrophysics Data System (ADS)

    Li, Bin

    We begin by recapitulating the universality approach to problems associated with critical systems, and discussing the role that random-walk models play in the study of phase transitions and critical phenomena. As our first numerical simulation project, we perform high-precision Monte Carlo calculations for the exponents of the intersection probability of pairs and triplets of ordinary random walks in 2 dimensions, in order to test the conformal-invariance theory predictions. Our numerical results strongly support the theory. Our second numerical project aims to test the hyperscaling relation dnu = 2 Delta_4-gamma for self-avoiding walks in 2 and 3 dimensions. We apply the pivot method to generate pairs of self-avoiding walks, and then for each pair, using the Karp-Luby algorithm, perform an inner -loop Monte Carlo calculation of the number of different translates of one walk that makes at least one intersection with the other. Applying a least-squares fit to estimate the exponents, we have obtained strong numerical evidence that the hyperscaling relation is true in 3 dimensions. Our great amount of data for walks of unprecedented length(up to 80000 steps), yield a updated value for the end-to-end distance and radius of gyration exponent nu = 0.588 +/- 0.001 (95% confidence limit), which comes out in good agreement with the renormalization -group prediction. In an analytic study of random-walk models, we introduce multi-colored random-walk models and generalize the Symanzik and B.F.S. random-walk representations to the multi-colored case. We prove that the zero-component lambdavarphi^2psi^2 theory can be represented by a two-color mutually -repelling random-walk model, and it becomes the mutually -avoiding walk model in the limit lambda to infty. However, our main concern and major break-through lies in the study of the two-point correlation function for the lambda varphi^2psi^2 theory with N > 0 components. By representing it as a two-color random-walk expansion

  13. Numerical Studies of Non-Exponential Decay of Wavefunctions

    NASA Astrophysics Data System (ADS)

    Vermedahl, Jon; Petridis, Athanasios; Luban, Marshall; Staunton, Lawrence

    2002-04-01

    We use the staggered-leap-frog algorithm to numerically solve the time-dependent Schrödinger equation. This algorithm is particularly accurate and stable as demonstrated in a number of cases whose solutions are analytically known. Deviations from exponential decay have been established for short times for a wavefunction initially set within finite depth potential wells. The survival probability has been fit with analytical functions that reproduce exponential decay at long times. Various time scales characterizing the decay are thus extracted.

  14. Numerical Roll Reversal Predictor Corrector Aerocapture and Precision Landing Guidance Algorithms for the Mars Surveyor Program 2001 Missions

    NASA Technical Reports Server (NTRS)

    Powell, Richard W.

    1998-01-01

    This paper describes the development and evaluation of a numerical roll reversal predictor-corrector guidance algorithm for the atmospheric flight portion of the Mars Surveyor Program 2001 Orbiter and Lander missions. The Lander mission utilizes direct entry and has a demanding requirement to deploy its parachute within 10 km of the target deployment point. The Orbiter mission utilizes aerocapture to achieve a precise captured orbit with a single atmospheric pass. Detailed descriptions of these predictor-corrector algorithms are given. Also, results of three and six degree-of-freedom Monte Carlo simulations which include navigation, aerodynamics, mass properties and atmospheric density uncertainties are presented.

  15. An efficient algorithm for numerical computations of continuous densities of states

    NASA Astrophysics Data System (ADS)

    Langfeld, K.; Lucini, B.; Pellegrini, R.; Rago, A.

    2016-06-01

    In Wang-Landau type algorithms, Monte-Carlo updates are performed with respect to the density of states, which is iteratively refined during simulations. The partition function and thermodynamic observables are then obtained by standard integration. In this work, our recently introduced method in this class (the LLR approach) is analysed and further developed. Our approach is a histogram free method particularly suited for systems with continuous degrees of freedom giving rise to a continuum density of states, as it is commonly found in lattice gauge theories and in some statistical mechanics systems. We show that the method possesses an exponential error suppression that allows us to estimate the density of states over several orders of magnitude with nearly constant relative precision. We explain how ergodicity issues can be avoided and how expectation values of arbitrary observables can be obtained within this framework. We then demonstrate the method using compact U(1) lattice gauge theory as a show case. A thorough study of the algorithm parameter dependence of the results is performed and compared with the analytically expected behaviour. We obtain high precision values for the critical coupling for the phase transition and for the peak value of the specific heat for lattice sizes ranging from 8^4 to 20^4. Our results perfectly agree with the reference values reported in the literature, which covers lattice sizes up to 18^4. Robust results for the 20^4 volume are obtained for the first time. This latter investigation, which, due to strong metastabilities developed at the pseudo-critical coupling of the system, so far has been out of reach even on supercomputers with importance sampling approaches, has been performed to high accuracy with modest computational resources. This shows the potential of the method for studies of first order phase transitions. Other situations where the method is expected to be superior to importance sampling techniques are pointed

  16. Superradiance from hydrodynamic vortices: A numerical study

    SciTech Connect

    Federici, F.; Tosi, M. P.; Cherubini, C.; Succi, S.

    2006-03-15

    The scattering of sound-wave perturbations from vortex excitations in hydrodynamic systems with typical Bose-Einstein-condensate (BEC) parameters is investigated by numerical integration of the associated Klein-Gordon equation. The simulations indicate that at sufficiently high angular speeds, in the perturbative limit where back-reaction effects can be neglected, sound wave packets can extract a sizable fraction of the vortex energy through a mechanism of superradiant scattering. It is conjectured that this superradiant regime may be detectable in BEC experiments.

  17. Numerical Studies of Impurities in Fusion Plasmas

    DOE R&D Accomplishments Database

    Hulse, R. A.

    1982-09-01

    The coupled partial differential equations used to describe the behavior of impurity ions in magnetically confined controlled fusion plasmas require numerical solution for cases of practical interest. Computer codes developed for impurity modeling at the Princeton Plasma Physics Laboratory are used as examples of the types of codes employed for this purpose. These codes solve for the impurity ionization state densities and associated radiation rates using atomic physics appropriate for these low-density, high-temperature plasmas. The simpler codes solve local equations in zero spatial dimensions while more complex cases require codes which explicitly include transport of the impurity ions simultaneously with the atomic processes of ionization and recombination. Typical applications are discussed and computational results are presented for selected cases of interest.

  18. Application of two oriented partial differential equation filtering models on speckle fringes with poor quality and their numerically fast algorithms.

    PubMed

    Zhu, Xinjun; Chen, Zhanqing; Tang, Chen; Mi, Qinghua; Yan, Xiusheng

    2013-03-20

    In this paper, we are concerned with denoising in experimentally obtained electronic speckle pattern interferometry (ESPI) speckle fringe patterns with poor quality. We extend the application of two existing oriented partial differential equation (PDE) filters, including the second-order single oriented PDE filter and the double oriented PDE filter, to two experimentally obtained ESPI speckle fringe patterns with very poor quality, and compare them with other efficient filtering methods, including the adaptive weighted filter, the improved nonlinear complex diffusion PDE, and the windowed Fourier transform method. All of the five filters have been illustrated to be efficient denoising methods through previous comparative analyses in published papers. The experimental results have demonstrated that the two oriented PDE models are applicable to low-quality ESPI speckle fringe patterns. Then for solving the main shortcoming of the two oriented PDE models, we develop the numerically fast algorithms based on Gauss-Seidel strategy for the two oriented PDE models. The proposed numerical algorithms are capable of accelerating the convergence greatly, and perform significantly better in terms of computational efficiency. Our numerically fast algorithms are extended automatically to some other PDE filtering models.

  19. Numerical algorithms for estimation and calculation of parameters in modeling pest population dynamics and evolution of resistance.

    PubMed

    Shi, Mingren; Renton, Michael

    2011-10-01

    Computational simulation models can provide a way of understanding and predicting insect population dynamics and evolution of resistance, but the usefulness of such models depends on generating or estimating the values of key parameters. In this paper, we describe four numerical algorithms generating or estimating key parameters for simulating four different processes within such models. First, we describe a novel method to generate an offspring genotype table for one- or two-locus genetic models for simulating evolution of resistance, and how this method can be extended to create offspring genotype tables for models with more than two loci. Second, we describe how we use a generalized inverse matrix to find a least-squares solution to an over-determined linear system for estimation of parameters in probit models of kill rates. This algorithm can also be used for the estimation of parameters of Freundlich adsorption isotherms. Third, we describe a simple algorithm to randomly select initial frequencies of genotypes either without any special constraints or with some pre-selected frequencies. Also we give a simple method to calculate the "stable" Hardy-Weinberg equilibrium proportions that would result from these initial frequencies. Fourth we describe how the problem of estimating the intrinsic rate of natural increase of a population can be converted to a root-finding problem and how the bisection algorithm can then be used to find the rate. We implemented all these algorithms using MATLAB and Python code; the key statements in both codes consist of only a few commands and are given in the appendices. The results of numerical experiments are also provided to demonstrate that our algorithms are valid and efficient.

  20. Numerical studies of 2-dimensional flows

    NASA Technical Reports Server (NTRS)

    Moretti, G.

    1985-01-01

    A formulation of the lambda scheme for the analysis of two dimensional inviscid, compressible, unsteady transonic flows is presented. The scheme uses generalized Riemann variables to determine the appropriate two point, one sided finite difference approximation for each derivative in the unsteady Euler equations. These finite differences are applied at the predictor and corrector levels with shock updating at each level. The weaker oblique shocks are captured, but strong near normal shocks are fitted into the flow using the Rankine-Hugoniot relations. This code is demonstrated with a numerical example of a duct flow problem with developing normal and oblique shock waves. The technique is implemented in a code which has been made efficient by streamlining to a minimal number of operations and by eliminating branch statements. The scheme is shown to provide an accurate analysis of the flow, including formation, motions, and interactions of shocks; the results obtained on a relatively coarse mesh are comparable to those obtained by other methods on much finer meshes.

  1. Numerical study of a helicon gas discharge

    NASA Astrophysics Data System (ADS)

    Batishchev, Oleg; Molvig, Kim

    2001-06-01

    Plasma sources based on the helicon gas discharge are widely used in industry [1] due to their high efficiency. We investigate performance of a particular helicon plasma sources designed for the VASIMR [2] plasma thruster. Specifically we are interested in the VX-10 configuration [3] operating with hydrogen or helium plasmas. Firstly, we use our zero-dimensional model to characterize plasma condition and composition [4]. Next we couple it to one-dimensional hybrid model [5] for a rarified gas flow in the system feeding pipe - quartz tube of the helicon. We perform numerical analysis of plasma source operation in different regimes. Results are compared and used to explain experimental data [3]. Finally, we'll discuss more detailed fully kinetic models for the gas and plasma species evolution in the helicon discharge with parameters typical to that of the VASIMR plasma thruster. [1] M.A. Lieberman and A.J.Lihtenberg, , 'Principles of plasma discharges and materials processing', Wiley, NY, 1994; [2] F.Chang-Diaz et al, Bull. APS 45 (7) 129, 2000; [3] J. Squire et al., Bull. APS 45 (7) 130, 2000; [4] O.Batishchev and Kim Molvig, AIAA technical paper 2000-3754, 2000; [5] O.Batishchev and Kim Molvig, AIAA technical paper 2001-0963, 2001.

  2. A Numerical Study of Heat Pulse Propagation

    NASA Astrophysics Data System (ADS)

    Borse, Garold; Sylvia, Patti; Bateman, Glenn; Kritz, Arnold

    1999-11-01

    A highly nonlinear transport model in which the effective diffusivity, D, is a step function of the temperature gradient is numerically applied to the phenomena of heat pulse propagation in tokamaks. After obtaining the steady state solution, an instantaneous heat pulse is used as the initial condition for a time-dependent solution. The temperature deviation from steady state is plotted as a function of time at various values of the minor radius, and the time-to-peak of each curve is obtained. Using these results it is found that the solution, while still diffusive, is characterized by two regions of approximately constant, but significantly different diffusivities. The interior region, very close to the pulse edge, is characterized by a slow diffusion and its size is independent of the height of the step in D. The time for the pulse to reach the transition region is inversely proportional to the step height, and the subsequent larger diffusivity is proportional to the step height. Since the results depend strongly on the steepness and step height of D(-fracpartial Tpartial r), it should be possible to determine the value of the diffusivity in the two regions from the characteristics of the heat pulse propagation.

  3. Numerical Studies of Boundary-Layer Receptivity

    NASA Technical Reports Server (NTRS)

    Reed, Helen L.

    1995-01-01

    Direct numerical simulations (DNS) of the acoustic receptivity process on a semi-infinite flat plate with a modified-super-elliptic (MSE) leading edge are performed. The incompressible Navier-Stokes equations are solved in stream-function/vorticity form in a general curvilinear coordinate system. The steady basic-state solution is found by solving the governing equations using an alternating direction implicit (ADI) procedure which takes advantage of the parallelism present in line-splitting techniques. Time-harmonic oscillations of the farfield velocity are applied as unsteady boundary conditions to the unsteady disturbance equations. An efficient time-harmonic scheme is used to produce the disturbance solutions. Buffer-zone techniques have been applied to eliminate wave reflection from the outflow boundary. The spatial evolution of Tollmien-Schlichting (T-S) waves is analyzed and compared with experiment and theory. The effects of nose-radius, frequency, Reynolds number, angle of attack, and amplitude of the acoustic wave are investigated. This work is being performed in conjunction with the experiments at the Arizona State University Unsteady Wind Tunnel under the direction of Professor William Saric. The simulations are of the same configuration and parameters used in the wind-tunnel experiments.

  4. Externally fed star formation: a numerical study

    NASA Astrophysics Data System (ADS)

    Mohammadpour, Motahareh; Stahler, Steven W.

    2013-08-01

    We investigate, through a series of numerical calculations, the evolution of dense cores that are accreting external gas up to and beyond the point of star formation. Our model clouds are spherical, unmagnetized configurations with fixed outer boundaries, across which gas enters subsonically. When we start with any near-equilibrium state, we find that the cloud's internal velocity also remains subsonic for an extended period, in agreement with observations. However, the velocity becomes supersonic shortly before the star forms. Consequently, the accretion rate building up the protostar is much greater than the benchmark value c_s^3/G, where cs is the sound speed in the dense core. This accretion spike would generate a higher luminosity than those seen in even the most embedded young stars. Moreover, we find that the region of supersonic infall surrounding the protostar races out to engulf much of the cloud, again in violation of the observations, which show infall to be spatially confined. Similar problematic results have been obtained by all other hydrodynamic simulations to date, regardless of the specific infall geometry or boundary conditions adopted. Low-mass star formation is evidently a quasi-static process, in which cloud gas moves inward subsonically until the birth of the star itself. We speculate that magnetic tension in the cloud's deep interior helps restrain the infall prior to this event.

  5. Limit velocities of lamb waves: Analytic and numerical studies

    NASA Astrophysics Data System (ADS)

    Avershieva, A. V.; Goldstein, R. V.; Kuznetsov, S. V.

    2016-09-01

    The Lamb wave propagation in elastic isotropic and orthotropic layers is studied by numerical and analytic methods. An analytic solution is obtained by using the Cauchy formalism for the entire frequency range. Numerical solutions are obtained in a neighborhood of the second limit velocity corresponding to very small frequencies. The influence of variations in the layer geometry on the dispersion curves is studied.

  6. Numerical study of fluid motion in bioreactor with two mixers

    SciTech Connect

    Zheleva, I.; Lecheva, A.

    2015-10-28

    Numerical study of hydrodynamic laminar behavior of a viscous fluid in bioreactor with multiple mixers is provided in the present paper. The reactor is equipped with two disk impellers. The fluid motion is studied in stream function-vorticity formulation. The calculations are made by a computer program, written in MATLAB. The fluid structure is described and numerical results are graphically presented and commented.

  7. Numerical studies of variable-range hopping in one-dimensional systems

    NASA Astrophysics Data System (ADS)

    Rodin, A. S.; Fogler, M. M.

    2010-03-01

    We report on our recent numerical study [1] of hopping transport in disordered one-dimensional systems. A fast new algorithm, based on Dijkstra shortest-path algorithm, is devised to find the lowest-resistance path through the hopping network at arbitrary electric field. Probability distribution functions of individual resistances on the path and the net resistance are calculated and fitted to compact analytic formulas. Qualitative differences between statistics of resistance fluctuations in Ohmic and non-Ohmic regimes are elucidated. The results are compared with prior theoretical and experimental work on the subject.[6pt] [1] A. S. Rodin and M. M. Fogler, Phys. Rev. B 80, 155435 (2009).

  8. Studying Spacecraft Charging via Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Delzanno, G. L.; Moulton, D.; Meierbachtol, C.; Svyatskiy, D.; Vernon, L.

    2015-12-01

    The electrical charging of spacecraft due to bombarding charged particles can affect their performance and operation. We study this charging using CPIC; a particle-in-cell code specifically designed for studying plasma-material interactions [1]. CPIC is based on multi-block curvilinear meshes, resulting in near-optimal computational performance while maintaining geometric accuracy. Relevant plasma parameters are imported from the SHIELDS framework (currently under development at LANL), which simulates geomagnetic storms and substorms in the Earth's magnetosphere. Simulated spacecraft charging results of representative Van Allen Probe geometries using these plasma parameters will be presented, along with an overview of the code. [1] G.L. Delzanno, E. Camporeale, J.D. Moulton, J.E. Borovsky, E.A. MacDonald, and M.F. Thomsen, "CPIC: A Curvilinear Particle-In-Cell Code for Plasma-Material Interaction Studies," IEEE Trans. Plas. Sci., 41 (12), 3577 (2013).

  9. A numerical study of forced lithospheric thinning

    NASA Technical Reports Server (NTRS)

    Schubert, G.; Anderson, A.; Fishbein, E.

    1985-01-01

    Subsolidus lithospheric thinning by mantle plumes may be involved in the creation of swells, hotspots, and rifts. Among the major questions concerning this process are the timescale on which it occurs and the structure of the plumes. The lithosphere is known to have been substantially thinned in 10 Ma or less. Current studies are focused on the lithospheric thinning by time-dependent plumes hypothesized to have large temperature differences across them.

  10. Numerical study of signal propagation in corrugated coaxial cables

    DOE PAGES

    Li, Jichun; Machorro, Eric A.; Shields, Sidney

    2017-01-01

    Our article focuses on high-fidelity modeling of signal propagation in corrugated coaxial cables. Taking advantage of the axisymmetry, the authors reduce the 3-D problem to a 2-D problem by solving time-dependent Maxwell's equations in cylindrical coordinates.They then develop a nodal discontinuous Galerkin method for solving their model equations. We prove stability and error analysis for the semi-discrete scheme. We we present our numerical results, we demonstrate that our algorithm not only converges as our theoretical analysis predicts, but it is also very effective in solving a variety of signal propagation problems in practical corrugated coaxial cables.

  11. An efficient numerical algorithm for computing densely distributed positive interior transmission eigenvalues

    NASA Astrophysics Data System (ADS)

    Li, Tiexiang; Huang, Tsung-Ming; Lin, Wen-Wei; Wang, Jenn-Nan

    2017-03-01

    We propose an efficient eigensolver for computing densely distributed spectra of the two-dimensional transmission eigenvalue problem (TEP), which is derived from Maxwell’s equations with Tellegen media and the transverse magnetic mode. The governing equations, when discretized by the standard piecewise linear finite element method, give rise to a large-scale quadratic eigenvalue problem (QEP). Our numerical simulation shows that half of the positive eigenvalues of the QEP are densely distributed in some interval near the origin. The quadratic Jacobi–Davidson method with a so-called non-equivalence deflation technique is proposed to compute the dense spectrum of the QEP. Extensive numerical simulations show that our proposed method processes the convergence efficiently, even when it needs to compute more than 5000 desired eigenpairs. Numerical results also illustrate that the computed eigenvalue curves can be approximated by nonlinear functions, which can be applied to estimate the denseness of the eigenvalues for the TEP.

  12. Numerical study of insect free hovering flight

    NASA Astrophysics Data System (ADS)

    Wu, Di; Yeo, Khoon Seng; Lim, Tee Tai; Fluid lab, Mechanical Engineering, National University of Singapore Team

    2012-11-01

    In this paper we present the computational fluid dynamics study of three-dimensional flow field around a free hovering fruit fly integrated with unsteady FSI analysis and the adaptive flight control system for the first time. The FSI model being specified for fruitfly hovering is achieved by coupling a structural problem based on Newton's second law with a rigorous CFD solver concerning generalized finite difference method. In contrast to the previous hovering flight research, the wing motion employed here is not acquired from experimental data but governed by our proposed control systems. Two types of hovering control strategies i.e. stroke plane adjustment mode and paddling mode are explored, capable of generating the fixed body position and orientation characteristic of hovering flight. Hovering flight associated with multiple wing kinematics and body orientations are shown as well, indicating the means by which fruitfly actually maintains hovering may have considerable freedom and therefore might be influenced by many other factors beyond the physical and aerodynamic requirements. Additionally, both the near- and far-field flow and vortex structure agree well with the results from other researchers, demonstrating the reliability of our current model.

  13. Numerical Studies of Properties of Confined Helium

    NASA Technical Reports Server (NTRS)

    Manousakis, Efstratios

    2003-01-01

    We carry out state of the art simulations of properties of confined liquid helium near the superfluid transition to a degree of accuracy which allows to make predictions for the outcome of fundamental physics experiments in microgravity. First we report our results for the finite-size scaling behavior of heat capacity of superfluids for cubic and parallel-plate geometry. This allows us to study the crossover from zero and two dimensions to three dimensions. Our calculated scaling functions are in good agreement with recently measured specific heat scaling functions for the above mentioned geometries. We also present our results of a quantum simulation of submonolayer of molecular hydrogen deposited on an ideal graphite substrate using path-integral quantum Monte Carlo simulation. We find that the monolayer phase diagram is rich and very similar to that of helium monolayer. We are able to uncover the main features of the complex monolayer phase diagram, such as the commensurate solid phases and the commensurate to incommensurate transition, in agreement with the experiments and to find some features which are missing from the experimental analysis.

  14. Dynamical Approach Study of Spurious Numerics in Nonlinear Computations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Mansour, Nagi (Technical Monitor)

    2002-01-01

    The last two decades have been an era when computation is ahead of analysis and when very large scale practical computations are increasingly used in poorly understood multiscale complex nonlinear physical problems and non-traditional fields. Ensuring a higher level of confidence in the predictability and reliability (PAR) of these numerical simulations could play a major role in furthering the design, understanding, affordability and safety of our next generation air and space transportation systems, and systems for planetary and atmospheric sciences, and in understanding the evolution and origin of life. The need to guarantee PAR becomes acute when computations offer the ONLY way of solving these types of data limited problems. Employing theory from nonlinear dynamical systems, some building blocks to ensure a higher level of confidence in PAR of numerical simulations have been revealed by the author and world expert collaborators in relevant fields. Five building blocks with supporting numerical examples were discussed. The next step is to utilize knowledge gained by including nonlinear dynamics, bifurcation and chaos theories as an integral part of the numerical process. The third step is to design integrated criteria for reliable and accurate algorithms that cater to the different multiscale nonlinear physics. This includes but is not limited to the construction of appropriate adaptive spatial and temporal discretizations that are suitable for the underlying governing equations. In addition, a multiresolution wavelets approach for adaptive numerical dissipation/filter controls for high speed turbulence, acoustics and combustion simulations will be sought. These steps are corner stones for guarding against spurious numerical solutions that are solutions of the discretized counterparts but are not solutions of the underlying governing equations.

  15. Research on Numerical Algorithms for the Three Dimensional Navier-Stokes Equations. I. Accuracy, Convergence & Efficiency.

    DTIC Science & Technology

    1979-09-01

    ithm for Computational Fluid Dynamics," Ph.D. Dissertation, Univ. of Tennessee, Report ESM 78-1, 1978. 18. Thames, F. C., Thompson , J . F ., and Mastin...C. W., "Numerical Solution of the Navier-Stokes Equations for Arbitrary Two-Dimensional Air- foils," NASA SP-347, 1975. 19. Thompson , J . F ., Thames...Number of Arbitrary Two-Dimensional Bodies," NASA CR-2729, 1976. 20. Thames, F. C., Thompson , J . F ., Mastin, C. W., and Walker, R. L., "Numerical

  16. A hybrid algorithm for instant optimization of beam weights in anatomy-based intensity modulated radiotherapy: A performance evaluation study.

    PubMed

    Vaitheeswaran, Ranganathan; Sathiya, Narayanan V K; Bhangle, Janhavi R; Nirhali, Amit; Kumar, Namita; Basu, Sumit; Maiya, Vikram

    2011-04-01

    The study aims to introduce a hybrid optimization algorithm for anatomy-based intensity modulated radiotherapy (AB-IMRT). Our proposal is that by integrating an exact optimization algorithm with a heuristic optimization algorithm, the advantages of both the algorithms can be combined, which will lead to an efficient global optimizer solving the problem at a very fast rate. Our hybrid approach combines Gaussian elimination algorithm (exact optimizer) with fast simulated annealing algorithm (a heuristic global optimizer) for the optimization of beam weights in AB-IMRT. The algorithm has been implemented using MATLAB software. The optimization efficiency of the hybrid algorithm is clarified by (i) analysis of the numerical characteristics of the algorithm and (ii) analysis of the clinical capabilities of the algorithm. The numerical and clinical characteristics of the hybrid algorithm are compared with Gaussian elimination method (GEM) and fast simulated annealing (FSA). The numerical characteristics include convergence, consistency, number of iterations and overall optimization speed, which were analyzed for the respective cases of 8 patients. The clinical capabilities of the hybrid algorithm are demonstrated in cases of (a) prostate and (b) brain. The analyses reveal that (i) the convergence speed of the hybrid algorithm is approximately three times higher than that of FSA algorithm; (ii) the convergence (percentage reduction in the cost function) in hybrid algorithm is about 20% improved as compared to that in GEM algorithm; (iii) the hybrid algorithm is capable of producing relatively better treatment plans in terms of Conformity Index (CI) [~ 2% - 5% improvement] and Homogeneity Index (HI) [~ 4% - 10% improvement] as compared to GEM and FSA algorithms; (iv) the sparing of organs at risk in hybrid algorithm-based plans is better than that in GEM-based plans and comparable to that in FSA-based plans; and (v) the beam weights resulting from the hybrid algorithm are

  17. A numerical study of 2D detonation waves with adaptive finite volume methods on unstructured grids

    NASA Astrophysics Data System (ADS)

    Hu, Guanghui

    2017-02-01

    In this paper, a framework of adaptive finite volume solutions for the reactive Euler equations on unstructured grids is proposed. The main ingredients of the algorithm include a second order total variation diminishing Runge-Kutta method for temporal discretization, and the finite volume method with piecewise linear solution reconstruction of the conservative variables for the spatial discretization in which the least square method is employed for the reconstruction, and weighted essentially nonoscillatory strategy is used to restrain the potential numerical oscillation. To resolve the high demanding on the computational resources due to the stiffness of the system caused by the reaction term and the shock structure in the solutions, the h-adaptive method is introduced. OpenMP parallelization of the algorithm is also adopted to further improve the efficiency of the implementation. Several one and two dimensional benchmark tests on the ZND model are studied in detail, and numerical results successfully show the effectiveness of the proposed method.

  18. Scanning of wind turbine upwind conditions: numerical algorithm and first applications

    NASA Astrophysics Data System (ADS)

    Calaf, Marc; Cortina, Gerard; Sharma, Varun; Parlange, Marc B.

    2014-11-01

    Wind turbines still obtain in-situ meteorological information by means of traditional wind vane and cup anemometers installed at the turbine's nacelle, right behind the blades. This has two important drawbacks: 1-turbine misalignment with the mean wind direction is common and energy losses are experienced; 2-the near-blade monitoring does not provide any time to readjust the profile of the wind turbine to incoming turbulence gusts. A solution is to install wind Lidar devices on the turbine's nacelle. This technique is currently under development as an alternative to traditional in-situ wind anemometry because it can measure the wind vector at substantial distances upwind. However, at what upwind distance should they interrogate the atmosphere? A new flexible wind turbine algorithm for large eddy simulations of wind farms that allows answering this question, will be presented. The new wind turbine algorithm timely corrects the turbines' yaw misalignment with the changing wind. The upwind scanning flexibility of the algorithm also allows to track the wind vector and turbulent kinetic energy as they approach the wind turbine's rotor blades. Results will illustrate the spatiotemporal evolution of the wind vector and the turbulent kinetic energy as the incoming flow approaches the wind turbine under different atmospheric stability conditions. Results will also show that the available atmospheric wind power is larger during daytime periods at the cost of an increased variance.

  19. Repair, Evaluation, Maintenance, and Rehabilitation Research Program: Explicit Numerical Algorithm for Modeling Incompressible Approach Flow

    DTIC Science & Technology

    1989-03-01

    by Colorado State University, Fort Collins, CO, for US Army Engineer Waterways Experiment Station, Vicksburg, MS. Thompson , J . F . 1983 (Mar). "A...Waterways Experiment Station, Vicksburg, MS. Thompson , J . F ., and Bernard, R. S. 1985 (Aug). "WESSEL: Code for Numerical Simulation of Two-Dimensional Time

  20. AN ACCURATE AND EFFICIENT ALGORITHM FOR NUMERICAL SIMULATION OF CONDUCTION-TYPE PROBLEMS. (R824801)

    EPA Science Inventory

    Abstract

    A modification of the finite analytic numerical method for conduction-type (diffusion) problems is presented. The finite analytic discretization scheme is derived by means of the Fourier series expansion for the most general case of nonuniform grid and variabl...

  1. A comparative study of staff removal algorithms.

    PubMed

    Dalitz, Christoph; Droettboom, Michael; Pranzas, Bastian; Fujinaga, Ichiro

    2008-05-01

    This paper presents a quantitative comparison of different algorithms for the removal of stafflines from music images. It contains a survey of previously proposed algorithms and suggests a new skeletonization based approach. We define three different error metrics, compare the algorithms with respect to these metrics and measure their robustness with respect to certain image defects. Our test images are computer-generated scores on which we apply various image deformations typically found in real-world data. In addition to modern western music notation our test set also includes historic music notation such as mensural notation and lute tablature. Our general approach and evaluation methodology is not specific to staff removal, but applicable to other segmentation problems as well.

  2. Improved FFT-based numerical inversion of Laplace transforms via fast Hartley transform algorithm

    NASA Technical Reports Server (NTRS)

    Hwang, Chyi; Lu, Ming-Jeng; Shieh, Leang S.

    1991-01-01

    The disadvantages of numerical inversion of the Laplace transform via the conventional fast Fourier transform (FFT) are identified and an improved method is presented to remedy them. The improved method is based on introducing a new integration step length Delta(omega) = pi/mT for trapezoidal-rule approximation of the Bromwich integral, in which a new parameter, m, is introduced for controlling the accuracy of the numerical integration. Naturally, this method leads to multiple sets of complex FFT computations. A new inversion formula is derived such that N equally spaced samples of the inverse Laplace transform function can be obtained by (m/2) + 1 sets of N-point complex FFT computations or by m sets of real fast Hartley transform (FHT) computations.

  3. Fast Numerical Algorithms for 3-D Scattering from PEC and Dielectric Random Rough Surfaces in Microwave Remote Sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Lisha

    We present fast and robust numerical algorithms for 3-D scattering from perfectly electrical conducting (PEC) and dielectric random rough surfaces in microwave remote sensing. The Coifman wavelets or Coiflets are employed to implement Galerkin's procedure in the method of moments (MoM). Due to the high-precision one-point quadrature, the Coiflets yield fast evaluations of the most off-diagonal entries, reducing the matrix fill effort from O(N2) to O( N). The orthogonality and Riesz basis of the Coiflets generate well conditioned impedance matrix, with rapid convergence for the conjugate gradient solver. The resulting impedance matrix is further sparsified by the matrix-formed standard fast wavelet transform (SFWT). By properly selecting multiresolution levels of the total transformation matrix, the solution precision can be enhanced while matrix sparsity and memory consumption have not been noticeably sacrificed. The unified fast scattering algorithm for dielectric random rough surfaces can asymptotically reduce to the PEC case when the loss tangent grows extremely large. Numerical results demonstrate that the reduced PEC model does not suffer from ill-posed problems. Compared with previous publications and laboratory measurements, good agreement is observed.

  4. Numerical experience with a class of algorithms for nonlinear optimization using inexact function and gradient information

    NASA Technical Reports Server (NTRS)

    Carter, Richard G.

    1989-01-01

    For optimization problems associated with engineering design, parameter estimation, image reconstruction, and other optimization/simulation applications, low accuracy function and gradient values are frequently much less expensive to obtain than high accuracy values. Here, researchers investigate the computational performance of trust region methods for nonlinear optimization when high accuracy evaluations are unavailable or prohibitively expensive, and confirm earlier theoretical predictions when the algorithm is convergent even with relative gradient errors of 0.5 or more. The proper choice of the amount of accuracy to use in function and gradient evaluations can result in orders-of-magnitude savings in computational cost.

  5. Study of Limited-view Tomography Algorithms for Plasma Diagnostics

    NASA Astrophysics Data System (ADS)

    Wan, Xiong; Gao, Yiqing; Yu, Shenglin

    2002-09-01

    Optical Computed Tomography is a useful tool for plasma diagnostics. But in plasma physics, viewing access is very limited, which leads a highly undetermined inversion problem. Two major approaches to this problem are compared in this paper: Maximum Entropy (ME) method and Simultaneous Iterative Reconstruction Technique (SIRT). The results of numerical simulation and experiments illustrate that both two algorithms can yield good qualities of reconstruction with limited views when some prior information has incorporated into calculation. Especially, in the case of two views, with prior information, a good result can even be achieved by ME algorithm.

  6. Properties of the numerical algorithms for problems of quantum information technologies: Benefits of deep analysis

    NASA Astrophysics Data System (ADS)

    Chernyavskiy, Andrey; Khamitov, Kamil; Teplov, Alexey; Voevodin, Vadim; Voevodin, Vladimir

    2016-10-01

    In recent years, quantum information technologies (QIT) showed great development, although, the way of the implementation of QIT faces the serious difficulties, some of which are challenging computational tasks. This work is devoted to the deep and broad analysis of the parallel algorithmic properties of such tasks. As an example we take one- and two-qubit transformations of a many-qubit quantum state, which are the most critical kernels of many important QIT applications. The analysis of the algorithms uses the methodology of the AlgoWiki project (algowiki-project.org) and consists of two parts: theoretical and experimental. Theoretical part includes features like sequential and parallel complexity, macro structure, and visual information graph. Experimental part was made by using the petascale Lomonosov supercomputer (Moscow State University, Russia) and includes the analysis of locality and memory access, scalability and the set of more specific dynamic characteristics of realization. This approach allowed us to obtain bottlenecks and generate ideas of efficiency improvement.

  7. Algorithm for direct numerical simulation of emulsion flow through a granular material

    NASA Astrophysics Data System (ADS)

    Zinchenko, Alexander Z.; Davis, Robert H.

    2008-08-01

    A multipole-accelerated 3D boundary-integral algorithm capable of modelling an emulsion flow through a granular material by direct multiparticle-multidrop simulations in a periodic box is developed and tested. The particles form a random arrangement at high volume fraction rigidly held in space (including the case of an equilibrium packing in mechanical contact). Deformable drops (with non-deformed diameter comparable with the particle size) squeeze between the particles under a specified average pressure gradient. The algorithm includes recent boundary-integral desingularization tools especially important for drop-solid and drop-drop interactions, the Hebeker representation for solid particle contributions, and unstructured surface triangulations with fixed topology. Multipole acceleration, with two levels of mesh node decomposition (entire drop/solid surfaces and "patches"), is a significant improvement over schemes used in previous, purely multidrop simulations; it remains efficient at very high resolutions ( 104- 105 triangular elements per surface) and has no lower limitation on the number of particles or drops. Such resolutions are necessary in the problem to alleviate lubrication difficulties, especially for near-critical squeezing conditions, as well as using ˜104 time steps and an iterative solution at each step, both for contrast and matching viscosities. Examples are shown for squeezing of 25-40 drops through an array of 9-14 solids, with the total volume fraction of 70% for particles and drops. The flow rates for the drop and continuous phases are calculated. Extensive convergence testing with respect to program parameters (triangulation, multipole truncation, etc.) is made.

  8. A fast algorithm for Direct Numerical Simulation of natural convection flows in arbitrarily-shaped periodic domains

    NASA Astrophysics Data System (ADS)

    Angeli, D.; Stalio, E.; Corticelli, M. A.; Barozzi, G. S.

    2015-11-01

    A parallel algorithm is presented for the Direct Numerical Simulation of buoyancy- induced flows in open or partially confined periodic domains, containing immersed cylindrical bodies of arbitrary cross-section. The governing equations are discretized by means of the Finite Volume method on Cartesian grids. A semi-implicit scheme is employed for the diffusive terms, which are treated implicitly on the periodic plane and explicitly along the homogeneous direction, while all convective terms are explicit, via the second-order Adams-Bashfort scheme. The contemporary solution of velocity and pressure fields is achieved by means of a projection method. The numerical resolution of the set of linear equations resulting from discretization is carried out by means of efficient and highly parallel direct solvers. Verification and validation of the numerical procedure is reported in the paper, for the case of flow around an array of heated cylindrical rods arranged in a square lattice. Grid independence is assessed in laminar flow conditions, and DNS results in turbulent conditions are presented for two different grids and compared to available literature data, thus confirming the favorable qualities of the method.

  9. Study on the numerical schemes for hypersonic flow simulation

    NASA Astrophysics Data System (ADS)

    Nagdewe, S. P.; Shevare, G. R.; Kim, Heuy-Dong

    2009-10-01

    Hypersonic flow is full of complex physical and chemical processes, hence its investigation needs careful analysis of existing schemes and choosing a suitable scheme or designing a brand new scheme. The present study deals with two numerical schemes Harten, Lax, and van Leer with Contact (HLLC) and advection upstream splitting method (AUSM) to effectively simulate hypersonic flow fields, and accurately predict shock waves with minimal diffusion. In present computations, hypersonic flows have been modeled as a system of hyperbolic equations with one additional equation for non-equilibrium energy and relaxing source terms. Real gas effects, which appear typically in hypersonic flows, have been simulated through energy relaxation method. HLLC and AUSM methods are modified to incorporate the conservation laws for non-equilibrium energy. Numerical implementation have shown that non-equilibrium energy convect with mass, and hence has no bearing on the basic numerical scheme. The numerical simulation carried out shows good comparison with experimental data available in literature. Both numerical schemes have shown identical results at equilibrium. Present study has demonstrated that real gas effects in hypersonic flows can be modeled through energy relaxation method along with either AUSM or HLLC numerical scheme.

  10. Comparative study on semi-active control algorithms for piezoelectric friction dampers

    NASA Astrophysics Data System (ADS)

    Chen, Chaoqiang; Chen, Genda

    2004-07-01

    A semi-active Tri-D algorithm combining Coulomb, Reid and viscous damping mechanisms has recently been developed by the authors to drive piezoelectric friction dampers. The objective of this study is to analytically compare its performance with those of bang-bang control, clipped-optimal control, modulated homogeneous control, and a modified clipped-optimal control. Two far-field and two near-field historical earthquake records with various intensities and dominant frequencies were used in this study. All algorithms were evaluated with a ¼ scale 3-story frame structure in terms of reductions in peak inter-story drift ratio and peak floor acceleration. A piezoelectric friction damper was considered to be installed between a bracing support and the first floor of the frame structure. Both advantages and disadvantages of each control algorithm were discussed with numerical simulations. At near resonance, both bang-bang and clipped-optimal algorithms are more effective in drift reduction, and the modified clipped-optimal algorithm is more effective in acceleration reduction than both Tri-D and modulated homogeneous algorithms. But the latter requires less control force on the average. For a non-resonant case, the Tri-D and modulated homogeneous algorithms are more effective in acceleration reduction than others even with less control force required. Overall, the Tri-D and modulated homogeneous controls are effective in response reduction, adaptive, and robust to earthquake characteristics.

  11. A numerical algorithm to propagate navigation error covariance matrices associated with generalized strapdown inertial measurement units

    NASA Technical Reports Server (NTRS)

    Weir, Kent A.; Wells, Eugene M.

    1990-01-01

    The design and operation of a Strapdown Navigation Analysis Program (SNAP) developed to perform covariance analysis on spacecraft inertial-measurement-unit (IMU) navigation errors are described and demonstrated. Consideration is given to the IMU modeling subroutine (with user-specified sensor characteristics), the data input procedures, state updates and the simulation of instrument failures, the determination of the nominal trajectory, the mapping-matrix and Monte Carlo covariance-matrix propagation methods, and aided-navigation simulation. Numerical results are presented in tables for sample applications involving (1) the Galileo/IUS spacecraft from its deployment from the Space Shuttle to a point 10 to the 8th ft from the center of the earth and (2) the TDRS-C/IUS spacecraft from Space Shuttle liftoff to a point about 2 h before IUS deployment. SNAP is shown to give reliable results for both cases, with good general agreement between the mapping-matrix and Monte Carlo predictions.

  12. A Comparative Study of Interferometric Regridding Algorithms

    NASA Technical Reports Server (NTRS)

    Hensley, Scott; Safaeinili, Ali

    1999-01-01

    THe paper discusses regridding options: (1) The problem of interpolating data that is not sampled on a uniform grid, that is noisy, and contains gaps is a difficult problem. (2) Several interpolation algorithms have been implemented: (a) Nearest neighbor - Fast and easy but shows some artifacts in shaded relief images. (b) Simplical interpolator - uses plane going through three points containing point where interpolation is required. Reasonably fast and accurate. (c) Convolutional - uses a windowed Gaussian approximating the optimal prolate spheroidal weighting function for a specified bandwidth. (d) First or second order surface fitting - Uses the height data centered in a box about a given point and does a weighted least squares surface fit.

  13. Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction

    PubMed Central

    Dehghani, Hamid; Eames, Matthew E.; Yalavarthy, Phaneendra K.; Davis, Scott C.; Srinivasan, Subhadra; Carpenter, Colin M.; Pogue, Brian W.; Paulsen, Keith D.

    2009-01-01

    SUMMARY Diffuse optical tomography, also known as near infrared tomography, has been under investigation, for non-invasive functional imaging of tissue, specifically for the detection and characterization of breast cancer or other soft tissue lesions. Much work has been carried out for accurate modeling and image reconstruction from clinical data. NIRFAST, a modeling and image reconstruction package has been developed, which is capable of single wavelength and multi-wavelength optical or functional imaging from measured data. The theory behind the modeling techniques as well as the image reconstruction algorithms is presented here, and 2D and 3D examples are presented to demonstrate its capabilities. The results show that 3D modeling can be combined with measured data from multiple wavelengths to reconstruct chromophore concentrations within the tissue. Additionally it is possible to recover scattering spectra, resulting from the dominant Mie-type scatter present in tissue. Overall, this paper gives a comprehensive over view of the modeling techniques used in diffuse optical tomographic imaging, in the context of NIRFAST software package. PMID:20182646

  14. Numerical study of natural convection in fully open tilted cavities

    SciTech Connect

    Elsayed, M.M.; Al-Najem, N.M.; El-Refaee, M.M.; Noor, A.A.

