Sample records for algorithm performs significantly

  1. Statistically significant performance results of a mine detector and fusion algorithm from an x-band high-resolution SAR

    NASA Astrophysics Data System (ADS)

    Williams, Arnold C.; Pachowicz, Peter W.

    2004-09-01

    Current mine detection research indicates that no single sensor or single look from a sensor will detect mines/minefields in a real-time manner at a performance level suitable for a forward maneuver unit. Hence, the integrated development of detectors and fusion algorithms are of primary importance. A problem in this development process has been the evaluation of these algorithms with relatively small data sets, leading to anecdotal and frequently over trained results. These anecdotal results are often unreliable and conflicting among various sensors and algorithms. Consequently, the physical phenomena that ought to be exploited and the performance benefits of this exploitation are often ambiguous. The Army RDECOM CERDEC Night Vision Laboratory and Electron Sensors Directorate has collected large amounts of multisensor data such that statistically significant evaluations of detection and fusion algorithms can be obtained. Even with these large data sets care must be taken in algorithm design and data processing to achieve statistically significant performance results for combined detectors and fusion algorithms. This paper discusses statistically significant detection and combined multilook fusion results for the Ellipse Detector (ED) and the Piecewise Level Fusion Algorithm (PLFA). These statistically significant performance results are characterized by ROC curves that have been obtained through processing this multilook data for the high resolution SAR data of the Veridian X-Band radar. We discuss the implications of these results on mine detection and the importance of statistical significance, sample size, ground truth, and algorithm design in performance evaluation.

  2. Statistical analysis for validating ACO-KNN algorithm as feature selection in sentiment analysis

    NASA Astrophysics Data System (ADS)

    Ahmad, Siti Rohaidah; Yusop, Nurhafizah Moziyana Mohd; Bakar, Azuraliza Abu; Yaakub, Mohd Ridzwan

    2017-10-01

    This research paper aims to propose a hybrid of ant colony optimization (ACO) and k-nearest neighbor (KNN) algorithms as feature selections for selecting and choosing relevant features from customer review datasets. Information gain (IG), genetic algorithm (GA), and rough set attribute reduction (RSAR) were used as baseline algorithms in a performance comparison with the proposed algorithm. This paper will also discuss the significance test, which was used to evaluate the performance differences between the ACO-KNN, IG-GA, and IG-RSAR algorithms. This study evaluated the performance of the ACO-KNN algorithm using precision, recall, and F-score, which were validated using the parametric statistical significance tests. The evaluation process has statistically proven that this ACO-KNN algorithm has been significantly improved compared to the baseline algorithms. The evaluation process has statistically proven that this ACO-KNN algorithm has been significantly improved compared to the baseline algorithms. In addition, the experimental results have proven that the ACO-KNN can be used as a feature selection technique in sentiment analysis to obtain quality, optimal feature subset that can represent the actual data in customer review data.

  3. A comparative intelligibility study of single-microphone noise reduction algorithms.

    PubMed

    Hu, Yi; Loizou, Philipos C

    2007-09-01

    The evaluation of intelligibility of noise reduction algorithms is reported. IEEE sentences and consonants were corrupted by four types of noise including babble, car, street and train at two signal-to-noise ratio levels (0 and 5 dB), and then processed by eight speech enhancement methods encompassing four classes of algorithms: spectral subtractive, sub-space, statistical model based and Wiener-type algorithms. The enhanced speech was presented to normal-hearing listeners for identification. With the exception of a single noise condition, no algorithm produced significant improvements in speech intelligibility. Information transmission analysis of the consonant confusion matrices indicated that no algorithm improved significantly the place feature score, significantly, which is critically important for speech recognition. The algorithms which were found in previous studies to perform the best in terms of overall quality, were not the same algorithms that performed the best in terms of speech intelligibility. The subspace algorithm, for instance, was previously found to perform the worst in terms of overall quality, but performed well in the present study in terms of preserving speech intelligibility. Overall, the analysis of consonant confusion matrices suggests that in order for noise reduction algorithms to improve speech intelligibility, they need to improve the place and manner feature scores.

  4. Mathematical detection of aortic valve opening (B point) in impedance cardiography: A comparison of three popular algorithms.

    PubMed

    Árbol, Javier Rodríguez; Perakakis, Pandelis; Garrido, Alba; Mata, José Luis; Fernández-Santaella, M Carmen; Vila, Jaime

    2017-03-01

    The preejection period (PEP) is an index of left ventricle contractility widely used in psychophysiological research. Its computation requires detecting the moment when the aortic valve opens, which coincides with the B point in the first derivative of impedance cardiogram (ICG). Although this operation has been traditionally made via visual inspection, several algorithms based on derivative calculations have been developed to enable an automatic performance of the task. However, despite their popularity, data about their empirical validation are not always available. The present study analyzes the performance in the estimation of the aortic valve opening of three popular algorithms, by comparing their performance with the visual detection of the B point made by two independent scorers. Algorithm 1 is based on the first derivative of the ICG, Algorithm 2 on the second derivative, and Algorithm 3 on the third derivative. Algorithm 3 showed the highest accuracy rate (78.77%), followed by Algorithm 1 (24.57%) and Algorithm 2 (13.82%). In the automatic computation of PEP, Algorithm 2 resulted in significantly more missed cycles (48.57%) than Algorithm 1 (6.3%) and Algorithm 3 (3.5%). Algorithm 2 also estimated a significantly lower average PEP (70 ms), compared with the values obtained by Algorithm 1 (119 ms) and Algorithm 3 (113 ms). Our findings indicate that the algorithm based on the third derivative of the ICG performs significantly better. Nevertheless, a visual inspection of the signal proves indispensable, and this article provides a novel visual guide to facilitate the manual detection of the B point. © 2016 Society for Psychophysiological Research.

  5. Binary mesh partitioning for cache-efficient visualization.

    PubMed

    Tchiboukdjian, Marc; Danjean, Vincent; Raffin, Bruno

    2010-01-01

    One important bottleneck when visualizing large data sets is the data transfer between processor and memory. Cache-aware (CA) and cache-oblivious (CO) algorithms take into consideration the memory hierarchy to design cache efficient algorithms. CO approaches have the advantage to adapt to unknown and varying memory hierarchies. Recent CA and CO algorithms developed for 3D mesh layouts significantly improve performance of previous approaches, but they lack of theoretical performance guarantees. We present in this paper a {\\schmi O}(N\\log N) algorithm to compute a CO layout for unstructured but well shaped meshes. We prove that a coherent traversal of a N-size mesh in dimension d induces less than N/B+{\\schmi O}(N/M;{1/d}) cache-misses where B and M are the block size and the cache size, respectively. Experiments show that our layout computation is faster and significantly less memory consuming than the best known CO algorithm. Performance is comparable to this algorithm for classical visualization algorithm access patterns, or better when the BSP tree produced while computing the layout is used as an acceleration data structure adjusted to the layout. We also show that cache oblivious approaches lead to significant performance increases on recent GPU architectures.

  6. A novel measure and significance testing in data analysis of cell image segmentation.

    PubMed

    Wu, Jin Chu; Halter, Michael; Kacker, Raghu N; Elliott, John T; Plant, Anne L

    2017-03-14

    Cell image segmentation (CIS) is an essential part of quantitative imaging of biological cells. Designing a performance measure and conducting significance testing are critical for evaluating and comparing the CIS algorithms for image-based cell assays in cytometry. Many measures and methods have been proposed and implemented to evaluate segmentation methods. However, computing the standard errors (SE) of the measures and their correlation coefficient is not described, and thus the statistical significance of performance differences between CIS algorithms cannot be assessed. We propose the total error rate (TER), a novel performance measure for segmenting all cells in the supervised evaluation. The TER statistically aggregates all misclassification error rates (MER) by taking cell sizes as weights. The MERs are for segmenting each single cell in the population. The TER is fully supported by the pairwise comparisons of MERs using 106 manually segmented ground-truth cells with different sizes and seven CIS algorithms taken from ImageJ. Further, the SE and 95% confidence interval (CI) of TER are computed based on the SE of MER that is calculated using the bootstrap method. An algorithm for computing the correlation coefficient of TERs between two CIS algorithms is also provided. Hence, the 95% CI error bars can be used to classify CIS algorithms. The SEs of TERs and their correlation coefficient can be employed to conduct the hypothesis testing, while the CIs overlap, to determine the statistical significance of the performance differences between CIS algorithms. A novel measure TER of CIS is proposed. The TER's SEs and correlation coefficient are computed. Thereafter, CIS algorithms can be evaluated and compared statistically by conducting the significance testing.

  7. A proximity algorithm accelerated by Gauss-Seidel iterations for L1/TV denoising models

    NASA Astrophysics Data System (ADS)

    Li, Qia; Micchelli, Charles A.; Shen, Lixin; Xu, Yuesheng

    2012-09-01

    Our goal in this paper is to improve the computational performance of the proximity algorithms for the L1/TV denoising model. This leads us to a new characterization of all solutions to the L1/TV model via fixed-point equations expressed in terms of the proximity operators. Based upon this observation we develop an algorithm for solving the model and establish its convergence. Furthermore, we demonstrate that the proposed algorithm can be accelerated through the use of the componentwise Gauss-Seidel iteration so that the CPU time consumed is significantly reduced. Numerical experiments using the proposed algorithm for impulsive noise removal are included, with a comparison to three recently developed algorithms. The numerical results show that while the proposed algorithm enjoys a high quality of the restored images, as the other three known algorithms do, it performs significantly better in terms of computational efficiency measured in the CPU time consumed.

  8. Productive Information Foraging

    NASA Technical Reports Server (NTRS)

    Furlong, P. Michael; Dille, Michael

    2016-01-01

    This paper presents a new algorithm for autonomous on-line exploration in unknown environments. The objective of the algorithm is to free robot scientists from extensive preliminary site investigation while still being able to collect meaningful data. We simulate a common form of exploration task for an autonomous robot involving sampling the environment at various locations and compare performance with a simpler existing algorithm that is also denied global information. The result of the experiment shows that the new algorithm has a statistically significant improvement in performance with a significant effect size for a range of costs for taking sampling actions.

  9. Robust Control Systems.

    DTIC Science & Technology

    1981-12-01

    time control system algorithms that will perform adequately (i.e., at least maintain closed-loop system stability) when ucertain parameters in the...system design models vary significantly. Such a control algorithm is said to have stability robustness-or more simply is said to be "robust". This...cas6s above, the performance is analyzed using a covariance analysis. The development of all the controllers and the performance analysis algorithms is

  10. Convergence and Applications of a Gossip-Based Gauss-Newton Algorithm

    NASA Astrophysics Data System (ADS)

    Li, Xiao; Scaglione, Anna

    2013-11-01

    The Gauss-Newton algorithm is a popular and efficient centralized method for solving non-linear least squares problems. In this paper, we propose a multi-agent distributed version of this algorithm, named Gossip-based Gauss-Newton (GGN) algorithm, which can be applied in general problems with non-convex objectives. Furthermore, we analyze and present sufficient conditions for its convergence and show numerically that the GGN algorithm achieves performance comparable to the centralized algorithm, with graceful degradation in case of network failures. More importantly, the GGN algorithm provides significant performance gains compared to other distributed first order methods.

  11. Performance comparison of extracellular spike sorting algorithms for single-channel recordings.

    PubMed

    Wild, Jiri; Prekopcsak, Zoltan; Sieger, Tomas; Novak, Daniel; Jech, Robert

    2012-01-30

    Proper classification of action potentials from extracellular recordings is essential for making an accurate study of neuronal behavior. Many spike sorting algorithms have been presented in the technical literature. However, no comparative analysis has hitherto been performed. In our study, three widely-used publicly-available spike sorting algorithms (WaveClus, KlustaKwik, OSort) were compared with regard to their parameter settings. The algorithms were evaluated using 112 artificial signals (publicly available online) with 2-9 different neurons and varying noise levels between 0.00 and 0.60. An optimization technique based on Adjusted Mutual Information was employed to find near-optimal parameter settings for a given artificial signal and algorithm. All three algorithms performed significantly better (p<0.01) with optimized parameters than with the default ones. WaveClus was the most accurate spike sorting algorithm, receiving the best evaluation score for 60% of all signals. OSort operated at almost five times the speed of the other algorithms. In terms of accuracy, OSort performed significantly less well (p<0.01) than WaveClus for signals with a noise level in the range 0.15-0.30. KlustaKwik achieved similar scores to WaveClus for signals with low noise level 0.00-0.15 and was worse otherwise. In conclusion, none of the three compared algorithms was optimal in general. The accuracy of the algorithms depended on proper choice of the algorithm parameters and also on specific properties of the examined signal. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Learning-based traffic signal control algorithms with neighborhood information sharing: An application for sustainable mobility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aziz, H. M. Abdul; Zhu, Feng; Ukkusuri, Satish V.

    Here, this research applies R-Markov Average Reward Technique based reinforcement learning (RL) algorithm, namely RMART, for vehicular signal control problem leveraging information sharing among signal controllers in connected vehicle environment. We implemented the algorithm in a network of 18 signalized intersections and compare the performance of RMART with fixed, adaptive, and variants of the RL schemes. Results show significant improvement in system performance for RMART algorithm with information sharing over both traditional fixed signal timing plans and real time adaptive control schemes. Additionally, the comparison with reinforcement learning algorithms including Q learning and SARSA indicate that RMART performs better atmore » higher congestion levels. Further, a multi-reward structure is proposed that dynamically adjusts the reward function with varying congestion states at the intersection. Finally, the results from test networks show significant reduction in emissions (CO, CO 2, NO x, VOC, PM 10) when RL algorithms are implemented compared to fixed signal timings and adaptive schemes.« less

  13. Modified artificial fish school algorithm for free space optical communication with sensor-less adaptive optics system

    NASA Astrophysics Data System (ADS)

    Cao, Jingtai; Zhao, Xiaohui; Li, Zhaokun; Liu, Wei; Gu, Haijun

    2017-11-01

    The performance of free space optical (FSO) communication system is limited by atmospheric turbulent extremely. Adaptive optics (AO) is the significant method to overcome the atmosphere disturbance. Especially, for the strong scintillation effect, the sensor-less AO system plays a major role for compensation. In this paper, a modified artificial fish school (MAFS) algorithm is proposed to compensate the aberrations in the sensor-less AO system. Both the static and dynamic aberrations compensations are analyzed and the performance of FSO communication before and after aberrations compensations is compared. In addition, MAFS algorithm is compared with artificial fish school (AFS) algorithm, stochastic parallel gradient descent (SPGD) algorithm and simulated annealing (SA) algorithm. It is shown that the MAFS algorithm has a higher convergence speed than SPGD algorithm and SA algorithm, and reaches the better convergence value than AFS algorithm, SPGD algorithm and SA algorithm. The sensor-less AO system with MAFS algorithm effectively increases the coupling efficiency at the receiving terminal with fewer numbers of iterations. In conclusion, the MAFS algorithm has great significance for sensor-less AO system to compensate atmospheric turbulence in FSO communication system.

  14. Advanced time integration algorithms for dislocation dynamics simulations of work hardening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sills, Ryan B.; Aghaei, Amin; Cai, Wei

    Efficient time integration is a necessity for dislocation dynamics simulations of work hardening to achieve experimentally relevant strains. In this work, an efficient time integration scheme using a high order explicit method with time step subcycling and a newly-developed collision detection algorithm are evaluated. First, time integrator performance is examined for an annihilating Frank–Read source, showing the effects of dislocation line collision. The integrator with subcycling is found to significantly out-perform other integration schemes. The performance of the time integration and collision detection algorithms is then tested in a work hardening simulation. The new algorithms show a 100-fold speed-up relativemore » to traditional schemes. As a result, subcycling is shown to improve efficiency significantly while maintaining an accurate solution, and the new collision algorithm allows an arbitrarily large time step size without missing collisions.« less

  15. Advanced time integration algorithms for dislocation dynamics simulations of work hardening

    DOE PAGES

    Sills, Ryan B.; Aghaei, Amin; Cai, Wei

    2016-04-25

    Efficient time integration is a necessity for dislocation dynamics simulations of work hardening to achieve experimentally relevant strains. In this work, an efficient time integration scheme using a high order explicit method with time step subcycling and a newly-developed collision detection algorithm are evaluated. First, time integrator performance is examined for an annihilating Frank–Read source, showing the effects of dislocation line collision. The integrator with subcycling is found to significantly out-perform other integration schemes. The performance of the time integration and collision detection algorithms is then tested in a work hardening simulation. The new algorithms show a 100-fold speed-up relativemore » to traditional schemes. As a result, subcycling is shown to improve efficiency significantly while maintaining an accurate solution, and the new collision algorithm allows an arbitrarily large time step size without missing collisions.« less

  16. Performance characterization of image and video analysis systems at Siemens Corporate Research

    NASA Astrophysics Data System (ADS)

    Ramesh, Visvanathan; Jolly, Marie-Pierre; Greiffenhagen, Michael

    2000-06-01

    There has been a significant increase in commercial products using imaging analysis techniques to solve real-world problems in diverse fields such as manufacturing, medical imaging, document analysis, transportation and public security, etc. This has been accelerated by various factors: more advanced algorithms, the availability of cheaper sensors, and faster processors. While algorithms continue to improve in performance, a major stumbling block in translating improvements in algorithms to faster deployment of image analysis systems is the lack of characterization of limits of algorithms and how they affect total system performance. The research community has realized the need for performance analysis and there have been significant efforts in the last few years to remedy the situation. Our efforts at SCR have been on statistical modeling and characterization of modules and systems. The emphasis is on both white-box and black box methodologies to evaluate and optimize vision systems. In the first part of this paper we review the literature on performance characterization and then provide an overview of the status of research in performance characterization of image and video understanding systems. The second part of the paper is on performance evaluation of medical image segmentation algorithms. Finally, we highlight some research issues in performance analysis in medical imaging systems.

  17. G/SPLINES: A hybrid of Friedman's Multivariate Adaptive Regression Splines (MARS) algorithm with Holland's genetic algorithm

    NASA Technical Reports Server (NTRS)

    Rogers, David

    1991-01-01

    G/SPLINES are a hybrid of Friedman's Multivariable Adaptive Regression Splines (MARS) algorithm with Holland's Genetic Algorithm. In this hybrid, the incremental search is replaced by a genetic search. The G/SPLINE algorithm exhibits performance comparable to that of the MARS algorithm, requires fewer least squares computations, and allows significantly larger problems to be considered.

  18. An Effective Hybrid Evolutionary Algorithm for Solving the Numerical Optimization Problems

    NASA Astrophysics Data System (ADS)

    Qian, Xiaohong; Wang, Xumei; Su, Yonghong; He, Liu

    2018-04-01

    There are many different algorithms for solving complex optimization problems. Each algorithm has been applied successfully in solving some optimization problems, but not efficiently in other problems. In this paper the Cauchy mutation and the multi-parent hybrid operator are combined to propose a hybrid evolutionary algorithm based on the communication (Mixed Evolutionary Algorithm based on Communication), hereinafter referred to as CMEA. The basic idea of the CMEA algorithm is that the initial population is divided into two subpopulations. Cauchy mutation operators and multiple paternal crossover operators are used to perform two subpopulations parallelly to evolve recursively until the downtime conditions are met. While subpopulation is reorganized, the individual is exchanged together with information. The algorithm flow is given and the performance of the algorithm is compared using a number of standard test functions. Simulation results have shown that this algorithm converges significantly faster than FEP (Fast Evolutionary Programming) algorithm, has good performance in global convergence and stability and is superior to other compared algorithms.

  19. Relation between brain architecture and mathematical ability in children: a DBM study.

    PubMed

    Han, Zhaoying; Davis, Nicole; Fuchs, Lynn; Anderson, Adam W; Gore, John C; Dawant, Benoit M

    2013-12-01

    Population-based studies indicate that between 5 and 9 percent of US children exhibit significant deficits in mathematical reasoning, yet little is understood about the brain morphological features related to mathematical performances. In this work, deformation-based morphometry (DBM) analyses have been performed on magnetic resonance images of the brains of 79 third graders to investigate whether there is a correlation between brain morphological features and mathematical proficiency. Group comparison was also performed between Math Difficulties (MD-worst math performers) and Normal Controls (NC), where each subgroup consists of 20 age and gender matched subjects. DBM analysis is based on the analysis of the deformation fields generated by non-rigid registration algorithms, which warp the individual volumes to a common space. To evaluate the effect of registration algorithms on DBM results, five nonrigid registration algorithms have been used: (1) the Adaptive Bases Algorithm (ABA); (2) the Image Registration Toolkit (IRTK); (3) the FSL Nonlinear Image Registration Tool; (4) the Automatic Registration Tool (ART); and (5) the normalization algorithm available in SPM8. The deformation field magnitude (DFM) was used to measure the displacement at each voxel, and the Jacobian determinant (JAC) was used to quantify local volumetric changes. Results show there are no statistically significant volumetric differences between the NC and the MD groups using JAC. However, DBM analysis using DFM found statistically significant anatomical variations between the two groups around the left occipital-temporal cortex, left orbital-frontal cortex, and right insular cortex. Regions of agreement between at least two algorithms based on voxel-wise analysis were used to define Regions of Interest (ROIs) to perform an ROI-based correlation analysis on all 79 volumes. Correlations between average DFM values and standard mathematical scores over these regions were found to be significant. We also found that the choice of registration algorithm has an impact on DBM-based results, so we recommend using more than one algorithm when conducting DBM studies. To the best of our knowledge, this is the first study that uses DBM to investigate brain anatomical features related to mathematical performance in a relatively large population of children. © 2013.

  20. Spectral compression algorithms for the analysis of very large multivariate images

    DOEpatents

    Keenan, Michael R.

    2007-10-16

    A method for spectrally compressing data sets enables the efficient analysis of very large multivariate images. The spectral compression algorithm uses a factored representation of the data that can be obtained from Principal Components Analysis or other factorization technique. Furthermore, a block algorithm can be used for performing common operations more efficiently. An image analysis can be performed on the factored representation of the data, using only the most significant factors. The spectral compression algorithm can be combined with a spatial compression algorithm to provide further computational efficiencies.

  1. Comparison of genetic algorithm methods for fuel management optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeChaine, M.D.; Feltus, M.A.

    1995-12-31

    The CIGARO system was developed for genetic algorithm fuel management optimization. Tests are performed to find the best fuel location swap mutation operator probability and to compare genetic algorithm to a truly random search method. Tests showed the fuel swap probability should be between 0% and 10%, and a 50% definitely hampered the optimization. The genetic algorithm performed significantly better than the random search method, which did not even satisfy the peak normalized power constraint.

  2. McTwo: a two-step feature selection algorithm based on maximal information coefficient.

    PubMed

    Ge, Ruiquan; Zhou, Manli; Luo, Youxi; Meng, Qinghan; Mai, Guoqin; Ma, Dongli; Wang, Guoqing; Zhou, Fengfeng

    2016-03-23

    High-throughput bio-OMIC technologies are producing high-dimension data from bio-samples at an ever increasing rate, whereas the training sample number in a traditional experiment remains small due to various difficulties. This "large p, small n" paradigm in the area of biomedical "big data" may be at least partly solved by feature selection algorithms, which select only features significantly associated with phenotypes. Feature selection is an NP-hard problem. Due to the exponentially increased time requirement for finding the globally optimal solution, all the existing feature selection algorithms employ heuristic rules to find locally optimal solutions, and their solutions achieve different performances on different datasets. This work describes a feature selection algorithm based on a recently published correlation measurement, Maximal Information Coefficient (MIC). The proposed algorithm, McTwo, aims to select features associated with phenotypes, independently of each other, and achieving high classification performance of the nearest neighbor algorithm. Based on the comparative study of 17 datasets, McTwo performs about as well as or better than existing algorithms, with significantly reduced numbers of selected features. The features selected by McTwo also appear to have particular biomedical relevance to the phenotypes from the literature. McTwo selects a feature subset with very good classification performance, as well as a small feature number. So McTwo may represent a complementary feature selection algorithm for the high-dimensional biomedical datasets.

  3. MVIAeval: a web tool for comprehensively evaluating the performance of a new missing value imputation algorithm.

    PubMed

    Wu, Wei-Sheng; Jhou, Meng-Jhun

    2017-01-13

    Missing value imputation is important for microarray data analyses because microarray data with missing values would significantly degrade the performance of the downstream analyses. Although many microarray missing value imputation algorithms have been developed, an objective and comprehensive performance comparison framework is still lacking. To solve this problem, we previously proposed a framework which can perform a comprehensive performance comparison of different existing algorithms. Also the performance of a new algorithm can be evaluated by our performance comparison framework. However, constructing our framework is not an easy task for the interested researchers. To save researchers' time and efforts, here we present an easy-to-use web tool named MVIAeval (Missing Value Imputation Algorithm evaluator) which implements our performance comparison framework. MVIAeval provides a user-friendly interface allowing users to upload the R code of their new algorithm and select (i) the test datasets among 20 benchmark microarray (time series and non-time series) datasets, (ii) the compared algorithms among 12 existing algorithms, (iii) the performance indices from three existing ones, (iv) the comprehensive performance scores from two possible choices, and (v) the number of simulation runs. The comprehensive performance comparison results are then generated and shown as both figures and tables. MVIAeval is a useful tool for researchers to easily conduct a comprehensive and objective performance evaluation of their newly developed missing value imputation algorithm for microarray data or any data which can be represented as a matrix form (e.g. NGS data or proteomics data). Thus, MVIAeval will greatly expedite the progress in the research of missing value imputation algorithms.

  4. Enhanced Particle Swarm Optimization Algorithm: Efficient Training of ReaxFF Reactive Force Fields.

    PubMed

    Furman, David; Carmeli, Benny; Zeiri, Yehuda; Kosloff, Ronnie

    2018-06-12

    Particle swarm optimization (PSO) is a powerful metaheuristic population-based global optimization algorithm. However, when it is applied to nonseparable objective functions, its performance on multimodal landscapes is significantly degraded. Here we show that a significant improvement in the search quality and efficiency on multimodal functions can be achieved by enhancing the basic rotation-invariant PSO algorithm with isotropic Gaussian mutation operators. The new algorithm demonstrates superior performance across several nonlinear, multimodal benchmark functions compared with the rotation-invariant PSO algorithm and the well-established simulated annealing and sequential one-parameter parabolic interpolation methods. A search for the optimal set of parameters for the dispersion interaction model in the ReaxFF- lg reactive force field was carried out with respect to accurate DFT-TS calculations. The resulting optimized force field accurately describes the equations of state of several high-energy molecular crystals where such interactions are of crucial importance. The improved algorithm also presents better performance compared to a genetic algorithm optimization method in the optimization of the parameters of a ReaxFF- lg correction model. The computational framework is implemented in a stand-alone C++ code that allows the straightforward development of ReaxFF reactive force fields.

  5. Parallel and fault-tolerant algorithms for hypercube multiprocessors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aykanat, C.

    1988-01-01

    Several techniques for increasing the performance of parallel algorithms on distributed-memory message-passing multi-processor systems are investigated. These techniques are effectively implemented for the parallelization of the Scaled Conjugate Gradient (SCG) algorithm on a hypercube connected message-passing multi-processor. Significant performance improvement is achieved by using these techniques. The SCG algorithm is used for the solution phase of an FE modeling system. Almost linear speed-up is achieved, and it is shown that hypercube topology is scalable for an FE class of problem. The SCG algorithm is also shown to be suitable for vectorization, and near supercomputer performance is achieved on a vectormore » hypercube multiprocessor by exploiting both parallelization and vectorization. Fault-tolerance issues for the parallel SCG algorithm and for the hypercube topology are also addressed.« less

  6. Golay Complementary Waveforms in Reed–Müller Sequences for Radar Detection of Nonzero Doppler Targets

    PubMed Central

    Wang, Xuezhi; Huang, Xiaotao; Suvorova, Sofia; Moran, Bill

    2018-01-01

    Golay complementary waveforms can, in theory, yield radar returns of high range resolution with essentially zero sidelobes. In practice, when deployed conventionally, while high signal-to-noise ratios can be achieved for static target detection, significant range sidelobes are generated by target returns of nonzero Doppler causing unreliable detection. We consider signal processing techniques using Golay complementary waveforms to improve radar detection performance in scenarios involving multiple nonzero Doppler targets. A signal processing procedure based on an existing, so called, Binomial Design algorithm that alters the transmission order of Golay complementary waveforms and weights the returns is proposed in an attempt to achieve an enhanced illumination performance. The procedure applies one of three proposed waveform transmission ordering algorithms, followed by a pointwise nonlinear processor combining the outputs of the Binomial Design algorithm and one of the ordering algorithms. The computational complexity of the Binomial Design algorithm and the three ordering algorithms are compared, and a statistical analysis of the performance of the pointwise nonlinear processing is given. Estimation of the areas in the Delay–Doppler map occupied by significant range sidelobes for given targets are also discussed. Numerical simulations for the comparison of the performances of the Binomial Design algorithm and the three ordering algorithms are presented for both fixed and randomized target locations. The simulation results demonstrate that the proposed signal processing procedure has a better detection performance in terms of lower sidelobes and higher Doppler resolution in the presence of multiple nonzero Doppler targets compared to existing methods. PMID:29324708

  7. Developing Subdomain Allocation Algorithms Based on Spatial and Communicational Constraints to Accelerate Dust Storm Simulation

    PubMed Central

    Gui, Zhipeng; Yu, Manzhu; Yang, Chaowei; Jiang, Yunfeng; Chen, Songqing; Xia, Jizhe; Huang, Qunying; Liu, Kai; Li, Zhenlong; Hassan, Mohammed Anowarul; Jin, Baoxuan

    2016-01-01

    Dust storm has serious disastrous impacts on environment, human health, and assets. The developments and applications of dust storm models have contributed significantly to better understand and predict the distribution, intensity and structure of dust storms. However, dust storm simulation is a data and computing intensive process. To improve the computing performance, high performance computing has been widely adopted by dividing the entire study area into multiple subdomains and allocating each subdomain on different computing nodes in a parallel fashion. Inappropriate allocation may introduce imbalanced task loads and unnecessary communications among computing nodes. Therefore, allocation is a key factor that may impact the efficiency of parallel process. An allocation algorithm is expected to consider the computing cost and communication cost for each computing node to minimize total execution time and reduce overall communication cost for the entire simulation. This research introduces three algorithms to optimize the allocation by considering the spatial and communicational constraints: 1) an Integer Linear Programming (ILP) based algorithm from combinational optimization perspective; 2) a K-Means and Kernighan-Lin combined heuristic algorithm (K&K) integrating geometric and coordinate-free methods by merging local and global partitioning; 3) an automatic seeded region growing based geometric and local partitioning algorithm (ASRG). The performance and effectiveness of the three algorithms are compared based on different factors. Further, we adopt the K&K algorithm as the demonstrated algorithm for the experiment of dust model simulation with the non-hydrostatic mesoscale model (NMM-dust) and compared the performance with the MPI default sequential allocation. The results demonstrate that K&K method significantly improves the simulation performance with better subdomain allocation. This method can also be adopted for other relevant atmospheric and numerical modeling. PMID:27044039

  8. Spatial compression algorithm for the analysis of very large multivariate images

    DOEpatents

    Keenan, Michael R [Albuquerque, NM

    2008-07-15

    A method for spatially compressing data sets enables the efficient analysis of very large multivariate images. The spatial compression algorithms use a wavelet transformation to map an image into a compressed image containing a smaller number of pixels that retain the original image's information content. Image analysis can then be performed on a compressed data matrix consisting of a reduced number of significant wavelet coefficients. Furthermore, a block algorithm can be used for performing common operations more efficiently. The spatial compression algorithms can be combined with spectral compression algorithms to provide further computational efficiencies.

  9. Least significant qubit algorithm for quantum images

    NASA Astrophysics Data System (ADS)

    Sang, Jianzhi; Wang, Shen; Li, Qiong

    2016-11-01

    To study the feasibility of the classical image least significant bit (LSB) information hiding algorithm on quantum computer, a least significant qubit (LSQb) information hiding algorithm of quantum image is proposed. In this paper, we focus on a novel quantum representation for color digital images (NCQI). Firstly, by designing the three qubits comparator and unitary operators, the reasonability and feasibility of LSQb based on NCQI are presented. Then, the concrete LSQb information hiding algorithm is proposed, which can realize the aim of embedding the secret qubits into the least significant qubits of RGB channels of quantum cover image. Quantum circuit of the LSQb information hiding algorithm is also illustrated. Furthermore, the secrets extracting algorithm and circuit are illustrated through utilizing control-swap gates. The two merits of our algorithm are: (1) it is absolutely blind and (2) when extracting secret binary qubits, it does not need any quantum measurement operation or any other help from classical computer. Finally, simulation and comparative analysis show the performance of our algorithm.

  10. Use of electronic data and existing screening tools to identify clinically significant obstructive sleep apnea.

    PubMed

    Severson, Carl A; Pendharkar, Sachin R; Ronksley, Paul E; Tsai, Willis H

    2015-01-01

    To assess the ability of electronic health data and existing screening tools to identify clinically significant obstructive sleep apnea (OSA), as defined by symptomatic or severe OSA. The present retrospective cohort study of 1041 patients referred for sleep diagnostic testing was undertaken at a tertiary sleep centre in Calgary, Alberta. A diagnosis of clinically significant OSA or an alternative sleep diagnosis was assigned to each patient through blinded independent chart review by two sleep physicians. Predictive variables were identified from online questionnaire data, and diagnostic algorithms were developed. The performance of electronically derived algorithms for identifying patients with clinically significant OSA was determined. Diagnostic performance of these algorithms was compared with versions of the STOP-Bang questionnaire and adjusted neck circumference score (ANC) derived from electronic data. Electronic questionnaire data were highly sensitive (>95%) at identifying clinically significant OSA, but not specific. Sleep diagnostic testing-determined respiratory disturbance index was very specific (specificity ≥95%) for clinically relevant disease, but not sensitive (<35%). Derived algorithms had similar accuracy to the STOP-Bang or ANC, but required fewer questions and calculations. These data suggest that a two-step process using a small number of clinical variables (maximizing sensitivity) and objective diagnostic testing (maximizing specificity) is required to identify clinically significant OSA. When used in an online setting, simple algorithms can identify clinically relevant OSA with similar performance to existing decision rules such as the STOP-Bang or ANC.

  11. From Determinism and Probability to Chaos: Chaotic Evolution towards Philosophy and Methodology of Chaotic Optimization

    PubMed Central

    2015-01-01

    We present and discuss philosophy and methodology of chaotic evolution that is theoretically supported by chaos theory. We introduce four chaotic systems, that is, logistic map, tent map, Gaussian map, and Hénon map, in a well-designed chaotic evolution algorithm framework to implement several chaotic evolution (CE) algorithms. By comparing our previous proposed CE algorithm with logistic map and two canonical differential evolution (DE) algorithms, we analyse and discuss optimization performance of CE algorithm. An investigation on the relationship between optimization capability of CE algorithm and distribution characteristic of chaotic system is conducted and analysed. From evaluation result, we find that distribution of chaotic system is an essential factor to influence optimization performance of CE algorithm. We propose a new interactive EC (IEC) algorithm, interactive chaotic evolution (ICE) that replaces fitness function with a real human in CE algorithm framework. There is a paired comparison-based mechanism behind CE search scheme in nature. A simulation experimental evaluation is conducted with a pseudo-IEC user to evaluate our proposed ICE algorithm. The evaluation result indicates that ICE algorithm can obtain a significant better performance than or the same performance as interactive DE. Some open topics on CE, ICE, fusion of these optimization techniques, algorithmic notation, and others are presented and discussed. PMID:25879067

  12. From determinism and probability to chaos: chaotic evolution towards philosophy and methodology of chaotic optimization.