    1999-09-01

    A numerical simulation of two-dimensional laminar natural convection in a fully open tilted square cavity with an isothermally heated back wall is conducted. The remaining two walls of the cavity are adiabatic. Steady-state solutions are presented for Grashof numbers between 10{sup 2} and 10{sup 5} and for tilt angles ranging from {minus}60{degree} to 90{degree} (where 90{degree} represents a cavity with the opening facing down). The fluid properties are assumed to be constant except for the density variation with temperature that gives rise to the buoyancy forces, which is treated by the Boussinesq approximation. The fluid concerned is air with Prandtl number fixed at 0.71. The governing equations are expressed in a normalized primitive variables formulation. Numerical predictions of the velocity and temperature fields are obtained using the finite-volume-based power law (SIMPLER: Semi-Implicit Method for Pressure-Linked Equations Revised) algorithm. For a vertical open cavity ({alpha} = 0{degree}), the algorithm generated results that were in good agreement with those previously published. Flow patterns and isotherms are shown in order to give a better understanding of the heat transfer and flow mechanisms inside the cavity. Effects of the controlling parameters-Grashof number and tilt angle-on the heat transfer (average Nusselt number) are presented and analyzed. The results also revealed that the open-cavity Nusselt number approaches the flat-plate solution when either Grashof number or tilt angle increases. In addition, a correlation of the Nusselt number in terms of the Grashof number and tilt angle is developed and presented; a comparison is made with available data from other literature.

  15. Numerical Study of Magnetic Damping During Unidirectional Solidification

    NASA Technical Reports Server (NTRS)

    Li, Ben Q.

    1997-01-01

    A fully 3-D numerical model is developed to represent magnetic damping of complex fluid flow, heat transfer and electromagnetic field distributions in a melt cavity. The model is developed based on our in-house finite element code for the fluid flow, heat transfer and electromagnetic field calculations. The computer code has been tested against benchmark test problems that are solved by other commercial codes as well as analytical solutions whenever available. The numerical model is tested against numerical and experimental results for water reported in literature. With the model so tested, various numerical simulations are carried out for the Sn-35.5% Pb melt convection and temperature distribution in a cylindrical cavity with and without the presence of a transverse magnetic field. Numerical results show that magnetic damping can be effectively applied to reduce turbulence and flow levels in the melt undergoing solidification and over a certain threshold value a higher magnetic field resulted in a higher velocity reduction. It is found also that for a fully 3-D representation of the magnetic damping effects, the electric field induced in the melt by the applied DC magnetic field does not vanish, as some researchers suggested, and must be included even for molten metal and semiconductors. Also, for the study of the melt flow instability, a long enough time has to be applied to ensure the final fluid flow recirculation pattern. Moreover, our numerical results suggested that there seems to exist a threshold value of applied magnetic field, above which magnetic damping becomes possible and below which the convection in the melt is actually enhanced. Because of the limited financial resource allocated for the project, we are unable to carry out extensive study on this effect, which should warrant further theoretical and experimental study. In that endeavor, the developed numerical model should be very useful; and the model should serve as a useful tool for exploring

  16. Numerical studies of laminar and turbulent drag reduction

    NASA Technical Reports Server (NTRS)

    Balasubramanian, R.; Orszag, S. A.

    1981-01-01

    Two-dimensional incompressible flow over wavy surfaces is studied numerically by spectral methods. Turbulence effects are modeled. Results for symmetric and asymmetric wave forms are presented. Effect of propagating surface waves on drag reduction is studied. Comparisons between computer simulations and experimental results are made.

  17. Numerical aerodynamic simulation facility preliminary study: Executive study

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A computing system was designed with the capability of providing an effective throughput of one billion floating point operations per second for three dimensional Navier-Stokes codes. The methodology used in defining the baseline design, and the major elements of the numerical aerodynamic simulation facility are described.

  18. Study of image matching algorithm and sub-pixel fitting algorithm in target tracking

    NASA Astrophysics Data System (ADS)

    Yang, Ming-dong; Jia, Jianjun; Qiang, Jia; Wang, Jian-yu

    2015-03-01

    Image correlation matching is a tracking method that searched a region most approximate to the target template based on the correlation measure between two images. Because there is no need to segment the image, and the computation of this method is little. Image correlation matching is a basic method of target tracking. This paper mainly studies the image matching algorithm of gray scale image, which precision is at sub-pixel level. The matching algorithm used in this paper is SAD (Sum of Absolute Difference) method. This method excels in real-time systems because of its low computation complexity. The SAD method is introduced firstly and the most frequently used sub-pixel fitting algorithms are introduced at the meantime. These fitting algorithms can't be used in real-time systems because they are too complex. However, target tracking often requires high real-time performance, we put forward a fitting algorithm named paraboloidal fitting algorithm based on the consideration above, this algorithm is simple and realized easily in real-time system. The result of this algorithm is compared with that of surface fitting algorithm through image matching simulation. By comparison, the precision difference between these two algorithms is little, it's less than 0.01pixel. In order to research the influence of target rotation on precision of image matching, the experiment of camera rotation was carried on. The detector used in the camera is a CMOS detector. It is fixed to an arc pendulum table, take pictures when the camera rotated different angles. Choose a subarea in the original picture as the template, and search the best matching spot using image matching algorithm mentioned above. The result shows that the matching error is bigger when the target rotation angle is larger. It's an approximate linear relation. Finally, the influence of noise on matching precision was researched. Gaussian noise and pepper and salt noise were added in the image respectively, and the image

  19. Numerical study of fractional nonlinear Schrödinger equations.

    PubMed

    Klein, Christian; Sparber, Christof; Markowich, Peter

    2014-12-08

    Using a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schrödinger-type equations involving a fractional Laplacian in an one-dimensional case. By an appropriate choice of the dispersive exponent, both mass and energy sub- and supercritical regimes can be identified. This allows us to study the possibility of finite time blow-up versus global existence, the nature of the blow-up, the stability and instability of nonlinear ground states and the long-time dynamics of solutions. The latter is also studied in a semiclassical setting. Moreover, we numerically construct ground state solutions of the fractional nonlinear Schrödinger equation.

  20. Genetic algorithm for design and manufacture optimization based on numerical simulations applied to aeronautic composite parts

    SciTech Connect

    Mouton, S.; Ledoux, Y.; Teissandier, D.; Sebastian, P.

    2010-06-15

    A key challenge for the future is to reduce drastically the human impact on the environment. In the aeronautic field, this challenge aims at optimizing the design of the aircraft to decrease the global mass. This reduction leads to the optimization of every part constitutive of the plane. This operation is even more delicate when the used material is composite material. In this case, it is necessary to find a compromise between the strength, the mass and the manufacturing cost of the component. Due to these different kinds of design constraints it is necessary to assist engineer with decision support system to determine feasible solutions. In this paper, an approach is proposed based on the coupling of the different key characteristics of the design process and on the consideration of the failure risk of the component. The originality of this work is that the manufacturing deviations due to the RTM process are integrated in the simulation of the assembly process. Two kinds of deviations are identified: volume impregnation (injection phase of RTM process) and geometrical deviations (curing and cooling phases). The quantification of these deviations and the related failure risk calculation is based on finite element simulations (Pam RTM registered and Samcef registered softwares). The use of genetic algorithm allows to estimate the impact of the design choices and their consequences on the failure risk of the component. The main focus of the paper is the optimization of tool design. In the framework of decision support systems, the failure risk calculation is used for making the comparison of possible industrialization alternatives. It is proposed to apply this method on a particular part of the airplane structure: a spar unit made of carbon fiber/epoxy composite.

  1. CoFlame: A refined and validated numerical algorithm for modeling sooting laminar coflow diffusion flames

    NASA Astrophysics Data System (ADS)

    Eaves, Nick A.; Zhang, Qingan; Liu, Fengshan; Guo, Hongsheng; Dworkin, Seth B.; Thomson, Murray J.

    2016-10-01

    Mitigation of soot emissions from combustion devices is a global concern. For example, recent EURO 6 regulations for vehicles have placed stringent limits on soot emissions. In order to allow design engineers to achieve the goal of reduced soot emissions, they must have the tools to so. Due to the complex nature of soot formation, which includes growth and oxidation, detailed numerical models are required to gain fundamental insights into the mechanisms of soot formation. A detailed description of the CoFlame FORTRAN code which models sooting laminar coflow diffusion flames is given. The code solves axial and radial velocity, temperature, species conservation, and soot aggregate and primary particle number density equations. The sectional particle dynamics model includes nucleation, PAH condensation and HACA surface growth, surface oxidation, coagulation, fragmentation, particle diffusion, and thermophoresis. The code utilizes a distributed memory parallelization scheme with strip-domain decomposition. The public release of the CoFlame code, which has been refined in terms of coding structure, to the research community accompanies this paper. CoFlame is validated against experimental data for reattachment length in an axi-symmetric pipe with a sudden expansion, and ethylene-air and methane-air diffusion flames for multiple soot morphological parameters and gas-phase species. Finally, the parallel performance and computational costs of the code is investigated.

  2. Real-space, mean-field algorithm to numerically calculate long-range interactions

    NASA Astrophysics Data System (ADS)

    Cadilhe, A.; Costa, B. V.

    2016-02-01

    Long-range interactions are known to be of difficult treatment in statistical mechanics models. There are some approaches that introduce a cutoff in the interactions or make use of reaction field approaches. However, those treatments suffer the illness of being of limited use, in particular close to phase transitions. The use of open boundary conditions allows the sum of the long-range interactions over the entire system to be done, however, this approach demands a sum over all degrees of freedom in the system, which makes a numerical treatment prohibitive. Techniques like the Ewald summation or fast multipole expansion account for the exact interactions but are still limited to a few thousands of particles. In this paper we introduce a novel mean-field approach to treat long-range interactions. The method is based in the division of the system in cells. In the inner cell, that contains the particle in sight, the 'local' interactions are computed exactly, the 'far' contributions are then computed as the average over the particles inside a given cell with the particle in sight for each of the remaining cells. Using this approach, the large and small cells limits are exact. At a fixed cell size, the method also becomes exact in the limit of large lattices. We have applied the procedure to the two-dimensional anisotropic dipolar Heisenberg model. A detailed comparison between our method, the exact calculation and the cutoff radius approximation were done. Our results show that the cutoff-cell approach outperforms any cutoff radius approach as it maintains the long-range memory present in these interactions, contrary to the cutoff radius approximation. Besides that, we calculated the critical temperature and the critical behavior of the specific heat of the anisotropic Heisenberg model using our method. The results are in excellent agreement with extensive Monte Carlo simulations using Ewald summation.

  3. A comparison study of solving diffusion equations with different algorithm methods

    NASA Astrophysics Data System (ADS)

    Huang, Houbing; Wang, Xueyun; Ma, Xingqiao

    2016-12-01

    A comparison study for solving diffusion equations with different algorithm methods is studied to understand the oxygen vacancy defect transport under the electric field. We compare computational efficiency and numerical accuracy with different algorithm methods, including finite difference, finite element (COMSOL), and Fourier-Chebysev spectral methods. All the results of oxygen vacancy distribution under an electric field from different algorithm methods are compared with the analytical solution results. Two kinds of boundary conditions are used in solving diffusion equations and the absolute error of different methods are discussed. The main purpose of these results is to provide guidance for studying the role of point defect transport in the degradation and breakdown of devices.

  4. A numerical and experimental study of coaxial jets

    NASA Technical Reports Server (NTRS)

    Nikjooy, M.; Karki, K. C.; Mongia, H. C.; Mcdonell, V. G.; Samuelsen, G. S.

    1989-01-01

    An algebraic stress model and the standard k-epsilon model is applied to predict the mean and turbulence quantities for axisymmetric, nonswirling coaxial jets without confinement. To investigate the effects of numerical (false) diffusion on the predicted results, three different discretization schemes, namely, hybrid, power-law, and the flux-spline, are employed. In addition, an experimental study is conducted to provide data of good quality, especially near the inlet, for model assessment. The results show that the use of the algebraic stress model leads to better agreement between the numerical results and experimental data.

  5. Numerical hysteresis model for intermittent studies in unsaturated soils

    NASA Astrophysics Data System (ADS)

    Banerjee, M.

    1986-07-01

    In the present study, the use of one of the recent dependent domain models of capillary hysteresis in the numerical analysis of intermittent infiltration and redistribution of water in two types of soils (a sand and Rubicon Sandy Loam) has been shown. The numerical results for both the soils have been presented in terms of pressure head depth, moisture content depth and the pressure head-moisture content relationships. The capillary hysteresis model has been found to be very useful for the prediction of both wetting and drying scanning curves of various orders.

  6. A Numerical/Experimental Study of Nitinol Actuator Springs

    NASA Astrophysics Data System (ADS)

    Auricchio, Ferdinando; Scalet, Giulia; Urbano, Marco

    2014-07-01

    This study deals with the numerical modeling, simulation and experimental analysis of shape-memory alloy (SMA) helicoidal springs. An experimental campaign is conducted on both SMA straight wires and helicoidal springs that experienced the same annealing process. Then, we use such experimental results to investigate three phenomenological constitutive models able to represent SMA macroscopic behavior. In particular, after the identification of all the material parameters from experimental results on SMA wires, we inspect the thermo-mechanical behavior of SMA helicoidal springs by comparing numerical predictions to experimental data. Finally, we discuss models capabilities and some aspects characterizing SMA material behavior.

  7. Numerical study of porosity in titanium dental castings.

    PubMed

    Wu, M; Sahm, P R; Augthun, M; Spiekermann, H; Schädlich-Stubenrauch, J

    1999-09-01

    A commercial software package, MAGMASOFT (MAGMA Giessereitechnologie GmbH, Aachen, Germany), was used to study shrinkage and gas porosity in titanium dental castings. A geometrical model for two simplified tooth crowns connected by a connector bar was created. Both mold filling and solidification of this casting model were numerically simulated. Shrinkage porosity was quantitatively predicted by means of a built-in feeding criterion. The risk of gas pore formation was investigated using the numerical filling and solidification results. The results of the numerical simulations were compared with experiments, which were carried out on a centrifugal casting machine with an investment block mold. The block mold was made of SiO2 based slurry with a 1 mm thick Zr2 face coat to reduce metal-mold reactions. Both melting and casting were carried out under protective argon (40 kPa). The finished castings were sectioned and the shrinkage porosity determined. The experimentally determined shrinkage porosity coincided with the predicted numerical simulation results. No apparent gas porosity was found in these model castings. Several running and gating systems for the above model casting were numerically simulated. An optimized running and gating system design was then experimentally cast, which resulted in porosity-free castings.

  8. Accelerating dissipative particle dynamics simulations on GPUs: Algorithms, numerics and applications

    NASA Astrophysics Data System (ADS)

    Tang, Yu-Hang; Karniadakis, George Em

    2014-11-01

    We present a scalable dissipative particle dynamics simulation code, fully implemented on the Graphics Processing Units (GPUs) using a hybrid CUDA/MPI programming model, which achieves 10-30 times speedup on a single GPU over 16 CPU cores and almost linear weak scaling across a thousand nodes. A unified framework is developed within which the efficient generation of the neighbor list and maintaining particle data locality are addressed. Our algorithm generates strictly ordered neighbor lists in parallel, while the construction is deterministic and makes no use of atomic operations or sorting. Such neighbor list leads to optimal data loading efficiency when combined with a two-level particle reordering scheme. A faster in situ generation scheme for Gaussian random numbers is proposed using precomputed binary signatures. We designed custom transcendental functions that are fast and accurate for evaluating the pairwise interaction. The correctness and accuracy of the code is verified through a set of test cases simulating Poiseuille flow and spontaneous vesicle formation. Computer benchmarks demonstrate the speedup of our implementation over the CPU implementation as well as strong and weak scalability. A large-scale simulation of spontaneous vesicle formation consisting of 128 million particles was conducted to further illustrate the practicality of our code in real-world applications. Catalogue identifier: AETN_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETN_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 1 602 716 No. of bytes in distributed program, including test data, etc.: 26 489 166 Distribution format: tar.gz Programming language: C/C++, CUDA C/C++, MPI. Computer: Any computers having nVidia GPGPUs with compute capability 3.0. Operating system: Linux. Has the code been

  9. Field and Numerical Study on Natural River Mixing

    DTIC Science & Technology

    2011-06-01

    AND NUMERICAL STUDY ON NATURAL RIVER MIXING by William A. Swick June 2011 Dissertation Supervisor: James MacMahan THIS PAGE......ABSTRACT (maximum 200 words) Mixing in several natural rivers is investigated using comprehensive point-source dye experiments, Lagrangian GPS-equipped

  10. Experimental and numerical study of pulsating transversal jets

    NASA Astrophysics Data System (ADS)

    Goldfeld, M. A.; Fedorova, N. N.; Fedorchenko, I. A.; Pozdnyakov, G. A.; Timofeev, K. Yu.; Zhakharova, Yu. V.

    2015-06-01

    Paper presents results of joint experimental and numerical investigation of pulsating jet penetration into still air and supersonic flow. Goal of the study is to investigate two-dimensional (2D) Hartmann generator (HG) properties and clear up its possibilities in providing better mixing between air and secondary (injected) gases.

  11. Numerical Study of Laminar Flow over Acoustic Cavities

    NASA Astrophysics Data System (ADS)

    Owen, Matthew; Cheng, Gary

    2016-11-01

    Fluid flow over an open cavity often emits acoustic waves with certain natural frequencies dependent on the geometry of the cavity and the properties and flow conditions of the fluid. Numerical studies of this kind, Computational Aeroacoustics (CAA), pose a grave challenge to the accuracy and efficiency of numerical methods. This project examines the Space-Time Conservation Element Solution Element (CESE) method developed by Dr. S.C. Chang at NASA GRC and compares numerical results of two-dimensional flow to previous experimental data found in literature. The conclusion the project reached is that the test data agrees well with one of the modes of the predicted frequencies, and that further testing is needed to be able to match experimental results. Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.

  12. A comparative study of five different PIV interrogation algorithms

    NASA Astrophysics Data System (ADS)

    Piirto, M.; Eloranta, H.; Saarenrinne, P.; Karvinen, R.

    2005-09-01

    Five different particle image velocimetry (PIV) interrogation algorithms are tested with numerically generated particle images and two real data sets measured in turbulent flows with relatively small particle images of size 1.0 2.5 pixels. The size distribution of the particle images is analyzed for both the synthetic and the real data in order to evaluate the tendency for peak-locking occurrence. First, the accuracy of the algorithms in terms of mean bias and rms error is compared to simulated data. Then, the algorithms’ ability to handle the peak-locking effect in an accelerating flow through a 2:1 contraction is compared, and their ability to estimate the rms and Reynolds shear stress profiles in a near-wall region of a turbulent boundary layer (TBL) at Reτ=510 is analyzed. The results of the latter case are compared to direct numerical simulation (DNS) data of a TBL. The algorithms are: standard fast Fourier transform cross-correlation (FFT-CC), direct normalized cross-correlation (DNCC), iterative FFT-CC with discrete window shift (DWS), iterative FFT-CC with continuous window shift (CWS), and iterative FFT-CC CWS with image deformation (CWD). Gaussian three-point peak fitting for sub-pixel estimation is used in all the algorithms. According to the tests with the non-deformation algorithms, DNCC seems to give the best rms estimation by the wall, and the CWS methods give slightly smaller peak-locking observations than the other methods. With the CWS methods, a bias error compensation method for the bilinear image interpolation, based on the particle image size analysis, is developed and tested, giving the same performance as the image interpolation based on the cardinal function. With the CWD algorithms, the effect of the spatial filter size between the iteration loops is analyzed, and it is found to have a strong effect on the results. In the near-wall region, the turbulence intensity varies by up to 4%, depending on the chosen interrogation algorithm. In

  13. High Resolution Numerical Studies of the Milky Way Halo

    NASA Astrophysics Data System (ADS)

    Rashkov, Valery

    2013-01-01

    The halo of the MilkyWay (MW) contains residual evidence of its hierarchical accretion history, such as stellar streams, dwarf satellite galaxies and possibly even intermediate-mass black holes the latter carried as they fell into the larger Galaxy. The discovery and study of these objects have the potential to answer elusive questions about our Galaxy, such as the accurate determination of its total mass, a fundamental quantity that determines the properties and fate of galaxies in the Universe. I use a particle tagging technique to dynamically populate the N-body Via Lactea II high-resolution simulation with stars. The method is calibrated using the observed luminosity function of Milky Way satellites and the concentration of their stellar populations, and self-consistently follows the accretion and disruption of progenitor dwarfs and the build-up of the stellar halo in a cosmological "live host". Simple prescriptions for assigning stellar populations to collisionless particles are able to reproduce many properties of the observed Milky Way halo and its surviving dwarf satellites, like velocity dispersions, sizes, brightness profiles, metallicities, and spatial distribution. I apply a standard mass estimation algorithm based on Jeans modelling of the line-of-sight velocity dispersion profiles to the simulated dwarf spheroidals, and test the accuracy of this technique. The inner mass-luminosity relation for currently detectable satellites is nearly flat in this mode! l, in qualitative agreement with the "common mass scale" found in Milky Way dwarfs. I extend the tagging approach to the study of intermediate-mass black holes (IMBHs), and assess the size, properties, and detectability of the leftover accreted halo population. The method assigns a black hole to the most tightly bound central particle of each subhalo at infall according to an extrapolation of the MBH-sigma star relation, and self-consistently follows the accretion and disruption of Milky Way

  14. Biofouling in forward osmosis systems: An experimental and numerical study.

    PubMed

    Bucs, Szilárd S; Valladares Linares, Rodrigo; Vrouwenvelder, Johannes S; Picioreanu, Cristian

    2016-12-01

    This study evaluates with numerical simulations supported by experimental data the impact of biofouling on membrane performance in a cross-flow forward osmosis (FO) system. The two-dimensional numerical model couples liquid flow with solute transport in the FO feed and draw channels, in the FO membrane support layer and in the biofilm developed on one or both sides of the membrane. The developed model was tested against experimental measurements at various osmotic pressure differences and in batch operation without and with the presence of biofilm on the membrane active layer. Numerical studies explored the effect of biofilm properties (thickness, hydraulic permeability and porosity), biofilm membrane surface coverage, and biofilm location on salt external concentration polarization and on the permeation flux. The numerical simulations revealed that (i) when biofouling occurs, external concentration polarization became important, (ii) the biofilm hydraulic permeability and membrane surface coverage have the highest impact on water flux, and (iii) the biofilm formed in the draw channel impacts the process performance more than when formed in the feed channel. The proposed mathematical model helps to understand the impact of biofouling in FO membrane systems and to develop possible strategies to reduce and control biofouling.

  15. Spin glass transition in canonical AuFe alloys: A numerical study

    NASA Astrophysics Data System (ADS)

    Zhang, Kai-Cheng; Li, Yong-Feng; Liu, Gui-Bin; Zhu, Yan

    2012-05-01

    Although spin glass transitions have long been observed in diluted magnetic alloys, e.g. AuFe and CuMn alloys, previous numerical studies are not completely consistent with the experiment results. The abnormal critical exponents of the alloys remain still puzzling. By employing parallel tempering algorithm with finite-size scaling analysis, we investigated the phase transitions in canonical AuFe alloys. Our results strongly support that spin glass transitions occur at finite temperatures in the alloys. The calculated critical exponents agree well with those obtained from experiments.

  16. Comparison between Experimental and Numerical Studies of a Reflex Triode

    DTIC Science & Technology

    2005-06-01

    This paper presents a comparison of experimental and simulated results of a reflex triode driven by a compact Marx system. The experimental setup...consists of a Marx system and a reflex triode together with a short output waveguide. A parametric study has been performed. The diagnostics used include...particle-in-cell simulation code MAGIC is used to numerically study the system described above. A 1D model of the Marx system has been designed and this is

  17. Numerical Algorithm Based on Haar-Sinc Collocation Method for Solving the Hyperbolic PDEs

    PubMed Central

    Javadi, H. H. S.; Navidi, H. R.

    2014-01-01

    The present study investigates the Haar-Sinc collocation method for the solution of the hyperbolic partial telegraph equations. The advantages of this technique are that not only is the convergence rate of Sinc approximation exponential but the computational speed also is high due to the use of the Haar operational matrices. This technique is used to convert the problem to the solution of linear algebraic equations via expanding the required approximation based on the elements of Sinc functions in space and Haar functions in time with unknown coefficients. To analyze the efficiency, precision, and performance of the proposed method, we presented four examples through which our claim was confirmed. PMID:25485295

  18. Numerical Model Studies of the Martian Mesoscale Circulations

    NASA Technical Reports Server (NTRS)

    Segal, Moti; Arritt, Raymond W.

    1997-01-01

    The study objectives were to evaluate by numerical modeling various possible mesoscale circulation on Mars and related atmospheric boundary layer processes. The study was in collaboration with J. Tillman of the University of Washington (who supported the study observationally). Interaction has been made with J. Prusa of Iowa State University in numerical modeling investigation of dynamical effects of topographically-influenced flow. Modeling simulations included evaluations of surface physical characteristics on: (i) the Martian atmospheric boundary layer and (ii) their impact on thermally and dynamically forced mesoscale flows. Special model evaluations were made in support of selection of the Pathfinder landing sites. J. Tillman's finding of VL-2 inter-annual temperature difference was followed by model simulations attempting to point out the forcing for this feature. Publication of the results in the reviewed literature in pending upon completion of the manuscripts in preparation as indicated later.

  19. Study on Privacy Protection Algorithm Based on K-Anonymity

    NASA Astrophysics Data System (ADS)

    FeiFei, Zhao; LiFeng, Dong; Kun, Wang; Yang, Li

    Basing on the study of K-Anonymity algorithm in privacy protection issue, this paper proposed a "Degree Priority" method of visiting Lattice nodes on the generalization tree to improve the performance of K-Anonymity algorithm. This paper also proposed a "Two Times K-anonymity" methods to reduce the information loss in the process of K-Anonymity. Finally, we used experimental results to demonstrate the effectiveness of these methods.

  20. Numerical study on 3D composite morphing actuators

    NASA Astrophysics Data System (ADS)

    Oishi, Kazuma; Saito, Makoto; Anandan, Nishita; Kadooka, Kevin; Taya, Minoru

    2015-04-01

    There are a number of actuators using the deformation of electroactive polymer (EAP), where fewer papers seem to have focused on the performance of 3D morphing actuators based on the analytical approach, due mainly to their complexity. The present paper introduces a numerical analysis approach on the large scale deformation and motion of a 3D half dome shaped actuator composed of thin soft membrane (passive material) and EAP strip actuators (EAP active coupon with electrodes on both surfaces), where the locations of the active EAP strips is a key parameter. Simulia/Abaqus Static and Implicit analysis code, whose main feature is the high precision contact analysis capability among structures, are used focusing on the whole process of the membrane to touch and wrap around the object. The unidirectional properties of the EAP coupon actuator are used as input data set for the material properties for the simulation and the verification of our numerical model, where the verification is made as compared to the existing 2D solution. The numerical results can demonstrate the whole deformation process of the membrane to wrap around not only smooth shaped objects like a sphere or an egg, but also irregularly shaped objects. A parametric study reveals the proper placement of the EAP coupon actuators, with the modification of the dome shape to induce the relevant large scale deformation. The numerical simulation for the 3D soft actuators shown in this paper could be applied to a wider range of soft 3D morphing actuators.

  1. A computational study of routing algorithms for realistic transportation networks

    SciTech Connect

    Jacob, R.; Marathe, M.V.; Nagel, K.

    1998-12-01

    The authors carry out an experimental analysis of a number of shortest path (routing) algorithms investigated in the context of the TRANSIMS (Transportation Analysis and Simulation System) project. The main focus of the paper is to study how various heuristic and exact solutions, associated data structures affected the computational performance of the software developed especially for realistic transportation networks. For this purpose the authors have used Dallas Fort-Worth road network with very high degree of resolution. The following general results are obtained: (1) they discuss and experimentally analyze various one-one shortest path algorithms, which include classical exact algorithms studied in the literature as well as heuristic solutions that are designed to take into account the geometric structure of the input instances; (2) they describe a number of extensions to the basic shortest path algorithm. These extensions were primarily motivated by practical problems arising in TRANSIMS and ITS (Intelligent Transportation Systems) related technologies. Extensions discussed include--(i) time dependent networks, (ii) multi-modal networks, (iii) networks with public transportation and associated schedules. Computational results are provided to empirically compare the efficiency of various algorithms. The studies indicate that a modified Dijkstra`s algorithm is computationally fast and an excellent candidate for use in various transportation planning applications as well as ITS related technologies.

  2. Experimental study and numerical simulation of laser beams propagation through the turbulent aerojet.

    PubMed

    Sirazetdinov, Vladimir S

    2008-03-01

    A detailed experimental study of spatial characteristics for laser beams propagating through the turbulent aerojet has been performed. The obtained results for radiation wavelengths of 0.53, 1.06, and 10.6 microm were used for the development of the numerical mathematical model for beam propagation through an extreme turbulent medium. The combination of parameters and algorithms for the numerical model was determined, which made it possible to obtain computational laser beam spatial characteristics that agreed quite well with the experimental data. Good agreement between the results points to the possibility, in principle, to regard the central jet area as a medium locally homogeneous in the statistical sense and anisotropic on the turbulent outer scales.

  3. Attosecond lighthouses in gases: A theoretical and numerical study

    NASA Astrophysics Data System (ADS)

    Auguste, T.; Gobert, O.; Ruchon, T.; Quéré, F.

    2016-03-01

    We present an extensive theoretical and numerical study of the attosecond lighthouse effect in gases. We study how this scheme impacts the spatiotemporal structure of the driving laser field all along the generation medium, and show that this can modify the phase matching relation governing high-harmonic generation (HHG) in gases. We then present a set of numerical simulations performed to test the robustness of the effect against variations of HHG parameters, and to identify possible solutions for relaxing the constraint on the driving laser pulse duration. We thus demonstrate that the lighthouse effect can actually be achieved with laser pulses consisting of up to ˜8 optical periods available from current lasers without postcompression, for instance by using an appropriate combination of 800 - and 1600 -nm wavelength fields.

  4. Numerical study of fractional nonlinear Schrödinger equations

    PubMed Central

    Klein, Christian; Sparber, Christof; Markowich, Peter

    2014-01-01

    Using a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schrödinger-type equations involving a fractional Laplacian in an one-dimensional case. By an appropriate choice of the dispersive exponent, both mass and energy sub- and supercritical regimes can be identified. This allows us to study the possibility of finite time blow-up versus global existence, the nature of the blow-up, the stability and instability of nonlinear ground states and the long-time dynamics of solutions. The latter is also studied in a semiclassical setting. Moreover, we numerically construct ground state solutions of the fractional nonlinear Schrödinger equation. PMID:25484604

  5. Numerical Studies of a Fluidic Diverter for Flow Control

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Kuczmarski, Maria A.; Culley, Dennis E.; Raghu, Surya

    2009-01-01

    The internal flow structure in a specific fluidic diverter is studied over a range from low subsonic to sonic inlet conditions by a time-dependent numerical analysis. The understanding will aid in the development of fluidic diverters with minimum pressure losses and advanced designs of flow control actuators. The velocity, temperature and pressure fields are calculated for subsonic conditions and the self-induced oscillatory behavior of the flow is successfully predicted. The results of our numerical studies have excellent agreement with our experimental measurements of oscillation frequencies. The acoustic speed in the gaseous medium is determined to be a key factor for up to sonic conditions in governing the mechanism of initiating the oscillations as well as determining its frequency. The feasibility of employing plasma actuation with a minimal perturbation level is demonstrated in steady-state calculations to also produce oscillation frequencies of our own choosing instead of being dependent on the fixed-geometry fluidic device.

  6. Numerical studies on boundary effects on the FPU paradox

    NASA Astrophysics Data System (ADS)

    Bambusi, D.; Muraro, D.; Penati, T.

    2008-03-01

    We study numerically the dynamics of a chain of particles subjected to an on site restoring nonlinear force and a first neighbor harmonic coupling. We excite the first linear mode and investigate the distribution of the average harmonic energies at metastable regime, in the spirit of Fermi Pasta Ulam experiment. The limit distribution turns out to strongly depend on the boundary conditions. A theoretical discussion of the phenomenon is also given.

  7. Numerical study of multicomponent droplet vaporization at near critical conditions

    NASA Technical Reports Server (NTRS)

    Hsieh, Kwang-Chung; Shuen, Jian-Shun; Yang, Vigor

    1988-01-01

    A comprehensive numerical analysis of multicomponent droplet vaporization at near critical conditions has been carried out. The model is based on the full time-dependent conservation equations and accommodates various important high-pressure phenomena. As an example, the case involving a two-component (n-pentane and n-octane) fuel droplet in nitrogen gas is studied. The influences of transient effects, surface regression, ambient gas solubility, and phase-equilibrium relations on vaporization mechanisms are examined in detail.

  8. Experimental and numerical study on fragmentation of steel projectiles

    NASA Astrophysics Data System (ADS)

    Råkvaag, K. G.; Børvik, T.; Hopperstad, O. S.; Westermann, I.

    2012-08-01

    A previous experimental study on penetration and perforation of circular Weldox 460E target plates with varying thicknesses struck by blunt-nose projectiles revealed that fragmentation of the projectile occurred if the target thickness or impact velocity exceeded a certain value. Thus, numerical simulations that do not account for fragmentation during impact can underestimate the perforation resistance of protective structures. Previous numerical studies have focused primarily on the target plate behaviour. This study considers the behaviour of the projectile and its possible fragmentation during impact. Hardened steel projectiles were launched at varying velocities in a series of Taylor tests. The impact events were captured using a high-speed camera. Fractography of the fragmented projectiles showed that there are several fracture mechanisms present during the fragmentation process. Tensile tests of the projectile material revealed that the hardened material has considerable variations in yield stress and fracture stress and strain. In the finite element model, the stress-strain behaviour from tensile tests was used to model the projectile material with solid elements and the modified Johnson-Cook constitutive relation. Numerical simulations incorporating the variations in material properties are capable of reproducing the experimental fracture patterns, albeit the predicted fragmentation velocities are too low.

  9. Numerical Algorithms & Parallel Tasking.

    DTIC Science & Technology

    1985-09-12

    senior personnel have been supported under this contract: Virginia Klema, principal investigator (3.5 months), Elizabeth Ducot (2.25 months), and George...CONCURRENT ENVIRONMENT Elizabeth R. Ducot The purpose of this note is twofold. The first is to present the mechanisms by which a user activates and describes

  10. Static Analysis Numerical Algorithms

    DTIC Science & Technology

    2016-04-01

    abstract domain provides (1) an abstract type to represent concrete program states, and (2) abstract functions to represent the effect of concrete ...state-changing actions. Rather than simulate the concrete program, abstract interpretation uses abstract domains to construct and simulate an...On the other hand, the abstraction does allow us to cheaply compute some kinds of information about the concrete program. In the example, we can

  11. A numerical study on liquid charging inside electrostatic atomizers

    NASA Astrophysics Data System (ADS)

    Kashir, Babak; Perri, Anthony; Sankaran, Abhilash; Staszel, Christopher; Yarin, Alexander; Mashayek, Farzad

    2016-11-01

    The charging of the dielectric liquid inside an electrostatic atomizer is studied numerically by developing codes based on the OpenFOAM platform. Electrostatic atomization is an appealing technology in painting, fuel injection and oil coating systems due to improved particle-size distribution, enhanced controlability of droplets' trajectories and lower power consumption. The numerical study is conducted concurrently to an experimental investigation to facilitate the validation and deliver feedback for further development. The atomizer includes a pin electrode that is placed at the center of a converging chamber. The chamber orifice is located at a known distance from the electrode tip. The pin electrode is connected to a high voltage that leads to the charging of the liquid. In the present work, the theoretical foundations of separated treatment of the polarized layer and the electronuetral bulk flow are set by describing the governing equations, relevant boundary conditions and the matching condition between these two domains. The resulting split domains are solved numerically to find the distribution of velocity and electrostatic fields over the specified regions. National Science Foundation Award Number: 1505276.

  12. Numerical Study on Tsunami Hazard Mitigation Using a Submerged Breakwater

    PubMed Central

    Yoo, Jeseon; Han, Sejong; Cho, Yong-Sik

    2014-01-01

    Most coastal structures have been built in surf zones to protect coastal areas. In general, the transformation of waves in the surf zone is quite complicated and numerous hazards to coastal communities may be associated with such phenomena. Therefore, the behavior of waves in the surf zone should be carefully analyzed and predicted. Furthermore, an accurate analysis of deformed waves around coastal structures is directly related to the construction of economically sound and safe coastal structures because wave height plays an important role in determining the weight and shape of a levee body or armoring material. In this study, a numerical model using a large eddy simulation is employed to predict the runup heights of nonlinear waves that passed a submerged structure in the surf zone. Reduced runup heights are also predicted, and their characteristics in terms of wave reflection, transmission, and dissipation coefficients are investigated. PMID:25215334

  13. Numerical and Experimental Study on Unsteady Shedding of Partial Cavitation

    NASA Astrophysics Data System (ADS)

    Ji, Bin; Luo, Xianwu; Wu, Yulin; Peng, Xiaoxing; Xu, Hongyuan

    Periodically unsteady shedding of partial cavity and forming of cavitation cloud have a great influence on hydraulic performances and cavitation erosion for ship propellers and hydro machines. In the present study, the unsteady cavitating flow around a hydrofoil has been calculated by using the single fluid approach with a developed cavitation mass transfer expression based on the vaporization and condensation of the fluid. The numerical simulation depicted the unsteady shedding of partial cavity, such as the process of cavity developing, breaking off and collapsing in the downstream under the steady incoming flow condition. It is noted that good agreement between the numerical results and that of experiment conducted at a cavitation tunnel is achieved. The cavitating flow field indicates that the cavity shedding was mainly caused by the re-entrant jet near cavity trailing edge, which was also clearly recorded by high-speed photographing.

  14. Numerical Relativity as a tool for studying the Early Universe

    NASA Astrophysics Data System (ADS)

    Garrison, David

    2013-04-01

    Numerical simulations are becoming a more effective tool for conducting detailed investigations into the evolution of our universe. In this presentation, I show how the framework of numerical relativity can be used for studying cosmological models. We are working to develop a large-scale simulation of the dynamical processes in the early universe. These take into account interactions of dark matter, scalar perturbations, gravitational waves, magnetic fields and a turbulent plasma. The code described in this report is a GRMHD code based on the Cactus framework and is structured to utilize one of several different differencing methods chosen at run-time. It is being developed and tested on the Texas Learning and Computation Center's Xanadu cluster.

  15. Numerical Study of Tokamak Equilibrium with Toroidal Flow on EAST

    NASA Astrophysics Data System (ADS)

    Ren, Qilong; Zhang, Cheng

    2006-09-01

    The effect of the toroidal flow on the equilibrium of tokamak plasmas is a sensitive point for high performance plasma and its precise control. In this paper the effect is studied numerically using the EFIT (Equilibrium Fitting) code on EAST (Experimental Advanced Superconducting Tokamak). Firstly, the numerical calculation exhibits a clear outward shift of pressure contour from the magnetic surfaces in the plasma core and the shift grows with the increase of the toroidal velocity. The peak shift of 8% is observed when the ratio between the plasma velocity and the Alfvén speed equals to 0.15. Secondly, it is shown that the magnetic surfaces shift outwards from those without flow. With a certain plasma current the safety factor on the magnetic axis decreases as the plasma flow velocity increases. The magnetic shear increases about 10% on the plasma boundary compared with the case without flow.

  16. Theoretical and numerical studies of density modulated whistlers

    NASA Astrophysics Data System (ADS)

    Eliasson, B.; Shukla, P. K.

    2004-09-01

    Recently, observations from laboratory experiments, which are relevant to space observations as well, have conclusively revealed the amplitude modulation of whistlers by low-frequency perturbations. Our objective here is to present theoretical and simulation studies of amplitude modulated whistler packets on account of their interaction with background low-frequency density perturbations that are reinforced by the whistler ponderomotive force. Specifically, we show that nonlinear interactions between whistlers and finite amplitude density perturbations are governed by a nonlinear Schrödinger equation for the modulated whistlers, and a set of equations for arbitrary large amplitude density perturbations in the presence of the whistler ponderomotive force. The governing equations are solved numerically to show the existence of large scale density perturbations that are self-consistently created by localized modulated whistler wavepackets. Our numerical results are found to be in good agreement with experimental results, as well as have relevance to observations from magnetized space plasmas.

  17. New numerical method to study phase transitions and its applications

    SciTech Connect

    Lee, Jooyoung; Kosterlitz, J.M.

    1991-11-01

    We present a powerful method of identifying the nature of transitions by numerical simulation of finite systems. By studying the finite size scaling properties of free energy barrier between competing states, we can identify unambiguously a weak first order transition even when accessible system sizes are L/{xi} < 0.05 as in the five state Potts model in two dimensions. When studying a continuous phase transition we obtain quite accurate estimates of critical exponents by treating it as a field driven first order transition. The method has been successfully applied to various systems.

  18. Numerical study of transient flow phenomena in shock tunnels

    NASA Technical Reports Server (NTRS)

    Tokarcik-Polsky, Susan; Cambier, Jean-Luc

    1994-01-01

    Computational fluid dynamics (CFD) was used to study some transient flow features that can occur during the startup process of a shoch tunnel. The investigation concentrated on two areas: (1) the flow near the endwall of the driven tube during shock reflection and (2) the transient flow in the nozzle. The driven tube calculations were inviscid and focused on the study of a vortex system that was seen to form at the driven tube's axis of symmetry. The nozzle flow calculations examined viscous and inviscid effects during nozzle startup. The CFD solutions of the nozzle flows were compared with experimental data to demonstrate the effectiveness of the numerical analysis.

  19. Feasibility study for a numerical aerodynamic simulation facility: Summary

    NASA Technical Reports Server (NTRS)

    Lincoln, N. R.

    1979-01-01

    The Ames Research Center of NASA is engaged in the development and investigation of numerical methods and computer technologies to be employed in conjunction with physical experiments, particularly utilizing wind tunnels in the furtherance of the field of aircraft and aerodynamic body design. Several studies, aimed primarily at the areas of development and production of extremely high-speed computing facilities, were conducted. The studies focused on evaluating the aspects of feasibility, reliability, costs, and practicability of designing, constructing, and bringing into effect production of a special-purpose system. An executive summary of the activities for this project is presented in this volume.

  20. Theoretical and Numerical Study of Nonlinear Phononic Crystals

    NASA Astrophysics Data System (ADS)

    Guerder, Pierre-Yves

    This work is dedicated to the theoretical and numerical study of nonlinear phononic crystals. The studied nonlinearities are those due to the second (quadratic) and third (cubic) order elastic constants of the materials that constitute the crystals. Nonlinear effects are studied by the means of finite element methods, used to simulate the propagation of an elastic wave through the crystals. A first research project concerns the study of a bone structure, namely the dispersion of elastic waves in a structure composed of collagen and hydroxy apatite alternate constituent layers. Simulations showed that it exists a strong link between bones hydration and their ability to dissipate the energy. The second study relates to an elastic resonator. A structure composed of steel inclusions in a silica matrix shows a switch behavior when the cubic nonlinearities of steel are taken into account. This strong nonlinear effect appears when the amplitude of the incident wave reaches a threshold. A full analytical model is provided. The last study demonstrates the design of composite materials with both strong cubic nonlinearities and weak quadratic nonlinearities. The derivation of the mixing laws of the elastic parameters of a nonlinear material inside a linear one is performed up to order three. Equations show a strong amplification of the nonlinear parameters of the material for some concentrations. Numerical simulations allow to conclude that the above mentioned resonator can be produced.

  1. Numerical Study of Aeroacoustic Sound on Performance of Bladeless Fan

    NASA Astrophysics Data System (ADS)

    Jafari, Mohammad; Sojoudi, Atta; Hafezisefat, Parinaz

    2017-03-01

    Aeroacoustic performance of fans is essential due to their widespread application. Therefore, the original aim of this paper is to evaluate the generated noise owing to different geometric parameters. In current study, effect of five geometric parameters was investigated on well performance of a Bladeless fan. Airflow through this fan was analyzed simulating a Bladeless fan within a 2 m×2 m×4 m room. Analysis of the flow field inside the fan and evaluating its performance were obtained by solving conservations of mass and momentum equations for aerodynamic investigations and FW-H noise equations for aeroacoustic analysis. In order to design Bladeless fan Eppler 473 airfoil profile was used as the cross section of this fan. Five distinct parameters, namely height of cross section of the fan, outlet angle of the flow relative to the fan axis, thickness of airflow outlet slit, hydraulic diameter and aspect ratio for circular and quadratic cross sections were considered. Validating acoustic code results, we compared numerical solution of FW-H noise equations for NACA0012 with experimental results. FW-H model was selected to predict the noise generated by the Bladeless fan as the numerical results indicated a good agreement with experimental ones for NACA0012. To validate 3-D numerical results, the experimental results of a round jet showed good agreement with those simulation data. In order to indicate the effect of each mentioned parameter on the fan performance, SPL and OASPL diagrams were illustrated.

  2. Numerical study of forced convective heat transfer around airships

    NASA Astrophysics Data System (ADS)

    Dai, Qiumin; Fang, Xiande

    2016-02-01

    Forced convective heat transfer is an important factor that affects the thermal characteristics of airships. In this paper, the steady state forced convective heat transfer around an ellipsoid is numerically investigated. The numerical simulation is carried out by commercial computational fluid dynamic (CFD) software over the extended Re range from 20 to 108 and the aspect ratio from 2 to 4. Based on the regression and optimization with software, a new piecewise correlation of the Nusselt number at constant wall temperature for ellipsoid is proposed, which is suitable for applications to airships and other ellipse shaped bodies such as elliptical balloons. The thermal characteristics of a stratospheric airship in midsummer located in the north hemisphere are numerical studied. The helium temperature predicated using the new correlation is compared to those predicted by correlations applicable for spheres and flat plates. The results show that the helium temperature obtained using the new correlation at noon is about 5.4 K lower than that using the correlation of spheres and about 2.1 K higher than that of flat plates.

  3. Numerical study of the Azov Sea level seiche oscillations

    NASA Astrophysics Data System (ADS)

    Matishov, G. G.; Inzhebeikin, Yu. I.

    2009-08-01

    Seiche oscillations of the Azov Sea level are studied on the basis of the developed two-dimensional numerical hydrodynamic model grounded on the shallow water theory and recent data on the morphometric characteristics of the Sea of Azov. Frequency and spatial characteristics of the first five modes corresponding to seiche oscillations of the Azov Sea level are computed. It is shown that the frequency and spatial characteristics of the first five modes obtained for the Sea of Azov level changes correspond to seiche oscillations. The calculated parameters are compared with the field observations, which show their realistic character.

  4. Numerical study of nanoparticle formation in a free turbulent jet

    NASA Astrophysics Data System (ADS)

    Gilfanov, A. K.; Koch, W.; Zaripov, S. K.; Rybdylova, O. D.

    2016-11-01

    Di-ethyl-hexyl-sebacate (DEHS) aerosol nanoparticle formation in a free turbulent jet as a result of nucleation, condensation and coagulation is studied using fluid flow simulation and the method of moments under the assumption of lognormal particle size distribution. The case of high nucleation rates and the coagulation-controlled growth of particles is considered. The formed aerosol performance is jet is numerically investigated for the various nozzle diameters and two approximations of the saturation pressure dependence on the temperature. It is demonstrated that a higher polydispersity of the aerosol is obtained for smaller nozzle diameters.

  5. Numerical study of Q-ball formation in gravity mediation

    SciTech Connect

    Hiramatsu, Takashi; Kawasaki, Masahiro; Takahashi, Fuminobu E-mail: kawasaki@icrr.u-tokyo.ac.jp

    2010-06-01

    We study Q-ball formation in the expanding universe on 1D, 2D and 3D lattice simulations. We obtain detailed Q-ball charge distributions, and find that the distribution is peaked at Q{sup 3D}{sub peak} ≅ 1.9 × 10{sup −2}(|Φ{sub in}|/m){sup 2}, which is greater than the existing result by about 60%. Based on the numerical simulations, we discuss how the Q-ball formation proceeds. Also we make a comment on possible deviation of the charge distributions from what was conjectured in the past.

  6. Numerical study of localization length in disordered graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Shokri, A. A.; Khoeini, F.

    2012-06-01

    In this work, we study quantum transport properties of a defective graphene nanoribbon (DGNR) attached to two semi-infinite metallic armchair graphene nanoribbon (AGNR) leads. A line of defects is considered in the GNR device with different configurations, which affects on the energy spectrum of the system. The calculations are based on the tight-binding model and Green's function method, in which localization length of the system is investigated, numerically. By controlling disorder concentration, the extended states can be separated from the localized states in the system. Our results may have important applications for building blocks in the nano-electronic devices based on GNRs.

  7. A numerical and experimental study of confined swirling jets

    NASA Technical Reports Server (NTRS)

    Nikjooy, M.; Mongia, H. C.; Samuelsen, G. S.; Mcdonell, V. G.

    1989-01-01

    A numerical and experimental study of a confined strong swirling flow is presented. Detailed velocity measurements are made using a two-component laser Doppler velocimeter (LDV) technique. Computations are performed using a differential second-moment (DSM) closure. The effect of inlet dissipation rate on calculated mean and turbulence fields is investigated. Various model constants are employed in the pressure-strain model to demonstrate their influences on the predicted results. Finally, comparison of the DSM calculations with the algebraic second-monent (ASM) closure results shows that the DSM is better suited for complex swirling flow analysis.

  8. Numerical study of river bedrock incision by bedload sediment transport.

    NASA Astrophysics Data System (ADS)

    Aubert, Guilhem; Langlois, Vincent

    2013-04-01

    Modelling approaches of bedload sediment transport have long been restricted to the detachment-limited and transport-limited regimes. However recent experimental and numerical studies have revealed the crucial influence of sediment load on the rate of bedrock incision [Sklar and Dietrich (2001), Lague(2010)] by abrasion which results in the competition between the tool effect and the cover effect. We present a numerical study of the interactions between a bedload layer and an underlying bedrock. We use molecular dynamics to simulate the motion of solid particles entrained by a laminar viscous flow. These simulations are based on a combination of discrete and continuous approaches. Sediment particles are modelled by hard spheres interacting through simple contact forces, whereas the fluid flow is described by a "mean field" model. This allows us to compute individual particle trajectories inside the active layer and therefore to predict the transfer of energy between grains and the bedrock. The effect of three control parameters has been studied : sediment density, flow discharge and bedrock rugosity. We determine the phase space domain where the system reaches a saltation regime and calculate the resulting erosion rate of the bedrock. Our model exhibits a competition between tool and cover effects. The results of this mechanistic approach are compared with available experimental data and existing stochastic models.

  9. PROBABILISTIC SIMULATION OF SUBSURFACE FLUID FLOW: A STUDY USING A NUMERICAL SCHEME

    SciTech Connect

    Buscheck, Timothy Eric

    1980-03-01

    There has been an increasing interest in probabilistic modeling of hydrogeologic systems. The classical approach to groundwater modeling has been deterministic in nature, where individual layers and formations are assumed to be uniformly homogeneous. Even in the case of complex heterogeneous systems, the heterogeneities describe the differences in parameter values between various layers, but not within any individual layer. In a deterministic model a single-number is assigned to each hydrogeologic parameter, given a particular scale of interest. However, physically there is no such entity as a truly uniform and homogeneous unit. Single-number representations or deterministic predictions are subject to uncertainties. The approach used in this work models such uncertainties with probabilistic parameters. The resulting statistical distributions of output variables are analyzed. A numerical algorithm, based on axiomatic principles of probability theory, performs arithmetic operations between probability distributions. Two subroutines are developed from the algorithm and incorporated into the computer program TERZAGI, which solves groundwater flow problems in saturated, multi-dimensional systems. The probabilistic computer program is given the name, PROGRES. The algorithm has been applied to study the following problems: one-dimensional flow through homogeneous media, steady-state and transient flow conditions, one-dimensional flow through heterogeneous media, steady-state and transient flow conditions, and two-dimensional steady-stte flow through heterogeneous media. The results are compared with those available in the literature.

  10. Study of hardware implementations of fast tracking algorithms

    NASA Astrophysics Data System (ADS)

    Song, Z.; De Lentdecker, G.; Dong, J.; Huang, G.; Léonard, A.; Robert, F.; Wang, D.; Yang, Y.

    2017-02-01

    Real-time track reconstruction at high event rates is a major challenge for future experiments in high energy physics. To perform pattern-recognition and track fitting, artificial retina or Hough transformation methods have been introduced in the field which have to be implemented in FPGA firmware. In this note we report on a case study of a possible FPGA hardware implementation approach of the retina algorithm based on a Floating-Point core. Detailed measurements with this algorithm are investigated. Retina performance and capabilities of the FPGA are discussed along with perspectives for further optimization and applications.

  11. Study of genetic direct search algorithms for function optimization

    NASA Technical Reports Server (NTRS)

    Zeigler, B. P.

    1974-01-01

    The results are presented of a study to determine the performance of genetic direct search algorithms in solving function optimization problems arising in the optimal and adaptive control areas. The findings indicate that: (1) genetic algorithms can outperform standard algorithms in multimodal and/or noisy optimization situations, but suffer from lack of gradient exploitation facilities when gradient information can be utilized to guide the search. (2) For large populations, or low dimensional function spaces, mutation is a sufficient operator. However for small populations or high dimensional functions, crossover applied in about equal frequency with mutation is an optimum combination. (3) Complexity, in terms of storage space and running time, is significantly increased when population size is increased or the inversion operator, or the second level adaptation routine is added to the basic structure.

  12. The Powers and Pitfalls of Algorithmic Knowledge: A Case Study

    ERIC Educational Resources Information Center

    Ebby, Caroline Brayer

    2005-01-01

    This study examines one child's use of computational procedures over a period of 3 years in an urban elementary school where teachers were using a standards-based curriculum. From a sociocultural perspective, the use of standard algorithms to solve mathematical problems is viewed as a cultural tool that both enables and constrains particular…

  13. Numerical Study of Low Emission Gas Turbine Combustor Concepts

    NASA Technical Reports Server (NTRS)

    Yang, Song-Lin

    2002-01-01

    To further reduce pollutant emissions, such as CO, NO(x), UHCs, etc., in the next few decades, innovative concepts of gas turbine combustors must be developed. Several concepts, such as the LIPP (Lean- Premixed- Prevaporized), RQL (Rich-Burn Quick-Quench Lean-Burn), and LDI (Lean-Direct-Injection), have been under study for many years. To fully realize the potential of these concepts, several improvements, such as inlet geometry, air swirler, aerothermochemistry control, fuel preparation, fuel injection and injector design, etc., must be made, which can be studied through the experimental method and/or the numerical technique. The purpose of this proposal is to use the CFD technique to study, and hence, to guide the design process for low emission gas turbine combustors. A total of 13 technical papers have been (or will be) published.

  14. A subjective study to evaluate video quality assessment algorithms

    NASA Astrophysics Data System (ADS)

    Seshadrinathan, Kalpana; Soundararajan, Rajiv; Bovik, Alan C.; Cormack, Lawrence K.

    2010-02-01

    Automatic methods to evaluate the perceptual quality of a digital video sequence have widespread applications wherever the end-user is a human. Several objective video quality assessment (VQA) algorithms exist, whose performance is typically evaluated using the results of a subjective study performed by the video quality experts group (VQEG) in 2000. There is a great need for a free, publicly available subjective study of video quality that embodies state-of-the-art in video processing technology and that is effective in challenging and benchmarking objective VQA algorithms. In this paper, we present a study and a resulting database, known as the LIVE Video Quality Database, where 150 distorted video sequences obtained from 10 different source video content were subjectively evaluated by 38 human observers. Our study includes videos that have been compressed by MPEG-2 and H.264, as well as videos obtained by simulated transmission of H.264 compressed streams through error prone IP and wireless networks. The subjective evaluation was performed using a single stimulus paradigm with hidden reference removal, where the observers were asked to provide their opinion of video quality on a continuous scale. We also present the performance of several freely available objective, full reference (FR) VQA algorithms on the LIVE Video Quality Database. The recent MOtion-based Video Integrity Evaluation (MOVIE) index emerges as the leading objective VQA algorithm in our study, while the performance of the Video Quality Metric (VQM) and the Multi-Scale Structural SIMilarity (MS-SSIM) index is noteworthy. The LIVE Video Quality Database is freely available for download1 and we hope that our study provides researchers with a valuable tool to benchmark and improve the performance of objective VQA algorithms.

  15. Analytical and Numerical Studies of Several Fluid Mechanical Problems

    NASA Astrophysics Data System (ADS)

    Kong, D. L.

    2014-03-01

    In this thesis, three parts, each with several chapters, are respectively devoted to hydrostatic, viscous, and inertial fluids theories and applications. Involved topics include planetary, biological fluid systems, and high performance computing technology. In the hydrostatics part, the classical Maclaurin spheroids theory is generalized, for the first time, to a more realistic multi-layer model, establishing geometries of both the outer surface and the interfaces. For one of its astrophysical applications, the theory explicitly predicts physical shapes of surface and core-mantle-boundary for layered terrestrial planets, which enables the studies of some gravity problems, and the direct numerical simulations of dynamo flows in rotating planetary cores. As another application of the figure theory, the zonal flow in the deep atmosphere of Jupiter is investigated for a better understanding of the Jovian gravity field. An upper bound of gravity field distortions, especially in higher-order zonal gravitational coefficients, induced by deep zonal winds is estimated firstly. The oblate spheroidal shape of an undistorted Jupiter resulting from its fast solid body rotation is fully taken into account, which marks the most significant improvement from previous approximation based Jovian wind theories. High viscosity flows, for example Stokes flows, occur in a lot of processes involving low-speed motions in fluids. Microorganism swimming is such a typical case. A fully three dimensional analytic solution of incompressible Stokes equation is derived in the exterior domain of an arbitrarily translating and rotating prolate spheroid, which models a large family of microorganisms such as cocci bacteria. The solution is then applied to the magnetotactic bacteria swimming problem, and good consistency has been found between theoretical predictions and laboratory observations of the moving patterns of such bacteria under magnetic fields. In the analysis of dynamics of planetary

  16. Numerical Study of Pyrolysis of Biomass in Fluidized Beds

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Lathouwers, Danny

    2003-01-01

    A report presents a numerical-simulation study of pyrolysis of biomass in fluidized-bed reactors, performed by use of the mathematical model described in Model of Fluidized Bed Containing Reacting Solids and Gases (NPO-30163), which appears elsewhere in this issue of NASA Tech Briefs. The purpose of the study was to investigate the effect of various operating conditions on the efficiency of production of condensable tar from biomass. The numerical results indicate that for a fixed particle size, the fluidizing-gas temperature is the foremost parameter that affects the tar yield. For the range of fluidizing-gas temperatures investigated, and under the assumption that the pyrolysis rate exceeds the feed rate, the optimum steady-state tar collection was found to occur at 750 K. In cases in which the assumption was not valid, the optimum temperature for tar collection was found to be only slightly higher. Scaling up of the reactor was found to exert a small negative effect on tar collection at the optimal operating temperature. It is also found that slightly better scaling is obtained by use of shallower fluidized beds with greater fluidization velocities.

  17. Numerical Study of Rotating Turbulence with External Forcing

    NASA Technical Reports Server (NTRS)

    Yeung, P. K.; Zhou, Ye

    1998-01-01

    Direct numerical simulation at 256(exp 3) resolution have been carried out to study the response of isotropic turbulence to the concurrent effects of solid-body rotation and numerical forcing at the large scales. Because energy transfer to the smaller scales is weakened by rotation, energy input from forcing gradually builds up at the large scales, causing the overall kinetic energy to increase. At intermediate wavenumbers the energy spectrum undergoes a transition from a limited k(exp -5/3) inertial range to k(exp -2) scaling recently predicted in the literature. Although the Reynolds stress tensor remains approximately isotropic and three-components, evidence for anisotropy and quasi- two-dimensionality in length scales and spectra in different velocity components and directions is strong. The small scales are found to deviate from local isotropy, primarily as a result of anisotropic transfer to the high wavenumbers. To understand the spectral dynamics of this flow we study the detailed behavior of nonlinear triadic interactions in wavenumber space. Spectral transfer in the velocity component parallel to the axis of rotation is qualitatively similar to that in non-rotating turbulence; however the perpendicular component is characterized by a greatly suppressed energy cascade at high wavenumber and a local reverse transfer at the largest scales. The broader implications of this work are briefly addressed.

  18. Experimental and numerical study of open-air active cooling

    NASA Astrophysics Data System (ADS)

    Al-Fifi, Salman Amsari

    The topic of my thesis is Experimental and Numerical Study of Open Air Active Cooling. The present research is intended to investigate experimentally and Numerically the effectiveness of cooling large open areas like stadiums, shopping malls, national gardens, amusement parks, zoos, transportation facilities and government facilities or even in buildings outdoor gardens and patios. Our cooling systems are simple cooling fans with different diameters and a mist system. This type of cooling systems has been chosen among the others to guarantee less energy consumption, which will make it the most favorable and applicable for cooling such places mentioned above. In the experiments, the main focus is to study the temperature domain as a function of different fan diameters aerodynamically similar in different heights till we come up with an empirical relationship that can determine the temperature domain for different fan diameters and for different heights of these fans. The experimental part has two stages. The first stage is devoted to investigate the maximum range of airspeed and profile for three different fan diameters and for different heights without mist, while the second stage is devoted to investigate the maximum range of temperature and profile for the three different diameter fans and for different heights with mist. The computational study is devoted to built an experimentally verified mathematical model to be used in the design and optimization of water mist cooling systems, and to compare the mathematical results to the experimental results and to get an insight of how to apply such evaporative mist cooling for different places for different conditions. In this study, numerical solution is presented based on experimental conditions, such dry bulb temperature, wet bulb temperature, relative humidity, operating pressure and fan airspeed. In the computational study, all experimental conditions are kept the same for the three fans except the fan airspeed

  19. Numerical Study of EUV Wave Phenomenon on 2009 February 13

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Zheng, Hui-Nan; Liao, Chi-Jian

    2014-01-01

    Combining the observations of STEREO satellites with the method of three-dimensional magnetohydrodynamic (MHD) numerical simulation, adopt- ing the magnetic field data of the Wilcox Solar Observatory (WSO) and the model of potential field source surface to build up the initial magnetic field in solar corona, and adding a time-varying disturbance of pressure to the active re- gion on the solar surface, the study on the event of coronal mass ejection (CME) and extreme-ultraviolet (EUV) wave happened at 05:35 UT of 2009 February 13 has been performed. It is judged from the images of COR1/STEREO-A that the front speed of this CME is about 350 km·s-1, and the angular width is about 60∘. By analyzing the running difference images of EUVI/STEREO-B at 195 ˚A, it is found that the bright toroidal wavefront is spreading toward all directions around the active region, and behind the bright toroidal wavefront is a coronal dimming area. The positions of the wavefront in four directions are taken to perform linear fittings, it is known that the EUV wave speed is 247 km·s-1, and the EUV wave speed obtained from the numerical simulation is 245 km·s-1. After the IDL visualization program has been carried out for the calculated result, the structures of the bright loop and dimming area can be seen clearly. The numerical simulation is consistent with the satellite observation, which shows that the observed EUV wave may belong to the fast magnetosonic wave.

  20. Numerical study of plasma formation from current carrying conductors

    NASA Astrophysics Data System (ADS)

    Angelova, Milena A.

    The problem of plasma formation from thick conductors driven by intense currents have practical applications in a number of high energy density (HED) fields of interest where complex interaction between conductor surfaces and megagauss magnetic fields is involved. These include: wire-array Z-pinches, magnetically accelerated flier plates, liner acceleration by magnetic field, ultrahigh magnetic field generators, high current fuses, magneto-inertial fusion (MIF), magnetically insulated transmission lines, as well as some astrophysical applications. Recent aluminum rod experiments driven by 1-MA Zebra generator at University of Nevada, Reno (UNR) have provided a benchmark for magnetohydrodynamic (MHD) modeling. The innovative 'hourglass' and 'barbell' load geometries used in the experiments made it possible to distinguish between plasma formation due to Ohmic heating, which can be studied numerically utilizing MHD codes, and plasma formation due to high electric fields, by introducing a large-diameter contact with the electrodes. This prevents nonthermal formation of plasma from being caused early in the current pulse by plasma at contacts, as occurs in simple straight-rod explosion experiments. The UNR megagauss rod experiments were modeled by employing the state-of-the-art radiation-magneto-hydrodynamic code MHRDR. Numerical simulations were performed for a wide range of rods, varying from 100 to 580 microns in radius. A "cold start" initiation was employed in order to create initial parameters close to the experimental conditions. Material properties of aluminum, crucial for such simulations, were modeled employing a set of well tested SESAME format equations-of-state (EOS), ionization, and thermal and electrical conductivity tables. The cold start initiation also allowed observation of the numerical phase transitions of the aluminum rod, from solid to liquid to vapor and finally to low density plasma as it is ohmically heated by the megaampere driving current

  1. Numerical aerodynamic simulation facility feasibility study, executive summary

    NASA Technical Reports Server (NTRS)

    1979-01-01

    There were three major issues examined in the feasibility study. First, the ability of the proposed system architecture to support the anticipated workload was evaluated. Second, the throughput of the computational engine (the flow model processor) was studied using real application programs. Third, the availability, reliability, and maintainability of the system were modeled. The evaluations were based on the baseline systems. The results show that the implementation of the Numerical Aerodynamic Simulation Facility, in the form considered, would indeed be a feasible project with an acceptable level of risk. The technology required (both hardware and software) either already exists or, in the case of a few parts, is expected to be announced this year.

  2. Numerical Study of Unsteady Flow in Centrifugal Cold Compressor

    NASA Astrophysics Data System (ADS)

    Zhang, Ning; Zhang, Peng; Wu, Jihao; Li, Qing

    In helium refrigeration system, high-speed centrifugal cold compressor is utilized to pumped gaseous helium from saturated liquid helium tank at low temperature and low pressure for producing superfluid helium or sub-cooled helium. Stall and surge are common unsteady flow phenomena in centrifugal cold compressors which severely limit operation range and impact efficiency reliability. In order to obtain the installed range of cold compressor, unsteady flow in the case of low mass flow or high pressure ratio is investigated by the CFD. From the results of the numerical analysis, it can be deduced that the pressure ratio increases with the decrease in reduced mass flow. With the decrease of the reduced mass flow, backflow and vortex are intensified near the shroud of impeller. The unsteady flow will not only increase the flow loss, but also damage the compressor. It provided a numerical foundation of analyzing the effect of unsteady flow field and reducing the flow loss, and it is helpful for the further study and able to instruct the designing.

  3. MAGNETIZATION DEGREE OF GAMMA-RAY BURST FIREBALLS: NUMERICAL STUDY

    SciTech Connect

    Harrison, Richard; Kobayashi, Shiho

    2013-08-01

    The relative strength between forward and reverse shock emission in early gamma-ray burst (GRB) afterglow reflects that of magnetic energy densities in the two shock regions. We numerically show that with the current standard treatment, the fireball magnetization is underestimated by up to two orders of magnitude. This discrepancy is especially large in the sub-relativistic reverse shock regime (i.e., the thin shell and intermediate regime), where most optical flashes were detected. We provide new analytic estimates of the reverse shock emission based on a better shock approximation, which well describe numerical results in the intermediate regime. We show that the reverse shock temperature at the onset of afterglow is constant, ( {Gamma}-bar{sub d}-1){approx}8 Multiplication-Sign 10{sup -2}, when the dimensionless parameter {xi}{sub 0} is more than several. Our approach is applied to case studies of GRB 990123 and 090102, and we find that magnetic fields in the fireballs are even stronger than previously believed. However, these events are still likely to be due to a baryonic jet with {sigma} {approx} 10{sup -3} for GRB 990123 and {approx}3 Multiplication-Sign 10{sup -4} to 3 for GRB 090102.

  4. Numerical Continuation Methods for Intrusive Uncertainty Quantification Studies

    SciTech Connect

    Safta, Cosmin; Najm, Habib N.; Phipps, Eric Todd

    2014-09-01

    Rigorous modeling of engineering systems relies on efficient propagation of uncertainty from input parameters to model outputs. In recent years, there has been substantial development of probabilistic polynomial chaos (PC) Uncertainty Quantification (UQ) methods, enabling studies in expensive computational models. One approach, termed ”intrusive”, involving reformulation of the governing equations, has been found to have superior computational performance compared to non-intrusive sampling-based methods in relevant large-scale problems, particularly in the context of emerging architectures. However, the utility of intrusive methods has been severely limited due to detrimental numerical instabilities associated with strong nonlinear physics. Previous methods for stabilizing these constructions tend to add unacceptably high computational costs, particularly in problems with many uncertain parameters. In order to address these challenges, we propose to adapt and improve numerical continuation methods for the robust time integration of intrusive PC system dynamics. We propose adaptive methods, starting with a small uncertainty for which the model has stable behavior and gradually moving to larger uncertainty where the instabilities are rampant, in a manner that provides a suitable solution.

  5. Experimental and numerical FSI study of compliant hydrofoils

    NASA Astrophysics Data System (ADS)

    Augier, B.; Yan, J.; Korobenko, A.; Czarnowski, J.; Ketterman, G.; Bazilevs, Y.

    2015-06-01

    A propulsion system based on tandem hydrofoils is studied experimentally and numerically. An experimental measurement system is developed to extract hydrodynamic loads on the foils and capture their twisting deformation during operation. The measured data allowed us to assess the efficiency of the propulsion system as a function of travel speed and stroke frequency. The numerical simulation of the propulsion system is also presented and involves 3D, full-scale fluid-structure interaction (FSI) computation of a single (forward) foil. The foil is modeled as a combination of the isogeometric rotation-free Kirchhoff-Love shell and bending-stabilized cable, while the hydrodynamics makes use of the finite-element-based arbitrary Lagrangian-Eulerian variational multiscale formulation. The large added mass is handled through a quasi-direct FSI coupling technique. The measurement data collected is used in the validation of the FSI simulation, and excellent agreement is achieved between the predicted and measured hydrodynamic loads and foil twisting motion.

  6. Numerical study of delta wing leading edge blowing

    NASA Technical Reports Server (NTRS)

    Yeh, David; Tavella, Domingo; Roberts, Leonard

    1988-01-01

    Spanwise and tangential leading edge blowing as a means of controlling the position and strength of the leading edge vortices are studied by numerical solution of the three-dimensional Navier-Stokes equations. The leading edge jet is simulated by defining a permeable boundary, corresponding to the jet slot, where suitable boundary conditions are implemented. Numerical results are shown to compare favorably with experimental measurements. It is found that the use of spanwise leading edge blowing at moderate angle of attack magnifies the size and strength of the leading edge vortices, and moves the vortex cores outboard and upward. The increase in lift primarily comes from the greater nonlinear vortex lift. However, spanwise blowing causes earlier vortex breakdown, thus decreasing the stall angle. The effects of tangential blowing at low to moderate angles of attack tend to reduce the pressure peaks associated with leading edge vortices and to increase the suction peak around the leading edge, so that the integrated value of the surface pressure remains about the same. Tangential leading edge blowing in post-stall conditions is shown to re-establish vortical flow and delay vortex bursting, thus increasing C sub L sub max and stall angle.

  7. Numerical Studies of Ablative Mass Loss from Wind Accelerated Clouds.

    NASA Astrophysics Data System (ADS)

    Knerr, Jeffrey Matthew

    1993-01-01

    We have used numerical hydrodynamics to study the acceleration of dense gas clouds via wind ram pressure. Our goal has been to examine a model for the explanation of broad absorption lines (BALs) seen in the spectra of a certain fraction of observed QSOs. This model postulates cool dense clouds moving at very high speeds as the source of the BALs. Furthermore, it invokes simple wind ram pressure as the acceleration mechanism for the clouds. A crucial question is whether the clouds can survive potentially disruptive fluid instabilities, allowing time for acceleration to speeds comparable to the wind velocity. Linear stability arguments imply Rayleigh-Taylor (RT) instability growth occurs on time scales much shorter than the acceleration time scale. These arguments conclude acceleration via ram pressure cannot produce bulk cloud velocities in excess of the cloud's internal sound speed. Our simulations show this is simply not true. We present two-dimensional slab-symmetric simulations where clouds are accelerated to speeds close to an order of magnitude greater than their internal sound speed. Ablative mass loss by the flow of shocked wind gas around the periphery of the clouds acts to limit the growth of potentially disruptive instabilities. Simulations run at different computational grid resolutions clearly show the stabilizing effect ablation has on the evolution of the clouds. Simplified models for line profiles have been developed using mass-velocity histograms generated from the numerical simulations. There is good qualitative agreement between the simulated line profiles and observed BAL profiles.

  8. Numerical study of wave propagation around an underground cavity: acoustic case

    NASA Astrophysics Data System (ADS)

    Esterhazy, Sofi; Perugia, Ilaria; Schöberl, Joachim; Bokelmann, Götz

    2015-04-01

    Motivated by the need to detect an underground cavity within the procedure of an On-Site-Inspection (OSI) of the Comprehensive Nuclear Test Ban Treaty Organization (CTBTO), which might be caused by a nuclear explosion/weapon testing, we aim to provide a basic numerical study of the wave propagation around and inside such an underground cavity. The aim of the CTBTO is to ban all nuclear explosions of any size anywhere, by anyone. Therefore, it is essential to build a powerful strategy to efficiently investigate and detect critical signatures such as gas filled cavities, rubble zones and fracture networks below the surface. One method to investigate the geophysical properties of an underground cavity allowed by the Comprehensive Nuclear-test Ban Treaty is referred to as 'resonance seismometry' - a resonance method that uses passive or active seismic techniques, relying on seismic cavity vibrations. This method is in fact not yet entirely determined by the Treaty and there are also only few experimental examples that have been suitably documented to build a proper scientific groundwork. This motivates to investigate this problem on a purely numerical level and to simulate these events based on recent advances in the mathematical understanding of the underlying physical phenomena. Here, we focus our numerical study on the propagation of P-waves in two dimensions. An extension to three dimensions as well as an inclusion of the full elastic wave field is planned in the following. For the numerical simulations of wave propagation we use a high order finite element discretization which has the significant advantage that it can be extended easily from simple toy designs to complex and irregularly shaped geometries without excessive effort. Our computations are done with the parallel Finite Element Library NGSOLVE ontop of the automatic 2D/3D tetrahedral mesh generator NETGEN (http://sourceforge.net/projects/ngsolve/). Using the basic mathematical understanding of the

  9. Numerical study of a matrix-free trust-region SQP method for equality constrained optimization.

    SciTech Connect

    Heinkenschloss, Matthias; Ridzal, Denis; Aguilo, Miguel Antonio

    2011-12-01

    This is a companion publication to the paper 'A Matrix-Free Trust-Region SQP Algorithm for Equality Constrained Optimization' [11]. In [11], we develop and analyze a trust-region sequential quadratic programming (SQP) method that supports the matrix-free (iterative, in-exact) solution of linear systems. In this report, we document the numerical behavior of the algorithm applied to a variety of equality constrained optimization problems, with constraints given by partial differential equations (PDEs).

  10. Numerical studies of the KP line-solitons

    NASA Astrophysics Data System (ADS)

    Chakravarty, S.; McDowell, T.; Osborne, M.

    2017-03-01

    The Kadomtsev-Petviashvili (KP) equation admits a class of solitary wave solutions localized along distinct rays in the xy-plane, called the line-solitons, which describe the interaction of shallow water waves on a flat surface. These wave interactions have been observed on long, flat beaches, as well as have been recreated in laboratory experiments. In this paper, the line-solitons are investigated via direct numerical simulations of the KP equation, and the interactions of the evolved solitary wave patterns are studied. The objective is to obtain greater insight into solitary wave interactions in shallow water and to determine the extent the KP equation is a good model in describing these nonlinear interactions.

  11. Dynamics of a cylinder plunging into liquid: a numerical study

    NASA Astrophysics Data System (ADS)

    Ding, Hang

    2012-11-01

    The impact of a cylinder on a liquid surface and subsequent events are investigated numerically. The flows are resolved by solving the Navier-Stokes equations and the Cahn-Hilliard equation. Moving contact lines are modeled by a diffuse interface model (Seppecher 1996; Jaqcmin 2000), and contact-angle hysteresis is included (Ding&Spelt 2008). The method is validated by comparison to the experiments by Aristoff and Bush (2009). Our studies focus on the dynamics of the waves induced by the impact and the cavity collapse behind the cylinder. A variety of parameters affect the flow behaviors such as wettability, impact speed, viscosity etc. Their effects on the transition of the flow phenomena are investigated through parametric simulations over relevant ranges of Weber and Reynolds numbers and contact angles. This work is supposed by the 100 Talents Program of the Chinese Academy of Sciences and the National Natural Science Foundation of China (Grant No. 11172294).

  12. Electrostatic interaction between nonuniformly charged colloids: experimental and numerical study.

    PubMed

    Derot, Claire; Porcar, Lionel; Lee, YongJin; Pincus, Phillip A; Jho, YongSeok; In, Martin

    2015-02-10

    The influence of the surface charge distribution on the interaction between nanosized particles in water is reported. The distribution of charges at the surface of initially neutral microemulsion droplets has been modulated by additions of various oligomeric cationic surfactants. The osmotic compressibility of the doped microemulsions was measured by light and small-angle neutrons scattering and reveals that the overall effective interaction induced by the ionic groups is repulsive. However, particular charge distributions decrease the osmotic compressibility much less than others. Independent measurements of the activity of the bromide counterions with specific electrodes evidence a significant decrease in the effective charge, which, however, cannot account for the osmotic compressibility in the framework of the primitive model. The q dependence of the structure factor reveals an attractive contribution over a short distance. Numerical studies assign this attractive contribution to the overlap of hydration shells that are extended as a result of the charge localization.

  13. Understanding asteroid collisional history through experimental and numerical studies

    NASA Technical Reports Server (NTRS)

    Davis, Donald R.; Ryan, Eileen V.; Weidenschilling, S. J.

    1991-01-01

    Asteroids can lose angular momentum due to so called splash effect, the analog to the drain effect for cratering impacts. Numerical code with the splash effect incorporated was applied to study the simultaneous evolution of asteroid sized and spins. Results are presented on the spin changes of asteroids due to various physical effects that are incorporated in the described model. The goal was to understand the interplay between the evolution of sizes and spins over a wide and plausible range of model parameters. A single starting population was used both for size distribution and the spin distribution of asteroids and the changes in the spins were calculated over solar system history for different model parameters. It is shown that there is a strong coupling between the size and spin evolution, that the observed relative spindown of asteroids approximately 100 km diameter is likely to be the result of the angular momentum splash effect.

  14. Infrasonic interferometry of stratospherically refracted microbaroms--a numerical study.

    PubMed

    Fricke, Julius T; El Allouche, Nihed; Simons, Dick G; Ruigrok, Elmer N; Wapenaar, Kees; Evers, Läslo G

    2013-10-01

    The atmospheric wind and temperature can be estimated through the traveltimes of infrasound between pairs of receivers. The traveltimes can be obtained by infrasonic interferometry. In this study, the theory of infrasonic interferometry is verified and applied to modeled stratospherically refracted waves. Synthetic barograms are generated using a raytracing model and taking into account atmospheric attenuation, geometrical spreading, and phase shifts due to caustics. Two types of source wavelets are implemented for the experiments: blast waves and microbaroms. In both numerical experiments, the traveltimes between the receivers are accurately retrieved by applying interferometry to the synthetic barograms. It is shown that microbaroms can be used in practice to obtain the traveltimes of infrasound through the stratosphere, which forms the basis for retrieving the wind and temperature profiles.

  15. A numerical taxonomic study of Actinobacillus, Pasteurella and Yersinia.

    PubMed

    Sneath, P H; Stevens, M

    1985-10-01

    A numerical taxonomic study of strains of Actinobacillus, Pasteurella and Yersinia, with some allied bacteria, showed 23 reasonably distinct groups. These fell into three major areas. Area A contained species of Actinobacillus and Pasteurella: A. suis, A. equuli, A. lignieresii, P. haemolytica biovar A, P. haemolytica biovar T, P. multocida, A. actinomycetemcomitans, 'P. bettii', 'A. seminis', P. ureae and P. aerogenes. Also included in A was a composite group of Pasteurella pneumotropica and P. gallinarum, together with unnamed groups referred to as 'BLG', 'Mair', 'Ross' and 'aer-2'. Area B contained species of Yersinia: Y. enterocolitica, Y. pseudotuberculosis, Y. pestis and a group 'ent-b' similar to Y. enterocolitica. Area C contained non-fermenting strains: Y. philomiragia, Moraxella anatipestifer and a miscellaneous group 'past-b'. There were also a small number of unnamed single strains.

  16. [Study of the algorithm for inversion of low field nuclear magnetic resonance relaxation distribution].

    PubMed

    Chen, Shanshan; Wang, Hongzhi; Yang, Peiqiang; Zhang, Xuelong

    2014-06-01

    It is difficult to reflect the properties of samples from the signal directly collected by the low field nuclear magnetic resonance (NMR) analyzer. People must obtain the relationship between the relaxation time and the original signal amplitude of every relaxation component by inversion algorithm. Consequently, the technology of T2 spectrum inversion is crucial to the application of NMR data. This study optimized the regularization factor selection method and presented the regularization algorithm for inversion of low field NMR relaxation distribution, which is based on the regularization theory of ill-posed inverse problem. The results of numerical simulation experiments by Matlab7.0 showed that this method could effectively analyze and process the NMR relaxation data.

  17. Multiple-source multiple-harmonic active vibration control of variable section cylindrical structures: A numerical study

    NASA Astrophysics Data System (ADS)

    Liu, Jinxin; Chen, Xuefeng; Gao, Jiawei; Zhang, Xingwu

    2016-12-01

    Air vehicles, space vehicles and underwater vehicles, the cabins of which can be viewed as variable section cylindrical structures, have multiple rotational vibration sources (e.g., engines, propellers, compressors and motors), making the spectrum of noise multiple-harmonic. The suppression of such noise has been a focus of interests in the field of active vibration control (AVC). In this paper, a multiple-source multiple-harmonic (MSMH) active vibration suppression algorithm with feed-forward structure is proposed based on reference amplitude rectification and conjugate gradient method (CGM). An AVC simulation scheme called finite element model in-loop simulation (FEMILS) is also proposed for rapid algorithm verification. Numerical studies of AVC are conducted on a variable section cylindrical structure based on the proposed MSMH algorithm and FEMILS scheme. It can be seen from the numerical studies that: (1) the proposed MSMH algorithm can individually suppress each component of the multiple-harmonic noise with an unified and improved convergence rate; (2) the FEMILS scheme is convenient and straightforward for multiple-source simulations with an acceptable loop time. Moreover, the simulations have similar procedure to real-life control and can be easily extended to physical model platform.

  18. Numerical study of the inverse problem for the diffusion-reaction equation using optimization method

    NASA Astrophysics Data System (ADS)

    Soboleva, O. V.; Brizitskii, R. V.

    2016-04-01

    The model of transfer of substance with mixed boundary condition is considered. The inverse extremum problem of identification of the main coefficient in a nonstationary diffusion-reaction equation is formulated. The numerical algorithm based on the Newton-method of nonlinear optimization and finite difference discretization for solving this extremum problem is developed and realized on computer. The results of numerical experiments are discussed.

  19. A systematic study of genetic algorithms with genotype editing

    SciTech Connect

    Huang, C. F.; Rocha, L. M.

    2004-01-01

    This paper presents our systematic study on an RNA-editing computational model of Genetic Algorithms (GA). This model is constructed based on several genetic editing characteristics that are gleaned from the RNA editing system as observed in several organisms. We have expanded the traditional Genetic Algorithm with artificial editing mechanisms as proposed by [15]. The incorporation of editing mechanisms provides a means for artificial agents with genetic descriptions to gain greater phenotypic plasticity, which may be environmentally regulated. The systematic study of this RNA-editing model has shed some light into the evolutionary implications of RNA editing and how to select proper RNA editors for design of more robust GAS. The results will also show promising applications to complex real-world problems. We expect that the framework proposed will both facilitate determining the evolutionary role of RNA editing in biology, and advance the current state of research in Evolutionary Computation.

  20. A numerical study of the upwelling circulation off Central Chile

    NASA Astrophysics Data System (ADS)

    Mesias, Jorge M.

    The summer upwelling circulation off Central Chile between 34°--40°S is studied using the Princeton Ocean Circulation numerical model, implemented with realistic atmospheric forcings and bottom topography. The simulations are made for summers of years 1992, 1993, and 1994. Sea surface temperature (SST) from the model results and satellite sensors (derived from NASA/NOAA Pathfinder Project datasets) are compared to determine regions where the numerical simulations more realistically represent the oceanic fields. The summer local winds are predominantly equatorward and fluctuate affected by the seasonal displacement of the Subtropical Anticyclone of the Southeast Pacific. The model ocean circulation shows the presence of a surface coastal equatorward jet flowing over a poleward undercurrent that spreads over the continental shelf and slope break. These currents resemble those historically observed off Central Chile, following a classical Ekman-geostrophy dynamics. The oceanic variability is strongly related to the variability of the local wind forcing, bottom relief, and coastline geometry. Strong wind fluctuations induce the formation of cyclonic/anticyclonic mesoscale eddies, favored by the separation of the equatorward jet from the coast, downstream of a prominent mid-domain cape. The flow variability between regions depends on the spatial variability of the wind forcing. The wind relaxation is larger in the southern regions, where the upwelling tends to disappear. In the northern areas, the separation of the jet and the formation of eddies induce a strong cross-shelf transport activity. Comparisons among SST fields for all years indicate that the model and satellite fields vary in similar patterns, especially in the northern coastal areas, and suggest that oceanic fields are largely affected by changes in local winds during El Nino events. During El Nino periods, the upwelling activity weakens due to a rapid decrease of the equatorward winds, and the passage of

  1. Numerical Studies of High-Z Plasma in the HyperV Plasma Guns

    NASA Astrophysics Data System (ADS)

    Wu, Linchun; Messer, Sarah; Witherspoon, F. Douglas; Welch, Dale; Thoma, Carsten; Phillips, Mike; Bogatu, I. Nick; Galkin, Sergei; Macfarlane, Joe; Golovkin, Igor

    2010-11-01

    Numerical studies of railguns and coaxial guns at HyperV Technologies Corp. include simulations of hypervelocity plasma transport in the gun, plasma expansion out of the nozzle, and two or more jets merging in vacuum. Plasma detachment, merging jets temperature and charge state evolution are examined in these processes. High-Z materials, such as argon and xenon, are used throughout these simulations. The plasma moves with an initial velocity of 0-10 km/s (80-100 km/s for jet merging), the initial number density ranges from 10^15cm-3 to 10^18cm-3, and the merging jets are several centimeters in radius. The LSP code is used to perform the simulations using improved fluid algorithms and equation-of-state models from Voss and atomic data from Prism.