    PubMed

    Pei, Yan

    2015-01-01

    We present and discuss philosophy and methodology of chaotic evolution that is theoretically supported by chaos theory. We introduce four chaotic systems, that is, logistic map, tent map, Gaussian map, and Hénon map, in a well-designed chaotic evolution algorithm framework to implement several chaotic evolution (CE) algorithms. By comparing our previous proposed CE algorithm with logistic map and two canonical differential evolution (DE) algorithms, we analyse and discuss optimization performance of CE algorithm. An investigation on the relationship between optimization capability of CE algorithm and distribution characteristic of chaotic system is conducted and analysed. From evaluation result, we find that distribution of chaotic system is an essential factor to influence optimization performance of CE algorithm. We propose a new interactive EC (IEC) algorithm, interactive chaotic evolution (ICE) that replaces fitness function with a real human in CE algorithm framework. There is a paired comparison-based mechanism behind CE search scheme in nature. A simulation experimental evaluation is conducted with a pseudo-IEC user to evaluate our proposed ICE algorithm. The evaluation result indicates that ICE algorithm can obtain a significant better performance than or the same performance as interactive DE. Some open topics on CE, ICE, fusion of these optimization techniques, algorithmic notation, and others are presented and discussed.

  13. Crowdsourcing seizure detection: algorithm development and validation on human implanted device recordings.

    PubMed

    Baldassano, Steven N; Brinkmann, Benjamin H; Ung, Hoameng; Blevins, Tyler; Conrad, Erin C; Leyde, Kent; Cook, Mark J; Khambhati, Ankit N; Wagenaar, Joost B; Worrell, Gregory A; Litt, Brian

    2017-06-01

    There exist significant clinical and basic research needs for accurate, automated seizure detection algorithms. These algorithms have translational potential in responsive neurostimulation devices and in automatic parsing of continuous intracranial electroencephalography data. An important barrier to developing accurate, validated algorithms for seizure detection is limited access to high-quality, expertly annotated seizure data from prolonged recordings. To overcome this, we hosted a kaggle.com competition to crowdsource the development of seizure detection algorithms using intracranial electroencephalography from canines and humans with epilepsy. The top three performing algorithms from the contest were then validated on out-of-sample patient data including standard clinical data and continuous ambulatory human data obtained over several years using the implantable NeuroVista seizure advisory system. Two hundred teams of data scientists from all over the world participated in the kaggle.com competition. The top performing teams submitted highly accurate algorithms with consistent performance in the out-of-sample validation study. The performance of these seizure detection algorithms, achieved using freely available code and data, sets a new reproducible benchmark for personalized seizure detection. We have also shared a 'plug and play' pipeline to allow other researchers to easily use these algorithms on their own datasets. The success of this competition demonstrates how sharing code and high quality data results in the creation of powerful translational tools with significant potential to impact patient care. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Tumour auto-contouring on 2d cine MRI for locally advanced lung cancer: A comparative study.

    PubMed

    Fast, Martin F; Eiben, Björn; Menten, Martin J; Wetscherek, Andreas; Hawkes, David J; McClelland, Jamie R; Oelfke, Uwe

    2017-12-01

    Radiotherapy guidance based on magnetic resonance imaging (MRI) is currently becoming a clinical reality. Fast 2d cine MRI sequences are expected to increase the precision of radiation delivery by facilitating tumour delineation during treatment. This study compares four auto-contouring algorithms for the task of delineating the primary tumour in six locally advanced (LA) lung cancer patients. Twenty-two cine MRI sequences were acquired using either a balanced steady-state free precession or a spoiled gradient echo imaging technique. Contours derived by the auto-contouring algorithms were compared against manual reference contours. A selection of eight image data sets was also used to assess the inter-observer delineation uncertainty. Algorithmically derived contours agreed well with the manual reference contours (median Dice similarity index: ⩾0.91). Multi-template matching and deformable image registration performed significantly better than feature-driven registration and the pulse-coupled neural network (PCNN). Neither MRI sequence nor image orientation was a conclusive predictor for algorithmic performance. Motion significantly degraded the performance of the PCNN. The inter-observer variability was of the same order of magnitude as the algorithmic performance. Auto-contouring of tumours on cine MRI is feasible in LA lung cancer patients. Despite large variations in implementation complexity, the different algorithms all have relatively similar performance. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  15. An Effective Cache Algorithm for Heterogeneous Storage Systems

    PubMed Central

    Li, Yong; Feng, Dan

    2013-01-01

    Modern storage environment is commonly composed of heterogeneous storage devices. However, traditional cache algorithms exhibit performance degradation in heterogeneous storage systems because they were not designed to work with the diverse performance characteristics. In this paper, we present a new cache algorithm called HCM for heterogeneous storage systems. The HCM algorithm partitions the cache among the disks and adopts an effective scheme to balance the work across the disks. Furthermore, it applies benefit-cost analysis to choose the best allocation of cache block to improve the performance. Conducting simulations with a variety of traces and a wide range of cache size, our experiments show that HCM significantly outperforms the existing state-of-the-art storage-aware cache algorithms. PMID:24453890

  16. A real-time ECG data compression and transmission algorithm for an e-health device.

    PubMed

    Lee, SangJoon; Kim, Jungkuk; Lee, Myoungho

    2011-09-01

    This paper introduces a real-time data compression and transmission algorithm between e-health terminals for a periodic ECGsignal. The proposed algorithm consists of five compression procedures and four reconstruction procedures. In order to evaluate the performance of the proposed algorithm, the algorithm was applied to all 48 recordings of MIT-BIH arrhythmia database, and the compress ratio (CR), percent root mean square difference (PRD), percent root mean square difference normalized (PRDN), rms, SNR, and quality score (QS) values were obtained. The result showed that the CR was 27.9:1 and the PRD was 2.93 on average for all 48 data instances with a 15% window size. In addition, the performance of the algorithm was compared to those of similar algorithms introduced recently by others. It was found that the proposed algorithm showed clearly superior performance in all 48 data instances at a compression ratio lower than 15:1, whereas it showed similar or slightly inferior PRD performance for a data compression ratio higher than 20:1. In light of the fact that the similarity with the original data becomes meaningless when the PRD is higher than 2, the proposed algorithm shows significantly better performance compared to the performance levels of other algorithms. Moreover, because the algorithm can compress and transmit data in real time, it can be served as an optimal biosignal data transmission method for limited bandwidth communication between e-health devices.

  17. Comparison of human observer and algorithmic target detection in nonurban forward-looking infrared imagery

    NASA Astrophysics Data System (ADS)

    Weber, Bruce A.

    2005-07-01

    We have performed an experiment that compares the performance of human observers with that of a robust algorithm for the detection of targets in difficult, nonurban forward-looking infrared imagery. Our purpose was to benchmark the comparison and document performance differences for future algorithm improvement. The scale-insensitive detection algorithm, used as a benchmark by the Night Vision Electronic Sensors Directorate for algorithm evaluation, employed a combination of contrastlike features to locate targets. Detection receiver operating characteristic curves and observer-confidence analyses were used to compare human and algorithmic responses and to gain insight into differences. The test database contained ground targets, in natural clutter, whose detectability, as judged by human observers, ranged from easy to very difficult. In general, as compared with human observers, the algorithm detected most of the same targets, but correlated confidence with correct detections poorly and produced many more false alarms at any useful level of performance. Though characterizing human performance was not the intent of this study, results suggest that previous observational experience was not a strong predictor of human performance, and that combining individual human observations by majority vote significantly reduced false-alarm rates.

  18. Study on the application of NASA energy management techniques for control of a terrestrial solar water heating system

    NASA Technical Reports Server (NTRS)

    Swanson, T. D.; Ollendorf, S.

    1979-01-01

    This paper addresses the potential for enhanced solar system performance through sophisticated control of the collector loop flow rate. Computer simulations utilizing the TRNSYS solar energy program were performed to study the relative effect on system performance of eight specific control algorithms. Six of these control algorithms are of the proportional type: two are concave exponentials, two are simple linear functions, and two are convex exponentials. These six functions are typical of what might be expected from future, more advanced, controllers. The other two algorithms are of the on/off type and are thus typical of existing control devices. Results of extensive computer simulations utilizing actual weather data indicate that proportional control does not significantly improve system performance. However, it is shown that thermal stratification in the liquid storage tank may significantly improve performance.

  19. Performance of the CMS missing transverse momentum reconstruction in pp data at $$\\sqrt{s}$$ = 8 TeV

    DOE PAGES

    Khachatryan, Vardan

    2015-02-12

    The performance of missing transverse energy reconstruction algorithms is presented by our team using√s=8 TeV proton-proton (pp) data collected with the CMS detector. Events with anomalous missing transverse energy are studied, and the performance of algorithms used to identify and remove these events is presented. The scale and resolution for missing transverse energy, including the effects of multiple pp interactions (pileup), are measured using events with an identified Z boson or isolated photon, and are found to be well described by the simulation. Novel missing transverse energy reconstruction algorithms developed specifically to mitigate the effects of large numbers of pileupmore » interactions on the missing transverse energy resolution are presented. These algorithms significantly reduce the dependence of the missing transverse energy resolution on pileup interactions. Furthermore, an algorithm that provides an estimate of the significance of the missing transverse energy is presented, which is used to estimate the compatibility of the reconstructed missing transverse energy with a zero nominal value.« less

  20. Performance comparison of two resolution modeling PET reconstruction algorithms in terms of physical figures of merit used in quantitative imaging.

    PubMed

    Matheoud, R; Ferrando, O; Valzano, S; Lizio, D; Sacchetti, G; Ciarmiello, A; Foppiano, F; Brambilla, M

    2015-07-01

    Resolution modeling (RM) of PET systems has been introduced in iterative reconstruction algorithms for oncologic PET. The RM recovers the loss of resolution and reduces the associated partial volume effect. While these methods improved the observer performance, particularly in the detection of small and faint lesions, their impact on quantification accuracy still requires thorough investigation. The aim of this study was to characterize the performances of the RM algorithms under controlled conditions simulating a typical (18)F-FDG oncologic study, using an anthropomorphic phantom and selected physical figures of merit, used for image quantification. Measurements were performed on Biograph HiREZ (B_HiREZ) and Discovery 710 (D_710) PET/CT scanners and reconstructions were performed using the standard iterative reconstructions and the RM algorithms associated to each scanner: TrueX and SharpIR, respectively. RM determined a significant improvement in contrast recovery for small targets (≤17 mm diameter) only for the D_710 scanner. The maximum standardized uptake value (SUVmax) increased when RM was applied using both scanners. The SUVmax of small targets was on average lower with the B_HiREZ than with the D_710. Sharp IR improved the accuracy of SUVmax determination, whilst TrueX showed an overestimation of SUVmax for sphere dimensions greater than 22 mm. The goodness of fit of adaptive threshold algorithms worsened significantly when RM algorithms were employed for both scanners. Differences in general quantitative performance were observed for the PET scanners analyzed. Segmentation of PET images using adaptive threshold algorithms should not be undertaken in conjunction with RM reconstructions. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  1. High-performance sparse matrix-matrix products on Intel KNL and multicore architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagasaka, Y; Matsuoka, S; Azad, A

    Sparse matrix-matrix multiplication (SpGEMM) is a computational primitive that is widely used in areas ranging from traditional numerical applications to recent big data analysis and machine learning. Although many SpGEMM algorithms have been proposed, hardware specific optimizations for multi- and many-core processors are lacking and a detailed analysis of their performance under various use cases and matrices is not available. We firstly identify and mitigate multiple bottlenecks with memory management and thread scheduling on Intel Xeon Phi (Knights Landing or KNL). Specifically targeting multi- and many-core processors, we develop a hash-table-based algorithm and optimize a heap-based shared-memory SpGEMM algorithm. Wemore » examine their performance together with other publicly available codes. Different from the literature, our evaluation also includes use cases that are representative of real graph algorithms, such as multi-source breadth-first search or triangle counting. Our hash-table and heap-based algorithms are showing significant speedups from libraries in the majority of the cases while different algorithms dominate the other scenarios with different matrix size, sparsity, compression factor and operation type. We wrap up in-depth evaluation results and make a recipe to give the best SpGEMM algorithm for target scenario. A critical finding is that hash-table-based SpGEMM gets a significant performance boost if the nonzeros are not required to be sorted within each row of the output matrix.« less

  2. Modeling node bandwidth limits and their effects on vector combining algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Littlefield, R.J.

    Each node in a message-passing multicomputer typically has several communication links. However, the maximum aggregate communication speed of a node is often less than the sum of its individual link speeds. Such computers are called node bandwidth limited (NBL). The NBL constraint is important when choosing algorithms because it can change the relative performance of different algorithms that accomplish the same task. This paper introduces a model of communication performance for NBL computers and uses the model to analyze the overall performance of three algorithms for vector combining (global sum) on the Intel Touchstone DELTA computer. Each of the threemore » algorithms is found to be at least 33% faster than the other two for some combinations of machine size and vector length. The NBL constraint is shown to significantly affect the conditions under which each algorithm is fastest.« less

  3. Measuring Constraint-Set Utility for Partitional Clustering Algorithms

    NASA Technical Reports Server (NTRS)

    Davidson, Ian; Wagstaff, Kiri L.; Basu, Sugato

    2006-01-01

    Clustering with constraints is an active area of machine learning and data mining research. Previous empirical work has convincingly shown that adding constraints to clustering improves the performance of a variety of algorithms. However, in most of these experiments, results are averaged over different randomly chosen constraint sets from a given set of labels, thereby masking interesting properties of individual sets. We demonstrate that constraint sets vary significantly in how useful they are for constrained clustering; some constraint sets can actually decrease algorithm performance. We create two quantitative measures, informativeness and coherence, that can be used to identify useful constraint sets. We show that these measures can also help explain differences in performance for four particular constrained clustering algorithms.

  4. On the suitability of different representations of solid catalysts for combinatorial library design by genetic algorithms.

    PubMed

    Gobin, Oliver C; Schüth, Ferdi

    2008-01-01

    Genetic algorithms are widely used to solve and optimize combinatorial problems and are more often applied for library design in combinatorial chemistry. Because of their flexibility, however, their implementation can be challenging. In this study, the influence of the representation of solid catalysts on the performance of genetic algorithms was systematically investigated on the basis of a new, constrained, multiobjective, combinatorial test problem with properties common to problems in combinatorial materials science. Constraints were satisfied by penalty functions, repair algorithms, or special representations. The tests were performed using three state-of-the-art evolutionary multiobjective algorithms by performing 100 optimization runs for each algorithm and test case. Experimental data obtained during the optimization of a noble metal-free solid catalyst system active in the selective catalytic reduction of nitric oxide with propene was used to build up a predictive model to validate the results of the theoretical test problem. A significant influence of the representation on the optimization performance was observed. Binary encodings were found to be the preferred encoding in most of the cases, and depending on the experimental test unit, repair algorithms or penalty functions performed best.

  5. Active learning for clinical text classification: is it better than random sampling?

    PubMed

    Figueroa, Rosa L; Zeng-Treitler, Qing; Ngo, Long H; Goryachev, Sergey; Wiechmann, Eduardo P

    2012-01-01

    This study explores active learning algorithms as a way to reduce the requirements for large training sets in medical text classification tasks. Three existing active learning algorithms (distance-based (DIST), diversity-based (DIV), and a combination of both (CMB)) were used to classify text from five datasets. The performance of these algorithms was compared to that of passive learning on the five datasets. We then conducted a novel investigation of the interaction between dataset characteristics and the performance results. Classification accuracy and area under receiver operating characteristics (ROC) curves for each algorithm at different sample sizes were generated. The performance of active learning algorithms was compared with that of passive learning using a weighted mean of paired differences. To determine why the performance varies on different datasets, we measured the diversity and uncertainty of each dataset using relative entropy and correlated the results with the performance differences. The DIST and CMB algorithms performed better than passive learning. With a statistical significance level set at 0.05, DIST outperformed passive learning in all five datasets, while CMB was found to be better than passive learning in four datasets. We found strong correlations between the dataset diversity and the DIV performance, as well as the dataset uncertainty and the performance of the DIST algorithm. For medical text classification, appropriate active learning algorithms can yield performance comparable to that of passive learning with considerably smaller training sets. In particular, our results suggest that DIV performs better on data with higher diversity and DIST on data with lower uncertainty.

  6. Active learning for clinical text classification: is it better than random sampling?

    PubMed Central

    Figueroa, Rosa L; Ngo, Long H; Goryachev, Sergey; Wiechmann, Eduardo P

    2012-01-01

    Objective This study explores active learning algorithms as a way to reduce the requirements for large training sets in medical text classification tasks. Design Three existing active learning algorithms (distance-based (DIST), diversity-based (DIV), and a combination of both (CMB)) were used to classify text from five datasets. The performance of these algorithms was compared to that of passive learning on the five datasets. We then conducted a novel investigation of the interaction between dataset characteristics and the performance results. Measurements Classification accuracy and area under receiver operating characteristics (ROC) curves for each algorithm at different sample sizes were generated. The performance of active learning algorithms was compared with that of passive learning using a weighted mean of paired differences. To determine why the performance varies on different datasets, we measured the diversity and uncertainty of each dataset using relative entropy and correlated the results with the performance differences. Results The DIST and CMB algorithms performed better than passive learning. With a statistical significance level set at 0.05, DIST outperformed passive learning in all five datasets, while CMB was found to be better than passive learning in four datasets. We found strong correlations between the dataset diversity and the DIV performance, as well as the dataset uncertainty and the performance of the DIST algorithm. Conclusion For medical text classification, appropriate active learning algorithms can yield performance comparable to that of passive learning with considerably smaller training sets. In particular, our results suggest that DIV performs better on data with higher diversity and DIST on data with lower uncertainty. PMID:22707743

  7. SU-G-JeP1-12: Head-To-Head Performance Characterization of Two Multileaf Collimator Tracking Algorithms for Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caillet, V; Colvill, E; Royal North Shore Hospital, St Leonards, Sydney

    2016-06-15

    Purpose: Multi-leaf collimator (MLC) tracking is being clinically pioneered to continuously compensate for thoracic and abdominal motion during radiotherapy. The purpose of this work is to characterize the performance of two MLC tracking algorithms for cancer radiotherapy, based on a direct optimization and a piecewise leaf fitting approach respectively. Methods: To test the algorithms, both physical and in silico experiments were performed. Previously published high and low modulation VMAT plans for lung and prostate cancer cases were used along with eight patient-measured organ-specific trajectories. For both MLC tracking algorithm, the plans were run with their corresponding patient trajectories. The physicalmore » experiments were performed on a Trilogy Varian linac and a programmable phantom (HexaMotion platform). For each MLC tracking algorithm, plan and patient trajectory, the tracking accuracy was quantified as the difference in aperture area between ideal and fitted MLC. To compare algorithms, the average cumulative tracking error area for each experiment was calculated. The two-sample Kolmogorov-Smirnov (KS) test was used to evaluate the cumulative tracking errors between algorithms. Results: Comparison of tracking errors for the physical and in silico experiments showed minor differences between the two algorithms. The KS D-statistics for the physical experiments were below 0.05 denoting no significant differences between the two distributions pattern and the average error area (direct optimization/piecewise leaf-fitting) were comparable (66.64 cm2/65.65 cm2). For the in silico experiments, the KS D-statistics were below 0.05 and the average errors area were also equivalent (49.38 cm2/48.98 cm2). Conclusion: The comparison between the two leaf fittings algorithms demonstrated no significant differences in tracking errors, neither in a clinically realistic environment nor in silico. The similarities in the two independent algorithms give confidence in the use of either algorithm for clinical implementation.« less

  8. Monthly prediction of air temperature in Australia and New Zealand with machine learning algorithms

    NASA Astrophysics Data System (ADS)

    Salcedo-Sanz, S.; Deo, R. C.; Carro-Calvo, L.; Saavedra-Moreno, B.

    2016-07-01

    Long-term air temperature prediction is of major importance in a large number of applications, including climate-related studies, energy, agricultural, or medical. This paper examines the performance of two Machine Learning algorithms (Support Vector Regression (SVR) and Multi-layer Perceptron (MLP)) in a problem of monthly mean air temperature prediction, from the previous measured values in observational stations of Australia and New Zealand, and climate indices of importance in the region. The performance of the two considered algorithms is discussed in the paper and compared to alternative approaches. The results indicate that the SVR algorithm is able to obtain the best prediction performance among all the algorithms compared in the paper. Moreover, the results obtained have shown that the mean absolute error made by the two algorithms considered is significantly larger for the last 20 years than in the previous decades, in what can be interpreted as a change in the relationship among the prediction variables involved in the training of the algorithms.

  9. An efficient impedance method for induced field evaluation based on a stabilized Bi-conjugate gradient algorithm.

    PubMed

    Wang, Hua; Liu, Feng; Xia, Ling; Crozier, Stuart

    2008-11-21

    This paper presents a stabilized Bi-conjugate gradient algorithm (BiCGstab) that can significantly improve the performance of the impedance method, which has been widely applied to model low-frequency field induction phenomena in voxel phantoms. The improved impedance method offers remarkable computational advantages in terms of convergence performance and memory consumption over the conventional, successive over-relaxation (SOR)-based algorithm. The scheme has been validated against other numerical/analytical solutions on a lossy, multilayered sphere phantom excited by an ideal coil loop. To demonstrate the computational performance and application capability of the developed algorithm, the induced fields inside a human phantom due to a low-frequency hyperthermia device is evaluated. The simulation results show the numerical accuracy and superior performance of the method.

  10. Wavelet compression of multichannel ECG data by enhanced set partitioning in hierarchical trees algorithm.

    PubMed

    Sharifahmadian, Ershad

    2006-01-01

    The set partitioning in hierarchical trees (SPIHT) algorithm is very effective and computationally simple technique for image and signal compression. Here the author modified the algorithm which provides even better performance than the SPIHT algorithm. The enhanced set partitioning in hierarchical trees (ESPIHT) algorithm has performance faster than the SPIHT algorithm. In addition, the proposed algorithm reduces the number of bits in a bit stream which is stored or transmitted. I applied it to compression of multichannel ECG data. Also, I presented a specific procedure based on the modified algorithm for more efficient compression of multichannel ECG data. This method employed on selected records from the MIT-BIH arrhythmia database. According to experiments, the proposed method attained the significant results regarding compression of multichannel ECG data. Furthermore, in order to compress one signal which is stored for a long time, the proposed multichannel compression method can be utilized efficiently.

  11. Harnessing Diversity towards the Reconstructing of Large Scale Gene Regulatory Networks

    PubMed Central

    Yamanaka, Ryota; Kitano, Hiroaki

    2013-01-01

    Elucidating gene regulatory network (GRN) from large scale experimental data remains a central challenge in systems biology. Recently, numerous techniques, particularly consensus driven approaches combining different algorithms, have become a potentially promising strategy to infer accurate GRNs. Here, we develop a novel consensus inference algorithm, TopkNet that can integrate multiple algorithms to infer GRNs. Comprehensive performance benchmarking on a cloud computing framework demonstrated that (i) a simple strategy to combine many algorithms does not always lead to performance improvement compared to the cost of consensus and (ii) TopkNet integrating only high-performance algorithms provide significant performance improvement compared to the best individual algorithms and community prediction. These results suggest that a priori determination of high-performance algorithms is a key to reconstruct an unknown regulatory network. Similarity among gene-expression datasets can be useful to determine potential optimal algorithms for reconstruction of unknown regulatory networks, i.e., if expression-data associated with known regulatory network is similar to that with unknown regulatory network, optimal algorithms determined for the known regulatory network can be repurposed to infer the unknown regulatory network. Based on this observation, we developed a quantitative measure of similarity among gene-expression datasets and demonstrated that, if similarity between the two expression datasets is high, TopkNet integrating algorithms that are optimal for known dataset perform well on the unknown dataset. The consensus framework, TopkNet, together with the similarity measure proposed in this study provides a powerful strategy towards harnessing the wisdom of the crowds in reconstruction of unknown regulatory networks. PMID:24278007

  12. Examining applying high performance genetic data feature selection and classification algorithms for colon cancer diagnosis.

    PubMed

    Al-Rajab, Murad; Lu, Joan; Xu, Qiang

    2017-07-01

    This paper examines the accuracy and efficiency (time complexity) of high performance genetic data feature selection and classification algorithms for colon cancer diagnosis. The need for this research derives from the urgent and increasing need for accurate and efficient algorithms. Colon cancer is a leading cause of death worldwide, hence it is vitally important for the cancer tissues to be expertly identified and classified in a rapid and timely manner, to assure both a fast detection of the disease and to expedite the drug discovery process. In this research, a three-phase approach was proposed and implemented: Phases One and Two examined the feature selection algorithms and classification algorithms employed separately, and Phase Three examined the performance of the combination of these. It was found from Phase One that the Particle Swarm Optimization (PSO) algorithm performed best with the colon dataset as a feature selection (29 genes selected) and from Phase Two that the Support Vector Machine (SVM) algorithm outperformed other classifications, with an accuracy of almost 86%. It was also found from Phase Three that the combined use of PSO and SVM surpassed other algorithms in accuracy and performance, and was faster in terms of time analysis (94%). It is concluded that applying feature selection algorithms prior to classification algorithms results in better accuracy than when the latter are applied alone. This conclusion is important and significant to industry and society. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. A genetic algorithm for solving supply chain network design model

    NASA Astrophysics Data System (ADS)

    Firoozi, Z.; Ismail, N.; Ariafar, S. H.; Tang, S. H.; Ariffin, M. K. M. A.

    2013-09-01

    Network design is by nature costly and optimization models play significant role in reducing the unnecessary cost components of a distribution network. This study proposes a genetic algorithm to solve a distribution network design model. The structure of the chromosome in the proposed algorithm is defined in a novel way that in addition to producing feasible solutions, it also reduces the computational complexity of the algorithm. Computational results are presented to show the algorithm performance.

  14. SemiBoost: boosting for semi-supervised learning.

    PubMed

    Mallapragada, Pavan Kumar; Jin, Rong; Jain, Anil K; Liu, Yi

    2009-11-01

    Semi-supervised learning has attracted a significant amount of attention in pattern recognition and machine learning. Most previous studies have focused on designing special algorithms to effectively exploit the unlabeled data in conjunction with labeled data. Our goal is to improve the classification accuracy of any given supervised learning algorithm by using the available unlabeled examples. We call this as the Semi-supervised improvement problem, to distinguish the proposed approach from the existing approaches. We design a metasemi-supervised learning algorithm that wraps around the underlying supervised algorithm and improves its performance using unlabeled data. This problem is particularly important when we need to train a supervised learning algorithm with a limited number of labeled examples and a multitude of unlabeled examples. We present a boosting framework for semi-supervised learning, termed as SemiBoost. The key advantages of the proposed semi-supervised learning approach are: 1) performance improvement of any supervised learning algorithm with a multitude of unlabeled data, 2) efficient computation by the iterative boosting algorithm, and 3) exploiting both manifold and cluster assumption in training classification models. An empirical study on 16 different data sets and text categorization demonstrates that the proposed framework improves the performance of several commonly used supervised learning algorithms, given a large number of unlabeled examples. We also show that the performance of the proposed algorithm, SemiBoost, is comparable to the state-of-the-art semi-supervised learning algorithms.

  15. CONEDEP: COnvolutional Neural network based Earthquake DEtection and Phase Picking

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Huang, Y.; Yue, H.; Zhou, S.; An, S.; Yun, N.

    2017-12-01

    We developed an automatic local earthquake detection and phase picking algorithm based on Fully Convolutional Neural network (FCN). The FCN algorithm detects and segments certain features (phases) in 3 component seismograms to realize efficient picking. We use STA/LTA algorithm and template matching algorithm to construct the training set from seismograms recorded 1 month before and after the Wenchuan earthquake. Precise P and S phases are identified and labeled to construct the training set. Noise data are produced by combining back-ground noise and artificial synthetic noise to form the equivalent scale of noise set as the signal set. Training is performed on GPUs to achieve efficient convergence. Our algorithm has significantly improved performance in terms of the detection rate and precision in comparison with STA/LTA and template matching algorithms.

  16. Testing Nelder-Mead based repulsion algorithms for multiple roots of nonlinear systems via a two-level factorial design of experiments.

    PubMed

    Ramadas, Gisela C V; Rocha, Ana Maria A C; Fernandes, Edite M G P

    2015-01-01

    This paper addresses the challenging task of computing multiple roots of a system of nonlinear equations. A repulsion algorithm that invokes the Nelder-Mead (N-M) local search method and uses a penalty-type merit function based on the error function, known as 'erf', is presented. In the N-M algorithm context, different strategies are proposed to enhance the quality of the solutions and improve the overall efficiency. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khachatryan, Vardan

    The performance of missing transverse energy reconstruction algorithms is presented by our team using√s=8 TeV proton-proton (pp) data collected with the CMS detector. Events with anomalous missing transverse energy are studied, and the performance of algorithms used to identify and remove these events is presented. The scale and resolution for missing transverse energy, including the effects of multiple pp interactions (pileup), are measured using events with an identified Z boson or isolated photon, and are found to be well described by the simulation. Novel missing transverse energy reconstruction algorithms developed specifically to mitigate the effects of large numbers of pileupmore » interactions on the missing transverse energy resolution are presented. These algorithms significantly reduce the dependence of the missing transverse energy resolution on pileup interactions. Furthermore, an algorithm that provides an estimate of the significance of the missing transverse energy is presented, which is used to estimate the compatibility of the reconstructed missing transverse energy with a zero nominal value.« less

  18. A Hybrid Swarm Intelligence Algorithm for Intrusion Detection Using Significant Features.

    PubMed

    Amudha, P; Karthik, S; Sivakumari, S

    2015-01-01

    Intrusion detection has become a main part of network security due to the huge number of attacks which affects the computers. This is due to the extensive growth of internet connectivity and accessibility to information systems worldwide. To deal with this problem, in this paper a hybrid algorithm is proposed to integrate Modified Artificial Bee Colony (MABC) with Enhanced Particle Swarm Optimization (EPSO) to predict the intrusion detection problem. The algorithms are combined together to find out better optimization results and the classification accuracies are obtained by 10-fold cross-validation method. The purpose of this paper is to select the most relevant features that can represent the pattern of the network traffic and test its effect on the success of the proposed hybrid classification algorithm. To investigate the performance of the proposed method, intrusion detection KDDCup'99 benchmark dataset from the UCI Machine Learning repository is used. The performance of the proposed method is compared with the other machine learning algorithms and found to be significantly different.

  19. A Hybrid Swarm Intelligence Algorithm for Intrusion Detection Using Significant Features

    PubMed Central

    Amudha, P.; Karthik, S.; Sivakumari, S.

    2015-01-01

    Intrusion detection has become a main part of network security due to the huge number of attacks which affects the computers. This is due to the extensive growth of internet connectivity and accessibility to information systems worldwide. To deal with this problem, in this paper a hybrid algorithm is proposed to integrate Modified Artificial Bee Colony (MABC) with Enhanced Particle Swarm Optimization (EPSO) to predict the intrusion detection problem. The algorithms are combined together to find out better optimization results and the classification accuracies are obtained by 10-fold cross-validation method. The purpose of this paper is to select the most relevant features that can represent the pattern of the network traffic and test its effect on the success of the proposed hybrid classification algorithm. To investigate the performance of the proposed method, intrusion detection KDDCup'99 benchmark dataset from the UCI Machine Learning repository is used. The performance of the proposed method is compared with the other machine learning algorithms and found to be significantly different. PMID:26221625

  20. Space Launch System Implementation of Adaptive Augmenting Control

    NASA Technical Reports Server (NTRS)

    Wall, John H.; Orr, Jeb S.; VanZwieten, Tannen S.

    2014-01-01

    Given the complex structural dynamics, challenging ascent performance requirements, and rigorous flight certification constraints owing to its manned capability, the NASA Space Launch System (SLS) launch vehicle requires a proven thrust vector control algorithm design with highly optimized parameters to provide stable and high-performance flight. On its development path to Preliminary Design Review (PDR), the SLS flight control system has been challenged by significant vehicle flexibility, aerodynamics, and sloshing propellant. While the design has been able to meet all robust stability criteria, it has done so with little excess margin. Through significant development work, an Adaptive Augmenting Control (AAC) algorithm has been shown to extend the envelope of failures and flight anomalies the SLS control system can accommodate while maintaining a direct link to flight control stability criteria such as classical gain and phase margin. In this paper, the work performed to mature the AAC algorithm as a baseline component of the SLS flight control system is presented. The progress to date has brought the algorithm design to the PDR level of maturity. The algorithm has been extended to augment the full SLS digital 3-axis autopilot, including existing load-relief elements, and the necessary steps for integration with the production flight software prototype have been implemented. Several updates which have been made to the adaptive algorithm to increase its performance, decrease its sensitivity to expected external commands, and safeguard against limitations in the digital implementation are discussed with illustrating results. Monte Carlo simulations and selected stressing case results are also shown to demonstrate the algorithm's ability to increase the robustness of the integrated SLS flight control system.

  1. Two hybrid compaction algorithms for the layout optimization problem.

    PubMed

    Xiao, Ren-Bin; Xu, Yi-Chun; Amos, Martyn

    2007-01-01

    In this paper we present two new algorithms for the layout optimization problem: this concerns the placement of circular, weighted objects inside a circular container, the two objectives being to minimize imbalance of mass and to minimize the radius of the container. This problem carries real practical significance in industrial applications (such as the design of satellites), as well as being of significant theoretical interest. We present two nature-inspired algorithms for this problem, the first based on simulated annealing, and the second on particle swarm optimization. We compare our algorithms with the existing best-known algorithm, and show that our approaches out-perform it in terms of both solution quality and execution time.

  2. Effects of illumination on image reconstruction via Fourier ptychography

    NASA Astrophysics Data System (ADS)

    Cao, Xinrui; Sinzinger, Stefan

    2017-12-01

    The Fourier ptychographic microscopy (FPM) technique provides high-resolution images by combining a traditional imaging system, e.g. a microscope or a 4f-imaging system, with a multiplexing illumination system, e.g. an LED array and numerical image processing for enhanced image reconstruction. In order to numerically combine images that are captured under varying illumination angles, an iterative phase-retrieval algorithm is often applied. However, in practice, the performance of the FPM algorithm degrades due to the imperfections of the optical system, the image noise caused by the camera, etc. To eliminate the influence of the aberrations of the imaging system, an embedded pupil function recovery (EPRY)-FPM algorithm has been proposed [Opt. Express 22, 4960-4972 (2014)]. In this paper, we study how the performance of FPM and EPRY-FPM algorithms are affected by imperfections of the illumination system using both numerical simulations and experiments. The investigated imperfections include varying and non-uniform intensities, and wavefront aberrations. Our study shows that the aberrations of the illumination system significantly affect the performance of both FPM and EPRY-FPM algorithms. Hence, in practice, aberrations in the illumination system gain significant influence on the resulting image quality.