  2. Numerical study on dynamic compressive deformation and elasto-plastic wave propagation of foam materials

    NASA Astrophysics Data System (ADS)

    Tanigaki, Kenichi; Idouji, Toru; Horikawa, Keitaro; Kobayashi, Hidetoshi; Ogawa, Kinya

    2015-09-01

    Finite element models of closed-cell foam structures were created using the three-dimensional Voronoi tessellation method coupled with the random sequential addition algorithm. The dynamic compressive deformation behaviors of the models were numerically studied using LS-DYNA code. The deformation mode of the models changed gradually as the deformation rate increases. Also, the generation and the propagation of plastic wave was clearly observed with the rate of 100 m/s. The longitudinal elastic wave velocity showed a weak negative dependency on the deformation rate although the strain rate dependence of material properties was not considered. Furthermore, a prediction method for the dynamic stress state on the impact side based on the static stress-strain relationship was presented.

  3. Experimental and numerical study of high intensity argon cluster beams

    SciTech Connect

    Korobeishchikov, N. G.; Kalyada, V. V.; Shmakov, A. A.; Zarvin, A. E.; Skovorodko, P. A.

    2014-12-09

    Experimental and numerical investigations of expansion of argon with homogeneous condensation in supersonic conical nozzle and in free jet behind it were carried out. Optimal parameters (stagnation pressure, nozzle-skimmer distance) for the formation of cluster beam with maximum intensity were determined. Two available models for nonequilibrium nucleation were tested. The numerical results are in satisfactory agreement with the measured data.

  4. A numerical study of laminar flames propagating in stratified mixtures

    NASA Astrophysics Data System (ADS)

    Zhang, Jiacheng

    Numerical simulations are carried out to study the structure and speed of laminar flames propagating in compositionally and thermally stratified fuel-air mixtures. The study is motivated by the need to understand the physics of flame propagation in stratified-charge engines and model it. The specific question of interest in this work is: how does the structure and speed of the flame in the stratified mixture differ from that of the flame in a corresponding homogeneous mixture at the same equivalence ratio, temperature, and pressure? The studies are carried out in hydrogen-air, methane-air, and n-heptane-air mixtures. A 30-species 184-step skeletal mechanism is employed for methane oxidation, a 9-species 21-step mechanism for hydrogen oxidation, and a 37-species 56-step skeletal mechanism for n-heptane oxidation. Flame speed and structure are compared with corresponding values for homogeneous mixtures. For compositionally stratified mixtures, as shown in prior experimental work, the numerical results suggest that when the flame propagates from a richer mixture to a leaner mixture, the flame speed is faster than the corresponding speed in the homogeneous mixture. This is caused by enhanced diffusion of heat and species from the richer mixture to the leaner mixture. In fact, the effects become more pronounced in leaner mixtures. Not surprisingly, the stratification gradient influences the results with shallower gradients showing less effect. The controlling role that diffusion plays is further assessed and confirmed by studying the effect of a unity Lewis number assumption in the hydrogen/air mixtures. Furthermore, the effect of stratification becomes less important when using methane or n-heptane as fuel. The laminar flame speed in a thermally stratified mixture is similar to the laminar flame speed in homogeneous mixture at corresponding unburned temperature. Theoretical analysis is performed and the ratio of extra thermal diffusion rate to flame heat release rate

  5. Observational and numerical studies of extreme frontal scale contraction

    NASA Technical Reports Server (NTRS)

    Koch, Steven E.

    1995-01-01

    The general objective of this effort is to increase understanding of how frontal scale contraction processes may create and sustain intense mesoscale precipitation along intensifying cold fronts. The five-part project (an expansion of the originally proposed two-part project) employed conventional meteorological data, special mesoscale data, remote sensing measurements, and various numerical models. First an idealized hydrostatic modeling study of the scale contraction effects of differential cloud cover on low-level frontal structure and dynamics was completed and published in a peer-reviewed journal. The second objective was to complete and publish the results from a three dimensional numerical model simulation of a cold front in which differential sensible heating related to cloud coverage patterns was apparently crucial in the formation of a severe frontal squall line. The third objective was to use a nonhydrostatic model to examine the nonlinear interactions between the transverse circulation arising from inhomogeneous cloud cover, the adiabatic frontal circulation related to semi-geostrophic forcing, and diabatic effects related to precipitation processes, in the development of a density current-like microstructure at the leading edge of cold fronts. Although the development of a frontal model that could be used to initialize such a primitive equation model was begun, we decided to focus our efforts instead on a project that could be successfully completed in this short time, due to the lack of prospects for continued NASA funding beyond this first year (our proposal was not accepted for future funding). Thus, a fourth task was added, which was to use the nonhydrostatic model to test tentative hypotheses developed from the most detailed observations ever obtained on a density current (primarily sodar and wind profiler data). These simulations were successfully completed, the findings were reported at a scientific conference, and the results have recently been

  6. Infants and young children modeling method for numerical dosimetry studies: application to plane wave exposure.

    PubMed

    Dahdouh, S; Varsier, N; Nunez Ochoa, M A; Wiart, J; Peyman, A; Bloch, I

    2016-02-21

    Numerical dosimetry studies require the development of accurate numerical 3D models of the human body. This paper proposes a novel method for building 3D heterogeneous young children models combining results obtained from a semi-automatic multi-organ segmentation algorithm and an anatomy deformation method. The data consist of 3D magnetic resonance images, which are first segmented to obtain a set of initial tissues. A deformation procedure guided by the segmentation results is then developed in order to obtain five young children models ranging from the age of 5 to 37 months. By constraining the deformation of an older child model toward a younger one using segmentation results, we assure the anatomical realism of the models. Using the proposed framework, five models, containing thirteen tissues, are built. Three of these models are used in a prospective dosimetry study to analyze young child exposure to radiofrequency electromagnetic fields. The results lean to show the existence of a relationship between age and whole body exposure. The results also highlight the necessity to specifically study and develop measurements of child tissues dielectric properties.

  7. Infants and young children modeling method for numerical dosimetry studies: application to plane wave exposure

    NASA Astrophysics Data System (ADS)

    Dahdouh, S.; Varsier, N.; Nunez Ochoa, M. A.; Wiart, J.; Peyman, A.; Bloch, I.

    2016-02-01

    Numerical dosimetry studies require the development of accurate numerical 3D models of the human body. This paper proposes a novel method for building 3D heterogeneous young children models combining results obtained from a semi-automatic multi-organ segmentation algorithm and an anatomy deformation method. The data consist of 3D magnetic resonance images, which are first segmented to obtain a set of initial tissues. A deformation procedure guided by the segmentation results is then developed in order to obtain five young children models ranging from the age of 5 to 37 months. By constraining the deformation of an older child model toward a younger one using segmentation results, we assure the anatomical realism of the models. Using the proposed framework, five models, containing thirteen tissues, are built. Three of these models are used in a prospective dosimetry study to analyze young child exposure to radiofrequency electromagnetic fields. The results lean to show the existence of a relationship between age and whole body exposure. The results also highlight the necessity to specifically study and develop measurements of child tissues dielectric properties.

  8. A numerical study of three-dimensional vortex breakdown

    NASA Technical Reports Server (NTRS)

    Spall, Robert E.; Ash, Robert L.

    1987-01-01

    A numerical simulation of bubble-type vortex breakdown using a unique discrete form of the full 3-D, unsteady incompressible Navier-Stokes equations was performed. The Navier-Stokes equations were written in a vorticity-velocity form and the physical problem was not restricted to axisymmetric flow. The problem was parametized on a Rossby- Reynolds-number basis. Utilization of this parameter duo was shown to dictate the form of the free-field boundary condition specification and allowed control of axial breakdown location within the computational domain. The structure of the breakdown bubble was studied through time evolution plots of planar projected velocity vectors as well as through plots of particle traces and vortex lines. These results compared favorably with previous experimental studies. In addition, profiles of all three velocity components are presented at various axial stations and a Fourier analysis was performed to identify the dominant circumferential modes. The dynamics of the breakdown process were studied through plots of axial variation of rate of change of integrated total energy and rate of change of integrated enstrophy, as well as through contour plots of velocity, vorticity and pressure.

  9. Numerical renormalization group study of a dissipative quantum dot

    NASA Astrophysics Data System (ADS)

    Glossop, M. T.; Ingersent, K.

    2007-03-01

    We study the quantum phase transition (QPT) induced by dissipation in a quantum dot device at the degeneracy point. We employ a Bose-Fermi numerical renormalization group approach [1] to study the simplest case of a spinless resonant-level model that couples the charge density on the dot to a dissipative bosonic bath with density of states B(φ)ŝ. In anticipation of future experiments [2] and to assess further the validity of theoretical techniques in this rapidly developing area, we take the conduction-electron leads to have a pseudogap density of states: ρ(φ) |φ|^r, as considered in a very recent perturbative renormalization group study [3]. We establish the conditions on r and s such that a QPT arises with increasing dissipation strength --- from a delocalized phase, where resonant tunneling leads to large charge fluctuations on the dot, to a localized phase where such fluctuations are frozen. We present results for the single-particle spectrum and the response of the system to a local electric field, extracting critical exponents that depend in general on r and s and obey hyperscaling relations. We make full comparison with results of [3] where appropriate. Supported by NSF Grant DMR-0312939. [1] M. T. Glossop and K. Ingersent, PRL 95, 067202 (2005); PRB (2006). [2] L. G. G. V. Dias da Silva, N. P. Sandler, K. Ingersent, and S. E. Ulloa, PRL 97, 096603 (2006). [3] C.-H. Chung, M. Kir'can, L. Fritz, and M. Vojta (2006).

  10. Numerical study of heat transfer characteristics in BOG heat exchanger

    NASA Astrophysics Data System (ADS)

    Yan, Yan; Pfotenhauer, John M.; Miller, Franklin; Ni, Zhonghua; Zhi, Xiaoqin

    2016-12-01

    In this study, a numerical study of turbulent flow and the heat transfer process in a boil-off liquefied natural gas (BOG) heat exchanger was performed. Finite volume computational fluid dynamics and the k - ω based shear stress transport model were applied to simulate thermal flow of BOG and ethylene glycol in a full-sized 3D tubular heat exchanger. The simulation model has been validated and compared with the engineering specification data from its supplier. In order to investigate thermal characteristics of the heat exchanger, velocity, temperature, heat flux and thermal response were studied under different mass flowrates in the shell-side. The shell-side flow pattern is mostly determined by viscous forces, which lead to a small velocity and low temperature buffer area in the bottom-right corner of the heat exchanger. Changing the shell-side mass flowrate could result in different distributions of the shell-side flow. However, the distribution in the BOG will remain in a relatively stable pattern. Heat flux increases along with the shell-side mass flowrate, but the increase is not linear. The ratio of increased heat flux to the mass flow interval is superior at lower mass flow conditions, and the threshold mass flow for stable working conditions is defined as greater than 0.41 kg/s.

  11. Recent Numerical Studies of the Spin Glass State

    NASA Astrophysics Data System (ADS)

    Palassini, Matteo

    2001-03-01

    The nature of the low temperature phase of spin glasses remains a controversial issue, which has recently received considerable renewed interest. Two theories have been extensively discussed: the droplet model and the replica symmetry breaking theory. In this talk, I will discuss some recent investigations of the low temperature phase of Ising spin glasses with short range interactions in three and four dimensions. I will present the results of a new approach [1] based on studying changes in the ground state when an external perturbation is applied, using efficient optimization algorithms, as well as the results of Monte Carlo simulations at very low temperatures [2]. I will compare these results with several theoretical scenarios: the droplet model, the replica symmetry breaking theory, and a new intermediate scenario in which there are large scale excitations which cost a finite energy in the thermodynamic limit, but whose surface has a vanishing density. [1] M.Palassini and A.P. Young, Phys. Rev. Lett. 85, 3017 (2000); Phys. Rev. Lett. 83, 5126 (1999); and unpublished. [2] H.G. Katzgraber, M.Palassini and A.P. Young, cond-mat/0007113; M.Palassini and A.P.Young, unpublished.

  12. A numerical study of sensory-guided multiple views for improved object identification

    NASA Astrophysics Data System (ADS)

    Blakeslee, B. A.; Zelnio, E. G.; Koditschek, D. E.

    2014-06-01

    We explore the potential on-line adjustment of sensory controls for improved object identification and discrimination in the context of a simulated high resolution camera system carried onboard a maneuverable robotic platform that can actively choose its observational position and pose. Our early numerical studies suggest the significant efficacy and enhanced performance achieved by even very simple feedback-driven iteration of the view in contrast to identification from a fixed pose, uninformed by any active adaptation. Specifically, we contrast the discriminative performance of the same conventional classification system when informed by: a random glance at a vehicle; two random glances at a vehicle; or a random glance followed by a guided second look. After each glance, edge detection algorithms isolate the most salient features of the image and template matching is performed through the use of the Hausdor↵ distance, comparing the simulated sensed images with reference images of the vehicles. We present initial simulation statistics that overwhelmingly favor the third scenario. We conclude with a sketch of our near-future steps in this study that will entail: the incorporation of more sophisticated image processing and template matching algorithms; more complex discrimination tasks such as distinguishing between two similar vehicles or vehicles in motion; more realistic models of the observers mobility including platform dynamics and eventually environmental constraints; and expanding the sensing task beyond the identification of a specified object selected from a pre-defined library of alternatives.

  13. Numerical and experimental study of an Archimedean Screw Generator

    NASA Astrophysics Data System (ADS)

    Dellinger, G.; Garambois, P.-A.; Dufresne, M.; Terfous, A.; Vazquez, J.; Ghenaim, A.

    2016-11-01

    Finding new, safe and renewable energy is becoming more and more of a priority with global warming. One solution that is gaining popularity is the Archimedean Screw Generator (ASG). This kind of hydroelectric plant allows transforming potential energy of a fluid into mechanical energy and is convenient for low-head hydraulic sites. As it is a new and growing technology, there are few references dealing with their design and performance optimization. The present contribution proposes to investigate experimentally and numerically the ASG performances. The experimental study is performed for various flow conditions and a laboratory scale screw device installed at the fluid mechanics laboratory of the INSA of Strasbourg. The first results show that the screw efficiencies are higher than 80% for various hydraulic conditions. In order to study the structure of 3D turbulent flows and energy losses in a screw, the 3D Navier Stokes equations are solved with the k-w SST turbulence model. The exact geometry of the laboratory-scale screw was used in these simulations. Interestingly, the modeled values of efficiency are in fairly good agreement with experimental results while any friction coefficient is involved.

  14. Numerical Study of a Hydrodynamic Instability Driven by Evaporation

    NASA Astrophysics Data System (ADS)

    Hernandez-Zapata, Sergio; Romo-Cruz, Julio Cesar Ruben; Lopez-Sanchez, Erick Javier; Ruiz-Chavarria, Gerardo

    2013-11-01

    The study of hydrodynamic instabilities in liquid layers produced by evaporation has several applications on industry and technology. In this work we study numerically the conditions under which a liquid layer becomes unstable when evaporation in the vapor-liquid interphase is present. The evaporation process follows the Hertz-Knudsen law (the evaporation rate is proportional to the difference between the saturated vapor pressure at the liquid layer temperature and the vapor partial pressure in the environment). Additionally to the usual boundary conditions on solid walls (for example, the non-slip condition for the velocity), we analyze the boundary conditions in the vapor-liquid interphase where the momentum and energy balances have to be taken into account and where the evaporation plays a crucial role. To solve this problem the linear theory of stability is used; that is, a small perturbation around the basic solution is applied (flow at rest and a temperature stationary field). The equations are solved using the Chebyshev pseudo-spectral method. The results are compared with the more usual Rayleigh-Bénard and Marangoni mechanisms as well as with some experiments carried out by our team. Authors acknowledge DGAPA-UNAM by support under project IN116312, ``Vorticidad y Ondas no lineales en fluidos.''

  15. Numerical study of Wavy Blade Section for Wind Turbines

    NASA Astrophysics Data System (ADS)

    Kobæk, C. M.; Hansen, M. O. L.

    2016-09-01

    The Wavy Blade concept is inspired by the unique flipper of a humpback whale, characterized by the tubercles located at the leading edge. It has been suggested that this shape may have been a result of a natural selection process, since this flipper under some circumstances can produce higher lift than a flipper having a smooth trailing edge and thus could be potentially beneficial when catching food. A thorough literature study of the Wavy Blade concept is made and followed by CFD computations of two wavy blade geometries and a comparison with their baseline S809 airfoil at conditions more relevant for modern wind turbines. The findings in the literature from geometries similar to the hump back whale flipper indicate that the aerodynamic performance can be improved at high angles of attack, but sometimes at the expense of a lower lift slope and increased drag before stall. The numerical results for a blade section based on the S809 airfoil are, however, not as promising as some of the findings reported in the literature for the whale flipper at high angles of attack. These first CFD computations using a thicker airfoil and a higher Reynolds number than the whale flipper indicate that the results may very well depend on the actual airfoil geometry and perhaps also the Reynolds number, and future studies are necessary in order to illuminate this further.

  16. Study on model and algorithm of inventory routing problem

    NASA Astrophysics Data System (ADS)

    Wan, Fengjiao

    Vehicle routing problem(VRP) is one of important research in the logistics system. Nowadays, there are many researches on the VRP, but their don't consider the cost of inventory. Thus, the conclusion doesn't meet reality. This paper studies on the inventory routing problem (IRP)and uses one target function to describe these two conflicting problems, which are very important in the logistics optimization. The paper establishes the model of single client and many clients' inventory routing problem. An optimizing iterative algorithm is presented to solve the model. According to the model we can confirm the best quantity, efficiency and route of delivery. Finally, an example is given to illustrate the efficiency of model and algorithm.

  17. Segmentation algorithms for ear image data towards biomechanical studies.

    PubMed

    Ferreira, Ana; Gentil, Fernanda; Tavares, João Manuel R S

    2014-01-01

    In recent years, the segmentation, i.e. the identification, of ear structures in video-otoscopy, computerised tomography (CT) and magnetic resonance (MR) image data, has gained significant importance in the medical imaging area, particularly those in CT and MR imaging. Segmentation is the fundamental step of any automated technique for supporting the medical diagnosis and, in particular, in biomechanics studies, for building realistic geometric models of ear structures. In this paper, a review of the algorithms used in ear segmentation is presented. The review includes an introduction to the usually biomechanical modelling approaches and also to the common imaging modalities. Afterwards, several segmentation algorithms for ear image data are described, and their specificities and difficulties as well as their advantages and disadvantages are identified and analysed using experimental examples. Finally, the conclusions are presented as well as a discussion about possible trends for future research concerning the ear segmentation.

  18. Classification of adaptive memetic algorithms: a comparative study.

    PubMed

    Ong, Yew-Soon; Lim, Meng-Hiot; Zhu, Ning; Wong, Kok-Wai

    2006-02-01

    Adaptation of parameters and operators represents one of the recent most important and promising areas of research in evolutionary computations; it is a form of designing self-configuring algorithms that acclimatize to suit the problem in hand. Here, our interests are on a recent breed of hybrid evolutionary algorithms typically known as adaptive memetic algorithms (MAs). One unique feature of adaptive MAs is the choice of local search methods or memes and recent studies have shown that this choice significantly affects the performances of problem searches. In this paper, we present a classification of memes adaptation in adaptive MAs on the basis of the mechanism used and the level of historical knowledge on the memes employed. Then the asymptotic convergence properties of the adaptive MAs considered are analyzed according to the classification. Subsequently, empirical studies on representatives of adaptive MAs for different type-level meme adaptations using continuous benchmark problems indicate that global-level adaptive MAs exhibit better search performances. Finally we conclude with some promising research directions in the area.

  19. Some studies of the numerical solution of ordinary differential equations

    NASA Astrophysics Data System (ADS)

    Mehdiyeva, G.; Ibrahimov, V.; Imanova, M.

    2012-08-01

    With the numerical solution of ordinary differential equations(ODE), scientists engaged in the Middle Ages, beginning with the work of Clairaut. The domain of the numerical methods involved in many famous mathematicians - Euler, Runge, Kutta, Adams, Laplace, and others. They have constructed methods with different properties. In this paper we consider the construction of numerical methods with high accuracy and to this end is proposed to use multi-step multi-derivative and hybrid methods. As well as specific methods are constructed with a certain accuracy.

  20. Study on the Algorithm of Local Atomic Time

    NASA Astrophysics Data System (ADS)

    Li, B.; Qu, L. L.; Gao, Y. P.; Hu, Y. H.

    2010-10-01

    It is always an endless target for all time and frequency laboratories to develop, own and keep a stable, accurate and reliable time scale. As a comparatively mature algorithm, ALGOS, which has been concerned about the long-term stability of the time scale, is widely used by the majority of time laboratories. For ALGOS, the weights are assumed on the basis of the frequencies of 12 months and the present month interval is included in the computation. This procedure uses clock measurements covering 12 months, so annual frequency variations and long-term drifts can lead to de-weight. This helps to decrease the seasonal variation of the time scale and improve its long-term stability. However, the local atomic time scale is primarily concerned with long-term stability not more than 60 days. So when the local time scale is computed with ALGOS in time laboratories, it is necessary to modify ALGOS correspondingly according to the performances of contributing clocks, the requirement of stability for local time scale and so on. There are 22 high performance atomic clocks at National Time Service Center, Chinese Academy of Sciences (NTSC). They include 18 cesium standards and 4 hydrogen masers. Because hydrogen masers behave poor, we only regard an ensemble of 18 cesium clocks in our improved algorithm. The performances of these clocks are very similar, and the number is less than 20. By analyzing and studying the noise models of atomic clocks, this paper presents a complete improved algorithm of TA(NTSC). This improved TA(NTSC) algorithm includes three aspects: the selection of the maximum weight, the selection of clocks taking part in TA(NTSC) computation and the estimation of the weights of contributing clocks. We validate the new algorithm with the annually atomic clock comparative data of NTSC taking part in TAI computation in 2008. The results show that the long-term and short-term stabilities of TA(NTSC) are all improved. This conclusion is based on the clock

  1. Numerical study of composite bulkhead partition strength with in-situ X-ray monitoring

    NASA Astrophysics Data System (ADS)

    Anoshkin, A. N.; Zuiko, V. Yu; Osokin, V. M.; Pisarev, P. V.

    2016-11-01

    The aim of this work is the stress-strain analysis of bulkhead partition made of carbon fiber reinforced plastic (CFRP) at mechanical testing. The problem was solved in a general 3-D statement for an anisotropic elastic body. The strength prediction of the construction was done by stress analysis in each ply of composite laminate. The numerical simulation was obtained with ANSYS Workbench software. The detailed ply-by-ply stress analysis with special attention to areas of plies curvature was done. The results of numerical simulation were compared with the test data for verification of the proposed numerical algorithm.

  2. Numerical and experimental study on aerodynamic performance of small axial flow fan with splitter blades

    NASA Astrophysics Data System (ADS)

    Zhu, Lifu; Jin, Yingzi; Li, Yi; Jin, Yuzhen; Wang, Yanping; Zhang, Li

    2013-08-01

    To improve the aerodynamic performance of small axial flow fan, in this paper the design of a small axial flow fan with splitter blades is studied. The RNG k-ɛ turbulence model and SIMPLE algorithm were applied to the steady simulation calculation of the flow field, and its result was used as the initial field of the large eddy simulation to calculate the unsteady pressure field. The FW-H noise model was adopted to predict aerodynamic noise in the six monitoring points. Fast Fourier transform algorithm was applied to process the pressure signal. Experiment of noise testing was done to further investigate the aerodynamic noise of fans. And then the results obtained from the numerical simulation and experiment were described and analyzed. The results show that the static characteristics of small axial fan with splitter blades are similar with the prototype fan, and the static characteristics are improved within a certain range of flux. The power spectral density at the six monitoring points of small axial flow fan with splitter blades have decreased to some extent. The experimental results show sound pressure level of new fan has reduced in most frequency bands by comparing with prototype fan. The research results will provide a proof for parameter optimization and noise prediction of small axial flow fans with high performance.

  3. Numerical studies of bubble dynamics in laser thrombolysis

    SciTech Connect

    Chapyak, E.J.; Godwin, R.P.

    1996-03-01

    The applicability of modern numerical hydrodynamic methods for modeling the bubble dynamics occurring in Laser Thrombolysis is addressed. An idealized test problem is formulated and comparisons are made between numerical and analytical results. We find that approximately 23% of the available energy is radiated acoustically in one cycle with larger fractions likely to be radiated under more realistic conditions. We conclude that this approach shows promise in helping to optimize design parameters.

  4. Experimental and numerical study of dual bell nozzle flow

    NASA Astrophysics Data System (ADS)

    Génin, C.; Stark, R.; Haidn, O.; Quering, K.; Frey, M.

    2013-06-01

    The dual bell is a nozzle concept for altitude adaption. The flow separates at the contour inflection in sea level mode in a mainly controlled and symmetrical way, reducing the side load generation and increasing the thrust. The transition to altitude mode is reached when the flow suddenly attaches to the extension for an improved altitude thrust. The conditions of this transition and its evolution are the key for the study of dual bell nozzles. For a better understanding of the flow behavior, a two-dimensional (2D) subscale dual bell model has been designed and tested at the German Aerospace Center (DLR). The tests were divided into two campaigns and performed under cold and hot flow conditions. The evolution of the shock system at the inflection during the transition was observed using schlieren optics. The planar nozzle was tested under various conditions in pressure and temperature. Both test campaigns have been recalculated in cooperation with Astrium. Numerical and experimental results are presented.

  5. Numerical study on inter-tidal transports in coastal seas

    NASA Astrophysics Data System (ADS)

    Mao, Xinyan; Jiang, Wensheng; Zhang, Ping; Feng, Shizuo

    2016-06-01

    Inter-tidal (subtidal) transport processes in coastal sea depend on the residual motion, turbulent dispersion and relevant sources/sinks. In Feng et al. (2008), an updated Lagrangian inter-tidal transport equation, as well as new concept of Lagrangian inter-tidal concentration (LIC), has been proposed for a general nonlinear shallow water system. In the present study, the LIC is numerically applied for the first time to passive tracers in idealized settings and salinity in the Bohai Sea, China. Circulation and tracer motion in the three idealized model seas with different topography or coastline, termed as `flat-bottom', `stairs' and `cape' case, respectively, are simulated. The dependence of the LIC on initial tidal phase suggests that the nonlinearities in the stairs and cape cases are stronger than that in the flat-bottom case. Therefore, the `flat-bottom' case still meets the convectively weakly nonlinear condition. For the Bohai Sea, the simulation results show that most parts of it still meet the weakly nonlinear condition. However, the dependence of the LIS (Lagrangian inter-tidal salinity) on initial tidal phase is significant around the southern headland of the Liaodong Peninsula and near the mouth of the Yellow River. The nonlinearity in the former region is mainly related to the complicated coastlines, and that in the latter region is due to the presence of the estuarine salinity front.

  6. Numerical study of tokamak equilibria with arbitrary flow

    NASA Astrophysics Data System (ADS)

    Guazzotto, L.; Betti, R.; Manickam, J.; Kaye, S.

    2004-02-01

    The effects of toroidal and poloidal flows on the equilibrium of tokamak plasmas are numerically investigated using the code FLOW. The code is used to determine the changes in the profiles induced by large toroidal flows on NSTX-like equilibria [with NSTX being the National Spherical Torus Experiment, M. Ono, S.M. Kaye, Y.-K.M. Peng et al., Nucl. Fusion 40, 557 (2000)] where flows exceeding the sound speed lead to a considerable outward shift of the plasma. The code is also used to study the effects of poloidal flow when the flow velocity profile varies from subsonic to supersonic with respect to the poloidal sound speed. It is found that pressure and density profiles develop a pedestal structure characterized by radial discontinuities at the transonic surface where the poloidal velocity abruptly jumps from subsonic to supersonic values. These results confirm the conclusions of the analytic theory of R. Betti and J. P. Freidberg [Phys. Plasmas 7, 2439 (2000)], derived for a low-β, large aspect ratio tokamak with a circular cross section.

  7. A numerical study of high-pressure droplet vaporization

    NASA Astrophysics Data System (ADS)

    Curtis, E. W.; Farrell, P. V.

    1992-08-01

    The evaporation of single, spherical fuel droplets in a high-pressure, high-temperature environment has been studied numerically. The model is fully transient in both the liquid and the vapor phases. Transport properties are functions of temperature, pressure, and composition, and vary throughout the liquid droplet and the vapor boundary layer. Equilibrium at the liquid-vapor interface is calculated using the Peng-Robinson equation of state, and accounts for diffusion of the gas into the liquid droplet. The Peng-Robinson equation of state is also used to calculate the enthalpy of vaporization of the fuel species as well as the liquid and vapor mixture densities. The proposed model is compared with data obtained for a variety of liquids. Transient effects in both the liquid and vapor phases are found to have a large effect on the droplet heatup and vaporization process. At very high temperature and pressure conditions the droplets were found to reach their thermodynamic critical mixing point in a totally transient process.

  8. Numerical studies on the geomechanical stability ofhydrate-bearing sediments

    SciTech Connect

    Rutqvist, Jonny; Moridis, George J.

    2007-05-01

    The thermal and mechanical loading of oceanicHydrate-Bearing Sediments (HBS) can result in hydrate dissociation and asignificant pressure increase, with potentially adverse consequences onthe integrity and stability of the wellbore assembly, the HBS, and thebounding formations. The perception of HBS instability, coupled withinsufficient knowledge of their geomechanical behavior and the absence ofpredictive capabilities, have resulted in a strategy of avoidance of HBSwhen locating offshore production platforms, and can impede thedevelopment of hydrate deposits as gas resources.In this study weinvestigate in three cases of coupled hydraulic, thermodynamic andgeomechanical behavior of oceanic hydrate-bearing sediments. The firstinvolves hydrate heating as warm fluids from deeper conventionalreservoirs ascend to the ocean floor through uninsulated pipesintersecting the HBS. The second case describes system response duringgas production from a hydrate deposit, and the third involves mechanicalloading caused by the weight of structures placed on the ocean flooroverlying hydrate-bearing sediments.For the analysis of the geomechanicalstability of HBS, we developed and used a numerical model that integratesa commercial geomechanical code and a simulator describing the coupledprocesses of fluid flow, heat transport and thermodynamic behavior in theHBS. Our simulation results indicate that the stability of HBS in thevicinity of warm pipes may be significantly affected, especially if thesediments are unconsolidated and more compressible. Gas production fromoceanic deposits may also affect the geomechanical stability of HBS underthe conditions that are deemed desirablefor production. Conversely, theincreased pressure caused by the weight of structures on the ocean floorincreases the stability of underlying hydrates.

  9. Basic study on the rectangular numeric keys for touch screen.

    PubMed

    Harada, H; Katsuura, T; Kikuchi, Y

    1997-06-01

    The present study was conducted to examine the optimum inter-key spacing of numeric rectangular keys for touch screens. Six male students (22-25 years old) and three female students (21-24 years old) participated in the experiment. Each subject performed the data entry task using rectangular keys of touch devices. These keys were arranged in both horizontal and vertical layouts. The sizes of the rectangular keys in both layouts were 12 x 21 mm and 15 x 39 mm, and each of the inter-key spacing of each key was 0, 3, 6, 12 and 21 mm. The response time with inter-key spacing of 3 mm was significantly faster than with the inter-key spacing of 0, 12 and 21 mm (p < 0.05). Keys of vertical position produced faster response time than that of horizontal position. The subjective ratings showed that the inter-key spacing of 6 mm was significantly better than the inter-key spacing of 0, 3, 12 and 21 mm (p < 0.05).

  10. Numerical Study of Surface Connectivity in the Eastern Mexican Pacific

    NASA Astrophysics Data System (ADS)

    Inda Diaz, H. A.; Pares-Sierra, A.

    2014-12-01

    East boundary ecosystems are the most productive regions in the world and they sustain a large percentage of world fisheries. Understand and describe the connectivity and exchange between different regions of the ocean is very important for larvae dispersion study and other tracers like pollutants. In this work we use an offline numerical model to simulate Lagrangian particle trajectories in the Eastern Mexican Pacific (between 120-94 W and 12-34 N). Particles are advected whit velocity fields generated with the model ROMS (Regional Ocean Modeling System) in the period 1980-2006. We define connectivity indexes in order to classify different zones by their capacity of exporting, receiving and retaining particles. We aim to identify the most transited pathways, quantify connectivity between different regions of EMP through connectivity matrix and describe their seasonal variability. It has been identified zones of high isolation and retention (Vizcaino Bay, Northern of Gulf of California), high retention and importation (between Ensenada and Point Conception) and high exportation and importation (Cabo Corrientes). Connectivity has clear equatoward preference in the California Peninsula region dominated by the influence of California Current with an increase in winter and spring, and also equatoward in the south region of Mexico (from Cabo Corrientes to Tehuantepec Gulf), dominated by the anticyclonic circulation of Tehuantepec Dome. It is observed a complete disconnection between the Baja California Peninsula and Cabo Corrientes zone and further south. Results suggest that the scales of connectivity does not significantly change for simulations over 3 months.

  11. Sound Transmission Validation and Sensitivity Studies in Numerical Models.

    PubMed

    Oberrecht, Steve P; Krysl, Petr; Cranford, Ted W

    2016-01-01

    In 1974, Norris and Harvey published an experimental study of sound transmission into the head of the bottlenose dolphin. We used this rare source of data to validate our Vibroacoustic Toolkit, an array of numerical modeling simulation tools. Norris and Harvey provided measurements of received sound pressure in various locations within the dolphin's head from a sound source that was moved around the outside of the head. Our toolkit was used to predict the curves of pressure with the best-guess input data (material properties, transducer and hydrophone locations, and geometry of the animal's head). In addition, we performed a series of sensitivity analyses (SAs). SA is concerned with understanding how input changes to the model influence the outputs. SA can enhance understanding of a complex model by finding and analyzing unexpected model behavior, discriminating which inputs have a dominant effect on particular outputs, exploring how inputs combine to affect outputs, and gaining insight as to what additional information improves the model's ability to predict. Even when a computational model does not adequately reproduce the behavior of a physical system, its sensitivities may be useful for developing inferences about key features of the physical system. Our findings may become a valuable source of information for modeling the interactions between sound and anatomy.

  12. Numerical study of similarity in prototype and model pumped turbines

    NASA Astrophysics Data System (ADS)

    Li, Z. J.; Wang, Z. W.; Bi, H. L.

    2014-03-01

    Similarity study of prototype and model pumped turbines are performed by numerical simulation and the partial discharge case is analysed in detail. It is found out that in the RSI (rotor-stator interaction) region where the flow is convectively accelerated with minor flow separation, a high level of similarity in flow patterns and pressure fluctuation appear with relative pressure fluctuation amplitude of model turbine slightly higher than that of prototype turbine. As for the condition in the runner where the flow is convectively accelerated with severe separation, similarity fades substantially due to different topology of flow separation and vortex formation brought by distinctive Reynolds numbers of the two turbines. In the draft tube where the flow is diffusively decelerated, similarity becomes debilitated owing to different vortex rope formation impacted by Reynolds number. It is noted that the pressure fluctuation amplitude and characteristic frequency of model turbine are larger than those of prototype turbine. The differences in pressure fluctuation characteristics are discussed theoretically through dimensionless Navier-Stokes equation. The above conclusions are all made based on simulation without regard to the penstock response and resonance.

  13. A Study of a Network-Flow Algorithm and a Noncorrecting Algorithm for Test Assembly.

    ERIC Educational Resources Information Center

    Armstrong, R. D.; And Others

    1996-01-01

    When the network-flow algorithm (NFA) and the average growth approximation algorithm (AGAA) were used for automated test assembly with American College Test and Armed Services Vocational Aptitude Battery item banks, results indicate that reasonable error in item parameters is not harmful for test assembly using NFA or AGAA. (SLD)

  14. A numerical study of comet ISON near perihelion

    NASA Astrophysics Data System (ADS)

    Shou, Y.; Combi, M. R.; Jia, X.; Hansen, K. C.

    2013-12-01

    The comet ISON has an extremely small perihelion distance (2.7 solar radii) and is also expected to have a very high production rate during its passage close to the sun in November of 2013. During that period, it is planned to be monitored by many ground- and space-based observatories, i.e. SOHO, STEREO, SDO, MRO, MESSENGER, SWIFT, Chandra, Spitzer, etc., all of which are able to provide substantial observational data of high quality about the comet and its interaction with the solar wind. In addition, as this sun-grazing comet penetrates so deep into the solar atmosphere, where the plasma environment is totally different from the normal solar wind conditions we are familiar with, it offers a great opportunity to study a new type of solar wind-comet interaction. Near perihelion, the photo-ionization time scale of the cometary neutrals is on the order of 100 s, which means that a large portion of neutrals are lost and most of the cometary ions are produced in a small region near the nucleus. Therefore, a much smaller upstream mass-loading region, a high production rate, a solar wind with a low Mach number and a strong interplanetary magnetic field together can dramatically alter the conventional cometary plasma environment of a bow shock, diamagnetic cavity and plasma tail. Preliminary results of a numerical study using the University of Michigan BATSRUS MHD model exploring the nature of the solar wind interaction and the coma environment are described. This work has been partially supported by grant AST-0707283 from the NSF Planetary Astronomy program and NASA Planetary Atmospheres program grant NNX09AB59G.

  15. Numerical Simulation Study of the Sanchiao Fault Earthquake Scenarios

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Min; Lee, Shiann-Jong

    2015-04-01

    Sanchiao fault is a western boundary fault of the Taipei basin located in northern Taiwan, close to the densely populated Taipei metropolitan area. Recent study indicated that there is about 40 km of the fault trace extended to the marine area offshore northern Taiwan. Combining the marine and terrestrial parts, the total fault length of Sanchiao fault could be nearly 70 kilometers which implies that this fault has potential to produce a big earthquake. In this study, we analyze several Sanchiao fault earthquake scenarios based on the recipe for predicting strong ground motion. The characterized source parameters include fault length, rupture area, seismic moment, asperity, and slip pattern on the fault plane. According to the assumption of the characterized source model, Sanchiao fault has been inferred to have the potential to produce an earthquake with moment magnitude (Mw) larger than 7.0. Three-dimensional seismic simulation results based upon spectral-element method (SEM) indicate that peak ground acceleration (PGA) is significantly stronger along the fault trace. The basin effect also plays an important role when wave propagates in the Taipei basin which cause seismic wave amplified and prolong the shaking for a very long time. Among all rupture scenarios, the rupture propagated from north to south is the most serious one. Owing to the rupture directivity as well as the basin effects, large PGA (>1g) was observed in the Taipei basin, especially in the northwest side. The results of these scenario earthquake simulations will provide important physically-based numerical data for earthquake mitigation and seismic hazard assessment.

  16. Studying the structural features of the lithospheric magnetic and gravity fields with the use of parallel algorithms

    NASA Astrophysics Data System (ADS)

    Martyshko, P. S.; Fedorova, N. V.; Akimova, E. N.; Gemaidinov, D. V.

    2014-07-01

    We describe the parallel algorithms for studying the structural features of the anomalies in the gravity and magnetic fields of the lithosphere, which are based on the height transformations of the data. The algorithms are numerically implemented on the Uran supercomputer. The suggested computer technology is used for constructing the maps of the regional and local anomalies of the magnetic and gravity fields for the northeastern sector of Europe within an area confined between 48°-62° E and 60°-68° N.

  17. Numerical study of three-dimensional liquid jet breakup with adaptive unstructured meshes

    NASA Astrophysics Data System (ADS)

    Xie, Zhihua; Pavlidis, Dimitrios; Salinas, Pablo; Pain, Christopher; Matar, Omar

    2016-11-01

    Liquid jet breakup is an important fundamental multiphase flow, often found in many industrial engineering applications. The breakup process is very complex, involving jets, liquid films, ligaments, and small droplets, featuring tremendous complexity in interfacial topology and a large range of spatial scales. The objective of this study is to investigate the fluid dynamics of three-dimensional liquid jet breakup problems, such as liquid jet primary breakup and gas-sheared liquid jet breakup. An adaptive unstructured mesh modelling framework is employed here, which can modify and adapt unstructured meshes to optimally represent the underlying physics of multiphase problems and reduce computational effort without sacrificing accuracy. The numerical framework consists of a mixed control volume and finite element formulation, a 'volume of fluid' type method for the interface capturing based on a compressive control volume advection method and second-order finite element methods, and a force-balanced algorithm for the surface tension implementation. Numerical examples of some benchmark tests and the dynamics of liquid jet breakup with and without ambient gas are presented to demonstrate the capability of this method.

  18. Comparative Study of Algorithms for Automated Generalization of Linear Objects

    NASA Astrophysics Data System (ADS)

    Azimjon, S.; Gupta, P. K.; Sukhmani, R. S. G. S.

    2014-11-01

    Automated generalization, rooted from conventional cartography, has become an increasing concern in both geographic information system (GIS) and mapping fields. All geographic phenomenon and the processes are bound to the scale, as it is impossible for human being to observe the Earth and the processes in it without decreasing its scale. To get optimal results, cartographers and map-making agencies develop set of rules and constraints, however these rules are under consideration and topic for many researches up until recent days. Reducing map generating time and giving objectivity is possible by developing automated map generalization algorithms (McMaster and Shea, 1988). Modification of the scale traditionally is a manual process, which requires knowledge of the expert cartographer, and it depends on the experience of the user, which makes the process very subjective as every user may generate different map with same requirements. However, automating generalization based on the cartographic rules and constrains can give consistent result. Also, developing automated system for map generation is the demand of this rapid changing world. The research that we have conveyed considers only generalization of the roads, as it is one of the indispensable parts of a map. Dehradun city, Uttarakhand state of India was selected as a study area. The study carried out comparative study of the generalization software sets, operations and algorithms available currently, also considers advantages and drawbacks of the existing software used worldwide. Research concludes with the development of road network generalization tool and with the final generalized road map of the study area, which explores the use of open source python programming language and attempts to compare different road network generalization algorithms. Thus, the paper discusses the alternative solutions for automated generalization of linear objects using GIS-technologies. Research made on automated of road network

  19. Numerical Study of Solar Storms From the Sun to Earth

    NASA Astrophysics Data System (ADS)

    Feng, Xueshang

    2015-08-01

    As solar storms are sweeping the Earth, adverse changes occur in geospace environment. It is of both scientific significance to understand the dynamic process during solar storm’s propagation in interplanetary space and realistic value to conduct physics-based numerical researches on the three-dimensional process of solar storms in interplanetary space with the aid of powerful computing capacity to predict the arrival times, intensities, and probable geoeffectiveness of solar storms at the Earth. Numerical modeling community has a common goal to develop an end-to-end physics-based modeling system for forecasting the Sun-Earth relationship. It is hoped that the models’ prediction capabilities may be improved by incorporating the observational findings and constraints into physics-based models, combining the observations, empirical models and MHD simulations in organic ways.In this talk, we birefly review the current status of the existing three-dimensional numerical physics-based coronal and interplanetary models and their recent research results, particularly our recent progress in using solar observations to produce realistic magnetic configurations of CMEs as they leave the Sun, and coupling data-driven simulations of CMEs to heliospheric simulations that then propagate the CME configuration to 1AU, and outlook the important numerical issues and their possible solutions in numerical space weather modeling from the Sun to Earth for future research.