  3. Impact of the implementation of MPI point-to-point communications on the performance of two general sparse solvers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amestoy, Patrick R.; Duff, Iain S.; L'Excellent, Jean-Yves

    2001-10-10

    We examine the mechanics of the send and receive mechanism of MPI and in particular how we can implement message passing in a robust way so that our performance is not significantly affected by changes to the MPI system. This leads us to using the Isend/Irecv protocol which will entail sometimes significant algorithmic changes. We discuss this within the context of two different algorithms for sparse Gaussian elimination that we have parallelized. One is a multifrontal solver called MUMPS, the other is a supernodal solver called SuperLU. Both algorithms are difficult to parallelize on distributed memory machines. Our initial strategiesmore » were based on simple MPI point-to-point communication primitives. With such approaches, the parallel performance of both codes are very sensitive to the MPI implementation, the way MPI internal buffers are used in particular. We then modified our codes to use more sophisticated nonblocking versions of MPI communication. This significantly improved the performance robustness (independent of the MPI buffering mechanism) and scalability, but at the cost of increased code complexity.« less

  4. A comparative analysis of DBSCAN, K-means, and quadratic variation algorithms for automatic identification of swallows from swallowing accelerometry signals.

    PubMed

    Dudik, Joshua M; Kurosu, Atsuko; Coyle, James L; Sejdić, Ervin

    2015-04-01

    Cervical auscultation with high resolution sensors is currently under consideration as a method of automatically screening for specific swallowing abnormalities. To be clinically useful without human involvement, any devices based on cervical auscultation should be able to detect specified swallowing events in an automatic manner. In this paper, we comparatively analyze the density-based spatial clustering of applications with noise algorithm (DBSCAN), a k-means based algorithm, and an algorithm based on quadratic variation as methods of differentiating periods of swallowing activity from periods of time without swallows. These algorithms utilized swallowing vibration data exclusively and compared the results to a gold standard measure of swallowing duration. Data was collected from 23 subjects that were actively suffering from swallowing difficulties. Comparing the performance of the DBSCAN algorithm with a proven segmentation algorithm that utilizes k-means clustering demonstrated that the DBSCAN algorithm had a higher sensitivity and correctly segmented more swallows. Comparing its performance with a threshold-based algorithm that utilized the quadratic variation of the signal showed that the DBSCAN algorithm offered no direct increase in performance. However, it offered several other benefits including a faster run time and more consistent performance between patients. All algorithms showed noticeable differentiation from the endpoints provided by a videofluoroscopy examination as well as reduced sensitivity. In summary, we showed that the DBSCAN algorithm is a viable method for detecting the occurrence of a swallowing event using cervical auscultation signals, but significant work must be done to improve its performance before it can be implemented in an unsupervised manner. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. A Comparative Analysis of DBSCAN, K-Means, and Quadratic Variation Algorithms for Automatic Identification of Swallows from Swallowing Accelerometry Signals

    PubMed Central

    Dudik, Joshua M.; Kurosu, Atsuko; Coyle, James L

    2015-01-01

    Background Cervical auscultation with high resolution sensors is currently under consideration as a method of automatically screening for specific swallowing abnormalities. To be clinically useful without human involvement, any devices based on cervical auscultation should be able to detect specified swallowing events in an automatic manner. Methods In this paper, we comparatively analyze the density-based spatial clustering of applications with noise algorithm (DBSCAN), a k-means based algorithm, and an algorithm based on quadratic variation as methods of differentiating periods of swallowing activity from periods of time without swallows. These algorithms utilized swallowing vibration data exclusively and compared the results to a gold standard measure of swallowing duration. Data was collected from 23 subjects that were actively suffering from swallowing difficulties. Results Comparing the performance of the DBSCAN algorithm with a proven segmentation algorithm that utilizes k-means clustering demonstrated that the DBSCAN algorithm had a higher sensitivity and correctly segmented more swallows. Comparing its performance with a threshold-based algorithm that utilized the quadratic variation of the signal showed that the DBSCAN algorithm offered no direct increase in performance. However, it offered several other benefits including a faster run time and more consistent performance between patients. All algorithms showed noticeable differen-tiation from the endpoints provided by a videofluoroscopy examination as well as reduced sensitivity. Conclusions In summary, we showed that the DBSCAN algorithm is a viable method for detecting the occurrence of a swallowing event using cervical auscultation signals, but significant work must be done to improve its performance before it can be implemented in an unsupervised manner. PMID:25658505

  6. An EEG blind source separation algorithm based on a weak exclusion principle.

    PubMed

    Lan Ma; Blu, Thierry; Wang, William S-Y

    2016-08-01

    The question of how to separate individual brain and non-brain signals, mixed by volume conduction in electroencephalographic (EEG) and other electrophysiological recordings, is a significant problem in contemporary neuroscience. This study proposes and evaluates a novel EEG Blind Source Separation (BSS) algorithm based on a weak exclusion principle (WEP). The chief point in which it differs from most previous EEG BSS algorithms is that the proposed algorithm is not based upon the hypothesis that the sources are statistically independent. Our first step was to investigate algorithm performance on simulated signals which have ground truth. The purpose of this simulation is to illustrate the proposed algorithm's efficacy. The results show that the proposed algorithm has good separation performance. Then, we used the proposed algorithm to separate real EEG signals from a memory study using a revised version of Sternberg Task. The results show that the proposed algorithm can effectively separate the non-brain and brain sources.

  7. Local SIMPLE multi-atlas-based segmentation applied to lung lobe detection on chest CT

    NASA Astrophysics Data System (ADS)

    Agarwal, M.; Hendriks, E. A.; Stoel, B. C.; Bakker, M. E.; Reiber, J. H. C.; Staring, M.

    2012-02-01

    For multi atlas-based segmentation approaches, a segmentation fusion scheme which considers local performance measures may be more accurate than a method which uses a global performance measure. We improve upon an existing segmentation fusion method called SIMPLE and extend it to be localized and suitable for multi-labeled segmentations. We demonstrate the algorithm performance on 23 CT scans of COPD patients using a leave-one- out experiment. Our algorithm performs significantly better (p < 0.01) than majority voting, STAPLE, and SIMPLE, with a median overlap of the fissure of 0.45, 0.48, 0.55 and 0.6 for majority voting, STAPLE, SIMPLE, and the proposed algorithm, respectively.

  8. Experimental evaluation of leaky least-mean-square algorithms for active noise reduction in communication headsets.

    PubMed

    Cartes, David A; Ray, Laura R; Collier, Robert D

    2002-04-01

    An adaptive leaky normalized least-mean-square (NLMS) algorithm has been developed to optimize stability and performance of active noise cancellation systems. The research addresses LMS filter performance issues related to insufficient excitation, nonstationary noise fields, and time-varying signal-to-noise ratio. The adaptive leaky NLMS algorithm is based on a Lyapunov tuning approach in which three candidate algorithms, each of which is a function of the instantaneous measured reference input, measurement noise variance, and filter length, are shown to provide varying degrees of tradeoff between stability and noise reduction performance. Each algorithm is evaluated experimentally for reduction of low frequency noise in communication headsets, and stability and noise reduction performance are compared with that of traditional NLMS and fixed-leakage NLMS algorithms. Acoustic measurements are made in a specially designed acoustic test cell which is based on the original work of Ryan et al. ["Enclosure for low frequency assessment of active noise reducing circumaural headsets and hearing protection," Can. Acoust. 21, 19-20 (1993)] and which provides a highly controlled and uniform acoustic environment. The stability and performance of the active noise reduction system, including a prototype communication headset, are investigated for a variety of noise sources ranging from stationary tonal noise to highly nonstationary measured F-16 aircraft noise over a 20 dB dynamic range. Results demonstrate significant improvements in stability of Lyapunov-tuned LMS algorithms over traditional leaky or nonleaky normalized algorithms, while providing noise reduction performance equivalent to that of the NLMS algorithm for idealized noise fields.

  9. An Integrated Method Based on PSO and EDA for the Max-Cut Problem.

    PubMed

    Lin, Geng; Guan, Jian

    2016-01-01

    The max-cut problem is NP-hard combinatorial optimization problem with many real world applications. In this paper, we propose an integrated method based on particle swarm optimization and estimation of distribution algorithm (PSO-EDA) for solving the max-cut problem. The integrated algorithm overcomes the shortcomings of particle swarm optimization and estimation of distribution algorithm. To enhance the performance of the PSO-EDA, a fast local search procedure is applied. In addition, a path relinking procedure is developed to intensify the search. To evaluate the performance of PSO-EDA, extensive experiments were carried out on two sets of benchmark instances with 800 to 20,000 vertices from the literature. Computational results and comparisons show that PSO-EDA significantly outperforms the existing PSO-based and EDA-based algorithms for the max-cut problem. Compared with other best performing algorithms, PSO-EDA is able to find very competitive results in terms of solution quality.

  10. Scalable software-defined optical networking with high-performance routing and wavelength assignment algorithms.

    PubMed

    Lee, Chankyun; Cao, Xiaoyuan; Yoshikane, Noboru; Tsuritani, Takehiro; Rhee, June-Koo Kevin

    2015-10-19

    The feasibility of software-defined optical networking (SDON) for a practical application critically depends on scalability of centralized control performance. The paper, highly scalable routing and wavelength assignment (RWA) algorithms are investigated on an OpenFlow-based SDON testbed for proof-of-concept demonstration. Efficient RWA algorithms are proposed to achieve high performance in achieving network capacity with reduced computation cost, which is a significant attribute in a scalable centralized-control SDON. The proposed heuristic RWA algorithms differ in the orders of request processes and in the procedures of routing table updates. Combined in a shortest-path-based routing algorithm, a hottest-request-first processing policy that considers demand intensity and end-to-end distance information offers both the highest throughput of networks and acceptable computation scalability. We further investigate trade-off relationship between network throughput and computation complexity in routing table update procedure by a simulation study.

  11. Joint demosaicking and zooming using moderate spectral correlation and consistent edge map

    NASA Astrophysics Data System (ADS)

    Zhou, Dengwen; Dong, Weiming; Chen, Wengang

    2014-07-01

    The recently published joint demosaicking and zooming algorithms for single-sensor digital cameras all overfit the popular Kodak test images, which have been found to have higher spectral correlation than typical color images. Their performance perhaps significantly degrades on other datasets, such as the McMaster test images, which have weak spectral correlation. A new joint demosaicking and zooming algorithm is proposed for the Bayer color filter array (CFA) pattern, in which the edge direction information (edge map) extracted from the raw CFA data is consistently used in demosaicking and zooming. It also moderately utilizes the spectral correlation between color planes. The experimental results confirm that the proposed algorithm produces an excellent performance on both the Kodak and McMaster datasets in terms of both subjective and objective measures. Our algorithm also has high computational efficiency. It provides a better tradeoff among adaptability, performance, and computational cost compared to the existing algorithms.

  12. Orientation estimation algorithm applied to high-spin projectiles

    NASA Astrophysics Data System (ADS)

    Long, D. F.; Lin, J.; Zhang, X. M.; Li, J.

    2014-06-01

    High-spin projectiles are low cost military weapons. Accurate orientation information is critical to the performance of the high-spin projectiles control system. However, orientation estimators have not been well translated from flight vehicles since they are too expensive, lack launch robustness, do not fit within the allotted space, or are too application specific. This paper presents an orientation estimation algorithm specific for these projectiles. The orientation estimator uses an integrated filter to combine feedback from a three-axis magnetometer, two single-axis gyros and a GPS receiver. As a new feature of this algorithm, the magnetometer feedback estimates roll angular rate of projectile. The algorithm also incorporates online sensor error parameter estimation performed simultaneously with the projectile attitude estimation. The second part of the paper deals with the verification of the proposed orientation algorithm through numerical simulation and experimental tests. Simulations and experiments demonstrate that the orientation estimator can effectively estimate the attitude of high-spin projectiles. Moreover, online sensor calibration significantly enhances the estimation performance of the algorithm.

  13. Optimized data fusion for K-means Laplacian clustering

    PubMed Central

    Yu, Shi; Liu, Xinhai; Tranchevent, Léon-Charles; Glänzel, Wolfgang; Suykens, Johan A. K.; De Moor, Bart; Moreau, Yves

    2011-01-01

    Motivation: We propose a novel algorithm to combine multiple kernels and Laplacians for clustering analysis. The new algorithm is formulated on a Rayleigh quotient objective function and is solved as a bi-level alternating minimization procedure. Using the proposed algorithm, the coefficients of kernels and Laplacians can be optimized automatically. Results: Three variants of the algorithm are proposed. The performance is systematically validated on two real-life data fusion applications. The proposed Optimized Kernel Laplacian Clustering (OKLC) algorithms perform significantly better than other methods. Moreover, the coefficients of kernels and Laplacians optimized by OKLC show some correlation with the rank of performance of individual data source. Though in our evaluation the K values are predefined, in practical studies, the optimal cluster number can be consistently estimated from the eigenspectrum of the combined kernel Laplacian matrix. Availability: The MATLAB code of algorithms implemented in this paper is downloadable from http://homes.esat.kuleuven.be/~sistawww/bioi/syu/oklc.html. Contact: shiyu@uchicago.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20980271

  14. A High-Performance Genetic Algorithm: Using Traveling Salesman Problem as a Case

    PubMed Central

    Tsai, Chun-Wei; Tseng, Shih-Pang; Yang, Chu-Sing

    2014-01-01

    This paper presents a simple but efficient algorithm for reducing the computation time of genetic algorithm (GA) and its variants. The proposed algorithm is motivated by the observation that genes common to all the individuals of a GA have a high probability of surviving the evolution and ending up being part of the final solution; as such, they can be saved away to eliminate the redundant computations at the later generations of a GA. To evaluate the performance of the proposed algorithm, we use it not only to solve the traveling salesman problem but also to provide an extensive analysis on the impact it may have on the quality of the end result. Our experimental results indicate that the proposed algorithm can significantly reduce the computation time of GA and GA-based algorithms while limiting the degradation of the quality of the end result to a very small percentage compared to traditional GA. PMID:24892038

  15. A high-performance genetic algorithm: using traveling salesman problem as a case.

    PubMed

    Tsai, Chun-Wei; Tseng, Shih-Pang; Chiang, Ming-Chao; Yang, Chu-Sing; Hong, Tzung-Pei

    2014-01-01

    This paper presents a simple but efficient algorithm for reducing the computation time of genetic algorithm (GA) and its variants. The proposed algorithm is motivated by the observation that genes common to all the individuals of a GA have a high probability of surviving the evolution and ending up being part of the final solution; as such, they can be saved away to eliminate the redundant computations at the later generations of a GA. To evaluate the performance of the proposed algorithm, we use it not only to solve the traveling salesman problem but also to provide an extensive analysis on the impact it may have on the quality of the end result. Our experimental results indicate that the proposed algorithm can significantly reduce the computation time of GA and GA-based algorithms while limiting the degradation of the quality of the end result to a very small percentage compared to traditional GA.

  16. Searching Information Sources in Networks

    DTIC Science & Technology

    2017-06-14

    SECURITY CLASSIFICATION OF: During the course of this project, we made significant progresses in multiple directions of the information detection...result on information source detection on non-tree networks; (2) The development of information source localization algorithms to detect multiple... information sources. The algorithms have provable performance guarantees and outperform existing algorithms in 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND

  17. Nonlinear dynamics optimization with particle swarm and genetic algorithms for SPEAR3 emittance upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xiaobiao; Safranek, James

    2014-09-01

    Nonlinear dynamics optimization is carried out for a low emittance upgrade lattice of SPEAR3 in order to improve its dynamic aperture and Touschek lifetime. Two multi-objective optimization algorithms, a genetic algorithm and a particle swarm algorithm, are used for this study. The performance of the two algorithms are compared. The result shows that the particle swarm algorithm converges significantly faster to similar or better solutions than the genetic algorithm and it does not require seeding of good solutions in the initial population. These advantages of the particle swarm algorithm may make it more suitable for many accelerator optimization applications.

  18. Comparison of Different Post-Processing Algorithms for Dynamic Susceptibility Contrast Perfusion Imaging of Cerebral Gliomas.

    PubMed

    Kudo, Kohsuke; Uwano, Ikuko; Hirai, Toshinori; Murakami, Ryuji; Nakamura, Hideo; Fujima, Noriyuki; Yamashita, Fumio; Goodwin, Jonathan; Higuchi, Satomi; Sasaki, Makoto

    2017-04-10

    The purpose of the present study was to compare different software algorithms for processing DSC perfusion images of cerebral tumors with respect to i) the relative CBV (rCBV) calculated, ii) the cutoff value for discriminating low- and high-grade gliomas, and iii) the diagnostic performance for differentiating these tumors. Following approval of institutional review board, informed consent was obtained from all patients. Thirty-five patients with primary glioma (grade II, 9; grade III, 8; and grade IV, 18 patients) were included. DSC perfusion imaging was performed with 3-Tesla MRI scanner. CBV maps were generated by using 11 different algorithms of four commercially available software and one academic program. rCBV of each tumor compared to normal white matter was calculated by ROI measurements. Differences in rCBV value were compared between algorithms for each tumor grade. Receiver operator characteristics analysis was conducted for the evaluation of diagnostic performance of different algorithms for differentiating between different grades. Several algorithms showed significant differences in rCBV, especially for grade IV tumors. When differentiating between low- (II) and high-grade (III/IV) tumors, the area under the ROC curve (Az) was similar (range 0.85-0.87), and there were no significant differences in Az between any pair of algorithms. In contrast, the optimal cutoff values varied between algorithms (range 4.18-6.53). rCBV values of tumor and cutoff values for discriminating low- and high-grade gliomas differed between software packages, suggesting that optimal software-specific cutoff values should be used for diagnosis of high-grade gliomas.

  19. Diagnostic Performance of SRU and ATA Thyroid Nodule Classification Algorithms as Tested With a 1 Million Virtual Thyroid Nodule Model.

    PubMed

    Boehnke, Mitchell; Patel, Nayana; McKinney, Kristin; Clark, Toshimasa

    The Society of Radiologists in Ultrasound (SRU 2005) and American Thyroid Association (ATA 2009 and ATA 2015) have published algorithms regarding thyroid nodule management. Kwak et al. and other groups have described models that estimate thyroid nodules' malignancy risk. The aim of our study is to use Kwak's model to evaluate the tradeoffs of both sensitivity and specificity of SRU 2005, ATA 2009 and ATA 2015 management algorithms. 1,000,000 thyroid nodules were modeled in MATLAB. Ultrasound characteristics were modeled after published data. Malignancy risk was estimated per Kwak's model and assigned as a binary variable. All nodules were then assessed using the published management algorithms. With the malignancy variable as condition positivity and algorithms' recommendation for FNA as test positivity, diagnostic performance was calculated. Modeled nodule characteristics mimic those of Kwak et al. 12.8% nodules were assigned as malignant (malignancy risk range of 2.0-98%). FNA was recommended for 41% of nodules by SRU 2005, 66% by ATA 2009, and 82% by ATA 2015. Sensitivity and specificity is significantly different (< 0.0001): 49% and 60% for SRU; 81% and 36% for ATA 2009; and 95% and 20% for ATA 2015. SRU 2005, ATA 2009 and ATA 2015 algorithms are used routinely in clinical practice to determine whether thyroid nodule biopsy is indicated. We demonstrate significant differences in these algorithms' diagnostic performance, which result in a compromise between sensitivity and specificity. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Task scheduling in dataflow computer architectures

    NASA Technical Reports Server (NTRS)

    Katsinis, Constantine

    1994-01-01

    Dataflow computers provide a platform for the solution of a large class of computational problems, which includes digital signal processing and image processing. Many typical applications are represented by a set of tasks which can be repetitively executed in parallel as specified by an associated dataflow graph. Research in this area aims to model these architectures, develop scheduling procedures, and predict the transient and steady state performance. Researchers at NASA have created a model and developed associated software tools which are capable of analyzing a dataflow graph and predicting its runtime performance under various resource and timing constraints. These models and tools were extended and used in this work. Experiments using these tools revealed certain properties of such graphs that require further study. Specifically, the transient behavior at the beginning of the execution of a graph can have a significant effect on the steady state performance. Transformation and retiming of the application algorithm and its initial conditions can produce a different transient behavior and consequently different steady state performance. The effect of such transformations on the resource requirements or under resource constraints requires extensive study. Task scheduling to obtain maximum performance (based on user-defined criteria), or to satisfy a set of resource constraints, can also be significantly affected by a transformation of the application algorithm. Since task scheduling is performed by heuristic algorithms, further research is needed to determine if new scheduling heuristics can be developed that can exploit such transformations. This work has provided the initial development for further long-term research efforts. A simulation tool was completed to provide insight into the transient and steady state execution of a dataflow graph. A set of scheduling algorithms was completed which can operate in conjunction with the modeling and performance tools previously developed. Initial studies on the performance of these algorithms were done to examine the effects of application algorithm transformations as measured by such quantities as number of processors, time between outputs, time between input and output, communication time, and memory size.

  1. A new full-field digital mammography system with and without the use of an advanced post-processing algorithm: comparison of image quality and diagnostic performance.

    PubMed

    Ahn, Hye Shin; Kim, Sun Mi; Jang, Mijung; Yun, Bo La; Kim, Bohyoung; Ko, Eun Sook; Han, Boo-Kyung; Chang, Jung Min; Yi, Ann; Cho, Nariya; Moon, Woo Kyung; Choi, Hye Young

    2014-01-01

    To compare new full-field digital mammography (FFDM) with and without use of an advanced post-processing algorithm to improve image quality, lesion detection, diagnostic performance, and priority rank. During a 22-month period, we prospectively enrolled 100 cases of specimen FFDM mammography (Brestige®), which was performed alone or in combination with a post-processing algorithm developed by the manufacturer: group A (SMA), specimen mammography without application of "Mammogram enhancement ver. 2.0"; group B (SMB), specimen mammography with application of "Mammogram enhancement ver. 2.0". Two sets of specimen mammographies were randomly reviewed by five experienced radiologists. Image quality, lesion detection, diagnostic performance, and priority rank with regard to image preference were evaluated. Three aspects of image quality (overall quality, contrast, and noise) of the SMB were significantly superior to those of SMA (p < 0.05). SMB was significantly superior to SMA for visualizing calcifications (p < 0.05). Diagnostic performance, as evaluated by cancer score, was similar between SMA and SMB. SMB was preferred to SMA by four of the five reviewers. The post-processing algorithm may improve image quality with better image preference in FFDM than without use of the software.

  2. Highly accurate adaptive TOF determination method for ultrasonic thickness measurement

    NASA Astrophysics Data System (ADS)

    Zhou, Lianjie; Liu, Haibo; Lian, Meng; Ying, Yangwei; Li, Te; Wang, Yongqing

    2018-04-01

    Determining the time of flight (TOF) is very critical for precise ultrasonic thickness measurement. However, the relatively low signal-to-noise ratio (SNR) of the received signals would induce significant TOF determination errors. In this paper, an adaptive time delay estimation method has been developed to improve the TOF determination’s accuracy. An improved variable step size adaptive algorithm with comprehensive step size control function is proposed. Meanwhile, a cubic spline fitting approach is also employed to alleviate the restriction of finite sampling interval. Simulation experiments under different SNR conditions were conducted for performance analysis. Simulation results manifested the performance advantage of proposed TOF determination method over existing TOF determination methods. When comparing with the conventional fixed step size, and Kwong and Aboulnasr algorithms, the steady state mean square deviation of the proposed algorithm was generally lower, which makes the proposed algorithm more suitable for TOF determination. Further, ultrasonic thickness measurement experiments were performed on aluminum alloy plates with various thicknesses. They indicated that the proposed TOF determination method was more robust even under low SNR conditions, and the ultrasonic thickness measurement accuracy could be significantly improved.

  3. Space Launch System Implementation of Adaptive Augmenting Control

    NASA Technical Reports Server (NTRS)

    VanZwieten, Tannen S.; Wall, John H.; Orr, Jeb S.

    2014-01-01

    Given the complex structural dynamics, challenging ascent performance requirements, and rigorous flight certification constraints owing to its manned capability, the NASA Space Launch System (SLS) launch vehicle requires a proven thrust vector control algorithm design with highly optimized parameters to robustly demonstrate stable and high performance flight. On its development path to preliminary design review (PDR), the stability of the SLS flight control system has been challenged by significant vehicle flexibility, aerodynamics, and sloshing propellant dynamics. While the design has been able to meet all robust stability criteria, it has done so with little excess margin. Through significant development work, an adaptive augmenting control (AAC) algorithm previously presented by Orr and VanZwieten, has been shown to extend the envelope of failures and flight anomalies for which the SLS control system can accommodate while maintaining a direct link to flight control stability criteria (e.g. gain & phase margin). In this paper, the work performed to mature the AAC algorithm as a baseline component of the SLS flight control system is presented. The progress to date has brought the algorithm design to the PDR level of maturity. The algorithm has been extended to augment the SLS digital 3-axis autopilot, including existing load-relief elements, and necessary steps for integration with the production flight software prototype have been implemented. Several updates to the adaptive algorithm to increase its performance, decrease its sensitivity to expected external commands, and safeguard against limitations in the digital implementation are discussed with illustrating results. Monte Carlo simulations and selected stressing case results are shown to demonstrate the algorithm's ability to increase the robustness of the integrated SLS flight control system.

  4. Prevalence of Traditional and Reverse-Algorithm Syphilis Screening in Laboratory Practice: A Survey of Participants in the College of American Pathologists Syphilis Serology Proficiency Testing Program.

    PubMed

    Rhoads, Daniel D; Genzen, Jonathan R; Bashleben, Christine P; Faix, James D; Ansari, M Qasim

    2017-01-01

    -Syphilis serology screening in laboratory practice is evolving. Traditionally, the syphilis screening algorithm begins with a nontreponemal immunoassay, which is manually performed by a laboratory technologist. In contrast, the reverse algorithm begins with a treponemal immunoassay, which can be automated. The Centers for Disease Control and Prevention has recognized both approaches, but little is known about the current state of laboratory practice, which could impact test utilization and interpretation. -To assess the current state of laboratory practice for syphilis serologic screening. -In August 2015, a voluntary questionnaire was sent to the 2360 laboratories that subscribe to the College of American Pathologists syphilis serology proficiency survey. -Of the laboratories surveyed, 98% (2316 of 2360) returned the questionnaire, and about 83% (1911 of 2316) responded to at least some questions. Twenty-eight percent (378 of 1364) reported revision of their syphilis screening algorithm within the past 2 years, and 9% (170 of 1905) of laboratories anticipated changing their screening algorithm in the coming year. Sixty-three percent (1205 of 1911) reported using the traditional algorithm, 16% (304 of 1911) reported using the reverse algorithm, and 2.5% (47 of 1911) reported using both algorithms, whereas 9% (169 of 1911) reported not performing a reflex confirmation test. Of those performing the reverse algorithm, 74% (282 of 380) implemented a new testing platform when introducing the new algorithm. -The majority of laboratories still perform the traditional algorithm, but a significant minority have implemented the reverse-screening algorithm. Although the nontreponemal immunologic response typically wanes after cure and becomes undetectable, treponemal immunoassays typically remain positive for life, and it is important for laboratorians and clinicians to consider these assay differences when implementing, using, and interpreting serologic syphilis screening algorithms.

  5. A Comparison of Lung Nodule Segmentation Algorithms: Methods and Results from a Multi-institutional Study.

    PubMed

    Kalpathy-Cramer, Jayashree; Zhao, Binsheng; Goldgof, Dmitry; Gu, Yuhua; Wang, Xingwei; Yang, Hao; Tan, Yongqiang; Gillies, Robert; Napel, Sandy

    2016-08-01

    Tumor volume estimation, as well as accurate and reproducible borders segmentation in medical images, are important in the diagnosis, staging, and assessment of response to cancer therapy. The goal of this study was to demonstrate the feasibility of a multi-institutional effort to assess the repeatability and reproducibility of nodule borders and volume estimate bias of computerized segmentation algorithms in CT images of lung cancer, and to provide results from such a study. The dataset used for this evaluation consisted of 52 tumors in 41 CT volumes (40 patient datasets and 1 dataset containing scans of 12 phantom nodules of known volume) from five collections available in The Cancer Imaging Archive. Three academic institutions developing lung nodule segmentation algorithms submitted results for three repeat runs for each of the nodules. We compared the performance of lung nodule segmentation algorithms by assessing several measurements of spatial overlap and volume measurement. Nodule sizes varied from 29 μl to 66 ml and demonstrated a diversity of shapes. Agreement in spatial overlap of segmentations was significantly higher for multiple runs of the same algorithm than between segmentations generated by different algorithms (p < 0.05) and was significantly higher on the phantom dataset compared to the other datasets (p < 0.05). Algorithms differed significantly in the bias of the measured volumes of the phantom nodules (p < 0.05) underscoring the need for assessing performance on clinical data in addition to phantoms. Algorithms that most accurately estimated nodule volumes were not the most repeatable, emphasizing the need to evaluate both their accuracy and precision. There were considerable differences between algorithms, especially in a subset of heterogeneous nodules, underscoring the recommendation that the same software be used at all time points in longitudinal studies.

  6. Acceleration of image-based resolution modelling reconstruction using an expectation maximization nested algorithm.

    PubMed

    Angelis, G I; Reader, A J; Markiewicz, P J; Kotasidis, F A; Lionheart, W R; Matthews, J C

    2013-08-07

    Recent studies have demonstrated the benefits of a resolution model within iterative reconstruction algorithms in an attempt to account for effects that degrade the spatial resolution of the reconstructed images. However, these algorithms suffer from slower convergence rates, compared to algorithms where no resolution model is used, due to the additional need to solve an image deconvolution problem. In this paper, a recently proposed algorithm, which decouples the tomographic and image deconvolution problems within an image-based expectation maximization (EM) framework, was evaluated. This separation is convenient, because more computational effort can be placed on the image deconvolution problem and therefore accelerate convergence. Since the computational cost of solving the image deconvolution problem is relatively small, multiple image-based EM iterations do not significantly increase the overall reconstruction time. The proposed algorithm was evaluated using 2D simulations, as well as measured 3D data acquired on the high-resolution research tomograph. Results showed that bias reduction can be accelerated by interleaving multiple iterations of the image-based EM algorithm solving the resolution model problem, with a single EM iteration solving the tomographic problem. Significant improvements were observed particularly for voxels that were located on the boundaries between regions of high contrast within the object being imaged and for small regions of interest, where resolution recovery is usually more challenging. Minor differences were observed using the proposed nested algorithm, compared to the single iteration normally performed, when an optimal number of iterations are performed for each algorithm. However, using the proposed nested approach convergence is significantly accelerated enabling reconstruction using far fewer tomographic iterations (up to 70% fewer iterations for small regions). Nevertheless, the optimal number of nested image-based EM iterations is hard to be defined and it should be selected according to the given application.

  7. Improving GPU-accelerated adaptive IDW interpolation algorithm using fast kNN search.

    PubMed

    Mei, Gang; Xu, Nengxiong; Xu, Liangliang

    2016-01-01

    This paper presents an efficient parallel Adaptive Inverse Distance Weighting (AIDW) interpolation algorithm on modern Graphics Processing Unit (GPU). The presented algorithm is an improvement of our previous GPU-accelerated AIDW algorithm by adopting fast k-nearest neighbors (kNN) search. In AIDW, it needs to find several nearest neighboring data points for each interpolated point to adaptively determine the power parameter; and then the desired prediction value of the interpolated point is obtained by weighted interpolating using the power parameter. In this work, we develop a fast kNN search approach based on the space-partitioning data structure, even grid, to improve the previous GPU-accelerated AIDW algorithm. The improved algorithm is composed of the stages of kNN search and weighted interpolating. To evaluate the performance of the improved algorithm, we perform five groups of experimental tests. The experimental results indicate: (1) the improved algorithm can achieve a speedup of up to 1017 over the corresponding serial algorithm; (2) the improved algorithm is at least two times faster than our previous GPU-accelerated AIDW algorithm; and (3) the utilization of fast kNN search can significantly improve the computational efficiency of the entire GPU-accelerated AIDW algorithm.

  8. Reconstructing householder vectors from Tall-Skinny QR

    DOE PAGES

    Ballard, Grey Malone; Demmel, James; Grigori, Laura; ...

    2015-08-05

    The Tall-Skinny QR (TSQR) algorithm is more communication efficient than the standard Householder algorithm for QR decomposition of matrices with many more rows than columns. However, TSQR produces a different representation of the orthogonal factor and therefore requires more software development to support the new representation. Further, implicitly applying the orthogonal factor to the trailing matrix in the context of factoring a square matrix is more complicated and costly than with the Householder representation. We show how to perform TSQR and then reconstruct the Householder vector representation with the same asymptotic communication efficiency and little extra computational cost. We demonstratemore » the high performance and numerical stability of this algorithm both theoretically and empirically. The new Householder reconstruction algorithm allows us to design more efficient parallel QR algorithms, with significantly lower latency cost compared to Householder QR and lower bandwidth and latency costs compared with Communication-Avoiding QR (CAQR) algorithm. Experiments on supercomputers demonstrate the benefits of the communication cost improvements: in particular, our experiments show substantial improvements over tuned library implementations for tall-and-skinny matrices. Furthermore, we also provide algorithmic improvements to the Householder QR and CAQR algorithms, and we investigate several alternatives to the Householder reconstruction algorithm that sacrifice guarantees on numerical stability in some cases in order to obtain higher performance.« less

  9. Adaptive optics compensation of orbital angular momentum beams with a modified Gerchberg-Saxton-based phase retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Chang, Huan; Yin, Xiao-li; Cui, Xiao-zhou; Zhang, Zhi-chao; Ma, Jian-xin; Wu, Guo-hua; Zhang, Li-jia; Xin, Xiang-jun

    2017-12-01

    Practical orbital angular momentum (OAM)-based free-space optical (FSO) communications commonly experience serious performance degradation and crosstalk due to atmospheric turbulence. In this paper, we propose a wave-front sensorless adaptive optics (WSAO) system with a modified Gerchberg-Saxton (GS)-based phase retrieval algorithm to correct distorted OAM beams. We use the spatial phase perturbation (SPP) GS algorithm with a distorted probe Gaussian beam as the only input. The principle and parameter selections of the algorithm are analyzed, and the performance of the algorithm is discussed. The simulation results show that the proposed adaptive optics (AO) system can significantly compensate for distorted OAM beams in single-channel or multiplexed OAM systems, which provides new insights into adaptive correction systems using OAM beams.

  10. [Evaluation of three methods for constructing craniofacial mid-sagittal plane based on the cone beam computed tomography].

    PubMed

    Wang, S W; Li, M; Yang, H F; Zhao, Y J; Wang, Y; Liu, Y

    2016-04-18

    To compare the accuracyof interactive closet point (ICP) algorithm, Procrustes analysis (PA) algorithm,and a landmark-independent method to construct the mid-sagittal plane (MSP) of the cone beam computed tomography.To provide theoretical basis for establishing coordinate systemof CBCT images and symmetric analysis. Ten patients were selected and scanned by CBCT before orthodontic treatment.The scan data was imported into Mimics 10.0 to reconstructthree dimensional skulls.And the MSP of each skull was generated by ICP algorithm, PA algorithm and landmark-independent method. MSP extracted by ICP algorithm or PA algorithm involvedthree steps. First, the 3D skull processing was performed by reverse engineering software geomagic studio 2012 to obtain the mirror skull. Then, the original and its mirror skull was registered separately by ICP algorithm in geomagic studio 2012 and PA algorithm in NX Imageware 11.0. Finally, the registered data were united into new data to calculate the MSP of the originaldata in geomagic studio 2012. The mid-sagittal plane was determined by SELLA (S), nasion (N), basion (Ba) as traditional landmark-dependent methodconducted in software InVivoDental 5.0. The distance from 9 pairs of symmetric anatomical marked points to three sagittal plane were measured and calculated to compare the differences of the absolute value. The one-way ANOVA test was used to analyze the variable differences among the 3 MSPs. The pairwise comparison was performed with LSD method. MSPs calculated by the three methods were available for clinic analysis, which could be concluded from the front view.However, there was significant differences among the distances from the 9 pairs of symmetric anatomical marked points to the MSPs (F=10.932,P=0.001).LSD test showed there was no significant difference between the ICP algorithm and landmark-independent method (P=0.11), while there was significant difference between the PA algorithm and landmark-independent methods (P=0.01) . Mid-sagittal plane of 3D skulls could be generated base on ICP algorithm or PA algorithm. There was no significant difference between the ICP algorithm and landmark-independent method. For the subjects with no evident asymmetry, ICP algorithm is feasible in clinical analysis.

  11. Wiener filter preprocessing for OFDM systems in the presence of both nonstationary and stationary phase noises

    NASA Astrophysics Data System (ADS)

    Zhong, Ke; Lei, Xia; Li, Shaoqian

    2013-12-01

    Statistics-based intercarrier interference (ICI) mitigation algorithm is proposed for orthogonal frequency division multiplexing systems in presence of both nonstationary and stationary phase noises. By utilizing the statistics of phase noise, which can be obtained from measurements or data sheets, a Wiener filter preprocessing algorithm for ICI mitigation is proposed. The proposed algorithm can be regarded as a performance-improving technique for the previous researches on phase noise cancelation. Simulation results show that the proposed algorithm can effectively mitigate ICI and lower the error floor, and therefore significantly improve the performances of previous researches on phase noise cancelation, especially in the presence of severe phase noise.

  12. A stationary wavelet transform and a time-frequency based spike detection algorithm for extracellular recorded data

    NASA Astrophysics Data System (ADS)

    Lieb, Florian; Stark, Hans-Georg; Thielemann, Christiane

    2017-06-01

    Objective. Spike detection from extracellular recordings is a crucial preprocessing step when analyzing neuronal activity. The decision whether a specific part of the signal is a spike or not is important for any kind of other subsequent preprocessing steps, like spike sorting or burst detection in order to reduce the classification of erroneously identified spikes. Many spike detection algorithms have already been suggested, all working reasonably well whenever the signal-to-noise ratio is large enough. When the noise level is high, however, these algorithms have a poor performance. Approach. In this paper we present two new spike detection algorithms. The first is based on a stationary wavelet energy operator and the second is based on the time-frequency representation of spikes. Both algorithms are more reliable than all of the most commonly used methods. Main results. The performance of the algorithms is confirmed by using simulated data, resembling original data recorded from cortical neurons with multielectrode arrays. In order to demonstrate that the performance of the algorithms is not restricted to only one specific set of data, we also verify the performance using a simulated publicly available data set. We show that both proposed algorithms have the best performance under all tested methods, regardless of the signal-to-noise ratio in both data sets. Significance. This contribution will redound to the benefit of electrophysiological investigations of human cells. Especially the spatial and temporal analysis of neural network communications is improved by using the proposed spike detection algorithms.

  13. Mutual information-based LPI optimisation for radar network

    NASA Astrophysics Data System (ADS)

    Shi, Chenguang; Zhou, Jianjiang; Wang, Fei; Chen, Jun

    2015-07-01

    Radar network can offer significant performance improvement for target detection and information extraction employing spatial diversity. For a fixed number of radars, the achievable mutual information (MI) for estimating the target parameters may extend beyond a predefined threshold with full power transmission. In this paper, an effective low probability of intercept (LPI) optimisation algorithm is presented to improve LPI performance for radar network. Based on radar network system model, we first provide Schleher intercept factor for radar network as an optimisation metric for LPI performance. Then, a novel LPI optimisation algorithm is presented, where for a predefined MI threshold, Schleher intercept factor for radar network is minimised by optimising the transmission power allocation among radars in the network such that the enhanced LPI performance for radar network can be achieved. The genetic algorithm based on nonlinear programming (GA-NP) is employed to solve the resulting nonconvex and nonlinear optimisation problem. Some simulations demonstrate that the proposed algorithm is valuable and effective to improve the LPI performance for radar network.

  14. The development of a scalable parallel 3-D CFD algorithm for turbomachinery. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Luke, Edward Allen

    1993-01-01

    Two algorithms capable of computing a transonic 3-D inviscid flow field about rotating machines are considered for parallel implementation. During the study of these algorithms, a significant new method of measuring the performance of parallel algorithms is developed. The theory that supports this new method creates an empirical definition of scalable parallel algorithms that is used to produce quantifiable evidence that a scalable parallel application was developed. The implementation of the parallel application and an automated domain decomposition tool are also discussed.

  15. Optimizing Multiple QoS for Workflow Applications using PSO and Min-Max Strategy

    NASA Astrophysics Data System (ADS)

    Umar Ambursa, Faruku; Latip, Rohaya; Abdullah, Azizol; Subramaniam, Shamala

    2017-08-01

    Workflow scheduling under multiple QoS constraints is a complicated optimization problem. Metaheuristic techniques are excellent approaches used in dealing with such problem. Many metaheuristic based algorithms have been proposed, that considers various economic and trustworthy QoS dimensions. However, most of these approaches lead to high violation of user-defined QoS requirements in tight situation. Recently, a new Particle Swarm Optimization (PSO)-based QoS-aware workflow scheduling strategy (LAPSO) is proposed to improve performance in such situations. LAPSO algorithm is designed based on synergy between a violation handling method and a hybrid of PSO and min-max heuristic. Simulation results showed a great potential of LAPSO algorithm to handling user requirements even in tight situations. In this paper, the performance of the algorithm is anlysed further. Specifically, the impact of the min-max strategy on the performance of the algorithm is revealed. This is achieved by removing the violation handling from the operation of the algorithm. The results show that LAPSO based on only the min-max method still outperforms the benchmark, even though the LAPSO with the violation handling performs more significantly better.

  16. A novel approach for dimension reduction of microarray.

    PubMed

    Aziz, Rabia; Verma, C K; Srivastava, Namita

    2017-12-01

    This paper proposes a new hybrid search technique for feature (gene) selection (FS) using Independent component analysis (ICA) and Artificial Bee Colony (ABC) called ICA+ABC, to select informative genes based on a Naïve Bayes (NB) algorithm. An important trait of this technique is the optimization of ICA feature vector using ABC. ICA+ABC is a hybrid search algorithm that combines the benefits of extraction approach, to reduce the size of data and wrapper approach, to optimize the reduced feature vectors. This hybrid search technique is facilitated by evaluating the performance of ICA+ABC on six standard gene expression datasets of classification. Extensive experiments were conducted to compare the performance of ICA+ABC with the results obtained from recently published Minimum Redundancy Maximum Relevance (mRMR) +ABC algorithm for NB classifier. Also to check the performance that how ICA+ABC works as feature selection with NB classifier, compared the combination of ICA with popular filter techniques and with other similar bio inspired algorithm such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The result shows that ICA+ABC has a significant ability to generate small subsets of genes from the ICA feature vector, that significantly improve the classification accuracy of NB classifier compared to other previously suggested methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Blind Channel Equalization Using Constrained Generalized Pattern Search Optimization and Reinitialization Strategy

    NASA Astrophysics Data System (ADS)

    Zaouche, Abdelouahib; Dayoub, Iyad; Rouvaen, Jean Michel; Tatkeu, Charles

    2008-12-01

    We propose a global convergence baud-spaced blind equalization method in this paper. This method is based on the application of both generalized pattern optimization and channel surfing reinitialization. The potentially used unimodal cost function relies on higher- order statistics, and its optimization is achieved using a pattern search algorithm. Since the convergence to the global minimum is not unconditionally warranted, we make use of channel surfing reinitialization (CSR) strategy to find the right global minimum. The proposed algorithm is analyzed, and simulation results using a severe frequency selective propagation channel are given. Detailed comparisons with constant modulus algorithm (CMA) are highlighted. The proposed algorithm performances are evaluated in terms of intersymbol interference, normalized received signal constellations, and root mean square error vector magnitude. In case of nonconstant modulus input signals, our algorithm outperforms significantly CMA algorithm with full channel surfing reinitialization strategy. However, comparable performances are obtained for constant modulus signals.

  18. Passive microwave algorithm development and evaluation

    NASA Technical Reports Server (NTRS)

    Petty, Grant W.

    1995-01-01

    The scientific objectives of this grant are: (1) thoroughly evaluate, both theoretically and empirically, all available Special Sensor Microwave Imager (SSM/I) retrieval algorithms for column water vapor, column liquid water, and surface wind speed; (2) where both appropriate and feasible, develop, validate, and document satellite passive microwave retrieval algorithms that offer significantly improved performance compared with currently available algorithms; and (3) refine and validate a novel physical inversion scheme for retrieving rain rate over the ocean. This report summarizes work accomplished or in progress during the first year of a three year grant. The emphasis during the first year has been on the validation and refinement of the rain rate algorithm published by Petty and on the analysis of independent data sets that can be used to help evaluate the performance of rain rate algorithms over remote areas of the ocean. Two articles in the area of global oceanic precipitation are attached.

  19. Random-access algorithms for multiuser computer communication networks. Doctoral thesis, 1 September 1986-31 August 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papantoni-Kazakos, P.; Paterakis, M.

    1988-07-01

    For many communication applications with time constraints (e.g., transmission of packetized voice messages), a critical performance measure is the percentage of messages transmitted within a given amount of time after their generation at the transmitting station. This report presents a random-access algorithm (RAA) suitable for time-constrained applications. Performance analysis demonstrates that significant message-delay improvement is attained at the expense of minimal traffic loss. Also considered is the case of noisy channels. The noise effect appears at erroneously observed channel feedback. Error sensitivity analysis shows that the proposed random-access algorithm is insensitive to feedback channel errors. Window Random-Access Algorithms (RAAs) aremore » considered next. These algorithms constitute an important subclass of Multiple-Access Algorithms (MAAs); they are distributive, and they attain high throughput and low delays by controlling the number of simultaneously transmitting users.« less

  20. Computing Maximum Cardinality Matchings in Parallel on Bipartite Graphs via Tree-Grafting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azad, Ariful; Buluc, Aydn; Pothen, Alex

    It is difficult to obtain high performance when computing matchings on parallel processors because matching algorithms explicitly or implicitly search for paths in the graph, and when these paths become long, there is little concurrency. In spite of this limitation, we present a new algorithm and its shared-memory parallelization that achieves good performance and scalability in computing maximum cardinality matchings in bipartite graphs. This algorithm searches for augmenting paths via specialized breadth-first searches (BFS) from multiple source vertices, hence creating more parallelism than single source algorithms. Algorithms that employ multiple-source searches cannot discard a search tree once no augmenting pathmore » is discovered from the tree, unlike algorithms that rely on single-source searches. We describe a novel tree-grafting method that eliminates most of the redundant edge traversals resulting from this property of multiple-source searches. We also employ the recent direction-optimizing BFS algorithm as a subroutine to discover augmenting paths faster. Our algorithm compares favorably with the current best algorithms in terms of the number of edges traversed, the average augmenting path length, and the number of iterations. Here, we provide a proof of correctness for our algorithm. Our NUMA-aware implementation is scalable to 80 threads of an Intel multiprocessor and to 240 threads on an Intel Knights Corner coprocessor. On average, our parallel algorithm runs an order of magnitude faster than the fastest algorithms available. The performance improvement is more significant on graphs with small matching number.« less

  1. Computing Maximum Cardinality Matchings in Parallel on Bipartite Graphs via Tree-Grafting

    DOE PAGES

    Azad, Ariful; Buluc, Aydn; Pothen, Alex

    2016-03-24

    It is difficult to obtain high performance when computing matchings on parallel processors because matching algorithms explicitly or implicitly search for paths in the graph, and when these paths become long, there is little concurrency. In spite of this limitation, we present a new algorithm and its shared-memory parallelization that achieves good performance and scalability in computing maximum cardinality matchings in bipartite graphs. This algorithm searches for augmenting paths via specialized breadth-first searches (BFS) from multiple source vertices, hence creating more parallelism than single source algorithms. Algorithms that employ multiple-source searches cannot discard a search tree once no augmenting pathmore » is discovered from the tree, unlike algorithms that rely on single-source searches. We describe a novel tree-grafting method that eliminates most of the redundant edge traversals resulting from this property of multiple-source searches. We also employ the recent direction-optimizing BFS algorithm as a subroutine to discover augmenting paths faster. Our algorithm compares favorably with the current best algorithms in terms of the number of edges traversed, the average augmenting path length, and the number of iterations. Here, we provide a proof of correctness for our algorithm. Our NUMA-aware implementation is scalable to 80 threads of an Intel multiprocessor and to 240 threads on an Intel Knights Corner coprocessor. On average, our parallel algorithm runs an order of magnitude faster than the fastest algorithms available. The performance improvement is more significant on graphs with small matching number.« less

  2. Accelerating DNA analysis applications on GPU clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumeo, Antonino; Villa, Oreste

    DNA analysis is an emerging application of high performance bioinformatic. Modern sequencing machinery are able to provide, in few hours, large input streams of data which needs to be matched against exponentially growing databases known fragments. The ability to recognize these patterns effectively and fastly may allow extending the scale and the reach of the investigations performed by biology scientists. Aho-Corasick is an exact, multiple pattern matching algorithm often at the base of this application. High performance systems are a promising platform to accelerate this algorithm, which is computationally intensive but also inherently parallel. Nowadays, high performance systems also includemore » heterogeneous processing elements, such as Graphic Processing Units (GPUs), to further accelerate parallel algorithms. Unfortunately, the Aho-Corasick algorithm exhibits large performance variabilities, depending on the size of the input streams, on the number of patterns to search and on the number of matches, and poses significant challenges on current high performance software and hardware implementations. An adequate mapping of the algorithm on the target architecture, coping with the limit of the underlining hardware, is required to reach the desired high throughputs. Load balancing also plays a crucial role when considering the limited bandwidth among the nodes of these systems. In this paper we present an efficient implementation of the Aho-Corasick algorithm for high performance clusters accelerated with GPUs. We discuss how we partitioned and adapted the algorithm to fit the Tesla C1060 GPU and then present a MPI based implementation for a heterogeneous high performance cluster. We compare this implementation to MPI and MPI with pthreads based implementations for a homogeneous cluster of x86 processors, discussing the stability vs. the performance and the scaling of the solutions, taking into consideration aspects such as the bandwidth among the different nodes.« less

  3. Comparison of Nine Statistical Model Based Warfarin Pharmacogenetic Dosing Algorithms Using the Racially Diverse International Warfarin Pharmacogenetic Consortium Cohort Database

    PubMed Central

    Liu, Rong; Li, Xi; Zhang, Wei; Zhou, Hong-Hao

    2015-01-01

    Objective Multiple linear regression (MLR) and machine learning techniques in pharmacogenetic algorithm-based warfarin dosing have been reported. However, performances of these algorithms in racially diverse group have never been objectively evaluated and compared. In this literature-based study, we compared the performances of eight machine learning techniques with those of MLR in a large, racially-diverse cohort. Methods MLR, artificial neural network (ANN), regression tree (RT), multivariate adaptive regression splines (MARS), boosted regression tree (BRT), support vector regression (SVR), random forest regression (RFR), lasso regression (LAR) and Bayesian additive regression trees (BART) were applied in warfarin dose algorithms in a cohort from the International Warfarin Pharmacogenetics Consortium database. Covariates obtained by stepwise regression from 80% of randomly selected patients were used to develop algorithms. To compare the performances of these algorithms, the mean percentage of patients whose predicted dose fell within 20% of the actual dose (mean percentage within 20%) and the mean absolute error (MAE) were calculated in the remaining 20% of patients. The performances of these techniques in different races, as well as the dose ranges of therapeutic warfarin were compared. Robust results were obtained after 100 rounds of resampling. Results BART, MARS and SVR were statistically indistinguishable and significantly out performed all the other approaches in the whole cohort (MAE: 8.84–8.96 mg/week, mean percentage within 20%: 45.88%–46.35%). In the White population, MARS and BART showed higher mean percentage within 20% and lower mean MAE than those of MLR (all p values < 0.05). In the Asian population, SVR, BART, MARS and LAR performed the same as MLR. MLR and LAR optimally performed among the Black population. When patients were grouped in terms of warfarin dose range, all machine learning techniques except ANN and LAR showed significantly higher mean percentage within 20%, and lower MAE (all p values < 0.05) than MLR in the low- and high- dose ranges. Conclusion Overall, machine learning-based techniques, BART, MARS and SVR performed superior than MLR in warfarin pharmacogenetic dosing. Differences of algorithms’ performances exist among the races. Moreover, machine learning-based algorithms tended to perform better in the low- and high- dose ranges than MLR. PMID:26305568

  4. Genetic algorithm based task reordering to improve the performance of batch scheduled massively parallel scientific applications

    DOE PAGES

    Sankaran, Ramanan; Angel, Jordan; Brown, W. Michael

    2015-04-08

    The growth in size of networked high performance computers along with novel accelerator-based node architectures has further emphasized the importance of communication efficiency in high performance computing. The world's largest high performance computers are usually operated as shared user facilities due to the costs of acquisition and operation. Applications are scheduled for execution in a shared environment and are placed on nodes that are not necessarily contiguous on the interconnect. Furthermore, the placement of tasks on the nodes allocated by the scheduler is sub-optimal, leading to performance loss and variability. Here, we investigate the impact of task placement on themore » performance of two massively parallel application codes on the Titan supercomputer, a turbulent combustion flow solver (S3D) and a molecular dynamics code (LAMMPS). Benchmark studies show a significant deviation from ideal weak scaling and variability in performance. The inter-task communication distance was determined to be one of the significant contributors to the performance degradation and variability. A genetic algorithm-based parallel optimization technique was used to optimize the task ordering. This technique provides an improved placement of the tasks on the nodes, taking into account the application's communication topology and the system interconnect topology. As a result, application benchmarks after task reordering through genetic algorithm show a significant improvement in performance and reduction in variability, therefore enabling the applications to achieve better time to solution and scalability on Titan during production.« less

  5. Evolutionary Dynamic Multiobjective Optimization Via Kalman Filter Prediction.

    PubMed

    Muruganantham, Arrchana; Tan, Kay Chen; Vadakkepat, Prahlad

    2016-12-01

    Evolutionary algorithms are effective in solving static multiobjective optimization problems resulting in the emergence of a number of state-of-the-art multiobjective evolutionary algorithms (MOEAs). Nevertheless, the interest in applying them to solve dynamic multiobjective optimization problems has only been tepid. Benchmark problems, appropriate performance metrics, as well as efficient algorithms are required to further the research in this field. One or more objectives may change with time in dynamic optimization problems. The optimization algorithm must be able to track the moving optima efficiently. A prediction model can learn the patterns from past experience and predict future changes. In this paper, a new dynamic MOEA using Kalman filter (KF) predictions in decision space is proposed to solve the aforementioned problems. The predictions help to guide the search toward the changed optima, thereby accelerating convergence. A scoring scheme is devised to hybridize the KF prediction with a random reinitialization method. Experimental results and performance comparisons with other state-of-the-art algorithms demonstrate that the proposed algorithm is capable of significantly improving the dynamic optimization performance.

  6. Comparison of public peak detection algorithms for MALDI mass spectrometry data analysis.

    PubMed

    Yang, Chao; He, Zengyou; Yu, Weichuan

    2009-01-06

    In mass spectrometry (MS) based proteomic data analysis, peak detection is an essential step for subsequent analysis. Recently, there has been significant progress in the development of various peak detection algorithms. However, neither a comprehensive survey nor an experimental comparison of these algorithms is yet available. The main objective of this paper is to provide such a survey and to compare the performance of single spectrum based peak detection methods. In general, we can decompose a peak detection procedure into three consequent parts: smoothing, baseline correction and peak finding. We first categorize existing peak detection algorithms according to the techniques used in different phases. Such a categorization reveals the differences and similarities among existing peak detection algorithms. Then, we choose five typical peak detection algorithms to conduct a comprehensive experimental study using both simulation data and real MALDI MS data. The results of comparison show that the continuous wavelet-based algorithm provides the best average performance.

  7. Algorithm guided outlining of 105 pancreatic cancer liver metastases in Ultrasound.

    PubMed

    Hann, Alexander; Bettac, Lucas; Haenle, Mark M; Graeter, Tilmann; Berger, Andreas W; Dreyhaupt, Jens; Schmalstieg, Dieter; Zoller, Wolfram G; Egger, Jan

    2017-10-06

    Manual segmentation of hepatic metastases in ultrasound images acquired from patients suffering from pancreatic cancer is common practice. Semiautomatic measurements promising assistance in this process are often assessed using a small number of lesions performed by examiners who already know the algorithm. In this work, we present the application of an algorithm for the segmentation of liver metastases due to pancreatic cancer using a set of 105 different images of metastases. The algorithm and the two examiners had never assessed the images before. The examiners first performed a manual segmentation and, after five weeks, a semiautomatic segmentation using the algorithm. They were satisfied in up to 90% of the cases with the semiautomatic segmentation results. Using the algorithm was significantly faster and resulted in a median Dice similarity score of over 80%. Estimation of the inter-operator variability by using the intra class correlation coefficient was good with 0.8. In conclusion, the algorithm facilitates fast and accurate segmentation of liver metastases, comparable to the current gold standard of manual segmentation.

  8. Automated spike sorting algorithm based on Laplacian eigenmaps and k-means clustering.

    PubMed

    Chah, E; Hok, V; Della-Chiesa, A; Miller, J J H; O'Mara, S M; Reilly, R B

    2011-02-01

    This study presents a new automatic spike sorting method based on feature extraction by Laplacian eigenmaps combined with k-means clustering. The performance of the proposed method was compared against previously reported algorithms such as principal component analysis (PCA) and amplitude-based feature extraction. Two types of classifier (namely k-means and classification expectation-maximization) were incorporated within the spike sorting algorithms, in order to find a suitable classifier for the feature sets. Simulated data sets and in-vivo tetrode multichannel recordings were employed to assess the performance of the spike sorting algorithms. The results show that the proposed algorithm yields significantly improved performance with mean sorting accuracy of 73% and sorting error of 10% compared to PCA which combined with k-means had a sorting accuracy of 58% and sorting error of 10%.A correction was made to this article on 22 February 2011. The spacing of the title was amended on the abstract page. No changes were made to the article PDF and the print version was unaffected.

  9. Computerized Dental Comparison: A Critical Review of Dental Coding and Ranking Algorithms Used in Victim Identification.

    PubMed

    Adams, Bradley J; Aschheim, Kenneth W

    2016-01-01

    Comparison of antemortem and postmortem dental records is a leading method of victim identification, especially for incidents involving a large number of decedents. This process may be expedited with computer software that provides a ranked list of best possible matches. This study provides a comparison of the most commonly used conventional coding and sorting algorithms used in the United States (WinID3) with a simplified coding format that utilizes an optimized sorting algorithm. The simplified system consists of seven basic codes and utilizes an optimized algorithm based largely on the percentage of matches. To perform this research, a large reference database of approximately 50,000 antemortem and postmortem records was created. For most disaster scenarios, the proposed simplified codes, paired with the optimized algorithm, performed better than WinID3 which uses more complex codes. The detailed coding system does show better performance with extremely large numbers of records and/or significant body fragmentation. © 2015 American Academy of Forensic Sciences.

  10. Shortest path problem on a grid network with unordered intermediate points

    NASA Astrophysics Data System (ADS)

    Saw, Veekeong; Rahman, Amirah; Eng Ong, Wen

    2017-10-01

    We consider a shortest path problem with single cost factor on a grid network with unordered intermediate points. A two stage heuristic algorithm is proposed to find a feasible solution path within a reasonable amount of time. To evaluate the performance of the proposed algorithm, computational experiments are performed on grid maps of varying size and number of intermediate points. Preliminary results for the problem are reported. Numerical comparisons against brute forcing show that the proposed algorithm consistently yields solutions that are within 10% of the optimal solution and uses significantly less computation time.

  11. Using Strassen's algorithm to accelerate the solution of linear systems

    NASA Technical Reports Server (NTRS)

    Bailey, David H.; Lee, King; Simon, Horst D.

    1990-01-01

    Strassen's algorithm for fast matrix-matrix multiplication has been implemented for matrices of arbitrary shapes on the CRAY-2 and CRAY Y-MP supercomputers. Several techniques have been used to reduce the scratch space requirement for this algorithm while simultaneously preserving a high level of performance. When the resulting Strassen-based matrix multiply routine is combined with some routines from the new LAPACK library, LU decomposition can be performed with rates significantly higher than those achieved by conventional means. We succeeded in factoring a 2048 x 2048 matrix on the CRAY Y-MP at a rate equivalent to 325 MFLOPS.

  12. Test Results for Entry Guidance Methods for Space Vehicles

    NASA Technical Reports Server (NTRS)

    Hanson, John M.; Jones, Robert E.

    2004-01-01

    There are a number of approaches to advanced guidance and control that have the potential for achieving the goals of significantly increasing reusable launch vehicle (or any space vehicle that enters an atmosphere) safety and reliability, and reducing the cost. This paper examines some approaches to entry guidance. An effort called Integration and Testing of Advanced Guidance and Control Technologies has recently completed a rigorous testing phase where these algorithms faced high-fidelity vehicle models and were required to perform a variety of representative tests. The algorithm developers spent substantial effort improving the algorithm performance in the testing. This paper lists the test cases used to demonstrate that the desired results are achieved, shows an automated test scoring method that greatly reduces the evaluation effort required, and displays results of the tests. Results show a significant improvement over previous guidance approaches. The two best-scoring algorithm approaches show roughly equivalent results and are ready to be applied to future vehicle concepts.

  13. Test Results for Entry Guidance Methods for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Hanson, John M.; Jones, Robert E.

    2003-01-01

    There are a number of approaches to advanced guidance and control (AG&C) that have the potential for achieving the goals of significantly increasing reusable launch vehicle (RLV) safety and reliability, and reducing the cost. This paper examines some approaches to entry guidance. An effort called Integration and Testing of Advanced Guidance and Control Technologies (ITAGCT) has recently completed a rigorous testing phase where these algorithms faced high-fidelity vehicle models and were required to perform a variety of representative tests. The algorithm developers spent substantial effort improving the algorithm performance in the testing. This paper lists the test cases used to demonstrate that the desired results are achieved, shows an automated test scoring method that greatly reduces the evaluation effort required, and displays results of the tests. Results show a significant improvement over previous guidance approaches. The two best-scoring algorithm approaches show roughly equivalent results and are ready to be applied to future reusable vehicle concepts.

  14. Sequential Insertion Heuristic with Adaptive Bee Colony Optimisation Algorithm for Vehicle Routing Problem with Time Windows

    PubMed Central

    Jawarneh, Sana; Abdullah, Salwani

    2015-01-01

    This paper presents a bee colony optimisation (BCO) algorithm to tackle the vehicle routing problem with time window (VRPTW). The VRPTW involves recovering an ideal set of routes for a fleet of vehicles serving a defined number of customers. The BCO algorithm is a population-based algorithm that mimics the social communication patterns of honeybees in solving problems. The performance of the BCO algorithm is dependent on its parameters, so the online (self-adaptive) parameter tuning strategy is used to improve its effectiveness and robustness. Compared with the basic BCO, the adaptive BCO performs better. Diversification is crucial to the performance of the population-based algorithm, but the initial population in the BCO algorithm is generated using a greedy heuristic, which has insufficient diversification. Therefore the ways in which the sequential insertion heuristic (SIH) for the initial population drives the population toward improved solutions are examined. Experimental comparisons indicate that the proposed adaptive BCO-SIH algorithm works well across all instances and is able to obtain 11 best results in comparison with the best-known results in the literature when tested on Solomon’s 56 VRPTW 100 customer instances. Also, a statistical test shows that there is a significant difference between the results. PMID:26132158

  15. An arrhythmia classification algorithm using a dedicated wavelet adapted to different subjects.

    PubMed

    Kim, Jinkwon; Min, Se Dong; Lee, Myoungho

    2011-06-27

    Numerous studies have been conducted regarding a heartbeat classification algorithm over the past several decades. However, many algorithms have also been studied to acquire robust performance, as biosignals have a large amount of variation among individuals. Various methods have been proposed to reduce the differences coming from personal characteristics, but these expand the differences caused by arrhythmia. In this paper, an arrhythmia classification algorithm using a dedicated wavelet adapted to individual subjects is proposed. We reduced the performance variation using dedicated wavelets, as in the ECG morphologies of the subjects. The proposed algorithm utilizes morphological filtering and a continuous wavelet transform with a dedicated wavelet. A principal component analysis and linear discriminant analysis were utilized to compress the morphological data transformed by the dedicated wavelets. An extreme learning machine was used as a classifier in the proposed algorithm. A performance evaluation was conducted with the MIT-BIH arrhythmia database. The results showed a high sensitivity of 97.51%, specificity of 85.07%, accuracy of 97.94%, and a positive predictive value of 97.26%. The proposed algorithm achieves better accuracy than other state-of-the-art algorithms with no intrasubject between the training and evaluation datasets. And it significantly reduces the amount of intervention needed by physicians.

  16. An arrhythmia classification algorithm using a dedicated wavelet adapted to different subjects

    PubMed Central

    2011-01-01

    Background Numerous studies have been conducted regarding a heartbeat classification algorithm over the past several decades. However, many algorithms have also been studied to acquire robust performance, as biosignals have a large amount of variation among individuals. Various methods have been proposed to reduce the differences coming from personal characteristics, but these expand the differences caused by arrhythmia. Methods In this paper, an arrhythmia classification algorithm using a dedicated wavelet adapted to individual subjects is proposed. We reduced the performance variation using dedicated wavelets, as in the ECG morphologies of the subjects. The proposed algorithm utilizes morphological filtering and a continuous wavelet transform with a dedicated wavelet. A principal component analysis and linear discriminant analysis were utilized to compress the morphological data transformed by the dedicated wavelets. An extreme learning machine was used as a classifier in the proposed algorithm. Results A performance evaluation was conducted with the MIT-BIH arrhythmia database. The results showed a high sensitivity of 97.51%, specificity of 85.07%, accuracy of 97.94%, and a positive predictive value of 97.26%. Conclusions The proposed algorithm achieves better accuracy than other state-of-the-art algorithms with no intrasubject between the training and evaluation datasets. And it significantly reduces the amount of intervention needed by physicians. PMID:21707989

  17. Annealed Importance Sampling Reversible Jump MCMC algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karagiannis, Georgios; Andrieu, Christophe

    2013-03-20

    It will soon be 20 years since reversible jump Markov chain Monte Carlo (RJ-MCMC) algorithms have been proposed. They have significantly extended the scope of Markov chain Monte Carlo simulation methods, offering the promise to be able to routinely tackle transdimensional sampling problems, as encountered in Bayesian model selection problems for example, in a principled and flexible fashion. Their practical efficient implementation, however, still remains a challenge. A particular difficulty encountered in practice is in the choice of the dimension matching variables (both their nature and their distribution) and the reversible transformations which allow one to define the one-to-one mappingsmore » underpinning the design of these algorithms. Indeed, even seemingly sensible choices can lead to algorithms with very poor performance. The focus of this paper is the development and performance evaluation of a method, annealed importance sampling RJ-MCMC (aisRJ), which addresses this problem by mitigating the sensitivity of RJ-MCMC algorithms to the aforementioned poor design. As we shall see the algorithm can be understood as being an “exact approximation” of an idealized MCMC algorithm that would sample from the model probabilities directly in a model selection set-up. Such an idealized algorithm may have good theoretical convergence properties, but typically cannot be implemented, and our algorithms can approximate the performance of such idealized algorithms to an arbitrary degree while not introducing any bias for any degree of approximation. Our approach combines the dimension matching ideas of RJ-MCMC with annealed importance sampling and its Markov chain Monte Carlo implementation. We illustrate the performance of the algorithm with numerical simulations which indicate that, although the approach may at first appear computationally involved, it is in fact competitive.« less

  18. Direction of Radio Finding via MUSIC (Multiple Signal Classification) Algorithm for Hardware Design System

    NASA Astrophysics Data System (ADS)

    Zhang, Zheng

    2017-10-01

    Concept of radio direction finding systems, which use radio direction finding is based on digital signal processing algorithms. Thus, the radio direction finding system becomes capable to locate and track signals by the both. Performance of radio direction finding significantly depends on effectiveness of digital signal processing algorithms. The algorithm uses the Direction of Arrival (DOA) algorithms to estimate the number of incidents plane waves on the antenna array and their angle of incidence. This manuscript investigates implementation of the DOA algorithms (MUSIC) on the uniform linear array in the presence of white noise. The experiment results exhibit that MUSIC algorithm changed well with the radio direction.

  19. Analysis of image thresholding segmentation algorithms based on swarm intelligence

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Lu, Kai; Gao, Yinghui; Yang, Bo

    2013-03-01

    Swarm intelligence-based image thresholding segmentation algorithms are playing an important role in the research field of image segmentation. In this paper, we briefly introduce the theories of four existing image segmentation algorithms based on swarm intelligence including fish swarm algorithm, artificial bee colony, bacteria foraging algorithm and particle swarm optimization. Then some image benchmarks are tested in order to show the differences of the segmentation accuracy, time consumption, convergence and robustness for Salt & Pepper noise and Gaussian noise of these four algorithms. Through these comparisons, this paper gives qualitative analyses for the performance variance of the four algorithms. The conclusions in this paper would give a significant guide for the actual image segmentation.

  20. Evaluation of hybrid algorithm for analysis of scattered light using ex vivo nuclear morphology measurements of cervical epithelium

    PubMed Central

    Ho, Derek; Drake, Tyler K.; Bentley, Rex C.; Valea, Fidel A.; Wax, Adam

    2015-01-01

    We evaluate a new hybrid algorithm for determining nuclear morphology using angle-resolved low coherence interferometry (a/LCI) measurements in ex vivo cervical tissue. The algorithm combines Mie theory based and continuous wavelet transform inverse light scattering analysis. The hybrid algorithm was validated and compared to traditional Mie theory based analysis using an ex vivo tissue data set. The hybrid algorithm achieved 100% agreement with pathology in distinguishing dysplastic and non-dysplastic biopsy sites in the pilot study. Significantly, the new algorithm performed over four times faster than traditional Mie theory based analysis. PMID:26309741

  1. Validation of VIIRS Cloud Base Heights at Night Using Ground and Satellite Measurements over Alaska

    NASA Astrophysics Data System (ADS)

    NOH, Y. J.; Miller, S. D.; Seaman, C.; Forsythe, J. M.; Brummer, R.; Lindsey, D. T.; Walther, A.; Heidinger, A. K.; Li, Y.