  20. European Air Quality and Climate Change: a numerical modeling study

    NASA Astrophysics Data System (ADS)

    Lacressonniere, G.

    2011-12-01

    In the context of climate change, the evolution of air quality in Europe is a challenging scientific question, despite the political measures taken to limit and reduce anthropogenic emissions. Heat waves, changes in transport pathways or synoptic patterns, increase of emissions in other areas in the world, or for instance possible increase of biogenic emissions or changes in deposition and land use may affect adversely future Air Quality levels in Europe. In the context of a project co-funded by the French environment agency ADEME, a numerical modeling study has begun relying on the tools used by Météo-France for its contribution to the 5th IPCC assessment report, to GMES atmospheric services (MACC FP7 project) and to the French national operational Air Quality platform Prév'Air (http://www.prevair.org). In particular, the MOCAGE 3-D chemical transport model (CTM) is used with a configuration comprising a global (2°) and a European domain (0.2°), allowing representation of both long-range transport of pollutants and European Air Quality at relevant resolutions and with a two-ways coupling. MOCAGE includes 47 layers from the surface to 5hPa. The first step of this project was to assess the impact of meteorological forcings, either analyses ("best" meteorology available for the recent past) or climate runs for the current atmosphere, on air quality hindcasts with MOCAGE over Europe. For these climate runs, we rely on Météo-France Earth-System model CNRM-CM, and particularly the ARPEGE-climate general circulation model for the atmosphere. By studying several key variables for Air Quality (surface and low troposphere concentrations of ozone, nitrogen oxides, volatile organic compounds, radicals, PM,...), we investigated the indicators that are robust, through averages over several years, (monthly averages, frequency of exceedances, AOTs, ...) for a given climate when using climatological forcings instead of analyses, which constitutes the reference. Both

  1. Numerical Study of Single-Chamber Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Hao, Yong

    Single-chamber solid oxide fuel cells (SCFC) are ones in which the fuel and oxidizer are premixed, and selective electrode catalysts are used to generate the oxygen partial pressure gradient that in a conventional dual-chamber design is produced by physical separation of the fuel and oxidizer streams. The SCFC concept is a novel simplification of a conventional solid oxide fuel cell (SOFC), and SCFCs have been shown capable of generating power densities high enough to make them potentially useful in many applications where the simplicity of a single gas chamber and absence of seals offsets the expected lower efficiency of SCFCs compared to dual-chamber SOFCs. SCFC performance is found to depend sensitively on cell microstructure, geometry, and flow conditions, and optimization of SCFC stacks requires considering complex, coupled chemical and transport processes. However, research activity in this area is far from sufficient and insights about SCFC systems are very limited. The understanding of many fundamental physical and chemical processes required for improving SCFC designs is often beyond the capability of modern experimental techniques, and efficient experimental studies are often held back by the lack of guidance from theoretical models due to the fact that modeling study about SCFC is very rare to date, and existing models about conventional SOFCs are not suitable for simulating SCFCs because of the inherent differences of single-chamber SOFCs from conventional ones. In order to systematically investigate these problems and optimize the electrical performance of SCFC systems, a 2D numerical model of a single-chamber solid oxide fuel cell (SCFC) operating on hydrocarbon fuels is developed and presented in this work. The model accounts for the coupled effects of gas channel fluid flow, heat transfer, porous media transport, catalytic reforming/shifting chemistry, electrochemistry, and mixed ionic-electronic conductivity. It solves for the velocity, temperature

  2. Study of sequential optimal control algorithm smart isolation structure based on Simulink-S function

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohuan; Liu, Yanhui

    2017-01-01

    The study of this paper focuses on smart isolation structure, a method for realizing structural vibration control by using Simulink simulation is proposed according to the proposed sequential optimal control algorithm. In the Simulink simulation environment, A smart isolation structure is used to compare the control effect of three algorithms, i.e., classical optimal control algorithm, linear quadratic gaussian control algorithm and sequential optimal control algorithm under the condition of sensor contaminated with noise. Simulation results show that this method can be applied to the simulation of sequential optimal control algorithm and the proposed sequential optimal control algorithm has a good ability of resisting the noise and better control efficiency.

  3. FEM numerical model study of heating in magnetic nanoparticles

    PubMed Central

    Pearce, John A.; Cook, Jason R.; Hoopes, P. Jack; Giustini, Andrew

    2013-01-01

    Electromagnetic heating of nanoparticles is complicated by the extremely short thermal relaxation time constants and difficulty of coupling sufficient power into the particles to achieve desired temperatures. Magnetic field heating by the hysteresis loop mechanism at frequencies between about 100 and 300 kHz has proven to be an effective mechanism in magnetic nanoparticles. Experiments at 2.45 GHz show that Fe3O4 magnetite nanoparticle dispersions in the range of 1012 to 1013 NP/mL also heat substantially at this frequency. An FEM numerical model study was undertaken to estimate the order of magnitude of volume power density, Qgen (W m−3) required to achieve significant heating in evenly dispersed and aggregated clusters of nanoparticles. The FEM models were computed using Comsol Multiphysics; consequently the models were confined to continuum formulations and did not include film nano-dimension heat transfer effects at the nanoparticle surface. As an example, the models indicate that for a single 36 nm diameter particle at an equivalent dispersion of 1013 NP/mL located within one control volume (1.0 × 10−19 m3) of a capillary vessel a power density in the neighborhood of 1017 (W m−3) is required to achieve a steady state particle temperature of 52 °C — the total power coupled to the particle is 2.44 μW. As a uniformly distributed particle cluster moves farther from the capillary the required power density decreases markedly. Finally, the tendency for particles in vivo to cluster together at separation distances much less than those of the uniform distribution further reduces the required power density. PMID:24386534

  4. Numerical study of a Taylor bubble rising in stagnant liquids.

    PubMed

    Kang, Chang-Wei; Quan, Shaoping; Lou, Jing

    2010-06-01

    The dynamics of a Taylor bubble rising in stagnant liquids is numerically investigated using a front tracking coupled with finite difference method. Parametric studies on the dynamics of the rising Taylor bubble including the final shape, the Reynolds number (Re(T)), the Weber number (We(T)), the Froude number (Fr), the thin liquid film thickness (w/D), and the wake length (l(w)/D) are carried out. The effects of density ratio (η), viscosity ratio (λ), Eötvös number (Eo), and Archimedes number (Ar) are examined. The simulations demonstrate that the density ratio and the viscosity ratio under consideration have minimal effect on the dynamics of the Taylor bubble. Eötvös number and Archimedes number influence the elongation of the tail and the wake structures, where higher Eo and Ar result in longer wake. To explain the sudden extension of the tail, a Weber number (We(l)) based on local curvature and velocity is evaluated and a critical We(l) is detected around unity. The onset of flow separation at the wake occurs in between Ar=2×10(3) and Ar=1×10(4), which corresponds to Re(T) between 13.39 and 32.55. Archimedes number also drastically affects the final shape of Taylor bubble, the terminal velocity, the thickness of thin liquid film, as well as the wall shear stress. It is found that w/D=0.32 Ar(-0.1).

  5. FEM numerical model study of heating in magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Pearce, John A.; Cook, Jason R.; Hoopes, P. Jack; Giustini, Andrew

    2011-03-01

    Electromagnetic heating of nanoparticles is complicated by the extremely short thermal relaxation time constants and difficulty of coupling sufficient power into the particles to achieve desired temperatures. Magnetic field heating by the hysteresis loop mechanism at frequencies between about 100 and 300 kHz has proven to be an effective mechanism in magnetic nanoparticles. Experiments at 2.45 GHz show that Fe3O4 magnetite nanoparticle dispersions in the range of 1012 to 1013 NP/mL also heat substantially at this frequency. An FEM numerical model study was undertaken to estimate the order of magnitude of volume power density, Qgen (W m-3) required to achieve significant heating in evenly dispersed and aggregated clusters of nanoparticles. The FEM models were computed using Comsol Multiphysics; consequently the models were confined to continuum formulations and did not include film nano-dimension heat transfer effects at the nanoparticle surface. As an example, the models indicate that for a single 36 nm diameter particle at an equivalent dispersion of 1013 NP/mL located within one control volume (1.0 x 10-19 m3) of a capillary vessel a power density in the neighborhood of 1017 (W m-3) is required to achieve a steady state particle temperature of 52°C - the total power coupled to the particle is 2.44 μW. As a uniformly distributed particle cluster moves farther from the capillary the required power density decreases markedly. Finally, the tendency for particles in vivo to cluster together at separation distances much less than those of the uniform distribution further reduces the required power density.

  6. Numerical study of a confined slot impinging jet with nanofluids

    PubMed Central

    2011-01-01

    Background Heat transfer enhancement technology concerns with the aim of developing more efficient systems to satisfy the increasing demands of many applications in the fields of automotive, aerospace, electronic and process industry. A solution for obtaining efficient cooling systems is represented by the use of confined or unconfined impinging jets. Moreover, the possibility of increasing the thermal performances of the working fluids can be taken into account, and the introduction of nanoparticles in a base fluid can be considered. Results In this article, a numerical investigation on confined impinging slot jet working with a mixture of water and Al2O3 nanoparticles is described. The flow is turbulent and a constant temperature is applied on the impinging. A single-phase model approach has been adopted. Different geometric ratios, particle volume concentrations and Reynolds number have been considered to study the behavior of the system in terms of average and local Nusselt number, convective heat transfer coefficient and required pumping power profiles, temperature fields and stream function contours. Conclusions The dimensionless stream function contours show that the intensity and size of the vortex structures depend on the confining effects, given by H/W ratio, Reynolds number and particle concentrations. Furthermore, for increasing concentrations, nanofluids realize increasing fluid bulk temperature, as a result of the elevated thermal conductivity of mixtures. The local Nusselt number profiles show the highest values at the stagnation point, and the lowest at the end of the heated plate. The average Nusselt number increases for increasing particle concentrations and Reynolds numbers; moreover, the highest values are observed for H/W = 10, and a maximum increase of 18% is detected at a concentration equal to 6%. The required pumping power as well as Reynolds number increases and particle concentrations grow, which is almost 4.8 times greater than the

  7. Symbolic, Nonsymbolic and Conceptual: An Across-Notation Study on the Space Mapping of Numerals.

    PubMed

    Zhang, Yu; You, Xuqun; Zhu, Rongjuan

    2016-07-01

    Previous studies suggested that there are interconnections between two numeral modalities of symbolic notation and nonsymbolic notation (array of dots), differences and similarities of the processing, and representation of the two modalities have both been found in previous research. However, whether there are differences between the spatial representation and numeral-space mapping of the two numeral modalities of symbolic notation and nonsymbolic notation is still uninvestigated. The present study aims to examine whether there are differences between the spatial representation and numeral-space mapping of the two numeral modalities of symbolic notation and nonsymbolic notation; especially how zero, as both a symbolic magnitude numeral and a nonsymbolic conceptual numeral, mapping onto space; and if the mapping happens automatically at an early stage of the numeral information processing. Results of the two experiments demonstrate that the low-level processing of symbolic numerals including zero and nonsymbolic numerals except zero can mapping onto space, whereas the low-level processing of nonsymbolic zero as a semantic conceptual numeral cannot mapping onto space, which indicating the specialty of zero in the numeral domain. The present study indicates that the processing of non-semantic numerals can mapping onto space, whereas semantic conceptual numerals cannot mapping onto space.

  8. A numerical study of drop-on-demand ink jets

    NASA Technical Reports Server (NTRS)

    Fromm, J.

    1982-01-01

    Ongoing work related to development and utilization of a numerical model for treating the fluid dynamics of ink jets is discussed. The model embodies the complete nonlinear, time dependent, axi-symmetric equations in finite difference form. The jet nozzle geometry with no-slip boundary conditions and the existence of a contact circle are included. The contact circle is allowed some freedom of movement, but wetting of exterior surfaces is not addressed. The principal objective in current numerical experiments is to determine what pressure history, in conjunction with surface forces, will lead to clean drop formation.

  9. A numerical study of transient, thermally-conductive solar wind

    NASA Technical Reports Server (NTRS)

    Han, S. M.; Wu, S. T.; Dryer, M.

    1987-01-01

    A numerical analysis of transient solar wind starting at the solar surface and arriving at 1 AU is performed by an implicit numerical method. The model hydrodynamic equations include thermal conduction terms for both steady and unsteady simulations. Simulation results show significant influence of thermal conduction on both steady and time-dependent solar wind. Higher thermal conduction results in higher solar wind speed, higher temperature, but lower plasma density at 1 AU. Higher base temperature at the solar surface gives lower plasma speed, lower temperature, but higher density at 1 AU. Higher base density, on the other hand, gives lower velocity, lower temperature, but higher density at 1 AU.

  10. Feasibility study for a numerical aerodynamic simulation facility. Volume 1

    NASA Technical Reports Server (NTRS)

    Lincoln, N. R.; Bergman, R. O.; Bonstrom, D. B.; Brinkman, T. W.; Chiu, S. H. J.; Green, S. S.; Hansen, S. D.; Klein, D. L.; Krohn, H. E.; Prow, R. P.

    1979-01-01

    A Numerical Aerodynamic Simulation Facility (NASF) was designed for the simulation of fluid flow around three-dimensional bodies, both in wind tunnel environments and in free space. The application of numerical simulation to this field of endeavor promised to yield economies in aerodynamic and aircraft body designs. A model for a NASF/FMP (Flow Model Processor) ensemble using a possible approach to meeting NASF goals is presented. The computer hardware and software are presented, along with the entire design and performance analysis and evaluation.

  11. Numerical Study of Underwater Explosions and Following Bubble Pulses

    NASA Astrophysics Data System (ADS)

    Abe, A.; Katayama, M.; Murata, K.; Kato, Y.; Tanaka, K.

    2007-12-01

    Underwater explosions and following bubble pulses were simulated by using a hydrocode ANSYS® AUTODYN®. Effects of (a) pressure gradient depending on a water depth, (b) atmospheric pressure, (c) gravitational acceleration during bubble pulsation and (d) reaction process of non-ideal detonation on bubble pulsation phenomena were investigated numerically. Numerical bubble properties were compared with experimental data. Emulsion explosive of a charge weight 100 g was detonated at water depth of 4 m in an underwater explosion testing tank. These conditions (a), (b) and (d) could lead precise simulations of the bubble pulses consistent with the experimental data. The condition (c) could give bubble upward motion under its buoyancy effect.

  12. Pseudoconvexity of the atomic electron density: A numerical study

    NASA Astrophysics Data System (ADS)

    Esquivel, Rodolfo O.; Sagar, Robin P.; Smith, Vedene H., Jr.; Chen, Jiqiang; Stott, M. J.

    1993-06-01

    The curvature, ρ''(r), of the atomic electron density ρ(r) is studied using results from a bare-Coulomb-field (BCF) model, Hartree-Fock (HF), and configuration-interaction (CI) calculations. A region of nonconvexity in ρ(r), previously reported by Angulo, Dehesa, and Gálvez [Phys. Rev. A 42, 641 (1990)] for light atoms in a Hartree-Fock framework, is investigated for all atoms up to Z=92 and is found not to be an artifact of the basis set or the HF model. Numerical results for the BCF model show that the total electron density of an arbitrary number of closed shells is convex. However, for the same model with electrons filling orbitals according to Stoner's restriction we find that nonconvexity of the density is a periodic property appearing around closed-shell ground-state hydrogenic configurations. Cusp conditions, reported earlier by Esquivel et al. [Phys. Rev. A 47, 936 (1993)] for the second derivative of the BCF density are verified for model atoms with s and p subshells. Using wave functions of near-HF accuracy we have found a region of nonconvexity in ρ(r) for atoms with Z=3-6, 16-32, and 45-92. Highly correlated densities of CI and Hylleraas-type quality for atoms of Li and Be isoelectronic sequences show that the nonconvex region of ρ(r) is largely unaffected by the inclusion of electron correlation. These results, coupled with those from the BCF model, lead us to suggest that it is the bare Coulomb field of the nucleus that is mainly responsible for the appearance of nonconvex regions in atoms. Furthermore, the degree of nonconvexity is shown to decrease as Z increases along the isoelectronic series. The contributions of different spin densities to the nonconvex electron densities is also studied. Finally, the behavior of the curvature of the electron density far from the nucleus is investigated. The ratio ρ''(r)/ρ(r) is found to approach an asymptotic value from above or below, according to the magnitude of the ionization potential.

  13. A qualitative numerical study of high dimensional dynamical systems

    NASA Astrophysics Data System (ADS)

    Albers, David James

    Since Poincare, the father of modern mathematical dynamical systems, much effort has been exerted to achieve a qualitative understanding of the physical world via a qualitative understanding of the functions we use to model the physical world. In this thesis, we construct a numerical framework suitable for a qualitative, statistical study of dynamical systems using the space of artificial neural networks. We analyze the dynamics along intervals in parameter space, separating the set of neural networks into roughly four regions: the fixed point to the first bifurcation; the route to chaos; the chaotic region; and a transition region between chaos and finite-state neural networks. The study is primarily with respect to high-dimensional dynamical systems. We make the following general conclusions as the dimension of the dynamical system is increased: the probability of the first bifurcation being of type Neimark-Sacker is greater than ninety-percent; the most probable route to chaos is via a cascade of bifurcations of high-period periodic orbits, quasi-periodic orbits, and 2-tori; there exists an interval of parameter space such that hyperbolicity is violated on a countable, Lebesgue measure 0, "increasingly dense" subset; chaos is much more likely to persist with respect to parameter perturbation in the chaotic region of parameter space as the dimension is increased; moreover, as the number of positive Lyapunov exponents is increased, the likelihood that any significant portion of these positive exponents can be perturbed away decreases with increasing dimension. The maximum Kaplan-Yorke dimension and the maximum number of positive Lyapunov exponents increases linearly with dimension. The probability of a dynamical system being chaotic increases exponentially with dimension. The results with respect to the first bifurcation and the route to chaos comment on previous results of Newhouse, Ruelle, Takens, Broer, Chenciner, and Iooss. Moreover, results regarding the high

  14. Numerical methods in control

    NASA Astrophysics Data System (ADS)

    Mehrmann, Volker; Xu, Hongguo

    2000-11-01

    We study classical control problems like pole assignment, stabilization, linear quadratic control and H[infinity] control from a numerical analysis point of view. We present several examples that show the difficulties with classical approaches and suggest reformulations of the problems in a more general framework. We also discuss some new algorithmic approaches.

  15. A study of image reconstruction algorithms for hybrid intensity interferometers

    NASA Astrophysics Data System (ADS)

    Crabtree, Peter N.; Murray-Krezan, Jeremy; Picard, Richard H.

    2011-09-01

    Phase retrieval is explored for image reconstruction using outputs from both a simulated intensity interferometer (II) and a hybrid system that combines the II outputs with partially resolved imagery from a traditional imaging telescope. Partially resolved imagery provides an additional constraint for the iterative phase retrieval process, as well as an improved starting point. The benefits of this additional a priori information are explored and include lower residual phase error for SNR values above 0.01, increased sensitivity, and improved image quality. Results are also presented for image reconstruction from II measurements alone, via current state-of-the-art phase retrieval techniques. These results are based on the standard hybrid input-output (HIO) algorithm, as well as a recent enhancement to HIO that optimizes step lengths in addition to step directions. The additional step length optimization yields a reduction in residual phase error, but only for SNR values greater than about 10. Image quality for all algorithms studied is quite good for SNR>=10, but it should be noted that the studied phase-recovery techniques yield useful information even for SNRs that are much lower.

  16. Study of efficient video compression algorithms for space shuttle applications

    NASA Technical Reports Server (NTRS)

    Poo, Z.

    1975-01-01

    Results are presented of a study on video data compression techniques applicable to space flight communication. This study is directed towards monochrome (black and white) picture communication with special emphasis on feasibility of hardware implementation. The primary factors for such a communication system in space flight application are: picture quality, system reliability, power comsumption, and hardware weight. In terms of hardware implementation, these are directly related to hardware complexity, effectiveness of the hardware algorithm, immunity of the source code to channel noise, and data transmission rate (or transmission bandwidth). A system is recommended, and its hardware requirement summarized. Simulations of the study were performed on the improved LIM video controller which is computer-controlled by the META-4 CPU.

  17. Study on Underwater Image Denoising Algorithm Based on Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Jian, Sun; Wen, Wang

    2017-02-01

    This paper analyzes the application of MATLAB in underwater image processing, the transmission characteristics of the underwater laser light signal and the kinds of underwater noise has been described, the common noise suppression algorithm: Wiener filter, median filter, average filter algorithm is brought out. Then the advantages and disadvantages of each algorithm in image sharpness and edge protection areas have been compared. A hybrid filter algorithm based on wavelet transform has been proposed which can be used for Color Image Denoising. At last the PSNR and NMSE of each algorithm has been given out, which compares the ability to de-noising

  18. Semi Active Control of Civil Structures, Analytical and Numerical Studies

    NASA Astrophysics Data System (ADS)

    Kerboua, M.; Benguediab, M.; Megnounif, A.; Benrahou, K. H.; Kaoulala, F.

    numerical example of the parallel R-L piezoelectric vibration shunt control simulated with MATLAB® is presented. An analytical study of the resistor-inductor (R-L) passive piezoelectric vibration shunt control of a cantilever beam was undertaken. The modal and strain analyses were performed by varying the material properties and geometric configurations of the piezoelectric transducer in relation to the structure in order to maximize the mechanical strain produced in the piezoelectric transducer.

  19. Experimental, theoretical, and numerical studies of small scale combustion

    NASA Astrophysics Data System (ADS)

    Xu, Bo

    Recently, the demand increased for the development of microdevices such as microsatellites, microaerial vehicles, micro reactors, and micro power generators. To meet those demands the biggest challenge is obtaining stable and complete combustion at relatively small scale. To gain a fundamental understanding of small scale combustion in this thesis, thermal and kinetic coupling between the gas phase and the structure at meso and micro scales were theoretically, experimentally, and numerically studied; new stabilization and instability phenomena were identified; and new theories for the dynamic mechanisms of small scale combustion were developed. The reduction of thermal inertia at small scale significantly reduces the response time of the wall and leads to a strong flame-wall coupling and extension of burning limits. Mesoscale flame propagation and extinction in small quartz tubes were theoretically, experimentally and numerically studied. It was found that wall-flame interaction in mesoscale combustion led to two different flame regimes, a heat-loss dominant fast flame regime and a wall-flame coupling slow flame regime. The nonlinear transition between the two flame regimes was strongly dependent on the channel width and flow velocity. It is concluded that the existence of multiple flame regimes is an inherent phenomenon in mesoscale combustion. In addition, all practical combustors have variable channel width in the direction of flame propagation. Quasi-steady and unsteady propagations of methane and propane-air premixed flames in a mesoscale divergent channel were investigated experimentally and theoretically. The emphasis was the impact of variable cross-section area and the flame-wall coupling on the flame transition between different regimes and the onset of flame instability. For the first time, spinning flames were experimentally observed for both lean and rich methane and propane-air mixtures in a broad range of equivalence ratios. An effective Lewis number

  20. A numerical study of scaling issues for trench power MOSFETs

    NASA Astrophysics Data System (ADS)

    Roig, J.; Cortés, I.; Jiménez, D.; Flores, D.; Iñiguez, B.; Hidalgo, S.; Rebollo, J.

    2005-06-01

    The effect of the scaling down on the electrical performance of trench power MOSFET structures is investigated in this work by means of numerical simulation tools. Layout dimensions of trench power MOSFETs have been continuously reduced in order to decrease the specific on-resistance, maintaining equal vertical dimensions. Nowadays, the last scaling efforts provide trench width and distance between two consecutive trenches in the submicron range. The resultant short distance between gates is expected to induce significant modifications in the device electrical performances, since the fully depletion condition will be feasible in the body region. Hence, the influence of the fully depleted body on the on-state resistance, threshold voltage, breakdown voltage, parasitic bipolar transistor and internal capacitances are features of particular interest. Furthermore, device reliability aspects, such as hot-carrier and self-heating effects, are evaluated by numerical simulation in trench power MOSFETs for the first time.

  1. Numerical studies of motion and decay of vortex filaments

    NASA Technical Reports Server (NTRS)

    Liu, C. H.; Tavantzis, J.; Ting, L.

    1986-01-01

    A computational code is developed for the integro-differential equations governing the motion of the centerlines of vortex filaments submerged in a background potential flow. These equations, which are derived from the method of matched asymptotic analysis, include the effect of decaying large-magnitude circumferential and axial velocity components in the vortical cores. Numerical examples are presented to assess the effect of large axial velocity and of nonsimilar initial profiles in vortical cores. The initial configurations of the filaments are chosen so as to fulfill the basic assumption of asymptotic analysis, which is the effective vortical core size is much smaller than all other length scales in the flowfield, e.g., the radius of curvature and interfilament distance. The computations are continued until the basic assumption is no longer valid, that is, when the merging or intersection of filaments have begun. Various types of local or global merging or intersection of filaments are classified and demonstrated by numerical examples.

  2. Experimental and numerical study on ice resistance for icebreaking vessels

    NASA Astrophysics Data System (ADS)

    Hu, Jian; Zhou, Li

    2015-05-01

    Ice resistance is defined as the time average of all longitudinal forces due to ice acting on the ship. Estimation of ship's resistance in ice-covered waters is very important to both designers and shipbuilders since it is closely related to propulsion of a ship and it determines the engine power of the ship. Good ice performance requires ice resistance should be as low as possible to allow different manoeuvres. In this paper, different numerical methods are presented to calculate ice resistance, including semi-analytical method and empirical methods. A model test of an icebreaking vessel that was done in an ice basin has been introduced for going straight ahead in level ice at low speed. Then the comparison between model test results and numerical results are made. Some discussions and suggestions are presented as well to provide an insight into icebreaking vessel design at early stage.

  3. Experimental and numerical study on ice resistance for icebreaking vessels

    NASA Astrophysics Data System (ADS)

    Hu, Jian; Zhou, Li

    2015-09-01

    Ice resistance is defined as the time average of all longitudinal forces due to ice acting on the ship. Estimation of ship's resistance in ice-covered waters is very important to both designers and shipbuilders since it is closely related to propulsion of a ship and it determines the engine power of the ship. Good ice performance requires ice resistance should be as low as possible to allow different manoeuvres. In this paper, different numerical methods are presented to calculate ice resistance, including semi-analytical method and empirical methods. A model test of an icebreaking vessel that was done in an ice basin has been introduced for going straight ahead in level ice at low speed. Then the comparison between model test results and numerical results are made. Some discussions and suggestions are presented as well to provide an insight into icebreaking vessel design at early stage.

  4. Numerical study of dynamo action at low magnetic Prandtl numbers.

    PubMed

    Ponty, Y; Mininni, P D; Montgomery, D C; Pinton, J-F; Politano, H; Pouquet, A

    2005-04-29

    We present a three-pronged numerical approach to the dynamo problem at low magnetic Prandtl numbers P(M). The difficulty of resolving a large range of scales is circumvented by combining direct numerical simulations, a Lagrangian-averaged model and large-eddy simulations. The flow is generated by the Taylor-Green forcing; it combines a well defined structure at large scales and turbulent fluctuations at small scales. Our main findings are (i) dynamos are observed from P(M)=1 down to P(M)=10(-2), (ii) the critical magnetic Reynolds number increases sharply with P(M)(-1) as turbulence sets in and then it saturates, and (iii) in the linear growth phase, unstable magnetic modes move to smaller scales as P(M) is decreased. Then the dynamo grows at large scales and modifies the turbulent velocity fluctuations.

  5. Numerical study on thermodynamic characteristics of rotational supercavitating evaporator

    NASA Astrophysics Data System (ADS)

    Li, Q.; Zheng, Z. Y.; Li, F. C.; Kulagin, V. A.

    2016-05-01

    Rotational Supercavitating Evaporator (RSCE) has been proposed as a new technology for seawater desalination. However, thermodynamic characteristics of rotational supercavitation are still vacant. In this paper, numerical simulations are conducted on the supercavitating flows around a 3D rotating blade of RSCE with different rotational speeds and extraction pressures. Energy effect is taken into consideration in the simulation and thermodynamic characteristics of rotational supercavitation are obtained. Rotational supercavitation has a larger convective heat transfer coefficient than the boiling on a heated wall.

  6. A Numerical Study of Heat Transfer Behavior in Welding

    DTIC Science & Technology

    1998-06-01

    subcooled liquid. For the subcooled boiling , the heat flux can be estimated as [Ref. 23] 18 q"=qs"i i + ^l\\^sat * liquid) 24 nhf.pv Pv og(p...STATEMENT Approved for public release; distribution is unlimited. 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) A numerical model has...dependent thermal properties have been used in the calculations. Convective, radiative and boiling surface thermal conditions have also been included. The

  7. Lift augmentation via spanwise tip blowing - A numerical study

    NASA Technical Reports Server (NTRS)

    Childs, R. E.

    1986-01-01

    Numerical simulations of a low aspect ratio wing with and without a spanwise directed jet issuing from the wing tip have been performed. The results show that the tip vortex is displaced outward and upward by the blowing. This gives rise to a local lift augmentation mechanism, vortex lift caused by the vortex core being above the wing, and a global mechanism, the reduction of induced velocities due to greater apparent spin.

  8. Numerical study of supersonic turbulent flow over small protuberances

    NASA Technical Reports Server (NTRS)

    Polak, A.; Werle, M. J.

    1975-01-01

    Supersonic turbulent boundary layers over two-dimensional protuberances are investigated, using the numerical finite difference alternating direction implicit (ADI) method. The turbulence is modeled mathematically. The turbulence is represented here by the eddy viscosity approach. The turbulent boundary layer structure as well as an interest in thick boundary layers and much larger protuberance heights than in the laminar case lead to new difficulties. The problems encountered and the means to remove them are discussed.

  9. Key issues review: numerical studies of turbulence in stars

    NASA Astrophysics Data System (ADS)

    Arnett, W. David; Meakin, Casey

    2016-10-01

    Three major problems of single-star astrophysics are convection, magnetic fields and rotation. Numerical simulations of convection in stars now have sufficient resolution to be truly turbulent, with effective Reynolds numbers of \\text{Re}>{{10}4} , and some turbulent boundary layers have been resolved. Implications of these developments are discussed for stellar structure, evolution and explosion as supernovae. Methods for three-dimensional (3D) simulations of stars are compared and discussed for 3D atmospheres, solar rotation, core-collapse and stellar boundary layers. Reynolds-averaged Navier-Stokes (RANS) analysis of the numerical simulations has been shown to provide a novel and quantitative estimate of resolution errors. Present treatments of stellar boundaries require revision, even for early burning stages (e.g. for mixing regions during He-burning). As stellar core-collapse is approached, asymmetry and fluctuations grow, rendering spherically symmetric models of progenitors more unrealistic. Numerical resolution of several different types of three-dimensional (3D) stellar simulations are compared; it is suggested that core-collapse simulations may be under-resolved. The Rayleigh-Taylor instability in explosions has a deep connection to convection, for which the abundance structure in supernova remnants may provide evidence.

  10. Numerical studies of diffusive shock acceleration at spherical shocks

    NASA Astrophysics Data System (ADS)

    Kang, Hyesung; Jones, T. W.

    2006-05-01

    We have developed a cosmic ray (CR) shock code in one-dimensional spherical geometry with which the particle distribution, the gas flow and their nonlinear interaction can be followed numerically in a frame comoving with an expanding shock. In order to accommodate a very wide dynamic range of diffusion length scales in the CR shock problem, we have incorporated subzone shock tracking and adaptive mesh refinement techniques. We find the spatial grid resolution required for numerical convergence is less stringent in this code compared to typical, fixed-grid Eulerian codes. The improved convergence behavior derives from maintaining the shock discontinuity inside the same grid zone in the comoving code. That feature improves numerical estimates of the compression rate experienced by CRs crossing the subshock compared to codes that allow the subshock to drift on the grid. Using this code with a Bohm-like diffusion model we have calculated the CR acceleration and the nonlinear feedback at supernova remnant shocks during the Sedov-Taylor stage. Similarly to plane-parallel shocks, with an adopted thermal leakage injection model, about 10 -3 of the particles that pass through the shock and up to 60% of the explosion energy are transferred to the CR component. These results are in good agreement with previous nonlinear spherical CR shock calculations of Berezhko and collaborators.

  11. Numerical Studies and Equipment Development for Single Point Incremental Forming

    NASA Astrophysics Data System (ADS)

    Marabuto, S. R.; Sena, J. I. V.; Afonso, D.; Martins, M. A. B. E.; Coelho, R. M.; Ferreira, J. A. F.; Valente, R. A. F.; de Sousa, R. J. Alves

    2011-05-01

    This paper summarizes the achievements obtained so far in the context of a research project carried out at the University of Aveiro, Portugal on both numerical and experimental viewpoints concerning Single Point Incremental Forming (SPIF). On the experimental side, the general guidelines on the development of a new SPIF machine are detailed. The innovation features are related to the choice of a six-degrees-of-freedom, parallel kinematics machine, with a high payload, to broad the range of materials to be tested, and allowing for a higher flexibility on tool-path generation. On the numerical side, preliminary results on simulation of SPIF processes resorting to an innovative solid-shell finite element are presented. The final target is an accurate and fast simulation of SPIF processes by means of numerical methods. Accuracy is obtained through the use of a finite element accounting for three-dimensional stress and strain fields. The developed formulation allows for an unlimited number of integration points through its thickness direction, which promotes accuracy without loss of CPU efficiency. Preliminary results and designs are shown and discussions over the obtained solutions are provided in order to further improve the research framework.

  12. Key issues review: numerical studies of turbulence in stars.

    PubMed

    David Arnett, W; Meakin, Casey

    2016-10-01

    Three major problems of single-star astrophysics are convection, magnetic fields and rotation. Numerical simulations of convection in stars now have sufficient resolution to be truly turbulent, with effective Reynolds numbers of [Formula: see text], and some turbulent boundary layers have been resolved. Implications of these developments are discussed for stellar structure, evolution and explosion as supernovae. Methods for three-dimensional (3D) simulations of stars are compared and discussed for 3D atmospheres, solar rotation, core-collapse and stellar boundary layers. Reynolds-averaged Navier-Stokes (RANS) analysis of the numerical simulations has been shown to provide a novel and quantitative estimate of resolution errors. Present treatments of stellar boundaries require revision, even for early burning stages (e.g. for mixing regions during He-burning). As stellar core-collapse is approached, asymmetry and fluctuations grow, rendering spherically symmetric models of progenitors more unrealistic. Numerical resolution of several different types of three-dimensional (3D) stellar simulations are compared; it is suggested that core-collapse simulations may be under-resolved. The Rayleigh-Taylor instability in explosions has a deep connection to convection, for which the abundance structure in supernova remnants may provide evidence.

  13. A high-order numerical algorithm for DNS of low-Mach-number reactive flows with detailed chemistry and quasi-spectral accuracy

    NASA Astrophysics Data System (ADS)

    Motheau, E.; Abraham, J.

    2016-05-01

    A novel and efficient algorithm is presented in this paper to deal with DNS of turbulent reacting flows under the low-Mach-number assumption, with detailed chemistry and a quasi-spectral accuracy. The temporal integration of the equations relies on an operating-split strategy, where chemical reactions are solved implicitly with a stiff solver and the convection-diffusion operators are solved with a Runge-Kutta-Chebyshev method. The spatial discretisation is performed with high-order compact schemes, and a FFT based constant-coefficient spectral solver is employed to solve a variable-coefficient Poisson equation. The numerical implementation takes advantage of the 2DECOMP&FFT libraries developed by [1], which are based on a pencil decomposition method of the domain and are proven to be computationally very efficient. An enhanced pressure-correction method is proposed to speed up the achievement of machine precision accuracy. It is demonstrated that a second-order accuracy is reached in time, while the spatial accuracy ranges from fourth-order to sixth-order depending on the set of imposed boundary conditions. The software developed to implement the present algorithm is called HOLOMAC, and its numerical efficiency opens the way to deal with DNS of reacting flows to understand complex turbulent and chemical phenomena in flames.

  14. A Numerical Algorithm to Calculate the Pressure Distribution of the TPS Front End Due to Desorption Induced by Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Sheng, I. C.; Kuan, C. K.; Chen, Y. T.; Yang, J. Y.; Hsiung, G. Y.; Chen, J. R.

    2010-06-01

    The pressure distribution is an important aspect of a UHV subsystem in either a storage ring or a front end. The design of the 3-GeV, 400-mA Taiwan Photon Source (TPS) foresees outgassing induced by photons and due to a bending magnet and an insertion device. An algorithm to calculate the photon-stimulated absorption (PSD) due to highly energetic radiation from a synchrotron source is presented. Several results using undulator sources such as IU20 are also presented, and the pressure distribution is illustrated.

  15. Middle atmosphere project: A radiative heating and cooling algorithm for a numerical model of the large scale stratospheric circulation

    NASA Technical Reports Server (NTRS)

    Wehrbein, W. M.; Leovy, C. B.

    1981-01-01

    A Curtis matrix is used to compute cooling by the 15 micron and 10 micron bands of carbon dioxide. Escape of radiation to space and exchange the lower boundary are used for the 9.6 micron band of ozone. Voigt line shape, vibrational relaxation, line overlap, and the temperature dependence of line strength distributions and transmission functions are incorporated into the Curtis matrices. The distributions of the atmospheric constituents included in the algorithm, and the method used to compute the Curtis matrices are discussed as well as cooling or heating by the 9.6 micron band of ozone. The FORTRAN programs and subroutines that were developed are described and listed.

  16. Theory of axially symmetric cusped focusing: numerical evaluation of a Bessoid integral by an adaptive contour algorithm

    NASA Astrophysics Data System (ADS)

    Kirk, N. P.; Connor, J. N. L.; Curtis, P. R.; Hobbs, C. A.

    2000-07-01

    A numerical procedure for the evaluation of the Bessoid canonical integral J({x,y}) is described. J({x,y}) is defined, for x and y real, by eq1 where J0(·) is a Bessel function of order zero. J({x,y}) plays an important role in the description of cusped focusing when there is axial symmetry present. It arises in the diffraction theory of aberrations, in the design of optical instruments and of highly directional microwave antennas and in the theory of image formation for high-resolution electron microscopes. The numerical procedure replaces the integration path along the real t axis with a more convenient contour in the complex t plane, thereby rendering the oscillatory integrand more amenable to numerical quadrature. The computations use a modified version of the CUSPINT computer code (Kirk et al 2000 Comput. Phys. Commun. at press), which evaluates the cuspoid canonical integrals and their first-order partial derivatives. Plots and tables of J({x,y}) and its zeros are presented for the grid -8.0≤x≤8.0 and -8.0≤y≤8.0. Some useful series expansions of J({x,y}) are also derived.

  17. Some numerically studies of the atmospheric composition climate of Bulgaria

    NASA Astrophysics Data System (ADS)

    Gadzhev, G. K.; Ganev, K. G.; Prodanov, M.; Syrakov, D. E.; Miloshev, N. G.; Georgiev, G. J.

    2013-10-01

    Some extensive numerical simulations of the atmospheric composition fields in Bulgaria have been recently performed. The US EPA Model-3 system was chosen as a modelling tool. The system consists of three components: MM5 - the 5th generation PSU/NCAR Meso-meteorological Model used as meteorological pre-processor; CMAQ - the Community Multiscale Air Quality System CMAQ; SMOKE - the Sparse Matrix Operator Kernel Emissions Modelling System - the emission model [4]. As the NCEP Global Analysis Data with 1 degree resolution was used as meteorological background, the MM5 and CMAQ nesting capabilities were applied for downscaling the simulations to a 3 km resolution over Bulgaria. The TNO emission inventory was used as emission input. Special pre-processing procedures are created for introducing temporal profiles and speciation of the emissions. The biogenic emissions of VOC are estimated by the model SMOKE. The numerical experiments have been carried out for different emission scenarios, which makes it possible the contribution of emissions from different source categories to be evaluated. The air pollution pattern is formed as a result of interaction of different processes, so knowing the contribution of each for different meteorological conditions and given emission spatial configuration and temporal behaviour could be interesting. Therefore the Models-3 "Integrated Process Rate Analysis" option is applied to discriminate the role of different dynamic and chemical processes for the air pollution formation. The obtained ensemble of numerical simulation results is extensive enough to allow statistical treatment - calculating not only the mean concentrations and different source categories contribution mean fields, but also standard deviations, skewness, etc. with their dominant temporal modes (seasonal and/or diurnal variations). Thus some basic facts about the atmospheric composition climate of Bulgaria can be retrieved from the simulation ensemble.

  18. Localized fluidization in granular materials: Theoretical and numerical study

    NASA Astrophysics Data System (ADS)

    Montellà, E. P.; Toraldo, M.; Chareyre, B.; Sibille, L.

    2016-11-01

    We present analytical and numerical results on localized fluidization within a granular layer subjected to a local injection of fluid. As the injection rate increases the three different regimes previously reported in the literature are recovered: homogeneous expansion of the bed, fluidized cavity in which fluidization starts developing above the injection area, and finally the chimney of fluidized grains when the fluidization zone reaches the free surface. The analytical approach is at the continuum scale, based on Darcy's law and Therzaghi's effective stress principle. It provides a good description of the phenomenon as long as the porosity of the granular assembly remains relatively homogeneous, i.e., for small injection rates. The numerical approach is at the particle scale based on the coupled discrete element method and a pore-scale finite volume method. It tackles the more heterogeneous situations which occur at larger injection rates. The results from both methods are in qualitative agreement with data published independently. A more quantitative agreement is achieved by the numerical model. A direct link is evidenced between the occurrence of the different regimes of fluidization and the injection aperture. While narrow apertures let the three different regimes be distinguished clearly, larger apertures tend to produce a single homogeneous fluidization regime. In the former case, it is found that the transition between the cavity regime and the chimney regime for an increasing injection rate coincides with a peak in the evolution of inlet pressure. Finally, the occurrence of the different regimes is defined in terms of the normalized flux and aperture.

  19. Localized fluidization in granular materials: Theoretical and numerical study.

    PubMed

    Montellà, E P; Toraldo, M; Chareyre, B; Sibille, L

    2016-11-01

    We present analytical and numerical results on localized fluidization within a granular layer subjected to a local injection of fluid. As the injection rate increases the three different regimes previously reported in the literature are recovered: homogeneous expansion of the bed, fluidized cavity in which fluidization starts developing above the injection area, and finally the chimney of fluidized grains when the fluidization zone reaches the free surface. The analytical approach is at the continuum scale, based on Darcy's law and Therzaghi's effective stress principle. It provides a good description of the phenomenon as long as the porosity of the granular assembly remains relatively homogeneous, i.e., for small injection rates. The numerical approach is at the particle scale based on the coupled discrete element method and a pore-scale finite volume method. It tackles the more heterogeneous situations which occur at larger injection rates. The results from both methods are in qualitative agreement with data published independently. A more quantitative agreement is achieved by the numerical model. A direct link is evidenced between the occurrence of the different regimes of fluidization and the injection aperture. While narrow apertures let the three different regimes be distinguished clearly, larger apertures tend to produce a single homogeneous fluidization regime. In the former case, it is found that the transition between the cavity regime and the chimney regime for an increasing injection rate coincides with a peak in the evolution of inlet pressure. Finally, the occurrence of the different regimes is defined in terms of the normalized flux and aperture.