    2016-12-01

    Knowledge of Cloud Base Height (CBH) is critical to describing cloud radiative feedbacks in numerical models and is of practical significance to aviation communities. We have developed a new CBH algorithm constrained by Cloud Top Height (CTH) and Cloud Water Path (CWP) by performing a statistical analysis of A-Train satellite data. It includes an extinction-based method for thin cirrus. In the algorithm, cloud geometric thickness is derived with upstream CTH and CWP input and subtracted from CTH to generate the topmost layer CBH. The CBH information is a key parameter for an improved Cloud Cover/Layers product. The algorithm has been applied to the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi NPP spacecraft. Nighttime cloud optical properties for CWP are retrieved from the nighttime lunar cloud optical and microphysical properties (NLCOMP) algorithm based on a lunar reflectance model for the VIIRS Day/Night Band (DNB) measuring nighttime visible light such as moonlight. The DNB has innovative capabilities to fill the polar winter and nighttime gap of cloud observations which has been an important shortfall from conventional radiometers. The CBH products have been intensively evaluated against CloudSat data. The results showed the new algorithm yields significantly improved performance over the original VIIRS CBH algorithm. However, since CloudSat is now operational during daytime only due to a battery anomaly, the nighttime performance has not been fully assessed. This presentation will show our approach to assess the performance of the CBH algorithm at night. VIIRS CBHs are retrieved over the Alaska region from October 2015 to April 2016 using the Clouds from AVHRR Extended (CLAVR-x) processing system. Ground-based measurements from ceilometer and micropulse lidar at the Atmospheric Radiation Measurement (ARM) site on the North Slope of Alaska are used for the analysis. Local weather conditions are checked using temperature and precipitation observations at the site. CALIPSO data with near-simultaneous colocation are added for multi-layered cloud cases which may have high clouds aloft beyond the ground measurements. Multi-month statistics of performance and case studies will be shown. Additional efforts for algorithm refinements will be also discussed.

  2. Coverage-maximization in networks under resource constraints.

    PubMed

    Nandi, Subrata; Brusch, Lutz; Deutsch, Andreas; Ganguly, Niloy

    2010-06-01

    Efficient coverage algorithms are essential for information search or dispersal in all kinds of networks. We define an extended coverage problem which accounts for constrained resources of consumed bandwidth B and time T . Our solution to the network challenge is here studied for regular grids only. Using methods from statistical mechanics, we develop a coverage algorithm with proliferating message packets and temporally modulated proliferation rate. The algorithm performs as efficiently as a single random walker but O(B(d-2)/d) times faster, resulting in significant service speed-up on a regular grid of dimension d . The algorithm is numerically compared to a class of generalized proliferating random walk strategies and on regular grids shown to perform best in terms of the product metric of speed and efficiency.

  3. Signal detection on spontaneous reports of adverse events following immunisation: a comparison of the performance of a disproportionality-based algorithm and a time-to-onset-based algorithm

    PubMed Central

    van Holle, Lionel; Bauchau, Vincent

    2014-01-01

    Purpose Disproportionality methods measure how unexpected the observed number of adverse events is. Time-to-onset (TTO) methods measure how unexpected the TTO distribution of a vaccine-event pair is compared with what is expected from other vaccines and events. Our purpose is to compare the performance associated with each method. Methods For the disproportionality algorithms, we defined 336 combinations of stratification factors (sex, age, region and year) and threshold values of the multi-item gamma Poisson shrinker (MGPS). For the TTO algorithms, we defined 18 combinations of significance level and time windows. We used spontaneous reports of adverse events recorded for eight vaccines. The vaccine product labels were used as proxies for true safety signals. Algorithms were ranked according to their positive predictive value (PPV) for each vaccine separately; amedian rank was attributed to each algorithm across vaccines. Results The algorithm with the highest median rank was based on TTO with a significance level of 0.01 and a time window of 60 days after immunisation. It had an overall PPV 2.5 times higher than for the highest-ranked MGPS algorithm, 16th rank overall, which was fully stratified and had a threshold value of 0.8. A TTO algorithm with roughly the same sensitivity as the highest-ranked MGPS had better specificity but longer time-to-detection. Conclusions Within the scope of this study, the majority of the TTO algorithms presented a higher PPV than for any MGPS algorithm. Considering the complementarity of TTO and disproportionality methods, a signal detection strategy combining them merits further investigation. PMID:24038719

  4. Development and validation of an algorithm for laser application in wound treatment 1

    PubMed Central

    da Cunha, Diequison Rite; Salomé, Geraldo Magela; Massahud, Marcelo Renato; Mendes, Bruno; Ferreira, Lydia Masako

    2017-01-01

    ABSTRACT Objective: To develop and validate an algorithm for laser wound therapy. Method: Methodological study and literature review. For the development of the algorithm, a review was performed in the Health Sciences databases of the past ten years. The algorithm evaluation was performed by 24 participants, nurses, physiotherapists, and physicians. For data analysis, the Cronbach’s alpha coefficient and the chi-square test for independence was used. The level of significance of the statistical test was established at 5% (p<0.05). Results: The professionals’ responses regarding the facility to read the algorithm indicated: 41.70%, great; 41.70%, good; 16.70%, regular. With regard the algorithm being sufficient for supporting decisions related to wound evaluation and wound cleaning, 87.5% said yes to both questions. Regarding the participants’ opinion that the algorithm contained enough information to support their decision regarding the choice of laser parameters, 91.7% said yes. The questionnaire presented reliability using the Cronbach’s alpha coefficient test (α = 0.962). Conclusion: The developed and validated algorithm showed reliability for evaluation, wound cleaning, and use of laser therapy in wounds. PMID:29211197

  5. A Modified Distributed Bees Algorithm for Multi-Sensor Task Allocation.

    PubMed

    Tkach, Itshak; Jevtić, Aleksandar; Nof, Shimon Y; Edan, Yael

    2018-03-02

    Multi-sensor systems can play an important role in monitoring tasks and detecting targets. However, real-time allocation of heterogeneous sensors to dynamic targets/tasks that are unknown a priori in their locations and priorities is a challenge. This paper presents a Modified Distributed Bees Algorithm (MDBA) that is developed to allocate stationary heterogeneous sensors to upcoming unknown tasks using a decentralized, swarm intelligence approach to minimize the task detection times. Sensors are allocated to tasks based on sensors' performance, tasks' priorities, and the distances of the sensors from the locations where the tasks are being executed. The algorithm was compared to a Distributed Bees Algorithm (DBA), a Bees System, and two common multi-sensor algorithms, market-based and greedy-based algorithms, which were fitted for the specific task. Simulation analyses revealed that MDBA achieved statistically significant improved performance by 7% with respect to DBA as the second-best algorithm, and by 19% with respect to Greedy algorithm, which was the worst, thus indicating its fitness to provide solutions for heterogeneous multi-sensor systems.

  6. A Modified Distributed Bees Algorithm for Multi-Sensor Task Allocation †

    PubMed Central

    Nof, Shimon Y.; Edan, Yael

    2018-01-01

    Multi-sensor systems can play an important role in monitoring tasks and detecting targets. However, real-time allocation of heterogeneous sensors to dynamic targets/tasks that are unknown a priori in their locations and priorities is a challenge. This paper presents a Modified Distributed Bees Algorithm (MDBA) that is developed to allocate stationary heterogeneous sensors to upcoming unknown tasks using a decentralized, swarm intelligence approach to minimize the task detection times. Sensors are allocated to tasks based on sensors’ performance, tasks’ priorities, and the distances of the sensors from the locations where the tasks are being executed. The algorithm was compared to a Distributed Bees Algorithm (DBA), a Bees System, and two common multi-sensor algorithms, market-based and greedy-based algorithms, which were fitted for the specific task. Simulation analyses revealed that MDBA achieved statistically significant improved performance by 7% with respect to DBA as the second-best algorithm, and by 19% with respect to Greedy algorithm, which was the worst, thus indicating its fitness to provide solutions for heterogeneous multi-sensor systems. PMID:29498683

  7. Effects of activity and energy budget balancing algorithm on laboratory performance of a fish bioenergetics model

    USGS Publications Warehouse

    Madenjian, Charles P.; David, Solomon R.; Pothoven, Steven A.

    2012-01-01

    We evaluated the performance of the Wisconsin bioenergetics model for lake trout Salvelinus namaycush that were fed ad libitum in laboratory tanks under regimes of low activity and high activity. In addition, we compared model performance under two different model algorithms: (1) balancing the lake trout energy budget on day t based on lake trout energy density on day t and (2) balancing the lake trout energy budget on day t based on lake trout energy density on day t + 1. Results indicated that the model significantly underestimated consumption for both inactive and active lake trout when algorithm 1 was used and that the degree of underestimation was similar for the two activity levels. In contrast, model performance substantially improved when using algorithm 2, as no detectable bias was found in model predictions of consumption for inactive fish and only a slight degree of overestimation was detected for active fish. The energy budget was accurately balanced by using algorithm 2 but not by using algorithm 1. Based on the results of this study, we recommend the use of algorithm 2 to estimate food consumption by fish in the field. Our study results highlight the importance of accurately accounting for changes in fish energy density when balancing the energy budget; furthermore, these results have implications for the science of evaluating fish bioenergetics model performance and for more accurate estimation of food consumption by fish in the field when fish energy density undergoes relatively rapid changes.

  8. TREFEX: Trend Estimation and Change Detection in the Response of MOX Gas Sensors

    PubMed Central

    Pashami, Sepideh; Lilienthal, Achim J.; Schaffernicht, Erik; Trincavelli, Marco

    2013-01-01

    Many applications of metal oxide gas sensors can benefit from reliable algorithms to detect significant changes in the sensor response. Significant changes indicate a change in the emission modality of a distant gas source and occur due to a sudden change of concentration or exposure to a different compound. As a consequence of turbulent gas transport and the relatively slow response and recovery times of metal oxide sensors, their response in open sampling configuration exhibits strong fluctuations that interfere with the changes of interest. In this paper we introduce TREFEX, a novel change point detection algorithm, especially designed for metal oxide gas sensors in an open sampling system. TREFEX models the response of MOX sensors as a piecewise exponential signal and considers the junctions between consecutive exponentials as change points. We formulate non-linear trend filtering and change point detection as a parameter-free convex optimization problem for single sensors and sensor arrays. We evaluate the performance of the TREFEX algorithm experimentally for different metal oxide sensors and several gas emission profiles. A comparison with the previously proposed GLR method shows a clearly superior performance of the TREFEX algorithm both in detection performance and in estimating the change time. PMID:23736853

  9. Parameter optimization of electrochemical machining process using black hole algorithm

    NASA Astrophysics Data System (ADS)

    Singh, Dinesh; Shukla, Rajkamal

    2017-12-01

    Advanced machining processes are significant as higher accuracy in machined component is required in the manufacturing industries. Parameter optimization of machining processes gives optimum control to achieve the desired goals. In this paper, electrochemical machining (ECM) process is considered to evaluate the performance of the considered process using black hole algorithm (BHA). BHA considers the fundamental idea of a black hole theory and it has less operating parameters to tune. The two performance parameters, material removal rate (MRR) and overcut (OC) are considered separately to get optimum machining parameter settings using BHA. The variations of process parameters with respect to the performance parameters are reported for better and effective understanding of the considered process using single objective at a time. The results obtained using BHA are found better while compared with results of other metaheuristic algorithms, such as, genetic algorithm (GA), artificial bee colony (ABC) and bio-geography based optimization (BBO) attempted by previous researchers.

  10. A low complexity reweighted proportionate affine projection algorithm with memory and row action projection

    NASA Astrophysics Data System (ADS)

    Liu, Jianming; Grant, Steven L.; Benesty, Jacob

    2015-12-01

    A new reweighted proportionate affine projection algorithm (RPAPA) with memory and row action projection (MRAP) is proposed in this paper. The reweighted PAPA is derived from a family of sparseness measures, which demonstrate performance similar to mu-law and the l 0 norm PAPA but with lower computational complexity. The sparseness of the channel is taken into account to improve the performance for dispersive system identification. Meanwhile, the memory of the filter's coefficients is combined with row action projections (RAP) to significantly reduce computational complexity. Simulation results demonstrate that the proposed RPAPA MRAP algorithm outperforms both the affine projection algorithm (APA) and PAPA, and has performance similar to l 0 PAPA and mu-law PAPA, in terms of convergence speed and tracking ability. Meanwhile, the proposed RPAPA MRAP has much lower computational complexity than PAPA, mu-law PAPA, and l 0 PAPA, etc., which makes it very appealing for real-time implementation.

  11. General purpose graphic processing unit implementation of adaptive pulse compression algorithms

    NASA Astrophysics Data System (ADS)

    Cai, Jingxiao; Zhang, Yan

    2017-07-01

    This study introduces a practical approach to implement real-time signal processing algorithms for general surveillance radar based on NVIDIA graphical processing units (GPUs). The pulse compression algorithms are implemented using compute unified device architecture (CUDA) libraries such as CUDA basic linear algebra subroutines and CUDA fast Fourier transform library, which are adopted from open source libraries and optimized for the NVIDIA GPUs. For more advanced, adaptive processing algorithms such as adaptive pulse compression, customized kernel optimization is needed and investigated. A statistical optimization approach is developed for this purpose without needing much knowledge of the physical configurations of the kernels. It was found that the kernel optimization approach can significantly improve the performance. Benchmark performance is compared with the CPU performance in terms of processing accelerations. The proposed implementation framework can be used in various radar systems including ground-based phased array radar, airborne sense and avoid radar, and aerospace surveillance radar.

  12. Glycemic penalty index for adequately assessing and comparing different blood glucose control algorithms

    PubMed Central

    Van Herpe, Tom; De Brabanter, Jos; Beullens, Martine; De Moor, Bart; Van den Berghe, Greet

    2008-01-01

    Introduction Blood glucose (BG) control performed by intensive care unit (ICU) nurses is becoming standard practice for critically ill patients. New (semi-automated) 'BG control' algorithms (or 'insulin titration' algorithms) are under development, but these require stringent validation before they can replace the currently used algorithms. Existing methods for objectively comparing different insulin titration algorithms show weaknesses. In the current study, a new approach for appropriately assessing the adequacy of different algorithms is proposed. Methods Two ICU patient populations (with different baseline characteristics) were studied, both treated with a similar 'nurse-driven' insulin titration algorithm targeting BG levels of 80 to 110 mg/dl. A new method for objectively evaluating BG deviations from normoglycemia was founded on a smooth penalty function. Next, the performance of this new evaluation tool was compared with the current standard assessment methods, on an individual as well as a population basis. Finally, the impact of four selected parameters (the average BG sampling frequency, the duration of algorithm application, the severity of disease, and the type of illness) on the performance of an insulin titration algorithm was determined by multiple regression analysis. Results The glycemic penalty index (GPI) was proposed as a tool for assessing the overall glycemic control behavior in ICU patients. The GPI of a patient is the average of all penalties that are individually assigned to each measured BG value based on the optimized smooth penalty function. The computation of this index returns a number between 0 (no penalty) and 100 (the highest penalty). For some patients, the assessment of the BG control behavior using the traditional standard evaluation methods was different from the evaluation with GPI. Two parameters were found to have a significant impact on GPI: the BG sampling frequency and the duration of algorithm application. A higher BG sampling frequency and a longer algorithm application duration resulted in an apparently better performance, as indicated by a lower GPI. Conclusion The GPI is an alternative method for evaluating the performance of BG control algorithms. The blood glucose sampling frequency and the duration of algorithm application should be similar when comparing algorithms. PMID:18302732

  13. Iterative channel decoding of FEC-based multiple-description codes.

    PubMed

    Chang, Seok-Ho; Cosman, Pamela C; Milstein, Laurence B

    2012-03-01

    Multiple description coding has been receiving attention as a robust transmission framework for multimedia services. This paper studies the iterative decoding of FEC-based multiple description codes. The proposed decoding algorithms take advantage of the error detection capability of Reed-Solomon (RS) erasure codes. The information of correctly decoded RS codewords is exploited to enhance the error correction capability of the Viterbi algorithm at the next iteration of decoding. In the proposed algorithm, an intradescription interleaver is synergistically combined with the iterative decoder. The interleaver does not affect the performance of noniterative decoding but greatly enhances the performance when the system is iteratively decoded. We also address the optimal allocation of RS parity symbols for unequal error protection. For the optimal allocation in iterative decoding, we derive mathematical equations from which the probability distributions of description erasures can be generated in a simple way. The performance of the algorithm is evaluated over an orthogonal frequency-division multiplexing system. The results show that the performance of the multiple description codes is significantly enhanced.

  14. A Flexible Computational Framework Using R and Map-Reduce for Permutation Tests of Massive Genetic Analysis of Complex Traits.

    PubMed

    Mahjani, Behrang; Toor, Salman; Nettelblad, Carl; Holmgren, Sverker

    2017-01-01

    In quantitative trait locus (QTL) mapping significance of putative QTL is often determined using permutation testing. The computational needs to calculate the significance level are immense, 10 4 up to 10 8 or even more permutations can be needed. We have previously introduced the PruneDIRECT algorithm for multiple QTL scan with epistatic interactions. This algorithm has specific strengths for permutation testing. Here, we present a flexible, parallel computing framework for identifying multiple interacting QTL using the PruneDIRECT algorithm which uses the map-reduce model as implemented in Hadoop. The framework is implemented in R, a widely used software tool among geneticists. This enables users to rearrange algorithmic steps to adapt genetic models, search algorithms, and parallelization steps to their needs in a flexible way. Our work underlines the maturity of accessing distributed parallel computing for computationally demanding bioinformatics applications through building workflows within existing scientific environments. We investigate the PruneDIRECT algorithm, comparing its performance to exhaustive search and DIRECT algorithm using our framework on a public cloud resource. We find that PruneDIRECT is vastly superior for permutation testing, and perform 2 ×10 5 permutations for a 2D QTL problem in 15 hours, using 100 cloud processes. We show that our framework scales out almost linearly for a 3D QTL search.

  15. Automatic control algorithm effects on energy production

    NASA Technical Reports Server (NTRS)

    Mcnerney, G. M.

    1981-01-01

    A computer model was developed using actual wind time series and turbine performance data to simulate the power produced by the Sandia 17-m VAWT operating in automatic control. The model was used to investigate the influence of starting algorithms on annual energy production. The results indicate that, depending on turbine and local wind characteristics, a bad choice of a control algorithm can significantly reduce overall energy production. The model can be used to select control algorithms and threshold parameters that maximize long term energy production. The results from local site and turbine characteristics were generalized to obtain general guidelines for control algorithm design.

  16. Hypoglycemia-Associated EEG Changes in Prepubertal Children With Type 1 Diabetes.

    PubMed

    Hansen, Grith Lærkholm; Foli-Andersen, Pia; Fredheim, Siri; Juhl, Claus; Remvig, Line Sofie; Rose, Martin H; Rosenzweig, Ivana; Beniczky, Sándor; Olsen, Birthe; Pilgaard, Kasper; Johannesen, Jesper

    2016-11-01

    The purpose of this study was to explore the possible difference in the electroencephalogram (EEG) pattern between euglycemia and hypoglycemia in children with type 1 diabetes (T1D) during daytime and during sleep. The aim is to develop a hypoglycemia alarm based on continuous EEG measurement and real-time signal processing. Eight T1D patients aged 6-12 years were included. A hyperinsulinemic hypoglycemic clamp was performed to induce hypoglycemia both during daytime and during sleep. Continuous EEG monitoring was performed. For each patient, quantitative EEG (qEEG) measures were calculated. A within-patient analysis was conducted comparing hypoglycemia versus euglycemia changes in the qEEG. The nonparametric Wilcoxon signed rank test was performed. A real-time analyzing algorithm developed for adults was applied. The qEEG showed significant differences in specific bands comparing hypoglycemia to euglycemia both during daytime and during sleep. In daytime the EEG-based algorithm identified hypoglycemia in all children on average at a blood glucose (BG) level of 2.5 ± 0.5 mmol/l and 18.4 (ranging from 0 to 55) minutes prior to blood glucose nadir. During sleep the nighttime algorithm did not perform. We found significant differences in the qEEG in euglycemia and hypoglycemia both during daytime and during sleep. The algorithm developed for adults detected hypoglycemia in all children during daytime. The algorithm had too many false alarms during the night because it was more sensitive to deep sleep EEG patterns than hypoglycemia-related EEG changes. An algorithm for nighttime EEG is needed for accurate detection of nocturnal hypoglycemic episodes in children. This study indicates that a hypoglycemia alarm may be developed using real-time continuous EEG monitoring. © 2016 Diabetes Technology Society.

  17. Unsupervised detection and removal of muscle artifacts from scalp EEG recordings using canonical correlation analysis, wavelets and random forests.

    PubMed

    Anastasiadou, Maria N; Christodoulakis, Manolis; Papathanasiou, Eleftherios S; Papacostas, Savvas S; Mitsis, Georgios D

    2017-09-01

    This paper proposes supervised and unsupervised algorithms for automatic muscle artifact detection and removal from long-term EEG recordings, which combine canonical correlation analysis (CCA) and wavelets with random forests (RF). The proposed algorithms first perform CCA and continuous wavelet transform of the canonical components to generate a number of features which include component autocorrelation values and wavelet coefficient magnitude values. A subset of the most important features is subsequently selected using RF and labelled observations (supervised case) or synthetic data constructed from the original observations (unsupervised case). The proposed algorithms are evaluated using realistic simulation data as well as 30min epochs of non-invasive EEG recordings obtained from ten patients with epilepsy. We assessed the performance of the proposed algorithms using classification performance and goodness-of-fit values for noisy and noise-free signal windows. In the simulation study, where the ground truth was known, the proposed algorithms yielded almost perfect performance. In the case of experimental data, where expert marking was performed, the results suggest that both the supervised and unsupervised algorithm versions were able to remove artifacts without affecting noise-free channels considerably, outperforming standard CCA, independent component analysis (ICA) and Lagged Auto-Mutual Information Clustering (LAMIC). The proposed algorithms achieved excellent performance for both simulation and experimental data. Importantly, for the first time to our knowledge, we were able to perform entirely unsupervised artifact removal, i.e. without using already marked noisy data segments, achieving performance that is comparable to the supervised case. Overall, the results suggest that the proposed algorithms yield significant future potential for improving EEG signal quality in research or clinical settings without the need for marking by expert neurophysiologists, EMG signal recording and user visual inspection. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  18. Benchmarking homogenization algorithms for monthly data

    NASA Astrophysics Data System (ADS)

    Venema, V. K. C.; Mestre, O.; Aguilar, E.; Auer, I.; Guijarro, J. A.; Domonkos, P.; Vertacnik, G.; Szentimrey, T.; Stepanek, P.; Zahradnicek, P.; Viarre, J.; Müller-Westermeier, G.; Lakatos, M.; Williams, C. N.; Menne, M. J.; Lindau, R.; Rasol, D.; Rustemeier, E.; Kolokythas, K.; Marinova, T.; Andresen, L.; Acquaotta, F.; Fratiannil, S.; Cheval, S.; Klancar, M.; Brunetti, M.; Gruber, C.; Prohom Duran, M.; Likso, T.; Esteban, P.; Brandsma, T.; Willett, K.

    2013-09-01

    The COST (European Cooperation in Science and Technology) Action ES0601: Advances in homogenization methods of climate series: an integrated approach (HOME) has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies. The algorithms were validated against a realistic benchmark dataset. Participants provided 25 separate homogenized contributions as part of the blind study as well as 22 additional solutions submitted after the details of the imposed inhomogeneities were revealed. These homogenized datasets were assessed by a number of performance metrics including i) the centered root mean square error relative to the true homogeneous values at various averaging scales, ii) the error in linear trend estimates and iii) traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve precipitation data. Moreover, state-of-the-art relative homogenization algorithms developed to work with an inhomogeneous reference are shown to perform best. The study showed that currently automatic algorithms can perform as well as manual ones.

  19. Hardware Architectures for Data-Intensive Computing Problems: A Case Study for String Matching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumeo, Antonino; Villa, Oreste; Chavarría-Miranda, Daniel

    DNA analysis is an emerging application of high performance bioinformatic. Modern sequencing machinery are able to provide, in few hours, large input streams of data, which needs to be matched against exponentially growing databases of known fragments. The ability to recognize these patterns effectively and fastly may allow extending the scale and the reach of the investigations performed by biology scientists. Aho-Corasick is an exact, multiple pattern matching algorithm often at the base of this application. High performance systems are a promising platform to accelerate this algorithm, which is computationally intensive but also inherently parallel. Nowadays, high performance systems alsomore » include heterogeneous processing elements, such as Graphic Processing Units (GPUs), to further accelerate parallel algorithms. Unfortunately, the Aho-Corasick algorithm exhibits large performance variability, depending on the size of the input streams, on the number of patterns to search and on the number of matches, and poses significant challenges on current high performance software and hardware implementations. An adequate mapping of the algorithm on the target architecture, coping with the limit of the underlining hardware, is required to reach the desired high throughputs. In this paper, we discuss the implementation of the Aho-Corasick algorithm for GPU-accelerated high performance systems. We present an optimized implementation of Aho-Corasick for GPUs and discuss its tradeoffs on the Tesla T10 and he new Tesla T20 (codename Fermi) GPUs. We then integrate the optimized GPU code, respectively, in a MPI-based and in a pthreads-based load balancer to enable execution of the algorithm on clusters and large sharedmemory multiprocessors (SMPs) accelerated with multiple GPUs.« less

  20. SU-E-T-91: Accuracy of Dose Calculation Algorithms for Patients Undergoing Stereotactic Ablative Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tajaldeen, A; Ramachandran, P; Geso, M

    2015-06-15

    Purpose: The purpose of this study was to investigate and quantify the variation in dose distributions in small field lung cancer radiotherapy using seven different dose calculation algorithms. Methods: The study was performed in 21 lung cancer patients who underwent Stereotactic Ablative Body Radiotherapy (SABR). Two different methods (i) Same dose coverage to the target volume (named as same dose method) (ii) Same monitor units in all algorithms (named as same monitor units) were used for studying the performance of seven different dose calculation algorithms in XiO and Eclipse treatment planning systems. The seven dose calculation algorithms include Superposition, Fastmore » superposition, Fast Fourier Transform ( FFT) Convolution, Clarkson, Anisotropic Analytic Algorithm (AAA), Acurous XB and pencil beam (PB) algorithms. Prior to this, a phantom study was performed to assess the accuracy of these algorithms. Superposition algorithm was used as a reference algorithm in this study. The treatment plans were compared using different dosimetric parameters including conformity, heterogeneity and dose fall off index. In addition to this, the dose to critical structures like lungs, heart, oesophagus and spinal cord were also studied. Statistical analysis was performed using Prism software. Results: The mean±stdev with conformity index for Superposition, Fast superposition, Clarkson and FFT convolution algorithms were 1.29±0.13, 1.31±0.16, 2.2±0.7 and 2.17±0.59 respectively whereas for AAA, pencil beam and Acurous XB were 1.4±0.27, 1.66±0.27 and 1.35±0.24 respectively. Conclusion: Our study showed significant variations among the seven different algorithms. Superposition and AcurosXB algorithms showed similar values for most of the dosimetric parameters. Clarkson, FFT convolution and pencil beam algorithms showed large differences as compared to superposition algorithms. Based on our study, we recommend Superposition and AcurosXB algorithms as the first choice of algorithms in lung cancer radiotherapy involving small fields. However, further investigation by Monte Carlo simulation is required to confirm our results.« less

  1. Systematic review of dermoscopy and digital dermoscopy/ artificial intelligence for the diagnosis of melanoma.

    PubMed

    Rajpara, S M; Botello, A P; Townend, J; Ormerod, A D

    2009-09-01

    Dermoscopy improves diagnostic accuracy of the unaided eye for melanoma, and digital dermoscopy with artificial intelligence or computer diagnosis has also been shown useful for the diagnosis of melanoma. At present there is no clear evidence regarding the diagnostic accuracy of dermoscopy compared with artificial intelligence. To evaluate the diagnostic accuracy of dermoscopy and digital dermoscopy/artificial intelligence for melanoma diagnosis and to compare the diagnostic accuracy of the different dermoscopic algorithms with each other and with digital dermoscopy/artificial intelligence for the detection of melanoma. A literature search on dermoscopy and digital dermoscopy/artificial intelligence for melanoma diagnosis was performed using several databases. Titles and abstracts of the retrieved articles were screened using a literature evaluation form. A quality assessment form was developed to assess the quality of the included studies. Heterogeneity among the studies was assessed. Pooled data were analysed using meta-analytical methods and comparisons between different algorithms were performed. Of 765 articles retrieved, 30 studies were eligible for meta-analysis. Pooled sensitivity for artificial intelligence was slightly higher than for dermoscopy (91% vs. 88%; P = 0.076). Pooled specificity for dermoscopy was significantly better than artificial intelligence (86% vs. 79%; P < 0.001). Pooled diagnostic odds ratio was 51.5 for dermoscopy and 57.8 for artificial intelligence, which were not significantly different (P = 0.783). There were no significance differences in diagnostic odds ratio among the different dermoscopic diagnostic algorithms. Dermoscopy and artificial intelligence performed equally well for diagnosis of melanocytic skin lesions. There was no significant difference in the diagnostic performance of various dermoscopy algorithms. The three-point checklist, the seven-point checklist and Menzies score had better diagnostic odds ratios than the others; however, these results need to be confirmed by a large-scale high-quality population-based study.

  2. Scalable Parallel Density-based Clustering and Applications

    NASA Astrophysics Data System (ADS)

    Patwary, Mostofa Ali

    2014-04-01

    Recently, density-based clustering algorithms (DBSCAN and OPTICS) have gotten significant attention of the scientific community due to their unique capability of discovering arbitrary shaped clusters and eliminating noise data. These algorithms have several applications, which require high performance computing, including finding halos and subhalos (clusters) from massive cosmology data in astrophysics, analyzing satellite images, X-ray crystallography, and anomaly detection. However, parallelization of these algorithms are extremely challenging as they exhibit inherent sequential data access order, unbalanced workload resulting in low parallel efficiency. To break the data access sequentiality and to achieve high parallelism, we develop new parallel algorithms, both for DBSCAN and OPTICS, designed using graph algorithmic techniques. For example, our parallel DBSCAN algorithm exploits the similarities between DBSCAN and computing connected components. Using datasets containing up to a billion floating point numbers, we show that our parallel density-based clustering algorithms significantly outperform the existing algorithms, achieving speedups up to 27.5 on 40 cores on shared memory architecture and speedups up to 5,765 using 8,192 cores on distributed memory architecture. In our experiments, we found that while achieving the scalability, our algorithms produce clustering results with comparable quality to the classical algorithms.

  3. Obtaining highly excited eigenstates of the localized XX chain via DMRG-X.

    PubMed

    Devakul, Trithep; Khemani, Vedika; Pollmann, Frank; Huse, David A; Sondhi, S L

    2017-12-13

    We benchmark a variant of the recently introduced density matrix renormalization group (DMRG)-X algorithm against exact results for the localized random field XX chain. We find that the eigenstates obtained via DMRG-X exhibit a highly accurate l-bit description for system sizes much bigger than the direct, many-body, exact diagonalization in the spin variables is able to access. We take advantage of the underlying free fermion description of the XX model to accurately test the strengths and limitations of this algorithm for large system sizes. We discuss the theoretical constraints on the performance of the algorithm from the entanglement properties of the eigenstates, and its actual performance at different values of disorder. A small but significant improvement to the algorithm is also presented, which helps significantly with convergence. We find that, at high entanglement, DMRG-X shows a bias towards eigenstates with low entanglement, but can be improved with increased bond dimension. This result suggests that one must be careful when applying the algorithm for interacting many-body localized spin models near a transition.This article is part of the themed issue 'Breakdown of ergodicity in quantum systems: from solids to synthetic matter'. © 2017 The Author(s).

  4. Obtaining highly excited eigenstates of the localized XX chain via DMRG-X

    NASA Astrophysics Data System (ADS)

    Devakul, Trithep; Khemani, Vedika; Pollmann, Frank; Huse, David A.; Sondhi, S. L.

    2017-10-01

    We benchmark a variant of the recently introduced density matrix renormalization group (DMRG)-X algorithm against exact results for the localized random field XX chain. We find that the eigenstates obtained via DMRG-X exhibit a highly accurate l-bit description for system sizes much bigger than the direct, many-body, exact diagonalization in the spin variables is able to access. We take advantage of the underlying free fermion description of the XX model to accurately test the strengths and limitations of this algorithm for large system sizes. We discuss the theoretical constraints on the performance of the algorithm from the entanglement properties of the eigenstates, and its actual performance at different values of disorder. A small but significant improvement to the algorithm is also presented, which helps significantly with convergence. We find that, at high entanglement, DMRG-X shows a bias towards eigenstates with low entanglement, but can be improved with increased bond dimension. This result suggests that one must be careful when applying the algorithm for interacting many-body localized spin models near a transition. This article is part of the themed issue 'Breakdown of ergodicity in quantum systems: from solids to synthetic matter'.

  5. Optimal design of minimum mean-square error noise reduction algorithms using the simulated annealing technique.

    PubMed

    Bai, Mingsian R; Hsieh, Ping-Ju; Hur, Kur-Nan

    2009-02-01

    The performance of the minimum mean-square error noise reduction (MMSE-NR) algorithm in conjunction with time-recursive averaging (TRA) for noise estimation is found to be very sensitive to the choice of two recursion parameters. To address this problem in a more systematic manner, this paper proposes an optimization method to efficiently search the optimal parameters of the MMSE-TRA-NR algorithms. The objective function is based on a regression model, whereas the optimization process is carried out with the simulated annealing algorithm that is well suited for problems with many local optima. Another NR algorithm proposed in the paper employs linear prediction coding as a preprocessor for extracting the correlated portion of human speech. Objective and subjective tests were undertaken to compare the optimized MMSE-TRA-NR algorithm with several conventional NR algorithms. The results of subjective tests were processed by using analysis of variance to justify the statistic significance. A post hoc test, Tukey's Honestly Significant Difference, was conducted to further assess the pairwise difference between the NR algorithms.

  6. Subsonic flight test evaluation of a performance seeking control algorithm on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Gilyard, Glenn B.; Orme, John S.

    1992-01-01

    The subsonic flight test evaluation phase of the NASA F-15 (powered by F 100 engines) performance seeking control program was completed for single-engine operation at part- and military-power settings. The subsonic performance seeking control algorithm optimizes the quasi-steady-state performance of the propulsion system for three modes of operation. The minimum fuel flow mode minimizes fuel consumption. The minimum thrust mode maximizes thrust at military power. Decreases in thrust-specific fuel consumption of 1 to 2 percent were measured in the minimum fuel flow mode; these fuel savings are significant, especially for supersonic cruise aircraft. Decreases of up to approximately 100 degree R in fan turbine inlet temperature were measured in the minimum temperature mode. Temperature reductions of this magnitude would more than double turbine life if inlet temperature was the only life factor. Measured thrust increases of up to approximately 15 percent in the maximum thrust mode cause substantial increases in aircraft acceleration. The system dynamics of the closed-loop algorithm operation were good. The subsonic flight phase has validated the performance seeking control technology, which can significantly benefit the next generation of fighter and transport aircraft.

  7. A pragmatic evidence-based clinical management algorithm for burning mouth syndrome.

    PubMed

    Kim, Yohanan; Yoo, Timothy; Han, Peter; Liu, Yuan; Inman, Jared C

    2018-04-01

    Burning mouth syndrome is a poorly understood disease process with no current standard of treatment. The goal of this article is to provide an evidence-based, practical, clinical algorithm as a guideline for the treatment of burning mouth syndrome. Using available evidence and clinical experience, a multi-step management algorithm was developed. A retrospective cohort study was then performed, following STROBE statement guidelines, comparing outcomes of patients who were managed using the algorithm and those who were managed without. Forty-seven patients were included in the study, with 21 (45%) managed using the algorithm and 26 (55%) managed without. The mean age overall was 60.4 ±16.5 years, and most patients (39, 83%) were female. Cohorts showed no statistical difference in age, sex, overall follow-up time, dysgeusia, geographic tongue, or psychiatric disorder; xerostomia, however, was significantly different, skewed toward the algorithm group. Significantly more non-algorithm patients did not continue care (69% vs. 29%, p =0.001). The odds ratio of not continuing care for the non-algorithm group compared to the algorithm group was 5.6 [1.6, 19.8]. Improvement in pain was significantly more likely in the algorithm group ( p =0.001), with an odds ratio of 27.5 [3.1, 242.0]. We present a basic clinical management algorithm for burning mouth syndrome which may increase the likelihood of pain improvement and patient follow-up. Key words: Burning mouth syndrome, burning tongue, glossodynia, oral pain, oral burning, therapy, treatment.

  8. Increasing BCI communication rates with dynamic stopping towards more practical use: an ALS study

    NASA Astrophysics Data System (ADS)

    Mainsah, B. O.; Collins, L. M.; Colwell, K. A.; Sellers, E. W.; Ryan, D. B.; Caves, K.; Throckmorton, C. S.

    2015-02-01

    Objective. The P300 speller is a brain-computer interface (BCI) that can possibly restore communication abilities to individuals with severe neuromuscular disabilities, such as amyotrophic lateral sclerosis (ALS), by exploiting elicited brain signals in electroencephalography (EEG) data. However, accurate spelling with BCIs is slow due to the need to average data over multiple trials to increase the signal-to-noise ratio (SNR) of the elicited brain signals. Probabilistic approaches to dynamically control data collection have shown improved performance in non-disabled populations; however, validation of these approaches in a target BCI user population has not occurred. Approach. We have developed a data-driven algorithm for the P300 speller based on Bayesian inference that improves spelling time by adaptively selecting the number of trials based on the acute SNR of a user’s EEG data. We further enhanced the algorithm by incorporating information about the user’s language. In this current study, we test and validate the algorithms online in a target BCI user population, by comparing the performance of the dynamic stopping (DS) (or early stopping) algorithms against the current state-of-the-art method, static data collection, where the amount of data collected is fixed prior to online operation. Main results. Results from online testing of the DS algorithms in participants with ALS demonstrate a significant increase in communication rate as measured in bits/min (100-300%), and theoretical bit rate (100-550%), while maintaining selection accuracy. Participants also overwhelmingly preferred the DS algorithms. Significance. We have developed a viable BCI algorithm that has been tested in a target BCI population which has the potential for translation to improve BCI speller performance towards more practical use for communication.

  9. Applying Computer Models to Realize Closed-Loop Neonatal Oxygen Therapy.

    PubMed

    Morozoff, Edmund; Smyth, John A; Saif, Mehrdad

    2017-01-01

    Within the context of automating neonatal oxygen therapy, this article describes the transformation of an idea verified by a computer model into a device actuated by a computer model. Computer modeling of an entire neonatal oxygen therapy system can facilitate the development of closed-loop control algorithms by providing a verification platform and speeding up algorithm development. In this article, we present a method of mathematically modeling the system's components: the oxygen transport within the patient, the oxygen blender, the controller, and the pulse oximeter. Furthermore, within the constraints of engineering a product, an idealized model of the neonatal oxygen transport component may be integrated effectively into the control algorithm of a device, referred to as the adaptive model. Manual and closed-loop oxygen therapy performance were defined in this article by 3 criteria in the following order of importance: percent duration of SpO2 spent in normoxemia (target SpO2 ± 2.5%), hypoxemia (less than normoxemia), and hyperoxemia (more than normoxemia); number of 60-second periods <85% SpO2 and >95% SpO2; and number of manual adjustments. Results from a clinical evaluation that compared the performance of 3 closed-loop control algorithms (state machine, proportional-integral-differential, and adaptive model) with manual oxygen therapy on 7 low-birth-weight ventilated preterm babies, are presented. Compared with manual therapy, all closed-loop control algorithms significantly increased the patients' duration in normoxemia and reduced hyperoxemia (P < 0.05). The number of manual adjustments was also significantly reduced by all of the closed-loop control algorithms (P < 0.05). Although the performance of the 3 control algorithms was equivalent, it is suggested that the adaptive model, with its ease of use, may have the best utility.

  10. Increasing BCI Communication Rates with Dynamic Stopping Towards More Practical Use: An ALS Study

    PubMed Central

    Mainsah, B. O.; Collins, L. M.; Colwell, K. A.; Sellers, E. W.; Ryan, D. B.; Caves, K.; Throckmorton, C. S.

    2015-01-01

    Objective The P300 speller is a brain-computer interface (BCI) that can possibly restore communication abilities to individuals with severe neuromuscular disabilities, such as amyotrophic lateral sclerosis (ALS), by exploiting elicited brain signals in electroencephalography data. However, accurate spelling with BCIs is slow due to the need to average data over multiple trials to increase the signal-to-noise ratio of the elicited brain signals. Probabilistic approaches to dynamically control data collection have shown improved performance in non-disabled populations; however, validation of these approaches in a target BCI user population has not occurred. Approach We have developed a data-driven algorithm for the P300 speller based on Bayesian inference that improves spelling time by adaptively selecting the number of trials based on the acute signal-to-noise ratio of a user’s electroencephalography data. We further enhanced the algorithm by incorporating information about the user’s language. In this current study, we test and validate the algorithms online in a target BCI user population, by comparing the performance of the dynamic stopping (or early stopping) algorithms against the current state-of-the-art method, static data collection, where the amount of data collected is fixed prior to online operation. Main Results Results from online testing of the dynamic stopping algorithms in participants with ALS demonstrate a significant increase in communication rate as measured in bits/sec (100-300%), and theoretical bit rate (100-550%), while maintaining selection accuracy. Participants also overwhelmingly preferred the dynamic stopping algorithms. Significance We have developed a viable BCI algorithm that has been tested in a target BCI population which has the potential for translation to improve BCI speller performance towards more practical use for communication. PMID:25588137

  11. Optimally stopped variational quantum algorithms

    NASA Astrophysics Data System (ADS)

    Vinci, Walter; Shabani, Alireza

    2018-04-01

    Quantum processors promise a paradigm shift in high-performance computing which needs to be assessed by accurate benchmarking measures. In this article, we introduce a benchmark for the variational quantum algorithm (VQA), recently proposed as a heuristic algorithm for small-scale quantum processors. In VQA, a classical optimization algorithm guides the processor's quantum dynamics to yield the best solution for a given problem. A complete assessment of the scalability and competitiveness of VQA should take into account both the quality and the time of dynamics optimization. The method of optimal stopping, employed here, provides such an assessment by explicitly including time as a cost factor. Here, we showcase this measure for benchmarking VQA as a solver for some quadratic unconstrained binary optimization. Moreover, we show that a better choice for the cost function of the classical routine can significantly improve the performance of the VQA algorithm and even improve its scaling properties.

  12. Experiments with a Parallel Multi-Objective Evolutionary Algorithm for Scheduling

    NASA Technical Reports Server (NTRS)

    Brown, Matthew; Johnston, Mark D.

    2013-01-01

    Evolutionary multi-objective algorithms have great potential for scheduling in those situations where tradeoffs among competing objectives represent a key requirement. One challenge, however, is runtime performance, as a consequence of evolving not just a single schedule, but an entire population, while attempting to sample the Pareto frontier as accurately and uniformly as possible. The growing availability of multi-core processors in end user workstations, and even laptops, has raised the question of the extent to which such hardware can be used to speed up evolutionary algorithms. In this paper we report on early experiments in parallelizing a Generalized Differential Evolution (GDE) algorithm for scheduling long-range activities on NASA's Deep Space Network. Initial results show that significant speedups can be achieved, but that performance does not necessarily improve as more cores are utilized. We describe our preliminary results and some initial suggestions from parallelizing the GDE algorithm. Directions for future work are outlined.

  13. An improved stochastic fractal search algorithm for 3D protein structure prediction.

    PubMed

    Zhou, Changjun; Sun, Chuan; Wang, Bin; Wang, Xiaojun

    2018-05-03

    Protein structure prediction (PSP) is a significant area for biological information research, disease treatment, and drug development and so on. In this paper, three-dimensional structures of proteins are predicted based on the known amino acid sequences, and the structure prediction problem is transformed into a typical NP problem by an AB off-lattice model. This work applies a novel improved Stochastic Fractal Search algorithm (ISFS) to solve the problem. The Stochastic Fractal Search algorithm (SFS) is an effective evolutionary algorithm that performs well in exploring the search space but falls into local minimums sometimes. In order to avoid the weakness, Lvy flight and internal feedback information are introduced in ISFS. In the experimental process, simulations are conducted by ISFS algorithm on Fibonacci sequences and real peptide sequences. Experimental results prove that the ISFS performs more efficiently and robust in terms of finding the global minimum and avoiding getting stuck in local minimums.

  14. Evaluating progressive-rendering algorithms in appearance design tasks.

    PubMed

    Jiawei Ou; Karlik, Ondrej; Křivánek, Jaroslav; Pellacini, Fabio

    2013-01-01

    Progressive rendering is becoming a popular alternative to precomputational approaches to appearance design. However, progressive algorithms create images exhibiting visual artifacts at early stages. A user study investigated these artifacts' effects on user performance in appearance design tasks. Novice and expert subjects performed lighting and material editing tasks with four algorithms: random path tracing, quasirandom path tracing, progressive photon mapping, and virtual-point-light rendering. Both the novices and experts strongly preferred path tracing to progressive photon mapping and virtual-point-light rendering. None of the participants preferred random path tracing to quasirandom path tracing or vice versa; the same situation held between progressive photon mapping and virtual-point-light rendering. The user workflow didn’t differ significantly with the four algorithms. The Web Extras include a video showing how four progressive-rendering algorithms converged (at http://youtu.be/ck-Gevl1e9s), the source code used, and other supplementary materials.

  15. Modeling and forecasting US presidential election using learning algorithms

    NASA Astrophysics Data System (ADS)

    Zolghadr, Mohammad; Niaki, Seyed Armin Akhavan; Niaki, S. T. A.

    2017-09-01

    The primary objective of this research is to obtain an accurate forecasting model for the US presidential election. To identify a reliable model, artificial neural networks (ANN) and support vector regression (SVR) models are compared based on some specified performance measures. Moreover, six independent variables such as GDP, unemployment rate, the president's approval rate, and others are considered in a stepwise regression to identify significant variables. The president's approval rate is identified as the most significant variable, based on which eight other variables are identified and considered in the model development. Preprocessing methods are applied to prepare the data for the learning algorithms. The proposed procedure significantly increases the accuracy of the model by 50%. The learning algorithms (ANN and SVR) proved to be superior to linear regression based on each method's calculated performance measures. The SVR model is identified as the most accurate model among the other models as this model successfully predicted the outcome of the election in the last three elections (2004, 2008, and 2012). The proposed approach significantly increases the accuracy of the forecast.

  16. Distributed learning automata-based algorithm for community detection in complex networks

    NASA Astrophysics Data System (ADS)

    Khomami, Mohammad Mehdi Daliri; Rezvanian, Alireza; Meybodi, Mohammad Reza

    2016-03-01

    Community structure is an important and universal topological property of many complex networks such as social and information networks. The detection of communities of a network is a significant technique for understanding the structure and function of networks. In this paper, we propose an algorithm based on distributed learning automata for community detection (DLACD) in complex networks. In the proposed algorithm, each vertex of network is equipped with a learning automation. According to the cooperation among network of learning automata and updating action probabilities of each automaton, the algorithm interactively tries to identify high-density local communities. The performance of the proposed algorithm is investigated through a number of simulations on popular synthetic and real networks. Experimental results in comparison with popular community detection algorithms such as walk trap, Danon greedy optimization, Fuzzy community detection, Multi-resolution community detection and label propagation demonstrated the superiority of DLACD in terms of modularity, NMI, performance, min-max-cut and coverage.

  17. Firefly algorithm versus genetic algorithm as powerful variable selection tools and their effect on different multivariate calibration models in spectroscopy: A comparative study

    NASA Astrophysics Data System (ADS)

    Attia, Khalid A. M.; Nassar, Mohammed W. I.; El-Zeiny, Mohamed B.; Serag, Ahmed

    2017-01-01

    For the first time, a new variable selection method based on swarm intelligence namely firefly algorithm is coupled with three different multivariate calibration models namely, concentration residual augmented classical least squares, artificial neural network and support vector regression in UV spectral data. A comparative study between the firefly algorithm and the well-known genetic algorithm was developed. The discussion revealed the superiority of using this new powerful algorithm over the well-known genetic algorithm. Moreover, different statistical tests were performed and no significant differences were found between all the models regarding their predictabilities. This ensures that simpler and faster models were obtained without any deterioration of the quality of the calibration.

  18. Programming and Tuning a Quantum Annealing Device to Solve Real World Problems

    NASA Astrophysics Data System (ADS)

    Perdomo-Ortiz, Alejandro; O'Gorman, Bryan; Fluegemann, Joseph; Smelyanskiy, Vadim

    2015-03-01

    Solving real-world applications with quantum algorithms requires overcoming several challenges, ranging from translating the computational problem at hand to the quantum-machine language to tuning parameters of the quantum algorithm that have a significant impact on the performance of the device. In this talk, we discuss these challenges, strategies developed to enhance performance, and also a more efficient implementation of several applications. Although we will focus on applications of interest to NASA's Quantum Artificial Intelligence Laboratory, the methods and concepts presented here apply to a broader family of hard discrete optimization problems, including those that occur in many machine-learning algorithms.

  19. Specificity and Sensitivity of Claims-Based Algorithms for Identifying Members of Medicare+Choice Health Plans That Have Chronic Medical Conditions

    PubMed Central

    Rector, Thomas S; Wickstrom, Steven L; Shah, Mona; Thomas Greeenlee, N; Rheault, Paula; Rogowski, Jeannette; Freedman, Vicki; Adams, John; Escarce, José J

    2004-01-01

    Objective To examine the effects of varying diagnostic and pharmaceutical criteria on the performance of claims-based algorithms for identifying beneficiaries with hypertension, heart failure, chronic lung disease, arthritis, glaucoma, and diabetes. Study Setting Secondary 1999–2000 data from two Medicare+Choice health plans. Study Design Retrospective analysis of algorithm specificity and sensitivity. Data Collection Physician, facility, and pharmacy claims data were extracted from electronic records for a sample of 3,633 continuously enrolled beneficiaries who responded to an independent survey that included questions about chronic diseases. Principal Findings Compared to an algorithm that required a single medical claim in a one-year period that listed the diagnosis, either requiring that the diagnosis be listed on two separate claims or that the diagnosis to be listed on one claim for a face-to-face encounter with a health care provider significantly increased specificity for the conditions studied by 0.03 to 0.11. Specificity of algorithms was significantly improved by 0.03 to 0.17 when both a medical claim with a diagnosis and a pharmacy claim for a medication commonly used to treat the condition were required. Sensitivity improved significantly by 0.01 to 0.20 when the algorithm relied on a medical claim with a diagnosis or a pharmacy claim, and by 0.05 to 0.17 when two years rather than one year of claims data were analyzed. Algorithms that had specificity more than 0.95 were found for all six conditions. Sensitivity above 0.90 was not achieved all conditions. Conclusions Varying claims criteria improved the performance of case-finding algorithms for six chronic conditions. Highly specific, and sometimes sensitive, algorithms for identifying members of health plans with several chronic conditions can be developed using claims data. PMID:15533190

  20. RM2: rms error comparisons

    NASA Technical Reports Server (NTRS)

    Rice, R. F.

    1976-01-01

    The root-mean-square error performance measure is used to compare the relative performance of several widely known source coding algorithms with the RM2 image data compression system. The results demonstrate that RM2 has a uniformly significant performance advantage.

  1. OpenMP Parallelization and Optimization of Graph-Based Machine Learning Algorithms

    DOE PAGES

    Meng, Zhaoyi; Koniges, Alice; He, Yun Helen; ...

    2016-09-21

    In this paper, we investigate the OpenMP parallelization and optimization of two novel data classification algorithms. The new algorithms are based on graph and PDE solution techniques and provide significant accuracy and performance advantages over traditional data classification algorithms in serial mode. The methods leverage the Nystrom extension to calculate eigenvalue/eigenvectors of the graph Laplacian and this is a self-contained module that can be used in conjunction with other graph-Laplacian based methods such as spectral clustering. We use performance tools to collect the hotspots and memory access of the serial codes and use OpenMP as the parallelization language to parallelizemore » the most time-consuming parts. Where possible, we also use library routines. We then optimize the OpenMP implementations and detail the performance on traditional supercomputer nodes (in our case a Cray XC30), and test the optimization steps on emerging testbed systems based on Intel’s Knights Corner and Landing processors. We show both performance improvement and strong scaling behavior. Finally, a large number of optimization techniques and analyses are necessary before the algorithm reaches almost ideal scaling.« less

  2. Comparison of Diagnostic Algorithms for Detecting Toxigenic Clostridium difficile in Routine Practice at a Tertiary Referral Hospital in Korea.

    PubMed

    Moon, Hee-Won; Kim, Hyeong Nyeon; Hur, Mina; Shim, Hee Sook; Kim, Heejung; Yun, Yeo-Min

    2016-01-01

    Since every single test has some limitations for detecting toxigenic Clostridium difficile, multistep algorithms are recommended. This study aimed to compare the current, representative diagnostic algorithms for detecting toxigenic C. difficile, using VIDAS C. difficile toxin A&B (toxin ELFA), VIDAS C. difficile GDH (GDH ELFA, bioMérieux, Marcy-l'Etoile, France), and Xpert C. difficile (Cepheid, Sunnyvale, California, USA). In 271 consecutive stool samples, toxigenic culture, toxin ELFA, GDH ELFA, and Xpert C. difficile were performed. We simulated two algorithms: screening by GDH ELFA and confirmation by Xpert C. difficile (GDH + Xpert) and combined algorithm of GDH ELFA, toxin ELFA, and Xpert C. difficile (GDH + Toxin + Xpert). The performance of each assay and algorithm was assessed. The agreement of Xpert C. difficile and two algorithms (GDH + Xpert and GDH+ Toxin + Xpert) with toxigenic culture were strong (Kappa, 0.848, 0.857, and 0.868, respectively). The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of algorithms (GDH + Xpert and GDH + Toxin + Xpert) were 96.7%, 95.8%, 85.0%, 98.1%, and 94.5%, 95.8%, 82.3%, 98.5%, respectively. There were no significant differences between Xpert C. difficile and two algorithms in sensitivity, specificity, PPV and NPV. The performances of both algorithms for detecting toxigenic C. difficile were comparable to that of Xpert C. difficile. Either algorithm would be useful in clinical laboratories and can be optimized in the diagnostic workflow of C. difficile depending on costs, test volume, and clinical needs.

  3. On the utility of the multi-level algorithm for the solution of nearly completely decomposable Markov chains

    NASA Technical Reports Server (NTRS)

    Leutenegger, Scott T.; Horton, Graham

    1994-01-01

    Recently the Multi-Level algorithm was introduced as a general purpose solver for the solution of steady state Markov chains. In this paper, we consider the performance of the Multi-Level algorithm for solving Nearly Completely Decomposable (NCD) Markov chains, for which special-purpose iteractive aggregation/disaggregation algorithms such as the Koury-McAllister-Stewart (KMS) method have been developed that can exploit the decomposability of the the Markov chain. We present experimental results indicating that the general-purpose Multi-Level algorithm is competitive, and can be significantly faster than the special-purpose KMS algorithm when Gauss-Seidel and Gaussian Elimination are used for solving the individual blocks.

  4. Hybrid time-frequency domain equalization based on sign-sign joint decision multimodulus algorithm for 6 × 6 mode division multiplexing system

    NASA Astrophysics Data System (ADS)

    Li, Jiao; Hu, Guijun; Gong, Caili; Li, Li

    2018-02-01

    In this paper, we propose a hybrid time-frequency domain sign-sign joint decision multimodulus algorithm (Hybrid-SJDMMA) for mode-demultiplexing in a 6 × 6 mode division multiplexing (MDM) system with high-order QAM modulation. The equalization performance of Hybrid-SJDMMA was evaluated and compared with the frequency domain multimodulus algorithm (FD-MMA) and the hybrid time-frequency domain sign-sign multimodulus algorithm (Hybrid-SMMA). Simulation results revealed that Hybrid-SJDMMA exhibits a significantly lower computational complexity than FD-MMA, and its convergence speed is similar to that of FD-MMA. Additionally, the bit-error-rate performance of Hybrid-SJDMMA was obviously better than FD-MMA and Hybrid-SMMA for 16 QAM and 64 QAM.

  5. Utilizing Machine Learning and Automated Performance Metrics to Evaluate Robot-Assisted Radical Prostatectomy Performance and Predict Outcomes.

    PubMed

    Hung, Andrew J; Chen, Jian; Che, Zhengping; Nilanon, Tanachat; Jarc, Anthony; Titus, Micha; Oh, Paul J; Gill, Inderbir S; Liu, Yan

    2018-05-01

    Surgical performance is critical for clinical outcomes. We present a novel machine learning (ML) method of processing automated performance metrics (APMs) to evaluate surgical performance and predict clinical outcomes after robot-assisted radical prostatectomy (RARP). We trained three ML algorithms utilizing APMs directly from robot system data (training material) and hospital length of stay (LOS; training label) (≤2 days and >2 days) from 78 RARP cases, and selected the algorithm with the best performance. The selected algorithm categorized the cases as "Predicted as expected LOS (pExp-LOS)" and "Predicted as extended LOS (pExt-LOS)." We compared postoperative outcomes of the two groups (Kruskal-Wallis/Fisher's exact tests). The algorithm then predicted individual clinical outcomes, which we compared with actual outcomes (Spearman's correlation/Fisher's exact tests). Finally, we identified five most relevant APMs adopted by the algorithm during predicting. The "Random Forest-50" (RF-50) algorithm had the best performance, reaching 87.2% accuracy in predicting LOS (73 cases as "pExp-LOS" and 5 cases as "pExt-LOS"). The "pExp-LOS" cases outperformed the "pExt-LOS" cases in surgery time (3.7 hours vs 4.6 hours, p = 0.007), LOS (2 days vs 4 days, p = 0.02), and Foley duration (9 days vs 14 days, p = 0.02). Patient outcomes predicted by the algorithm had significant association with the "ground truth" in surgery time (p < 0.001, r = 0.73), LOS (p = 0.05, r = 0.52), and Foley duration (p < 0.001, r = 0.45). The five most relevant APMs, adopted by the RF-50 algorithm in predicting, were largely related to camera manipulation. To our knowledge, ours is the first study to show that APMs and ML algorithms may help assess surgical RARP performance and predict clinical outcomes. With further accrual of clinical data (oncologic and functional data), this process will become increasingly relevant and valuable in surgical assessment and training.

  6. Evaluation of the performance of accelerometer-based gait event detection algorithms in different real-world scenarios using the MAREA gait database.

    PubMed

    Khandelwal, Siddhartha; Wickström, Nicholas

    2017-01-01

    Numerous gait event detection (GED) algorithms have been developed using accelerometers as they allow the possibility of long-term gait analysis in everyday life. However, almost all such existing algorithms have been developed and assessed using data collected in controlled indoor experiments with pre-defined paths and walking speeds. On the contrary, human gait is quite dynamic in the real-world, often involving varying gait speeds, changing surfaces and varying surface inclinations. Though portable wearable systems can be used to conduct experiments directly in the real-world, there is a lack of publicly available gait datasets or studies evaluating the performance of existing GED algorithms in various real-world settings. This paper presents a new gait database called MAREA (n=20 healthy subjects) that consists of walking and running in indoor and outdoor environments with accelerometers positioned on waist, wrist and both ankles. The study also evaluates the performance of six state-of-the-art accelerometer-based GED algorithms in different real-world scenarios, using the MAREA gait database. The results reveal that the performance of these algorithms is inconsistent and varies with changing environments and gait speeds. All algorithms demonstrated good performance for the scenario of steady walking in a controlled indoor environment with a combined median F1score of 0.98 for Heel-Strikes and 0.94 for Toe-Offs. However, they exhibited significantly decreased performance when evaluated in other lesser controlled scenarios such as walking and running in an outdoor street, with a combined median F1score of 0.82 for Heel-Strikes and 0.53 for Toe-Offs. Moreover, all GED algorithms displayed better performance for detecting Heel-Strikes as compared to Toe-Offs, when evaluated in different scenarios. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. A Voxel-by-Voxel Comparison of Deformable Vector Fields Obtained by Three Deformable Image Registration Algorithms Applied to 4DCT Lung Studies.

    PubMed

    Fatyga, Mirek; Dogan, Nesrin; Weiss, Elizabeth; Sleeman, William C; Zhang, Baoshe; Lehman, William J; Williamson, Jeffrey F; Wijesooriya, Krishni; Christensen, Gary E

    2015-01-01

    Commonly used methods of assessing the accuracy of deformable image registration (DIR) rely on image segmentation or landmark selection. These methods are very labor intensive and thus limited to relatively small number of image pairs. The direct voxel-by-voxel comparison can be automated to examine fluctuations in DIR quality on a long series of image pairs. A voxel-by-voxel comparison of three DIR algorithms applied to lung patients is presented. Registrations are compared by comparing volume histograms formed both with individual DIR maps and with a voxel-by-voxel subtraction of the two maps. When two DIR maps agree one concludes that both maps are interchangeable in treatment planning applications, though one cannot conclude that either one agrees with the ground truth. If two DIR maps significantly disagree one concludes that at least one of the maps deviates from the ground truth. We use the method to compare 3 DIR algorithms applied to peak inhale-peak exhale registrations of 4DFBCT data obtained from 13 patients. All three algorithms appear to be nearly equivalent when compared using DICE similarity coefficients. A comparison based on Jacobian volume histograms shows that all three algorithms measure changes in total volume of the lungs with reasonable accuracy, but show large differences in the variance of Jacobian distribution on contoured structures. Analysis of voxel-by-voxel subtraction of DIR maps shows differences between algorithms that exceed a centimeter for some registrations. Deformation maps produced by DIR algorithms must be treated as mathematical approximations of physical tissue deformation that are not self-consistent and may thus be useful only in applications for which they have been specifically validated. The three algorithms tested in this work perform fairly robustly for the task of contour propagation, but produce potentially unreliable results for the task of DVH accumulation or measurement of local volume change. Performance of DIR algorithms varies significantly from one image pair to the next hence validation efforts, which are exhaustive but performed on a small number of image pairs may not reflect the performance of the same algorithm in practical clinical situations. Such efforts should be supplemented by validation based on a longer series of images of clinical quality.

  8. Comparative intelligibility investigation of single-channel noise-reduction algorithms for Chinese, Japanese, and English.

    PubMed

    Li, Junfeng; Yang, Lin; Zhang, Jianping; Yan, Yonghong; Hu, Yi; Akagi, Masato; Loizou, Philipos C

    2011-05-01

    A large number of single-channel noise-reduction algorithms have been proposed based largely on mathematical principles. Most of these algorithms, however, have been evaluated with English speech. Given the different perceptual cues used by native listeners of different languages including tonal languages, it is of interest to examine whether there are any language effects when the same noise-reduction algorithm is used to process noisy speech in different languages. A comparative evaluation and investigation is taken in this study of various single-channel noise-reduction algorithms applied to noisy speech taken from three languages: Chinese, Japanese, and English. Clean speech signals (Chinese words and Japanese words) were first corrupted by three types of noise at two signal-to-noise ratios and then processed by five single-channel noise-reduction algorithms. The processed signals were finally presented to normal-hearing listeners for recognition. Intelligibility evaluation showed that the majority of noise-reduction algorithms did not improve speech intelligibility. Consistent with a previous study with the English language, the Wiener filtering algorithm produced small, but statistically significant, improvements in intelligibility for car and white noise conditions. Significant differences between the performances of noise-reduction algorithms across the three languages were observed.

  9. A new electrocardiogram algorithm for diagnosing loss of ventricular capture during cardiac resynchronisation therapy.

    PubMed

    Ganière, Vincent; Domenichini, Giulia; Niculescu, Viviana; Cassagneau, Romain; Defaye, Pascal; Burri, Haran

    2013-03-01

    The prerequisite for cardiac resynchronization therapy (CRT) is ventricular capture, which may be verified by analysis of the surface electrocardiogram (ECG). Few algorithms exist to diagnose loss of ventricular capture. Electrocardiograms from 126 CRT patients were analysed during biventricular (BV), right ventricular (RV), and left ventricular (LV) pacing. An algorithm evaluating QRS narrowing in the limb leads and increasing negativity in lead I to diagnose changes in ventricular capture was devised, prospectively validated, and compared with two existing algorithms. Performance of the algorithm according to ventricular lead position was also assessed. Our algorithm had an accuracy of 88% to correctly identify the changes in ventricular capture (either loss or gain of RV or LV capture). The algorithm had a sensitivity of 94% and a specificity of 96% with an accuracy of 96% for identifying loss of LV capture (the most clinically relevant change), and compared favourably with the existing algorithms. Performance of the algorithms was not significantly affected by RV or LV lead position. A simple two-step algorithm evaluating QRS width in the limb leads and changes in negativity in lead I can accurately diagnose the lead responsible for intermittent loss of ventricular capture in CRT. This simple tool may be of particular use outside the setting of specialized device clinics.

  10. Minimizing the Workup of Blood Culture Contaminants: Implementation and Evaluation of a Laboratory-Based Algorithm

    PubMed Central

    Richter, S. S.; Beekmann, S. E.; Croco, J. L.; Diekema, D. J.; Koontz, F. P.; Pfaller, M. A.; Doern, G. V.

    2002-01-01

    An algorithm was implemented in the clinical microbiology laboratory to assess the clinical significance of organisms that are often considered contaminants (coagulase-negative staphylococci, aerobic and anaerobic diphtheroids, Micrococcus spp., Bacillus spp., and viridans group streptococci) when isolated from blood cultures. From 25 August 1999 through 30 April 2000, 12,374 blood cultures were submitted to the University of Iowa Clinical Microbiology Laboratory. Potential contaminants were recovered from 495 of 1,040 positive blood cultures. If one or more additional blood cultures were obtained within ±48 h and all were negative, the isolate was considered a contaminant. Antimicrobial susceptibility testing (AST) of these probable contaminants was not performed unless requested. If no additional blood cultures were submitted or there were additional positive blood cultures (within ±48 h), a pathology resident gathered patient clinical information and made a judgment regarding the isolate's significance. To evaluate the accuracy of these algorithm-based assignments, a nurse epidemiologist in approximately 60% of the cases performed a retrospective chart review. Agreement between the findings of the retrospective chart review and the automatic classification of the isolates with additional negative blood cultures as probable contaminants occurred among 85.8% of 225 isolates. In response to physician requests, AST had been performed on 15 of the 32 isolates with additional negative cultures considered significant by retrospective chart review. Agreement of pathology resident assignment with the retrospective chart review occurred among 74.6% of 71 isolates. The laboratory-based algorithm provided an acceptably accurate means for assessing the clinical significance of potential contaminants recovered from blood cultures. PMID:12089259

  11. Preconditioned Alternating Projection Algorithms for Maximum a Posteriori ECT Reconstruction

    PubMed Central

    Krol, Andrzej; Li, Si; Shen, Lixin; Xu, Yuesheng

    2012-01-01

    We propose a preconditioned alternating projection algorithm (PAPA) for solving the maximum a posteriori (MAP) emission computed tomography (ECT) reconstruction problem. Specifically, we formulate the reconstruction problem as a constrained convex optimization problem with the total variation (TV) regularization. We then characterize the solution of the constrained convex optimization problem and show that it satisfies a system of fixed-point equations defined in terms of two proximity operators raised from the convex functions that define the TV-norm and the constrain involved in the problem. The characterization (of the solution) via the proximity operators that define two projection operators naturally leads to an alternating projection algorithm for finding the solution. For efficient numerical computation, we introduce to the alternating projection algorithm a preconditioning matrix (the EM-preconditioner) for the dense system matrix involved in the optimization problem. We prove theoretically convergence of the preconditioned alternating projection algorithm. In numerical experiments, performance of our algorithms, with an appropriately selected preconditioning matrix, is compared with performance of the conventional MAP expectation-maximization (MAP-EM) algorithm with TV regularizer (EM-TV) and that of the recently developed nested EM-TV algorithm for ECT reconstruction. Based on the numerical experiments performed in this work, we observe that the alternating projection algorithm with the EM-preconditioner outperforms significantly the EM-TV in all aspects including the convergence speed, the noise in the reconstructed images and the image quality. It also outperforms the nested EM-TV in the convergence speed while providing comparable image quality. PMID:23271835

  12. Subjective audio quality evaluation of embedded-optimization-based distortion precompensation algorithms.

    PubMed

    Defraene, Bruno; van Waterschoot, Toon; Diehl, Moritz; Moonen, Marc

    2016-07-01

    Subjective audio quality evaluation experiments have been conducted to assess the performance of embedded-optimization-based precompensation algorithms for mitigating perceptible linear and nonlinear distortion in audio signals. It is concluded with statistical significance that the perceived audio quality is improved by applying an embedded-optimization-based precompensation algorithm, both in case (i) nonlinear distortion and (ii) a combination of linear and nonlinear distortion is present. Moreover, a significant positive correlation is reported between the collected subjective and objective PEAQ audio quality scores, supporting the validity of using PEAQ to predict the impact of linear and nonlinear distortion on the perceived audio quality.

  13. Predicting biomedical metadata in CEDAR: A study of Gene Expression Omnibus (GEO).

    PubMed

    Panahiazar, Maryam; Dumontier, Michel; Gevaert, Olivier

    2017-08-01

    A crucial and limiting factor in data reuse is the lack of accurate, structured, and complete descriptions of data, known as metadata. Towards improving the quantity and quality of metadata, we propose a novel metadata prediction framework to learn associations from existing metadata that can be used to predict metadata values. We evaluate our framework in the context of experimental metadata from the Gene Expression Omnibus (GEO). We applied four rule mining algorithms to the most common structured metadata elements (sample type, molecular type, platform, label type and organism) from over 1.3million GEO records. We examined the quality of well supported rules from each algorithm and visualized the dependencies among metadata elements. Finally, we evaluated the performance of the algorithms in terms of accuracy, precision, recall, and F-measure. We found that PART is the best algorithm outperforming Apriori, Predictive Apriori, and Decision Table. All algorithms perform significantly better in predicting class values than the majority vote classifier. We found that the performance of the algorithms is related to the dimensionality of the GEO elements. The average performance of all algorithm increases due of the decreasing of dimensionality of the unique values of these elements (2697 platforms, 537 organisms, 454 labels, 9 molecules, and 5 types). Our work suggests that experimental metadata such as present in GEO can be accurately predicted using rule mining algorithms. Our work has implications for both prospective and retrospective augmentation of metadata quality, which are geared towards making data easier to find and reuse. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Efficient Bit-to-Symbol Likelihood Mappings

    NASA Technical Reports Server (NTRS)

    Moision, Bruce E.; Nakashima, Michael A.