  20. Planetary magnetic fields in the solar system: A numerical study of dynamo models

    NASA Astrophysics Data System (ADS)

    Gomez Perez, Natalia

    In this dissertation numerical models of self-sustained convective dynamos are studied and developed, with application to solar system planetary dynamos. The three main works are: Chapter 2, model of different stages of terrestrial planet core growth; Chapter 3, model of magnetic fields of the ice giants; Chapters 4 and 5, development of the legacy dynamo code to include radially variable conductivity, and application of resulting models to the gas giants. Aging terrestrial planets have growing inner cores. We show that core size can determine the character of dynamo generated magnetic fields. Even though they depend on initial conditions and scaling parameters, it is possible to use field geometries and magnitudes as diagnostic of internal planetary structure. The ratio between inner and outer core radii, h, yields strong magnetic fields for intermediate values (0.25 < h < 0.45), and weaker fields otherwise. High magnetic field intensity patches are found near latitudes arccos(h) where the inner core tangent cylinder intersects the outer boundary. Boundary conditions and internal force balances are responsible for dominant harmonic components of external magnetic fields. The peculiar characteristics of ice giants' magnetic fields can be explained by internal force balances. Uranus and Neptune have deep electrolytic liquid interiors of ice-like composition, with electrical conductivity about two orders of magnitude lower than molten iron. Low electrical conductivity models yield numerical dynamos dominated by kinetic energies. We show the simulated flows are quasi-geostrophic and result in non- dipolar, highly transient, and non-axisymmetric magnetic fields, comparable to magnetic fields of the ice giants. Modifications of the numerical code, better representing the gas giants' interiors, are introduced and tested. Radially variable electrical conductivity (expected for the gas giants) is implemented into numerical algorithms to solve the magnetohydrodynamic

  1. Numerical aerodynamic simulation facility preliminary study, volume 1

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A technology forecast was established for the 1980-1985 time frame and the appropriateness of various logic and memory technologies for the design of the numerical aerodynamic simulation facility was assessed. Flow models and their characteristics were analyzed and matched against candidate processor architecture. Metrics were established for the total facility, and housing and support requirements of the facility were identified. An overview of the system is presented, with emphasis on the hardware of the Navier-Stokes solver, which is the key element of the system. Software elements of the system are also discussed.

  2. A numerical study of electromagnetic scattering from ocean like surfaces

    NASA Technical Reports Server (NTRS)

    Lentz, R. R.

    1972-01-01

    The integral equations describing electromagnetic scattering from one dimensional conducting surfaces are formulated and numerical results are presented. The results are compared with those obtained using approximate methods such as physical optics, geometrical optics, and perturbation theory. The integral equation solutions show that the surface radius of curvature must be greater than 2.5 wavelengths for either the physical optics or geometric optics to give satisfactory results. It has also been shown that perturbation theory agrees with the exact fields as long as the root mean square surface roughness is less than one-tenth of a wavelength.

  3. Improved ant colony algorithm and its simulation study

    NASA Astrophysics Data System (ADS)

    Wang, Zongjiang

    2013-03-01

    Ant colony algorithm is development a new heuristic algorithm through simulation ant foraging. For its convergence rate slow, easy to fall into local optimal solution proposed for the adjustment of key parameters, pheromone update to improve the way and through the issue of TSP experiments, results showed that the improved algorithm has better overall search capabilities and demonstrated the feasibility and effectiveness of this method.

  4. A numerical and experimental study of stratified thermal storage

    SciTech Connect

    Oppel, F.J.; Ghajar, A.J.; Moretti, P.M.

    1986-01-01

    A one-dimensional, implicit, finite-difference model of a single stratified thermal storage tank has been developed. The model covers variable flow rates for charging or discharging the thermal storage tank and conduction and turbulent mixing within the water for two different inlet configurations. In order to handle variable flow rates, a ''conceptual buffer tank'' algorithm was developed. Turbulent mixing occurring in the tank was simulated through thermal eddy conductivity factors, which were determined from experimental data. A decreasing hyperbolic function predicted the best variation of the eddy conductivity factor inside the tank. A general relationship between the inlet eddy conductivity factor and the ratio of Reynolds number over Richardson number was established for the inlets investigated. The simulation model adequately predicted the experimental data. In addition, the model reproduced hydraulic test data better than a recent one-dimensional model found in the literature.

  5. Study and numerical solution of a generalized mathematical model of isothermal adsorption

    SciTech Connect

    Komissarov, Yu.A.; Vetokhin, V.N.; Tsenev, V.A.; Gordeeva, E.L.

    1995-06-01

    A generalized mathematical model of isothermal adsorption that takes into account mass transfer on the surface of a particle, diffusion in micro- and macropores, and dispersion along the length of the apparatus is considered The parameters {lambda} and {var_phi}{sup 2} determine the dominating effect of any of the mass transfer mechanisms of the adsorption process. A numerical algorithm for solving the generalized adsorption model is suggested.

  6. A Feasibility Study of the Childhood Depression Medication Algorithm: The Texas Children's Medication Algorithm Project (Cmap)

    ERIC Educational Resources Information Center

    Emslie, Graham J.; Hughes, Carroll W.; Crismon, M. Lynn; Lopez, Molly; Pliszka, Steve; Toprac, Marcia G.; Boemer, Christine

    2004-01-01

    Objective: To evaluate the feasibility and impact on clinical response and function associated with the use of an algorithm-driven disease management program (ALGO) for children and adolescents treated for depression with or without attention-deficit/hyperactivity disorder (ADHD) in community mental health centers. Method: Interventions included…

  7. Numerical Studies of Magnetization Reversal in Thin Annular Nanorings

    NASA Astrophysics Data System (ADS)

    Chaves-O'Flynn, Gabriel; Kent, Andrew; Stein, Daniel; Bedau, Daniel

    2009-03-01

    The rate of thermally activated magnetization reversal in thin ferromagnetic nanorings has been found analytically in a 1D model in which the demagnetization energy is approximated by a local surface term [1]. Numerical micromagnetic calculations confirm all aspects of the analytic model for narrow thin rings, such as permalloy rings of 200 nm mean radius, 40 nm width and 2 nm thickness [2]. However, the model breaks down in for extremely wide rings, when the ring width approaches its mean diameter. Here we present numerical micromagnetic results for the transition states between the clockwise and counterclockwise state in this limit. We describe how the two transition configurations of narrow rings cease to be saddles of the energy functional. Also, a new low energy metastable state is found to exist for a narrow range of fields. We discuss the results of applying the String Method [3] to determine the transition states and energy barriers between the lowest magnetization configurations of rings. [1] K. Martens, D.L. Stein, and A.D. Kent, PRB 73, 054413 (2006) [2] G. D. Chaves-O'Flynn, D.L. Stein, and A.D. Kent, arXiv:0811.0440 (2008) [3] W. E, W. Ren, E. Vanden-Eijnden, J. Chem. Phys 126, 164103 (2007)

  8. Multivariate numerical integration via fluctuationlessness theorem: Case study

    NASA Astrophysics Data System (ADS)

    Baykara, N. A.; Gürvit, Ercan

    2017-01-01

    In this work we come up with the statement of the Fluctuationlessness theorem recently conjectured and proven by M. Demiralp and its application to numerical integration of univariate functions by restructuring the Taylor expansion with explicit remainder term. The Fluctuationlessness theorem is stated. Following this step an orthonormal basis set is formed and the necessary formulae for calculating the coefficients of the three term recursion formula are constructed. Then for multivariate numerical integration, instead of dealing with a single formula for multiple remainder terms, a new approach that is already mentioned for bivariate functions is taken into consideration. At every step of a multivariate integration one variable is considered and the others are held constant. In such a way, this gives us the possibility to get rid of the complexity of calculations. The trivariate case is taken into account and its generalization is step by step explained. At the final stage implementations are done for some trivariate functions and the results are tabulated together with the implementation times.

  9. Numerical and Experimental Studies on Impact Loaded Concrete Structures

    SciTech Connect

    Saarenheimo, Arja; Hakola, Ilkka; Karna, Tuomo; Hyvarinen, Juhani

    2006-07-01

    An experimental set-up has been constructed for medium scale impact tests. The main objective of this effort is to provide data for the calibration and verification of numerical models of a loading scenario where an aircraft impacts against a nuclear power plant. One goal is to develop and take in use numerical methods for predicting response of reinforced concrete structures to impacts of deformable projectiles that may contain combustible liquid ('fuel'). Loading, structural behaviour, like collapsing mechanism and the damage grade, will be predicted by simple analytical methods and using non-linear FE-method. In the so-called Riera method the behavior of the missile material is assumed to be rigid plastic or rigid visco-plastic. Using elastic plastic and elastic visco-plastic material models calculations are carried out by ABAQUS/Explicit finite element code, assuming axisymmetric deformation mode for the missile. With both methods, typically, the impact force time history, the velocity of the missile rear end and the missile shortening during the impact were recorded for comparisons. (authors)

  10. A numerical study of the Yucatan upwelling processes

    NASA Astrophysics Data System (ADS)

    Ramos-Musalem, A.; Zavala-Hidalgo, J.; Ruiz-Angulo, A.

    2013-05-01

    Hydrographic observations of upwelling in the Yucatan Peninsula have been reported more than 50 years ago; however, there is no general agreement on the physical processes that cause it. The mechanisms of the upwelling events in the Yucatan Peninsula are explored with numerical simulations performed with the MIT general circulation model. The computational domain spans the Gulf of Mexico (98.1W to 80.15W, 18.1N to 31.15N) on a rectangular regular grid of 352x269x48 nodes with a horizontal resolution of 1/20° and 48 vertical levels with 20 of them on the first 100 m. The numerical model is forced on the surface with winds, heat fluxes, air temperature, relative humidity and precipitation taken from the NCEP/NCAR reanalysis. The initial and boundary conditions were taken from the HYCOM 1/25° Gulf of Mexico experiment. Further analysis of the output time series shows a close correlation between the vertical transport in the upwelling area, East-West transport of cold water over the Yucatan shelf, the sea surface height, and the local relative vorticity. Spectral analysis of these variables shows, consistently, a peak between 5 and 10 days, which may be related to coastal-trapped waves traveling along the slope of the Gulf of Mexico.

  11. Numeric aspects in pitch identification: an fMRI study

    PubMed Central

    2011-01-01

    Background Pitch identification had yielded unique response patterns compared to other auditory skills. Selecting one out of numerous pitches distinguished this task from detecting a pitch ascent. Encoding of numerous stimuli had activated the intraparietal sulcus in the visual domain. Therefore, we hypothesized that numerosity encoding during pitch identification activates the intraparietal sulcus as well. Methods To assess pitch identification, the participants had to recognize a single pitch from a set of four possible pitches in each trial. Functional magnetic resonance imaging (fMRI) disentangled neural activation during this four-pitch-choice task from activation during pitch contour perception, tone localization, and pitch discrimination. Results Pitch identification induced bilateral activation in the intraparietal sulcus compared to pitch discrimination. Correct responses in pitch identification correlated with activation in the left intraparietal sulcus. Pitch contour perception activated the superior temporal gyrus conceivably due to the larger range of presented tones. The differentiation between pitch identification and tone localization failed. Activation in an ACC-hippocampus network distinguished pitch discrimination from pitch identification. Conclusion Pitch identification is distinguishable from pitch discrimination on the base of activation in the IPS. IPS activity during pitch identification may be the auditory counterpart of numerosity encoding in the visual domain. PMID:21392373

  12. Biodegradation in numerical basin modelling: a case study from the Gifhorn Trough, N-Germany

    NASA Astrophysics Data System (ADS)

    Blumenstein, I. O.; Krooss, B. M.; di Primio, R.; Rottke, W.; Müller, E.; Westerlage, C.; Littke, R.

    2008-09-01

    A mass balance concept based on petroleum compositional description using 14 individual compound groups has been developed to reproduce the process of in-reservoir petroleum biodegradation. Individual compound groups have been attributed different “biodegradabilities” and biodegradation rates to account for observed differences in their susceptibility to biodegradation. Petroleum compositional information is derived from basin modelling, in addition to temperature histories, filling rates and volumetric information. This new method has been subsequently applied to model the biodegradation processes in a petroleum system in the North German Basin. The case study area is situated in the Gifhorn Trough, where Jurassic reservoirs contain oils of variable API gravity (24°-33°), although present depth and temperature are similar. Numerical modelling revealed, however, that the filling histories of the individual reservoir structures differ considerably. Taking into account filling and temperature history of the reservoir structures, the newly developed biodegradation algorithm Biodexx predicted compositional data and API gravities similar to those observed in the study area, whereas earlier biodegradation approaches such as the biodegradation index (BDI) by Yu et al. (2002) did not reproduce the different biodegradation levels in the two investigated fields.

  13. Parallelized traveling cluster approximation to study numerically spin-fermion models on large lattices

    DOE PAGES

    Mukherjee, Anamitra; Patel, Niravkumar D.; Bishop, Chris; ...

    2015-06-08

    Lattice spin-fermion models are quite important to study correlated systems where quantum dynamics allows for a separation between slow and fast degrees of freedom. The fast degrees of freedom are treated quantum mechanically while the slow variables, generically referred to as the “spins,” are treated classically. At present, exact diagonalization coupled with classical Monte Carlo (ED + MC) is extensively used to solve numerically a general class of lattice spin-fermion problems. In this common setup, the classical variables (spins) are treated via the standard MC method while the fermion problem is solved by exact diagonalization. The “traveling cluster approximation” (TCA)more » is a real space variant of the ED + MC method that allows to solve spin-fermion problems on lattice sizes with up to 103 sites. In this paper, we present a novel reorganization of the TCA algorithm in a manner that can be efficiently parallelized. Finally, this allows us to solve generic spin-fermion models easily on 104 lattice sites and with some effort on 105 lattice sites, representing the record lattice sizes studied for this family of models.« less

  14. Parallelized traveling cluster approximation to study numerically spin-fermion models on large lattices

    SciTech Connect

    Mukherjee, Anamitra; Patel, Niravkumar D.; Bishop, Chris; Dagotto, Elbio

    2015-06-08

    Lattice spin-fermion models are quite important to study correlated systems where quantum dynamics allows for a separation between slow and fast degrees of freedom. The fast degrees of freedom are treated quantum mechanically while the slow variables, generically referred to as the “spins,” are treated classically. At present, exact diagonalization coupled with classical Monte Carlo (ED + MC) is extensively used to solve numerically a general class of lattice spin-fermion problems. In this common setup, the classical variables (spins) are treated via the standard MC method while the fermion problem is solved by exact diagonalization. The “traveling cluster approximation” (TCA) is a real space variant of the ED + MC method that allows to solve spin-fermion problems on lattice sizes with up to 103 sites. In this paper, we present a novel reorganization of the TCA algorithm in a manner that can be efficiently parallelized. Finally, this allows us to solve generic spin-fermion models easily on 104 lattice sites and with some effort on 105 lattice sites, representing the record lattice sizes studied for this family of models.

  15. Parallelized traveling cluster approximation to study numerically spin-fermion models on large lattices.

    PubMed

    Mukherjee, Anamitra; Patel, Niravkumar D; Bishop, Chris; Dagotto, Elbio

    2015-06-01

    Lattice spin-fermion models are important to study correlated systems where quantum dynamics allows for a separation between slow and fast degrees of freedom. The fast degrees of freedom are treated quantum mechanically while the slow variables, generically referred to as the "spins," are treated classically. At present, exact diagonalization coupled with classical Monte Carlo (ED + MC) is extensively used to solve numerically a general class of lattice spin-fermion problems. In this common setup, the classical variables (spins) are treated via the standard MC method while the fermion problem is solved by exact diagonalization. The "traveling cluster approximation" (TCA) is a real space variant of the ED + MC method that allows to solve spin-fermion problems on lattice sizes with up to 10(3) sites. In this publication, we present a novel reorganization of the TCA algorithm in a manner that can be efficiently parallelized. This allows us to solve generic spin-fermion models easily on 10(4) lattice sites and with some effort on 10(5) lattice sites, representing the record lattice sizes studied for this family of models.

  16. Review of The SIAM 100-Digit Challenge: A Study in High-Accuracy Numerical Computing

    SciTech Connect

    Bailey, David

    2005-01-25

    In the January 2002 edition of SIAM News, Nick Trefethen announced the '$100, 100-Digit Challenge'. In this note he presented ten easy-to-state but hard-to-solve problems of numerical analysis, and challenged readers to find each answer to ten-digit accuracy. Trefethen closed with the enticing comment: 'Hint: They're hard! If anyone gets 50 digits in total, I will be impressed.' This challenge obviously struck a chord in hundreds of numerical mathematicians worldwide, as 94 teams from 25 nations later submitted entries. Many of these submissions exceeded the target of 50 correct digits; in fact, 20 teams achieved a perfect score of 100 correct digits. Trefethen had offered $100 for the best submission. Given the overwhelming response, a generous donor (William Browning, founder of Applied Mathematics, Inc.) provided additional funds to provide a $100 award to each of the 20 winning teams. Soon after the results were out, four participants, each from a winning team, got together and agreed to write a book about the problems and their solutions. The team is truly international: Bornemann is from Germany, Laurie is from South Africa, Wagon is from the USA, and Waldvogel is from Switzerland. This book provides some mathematical background for each problem, and then shows in detail how each of them can be solved. In fact, multiple solution techniques are mentioned in each case. The book describes how to extend these solutions to much larger problems and much higher numeric precision (hundreds or thousands of digit accuracy). The authors also show how to compute error bounds for the results, so that one can say with confidence that one's results are accurate to the level stated. Numerous numerical software tools are demonstrated in the process, including the commercial products Mathematica, Maple and Matlab. Computer programs that perform many of the algorithms mentioned in the book are provided, both in an appendix to the book and on a website. In the process, the

  17. Construction of an extended invariant for an arbitrary ordinary differential equation with its development in a numerical integration algorithm.

    PubMed

    Fukuda, Ikuo; Nakamura, Haruki

    2006-02-01

    For an arbitrary ordinary differential equation (ODE), a scheme for constructing an extended ODE endowed with a time-invariant function is here proposed. This scheme enables us to examine the accuracy of the numerical integration of an ODE that may itself have had no invariant. These quantities are constructed by referring to the Nosé-Hoover molecular dynamics equation and its related conserved quantity. By applying this procedure to several molecular dynamics equations, the conventional conserved quantity individually defined in each dynamics can be reproduced in a uniform, generalized way; our concept allows a transparent outlook underlying these quantities and ideas. Developing the technique, for a certain class of ODEs we construct a numerical integrator that is not only explicit and symmetric, but preserves a unit Jacobian for a suitably defined extended ODE, which also provides an invariant. Our concept is thus to simply build a divergence-free extended ODE whose solution is just a lift-up of the original ODE, and to constitute an efficient integrator that preserves the phase-space volume on the extended system. We present precise discussions about the general mathematical properties of the integrator and provide specific conditions that should be incorporated for practical applications.

  18. Numerical study for MHD peristaltic flow in a rotating frame.

    PubMed

    Hayat, T; Zahir, Hina; Tanveer, Anum; Alsaedi, A

    2016-12-01

    The aim of present investigation is to model and analyze the magnetohydrodynamic (MHD) peristaltic transport of Prandtl fluid in a channel with flexible walls. The whole system consisting of fluid and channel are in a rotating frame of reference with uniform angular velocity. Viscous dissipation in thermal equation is not ignored. The channel boundaries satisfy the convective conditions in terms of temperature. The arising complicated problems are reduced in solvable form using large wavelength and small Reynolds number assumptions. Numerical solution for axial and secondary velocities, temperature and heat transfer coefficient are presented. Main emphasis is given to the outcome of rotation and material parameters of Prandtl fluid on the physical quantities of interest.

  19. Numerical study of twin-jet impingement upwash flow

    NASA Technical Reports Server (NTRS)

    Pegues, W. J.; Vanka, S. P.

    1990-01-01

    Two horizontally spaced jets impinging normally on a flat surface create a fountain upwash flow due to the collision of the radially flowing wall jets. This fountain flow is of importance to the dynamics and propulsion of STOVL aircraft. The fountain flow influences the lift forces on the aircraft and the ingestion of hot gases and debris by the engine inlet. In this paper, a multigrid based finite-difference numerical procedure has been applied to solve the equations governing this three-dimensional flow. The standard k-epsilon turbulence model has been used. Comparisons with experimental data reveal that while the mean velocities are predicted with reasonable accuracy, the turbulent kinetic energies are seriously in error. The reasons for this discrepancy could be the intense unsteadiness and large-scale structures of the flow in the near-wall region, which cannot be captured well by any Reynolds-averaged turbulence model.

  20. Numerical model study of radio frequency vessel sealing thermodynamics

    NASA Astrophysics Data System (ADS)

    Pearce, John

    2015-03-01

    Several clinically successful clinical radio frequency vessel-sealing devices are currently available. The dominant thermodynamic principles at work involve tissue water vaporization processes. It is necessary to thermally denature vessel collagen, elastin and their adherent proteins to achieve a successful fusion. Collagens denature at middle temperatures, between about 60 and 90 C depending on heating time and rate. Elastin, and its adherent proteins, are more thermally robust, and require temperatures in excess of the boiling point of water at atmospheric pressure to thermally fuse. Rapid boiling at low apposition pressures leads to steam vacuole formation, brittle tissue remnants and frequently to substantial disruption in the vessel wall, particularly in high elastin-content arteries. High apposition pressures substantially increase the equilibrium boiling point of tissue water and are necessary to ensure a high probability of a successful seal. The FDM numerical models illustrate the beneficial effects of high apposition pressures.

  1. Critical behavior of k -core percolation: Numerical studies

    NASA Astrophysics Data System (ADS)

    Lee, Deokjae; Jo, Minjae; Kahng, B.

    2016-12-01

    k -core percolation has served as a paradigmatic model of discontinuous percolation for a long time. Recently it was revealed that the order parameter of k -core percolation of random networks additionally exhibits critical behavior. Thus k -core percolation exhibits a hybrid phase transition. Unlike the critical behaviors of ordinary percolation that are well understood, those of hybrid percolation transitions have not been thoroughly understood yet. Here, we investigate the critical behavior of k -core percolation of Erdős-Rényi networks. We find numerically that the fluctuations of the order parameter and the mean avalanche size diverge in different ways. Thus, we classify the critical exponents into two types: those associated with the order parameter and those with finite avalanches. The conventional scaling relations hold within each set, however, these two critical exponents are coupled. Finally we discuss some universal features of the critical behaviors of k -core percolation and the cascade failure model on multiplex networks.

  2. Numerical study of a recent black-hole lasing experiment

    NASA Astrophysics Data System (ADS)

    Tettamanti, M.; Cacciatori, S. L.; Parola, A.; Carusotto, I.

    2016-06-01

    We theoretically analyse a recent experiment reporting the observation of a self-amplifying Hawking radiation in a flowing atomic condensate (Steinhauer J., Nat. Phys., 10 (2014) 864). We are able to accurately reproduce the experimental observations using a theoretical model based on the numerical solution of a mean-field Gross-Pitaevskii equation that does not include quantum fluctuations of the matter field. In addition to confirming the black-hole lasing mechanism, our results show that the underlying dynamical instability has a classical hydrodynamic origin and is triggered by a seed of deterministic nature, linked to the non-stationary of the process, rather than by thermal or zero-point fluctuations.

  3. Experimental and Numerical Study of Bright Matter- Wave Soliton Collisions

    NASA Astrophysics Data System (ADS)

    Luo, H.; Nguyen, J. H. V.; Dyke, P.; Hulet, R. G.

    2014-05-01

    We create pairs of bright matter-wave solitons from Bose-Einstein condensates of 7Li atoms by tuning the scattering length to a negative value. We examine the collision of a pair of solitons formed in a quasi-1-D harmonic trap as a function of their relative phase. While the solitons pass through one another without change in shape or amplitude, they nonetheless exhibit an effective interaction that can be either repulsive or attractive depending on their relative phase. Furthermore, we observe a discontinuous jump in the soliton motion that causes the dipole mode oscillation frequency to shift to values greater than the trap frequency. The result is compared to numerical solution of the 3-D Gross-Pitaevskii equation. Work supported by the NSF, ONR, an ARO MURI, and the Welch Foundation.

  4. Progress report on LBL's numerical modeling studies on Cerro Prieto

    SciTech Connect

    Halfman-Dooley, S.E.; Lippman, M.J.; Bodvarsson, G.S.

    1989-04-01

    An exploitation model of the Cerro Prieto geothermal system is needed to assess the energy capacity of the field, estimate its productive lifetime and develop an optimal reservoir management plan. The model must consider the natural state (i.e., pre-exploitation) conditions of the system and be able to predict changes in the reservoir thermodynamic conditions (and fluid chemistry) in response to fluid production (and injection). This paper discusses the results of a three-dimensional numerical simulation of the natural state conditions of the Cerro Prieto field and compares computed and observed pressure and temperature/enthalpy changes for the 1973--1987 production period. 16 refs., 24 figs., 2 tabs.

  5. Numerical studies of identification in nonlinear distributed parameter systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Lo, C. K.; Reich, Simeon; Rosen, I. G.

    1989-01-01

    An abstract approximation framework and convergence theory for the identification of first and second order nonlinear distributed parameter systems developed previously by the authors and reported on in detail elsewhere are summarized and discussed. The theory is based upon results for systems whose dynamics can be described by monotone operators in Hilbert space and an abstract approximation theorem for the resulting nonlinear evolution system. The application of the theory together with numerical evidence demonstrating the feasibility of the general approach are discussed in the context of the identification of a first order quasi-linear parabolic model for one dimensional heat conduction/mass transport and the identification of a nonlinear dissipation mechanism (i.e., damping) in a second order one dimensional wave equation. Computational and implementational considerations, in particular, with regard to supercomputing, are addressed.

  6. Studying Barred Galaxies by Means of Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Martinez-Valpuesta, Inma

    We describe two morphological structures of barred galaxies with the help of numerical simulations. The first one is a feature seen in face-on barred galaxies, the ansae, probably very important dynamically speaking. The second one are the Boxy/Peanut bulges in disc galaxies. They have been associated to stellar bars, and are a result of the secular evolution of barred galaxies. We analyze their properties in a large sample of N-body simulations, using different methods to measure their strength, shape and possible asymmetry, and then inter-compare the results. Some of these methods can be applied to both simulations and observations. In particular, we seek correlations between bar and peanut properties, which, when applied to real galaxies, will give information on bars in edge-on galaxies, and on peanuts in face-on galaxies.

  7. Numerical study of lift augmentation in massively separated turbulent flows with forcing

    NASA Astrophysics Data System (ADS)

    Denny, Andrew Gregory

    At high angles of attack the flow over any lifting body experiences massive separation. The resulting shear layers naturally tend to roll up into large vortical structures. The presence and motion of these structures has a significant impact on the continuing flowfield development. By applying an artificial forcing to the shedding shear layer the rollup can be intensified or reduced, and the entire vorticity field may be altered. Control of these vortical structures by forcing to enhance lift has been the goal of numerous investigations, and some progress has been made in understanding how an unsteady forcing can be used to advantage. This study describes work done in determining the effectiveness of using computational simulations to model massively separated, turbulent unsteady flowfields subject to small-amplitude mechanical forcing. Algorithm development and validation highlight certain concerns that arise in the modeling of such unsteady flowfields using the Reynolds-Averaged Navier-Stokes equations, and questions of grid density, numerical diffusion, timestep size, and turbulence modeling are addressed with a suite of sample calculations. Simulation of flowfields undergoing mechanical forcing by flap is accomplished using an overset grid methodology with the flow solver. Excellent agreement is demonstrated for flow over a NACA 63sb3-018 airfoil with a small flap placed near the leading edge separation point. Computed values of the unforced lift and drag coefficients agree with given experimental values to less than 2%. Forcing frequencies for the experimental configuration were in the range of global shedding frequency, and the maximum variation of the aerodynamic coefficients was seen when the forcing frequency was equal to the shedding frequency. Excellent agreement with experiment is also found for the cases involving forcing, and the data is used to explain the effect of forcing in terms of a global receptivity mechanism.

  8. Improved Ant Colony Clustering Algorithm and Its Performance Study

    PubMed Central

    Gao, Wei

    2016-01-01

    Clustering analysis is used in many disciplines and applications; it is an important tool that descriptively identifies homogeneous groups of objects based on attribute values. The ant colony clustering algorithm is a swarm-intelligent method used for clustering problems that is inspired by the behavior of ant colonies that cluster their corpses and sort their larvae. A new abstraction ant colony clustering algorithm using a data combination mechanism is proposed to improve the computational efficiency and accuracy of the ant colony clustering algorithm. The abstraction ant colony clustering algorithm is used to cluster benchmark problems, and its performance is compared with the ant colony clustering algorithm and other methods used in existing literature. Based on similar computational difficulties and complexities, the results show that the abstraction ant colony clustering algorithm produces results that are not only more accurate but also more efficiently determined than the ant colony clustering algorithm and the other methods. Thus, the abstraction ant colony clustering algorithm can be used for efficient multivariate data clustering. PMID:26839533

  9. Improved Ant Colony Clustering Algorithm and Its Performance Study.

    PubMed

    Gao, Wei

    2016-01-01

    Clustering analysis is used in many disciplines and applications; it is an important tool that descriptively identifies homogeneous groups of objects based on attribute values. The ant colony clustering algorithm is a swarm-intelligent method used for clustering problems that is inspired by the behavior of ant colonies that cluster their corpses and sort their larvae. A new abstraction ant colony clustering algorithm using a data combination mechanism is proposed to improve the computational efficiency and accuracy of the ant colony clustering algorithm. The abstraction ant colony clustering algorithm is used to cluster benchmark problems, and its performance is compared with the ant colony clustering algorithm and other methods used in existing literature. Based on similar computational difficulties and complexities, the results show that the abstraction ant colony clustering algorithm produces results that are not only more accurate but also more efficiently determined than the ant colony clustering algorithm and the other methods. Thus, the abstraction ant colony clustering algorithm can be used for efficient multivariate data clustering.

  10. Study of the dynamic behavior of Niedermayer's algorithm

    NASA Astrophysics Data System (ADS)

    Girardi, Daniel; Branco, Nilton

    2010-03-01

    We calculate the dynamic exponent for the Niedermayer algorithm applied to the two-dimensional Ising and XY models, for various values of the free parameter E0. For E0=-1 we reobtain the Metropolis algorithm and for E0=1 we regain the Wolff algorithm. For -1L, the Niedermayer algorithm is equivalent to the Metropolis one, i.e, they have the same dynamic exponent. For a given size L, the correlation time is always greater for the Niedermayer algorithm than for Wolff's. For E0>1, the mean size of the islands of turned spins grows faster than a power of L and the correlation time is always greater than for the Wolff algorithm. Therefore, we show that the best choice of cluster algorithm is the Wolff one, when compared to the Nierdermayer generalization. We also obtain the dynamic behavior of the Wolff algorithm: although not conclusive, we propose a scaling law for the dependence of the correlation time on L.

  11. A Comparative Study of Protein Sequence Clustering Algorithms

    NASA Astrophysics Data System (ADS)

    Eldin, A. Sharaf; Abdelgaber, S.; Soliman, T.; Kassim, S.; Abdo, A.

    In this paper, we survey four clustering techniques and discuss their advantages and drawbacks. A review of eight different protein sequence clustering algorithms has been accomplished. Moreover, a comparison between the algorithms on the basis of some factors has been presented.

  12. Numerical Modeling for Yield Pillar Design: A Case Study

    NASA Astrophysics Data System (ADS)

    Li, Wenfeng; Bai, Jianbiao; Peng, Syd; Wang, Xiangyu; Xu, Ying

    2015-01-01

    Two single-entry gateroad systems employing a yield pillar for bump control in a Chinese coal mine were introduced. The overburden depth of the longwall panels was approximately 390 m. When the width/height (W/H) ratio of the yield pillar was 2.67, coal bumps in the tailgate occurred in front of the longwall retreating face. However, in another panel, the coal bump was eliminated because the W/H ratio was reduced to 1.67. Under this condition, instrumentation results indicated that the roof-to-floor and rib-to-rib convergences reached 1,050 and 790 mm, respectively, during longwall retreat. The numerical model was used to back-analyze the two cases of yield pillar application in the hope to find the principle for yield pillar design. In order to improve the reliability of the numerical model, the strain-hardening gob and strain-softening pillar materials were meticulously calibrated, and the coal/rock interface strength was determined by laboratory direct shear tests. The results of the validated model indicate that if the W/H ratio of the yield pillar equals 1.67, the peak vertical stress in the panel rib (37.7 MPa) is much larger than that in the yield pillar (21.1 MPa); however, the peak vertical stress in the panel rib (30.87 MPa) is smaller than that in the yield pillar (36 MPa) when the W/H ratio of yield pillar is 2.67. These findings may be helpful to the design of yield pillars for bump control.

  13. Study on hologram mosaic algorithm based on Harris corners

    NASA Astrophysics Data System (ADS)

    Yao, Jiabao; Tian, Qiuhong; Sun, Zhengrong; Huang, Liu; Wang, Limin

    2016-01-01

    To solve the problem of the small field of the view caused by CCD in the process of the hologram record, the hologram mosaic algorithm based on the Harris corners is proposed. The Harris corners in multi-scale are extracted and the mismatching points are removed. The final homography is calculated by using the improved RANSAC algorithm based on L-M algorithm. Finally, the stitched hologram with high quality can be obtained based on the weighted average fusion algorithm. It can overcome the influence to the hologram that the incident angles of the object beam are not consistent. Two experiments carried out with different reconstructed distance demonstrate that the proposed algorithm can realize the measurement of the big object by using the hologram method. Furthermore, it has high accuracy and strong robustness.

  14. Studying Turbulence Using Numerical Simulation Databases. No. 7; Proceedings of the Summer Program

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Seventh Summer Program of the Center for Turbulence Research took place in the four-week period, July 5 to July 31, 1998. This was the largest CTR Summer Program to date, involving thirty-six participants from the U. S. and nine other countries. Thirty-one Stanford and NASA-Ames staff members facilitated and contributed to most of the Summer projects. A new feature, and perhaps a preview of the future programs, was that many of the projects were executed on non-NASA computers. These included supercomputers located in Europe as well as those operated by the Departments of Defense and Energy in the United States. In addition, several simulation programs developed by the visiting participants at their home institutions were used. Another new feature was the prevalence of lap-top personal computers which were used by several participants to carry out some of the work that in the past were performed on desk-top workstations. We expect these trends to continue as computing power is enhanced and as more researchers (many of whom CTR alumni) use numerical simulations to study turbulent flows. CTR's main role continues to be in providing a forum for the study of turbulence for engineering analysis and in facilitating intellectual exchange among the leading researchers in the field. Once again the combustion group was the largest. Turbulent combustion has enjoyed remarkable progress in using simulations to address increasingly complex and practically more relevant questions. The combustion group's studies included such challenging topics as fuel evaporation, soot chemistry, and thermonuclear reactions. The latter study was one of three projects related to the Department of Energy's ASCI Program (www.llnl.gov/asci); the other two (rocket propulsion and fire safety) were carried out in the turbulence modeling group. The flow control and acoustics group demonstrated a successful application of the so-called evolution algorithms which actually led to a previously unknown

  15. Numerical study of the vortex burst phenomenon for delta wings

    NASA Technical Reports Server (NTRS)

    Hartwich, PETER-M.; Hsu, C.-H.; Luckring, James M.; Liu, C. H.

    1988-01-01

    A flux-difference splitting scheme is employed to compute low-speed flows over a delta wing for angles of attack from 0 to 40 deg as steady-state solutions to the three-dimensional, Reynolds-averaged Navier-Stokes equations in their thin-layer approximation. The finite-difference scheme is made spatially second-order accurate by applying a total variation diminishing-like discretization to the inviscid fluxes and central differencing to the viscous shear fluxes. Using first-order accurate Euler backward-time differencing, an efficient implicit algorithm is constructed, which combines approximate factorization in cross planes with a symmetric planar Gauss-Seidel relaxation in the remaining third spatial direction. The geometry of the thin (maximum thickness is 0.021), slender (aspect ratio is unity), sharp-edged delta wing is taken from Hummel's (1967, 1978) wind tunnel model. Over the entire angle-of-attack range, the computed values of lift and pitching moment are in good agreement with the experimental data. Also details of the flow-fieldlike spanwise surface pressure distributions compare well with the experiment. Computed flow-field results with a bubble-type vortex burst are analyzed in detail.

  16. A kinetic theory based numerical study of core collapse supernova dynamics

    NASA Astrophysics Data System (ADS)

    Strother, Terrance T.

    The explosion mechanism of core collapse supernovae remains an unsolved problem in astrophysics after many decades of theoretical and numerical study. The complex nature of this problem forces its consideration to rely heavily upon numerical simulations. Current state-of-the-art core collapse supernova simulations typically make use of hydrodynamic codes for the modeling of baryon dynamics coupled to a Boltzmann transport simulation for the neutrinos and other leptons. The results generated by such numerical simulations have given rise to the widely accepted notion that neutrino heating and convection are crucial for the explosion mechanism. However the precise roles that some factors such as neutrinos production and propagation, rotation, three-dimensional effects, the equation of state for asymmetric nuclear matter, general relativity, instabilities, magnetic fields, as well as others play in the explosion mechanism remain to be fully determined. In this work, we review sonic of the current methods used to simulate core collapse supernovae and the various scenarios that have been developed by numerical studies are discussed. Unlike most of the numerical simulations of core collapse supernovae, we employ a kinetic theory based approach that allows us to explicitly model the propagation of neutrinos and a full ensemble of nuclei. Both of these are significant advantages. The ability to explicitly model the propagation of neutrinos puts their treatment on equal footing with the modeling of baryon dynamics. No simplifying assumptions about the nature of neutrino-matter interactions need to be made and consequently our code is capable of producing output about the flow of neutrinos that most other simulations are inherently incapable of. Furthermore, neutrino flavor oscillations are readily incorporated with our approach. The ability to model the propagation of a full ensemble of nuclei is superior to the standard tracking of free baryons, alpha particles, and a

  17. A numerical study of transient heat and mass transfer in crystal growth

    NASA Technical Reports Server (NTRS)

    Han, Samuel Bang-Moo

    1987-01-01

    A numerical analysis of transient heat and solute transport across a rectangular cavity is performed. Five nonlinear partial differential equations which govern the conservation of mass, momentum, energy and solute concentration related to crystal growth in solution, are simultaneously integrated by a numerical method based on the SIMPLE algorithm. Numerical results showed that the flow, temperature and solute fields are dependent on thermal and solutal Grashoff number, Prandtl number, Schmidt number and aspect ratio. The average Nusselt and Sherwood numbers evaluated at the center of the cavity decrease markedly when the solutal buoyancy force acts in the opposite direction to the thermal buoyancy force. When the solutal and thermal buoyancy forces act in the same direction, however, Sherwood number increases significantly and yet Nusselt number decreases. Overall effects of convection on the crystal growth are seen to be an enhancement of growth rate as expected but with highly nonuniform spatial growth variations.

  18. A numerical study of the FENE-CR model applied to a jet flow problem

    NASA Astrophysics Data System (ADS)

    Paulo, G. S.; Oishi, C. M.; Tomé, M. F.

    2013-10-01

    The FENE-CR model is investigated through a numerical algorithm to simulate the time-dependent moving free surface flow produced by a jet impinging on a flat surface. The objective is to demonstrate that by increasing the extensibility parameter L, the numerical solutions converge to the solutions obtained with the Oldroyd-B model. The governing equations are solved by an established free surface flow solver based on the finite difference and marker-and-cell methods. Numerical predictions of the extensional viscosity obtained with several values of the parameter L are presented. The results show that if the extensibility parameter L is sufficiently large then the extensional viscosities obtained with the FENE-CR model approximate the corresponding Oldroyd-B viscosity. Moreover, the flow from a jet impinging on a flat surface is simulated with various values of the extensibility parameter L and the fluid flow visualizations display convergence to the Oldroyd-B jet flow results.

  19. Direct Numerical Simulation of Boiling Multiphase Flows: State-of-the-Art, Modeling, Algorithmic and Computer Needs

    SciTech Connect

    Nourgaliev R.; Knoll D.; Mousseau V.; Berry R.

    2007-04-01

    The state-of-the-art for Direct Numerical Simulation (DNS) of boiling multiphase flows is reviewed, focussing on potential of available computational techniques, the level of current success for their applications to model several basic flow regimes (film, pool-nucleate and wall-nucleate boiling -- FB, PNB and WNB, respectively). Then, we discuss multiphysics and multiscale nature of practical boiling flows in LWR reactors, requiring high-fidelity treatment of interfacial dynamics, phase-change, hydrodynamics, compressibility, heat transfer, and non-equilibrium thermodynamics and chemistry of liquid/vapor and fluid/solid-wall interfaces. Finally, we outline the framework for the {\\sf Fervent} code, being developed at INL for DNS of reactor-relevant boiling multiphase flows, with the purpose of gaining insight into the physics of multiphase flow regimes, and generating a basis for effective-field modeling in terms of its formulation and closure laws.

  20. The Numerical Studies Program for the Atmospheric General Circulation Experiment (AGCE) for Spacelab Flights

    NASA Technical Reports Server (NTRS)

    Fowlis, W. W. (Editor); Davis, M. H. (Editor)

    1981-01-01

    The atmospheric general circulation experiment (AGCE) numerical design for Spacelab flights was studied. A spherical baroclinic flow experiment which models the large scale circulations of the Earth's atmosphere was proposed. Gravity is simulated by a radial dielectric body force. The major objective of the AGCE is to study nonlinear baroclinic wave flows in spherical geometry. Numerical models must be developed which accurately predict the basic axisymmetric states and the stability of nonlinear baroclinic wave flows. A three dimensional, fully nonlinear, numerical model and the AGCE based on the complete set of equations is required. Progress in the AGCE numerical design studies program is reported.

  1. Dry powder segregation and flowability: Experimental and numerical studies

    NASA Astrophysics Data System (ADS)

    Ely, David R.

    Dry powder blending is a very important industrial and physical process used in the production of numerous pharmaceutical dosage forms such as tablets, capsules, and dry powder aerosols. Key aspects of this unit operation are process monitoring and control. Process control is particularly difficult due to the complexity of particle-particle interactions, which arise from the adhesion/cohesion characteristics of interfaces and morphological characteristics such as particle size, shape, and dispersity. The effects of such characteristics need to be understood in detail in order to correlate individual particle properties to bulk powder properties. The present dissertation numerically and experimentally quantifies the mixing process to rationalize particle-particle interactions. In particular, near infrared spectroscopy (NIRS) was used to non-invasively characterize in real-time the blending processes and thus investigate the dynamics of blending under different operating conditions. A novel image analysis technique was developed to quantify the scale of segregation from images obtained non-destructively via near infrared chemical imaging (NIR-CI). Although NIR-CI data acquisition times are too long for real-time data collection, NIR-CI has an advantage, in that it provides the spatial distribution of the drug. Therefore, NIRS and NIR-CI are complementary techniques for investigating the complex process of blending dry powders and assessing end-product quality. Additionally, the discrete element method was used to investigate the effect of powder cohesion on the packing fraction. Simulations indicated an exponential relationship between the random loose packing fraction and cohesive forces. Specifically, the packing fraction decreased asymptotically with increased ratio of cohesive force to particle weight. Thus, increasing this force ratio above a critical value has negligible impact on the packing fraction. Such result directly impacts the Hausner ratio flowability

  2. A Numerical Study of Mesh Adaptivity in Multiphase Flows with Non-Newtonian Fluids

    NASA Astrophysics Data System (ADS)

    Percival, James; Pavlidis, Dimitrios; Xie, Zhihua; Alberini, Federico; Simmons, Mark; Pain, Christopher; Matar, Omar

    2014-11-01

    We present an investigation into the computational efficiency benefits of dynamic mesh adaptivity in the numerical simulation of transient multiphase fluid flow problems involving Non-Newtonian fluids. Such fluids appear in a range of industrial applications, from printing inks to toothpastes and introduce new challenges for mesh adaptivity due to the additional ``memory'' of viscoelastic fluids. Nevertheless, the multiscale nature of these flows implies huge potential benefits for a successful implementation. The study is performed using the open source package Fluidity, which couples an unstructured mesh control volume finite element solver for the multiphase Navier-Stokes equations to a dynamic anisotropic mesh adaptivity algorithm, based on estimated solution interpolation error criteria, and conservative mesh-to-mesh interpolation routine. The code is applied to problems involving rheologies ranging from simple Newtonian to shear-thinning to viscoelastic materials and verified against experimental data for various industrial and microfluidic flows. This work was undertaken as part of the EPSRC MEMPHIS programme grant EP/K003976/1.