    2010-01-01

    This innovation is an efficient algorithm designed to perform bit-to-symbol and symbol-to-bit likelihood mappings that represent a significant portion of the complexity of an error-correction code decoder for high-order constellations. Recent implementation of the algorithm in hardware has yielded an 8- percent reduction in overall area relative to the prior design.

  15. Multifeature-based high-resolution palmprint recognition.

    PubMed

    Dai, Jifeng; Zhou, Jie

    2011-05-01

    Palmprint is a promising biometric feature for use in access control and forensic applications. Previous research on palmprint recognition mainly concentrates on low-resolution (about 100 ppi) palmprints. But for high-security applications (e.g., forensic usage), high-resolution palmprints (500 ppi or higher) are required from which more useful information can be extracted. In this paper, we propose a novel recognition algorithm for high-resolution palmprint. The main contributions of the proposed algorithm include the following: 1) use of multiple features, namely, minutiae, density, orientation, and principal lines, for palmprint recognition to significantly improve the matching performance of the conventional algorithm. 2) Design of a quality-based and adaptive orientation field estimation algorithm which performs better than the existing algorithm in case of regions with a large number of creases. 3) Use of a novel fusion scheme for an identification application which performs better than conventional fusion methods, e.g., weighted sum rule, SVMs, or Neyman-Pearson rule. Besides, we analyze the discriminative power of different feature combinations and find that density is very useful for palmprint recognition. Experimental results on the database containing 14,576 full palmprints show that the proposed algorithm has achieved a good performance. In the case of verification, the recognition system's False Rejection Rate (FRR) is 16 percent, which is 17 percent lower than the best existing algorithm at a False Acceptance Rate (FAR) of 10(-5), while in the identification experiment, the rank-1 live-scan partial palmprint recognition rate is improved from 82.0 to 91.7 percent.

  16. GPU-based parallel algorithm for blind image restoration using midfrequency-based methods

    NASA Astrophysics Data System (ADS)

    Xie, Lang; Luo, Yi-han; Bao, Qi-liang

    2013-08-01

    GPU-based general-purpose computing is a new branch of modern parallel computing, so the study of parallel algorithms specially designed for GPU hardware architecture is of great significance. In order to solve the problem of high computational complexity and poor real-time performance in blind image restoration, the midfrequency-based algorithm for blind image restoration was analyzed and improved in this paper. Furthermore, a midfrequency-based filtering method is also used to restore the image hardly with any recursion or iteration. Combining the algorithm with data intensiveness, data parallel computing and GPU execution model of single instruction and multiple threads, a new parallel midfrequency-based algorithm for blind image restoration is proposed in this paper, which is suitable for stream computing of GPU. In this algorithm, the GPU is utilized to accelerate the estimation of class-G point spread functions and midfrequency-based filtering. Aiming at better management of the GPU threads, the threads in a grid are scheduled according to the decomposition of the filtering data in frequency domain after the optimization of data access and the communication between the host and the device. The kernel parallelism structure is determined by the decomposition of the filtering data to ensure the transmission rate to get around the memory bandwidth limitation. The results show that, with the new algorithm, the operational speed is significantly increased and the real-time performance of image restoration is effectively improved, especially for high-resolution images.

  17. Mixed Criticality Scheduling for Industrial Wireless Sensor Networks

    PubMed Central

    Jin, Xi; Xia, Changqing; Xu, Huiting; Wang, Jintao; Zeng, Peng

    2016-01-01

    Wireless sensor networks (WSNs) have been widely used in industrial systems. Their real-time performance and reliability are fundamental to industrial production. Many works have studied the two aspects, but only focus on single criticality WSNs. Mixed criticality requirements exist in many advanced applications in which different data flows have different levels of importance (or criticality). In this paper, first, we propose a scheduling algorithm, which guarantees the real-time performance and reliability requirements of data flows with different levels of criticality. The algorithm supports centralized optimization and adaptive adjustment. It is able to improve both the scheduling performance and flexibility. Then, we provide the schedulability test through rigorous theoretical analysis. We conduct extensive simulations, and the results demonstrate that the proposed scheduling algorithm and analysis significantly outperform existing ones. PMID:27589741

  18. Comparison between beamforming and super resolution imaging algorithms for non-destructive evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Chengguang; Drinkwater, Bruce W.

    In this paper the performance of total focusing method is compared with the widely used time-reversal MUSIC super resolution technique. The algorithms are tested with simulated and experimental ultrasonic array data, each containing different noise levels. The simulated time domain signals allow the effects of array geometry, frequency, scatterer location, scatterer size, scatterer separation and random noise to be carefully controlled. The performance of the imaging algorithms is evaluated in terms of resolution and sensitivity to random noise. It is shown that for the low noise situation, time-reversal MUSIC provides enhanced lateral resolution when compared to the total focusing method.more » However, for higher noise levels, the total focusing method shows robustness, whilst the performance of time-reversal MUSIC is significantly degraded.« less

  19. Advanced biologically plausible algorithms for low-level image processing

    NASA Astrophysics Data System (ADS)

    Gusakova, Valentina I.; Podladchikova, Lubov N.; Shaposhnikov, Dmitry G.; Markin, Sergey N.; Golovan, Alexander V.; Lee, Seong-Whan

    1999-08-01

    At present, in computer vision, the approach based on modeling the biological vision mechanisms is extensively developed. However, up to now, real world image processing has no effective solution in frameworks of both biologically inspired and conventional approaches. Evidently, new algorithms and system architectures based on advanced biological motivation should be developed for solution of computational problems related to this visual task. Basic problems that should be solved for creation of effective artificial visual system to process real world imags are a search for new algorithms of low-level image processing that, in a great extent, determine system performance. In the present paper, the result of psychophysical experiments and several advanced biologically motivated algorithms for low-level processing are presented. These algorithms are based on local space-variant filter, context encoding visual information presented in the center of input window, and automatic detection of perceptually important image fragments. The core of latter algorithm are using local feature conjunctions such as noncolinear oriented segment and composite feature map formation. Developed algorithms were integrated into foveal active vision model, the MARR. It is supposed that proposed algorithms may significantly improve model performance while real world image processing during memorizing, search, and recognition.

  20. Power optimization of digital baseband WCDMA receiver components on algorithmic and architectural level

    NASA Astrophysics Data System (ADS)

    Schämann, M.; Bücker, M.; Hessel, S.; Langmann, U.

    2008-05-01

    High data rates combined with high mobility represent a challenge for the design of cellular devices. Advanced algorithms are required which result in higher complexity, more chip area and increased power consumption. However, this contrasts to the limited power supply of mobile devices. This presentation discusses the application of an HSDPA receiver which has been optimized regarding power consumption with the focus on the algorithmic and architectural level. On algorithmic level the Rake combiner, Prefilter-Rake equalizer and MMSE equalizer are compared regarding their BER performance. Both equalizer approaches provide a significant increase of performance for high data rates compared to the Rake combiner which is commonly used for lower data rates. For both equalizer approaches several adaptive algorithms are available which differ in complexity and convergence properties. To identify the algorithm which achieves the required performance with the lowest power consumption the algorithms have been investigated using SystemC models regarding their performance and arithmetic complexity. Additionally, for the Prefilter Rake equalizer the power estimations of a modified Griffith (LMS) and a Levinson (RLS) algorithm have been compared with the tool ORINOCO supplied by ChipVision. The accuracy of this tool has been verified with a scalable architecture of the UMTS channel estimation described both in SystemC and VHDL targeting a 130 nm CMOS standard cell library. An architecture combining all three approaches combined with an adaptive control unit is presented. The control unit monitors the current condition of the propagation channel and adjusts parameters for the receiver like filter size and oversampling ratio to minimize the power consumption while maintaining the required performance. The optimization strategies result in a reduction of the number of arithmetic operations up to 70% for single components which leads to an estimated power reduction of up to 40% while the BER performance is not affected. This work utilizes SystemC and ORINOCO for the first estimation of power consumption in an early step of the design flow. Thereby algorithms can be compared in different operating modes including the effects of control units. Here an algorithm having higher peak complexity and power consumption but providing more flexibility showed less consumption for normal operating modes compared to the algorithm which is optimized for peak performance.

  1. Total variation-based neutron computed tomography

    NASA Astrophysics Data System (ADS)

    Barnard, Richard C.; Bilheux, Hassina; Toops, Todd; Nafziger, Eric; Finney, Charles; Splitter, Derek; Archibald, Rick

    2018-05-01

    We perform the neutron computed tomography reconstruction problem via an inverse problem formulation with a total variation penalty. In the case of highly under-resolved angular measurements, the total variation penalty suppresses high-frequency artifacts which appear in filtered back projections. In order to efficiently compute solutions for this problem, we implement a variation of the split Bregman algorithm; due to the error-forgetting nature of the algorithm, the computational cost of updating can be significantly reduced via very inexact approximate linear solvers. We present the effectiveness of the algorithm in the significantly low-angular sampling case using synthetic test problems as well as data obtained from a high flux neutron source. The algorithm removes artifacts and can even roughly capture small features when an extremely low number of angles are used.

  2. Performance evaluation of automated segmentation software on optical coherence tomography volume data

    PubMed Central

    Tian, Jing; Varga, Boglarka; Tatrai, Erika; Fanni, Palya; Somfai, Gabor Mark; Smiddy, William E.

    2016-01-01

    Over the past two decades a significant number of OCT segmentation approaches have been proposed in the literature. Each methodology has been conceived for and/or evaluated using specific datasets that do not reflect the complexities of the majority of widely available retinal features observed in clinical settings. In addition, there does not exist an appropriate OCT dataset with ground truth that reflects the realities of everyday retinal features observed in clinical settings. While the need for unbiased performance evaluation of automated segmentation algorithms is obvious, the validation process of segmentation algorithms have been usually performed by comparing with manual labelings from each study and there has been a lack of common ground truth. Therefore, a performance comparison of different algorithms using the same ground truth has never been performed. This paper reviews research-oriented tools for automated segmentation of the retinal tissue on OCT images. It also evaluates and compares the performance of these software tools with a common ground truth. PMID:27159849

  3. A review and experimental study on the application of classifiers and evolutionary algorithms in EEG-based brain-machine interface systems

    NASA Astrophysics Data System (ADS)

    Tahernezhad-Javazm, Farajollah; Azimirad, Vahid; Shoaran, Maryam

    2018-04-01

    Objective. Considering the importance and the near-future development of noninvasive brain-machine interface (BMI) systems, this paper presents a comprehensive theoretical-experimental survey on the classification and evolutionary methods for BMI-based systems in which EEG signals are used. Approach. The paper is divided into two main parts. In the first part, a wide range of different types of the base and combinatorial classifiers including boosting and bagging classifiers and evolutionary algorithms are reviewed and investigated. In the second part, these classifiers and evolutionary algorithms are assessed and compared based on two types of relatively widely used BMI systems, sensory motor rhythm-BMI and event-related potentials-BMI. Moreover, in the second part, some of the improved evolutionary algorithms as well as bi-objective algorithms are experimentally assessed and compared. Main results. In this study two databases are used, and cross-validation accuracy (CVA) and stability to data volume (SDV) are considered as the evaluation criteria for the classifiers. According to the experimental results on both databases, regarding the base classifiers, linear discriminant analysis and support vector machines with respect to CVA evaluation metric, and naive Bayes with respect to SDV demonstrated the best performances. Among the combinatorial classifiers, four classifiers, Bagg-DT (bagging decision tree), LogitBoost, and GentleBoost with respect to CVA, and Bagging-LR (bagging logistic regression) and AdaBoost (adaptive boosting) with respect to SDV had the best performances. Finally, regarding the evolutionary algorithms, single-objective invasive weed optimization (IWO) and bi-objective nondominated sorting IWO algorithms demonstrated the best performances. Significance. We present a general survey on the base and the combinatorial classification methods for EEG signals (sensory motor rhythm and event-related potentials) as well as their optimization methods through the evolutionary algorithms. In addition, experimental and statistical significance tests are carried out to study the applicability and effectiveness of the reviewed methods.

  4. An Evaluation of the Sniffer Global Optimization Algorithm Using Standard Test Functions

    NASA Astrophysics Data System (ADS)

    Butler, Roger A. R.; Slaminka, Edward E.

    1992-03-01

    The performance of Sniffer—a new global optimization algorithm—is compared with that of Simulated Annealing. Using the number of function evaluations as a measure of efficiency, the new algorithm is shown to be significantly better at finding the global minimum of seven standard test functions. Several of the test functions used have many local minima and very steep walls surrounding the global minimum. Such functions are intended to thwart global minimization algorithms.

  5. Autotasked Performance in the NAS Workload: A Statistical Analysis

    NASA Technical Reports Server (NTRS)

    Carter, R. L.; Stockdale, I. E.; Kutler, Paul (Technical Monitor)

    1998-01-01

    A statistical analysis of the workload performance of a production quality FORTRAN code for five different Cray Y-MP hardware and system software configurations is performed. The analysis was based on an experimental procedure that was designed to minimize correlations between the number of requested CPUs and the time of day the runs were initiated. Observed autotasking over heads were significantly larger for the set of jobs that requested the maximum number of CPUs. Speedups for UNICOS 6 releases show consistent wall clock speedups in the workload of around 2. which is quite good. The observed speed ups were very similar for the set of jobs that requested 8 CPUs and the set that requested 4 CPUs. The original NAS algorithm for determining charges to the user discourages autotasking in the workload. A new charging algorithm to be applied to jobs run in the NQS multitasking queues also discourages NAS users from using auto tasking. The new algorithm favors jobs requesting 8 CPUs over those that request less, although the jobs requesting 8 CPUs experienced significantly higher over head and presumably degraded system throughput. A charging algorithm is presented that has the following desirable characteristics when applied to the data: higher overhead jobs requesting 8 CPUs are penalized when compared to moderate overhead jobs requesting 4 CPUs, thereby providing a charging incentive to NAS users to use autotasking in a manner that provides them with significantly improved turnaround while also maintaining system throughput.

  6. Firefly algorithm versus genetic algorithm as powerful variable selection tools and their effect on different multivariate calibration models in spectroscopy: A comparative study.

    PubMed

    Attia, Khalid A M; Nassar, Mohammed W I; El-Zeiny, Mohamed B; Serag, Ahmed

    2017-01-05

    For the first time, a new variable selection method based on swarm intelligence namely firefly algorithm is coupled with three different multivariate calibration models namely, concentration residual augmented classical least squares, artificial neural network and support vector regression in UV spectral data. A comparative study between the firefly algorithm and the well-known genetic algorithm was developed. The discussion revealed the superiority of using this new powerful algorithm over the well-known genetic algorithm. Moreover, different statistical tests were performed and no significant differences were found between all the models regarding their predictabilities. This ensures that simpler and faster models were obtained without any deterioration of the quality of the calibration. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Testing mapping algorithms of the cancer-specific EORTC QLQ-C30 onto EQ-5D in malignant mesothelioma.

    PubMed

    Arnold, David T; Rowen, Donna; Versteegh, Matthijs M; Morley, Anna; Hooper, Clare E; Maskell, Nicholas A

    2015-01-23

    In order to estimate utilities for cancer studies where the EQ-5D was not used, the EORTC QLQ-C30 can be used to estimate EQ-5D using existing mapping algorithms. Several mapping algorithms exist for this transformation, however, algorithms tend to lose accuracy in patients in poor health states. The aim of this study was to test all existing mapping algorithms of QLQ-C30 onto EQ-5D, in a dataset of patients with malignant pleural mesothelioma, an invariably fatal malignancy where no previous mapping estimation has been published. Health related quality of life (HRQoL) data where both the EQ-5D and QLQ-C30 were used simultaneously was obtained from the UK-based prospective observational SWAMP (South West Area Mesothelioma and Pemetrexed) trial. In the original trial 73 patients with pleural mesothelioma were offered palliative chemotherapy and their HRQoL was assessed across five time points. This data was used to test the nine available mapping algorithms found in the literature, comparing predicted against observed EQ-5D values. The ability of algorithms to predict the mean, minimise error and detect clinically significant differences was assessed. The dataset had a total of 250 observations across 5 timepoints. The linear regression mapping algorithms tested generally performed poorly, over-estimating the predicted compared to observed EQ-5D values, especially when observed EQ-5D was below 0.5. The best performing algorithm used a response mapping method and predicted the mean EQ-5D with accuracy with an average root mean squared error of 0.17 (Standard Deviation; 0.22). This algorithm reliably discriminated between clinically distinct subgroups seen in the primary dataset. This study tested mapping algorithms in a population with poor health states, where they have been previously shown to perform poorly. Further research into EQ-5D estimation should be directed at response mapping methods given its superior performance in this study.

  8. A pragmatic evidence-based clinical management algorithm for burning mouth syndrome

    PubMed Central

    Yoo, Timothy; Han, Peter; Liu, Yuan; Inman, Jared C.

    2018-01-01

    Background Burning mouth syndrome is a poorly understood disease process with no current standard of treatment. The goal of this article is to provide an evidence-based, practical, clinical algorithm as a guideline for the treatment of burning mouth syndrome. Material and Methods Using available evidence and clinical experience, a multi-step management algorithm was developed. A retrospective cohort study was then performed, following STROBE statement guidelines, comparing outcomes of patients who were managed using the algorithm and those who were managed without. Results Forty-seven patients were included in the study, with 21 (45%) managed using the algorithm and 26 (55%) managed without. The mean age overall was 60.4 ±16.5 years, and most patients (39, 83%) were female. Cohorts showed no statistical difference in age, sex, overall follow-up time, dysgeusia, geographic tongue, or psychiatric disorder; xerostomia, however, was significantly different, skewed toward the algorithm group. Significantly more non-algorithm patients did not continue care (69% vs. 29%, p=0.001). The odds ratio of not continuing care for the non-algorithm group compared to the algorithm group was 5.6 [1.6, 19.8]. Improvement in pain was significantly more likely in the algorithm group (p=0.001), with an odds ratio of 27.5 [3.1, 242.0]. Conclusions We present a basic clinical management algorithm for burning mouth syndrome which may increase the likelihood of pain improvement and patient follow-up. Key words:Burning mouth syndrome, burning tongue, glossodynia, oral pain, oral burning, therapy, treatment. PMID:29750091

  9. Hybrid Neural-Network: Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics Developed and Demonstrated

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2002-01-01

    As part of the NASA Aviation Safety Program, a unique model-based diagnostics method that employs neural networks and genetic algorithms for aircraft engine performance diagnostics has been developed and demonstrated at the NASA Glenn Research Center against a nonlinear gas turbine engine model. Neural networks are applied to estimate the internal health condition of the engine, and genetic algorithms are used for sensor fault detection, isolation, and quantification. This hybrid architecture combines the excellent nonlinear estimation capabilities of neural networks with the capability to rank the likelihood of various faults given a specific sensor suite signature. The method requires a significantly smaller data training set than a neural network approach alone does, and it performs the combined engine health monitoring objectives of performance diagnostics and sensor fault detection and isolation in the presence of nominal and degraded engine health conditions.

  10. Motif finding in DNA sequences based on skipping nonconserved positions in background Markov chains.

    PubMed

    Zhao, Xiaoyan; Sze, Sing-Hoi

    2011-05-01

    One strategy to identify transcription factor binding sites is through motif finding in upstream DNA sequences of potentially co-regulated genes. Despite extensive efforts, none of the existing algorithms perform very well. We consider a string representation that allows arbitrary ignored positions within the nonconserved portion of single motifs, and use O(2(l)) Markov chains to model the background distributions of motifs of length l while skipping these positions within each Markov chain. By focusing initially on positions that have fixed nucleotides to define core occurrences, we develop an algorithm to identify motifs of moderate lengths. We compare the performance of our algorithm to other motif finding algorithms on a few benchmark data sets, and show that significant improvement in accuracy can be obtained when the sites are sufficiently conserved within a given sample, while comparable performance is obtained when the site conservation rate is low. A software program (PosMotif ) and detailed results are available online at http://faculty.cse.tamu.edu/shsze/posmotif.

  11. Real-Time Robust Tracking for Motion Blur and Fast Motion via Correlation Filters.

    PubMed

    Xu, Lingyun; Luo, Haibo; Hui, Bin; Chang, Zheng

    2016-09-07

    Visual tracking has extensive applications in intelligent monitoring and guidance systems. Among state-of-the-art tracking algorithms, Correlation Filter methods perform favorably in robustness, accuracy and speed. However, it also has shortcomings when dealing with pervasive target scale variation, motion blur and fast motion. In this paper we proposed a new real-time robust scheme based on Kernelized Correlation Filter (KCF) to significantly improve performance on motion blur and fast motion. By fusing KCF and STC trackers, our algorithm also solve the estimation of scale variation in many scenarios. We theoretically analyze the problem for CFs towards motions and utilize the point sharpness function of the target patch to evaluate the motion state of target. Then we set up an efficient scheme to handle the motion and scale variation without much time consuming. Our algorithm preserves the properties of KCF besides the ability to handle special scenarios. In the end extensive experimental results on benchmark of VOT datasets show our algorithm performs advantageously competed with the top-rank trackers.

  12. Non-Uniformity Correction Using Nonlinear Characteristic Performance Curves for Calibration

    NASA Astrophysics Data System (ADS)

    Lovejoy, McKenna Roberts

    Infrared imaging is an expansive field with many applications. Advances in infrared technology have lead to a greater demand from both commercial and military sectors. However, a known problem with infrared imaging is its non-uniformity. This non-uniformity stems from the fact that each pixel in an infrared focal plane array has its own photoresponse. Many factors such as exposure time, temperature, and amplifier choice affect how the pixels respond to incoming illumination and thus impact image uniformity. To improve performance non-uniformity correction (NUC) techniques are applied. Standard calibration based techniques commonly use a linear model to approximate the nonlinear response. This often leaves unacceptable levels of residual non-uniformity. Calibration techniques often have to be repeated during use to continually correct the image. In this dissertation alternates to linear NUC algorithms are investigated. The goal of this dissertation is to determine and compare nonlinear non-uniformity correction algorithms. Ideally the results will provide better NUC performance resulting in less residual non-uniformity as well as reduce the need for recalibration. This dissertation will consider new approaches to nonlinear NUC such as higher order polynomials and exponentials. More specifically, a new gain equalization algorithm has been developed. The various nonlinear non-uniformity correction algorithms will be compared with common linear non-uniformity correction algorithms. Performance will be compared based on RMS errors, residual non-uniformity, and the impact quantization has on correction. Performance will be improved by identifying and replacing bad pixels prior to correction. Two bad pixel identification and replacement techniques will be investigated and compared. Performance will be presented in the form of simulation results as well as before and after images taken with short wave infrared cameras. The initial results show, using a third order polynomial with 16-bit precision, significant improvement over the one and two-point correction algorithms. All algorithm have been implemented in software with satisfactory results and the third order gain equalization non-uniformity correction algorithm has been implemented in hardware.

  13. The influence of image reconstruction algorithms on linear thorax EIT image analysis of ventilation.

    PubMed

    Zhao, Zhanqi; Frerichs, Inéz; Pulletz, Sven; Müller-Lisse, Ullrich; Möller, Knut

    2014-06-01

    Analysis methods of electrical impedance tomography (EIT) images based on different reconstruction algorithms were examined. EIT measurements were performed on eight mechanically ventilated patients with acute respiratory distress syndrome. A maneuver with step increase of airway pressure was performed. EIT raw data were reconstructed offline with (1) filtered back-projection (BP); (2) the Dräger algorithm based on linearized Newton-Raphson (DR); (3) the GREIT (Graz consensus reconstruction algorithm for EIT) reconstruction algorithm with a circular forward model (GR(C)) and (4) GREIT with individual thorax geometry (GR(T)). Individual thorax contours were automatically determined from the routine computed tomography images. Five indices were calculated on the resulting EIT images respectively: (a) the ratio between tidal and deep inflation impedance changes; (b) tidal impedance changes in the right and left lungs; (c) center of gravity; (d) the global inhomogeneity index and (e) ventilation delay at mid-dorsal regions. No significant differences were found in all examined indices among the four reconstruction algorithms (p > 0.2, Kruskal-Wallis test). The examined algorithms used for EIT image reconstruction do not influence the selected indices derived from the EIT image analysis. Indices that validated for images with one reconstruction algorithm are also valid for other reconstruction algorithms.

  14. Deep Convolutional Framelet Denosing for Low-Dose CT via Wavelet Residual Network.

    PubMed

    Kang, Eunhee; Chang, Won; Yoo, Jaejun; Ye, Jong Chul

    2018-06-01

    Model-based iterative reconstruction algorithms for low-dose X-ray computed tomography (CT) are computationally expensive. To address this problem, we recently proposed a deep convolutional neural network (CNN) for low-dose X-ray CT and won the second place in 2016 AAPM Low-Dose CT Grand Challenge. However, some of the textures were not fully recovered. To address this problem, here we propose a novel framelet-based denoising algorithm using wavelet residual network which synergistically combines the expressive power of deep learning and the performance guarantee from the framelet-based denoising algorithms. The new algorithms were inspired by the recent interpretation of the deep CNN as a cascaded convolution framelet signal representation. Extensive experimental results confirm that the proposed networks have significantly improved performance and preserve the detail texture of the original images.

  15. A splay tree-based approach for efficient resource location in P2P networks.

    PubMed

    Zhou, Wei; Tan, Zilong; Yao, Shaowen; Wang, Shipu

    2014-01-01

    Resource location in structured P2P system has a critical influence on the system performance. Existing analytical studies of Chord protocol have shown some potential improvements in performance. In this paper a splay tree-based new Chord structure called SChord is proposed to improve the efficiency of locating resources. We consider a novel implementation of the Chord finger table (routing table) based on the splay tree. This approach extends the Chord finger table with additional routing entries. Adaptive routing algorithm is proposed for implementation, and it can be shown that hop count is significantly minimized without introducing any other protocol overheads. We analyze the hop count of the adaptive routing algorithm, as compared to Chord variants, and demonstrate sharp upper and lower bounds for both worst-case and average case settings. In addition, we theoretically analyze the hop reducing in SChord and derive the fact that SChord can significantly reduce the routing hops as compared to Chord. Several simulations are presented to evaluate the performance of the algorithm and support our analytical findings. The simulation results show the efficiency of SChord.

  16. Comparative Performance Analysis of Coarse Solvers for Algebraic Multigrid on Multicore and Manycore Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Druinsky, Alex; Ghysels, Pieter; Li, Xiaoye S.

    In this paper, we study the performance of a two-level algebraic-multigrid algorithm, with a focus on the impact of the coarse-grid solver on performance. We consider two algorithms for solving the coarse-space systems: the preconditioned conjugate gradient method and a new robust HSS-embedded low-rank sparse-factorization algorithm. Our test data comes from the SPE Comparative Solution Project for oil-reservoir simulations. We contrast the performance of our code on one 12-core socket of a Cray XC30 machine with performance on a 60-core Intel Xeon Phi coprocessor. To obtain top performance, we optimized the code to take full advantage of fine-grained parallelism andmore » made it thread-friendly for high thread count. We also developed a bounds-and-bottlenecks performance model of the solver which we used to guide us through the optimization effort, and also carried out performance tuning in the solver’s large parameter space. Finally, as a result, significant speedups were obtained on both machines.« less

  17. Supervised Machine Learning Algorithms Can Classify Open-Text Feedback of Doctor Performance With Human-Level Accuracy

    PubMed Central

    2017-01-01

    Background Machine learning techniques may be an effective and efficient way to classify open-text reports on doctor’s activity for the purposes of quality assurance, safety, and continuing professional development. Objective The objective of the study was to evaluate the accuracy of machine learning algorithms trained to classify open-text reports of doctor performance and to assess the potential for classifications to identify significant differences in doctors’ professional performance in the United Kingdom. Methods We used 1636 open-text comments (34,283 words) relating to the performance of 548 doctors collected from a survey of clinicians’ colleagues using the General Medical Council Colleague Questionnaire (GMC-CQ). We coded 77.75% (1272/1636) of the comments into 5 global themes (innovation, interpersonal skills, popularity, professionalism, and respect) using a qualitative framework. We trained 8 machine learning algorithms to classify comments and assessed their performance using several training samples. We evaluated doctor performance using the GMC-CQ and compared scores between doctors with different classifications using t tests. Results Individual algorithm performance was high (range F score=.68 to .83). Interrater agreement between the algorithms and the human coder was highest for codes relating to “popular” (recall=.97), “innovator” (recall=.98), and “respected” (recall=.87) codes and was lower for the “interpersonal” (recall=.80) and “professional” (recall=.82) codes. A 10-fold cross-validation demonstrated similar performance in each analysis. When combined together into an ensemble of multiple algorithms, mean human-computer interrater agreement was .88. Comments that were classified as “respected,” “professional,” and “interpersonal” related to higher doctor scores on the GMC-CQ compared with comments that were not classified (P<.05). Scores did not vary between doctors who were rated as popular or innovative and those who were not rated at all (P>.05). Conclusions Machine learning algorithms can classify open-text feedback of doctor performance into multiple themes derived by human raters with high performance. Colleague open-text comments that signal respect, professionalism, and being interpersonal may be key indicators of doctor’s performance. PMID:28298265

  18. Supervised Machine Learning Algorithms Can Classify Open-Text Feedback of Doctor Performance With Human-Level Accuracy.

    PubMed

    Gibbons, Chris; Richards, Suzanne; Valderas, Jose Maria; Campbell, John

    2017-03-15

    Machine learning techniques may be an effective and efficient way to classify open-text reports on doctor's activity for the purposes of quality assurance, safety, and continuing professional development. The objective of the study was to evaluate the accuracy of machine learning algorithms trained to classify open-text reports of doctor performance and to assess the potential for classifications to identify significant differences in doctors' professional performance in the United Kingdom. We used 1636 open-text comments (34,283 words) relating to the performance of 548 doctors collected from a survey of clinicians' colleagues using the General Medical Council Colleague Questionnaire (GMC-CQ). We coded 77.75% (1272/1636) of the comments into 5 global themes (innovation, interpersonal skills, popularity, professionalism, and respect) using a qualitative framework. We trained 8 machine learning algorithms to classify comments and assessed their performance using several training samples. We evaluated doctor performance using the GMC-CQ and compared scores between doctors with different classifications using t tests. Individual algorithm performance was high (range F score=.68 to .83). Interrater agreement between the algorithms and the human coder was highest for codes relating to "popular" (recall=.97), "innovator" (recall=.98), and "respected" (recall=.87) codes and was lower for the "interpersonal" (recall=.80) and "professional" (recall=.82) codes. A 10-fold cross-validation demonstrated similar performance in each analysis. When combined together into an ensemble of multiple algorithms, mean human-computer interrater agreement was .88. Comments that were classified as "respected," "professional," and "interpersonal" related to higher doctor scores on the GMC-CQ compared with comments that were not classified (P<.05). Scores did not vary between doctors who were rated as popular or innovative and those who were not rated at all (P>.05). Machine learning algorithms can classify open-text feedback of doctor performance into multiple themes derived by human raters with high performance. Colleague open-text comments that signal respect, professionalism, and being interpersonal may be key indicators of doctor's performance. ©Chris Gibbons, Suzanne Richards, Jose Maria Valderas, John Campbell. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 15.03.2017.

  19. Application of an enhanced fuzzy algorithm for MR brain tumor image segmentation

    NASA Astrophysics Data System (ADS)

    Hemanth, D. Jude; Vijila, C. Kezi Selva; Anitha, J.

    2010-02-01

    Image segmentation is one of the significant digital image processing techniques commonly used in the medical field. One of the specific applications is tumor detection in abnormal Magnetic Resonance (MR) brain images. Fuzzy approaches are widely preferred for tumor segmentation which generally yields superior results in terms of accuracy. But most of the fuzzy algorithms suffer from the drawback of slow convergence rate which makes the system practically non-feasible. In this work, the application of modified Fuzzy C-means (FCM) algorithm to tackle the convergence problem is explored in the context of brain image segmentation. This modified FCM algorithm employs the concept of quantization to improve the convergence rate besides yielding excellent segmentation efficiency. This algorithm is experimented on real time abnormal MR brain images collected from the radiologists. A comprehensive feature vector is extracted from these images and used for the segmentation technique. An extensive feature selection process is performed which reduces the convergence time period and improve the segmentation efficiency. After segmentation, the tumor portion is extracted from the segmented image. Comparative analysis in terms of segmentation efficiency and convergence rate is performed between the conventional FCM and the modified FCM. Experimental results show superior results for the modified FCM algorithm in terms of the performance measures. Thus, this work highlights the application of the modified algorithm for brain tumor detection in abnormal MR brain images.

  20. Optimal Alignment of Structures for Finite and Periodic Systems.

    PubMed

    Griffiths, Matthew; Niblett, Samuel P; Wales, David J

    2017-10-10

    Finding the optimal alignment between two structures is important for identifying the minimum root-mean-square distance (RMSD) between them and as a starting point for calculating pathways. Most current algorithms for aligning structures are stochastic, scale exponentially with the size of structure, and the performance can be unreliable. We present two complementary methods for aligning structures corresponding to isolated clusters of atoms and to condensed matter described by a periodic cubic supercell. The first method (Go-PERMDIST), a branch and bound algorithm, locates the global minimum RMSD deterministically in polynomial time. The run time increases for larger RMSDs. The second method (FASTOVERLAP) is a heuristic algorithm that aligns structures by finding the global maximum kernel correlation between them using fast Fourier transforms (FFTs) and fast SO(3) transforms (SOFTs). For periodic systems, FASTOVERLAP scales with the square of the number of identical atoms in the system, reliably finds the best alignment between structures that are not too distant, and shows significantly better performance than existing algorithms. The expected run time for Go-PERMDIST is longer than FASTOVERLAP for periodic systems. For finite clusters, the FASTOVERLAP algorithm is competitive with existing algorithms. The expected run time for Go-PERMDIST to find the global RMSD between two structures deterministically is generally longer than for existing stochastic algorithms. However, with an earlier exit condition, Go-PERMDIST exhibits similar or better performance.

  1. Eye blink detection for different driver states in conditionally automated driving and manual driving using EOG and a driver camera.

    PubMed

    Schmidt, Jürgen; Laarousi, Rihab; Stolzmann, Wolfgang; Karrer-Gauß, Katja

    2018-06-01

    In this article, we examine the performance of different eye blink detection algorithms under various constraints. The goal of the present study was to evaluate the performance of an electrooculogram- and camera-based blink detection process in both manually and conditionally automated driving phases. A further comparison between alert and drowsy drivers was performed in order to evaluate the impact of drowsiness on the performance of blink detection algorithms in both driving modes. Data snippets from 14 monotonous manually driven sessions (mean 2 h 46 min) and 16 monotonous conditionally automated driven sessions (mean 2 h 45 min) were used. In addition to comparing two data-sampling frequencies for the electrooculogram measures (50 vs. 25 Hz) and four different signal-processing algorithms for the camera videos, we compared the blink detection performance of 24 reference groups. The analysis of the videos was based on very detailed definitions of eyelid closure events. The correct detection rates for the alert and manual driving phases (maximum 94%) decreased significantly in the drowsy (minus 2% or more) and conditionally automated (minus 9% or more) phases. Blinking behavior is therefore significantly impacted by drowsiness as well as by automated driving, resulting in less accurate blink detection.