  3. Numerical Study of Fractional Ensemble Average Transport Equations

    NASA Astrophysics Data System (ADS)

    Kim, S.; Park, Y.; Gyeong, C. B.; Lee, O.

    2014-12-01

    In this presentation, a newly developed theory is applied to the case of stationary and non-stationary stochastic advective flow field, and a numerical solution method is presented for the resulting fractional Fokker-Planck equation (fFPE), which describes the evolution of the probability density function (PDF) of contaminant concentration. The derived fFPE is evaluated for three different form: 1) purely advective form, 2) second-order moment form and 3) second-order cumulant form. The Monte Carlo analysis of the fractional governing equation is then performed in a stochastic flow field, generated by a fractional Brownian motion for the stationary and non-stationary stochastic advection, in order to provide a benchmark for the results obtained from the fFPEs. When compared to the Monte Carlo simulation based PDFs and their ensemble average, the second-order cumulant form gives a good fit in terms of the shape and mode of the PDF of the contaminant concentration. Therefore, it is quite promising that the non-Fickian transport behavior can be modeled by the derived fractional ensemble average transport equations either by means of the long memory in the underlying stochastic flow, or by means of the time-space non-stationarity of the underlying stochastic flow, or by means of the time and space fractional derivatives of the transport equations. This subject is supported by Korea Ministry of Environment as "The Eco Innovation Project : Non-point source pollution control research group"

  4. A Comparison Study of Two Numerical Tsunami Forecasting Systems

    NASA Astrophysics Data System (ADS)

    Greenslade, Diana J. M.; Titov, Vasily V.

    2008-12-01

    This paper presents a comparison of two tsunami forecasting systems: the NOAA/PMEL system (SIFT) and the Australian Bureau of Meteorology system (T1). Both of these systems are based on a tsunami scenario database and both use the same numerical model. However, there are some major differences in the way in which the scenarios are constructed and in the implementation of the systems. Two tsunami events are considered here: Tonga 2006 and Sumatra 2007. The results show that there are some differences in the distribution of maximum wave amplitude, particularly for the Tonga event, however both systems compare well to the available tsunameter observations. To assess differences in the forecasts for coastal amplitude predictions, the offshore forecast results from both systems were used as boundary conditions for a high-resolution model for Hilo, Hawaii. The minor differences seen between the two systems in deep water become considerably smaller at the tide gauge and both systems compare very well with the observations.

  5. A numerical study of two interacting coronal mass ejections

    NASA Astrophysics Data System (ADS)

    Schmidt, J.; Cargill, P.

    2004-06-01

    The interaction in the solar wind between two coronal mass ejections (CMEs) is investigated using numerical simulations. We show that the nature of the interaction depends on whether the CME magnetic structures interact, but in all cases the result is an equilisation of the speed of the two CMEs. In the absence of magnetic interaction, the forward shock of the faster trailing CME interacts with the slow leading CME, and accelerates it. When the two CMEs have magnetic fields with the same sense of rotation, magnetic reconnection occurs between the two CMEs, leading to the formation of a single magnetic structure: in the most extreme cases, one CME "eats" the other. When the senses of rotation are opposite, reconnection does not occur, but the CMEs collide in a highly non-elastic manner, again forming a single structure. The possibility of enhanced particle acceleration in such processes is assessed. The presence of strong magnetic reconnection provides excellent opportunities for the acceleration of thermal particles, which then form a seed population for further acceleration at the CME shocks. The presence of a large population of seed particles will thus lead to an overall increase in energetic particle fluxes, as suggested by some observations.

  6. Numerical study on small scale vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Parra-Santos, Teresa; Gallegos, Armando; Uzarraga, Cristóbal N.; Rodriguez, Miguel A.

    2016-03-01

    The performance of a Vertical Axis Wind Turbine (VAWT) is numerically analyzed. The set-up is Hdarrieus with three straight blades airfoils NACA attached to a rotating vertical shaft. The wind turbine has solidity equals to the unity operating with wind velocity of 7 m/s. Influence of pitch angle is tested to get design tendencies. 2D, transient, Navier Stokes equations are solved using the code Ansys-Fluent. Conservation equations were solved with a Third-Order MUSCL scheme using SIMPLE to couple pressure and velocity. More than six revolutions must be simulated to get the periodic behavior. Two models of turbulence have been contrasted Realizable k-epsilon and Transition SST concluding the last one show more realistic flow features. Pitch angles of 0º, -6º and -10º have been tested with Tip Speed Ratios ranging from 0.7 and 1.6. The no null pitch angles improve the performance of the wind turbine. Instantaneous and averaged power coefficients as well as detailed flow field around the airfoils are showed.

  7. Numerical Study of Stratified Charge Combustion in Wave Rotors

    NASA Technical Reports Server (NTRS)

    Nalim, M. Razi

    1997-01-01

    A wave rotor may be used as a pressure-gain combustor effecting non-steady flow, and intermittent, confined combustion to enhance gas turbine engine performance. It will be more compact and probably lighter than an equivalent pressure-exchange wave rotor, yet will have similar thermodynamic and mechanical characteristics. Because the allowable turbine blade temperature limits overall fuel/air ratio to sub-flammable values, premixed stratification techniques are necessary to burn hydrocarbon fuels in small engines with compressor discharge temperature well below autoignition conditions. One-dimensional, unsteady numerical simulations of stratified-charge combustion are performed using an eddy-diffusivity turbulence model and a simple reaction model incorporating a flammability limit temperature. For good combustion efficiency, a stratification strategy is developed which concentrates fuel at the leading and trailing edges of the inlet port. Rotor and exhaust temperature profiles and performance predictions are presented at three representative operating conditions of the engine: full design load, 40% load, and idle. The results indicate that peak local gas temperatures will result in excessive temperatures within the rotor housing unless additional cooling methods are used. The rotor itself will have acceptable temperatures, but the pattern factor presented to the turbine may be of concern, depending on exhaust duct design and duct-rotor interaction.

  8. Numerical Study of Mixing of Two Fluids Under Low Gravity

    NASA Technical Reports Server (NTRS)

    Duval, Walter M. B.

    1992-01-01

    The mixing characteristics of two fluids inside a cavity due to buoyancy driven flow fields for low gravity conditions is investigated via numerical experiments. The buoyancy driven flow, depending on the parametric region, stretches and deforms the material interface into a wave morphological pattern. The morphological pattern affects the resulting stratification thickness of the mixed region. Three basic mixing regimes occur: convective, diffusive, and chaotic. In the convective regime, an overturning motion occurs which gives rise to a stable wave formation. This wave oscillates and its decay leads to a stable stratification. Whereas, in the diffusive regime, the length of the interface remains constant while mixing occurs. This limiting behavior is very important to materials processing in space, and it admits a closed form solution corresponding to vanishing convective terms which agrees with computational results. Finally, in the chaotic regime, the material interface continuously stretches and folds on itself similar to a horseshoe map. The length of stretch of the interface increases exponentially. Internal wavebreaking occurs for this case. This wavebreaking generates local turbulence, and provides an effective mechanism for mixing.

  9. A numerical study of interactions and stellar bars

    NASA Astrophysics Data System (ADS)

    Martinez-Valpuesta, Inma; Aguerri, J. Alfonso L.; González-García, A. César; Dalla Vecchia, Claudio; Stringer, Martin

    2017-01-01

    For several decades, it has been known that stellar bars in disc galaxies can be triggered by interactions, or by internal processes such as dynamical instabilities. In this work, we explore the differences between these two mechanisms using numerical simulations. We perform two groups of simulations based on isolated galaxies, one group in which a bar develops naturally, and another group in which the bar could not develop in isolation. The rest of the simulations recreate 1:1 coplanar fly-by interactions computed with the impulse approximation. The orbits we use for the interactions represent the fly-bys in groups or clusters of different masses accordingly to the velocity of the encounter. In the analysis, we focus on bars' amplitude, size, pattern speed and their rotation parameter, R=R_{CR}/R_{bar}. The latter is used to define fast (R<1.4) and slow rotation (R>1.4). Compared with equivalent isolated galaxies, we find that bars affected or triggered by interactions: (i) remain in the slow regime for longer, (ii) are more boxy in face-on views and (iii) they host kinematically hotter discs. Within this set of simulations, we do not see strong differences between retrograde or prograde fly-bys. We also show that slow interactions can trigger bar formation.

  10. Numerical Studies of Disordered Tight-Binding Hamiltonians

    NASA Astrophysics Data System (ADS)

    Scalettar, R. T.

    2007-06-01

    These are notes used for a set of lectures delivered at the Vietri summer school on Condensed Matter Physics in Fall 2006. They concern the general problem of the interplay of interactions and disorder in two dimensional electronic systems, as realized in the specific context of Quantum Monte Carlo simulations of the Anderson-Hubbard Hamiltonian. I wish to thank the organizers of this school for their hospitality during my visit, and their work in general in providing this educational opportunity for students over the years. It is a pleasure also to acknowledge the collaborators together with whom I have learned much of the physics and numerics presented in these notes: Zhaojun Bai, Andrew Baldwin, George Batrouni, Karim Bouadim, Wenbin Chen, Peter Denteneer, Fred Hébert, Norman Paris, Matt Schram, Nandini Trivedi, Martin Ulmke, Ichitaro Yamazaki and Gergely Zimanyi. This work was supported by the National Science Foundation (NSF-DMR-0312261 and NSF-ITR-0313390), and China Special Funds for Major State Basic Research Projects under contract 2005CB321700.

  11. A numerical study of aerosol effects on electrification of thunderstorms

    NASA Astrophysics Data System (ADS)

    Tan, Y. B.; Shi, Z.; Chen, Z. L.; Peng, L.; Yang, Y.; Guo, X. F.; Chen, H. R.

    2017-02-01

    Numerical simulations are performed to investigate the effect of aerosol on microphysical and electrification in thunderstorm clouds. A two-dimensional (2-D) cumulus model with electrification scheme including non-inductive and inductive charge separation is used. The concentration of aerosol particles with distribution fitted by superimposing three log-normal distributions rises from 50 to 10,000 cm-3. The results show that the response of charge separation rate to the increase of aerosol concentration is nonmonotonic. When aerosol concentration is changed from 50 to 1000 cm-3, a stronger formation of cloud droplet, graupel and ice crystal results in increasing charge separation via non-inductive and inductive mechanism. However, in the range of 1000-3000 cm-3, vapor competition arises in the decrease of ice crystal mixing ratio and the reduction of ice crystals size leads to a slightly decrease in non-inductive charge rate, while inductive charging rate has no significant change in magnitude. Above aerosol concentration of 3000 cm-3, the magnitude of charging rate which keeps steady is insensitive to the increase in aerosol concentration. The results also suggest that non-inductive charge separation between ice crystal and graupel contributes to the main upper positive charge region and the middle negative charge region. Inductive graupel-cloud droplet charge separation, on the other hand, is found to play an important role in the development of lower charge region.

  12. [Methodology study of classification algorithm in traditional Chinese medicine syndrome study].

    PubMed

    Zhou, Min; Chu, Na; Li, Jie

    2010-10-01

    Study of traditional Chinese medicine (TCM) syndromes is a key to the research of TCM modernization, and the core is the classification and diagnostic criteria of syndromes. The purpose of this article is to review the usage of classification algorithms of data mining in TCM syndrome researches, and comprehensively analyze the main features of algorithms and their applications. The appropriate classification algorithm should be chosen according to different research purposes. Rough sets and cluster analysis are suitable for exploratory research without requiring a prior knowledge. Fuzzy sets theory, neural networks and decision tree are suitable for syndrome diagnostic criteria research when the classification goal is clear, because they require a prior knowledge. Among them, fuzzy sets theory could be used in combination with other classification algorithms. Thus, some new methods such as fuzzy clustering, fuzzy rough sets or fuzzy decision tree might be more suitable for TCM algorithm classification research. It is suggested that some novel classification algorithms need to be developed to fit the condition of TCM syndrome, based on the interdisciplinary theories and technologies.

  13. Numerical study and ex vivo assessment of HIFU treatment time reduction through optimization of focal point trajectory

    NASA Astrophysics Data System (ADS)

    Grisey, A.; Yon, S.; Pechoux, T.; Letort, V.; Lafitte, P.

    2017-03-01

    Treatment time reduction is a key issue to expand the use of high intensity focused ultrasound (HIFU) surgery, especially for benign pathologies. This study aims at quantitatively assessing the potential reduction of the treatment time arising from moving the focal point during long pulses. In this context, the optimization of the focal point trajectory is crucial to achieve a uniform thermal dose repartition and avoid boiling. At first, a numerical optimization algorithm was used to generate efficient trajectories. Thermal conduction was simulated in 3D with a finite difference code and damages to the tissue were modeled using the thermal dose formula. Given an initial trajectory, the thermal dose field was first computed, then, making use of Pontryagin's maximum principle, the trajectory was iteratively refined. Several initial trajectories were tested. Then, an ex vivo study was conducted in order to validate the efficicency of the resulting optimized strategies. Single pulses were performed at 3MHz on fresh veal liver samples with an Echopulse and the size of each unitary lesion was assessed by cutting each sample along three orthogonal planes and measuring the dimension of the whitened area based on photographs. We propose a promising approach to significantly shorten HIFU treatment time: the numerical optimization algorithm was shown to provide a reliable insight on trajectories that can improve treatment strategies. The model must now be improved in order to take in vivo conditions into account and extensively validated.

  14. Numerical Studies of Dust Distribution around Small Asteroids

    NASA Astrophysics Data System (ADS)

    Yu, W.; Wang, J.; Han, D.; Chou, K.

    2015-12-01

    While the dynamics of dust transport around an airless body has been a focused area of research in recent years, various challenging aspects still remain to be addressed. This paper presents an investigation of charged dust transport and distribution around small asteroids utilizing two newly developed numerical models and laboratory measurements of dust layer charging in a simulated asteroid plasma environment. The first model is a full particle Particle-in-Cell (PIC) model to simulate plasma flow around an asteroid and calculate surface charging self-consistently from charge deposition on asteroid. A major feature of this model is that the asteroid surface is treated as an "interface" between two mediums rather than a boundary, and the simulation domain includes not only the plasma but also the entire asteroid. An immersed-finite-element field solver is applied which calculates both the surface floating potential and the electric field inside the asteroid directly from local charge deposition. The material properties of asteroid are also explicitly included in the simulation. Results from PIC simulations of asteroid-plasma interactions, along with laboratory measurements of dust charge-to-mass ratio under a simulated asteroid surface charging environment, are fed into a dust dynamics model to simulate charged dust levitation, transport and distribution. In addition to electrostatic and gravitational forces, the dynamics of dust surface impacts and asteroid body rotation are also included in the model. We discuss the effects of asteroid composition and space plasma environments on dust levitation and transport. We present simulation results of dust distribution around several different types of small asteroids.

  15. Assisted Sonication vs Conventional Transesterification Numerical Simulation and Sensitivity Study

    NASA Astrophysics Data System (ADS)

    Janajreh, Isam; Noorul Hussain, Mohammed; El Samad, Tala

    2015-10-01

    Transeterification is known as slow reaction that can take over several hours to complete as the two immiscible liquid reactants combine to form biodiesel and the less favorable glycerol. The quest of finding the perfect catalyst, optimal operational conditions, and reactor configuration to accelerate the reaction in mere few minutes that ensures high quality biodiesel, in economically viable way is coming along with sonication. This drastic reduction is a key enabler for the development of a continuous processing that otherwise is fairly costly and low throughput using conventional method. The reaction kinetics of sonication assisted as inferred by several authors is several time faster and this work implements these rates in a high fidelity numerical simulation model. This flow model is based on Navier-Stokes equations coupled with energy equation for non-isothermal flow and the transport equations of the multiple reactive species. The model is initially validated against experimental data from previous work of the authors using an annular reactor configuration. Following the validation, comparison of the reaction rate is shown to gain more insight to the distribution of the reaction and its attained rates. The two models (conventional and sonication) then compared on the basis of their sensitivity to the methane to oil molar ratio as the most pronounced process parameter. Both the exit reactor yield and the distribution of the species are evaluated with favorable yield under sonication process. These results pave the way to build a more robust process intensified reactor having an integrated selective heterogeneous catalyst to steer the reaction. This can avoid the downstream cleaning processes, cutting reaction time, and render economic benefit to the process.

  16. Study On Numerical Simulation And Experiment Of Fabrication Magnesium Semisolid Slurry By Damper Cooling Tube Method

    NASA Astrophysics Data System (ADS)

    Xie, Shuisheng; Huang, Guojie; Zhang, Xiaoli; Yang, Haoqiang

    2007-05-01

    Damper Cooling Tube (DCT) Method to fabricate the semi-solid metal slurry has been studied in this paper. Firstly, numerical simulation is adopted to investigate the flow process in order to optimize the technical parameters. The temperature effects on the rheological properties of the slurries are also considered. The effects of technical parameters on the slurry properties are studied in detail. Then the experiment was carried out with AZ91 magnesium alloy in order to examine the numerical simulation results. The results of numerical simulation are consistent with the experimental results. According to the numerical and experiment results, the DCT device can fabricate fine semisolid slurry with primary globular phase.

  17. Parallel Newton-Krylov-Schwarz algorithms for the three-dimensional Poisson-Boltzmann equation in numerical simulation of colloidal particle interactions

    NASA Astrophysics Data System (ADS)

    Hwang, Feng-Nan; Cai, Shang-Rong; Shao, Yun-Long; Wu, Jong-Shinn

    2010-09-01

    We investigate fully parallel Newton-Krylov-Schwarz (NKS) algorithms for solving the large sparse nonlinear systems of equations arising from the finite element discretization of the three-dimensional Poisson-Boltzmann equation (PBE), which is often used to describe the colloidal phenomena of an electric double layer around charged objects in colloidal and interfacial science. The NKS algorithm employs an inexact Newton method with backtracking (INB) as the nonlinear solver in conjunction with a Krylov subspace method as the linear solver for the corresponding Jacobian system. An overlapping Schwarz method as a preconditioner to accelerate the convergence of the linear solver. Two test cases including two isolated charged particles and two colloidal particles in a cylindrical pore are used as benchmark problems to validate the correctness of our parallel NKS-based PBE solver. In addition, a truly three-dimensional case, which models the interaction between two charged spherical particles within a rough charged micro-capillary, is simulated to demonstrate the applicability of our PBE solver to handle a problem with complex geometry. Finally, based on the result obtained from a PC cluster of parallel machines, we show numerically that NKS is quite suitable for the numerical simulation of interaction between colloidal particles, since NKS is robust in the sense that INB is able to converge within a small number of iterations regardless of the geometry, the mesh size, the number of processors. With help of an additive preconditioned Krylov subspace method NKS achieves parallel efficiency of 71% or better on up to a hundred processors for a 3D problem with 5 million unknowns.

  18. Solutions of the two-dimensional Hubbard model: Benchmarks and results from a wide range of numerical algorithms

    DOE PAGES

    LeBlanc, J. P. F.; Antipov, Andrey E.; Becca, Federico; ...

    2015-12-14

    Numerical results for ground-state and excited-state properties (energies, double occupancies, and Matsubara-axis self-energies) of the single-orbital Hubbard model on a two-dimensional square lattice are presented, in order to provide an assessment of our ability to compute accurate results in the thermodynamic limit. Many methods are employed, including auxiliary-field quantum Monte Carlo, bare and bold-line diagrammatic Monte Carlo, method of dual fermions, density matrix embedding theory, density matrix renormalization group, dynamical cluster approximation, diffusion Monte Carlo within a fixed-node approximation, unrestricted coupled cluster theory, and multireference projected Hartree-Fock methods. Comparison of results obtained by different methods allows for the identification ofmore » uncertainties and systematic errors. The importance of extrapolation to converged thermodynamic-limit values is emphasized. Furthermore, cases where agreement between different methods is obtained establish benchmark results that may be useful in the validation of new approaches and the improvement of existing methods.« less

  19. Solutions of the two-dimensional Hubbard model: Benchmarks and results from a wide range of numerical algorithms

    SciTech Connect

    LeBlanc, J. P. F.; Antipov, Andrey E.; Becca, Federico; Bulik, Ireneusz W.; Chan, Garnet Kin-Lic; Chung, Chia -Min; Deng, Youjin; Ferrero, Michel; Henderson, Thomas M.; Jiménez-Hoyos, Carlos A.; Kozik, E.; Liu, Xuan -Wen; Millis, Andrew J.; Prokof’ev, N. V.; Qin, Mingpu; Scuseria, Gustavo E.; Shi, Hao; Svistunov, B. V.; Tocchio, Luca F.; Tupitsyn, I. S.; White, Steven R.; Zhang, Shiwei; Zheng, Bo -Xiao; Zhu, Zhenyue; Gull, Emanuel

    2015-12-14

    Numerical results for ground-state and excited-state properties (energies, double occupancies, and Matsubara-axis self-energies) of the single-orbital Hubbard model on a two-dimensional square lattice are presented, in order to provide an assessment of our ability to compute accurate results in the thermodynamic limit. Many methods are employed, including auxiliary-field quantum Monte Carlo, bare and bold-line diagrammatic Monte Carlo, method of dual fermions, density matrix embedding theory, density matrix renormalization group, dynamical cluster approximation, diffusion Monte Carlo within a fixed-node approximation, unrestricted coupled cluster theory, and multireference projected Hartree-Fock methods. Comparison of results obtained by different methods allows for the identification of uncertainties and systematic errors. The importance of extrapolation to converged thermodynamic-limit values is emphasized. Furthermore, cases where agreement between different methods is obtained establish benchmark results that may be useful in the validation of new approaches and the improvement of existing methods.

  20. The Relationship between Working Memory for Serial Order and Numerical Development: A Longitudinal Study

    ERIC Educational Resources Information Center

    Attout, Lucie; Noël, Marie-Pascale; Majerus, Steve

    2014-01-01

    Despite numerous studies, the link between verbal working memory (WM) and calculation abilities remains poorly understood. The present longitudinal study focuses specifically on the role of serial order retention capacities, based on recent findings suggesting a link between ordinal processing in verbal WM and numerical processing tasks. Children…

  1. Comparative study of iterative reconstruction algorithms for missing cone problems in optical diffraction tomography.

    PubMed

    Lim, JooWon; Lee, KyeoReh; Jin, Kyong Hwan; Shin, Seungwoo; Lee, SeoEun; Park, YongKeun; Ye, Jong Chul

    2015-06-29

    In optical tomography, there exist certain spatial frequency components that cannot be measured due to the limited projection angles imposed by the numerical aperture of objective lenses. This limitation, often called as the missing cone problem, causes the under-estimation of refractive index (RI) values in tomograms and results in severe elongations of RI distributions along the optical axis. To address this missing cone problem, several iterative reconstruction algorithms have been introduced exploiting prior knowledge such as positivity in RI differences or edges of samples. In this paper, various existing iterative reconstruction algorithms are systematically compared for mitigating the missing cone problem in optical diffraction tomography. In particular, three representative regularization schemes, edge preserving, total variation regularization, and the Gerchberg-Papoulis algorithm, were numerically and experimentally evaluated using spherical beads as well as real biological samples; human red blood cells and hepatocyte cells. Our work will provide important guidelines for choosing the appropriate regularization in ODT.

  2. A multi-layer cellular automata approach for algorithmic generation of virtual case studies: VIBe.

    PubMed

    Sitzenfrei, R; Fach, S; Kinzel, H; Rauch, W

    2010-01-01

    Analyses of case studies are used to evaluate new or existing technologies, measures or strategies with regard to their impact on the overall process. However, data availability is limited and hence, new technologies, measures or strategies can only be tested on a limited number of case studies. Owing to the specific boundary conditions and system properties of each single case study, results can hardly be generalized or transferred to other boundary conditions. virtual infrastructure benchmarking (VIBe) is a software tool which algorithmically generates virtual case studies (VCSs) for urban water systems. System descriptions needed for evaluation are extracted from VIBe whose parameters are based on real world case studies and literature. As a result VIBe writes Input files for water simulation software as EPANET and EPA SWMM. With such input files numerous simulations can be performed and the results can be benchmarked and analysed stochastically at a city scale. In this work the approach of VIBe is applied with parameters according to a section of the Inn valley and therewith 1,000 VCSs are generated and evaluated. A comparison of the VCSs with data of real world case studies shows that the real world case studies fit within the parameter ranges of the VCSs. Consequently, VIBe tackles the problem of limited availability of case study data.

  3. Algorithm and exploratory study of the Hall MHD Rayleigh-Taylor instability.

    SciTech Connect

    Gardiner, Thomas Anthony

    2010-09-01

    This report is concerned with the influence of the Hall term on the nonlinear evolution of the Rayleigh-Taylor (RT) instability. This begins with a review of the magnetohydrodynamic (MHD) equations including the Hall term and the wave modes which are present in the system on time scales short enough that the plasma can be approximated as being stationary. In this limit one obtains what are known as the electron MHD (EMHD) equations which support two characteristic wave modes known as the whistler and Hall drift modes. Each of these modes is considered in some detail in order to draw attention to their key features. This analysis also serves to provide a background for testing the numerical algorithms used in this work. The numerical methods are briefly described and the EMHD solver is then tested for the evolution of whistler and Hall drift modes. These methods are then applied to study the nonlinear evolution of the MHD RT instability with and without the Hall term for two different configurations. The influence of the Hall term on the mixing and bubble growth rate are analyzed.

  4. Elaboration of A Numerical Model For The Study of The Dam Rupture Wave Displacement

    NASA Astrophysics Data System (ADS)

    Iddir, R.; Laradi, N.

    The essential purpose assigned to this present research is the contribution to the devel- opment of a model numeric two-dimensional permitting the simulation of a transient flow to free surface, quickly varied, resulting of a total and instantaneous rupture of a dam in a rectangular channel. For that to make, we present in a first section, the representative mathematical model of this flow, based on Saint Venat equations two- dimensional. An algorithm in finite differences is developed then to resolve this system of equations. The algorithm for needs of our research is to fractional step, based on the numeric diagram of Mac Cormack. During this simulation, we put in evidence the evolution in the time, the height and the speed of the flow in different positions, and this until drains it of the dam. We are also interested to the survey of the certain param- eter influence on the flow as the slope of the bottom, the roughness of Manning and the initial height of water in the reservoir. Finally to validate and to test performances of the model developed, we did several applications in the second section, then compared results gotten to the experimental and numeric results.

  5. Transcranial ultrasound imaging with speed of sound-based phase correction: a numerical study.

    PubMed

    Wang, Tianren; Jing, Yun

    2013-10-07

    This paper presents a numerical study for ultrasound transcranial imaging. To correct for the phase aberration from the skull, two critical steps are needed prior to brain imaging. In the first step, the skull shape and speed of sound are acquired by either CT scans or ultrasound scans. In the ultrasound scan approach, phased array and double focusing technique are utilized, which are able to estimate the thickness of the skull with a maximum error of around 10% and the average speed of sound in the skull is underestimated by less than 2%. In the second step, the fast marching method is used to compute the phase delay based on the known skull shape and sound speed from the first step, and the computation can be completed in seconds for 2D problems. The computed phase delays are then used in combination with the conventional delay-and-sum algorithm for generating B-mode images. Images of wire phantoms with CT or ultrasound scan-based phase correction are shown to have much less artifact than the ones without correction. Errors of deducing speed of sound from CT scans are also discussed regarding its effect on the transcranial ultrasound images. Assuming the speed of sound grows linearly with the density, this study shows that, the CT-based phase correction approach can provide clear images of wire phantoms even if the speed of sound is overestimated by 400 m s(-1), or the linear coefficient is overestimated by 40%. While in this study, ultrasound scan-based phase correction performs almost equally well with the CT-based approach, potential problems are identified and discussed.

  6. Numerical study of aerodynamic effects on road vehicles lifting surfaces

    NASA Astrophysics Data System (ADS)

    Cernat, Mihail Victor; Cernat Bobonea, Andreea

    2017-01-01

    The aerodynamic performance analysis of road vehicles depends on the study of engine intake and cooling flow, internal ventilation, tire cooling, and overall external flow as the motion of air around a moving vehicle affects all of its components in one form or another. Due to the complex geometry of these, the aerodynamic interaction between the various body components is significant, resulting in vortex flow and lifting surface shapes. The present study, however focuses on the effects of external aerodynamics only, and in particular on the flow over the lifting surfaces of a common compact car, designed especially for this study.

  7. Numerical aerodynamic simulation facility preliminary study, volume 2 and appendices

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Data to support results obtained in technology assessment studies are presented. Objectives, starting points, and future study tasks are outlined. Key design issues discussed in appendices include: data allocation, transposition network design, fault tolerance and trustworthiness, logic design, processing element of existing components, number of processors, the host system, alternate data base memory designs, number representation, fast div 521 instruction, architectures, and lockstep array versus synchronizable array machine comparison.

  8. Numerical studies of porous airfoils in transonic flow. Ph.D. Thesis. Final Report, 1 Jun. 1985 - 31 Aug. 1986

    NASA Technical Reports Server (NTRS)

    Chow, C. Y.

    1986-01-01

    A numerical tool is constructed to examine the effects of a porous surface on transonic airfoil performance and to help understand the flow structure of passive shockwave/boundary layer interactions. The porous region is located near the shock with a cavity underneath it. This study is composed of two parts. Solved in the first part, with an inviscid-flow approach, is the transonic full-potential equation associated with transpiration boundary conditions which are obtained from porosity modeling. The numerical results indicate that a porous airfoil has a wave drag lower than that of a solid airfoil. The observed lambda-shock structure in the wind-tunnel testing can be predicted. Furthermore, the lift could be increased with an appropriate porosity distribution. In the second part of this work, the modified version of either an interactive boundary layer (IBL) algorithm or a thin-layer Navier-Stokes (TLNS) algorithm is used to study the outer flow, while a stream-function formulation is used to model the inner flow in the shallow cavity. The coupling procedure at the porous surface is based on Darcy's law and the assumption of a constant total pressure in the cavity. In addition, a modified Baldwin-Lomax turbulence model is used to describe the transpired turbulent boundary layer in the TLNS approach, while the Cebeci turbulence model is used in the IBL approach. According to the present analysis, a porous surface can reduce the wave drag appreciably, but can also increase the viscous losses. As has been observed experimentally, the numerical results indicate that the total drag is reduced at higher Mach numbers and increased at lower Mach numbers when the angles of attack are small. Furthermore, the streamline pattern of passive shock/boundary layer interaction are revealed.

  9. Experimental and Numerical Study of Swirling Flows and Flame Dynamics

    NASA Astrophysics Data System (ADS)

    Abricka, M.; Barmina, I.; Valdmanis, R.; Zake, M.

    2014-08-01

    The effect of swirling air on the flow dynamics was investigated for the cold non-reacting flows and the flame arising at thermo-chemical conversion of biomass pellets downstream of a cylindrical channel. Under experimental and numerical investigation was the swirling flow dynamics with the primary axial air supply below a biomass layer and swirling air supply above it. The results indicate that for cold flows the swirling air jet outflow from tangential nozzles leads to the formation of a complex flow dynamics which is influenced both by upstream and downstream air swirl propagation near the channel walls, with correlating swirl-enhanced formation of the upstream and downstream axial flows close to the flow centreline depending on the swirling air supply rate. These axial flows can be completely balanced at their stagnation within the axial recirculation zone. It is shown that at equal boundary conditions for the swirling flame and the cold flows the swirling flow dynamics is influenced by the upstream air swirl-enhanced mixing of the reactants below the air swirl nozzles. This determines the formation of a downstream reaction zone with correlating development of the flow velocity, temperature and composition profiles in the downstream flame regions with improved combustion stability. The low swirl intensity in these regions prevents the formation of a recirculation zone Ir veikti kompleksi aukstu nereaģējošu un liesmas virpuļplūsmu dinamikas veidošanās eksperimentālie pētījumi, izvērtējot galvenos faktorus, kas ietekmē šo plūsmu dinamikas veidošanos cilindriskā kanālā virs granulēta biomasas slāņa pie aksiālas primārā gaisa padeves zem granulu slāņa un gaisa virpuļplūsmas padeves virs tā. Auksto virpuļplūsmu pētījumi apliecina, ka plūsmas dinamiku būtiski ietekmē divu savstarpēji konkurējošu un pretēji vērstu virpuļplūsmu veidošanās pie tangenciālās gaisa padeves sprauslas izejas. Lejupvērstā virpuļplūsma, kas

  10. Numerical studies of laminar and turbulent drag reduction, part 2

    NASA Technical Reports Server (NTRS)

    Balasubramanian, R.; Orszag, S. A.

    1983-01-01

    The flow over wave shaped surfaces is studied using a Navier Stokes solver. Detailed comparisons with theoretical results are presented, including the stability of a laminar flow over wavy surfaces. Drag characteristics of nonplanar surfaces are predicted using the Navier-Stokes solver. The secondary instabilities of wall bounded and free shear flows are also discussed.

  11. Dynamic Testing and Numerical Correlation Studies For Folsom Dam

    DTIC Science & Technology

    2005-09-01

    report prepared with support from the National Research Council of the United States reviewed the state of practice on seismic design and evaluation of...excitations. This report describes a research study conducted by the U.S. Army Engineer Research and Development Center consisting of a series of field...Forced Vibration Tests .....................................................................................6 Overview

  12. A NUMERICAL study of solar chimney power plants in Tunisia

    NASA Astrophysics Data System (ADS)

    Bahar F, Attig; S, Guellouz M.; M, Sahraoui; S, Kaddeche

    2015-04-01

    A 3D CFD (Computational fluid dynamics) model of a Solar Chimney Power Plant (SCPP) was developed and validated through comparison with the experimental data of the Manzanares plant. Then, it was employed to study the SCPP performance for locations throughout Tunisia.

  13. Preliminary Study of the Feasibility of Inverse Problem Algorithms Used for Arc Magnetic Measurement Method

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Li, Xingwen; Song, Haoyong; Rong, Mingzhe

    2010-04-01

    Non-contact magnetic measurement method is an effective way to study the air arc behavior experimentally One of the crucial techniques is to solve an inverse problem for the electromagnetic field. This study is devoted to investigating different algorithms for this kind of inverse problem preliminarily, including the preconditioned conjugate gradient method, penalty function method and genetic algorithm. The feasibility of each algorithm is analyzed. It is shown that the preconditioned conjugate gradient method is valid only for few arc segments, the estimation accuracy of the penalty function method is dependent on the initial conditions, and the convergence of genetic algorithm should be studied further for more segments in an arc current.

  14. Scheduling language and algorithm development study. Appendix: Study approach and activity summary

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The approach and organization of the study to develop a high level computer programming language and a program library are presented. The algorithm and problem modeling analyses are summarized. The approach used to identify and specify the capabilities required in the basic language is described. Results of the analyses used to define specifications for the scheduling module library are presented.

  15. Numerical study on the interaction between supercavitation and turbulence

    NASA Astrophysics Data System (ADS)

    Liu, Han; Xiao, Zuoli; Shen, Lian

    2016-11-01

    Supercavitation uses a bubble of gas inside a liquid large enough to encompass an object travelling through the liquid so that the skin friction on the object can be greatly reduced and high speed can be obtained. In this study, computational fluid dynamics is used to investigate the interaction between supercavitation and turbulence. The study builds on an in-house simulation code that uses the coupled level set and volume of fluid method to accurately capture the interface between the water and gas phases. A ventilated disk cavitator is used for the bubble generation, and it is modelled by a sharp interface immersed boundary method. Turbulence in the incoming flow is generated by a grid of small spheres upstream. Based on the simulation data, the influence of turbulence on the supercavitation and the underlying mechanisms are analyzed.

  16. Numerical and Experimental Case Study of Blasting Works Effect

    NASA Astrophysics Data System (ADS)

    Papán, Daniel; Valašková, Veronika; Drusa, Marian

    2016-10-01

    This article introduces the theoretical and experimental case study of dynamic monitoring of the geological environment above constructed highway tunnel. The monitored structure is in this case a very important water supply pipeline, which crosses the tunnel and was made from steel tubes with a diameter of 800 mm. The basic dynamic parameters had been monitored during blasting works, and were compared with the FEM (Finite Element Method) calculations and checked by the Slovak standard limits. A calibrated FEM model based on the experimental measurement data results was created and used in order to receive more realistic results in further predictions, time and space extrapolations. This case study was required and demanded by the general contractor company and also by the owner of water pipeline, and it was an answer of public safety evaluation of risks during tunnel construction.

  17. Experimental and numerical study of the intermittency exponent mu

    NASA Technical Reports Server (NTRS)

    Praskovsky, Alexander

    1994-01-01

    After publication of the Kolmogorov refined similarity hypotheses, the small-scale intermittency of the energy dissipation field became a central problem in fully developed turbulence (FDT). This phenomenon has been studied in many different ways, e.g. by searching for corrections to scaling exponents in the inertial range velocity structure functions. A direct measure of this intermittency is, however, available by studying the local rate of energy dissipation, and it may be quantitatively characterized by the intermittency exponent mu. As far as we know, nobody has posed an obvious question: Is the intermittency exponent mu a unique constant, i.e., are the values mu(sub kappa), mu(sub epsilon), mu(sub r), mu(sub b), and mu(sub e) the same at high Reynolds numbers, or do they create a set of different (and perhaps independent) exponents? This paper addresses the above question using the high Reynolds number experiments.

  18. A numerical study of blood flow using mixture theory

    PubMed Central

    Wu, Wei-Tao; Aubry, Nadine; Massoudi, Mehrdad; Kim, Jeongho; Antaki, James F.

    2014-01-01

    In this paper, we consider the two dimensional flow of blood in a rectangular microfluidic channel. We use Mixture Theory to treat this problem as a two-component system: One component is the red blood cells (RBCs) modeled as a generalized Reiner–Rivlin type fluid, which considers the effects of volume fraction (hematocrit) and influence of shear rate upon viscosity. The other component, plasma, is assumed to behave as a linear viscous fluid. A CFD solver based on OpenFOAM® was developed and employed to simulate a specific problem, namely blood flow in a two dimensional micro-channel, is studied. Finally to better understand this two-component flow system and the effects of the different parameters, the equations are made dimensionless and a parametric study is performed. PMID:24791016

  19. Numerical Study of Axial Turbulent Flow Over Long Cylinders

    DTIC Science & Technology

    1992-04-01

    the planar case, with maxima (-21/2/u;t 3.2) also located at y+ 12. In a visualization study of axial flow over a cylinder, Lueptow & Haritonidis...a) I 0 0 50 100 150 200I + FIcuE 4.2 Profiles of the root-mean-square value of the pressure source terms normalized by v and Ur: (a) linear

  20. Numerical study of Reynolds stress in compressible flows

    NASA Technical Reports Server (NTRS)

    Vandromme, D.; Hamin, H.

    1985-01-01

    A second order closure has been implemented in an implicit Navier-Stokes solver to study the behavior of the Reynolds stresses under the influence of severe pressure gradients. In the boundary layer zone, the strongly sheared character of the mean flow dominates the turbulence generation mechanisms. However, the pressure gradients also play a very important role for these processes, but at different locations within the boundary layer.

  1. Numerical study of nozzle wall cooling for nuclear thermal rockets

    NASA Technical Reports Server (NTRS)

    Kim, Suk C.; Stubbs, Robert M.

    1993-01-01

    The flowfields and performance of nuclear thermal rockets, which utilize radiation and film-cooling to cool the nozzle extension, are studied by solving the Navier-Stokes equations and species equations. The thrust level of the rocket for the present study is about 75,000 lb(f) for a chamber pressure of 68 atm(l,000 psi) and a chamber temperature of 2700 K. The throat radius of the nozzle is 0.0936 m and the area ratios of the nozzles are 300 and 500. It is assumed that the flow is chemically frozen and the turbulence is simulated by the modified Baldwin-Lomax turbulence model. The calculated results for various area ratios and film mass-flow rates are presented as Mach number contours, variations of nozzle wall temperature, exit profiles, and vacuum specific impulses. The present study shows that by selecting the flow rate of the film-cooling hydrogen and area ratio of the nozzle correctly, high area ratio nozzle extensions can be cooled effectively with radiation and film-cooling without significant penalty in performance.

  2. Numerical study of ocean wave effect on offshore wind farm

    NASA Astrophysics Data System (ADS)

    Shen, Lian; Yang, Di; Meneveau, Charles

    2013-11-01

    Wind power at sea has become increasingly important in renewable energy study. For energy harvesting, winds over oceans have many advantages over winds on land, for example, larger and open surface area, faster wind speed, and more wind resource close to high population regions. On the other hand, the presence of ocean waves introduces complexities to wind turbines. There is a critical need to study the dynamical interactions among marine atmospheric boundary layer, ocean wave field, and floating turbines. In this research, we study offshore wind farm by performing large-eddy simulations for winds coupled with potential-flow-theory based simulations for broadband irregular waves, with the wind turbines represented by an actuator disk model. Our results show that windseas at different development stages result in different sea-surface roughness and have an appreciable effect on wind profile and the energy extraction rate of the turbines. If swells are present, swell-to-wind momentum and energy transfer further changes the wind field to introduce oscillations in as well as modify the mean of the wind power. DY and LS acknowledge the support of NSF-CBET-1341062. CM acknowledges the support of NSF-AGS-1045189 and NSF-OISE-1243482.

  3. Numerical study of the properties of compact stars

    NASA Astrophysics Data System (ADS)

    Negreiros, Rodrigo Picanco

    2009-10-01

    Compact stars are formed in catastrophic astrophysical events such as supernova explosions and binary stellar collisions. These objects permanently harbor compressed ultra-dense nuclear matter in their interiors. This key feature, together with the ongoing progress in observational astrophysics, make compact stars superb astrophysical laboratories for a wide range of intriguing physicals studies. Several such studies are performed in this thesis. The first activity concerns the widely unknown nuclear equation of state and the core composition of compact stars. Particular attention is paid to the possible presence of hyperons in the cores of neutron stars as well as to stars made of unconfined up, down and strange quarks (strange quark stars). The effects of ultra-strong electric fields on the surfaces of the latter is explored. The second activity aims at investigating the structure and stability of rapidly rotating compact stars. Special attention is paid to the maximal stable rotational frequencies of rotating compact stars. The third activity focuses on the thermal evolution of compact stars, driven by neutrino emission from their cores and by photon emission from the surfaces. It is show that the thermal behavior depends very strongly on the stellar core composition. Moreover, it is found that the thermal evolution of neutron stars is significantly different to that of strange quark stars. The studies performed in this thesis are key for our understanding of the thermal evolution of isolated rotating neutron stars, anomalous X-ray pulsars and soft gamma repeaters, and provide most valuable information about the phase diagram of isospin-asymmetric ultra-dense nuclear matter which can not be probed in high-energy collision experiments.

  4. Experimental and numerical study of patterns in laryngeal flow

    NASA Astrophysics Data System (ADS)

    Chisari, N. E.; Artana, G.; Sciamarella, D.

    2009-05-01

    Unsteady airflow is investigated in a channel with a geometry approximating that of the human larynx. The laryngeal flow is simulated by solving the Navier-Stokes equations for an incompressible two-dimensional viscous fluid, and visualized using the Schlieren technique in an experimental setup consisting of a rigid replica of the larynx, with and without ventricular bands. This study shows the spontaneous formation of vortex couples in several regions of the laryngeal profile, and at different stages of the evolution of the starting glottal jet.

  5. Numerical Study of Nanophotolysis Approach for Breast Cancer

    NASA Astrophysics Data System (ADS)

    Ashiq, M. G. B.; Saeed, M. A.; Ibrahim, Noorddin; Shahid, M.; Tahir, B. A.

    2012-11-01

    Laser based cancer therapy of gold nanoparticles targeted breast tumor is an effective modality to kill cancer cells selectively without affecting healthy tissues. Nanophotolysis approach for selective smash up the breast cancer cells is used in the present study. Different parameters concerning nanophotolysis, such as the energy of nanobullets, velocity of the shock front, Coulomb pressure and nanosecond short pulse duration with absorption depth of gold foil have been discussed in detail. Results are suitable for breast tumor size 0.022 cm which approximately exists near the armpit of women.

  6. Comparison study of reconstruction algorithms for prototype digital breast tomosynthesis using various breast phantoms.

    PubMed

    Kim, Ye-seul; Park, Hye-suk; Lee, Haeng-Hwa; Choi, Young-Wook; Choi, Jae-Gu; Kim, Hak Hee; Kim, Hee-Joung

    2016-02-01

    Digital breast tomosynthesis (DBT) is a recently developed system for three-dimensional imaging that offers the potential to reduce the false positives of mammography by preventing tissue overlap. Many qualitative evaluations of digital breast tomosynthesis were previously performed by using a phantom with an unrealistic model and with heterogeneous background and noise, which is not representative of real breasts. The purpose of the present work was to compare reconstruction algorithms for DBT by using various breast phantoms; validation was also performed by using patient images. DBT was performed by using a prototype unit that was optimized for very low exposures and rapid readout. Three algorithms were compared: a back-projection (BP) algorithm, a filtered BP (FBP) algorithm, and an iterative expectation maximization (EM) algorithm. To compare the algorithms, three types of breast phantoms (homogeneous background phantom, heterogeneous background phantom, and anthropomorphic breast phantom) were evaluated, and clinical images were also reconstructed by using the different reconstruction algorithms. The in-plane image quality was evaluated based on the line profile and the contrast-to-noise ratio (CNR), and out-of-plane artifacts were evaluated by means of the artifact spread function (ASF). Parenchymal texture features of contrast and homogeneity were computed based on reconstructed images of an anthropomorphic breast phantom. The clinical images were studied to validate the effect of reconstruction algorithms. The results showed that the CNRs of masses reconstructed by using the EM algorithm were slightly higher than those obtained by using the BP algorithm, whereas the FBP algorithm yielded much lower CNR due to its high fluctuations of background noise. The FBP algorithm provides the best conspicuity for larger calcifications by enhancing their contrast and sharpness more than the other algorithms; however, in the case of small-size and low

  7. Numerical study of tandem flapping wings hovering near ground

    NASA Astrophysics Data System (ADS)

    Srinidhi, N. G.; Vengadesan, S.

    2016-11-01

    The ground effect on tandem elliptical foils hovering in an inclined stroke plane is studied using immersed boundary projection method. The computations are carried out at a low Reynolds number, Re = 100 , in a quiescent fluid at different heights from the ground. The effect of phase relationship, Ψ, between the fore- and hindwings on force variation is studied. Flow induced by the rebound vortices changes the effective angle of attack (AoA) of the wings and influences the force generation. In some cases, the shed vortices merge with the rebound vortices and create a sustained recirculating vortex which has a significant effect on the force generation of the forewing. In counter-stroking (Ψ =180o) and in-phase stroking (Ψ =0o), the rebound vortices increase the effective AoA of the forewing and increase the lift coefficients; interestingly, for Ψ =90o , such an increase in forces is not observed. Except for the cases with Ψ =90o , time-averaged vertical force coefficient of the forewing is always greater than the hindwing. For selected cases, backward in time finite-time Lyapunov exponent (FTLE) ridges are used in conjunction with vorticity contours to gain more insight into the vorticity dynamics.

  8. A Parametric Numerical Study of Mixing in a Cylindrical Duct

    NASA Technical Reports Server (NTRS)

    Oechsle, V. L.; Mongia, H. C.; Holdeman, J. D.

    1992-01-01

    The interaction is described of some of the important parameters affecting the mixing process in a quick mixing region of a rich burn/quick mix/lean burn (RQL) combustor. The performance of the quick mixing region is significantly affected by the geometric designs of both the mixing domain and the jet inlet orifices. Several of the important geometric parameters and operating conditions affecting the mixing process were analytically studied. Parameters such as jet-to-mainstream momentum flux ratio (J), mass flow ratio (MR), orifice geometry, orifice orientation, and number of orifices/row (equally spaced) around the circumferential direction were analyzed. Three different sets of orifice shapes were studied: (1) square, (2) elongated slots, and (3) equilateral triangles. Based on the analytical results, the best mixing configuration depends significantly on the penetration depth of the jet to prevent the hot mainstream flow from being entrained behind the orifice. The structure in a circular mixing section is highly weighted toward the outer wall and any mixing structure affecting this area significantly affects the overall results. The increase in the number of orifices per row increases the mixing at higher J conditions. Higher slot slant angles and aspect ratios are generally the best mixing configurations at higher momentum flux ratio (J) conditions. However, the square and triangular shaped orifices were more effective mixing configurations at lower J conditions.

  9. A numerical parametric study on hydrofoil interaction in tandem

    NASA Astrophysics Data System (ADS)

    Kemal, Omer

    2015-01-01

    Understanding the effects of the parameters affecting the interaction of tandem hydrofoil system is a crucial subject in order to fully comprehend the aero/hydrodynamics of any vehicle moving inside a fluid. This study covers a parametric study on tandem hydrofoil interaction in both potential and viscous fluids using iterative Boundary Element Method (BEM) and RANSE. BEM allows a quick estimation of the flow around bodies and may be used for practical purposes to assess the interaction inside the fluid. The produced results are verified by conformal mapping and Finite Volume Method (FVM). RANSE is used for viscous flow conditions to assess the effects of viscosity compared to the inviscid solutions proposed by BEM. Six different parameters are investigated and they are the effects of distance, thickness, angle of attack, chord length, aspect ratio and tapered wings. A generalized 2-D code is developed implementing the iterative procedure and is adapted to generate results. Effects of free surface and cavitation are ignored. It is believed that the present work will provide insight into the parametric interference between hydrofoils inside the fluid

  10. Numerical study of compressible magnetoconvection with an open transitional boundary

    SciTech Connect

    Hanami, H.; Tajima, T.

    1990-08-01

    We study by computer simulation nonlinear evolution of magnetoconvection in a system with a dynamical open boundary between the convection region and corona of the sun. We study a model in which the fluid is subject to the vertical gravitation, magnetohydrodynamics (MHD), and high stratification, through an MHD code with the MacCormack-Donner cell hybrid scheme in order to well represent convective phenomena. Initially the vertical fluid flux penetrates from the convectively unstable zone at the bottom into the upper diffuse atmosphere. As the instability develops, the magnetic fields are twisted by the convection motion and the folding magnetic fields is observed. When the magnetic pressure is comparable to the thermal pressure in the upper layer of convective zone, strong flux expulsion from the convective cell interior toward the cell boundary appears. Under appropriate conditions our simulation exhibits no shock formation incurred by the fluid convected to the photosphere, in contrast to earlier works with box boundaries. The magnetic field patterns observed are those of concentrated magnetic flux tubes, accumulation of dynamo flux near the bottom boundary, pinched flux near the downdraft region, and the surface movement of magnetic flux toward the downdraft region. Many of these computationally observed features are reminiscent of solar observations of the fluid and magnetic structures of their motions.

  11. Numerical study of the performance of a model scramjet engine

    NASA Astrophysics Data System (ADS)

    Alhumadi, Ayad

    A computational parametric investigation was conducted to study the effect of variations to several geometric parameters on the performance of a two-dimensional model scramjet engine (square cross section area for 3-D model). Geometric parameters included backstep location, height, and angle and fuel injector angle, diameter, and location. Two- and three-dimensional geometries have been studied, using a finite-volume computational fluid dynamics (CFD) code (FLUENT) with structured grids with sizes between 50,000 and 90,000 cells for the two-dimensional geometry and with structured hexahedral grid sizes between 650,000 and 949,725 cells for the three-dimensional geometry. Otherwise, identical values of program inputs were utilized for the two- and three-dimensional simulations. Performance parameters investigated were combustion efficiency, thrust, pressure losses, and the equivalence ratio for the hydrogen-air combustor. A set of values for independent variables was identified which resulted in maximum thrust, minimum pressure losses, and an equivalence ratio close to unity.

  12. Numerical Study of a Bosonic Topological Insulator in three dimensions

    NASA Astrophysics Data System (ADS)

    Geraedts, Scott; Motrunich, Olexei

    2014-03-01

    We construct a model which realizes a (3+1)-dimensional symmetry-protected topological phase of bosons with U(1) charge conservation and time reversal symmetry, envisioned by A. Vishwanath and T. Senthil [PRX 4 011016]. Our model works by introducing an additional O(3) degree of freedom, and binding its hedgehogs to a species of charged bosons; the continuous symmetry is thus enlarged to SO(3) × U(1) . We study the model using Monte Carlo and determine its bulk phase diagram; the phase where the bound states of hedgehogs and charges condense is the topological phase. We also study surface phase diagram on a (2+1)-dimensional boundary between the topological and trivial insulators. The theory for the surface is the same as for a (2+1)D hedgehog-suppressed non-linear sigma model, which confirms the proposed so-called NCCP1 field theory. We apply a Zeeman field to the surface, which breaks time reversal on the surface only, and observe a surface Hall conductivity which is half of a quantized value allowed for bosons in strictly (2+1)D, thus establishing topological nature of the (3+1)D bulk phase. Support from NSF Grant DMR-1206096; Caltech Institute of Quantum Imformation and Matter, and an NSERC PGS fellowship.

  13. Effects of Convective Asymmetries on Hurricane Intensity: A Numerical Study

    NASA Technical Reports Server (NTRS)

    Wu, Liguang; Braun, Scott A.

    2003-01-01

    The influence of the uniform large-scale flow, beta effect, and vertical shear of the environmental flow on hurricane intensity is investigated in the context of the induced convective or potential vorticity asymmetries with a hydrostatic primitive equation hurricane model. In agreement with the previous studies, imposing of one of these environmental effects can substantially weaken the simulated tropical cyclones. In response t o the environmental influence, significant asymmetries develop with a structure similar to the spiral bands in real hurricanes, which are dominated by wavenumber-one components. The tendencies of the mean radial, azimuthal winds and temperature associated with the environment-induced convective asymmetries are evaluated respectively. The resulting asymmetries can effectively reduce hurricane intensity by directly producing the negative tendency of the mean tangential wind in the vicinity of the radius of maximum wind, and by weakening the mean radial circulation. The reduction effects are closely associated with the spiral structure of the induced asymmetries. The time lag observed between the imposition of the environmental influence and the resulting rise in the minimum central pressure is the time required for developing the spiral structure. This study also confirms the axisymmetrization process associated with the induced wavenumber-one components of potential vorticity asymmetries, but it exists only within the radius of maximum wind.

  14. A numerical study of gas transport in human lung models

    NASA Astrophysics Data System (ADS)

    Lin, Ching-Long; Hoffman, Eric A.

    2005-04-01

    Stable Xenon (Xe) gas has been used as an imaging agent for decades in its radioactive form, is chemically inert, and has been used as a ventilation tracer in its non radioactive form during computerized tomography (CT) imaging. Magnetic resonance imaging (MRI) using hyperpolarized Helium (He) gas and Xe has also emerged as a powerful tool to study regional lung structure and function. However, the present state of knowledge regarding intra-bronchial Xe and He transport properties is incomplete. As the use of these gases rapidly advances, it has become critically important to understand the nature of their transport properties and to, in the process, better understand the role of gas density in general in determining regional distribution of respiratory gases. In this paper, we applied the custom developed characteristic-Galerkin finite element method, which solves the three-dimensional (3D) incompressible variable-density Navier-Stokes equations, to study the transport of Xe and He in the CT-based human lung geometries, especially emulating the washin and washout processes. The realistic lung geometries are segmented and reconstructed from CT images as part of an effort to build a normative atlas (NIH HL-064368) documenting airway geometry over 4 decades of age in healthy and disease-state adult humans. The simulation results show that the gas transport process depends on the gas density and the body posture. The implications of these results on the difference between washin and washout time constants are discussed.

  15. Numerical Study on GRB-Jet Formation in Collapsars

    SciTech Connect

    Nagataki, Shigehiro; Takahashi, Rohta; Mizuta, Akira; Takiwaki, Tomoya; /Tokyo U.

    2006-08-22

    Two-dimensional magnetohydrodynamic simulations are performed using the ZEUS-2D code to investigate the dynamics of a collapsar that generates a GRB jet, taking account of realistic equation of state, neutrino cooling and heating processes, magnetic fields, and gravitational force from the central black hole and self gravity. It is found that neutrino heating processes are not so efficient to launch a jet in this study. It is also found that a jet is launched mainly by B{sub {phi}} fields that are amplified by the winding-up effect. However, since the ratio of total energy relative to the rest mass energy in the jet is not so high as several hundred, we conclude that the jets seen in this study are not be a GRB jet. This result suggests that general relativistic effects, which are not included in this study, will be important to generate a GRB jet. Also, the accretion disk with magnetic fields may still play an important role to launch a GRB jet, although a simulation for much longer physical time {approx} 10-100 s is required to confirm this effect. It is shown that considerable amount of {sup 56}Ni is synthesized in the accretion disk. Thus there will be a possibility for the accretion disk to supply sufficient amount of {sup 56}Ni required to explain the luminosity of a hypernova. Also, it is shown that neutron-rich matter due to electron captures with high entropy per baryon is ejected along the polar axis. Moreover, it is found that the electron fraction becomes larger than 0.5 around the polar axis near the black hole by {nu}{sub e} capture at the region. Thus there will be a possibility that r-process and r/p-process nucleosynthesis occur at these regions. Finally, much neutrons will be ejected from the jet, which suggests that signals from the neutron decays may be observed as the delayed bump of the light curve of the afterglow or gamma-rays.

  16. Numerical study of low pressure nuclear thermal rockets

    NASA Technical Reports Server (NTRS)

    Kim, Suk C.; Stubbs, Robert M.

    1992-01-01

    The flowfields and performance of low pressure nuclear thermal rockets, which use hydrogen as a propellant, are studied by solving the Navier-Stokes equations and the species equations. A finite-rate chemistry model is used in the species equations, and the turbulence is simulated by the Baldwin-Lomax turbulence model with a modified van Driest's damping constant. The calculated results for the chamber temperatures of 3200 K and 4000 K with a chamber pressure range of 0.1 atm to 6 atm are presented as contours, centerline variations, and exit profiles. The performance values from the present calculations, such as the vacuum specific impulse and thrust, are compared with those from the 1D, inviscid equilibrium and frozen flow code.

  17. Numerical Model Studies of the Martian Mesoscale Circulations

    NASA Technical Reports Server (NTRS)

    Segal, M.; Arritt, R. W.

    1996-01-01

    Studies concerning mesoscale topographical effects on Martian flows examined low-level jets in the near equatorial latitudes and the dynamical intensification of flow by steep terrain. Continuation of work from previous years included evaluating the dissipation of cold air mass outbreaks due to enhanced sensible heat flux, further sensitivity and scaling evaluations for generalization of the characteristics of Martian mesoscale circulation caused by horizontal sensible heat-flux gradients, and evaluations of the significance that non-uniform surface would have on enhancing the polar CO2 ice sublimation during the spring. The sensitivity of maximum and minimum atmospheric temperatures to changes in wind speed, surface albedo, and deep soil temperature was investigated.

  18. Numerical study on the initial stage of thrombus growth

    NASA Astrophysics Data System (ADS)

    Takagi, Shu; , Satoshi, II; Shiozaki, Seiji; Sugiyama, Kazuyasu; Matsumoto, Yoichiro

    2011-11-01

    Thrombosis is regarded as one of the most important diseases, which cause the myocardial and cerebral infarctions. It is affected from molecular scale protein-protein interaction to continuum scale in blood flow. Initially, platelets start aggregate at the injured vessel wall, where von Willebrand Factor (vWF) is attached. The Glycoprotein, GPIb- αs on platelet membrane starts showing ligand-receptor interaction with this vWF and platelets start aggregating around this spot. In the present study, the molecular scale interaction between vWF and GPIb- α g is taken into account through the kinetic Monte Carlo simulations. Then, the interacting force between platelets and vascular endothelium obtained from kinetic Monte Carlo simulation is coupled with the continuum scale simulation. The results illustrate that platelets are much easier to aggregate on the wall in the presence of red blood cells and the effect of molecular interaction force are quantitatively discussed on the aggregation of platelets.

  19. Numerical Modeling Studies of Wake Vortices: Real Case Simulations

    NASA Technical Reports Server (NTRS)

    Shen, Shao-Hua; Ding, Feng; Han, Jongil; Lin, Yuh-Lang; Arya, S. Pal; Proctor, Fred H.

    1999-01-01

    A three-dimensional large-eddy simulation model, TASS, is used to simulate the behavior of aircraft wake vortices in a real atmosphere. The purpose for this study is to validate the use of TASS for simulating the decay and transport of wake vortices. Three simulations are performed and the results are compared with the observed data from the 1994-1995 Memphis field experiments. The selected cases have an atmospheric environment of weak turbulence and stable stratification. The model simulations are initialized with appropriate meteorological conditions and a post roll-up vortex system. The behavior of wake vortices as they descend within the atmospheric boundary layer and interact with the ground is discussed.

  20. Numerical study of grating-assisted optical diffraction tomography

    SciTech Connect

    Chaumet, Patrick C.; Belkebir, Kamal; Sentenac, Anne

    2007-07-15

    We study the resolution of an optical diffraction tomography system in which the objects are either in an homogeneous background or deposited onto a glass prism, a prism surmounted by a thin metallic film or a prism surmounted by a metallic film covered by a periodically nanostructured dielectric layer. For all these configurations, we present an inversion procedure that yields the map of the relative permittivity of the objects from their diffracted far field. When multiple scattering can be neglected, we show that the homogeneous, prism, and metallic film configurations yield a resolution about {lambda}/4 while the grating substrate yields a resolution better than {lambda}/10. When Born approximation fails, we point out that it is possible to neglect the coupling between the object and the substrate and account solely for the multiple scattering within the objects to obtain a satisfactory reconstruction. Last, we present the robustness of our inversion procedure to noise.

  1. Study of phase retrieval algorithm from partially coherent light

    NASA Astrophysics Data System (ADS)

    Yan, Liu; Hong, Cheng; Wei, Sui; Wei, Zhang

    2014-11-01

    The goal of phase retrieval is to recover the phase information from intensity distribution which is an important topic in optics and image processing. The algorithm based on the transport of intensity equation only need to measure the spatial intensity of the center plane and adjacent light field plane, and reconstruct the phase object by solving second order differential equations. The algorithm is derived in the coherent light field. And the partially coherent light field is described more complex. The field at any point in the space experiences statistical fluctuations over time. Therefore, traditional TIE algorithms cannot be applied in calculating the phase of partially coherent light field. In this thesis, the phase retrieval algorithm is proposed for partially coherent light field. First, the description and propagation equation of partially coherent light field is established. Then, the phase is retrieved by TIE Fourier transform. Experimental results with simulated uniform and non-uniform illumination demonstrate the effectiveness of the proposed method in phase retrieval for partially coherent light field.

  2. Numerical study of low-current steady arcs

    NASA Technical Reports Server (NTRS)

    Kim, S. C.; Nagamatsu, H. T.

    1992-01-01

    The development of a high-efficiency CW YLF laser doped with Er,Tm,Ho: and featuring a strongly focusing resonator that collects a high density of pump power on the active crystal is described. The emission is investigated at 2.06 microns and a tuning range both at liquid-nitrogen (77 K) and at dry-ice (210 K) temperature. The noise characteristics and the long-term power stability of the laser is studied with an eye to employing this source for high-resolution spectroscopy in the 2-micron wavelength region. The detection of several absorption lines of NH3 at low pressure is described. The output power of the laser as a function of the power impinging on the crystal for different transmission of the output mirror is illustrated. The best result obtained is 1.46 W output for 3.2 W of argon pump. The minimum threshold achieved is 3.5 mW with a 1-percent transmission mirror. It is concluded that it is possible to develop a highly efficient Ho:YLF laser featuring low noise and sufficient tunability for high-resolution spectroscopy in the 2-micron region.

  3. A numerical and experimental study of ultrasonic metal welding

    NASA Astrophysics Data System (ADS)

    Al-Sarraf, Z.; Lucas, M.; Harkness, P.

    2012-12-01

    Ultrasonic metal welding has been the subject of ongoing research and development, most recently concentrating on metal joining in miniature devices, for example to allow solder-free wire bonding. As well as at the small scale, there are also opportunities to research the joining of thicker sheet metals and to widen the range of similar and dissimilar materials that can be successfully joined using this technology. This study presents the design, characterisation and test of a lateral-drive ultrasonic metal spot welding device. The ultrasonic metal spot welding horn is modelled using finite element analysis (FEA) and its vibration behaviour is characterised experimentally to ensure ultrasonic energy is delivered effectively to the weld coupon. The welding stack and fixtures are then designed and mounted on a test machine to allow a series of experiments to be conducted for various welding and ultrasonic parameters. Weld strength is subsequently analysed using tensile-shear tests. The results show how the weld strength is particularly sensitive to the combination of clamping force and ultrasonic vibration amplitude of the welding tip, but there are optimal combinations of these and also limits that must be clearly identified.

  4. Study of inhomogeneities in turbid media: experimental and numerical results

    NASA Astrophysics Data System (ADS)

    Carbone, N. A.; di Rocco, Héctor O.; Iriarte, Daniela I.; Pomarico, Juan A.; Ranea-Sandoval, Héctor F.; Pardini, Pamela; Waks-Serra, M. Victoria

    2011-08-01

    Near Infrared diffuse transmission of light through tissue is a tool for noninvasive imaging for diagnostic purposes. Most of the research has been focused over breast cancer imaging; however, major efforts have been done in cerebral tomography and topography imaging, as well as small animal organs imaging systems. In this work, we investigate the transmitted light profiles when scattering and absorbing cylindrical inhomogeneities are submerged at different depths inside slabs of turbid media. We analyze the transilluminance profiles when the phantom is scanned using both, CW and time resolved detection. The study of the spatial profiles obtained with CW light, shows an apparently contradictory effect when the absorption coefficient of the inclusion is higher than that of the bulk. In this case, the intensity profiles displays a peak of higher intensity where the inclusion is located, as it would be expected for a less absorbing inclusion. The experiments were compared and analyzed with a theoretical model for cylindrical inclusions and Monte Carlo simulations implemented in a Graphic Processing Unit (GPU).

  5. [Numerical simulation study of SOA in Pearl River Delta region].

    PubMed

    Cheng, Yan-li; Li, Tian-tian; Bai, Yu-hua; Li, Jin-long; Liu, Zhao-rong; Wang, Xue-song

    2009-12-01

    Secondary organic aerosols (SOA) is an important component of the atmospheric particle pollution, thus, determining the status and sources of SOA pollution is the premise of deeply understanding the occurrence, development law and the influence factors of the atmospheric particle pollution. Based on the pollution sources and meteorological data of Pearl River Delta region, the study used the two-dimensional model coupled with SOA module to stimulate the status and source of SOA pollution in regional scale. The results show: the generation of SOA presents obvious characteristics of photochemical reaction, and the high concentration appears at about 14:00; SOA concentration is high in some areas of Guangshou and Dongguan with large pollution source-emission, and it is also high in some areas of Zhongshan, Zhuhai and Jiangmen which are at downwind position of Guangzhou and Dongguan. Contribution ratios of several main pollution sources to SOA are: biogenic sources 72.6%, mobile sources 30.7%, point sources 12%, solvent and oil paint sources 12%, surface sources less than 5% respectively.

  6. Numerical studies of a plasma diode with external forcing

    NASA Astrophysics Data System (ADS)

    Rekaa, V. L.; Pécseli, H. L.; Trulsen, J. K.

    2012-08-01

    With reference to laboratory Q-machine studies we analyze the dynamics of a plasma diode under external forcing. Assuming a strong axial magnetic field, the problem is analyzed in one spatial dimension by a particle-in-cell code. The cathode is assumed to be operated in electron rich conditions, supplying an abundance of electrons. We compare different forcing schemes with the results obtained by solving the van der Pol equation. In one method of forcing we apply an oscillation in addition to the DC end plate bias and consider both amplitude and frequency variations. An alternative method of perturbation consists of modelling an absorbing grid at some internal position. Also in this case we can have a constant frequency with varying amplitude or alternatively an oscillation with chirped frequency but constant amplitude. We find that the overall features of the forced van der Pol equation are recovered, but the details in the plasma response need more attention to the harmonic responses, requiring extensions of the model equation. The analysis is extended by introducing collisional effects, where we emphasize charge exchange collisions of ions, since these processes usually have the largest cross sections and give significant modifications of the diode performance. In particular we find a reduction in oscillator frequency, although a linear scaling of the oscillation time with the system length remains also in this case.

  7. Numerical study of oxygen transport in a carotid bifurcation

    NASA Astrophysics Data System (ADS)

    Tada, Shigeru

    2010-07-01

    This study investigates the oxygen mass transport in the region around the human carotid bifurcation, particularly addressing the effects of bifurcation geometry and pulsatile blood flow on the oxygen transport between the blood flow and artery wall tissue, coupled with the metabolic oxygen consumption and oxygen diffusion in the artery wall tissue. The temporal variations and spatial distributions of the oxygen tension are predicted quantitatively using a geometric model of the human carotid bifurcation and realistic blood flow waveforms. Results reveal that the flow separation at the outside wall of the sinus of the internal carotid artery (ICA) can markedly alter the flow pattern, oxygen tension and the oxygen wall flux. Results also clarify that the flow unsteadiness has a secondary effect on the oxygen tension inside the wall. The non-dimensional oxygen flux, the Sherwood number Sh, at the outside wall of the ICA sinus, takes markedly lower values of about 45 than at other sites because the rates of oxygen transport by the convective flow are reduced at the outside wall of the ICA sinus. The transverse distributions of the oxygen tension inside the artery wall show parabolic profiles having minima in the middle of the wall thickness, with the lowest value of 35 mmHg. These predicted distributions of the oxygen tension inside the wall closely resemble those obtained from experiments. The results demonstrate that hypoxic zones appear inside the artery walls at locations where atherosclerotic lesions are prone to develop.

  8. Numerical study of persistence in models with absorbing states

    NASA Astrophysics Data System (ADS)

    Albano, Ezequiel V.; Muñoz, Miguel A.

    2001-03-01

    Extensive Monte Carlo simulations are performed in order to evaluate both the local (θl) and global (θg) persistence exponents in the Ziff-Gulari-Barshad (ZGB) [Phys. Rev. Lett. 56, 2553 (1986)] irreversible reaction model. At the second-order irreversible phase transition (IPT) we find that both the local and the global persistence exhibit power-law behavior with a crossover between two different time regimes. On the other hand, at the ZGB first-order IPT, active sites are short lived and the persistence decays more abruptly; it is not clear whether it shows power-law behavior or not. In order to analyze universality issues, we have also studied another model with absorbing states, the contact process, and evaluated the local persistence exponent in dimensions from 1 to 4. A striking apparent superuniversality is reported: the local persistence exponent seems to coincide in both one- and two-dimensional systems. Some other aspects of persistence in systems with absorbing states are also analyzed.

  9. Numerical study of persistence in models with absorbing states.

    PubMed

    Albano, E V; Muñoz, M A

    2001-03-01

    Extensive Monte Carlo simulations are performed in order to evaluate both the local (straight theta(l)) and global (straight theta(g)) persistence exponents in the Ziff-Gulari-Barshad (ZGB) [Phys. Rev. Lett. 56, 2553 (1986)] irreversible reaction model. At the second-order irreversible phase transition (IPT) we find that both the local and the global persistence exhibit power-law behavior with a crossover between two different time regimes. On the other hand, at the ZGB first-order IPT, active sites are short lived and the persistence decays more abruptly; it is not clear whether it shows power-law behavior or not. In order to analyze universality issues, we have also studied another model with absorbing states, the contact process, and evaluated the local persistence exponent in dimensions from 1 to 4. A striking apparent superuniversality is reported: the local persistence exponent seems to coincide in both one- and two-dimensional systems. Some other aspects of persistence in systems with absorbing states are also analyzed.

  10. Numerical study of 1998 late summer flood in East Asia

    NASA Astrophysics Data System (ADS)

    Sun, Wen-Yih; Min, Ki-Hong; Chern, Jiun-Dar

    2011-02-01

    The Purdue Regional Model (PRM) is applied to study the evolution of regional climate and weather systems during the heavy precipitation over Korea and China between 30 July and 18 August 1998. The results show that heavy rainfall along the Mei-yu and Changma front was due to the combination of: (1) an anomalous 850 hPa subtropical high, (2) a stronger baroclinicity around 40°N over eastern Asia and a low pressure located to the north of the front, and (3) an excessive evaporation from abnormal wet, warm land. The precipitation ended by 18 August when the subtropical high had retreated and the low pressure in Mongolia moved away from Asia continent. The model reproduced in great detail the observed baroclinic waves to the north, subtropical high and low-level jet to the south, and the front with heavy precipitation extending from southern China, and the Korean peninsula to Japan. High correlations are found for mass, momentum, and moisture fields between model simulation and the European Center for Medium Range Weather Forecast (ECMWF) reanalysis for the 20-day means.

  11. Experimental and Numerical Study on Blanking Process with Negative Clearance

    NASA Astrophysics Data System (ADS)

    Hirota, Kenji; Yanaga, Hiroki; Fukushima, Katsunori

    This study summarizes the characteristics of blanking behavior with a negative clearance. Several experiments were performed for two aluminum sheets over a wide range of clearances including negative values. Blanking with negatively large clearances was found to produce fine cut edges with less roll-over and no fracture zone even for a brittle material. Corresponding simulations were performed using the Ayada's criterion for predicting ductile fracture initiation. Each zone of blanked part edges such as roll-over and fractured zone agreed well with that obtained in the experiments except a few cases accompanied by secondary shear. The reason for prevention of fracture by using negative clearances was explained with the change of the damage value during the process; the damage value was kept low throughout the blanking operation since the mean stress dominating the damage value became compressive around the die edge. Influences of blanking parameters on load-stroke curves were also investigated. The curves for negative clearances showed gradual increase in load toward the end of stroke. The earlier fracture initiated, the earlier the load reached a peak. Simulated curves showed the same tendency and in good agreement with the experimental ones quantitatively.

  12. Numerical studies of Siberian snakes and spin rotators for RHIC

    SciTech Connect

    Luccio, A.

    1995-04-17

    For the program of polarized protons in RHIC, two Siberian snakes and four spin rotators per ring will be used. The Snakes will produce a complete spin flip. Spin Rotators, in pairs, will rotate the spin from the vertical direction to the horizontal plane at a given insertion, and back to the vertical after the insertion. Snakes, 180{degrees} apart and with their axis of spin precession at 90{degrees} to each other, are an effective means to avoid depolarization of the proton beam in traversing resonances. Classical snakes and rotators are made with magnetic solenoids or with a sequence of magnetic dipoles with fields alternately directed in the radial and vertical direction. Another possibility is to use helical magnets, essentially twisted dipoles, in which the field, transverse the axis of the magnet, continuously rotates as the particles proceed along it. After some comparative studies, the authors decided to adopt for RHIC an elegant solution with four helical magnets both for the snakes and the rotators proposed by Shatunov and Ptitsin. In order to simplify the construction of the magnets and to minimize cost, four identical super conducting helical modules will be used for each device. Snakes will be built with four right-handed helices. Spin rotators with two right-handed and two left-handed helices. The maximum field will be limited to 4 Tesla. While small bore helical undulators have been built for free electron lasers, large super conducting helical magnets have not been built yet. In spite of this difficulty, this choice is dictated by some distinctive advantages of helical over more conventional transverse snakes/rotators: (i) the devices are modular, they can be built with arrangements of identical modules, (ii) the maximum orbit excursion in the magnet is smaller, (iii) orbit excursion is independent from the separation between adjacent magnets, (iv) they allow an easier control of the spin rotation and the orientation of the spin precession axis.

  13. A Numerical Study of High-Speed Missile Configurations Using a Block- Structured Parallel Algorithm

    DTIC Science & Technology

    1993-12-01

    Transformation Calculation Subroutine ....................... 97 iv List of Figures Figure Page 1. Current and Projected Computational Requirements...B.3. Project Block Structure and Associated Block Table ......................... 68 B.4. Computational-to-Block Coordinate Transformation ...J, & unit vectors aligned along Cartesian xyz axes R position vector AdS surface vector U vector of conserved variables Kronecker Delta function J

  14. Numerical study of base pressure characteristic curve for a four-engine clustered nozzle configuration

    NASA Astrophysics Data System (ADS)

    Wang, Ten-See

    1993-07-01

    Excessive base heating has been a problem for many launch vehicles. For certain designs such as the direct dump of turbine exhaust in the nozzle section and at the nozzle lip of the Space Transportation Systems Engine (STME), the potential burning of the turbine exhaust in the base region has caused tremendous concern. Two conventional approaches have been considered for predicting the base environment: (1) empirical approach, and (2) experimental approach. The empirical approach uses a combination of data correlations and semi-theoretical calculations. It works best for linear problems, simple physics and geometry. However, it is highly suspicious when complex geometry and flow physics are involved, especially when the subject is out of historical database. The experimental approach is often used to establish database for engineering analysis. However, it is qualitative at best for base flow problems. Other criticisms include the inability to simulate forebody boundary layer correctly, the interference effect from tunnel walls, and the inability to scale all pertinent parameters. Furthermore, there is a contention that the information extrapolated from subscale tests with combustion is not conservative. One potential alternative to the conventional methods is computational fluid dynamics (CFD), which has none of the above restrictions and is becoming more feasible due to maturing algorithms and advancing computer technology. It provides more details of the flowfield and is only limited by computer resources. However, it has its share of criticisms as a predictive tool for base environment. One major concern is that CFD has not been extensively tested for base flow problems. It is therefore imperative that CFD be assessed and benchmarked satisfactorily for base flows. In this study, the turbulent base flowfield of a experimental investigation for a four-engine clustered nozzle is numerically benchmarked using a pressure based CFD method. Since the cold air was the

  15. Numerical Study of Base Pressure Characteristic Curve for a Four-Engine Clustered Nozzle Configuration

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    1993-01-01

    Excessive base heating has been a problem for many launch vehicles. For certain designs such as the direct dump of turbine exhaust in the nozzle section and at the nozzle lip of the Space Transportation Systems Engine (STME), the potential burning of the turbine exhaust in the base region has caused tremendous concern. Two conventional approaches have been considered for predicting the base environment: (1) empirical approach, and (2) experimental approach. The empirical approach uses a combination of data correlations and semi-theoretical calculations. It works best for linear problems, simple physics and geometry. However, it is highly suspicious when complex geometry and flow physics are involved, especially when the subject is out of historical database. The experimental approach is often used to establish database for engineering analysis. However, it is qualitative at best for base flow problems. Other criticisms include the inability to simulate forebody boundary layer correctly, the interference effect from tunnel walls, and the inability to scale all pertinent parameters. Furthermore, there is a contention that the information extrapolated from subscale tests with combustion is not conservative. One potential alternative to the conventional methods is computational fluid dynamics (CFD), which has none of the above restrictions and is becoming more feasible due to maturing algorithms and advancing computer technology. It provides more details of the flowfield and is only limited by computer resources. However, it has its share of criticisms as a predictive tool for base environment. One major concern is that CFD has not been extensively tested for base flow problems. It is therefore imperative that CFD be assessed and benchmarked satisfactorily for base flows. In this study, the turbulent base flowfield of a experimental investigation for a four-engine clustered nozzle is numerically benchmarked using a pressure based CFD method. Since the cold air was the

  16. Numerical study of the influence of geometrical characteristics of a vertical helical coil on a bubbly flow

    NASA Astrophysics Data System (ADS)

    Saffari, H.; Moosavi, R.

    2014-11-01

    In this article, turbulent single-phase and two-phase (air-water) bubbly fluid flows in a vertical helical coil are analyzed by using computational fluid dynamics (CFD). The effects of the pipe diameter, coil diameter, coil pitch, Reynolds number, and void fraction on the pressure loss, friction coefficient, and flow characteristics are investigated. The Eulerian-Eulerian model is used in this work to simulate the two-phase fluid flow. Three-dimensional governing equations of continuity, momentum, and energy are solved by using the finite volume method. The k- ɛ turbulence model is used to calculate turbulence fluctuations. The SIMPLE algorithm is employed to solve the velocity and pressure fields. Due to the effect of a secondary force in helical pipes, the friction coefficient is found to be higher in helical pipes than in straight pipes. The friction coefficient increases with an increase in the curvature, pipe diameter, and coil pitch and decreases with an increase in the coil diameter and void fraction. The close correlation between the numerical results obtained in this study and the numerical and empirical results of other researchers confirm the accuracy of the applied method. For void fractions up to 0.1, the numerical results indicate that the friction coefficient increases with increasing the pipe diameter and keeping the coil pitch and diameter constant and decreases with increasing the coil diameter. Finally, with an increase in the Reynolds number, the friction coefficient decreases, while the void fraction increases.

  17. A benchmark study of numerical schemes for one-dimensional arterial blood flow modelling.

    PubMed

    Boileau, Etienne; Nithiarasu, Perumal; Blanco, Pablo J; Müller, Lucas O; Fossan, Fredrik Eikeland; Hellevik, Leif Rune; Donders, Wouter P; Huberts, Wouter; Willemet, Marie; Alastruey, Jordi

    2015-10-01

    Haemodynamical simulations using one-dimensional (1D) computational models exhibit many of the features of the systemic circulation under normal and diseased conditions. Recent interest in verifying 1D numerical schemes has led to the development of alternative experimental setups and the use of three-dimensional numerical models to acquire data not easily measured in vivo. In most studies to date, only one particular 1D scheme is tested. In this paper, we present a systematic comparison of six commonly used numerical schemes for 1D blood flow modelling: discontinuous Galerkin, locally conservative Galerkin, Galerkin least-squares finite element method, finite volume method, finite difference MacCormack method and a simplified trapezium rule method. Comparisons are made in a series of six benchmark test cases with an increasing degree of complexity. The accuracy of the numerical schemes is assessed by comparison with theoretical results, three-dimensional numerical data in compatible domains with distensible walls or experimental data in a network of silicone tubes. Results show a good agreement among all numerical schemes and their ability to capture the main features of pressure, flow and area waveforms in large arteries. All the information used in this study, including the input data for all benchmark cases, experimental data where available and numerical solutions for each scheme, is made publicly available online, providing a comprehensive reference data set to support the development of 1D models and numerical schemes.

  18. Analytical and numerical studies of dark matter halos

    NASA Astrophysics Data System (ADS)

    Austin, Crystal Gayle

    This dissertation focuses on the evolution and structure of dark matter halos of galaxies, groups and clusters of galaxies. I explore the dependence of the final halo's properties on the initial conditions and the physical processes that guide the halo to equilibrium, with special focus on the power-law nature of the r/s 3 profile, where r is the density profile and s is the velocity dispersion profile. As the astronomy community does not yet fully understand these processes, this research expands our understanding of collisionless, gravitationally-interacting systems. In the initial chapters, I study the collisionless semi-analytic halo simulations and show that the final properties are sensitive to the initial conditions, such as the power-spectra filtering scale, the secondary velocities' magnitudes and directions, and the accretion rate. The general conclusions are that semi-analytic halos are in hydrostatic equilibrium and have a power-law r/s 3 profile. If there were discontinuities in the initial conditions, the power-law feature in r/s 3 breaks. Because of this, hydrostatic equilibrium is a less restrictive condition than the r/s 3 profile. These halos can recover from moderate discontinuities by either correcting a single profile by sacrificing other quantities or by sufficient post-accretion. Finally, I compare collisionless semi-analytic and N-body simulations directly. This novel comparison is useful because these techniques use different physics to collapse the proto-halo. The physical differences between these two methods are used to determine causes of the final halo profiles. Specifically, I find the NFW density profile and power-law r/s 3 are due to the slow rate of evolution, which is determined from the initial conditions and cosmology. The density slope-velocity anisotropy relationship is dependent, rather, on the physical processes (notably the radial orbit instability) and three-dimensional evolution used to collapse the proto-halos. We also

  19. Firefly algorithm versus genetic algorithm as powerful variable selection tools and their effect on different multivariate calibration models in spectroscopy: A comparative study

    NASA Astrophysics Data System (ADS)

    Attia, Khalid A. M.; Nassar, Mohammed W. I.; El-Zeiny, Mohamed B.; Serag, Ahmed

    2017-01-01

    For the first time, a new variable selection method based on swarm intelligence namely firefly algorithm is coupled with three different multivariate calibration models namely, concentration residual augmented classical least squares, artificial neural network and support vector regression in UV spectral data. A comparative study between the firefly algorithm and the well-known genetic algorithm was developed. The discussion revealed the superiority of using this new powerful algorithm over the well-known genetic algorithm. Moreover, different statistical tests were performed and no significant differences were found between all the models regarding their predictabilities. This ensures that simpler and faster models were obtained without any deterioration of the quality of the calibration.

  20. Eutectic pattern transition under different temperature gradients: A phase field study coupled with the parallel adaptive-mesh-refinement algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, A.; Guo, Z.; Xiong, S.-M.

    2017-03-01

    Eutectic pattern transition under an externally imposed temperature gradient was studied using the phase field method coupled with a novel parallel adaptive-mesh-refinement (Para-AMR) algorithm. Numerical tests revealed that the Para-AMR algorithm could improve the computational efficiency by two orders of magnitude and thus made it possible to perform large-scale simulations without any compromising accuracy. Results showed that the direction of the temperature gradient played a crucial role in determining the eutectic patterns during solidification, which agreed well with experimental observations. In particular, the presence of the transverse temperature gradient could tilt the eutectic patterns, and in 3D simulations, the eutectic microstructure would alter from lamellar to rod-like and/or from rod-like to dumbbell-shaped. Furthermore, under a radial temperature gradient, the eutectic would evolve from a dumbbell-shaped or clover-shaped pattern to an isolated rod-like pattern.