  2. An algorithm for selecting the most accurate protocol for contact angle measurement by drop shape analysis.

    PubMed

    Xu, Z N

    2014-12-01

    In this study, an error analysis is performed to study real water drop images and the corresponding numerically generated water drop profiles for three widely used static contact angle algorithms: the circle- and ellipse-fitting algorithms and the axisymmetric drop shape analysis-profile (ADSA-P) algorithm. The results demonstrate the accuracy of the numerically generated drop profiles based on the Laplace equation. A significant number of water drop profiles with different volumes, contact angles, and noise levels are generated, and the influences of the three factors on the accuracies of the three algorithms are systematically investigated. The results reveal that the above-mentioned three algorithms are complementary. In fact, the circle- and ellipse-fitting algorithms show low errors and are highly resistant to noise for water drops with small/medium volumes and contact angles, while for water drop with large volumes and contact angles just the ADSA-P algorithm can meet accuracy requirement. However, this algorithm introduces significant errors in the case of small volumes and contact angles because of its high sensitivity to noise. The critical water drop volumes of the circle- and ellipse-fitting algorithms corresponding to a certain contact angle error are obtained through a significant amount of computation. To improve the precision of the static contact angle measurement, a more accurate algorithm based on a combination of the three algorithms is proposed. Following a systematic investigation, the algorithm selection rule is described in detail, while maintaining the advantages of the three algorithms and overcoming their deficiencies. In general, static contact angles over the entire hydrophobicity range can be accurately evaluated using the proposed algorithm. The ease of erroneous judgment in static contact angle measurements is avoided. The proposed algorithm is validated by a static contact angle evaluation of real and numerically generated water drop images with different hydrophobicity values and volumes.

  3. Preconditioned alternating projection algorithms for maximum a posteriori ECT reconstruction

    NASA Astrophysics Data System (ADS)

    Krol, Andrzej; Li, Si; Shen, Lixin; Xu, Yuesheng

    2012-11-01

    We propose a preconditioned alternating projection algorithm (PAPA) for solving the maximum a posteriori (MAP) emission computed tomography (ECT) reconstruction problem. Specifically, we formulate the reconstruction problem as a constrained convex optimization problem with the total variation (TV) regularization. We then characterize the solution of the constrained convex optimization problem and show that it satisfies a system of fixed-point equations defined in terms of two proximity operators raised from the convex functions that define the TV-norm and the constraint involved in the problem. The characterization (of the solution) via the proximity operators that define two projection operators naturally leads to an alternating projection algorithm for finding the solution. For efficient numerical computation, we introduce to the alternating projection algorithm a preconditioning matrix (the EM-preconditioner) for the dense system matrix involved in the optimization problem. We prove theoretically convergence of the PAPA. In numerical experiments, performance of our algorithms, with an appropriately selected preconditioning matrix, is compared with performance of the conventional MAP expectation-maximization (MAP-EM) algorithm with TV regularizer (EM-TV) and that of the recently developed nested EM-TV algorithm for ECT reconstruction. Based on the numerical experiments performed in this work, we observe that the alternating projection algorithm with the EM-preconditioner outperforms significantly the EM-TV in all aspects including the convergence speed, the noise in the reconstructed images and the image quality. It also outperforms the nested EM-TV in the convergence speed while providing comparable image quality.

  4. Methods for investigating the local spatial anisotropy and the preferred orientation of cones in adaptive optics retinal images

    PubMed Central

    Cooper, Robert F.; Lombardo, Marco; Carroll, Joseph; Sloan, Kenneth R.; Lombardo, Giuseppe

    2016-01-01

    The ability to non-invasively image the cone photoreceptor mosaic holds significant potential as a diagnostic for retinal disease. Central to the realization of this potential is the development of sensitive metrics for characterizing the organization of the mosaic. Here we evaluated previously-described (Pum et al., 1990) and newly-developed (Fourier- and Radon-based) methods of measuring cone orientation in both simulated and real images of the parafoveal cone mosaic. The proposed algorithms correlated well across both simulated and real mosaics, suggesting that each algorithm would provide an accurate description of individual photoreceptor orientation. Despite the high agreement between algorithms, each performed differently in response to image intensity variation and cone coordinate jitter. The integration property of the Fourier transform allowed the Fourier-based method to be resistant to cone coordinate jitter and perform the most robustly of all three algorithms. Conversely, when there is good image quality but unreliable cone identification, the Radon algorithm performed best. Finally, in cases where both the image and cone coordinate reliability was excellent, the method of Pum et al. (1990) performed best. These descriptors are complementary to conventional descriptive metrics of the cone mosaic, such as cell density and spacing, and have the potential to aid in the detection of photoreceptor pathology. PMID:27484961

  5. Gas demand forecasting by a new artificial intelligent algorithm

    NASA Astrophysics Data System (ADS)

    Khatibi. B, Vahid; Khatibi, Elham

    2012-01-01

    Energy demand forecasting is a key issue for consumers and generators in all energy markets in the world. This paper presents a new forecasting algorithm for daily gas demand prediction. This algorithm combines a wavelet transform and forecasting models such as multi-layer perceptron (MLP), linear regression or GARCH. The proposed method is applied to real data from the UK gas markets to evaluate their performance. The results show that the forecasting accuracy is improved significantly by using the proposed method.

  6. A Comparative Study of Interval Management Control Law Capabilities

    NASA Technical Reports Server (NTRS)

    Barmore, Bryan E.; Smith, Colin L.; Palmer, Susan O.; Abbott, Terence S.

    2012-01-01

    This paper presents a new tool designed to allow for rapid development and testing of different control algorithms for airborne spacing. This tool, Interval Management Modeling and Spacing Tool (IM MAST), is a fast-time, low-fidelity tool created to model the approach of aircraft to a runway, with a focus on their interactions with each other. Errors can be induced between pairs of aircraft by varying initial positions, winds, speed profiles, and altitude profiles. Results to-date show that only a few of the algorithms tested had poor behavior in the arrival and approach environment. The majority of the algorithms showed only minimal variation in performance under the test conditions. Trajectory-based algorithms showed high susceptibility to wind forecast errors, while performing marginally better than the other algorithms under other conditions. Trajectory-based algorithms have a sizable advantage, however, of being able to perform relative spacing operations between aircraft on different arrival routes and flight profiles without employing ghosting. methods. This comes at the higher cost of substantially increased complexity, however. Additionally, it was shown that earlier initiation of relative spacing operations provided more time for corrections to be made without any significant problems in the spacing operation itself. Initiating spacing farther out, however, would require more of the aircraft to begin spacing before they merge onto a common route.

  7. The Performance Analysis of a 3d Map Embedded Ins/gps Fusion Algorithm for Seamless Vehicular Navigation in Elevated Highway Environments

    NASA Astrophysics Data System (ADS)

    Lee, Y. H.; Chiang, K. W.

    2012-07-01

    In this study, a 3D Map Matching (3D MM) algorithm is embedded to current INS/GPS fusion algorithm for enhancing the sustainability and accuracy of INS/GPS integration systems, especially the height component. In addition, this study propose an effective solutions to the limitation of current commercial vehicular navigation systems where they fail to distinguish whether the vehicle is moving on the elevated highway or the road under it because those systems don't have sufficient height resolution. To validate the performance of proposed 3D MM embedded INS/GPS integration algorithms, in the test area, two scenarios were considered, paths under the freeways and streets between tall buildings, where the GPS signal is obstacle or interfered easily. The test platform was mounted on the top of a land vehicle and also systems in the vehicle. The IMUs applied includes SPAN-LCI (0.1 deg/hr gyro bias) from NovAtel, which was used as the reference system, and two MEMS IMUs with different specifications for verifying the performance of proposed algorithm. The preliminary results indicate the proposed algorithms are able to improve the accuracy of positional components in GPS denied environments significantly with the use of INS/GPS integrated systems in SPP mode.

  8. CUDASW++ 3.0: accelerating Smith-Waterman protein database search by coupling CPU and GPU SIMD instructions.

    PubMed

    Liu, Yongchao; Wirawan, Adrianto; Schmidt, Bertil

    2013-04-04

    The maximal sensitivity for local alignments makes the Smith-Waterman algorithm a popular choice for protein sequence database search based on pairwise alignment. However, the algorithm is compute-intensive due to a quadratic time complexity. Corresponding runtimes are further compounded by the rapid growth of sequence databases. We present CUDASW++ 3.0, a fast Smith-Waterman protein database search algorithm, which couples CPU and GPU SIMD instructions and carries out concurrent CPU and GPU computations. For the CPU computation, this algorithm employs SSE-based vector execution units as accelerators. For the GPU computation, we have investigated for the first time a GPU SIMD parallelization, which employs CUDA PTX SIMD video instructions to gain more data parallelism beyond the SIMT execution model. Moreover, sequence alignment workloads are automatically distributed over CPUs and GPUs based on their respective compute capabilities. Evaluation on the Swiss-Prot database shows that CUDASW++ 3.0 gains a performance improvement over CUDASW++ 2.0 up to 2.9 and 3.2, with a maximum performance of 119.0 and 185.6 GCUPS, on a single-GPU GeForce GTX 680 and a dual-GPU GeForce GTX 690 graphics card, respectively. In addition, our algorithm has demonstrated significant speedups over other top-performing tools: SWIPE and BLAST+. CUDASW++ 3.0 is written in CUDA C++ and PTX assembly languages, targeting GPUs based on the Kepler architecture. This algorithm obtains significant speedups over its predecessor: CUDASW++ 2.0, by benefiting from the use of CPU and GPU SIMD instructions as well as the concurrent execution on CPUs and GPUs. The source code and the simulated data are available at http://cudasw.sourceforge.net.

  9. Active module identification in intracellular networks using a memetic algorithm with a new binary decoding scheme.

    PubMed

    Li, Dong; Pan, Zhisong; Hu, Guyu; Zhu, Zexuan; He, Shan

    2017-03-14

    Active modules are connected regions in biological network which show significant changes in expression over particular conditions. The identification of such modules is important since it may reveal the regulatory and signaling mechanisms that associate with a given cellular response. In this paper, we propose a novel active module identification algorithm based on a memetic algorithm. We propose a novel encoding/decoding scheme to ensure the connectedness of the identified active modules. Based on the scheme, we also design and incorporate a local search operator into the memetic algorithm to improve its performance. The effectiveness of proposed algorithm is validated on both small and large protein interaction networks.

  10. A Comprehensive Review of Swarm Optimization Algorithms

    PubMed Central

    2015-01-01

    Many swarm optimization algorithms have been introduced since the early 60’s, Evolutionary Programming to the most recent, Grey Wolf Optimization. All of these algorithms have demonstrated their potential to solve many optimization problems. This paper provides an in-depth survey of well-known optimization algorithms. Selected algorithms are briefly explained and compared with each other comprehensively through experiments conducted using thirty well-known benchmark functions. Their advantages and disadvantages are also discussed. A number of statistical tests are then carried out to determine the significant performances. The results indicate the overall advantage of Differential Evolution (DE) and is closely followed by Particle Swarm Optimization (PSO), compared with other considered approaches. PMID:25992655

  11. Text Extraction from Scene Images by Character Appearance and Structure Modeling

    PubMed Central

    Yi, Chucai; Tian, Yingli

    2012-01-01

    In this paper, we propose a novel algorithm to detect text information from natural scene images. Scene text classification and detection are still open research topics. Our proposed algorithm is able to model both character appearance and structure to generate representative and discriminative text descriptors. The contributions of this paper include three aspects: 1) a new character appearance model by a structure correlation algorithm which extracts discriminative appearance features from detected interest points of character samples; 2) a new text descriptor based on structons and correlatons, which model character structure by structure differences among character samples and structure component co-occurrence; and 3) a new text region localization method by combining color decomposition, character contour refinement, and string line alignment to localize character candidates and refine detected text regions. We perform three groups of experiments to evaluate the effectiveness of our proposed algorithm, including text classification, text detection, and character identification. The evaluation results on benchmark datasets demonstrate that our algorithm achieves the state-of-the-art performance on scene text classification and detection, and significantly outperforms the existing algorithms for character identification. PMID:23316111

  12. Infrared measurement and composite tracking algorithm for air-breathing hypersonic vehicles

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao; Gao, Changsheng; Jing, Wuxing

    2018-03-01

    Air-breathing hypersonic vehicles have capabilities of hypersonic speed and strong maneuvering, and thus pose a significant challenge to conventional tracking methodologies. To achieve desirable tracking performance for hypersonic targets, this paper investigates the problems related to measurement model design and tracking model mismatching. First, owing to the severe aerothermal effect of hypersonic motion, an infrared measurement model in near space is designed and analyzed based on target infrared radiation and an atmospheric model. Second, using information from infrared sensors, a composite tracking algorithm is proposed via a combination of the interactive multiple models (IMM) algorithm, fitting dynamics model, and strong tracking filter. During the procedure, the IMMs algorithm generates tracking data to establish a fitting dynamics model of the target. Then, the strong tracking unscented Kalman filter is employed to estimate the target states for suppressing the impact of target maneuvers. Simulations are performed to verify the feasibility of the presented composite tracking algorithm. The results demonstrate that the designed infrared measurement model effectively and continuously observes hypersonic vehicles, and the proposed composite tracking algorithm accurately and stably tracks these targets.

  13. An analytical particle mover for the charge- and energy-conserving, nonlinearly implicit, electrostatic particle-in-cell algorithm

    NASA Astrophysics Data System (ADS)

    Chen, G.; Chacón, L.

    2013-08-01

    We propose a 1D analytical particle mover for the recent charge- and energy-conserving electrostatic particle-in-cell (PIC) algorithm in Ref. [G. Chen, L. Chacón, D.C. Barnes, An energy- and charge-conserving, implicit, electrostatic particle-in-cell algorithm, Journal of Computational Physics 230 (2011) 7018-7036]. The approach computes particle orbits exactly for a given piece-wise linear electric field. The resulting PIC algorithm maintains the exact charge and energy conservation properties of the original algorithm, but with improved performance (both in efficiency and robustness against the number of particles and timestep). We demonstrate the advantageous properties of the scheme with a challenging multiscale numerical test case, the ion acoustic wave. Using the analytical mover as a reference, we demonstrate that the choice of error estimator in the Crank-Nicolson mover has significant impact on the overall performance of the implicit PIC algorithm. The generalization of the approach to the multi-dimensional case is outlined, based on a novel and simple charge conserving interpolation scheme.

  14. Edge-oriented dual-dictionary guided enrichment (EDGE) for MRI-CT image reconstruction.

    PubMed

    Li, Liang; Wang, Bigong; Wang, Ge

    2016-01-01

    In this paper, we formulate the joint/simultaneous X-ray CT and MRI image reconstruction. In particular, a novel algorithm is proposed for MRI image reconstruction from highly under-sampled MRI data and CT images. It consists of two steps. First, a training dataset is generated from a series of well-registered MRI and CT images on the same patients. Then, an initial MRI image of a patient can be reconstructed via edge-oriented dual-dictionary guided enrichment (EDGE) based on the training dataset and a CT image of the patient. Second, an MRI image is reconstructed using the dictionary learning (DL) algorithm from highly under-sampled k-space data and the initial MRI image. Our algorithm can establish a one-to-one correspondence between the two imaging modalities, and obtain a good initial MRI estimation. Both noise-free and noisy simulation studies were performed to evaluate and validate the proposed algorithm. The results with different under-sampling factors show that the proposed algorithm performed significantly better than those reconstructed using the DL algorithm from MRI data alone.

  15. Surgical motion characterization in simulated needle insertion procedures

    NASA Astrophysics Data System (ADS)

    Holden, Matthew S.; Ungi, Tamas; Sargent, Derek; McGraw, Robert C.; Fichtinger, Gabor

    2012-02-01

    PURPOSE: Evaluation of surgical performance in image-guided needle insertions is of emerging interest, to both promote patient safety and improve the efficiency and effectiveness of training. The purpose of this study was to determine if a Markov model-based algorithm can more accurately segment a needle-based surgical procedure into its five constituent tasks than a simple threshold-based algorithm. METHODS: Simulated needle trajectories were generated with known ground truth segmentation by a synthetic procedural data generator, with random noise added to each degree of freedom of motion. The respective learning algorithms were trained, and then tested on different procedures to determine task segmentation accuracy. In the threshold-based algorithm, a change in tasks was detected when the needle crossed a position/velocity threshold. In the Markov model-based algorithm, task segmentation was performed by identifying the sequence of Markov models most likely to have produced the series of observations. RESULTS: For amplitudes of translational noise greater than 0.01mm, the Markov model-based algorithm was significantly more accurate in task segmentation than the threshold-based algorithm (82.3% vs. 49.9%, p<0.001 for amplitude 10.0mm). For amplitudes less than 0.01mm, the two algorithms produced insignificantly different results. CONCLUSION: Task segmentation of simulated needle insertion procedures was improved by using a Markov model-based algorithm as opposed to a threshold-based algorithm for procedures involving translational noise.

  16. Selected-node stochastic simulation algorithm

    NASA Astrophysics Data System (ADS)

    Duso, Lorenzo; Zechner, Christoph

    2018-04-01

    Stochastic simulations of biochemical networks are of vital importance for understanding complex dynamics in cells and tissues. However, existing methods to perform such simulations are associated with computational difficulties and addressing those remains a daunting challenge to the present. Here we introduce the selected-node stochastic simulation algorithm (snSSA), which allows us to exclusively simulate an arbitrary, selected subset of molecular species of a possibly large and complex reaction network. The algorithm is based on an analytical elimination of chemical species, thereby avoiding explicit simulation of the associated chemical events. These species are instead described continuously in terms of statistical moments derived from a stochastic filtering equation, resulting in a substantial speedup when compared to Gillespie's stochastic simulation algorithm (SSA). Moreover, we show that statistics obtained via snSSA profit from a variance reduction, which can significantly lower the number of Monte Carlo samples needed to achieve a certain performance. We demonstrate the algorithm using several biological case studies for which the simulation time could be reduced by orders of magnitude.

  17. A Constrained Genetic Algorithm with Adaptively Defined Fitness Function in MRS Quantification

    NASA Astrophysics Data System (ADS)

    Papakostas, G. A.; Karras, D. A.; Mertzios, B. G.; Graveron-Demilly, D.; van Ormondt, D.

    MRS Signal quantification is a rather involved procedure and has attracted the interest of the medical engineering community, regarding the development of computationally efficient methodologies. Significant contributions based on Computational Intelligence tools, such as Neural Networks (NNs), demonstrated a good performance but not without drawbacks already discussed by the authors. On the other hand preliminary application of Genetic Algorithms (GA) has already been reported in the literature by the authors regarding the peak detection problem encountered in MRS quantification using the Voigt line shape model. This paper investigates a novel constrained genetic algorithm involving a generic and adaptively defined fitness function which extends the simple genetic algorithm methodology in case of noisy signals. The applicability of this new algorithm is scrutinized through experimentation in artificial MRS signals interleaved with noise, regarding its signal fitting capabilities. Although extensive experiments with real world MRS signals are necessary, the herein shown performance illustrates the method's potential to be established as a generic MRS metabolites quantification procedure.

  18. Bare-Bones Teaching-Learning-Based Optimization

    PubMed Central

    Zou, Feng; Wang, Lei; Hei, Xinhong; Chen, Debao; Jiang, Qiaoyong; Li, Hongye

    2014-01-01

    Teaching-learning-based optimization (TLBO) algorithm which simulates the teaching-learning process of the class room is one of the recently proposed swarm intelligent (SI) algorithms. In this paper, a new TLBO variant called bare-bones teaching-learning-based optimization (BBTLBO) is presented to solve the global optimization problems. In this method, each learner of teacher phase employs an interactive learning strategy, which is the hybridization of the learning strategy of teacher phase in the standard TLBO and Gaussian sampling learning based on neighborhood search, and each learner of learner phase employs the learning strategy of learner phase in the standard TLBO or the new neighborhood search strategy. To verify the performance of our approaches, 20 benchmark functions and two real-world problems are utilized. Conducted experiments can been observed that the BBTLBO performs significantly better than, or at least comparable to, TLBO and some existing bare-bones algorithms. The results indicate that the proposed algorithm is competitive to some other optimization algorithms. PMID:25013844

  19. Bare-bones teaching-learning-based optimization.

    PubMed

    Zou, Feng; Wang, Lei; Hei, Xinhong; Chen, Debao; Jiang, Qiaoyong; Li, Hongye

    2014-01-01

    Teaching-learning-based optimization (TLBO) algorithm which simulates the teaching-learning process of the class room is one of the recently proposed swarm intelligent (SI) algorithms. In this paper, a new TLBO variant called bare-bones teaching-learning-based optimization (BBTLBO) is presented to solve the global optimization problems. In this method, each learner of teacher phase employs an interactive learning strategy, which is the hybridization of the learning strategy of teacher phase in the standard TLBO and Gaussian sampling learning based on neighborhood search, and each learner of learner phase employs the learning strategy of learner phase in the standard TLBO or the new neighborhood search strategy. To verify the performance of our approaches, 20 benchmark functions and two real-world problems are utilized. Conducted experiments can been observed that the BBTLBO performs significantly better than, or at least comparable to, TLBO and some existing bare-bones algorithms. The results indicate that the proposed algorithm is competitive to some other optimization algorithms.

  20. Increasing signal processing sophistication in the calculation of the respiratory modulation of the photoplethysmogram (DPOP).

    PubMed

    Addison, Paul S; Wang, Rui; Uribe, Alberto A; Bergese, Sergio D

    2015-06-01

    DPOP (∆POP or Delta-POP) is a non-invasive parameter which measures the strength of respiratory modulations present in the pulse oximetry photoplethysmogram (pleth) waveform. It has been proposed as a non-invasive surrogate parameter for pulse pressure variation (PPV) used in the prediction of the response to volume expansion in hypovolemic patients. Many groups have reported on the DPOP parameter and its correlation with PPV using various semi-automated algorithmic implementations. The study reported here demonstrates the performance gains made by adding increasingly sophisticated signal processing components to a fully automated DPOP algorithm. A DPOP algorithm was coded and its performance systematically enhanced through a series of code module alterations and additions. Each algorithm iteration was tested on data from 20 mechanically ventilated OR patients. Correlation coefficients and ROC curve statistics were computed at each stage. For the purposes of the analysis we split the data into a manually selected 'stable' region subset of the data containing relatively noise free segments and a 'global' set incorporating the whole data record. Performance gains were measured in terms of correlation against PPV measurements in OR patients undergoing controlled mechanical ventilation. Through increasingly advanced pre-processing and post-processing enhancements to the algorithm, the correlation coefficient between DPOP and PPV improved from a baseline value of R = 0.347 to R = 0.852 for the stable data set, and, correspondingly, R = 0.225 to R = 0.728 for the more challenging global data set. Marked gains in algorithm performance are achievable for manually selected stable regions of the signals using relatively simple algorithm enhancements. Significant additional algorithm enhancements, including a correction for low perfusion values, were required before similar gains were realised for the more challenging global data set.

  1. A novel algorithm for Bluetooth ECG.

    PubMed

    Pandya, Utpal T; Desai, Uday B

    2012-11-01

    In wireless transmission of ECG, data latency will be significant when battery power level and data transmission distance are not maintained. In applications like home monitoring or personalized care, to overcome the joint effect of previous issues of wireless transmission and other ECG measurement noises, a novel filtering strategy is required. Here, a novel algorithm, identified as peak rejection adaptive sampling modified moving average (PRASMMA) algorithm for wireless ECG is introduced. This algorithm first removes error in bit pattern of received data if occurred in wireless transmission and then removes baseline drift. Afterward, a modified moving average is implemented except in the region of each QRS complexes. The algorithm also sets its filtering parameters according to different sampling rate selected for acquisition of signals. To demonstrate the work, a prototyped Bluetooth-based ECG module is used to capture ECG with different sampling rate and in different position of patient. This module transmits ECG wirelessly to Bluetooth-enabled devices where the PRASMMA algorithm is applied on captured ECG. The performance of PRASMMA algorithm is compared with moving average and S-Golay algorithms visually as well as numerically. The results show that the PRASMMA algorithm can significantly improve the ECG reconstruction by efficiently removing the noise and its use can be extended to any parameters where peaks are importance for diagnostic purpose.

  2. Comparison of Co-Temporal Modeling Algorithms on Sparse Experimental Time Series Data Sets.

    PubMed

    Allen, Edward E; Norris, James L; John, David J; Thomas, Stan J; Turkett, William H; Fetrow, Jacquelyn S

    2010-01-01

    Multiple approaches for reverse-engineering biological networks from time-series data have been proposed in the computational biology literature. These approaches can be classified by their underlying mathematical algorithms, such as Bayesian or algebraic techniques, as well as by their time paradigm, which includes next-state and co-temporal modeling. The types of biological relationships, such as parent-child or siblings, discovered by these algorithms are quite varied. It is important to understand the strengths and weaknesses of the various algorithms and time paradigms on actual experimental data. We assess how well the co-temporal implementations of three algorithms, continuous Bayesian, discrete Bayesian, and computational algebraic, can 1) identify two types of entity relationships, parent and sibling, between biological entities, 2) deal with experimental sparse time course data, and 3) handle experimental noise seen in replicate data sets. These algorithms are evaluated, using the shuffle index metric, for how well the resulting models match literature models in terms of siblings and parent relationships. Results indicate that all three co-temporal algorithms perform well, at a statistically significant level, at finding sibling relationships, but perform relatively poorly in finding parent relationships.

  3. Constrained Metric Learning by Permutation Inducing Isometries.

    PubMed

    Bosveld, Joel; Mahmood, Arif; Huynh, Du Q; Noakes, Lyle

    2016-01-01

    The choice of metric critically affects the performance of classification and clustering algorithms. Metric learning algorithms attempt to improve performance, by learning a more appropriate metric. Unfortunately, most of the current algorithms learn a distance function which is not invariant to rigid transformations of images. Therefore, the distances between two images and their rigidly transformed pair may differ, leading to inconsistent classification or clustering results. We propose to constrain the learned metric to be invariant to the geometry preserving transformations of images that induce permutations in the feature space. The constraint that these transformations are isometries of the metric ensures consistent results and improves accuracy. Our second contribution is a dimension reduction technique that is consistent with the isometry constraints. Our third contribution is the formulation of the isometry constrained logistic discriminant metric learning (IC-LDML) algorithm, by incorporating the isometry constraints within the objective function of the LDML algorithm. The proposed algorithm is compared with the existing techniques on the publicly available labeled faces in the wild, viewpoint-invariant pedestrian recognition, and Toy Cars data sets. The IC-LDML algorithm has outperformed existing techniques for the tasks of face recognition, person identification, and object classification by a significant margin.

  4. A new root-based direction-finding algorithm

    NASA Astrophysics Data System (ADS)

    Wasylkiwskyj, Wasyl; Kopriva, Ivica; DoroslovačKi, Miloš; Zaghloul, Amir I.

    2007-04-01

    Polynomial rooting direction-finding (DF) algorithms are a computationally efficient alternative to search-based DF algorithms and are particularly suitable for uniform linear arrays of physically identical elements provided that mutual interaction among the array elements can be either neglected or compensated for. A popular algorithm in such situations is Root Multiple Signal Classification (Root MUSIC (RM)), wherein the estimation of the directions of arrivals (DOA) requires the computation of the roots of a (2N - 2) -order polynomial, where N represents number of array elements. The DOA are estimated from the L pairs of roots closest to the unit circle, where L represents number of sources. In this paper we derive a modified root polynomial (MRP) algorithm requiring the calculation of only L roots in order to estimate the L DOA. We evaluate the performance of the MRP algorithm numerically and show that it is as accurate as the RM algorithm but with a significantly simpler algebraic structure. In order to demonstrate that the theoretically predicted performance can be achieved in an experimental setting, a decoupled array is emulated in hardware using phase shifters. The results are in excellent agreement with theory.

  5. A new chaotic multi-verse optimization algorithm for solving engineering optimization problems

    NASA Astrophysics Data System (ADS)

    Sayed, Gehad Ismail; Darwish, Ashraf; Hassanien, Aboul Ella

    2018-03-01

    Multi-verse optimization algorithm (MVO) is one of the recent meta-heuristic optimization algorithms. The main inspiration of this algorithm came from multi-verse theory in physics. However, MVO like most optimization algorithms suffers from low convergence rate and entrapment in local optima. In this paper, a new chaotic multi-verse optimization algorithm (CMVO) is proposed to overcome these problems. The proposed CMVO is applied on 13 benchmark functions and 7 well-known design problems in the engineering and mechanical field; namely, three-bar trust, speed reduce design, pressure vessel problem, spring design, welded beam, rolling element-bearing and multiple disc clutch brake. In the current study, a modified feasible-based mechanism is employed to handle constraints. In this mechanism, four rules were used to handle the specific constraint problem through maintaining a balance between feasible and infeasible solutions. Moreover, 10 well-known chaotic maps are used to improve the performance of MVO. The experimental results showed that CMVO outperforms other meta-heuristic optimization algorithms on most of the optimization problems. Also, the results reveal that sine chaotic map is the most appropriate map to significantly boost MVO's performance.

  6. Effects of Device on Video Head Impulse Test (vHIT) Gain.

    PubMed

    Janky, Kristen L; Patterson, Jessie N; Shepard, Neil T; Thomas, Megan L A; Honaker, Julie A

    2017-10-01

    Numerous video head impulse test (vHIT) devices are available commercially; however, gain is not calculated uniformly. An evaluation of these devices/algorithms in healthy controls and patients with vestibular loss is necessary for comparing and synthesizing work that utilizes different devices and gain calculations. Using three commercially available vHIT devices/algorithms, the purpose of the present study was to compare: (1) horizontal canal vHIT gain among devices/algorithms in normal control subjects; (2) the effects of age on vHIT gain for each device/algorithm in normal control subjects; and (3) the clinical performance of horizontal canal vHIT gain between devices/algorithms for differentiating normal versus abnormal vestibular function. Prospective. Sixty-one normal control adult subjects (range 20-78) and eleven adults with unilateral or bilateral vestibular loss (range 32-79). vHIT was administered using three different devices/algorithms, randomized in order, for each subject on the same day: (1) Impulse (Otometrics, Schaumberg, IL; monocular eye recording, right eye only; using area under the curve gain), (2) EyeSeeCam (Interacoustics, Denmark; monocular eye recording, left eye only; using instantaneous gain), and (3) VisualEyes (MicroMedical, Chatham, IL, binocular eye recording; using position gain). There was a significant mean difference in vHIT gain among devices/algorithms for both the normal control and vestibular loss groups. vHIT gain was significantly larger in the ipsilateral direction of the eye used to measure gain; however, in spite of the significant mean differences in vHIT gain among devices/algorithms and the significant directional bias, classification of "normal" versus "abnormal" gain is consistent across all compared devices/algorithms, with the exception of instantaneous gain at 40 msec. There was not an effect of age on vHIT gain up to 78 years regardless of the device/algorithm. These findings support that vHIT gain is significantly different between devices/algorithms, suggesting that care should be taken when making direct comparisons of absolute gain values between devices/algorithms. American Academy of Audiology

  7. An algorithm for direct causal learning of influences on patient outcomes.

    PubMed

    Rathnam, Chandramouli; Lee, Sanghoon; Jiang, Xia

    2017-01-01

    This study aims at developing and introducing a new algorithm, called direct causal learner (DCL), for learning the direct causal influences of a single target. We applied it to both simulated and real clinical and genome wide association study (GWAS) datasets and compared its performance to classic causal learning algorithms. The DCL algorithm learns the causes of a single target from passive data using Bayesian-scoring, instead of using independence checks, and a novel deletion algorithm. We generate 14,400 simulated datasets and measure the number of datasets for which DCL correctly and partially predicts the direct causes. We then compare its performance with the constraint-based path consistency (PC) and conservative PC (CPC) algorithms, the Bayesian-score based fast greedy search (FGS) algorithm, and the partial ancestral graphs algorithm fast causal inference (FCI). In addition, we extend our comparison of all five algorithms to both a real GWAS dataset and real breast cancer datasets over various time-points in order to observe how effective they are at predicting the causal influences of Alzheimer's disease and breast cancer survival. DCL consistently outperforms FGS, PC, CPC, and FCI in discovering the parents of the target for the datasets simulated using a simple network. Overall, DCL predicts significantly more datasets correctly (McNemar's test significance: p<0.0001) than any of the other algorithms for these network types. For example, when assessing overall performance (simple and complex network results combined), DCL correctly predicts approximately 1400 more datasets than the top FGS method, 1600 more datasets than the top CPC method, 4500 more datasets than the top PC method, and 5600 more datasets than the top FCI method. Although FGS did correctly predict more datasets than DCL for the complex networks, and DCL correctly predicted only a few more datasets than CPC for these networks, there is no significant difference in performance between these three algorithms for this network type. However, when we use a more continuous measure of accuracy, we find that all the DCL methods are able to better partially predict more direct causes than FGS and CPC for the complex networks. In addition, DCL consistently had faster runtimes than the other algorithms. In the application to the real datasets, DCL identified rs6784615, located on the NISCH gene, and rs10824310, located on the PRKG1 gene, as direct causes of late onset Alzheimer's disease (LOAD) development. In addition, DCL identified ER category as a direct predictor of breast cancer mortality within 5 years, and HER2 status as a direct predictor of 10-year breast cancer mortality. These predictors have been identified in previous studies to have a direct causal relationship with their respective phenotypes, supporting the predictive power of DCL. When the other algorithms discovered predictors from the real datasets, these predictors were either also found by DCL or could not be supported by previous studies. Our results show that DCL outperforms FGS, PC, CPC, and FCI in almost every case, demonstrating its potential to advance causal learning. Furthermore, our DCL algorithm effectively identifies direct causes in the LOAD and Metabric GWAS datasets, which indicates its potential for clinical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Investigating the performance of neural network backpropagation algorithms for TEC estimations using South African GPS data

    NASA Astrophysics Data System (ADS)

    Habarulema, J. B.; McKinnell, L.-A.

    2012-05-01

    In this work, results obtained by investigating the application of different neural network backpropagation training algorithms are presented. This was done to assess the performance accuracy of each training algorithm in total electron content (TEC) estimations using identical datasets in models development and verification processes. Investigated training algorithms are standard backpropagation (SBP), backpropagation with weight delay (BPWD), backpropagation with momentum (BPM) term, backpropagation with chunkwise weight update (BPC) and backpropagation for batch (BPB) training. These five algorithms are inbuilt functions within the Stuttgart Neural Network Simulator (SNNS) and the main objective was to find out the training algorithm that generates the minimum error between the TEC derived from Global Positioning System (GPS) observations and the modelled TEC data. Another investigated algorithm is the MatLab based Levenberg-Marquardt backpropagation (L-MBP), which achieves convergence after the least number of iterations during training. In this paper, neural network (NN) models were developed using hourly TEC data (for 8 years: 2000-2007) derived from GPS observations over a receiver station located at Sutherland (SUTH) (32.38° S, 20.81° E), South Africa. Verification of the NN models for all algorithms considered was performed on both "seen" and "unseen" data. Hourly TEC values over SUTH for 2003 formed the "seen" dataset. The "unseen" dataset consisted of hourly TEC data for 2002 and 2008 over Cape Town (CPTN) (33.95° S, 18.47° E) and SUTH, respectively. The models' verification showed that all algorithms investigated provide comparable results statistically, but differ significantly in terms of time required to achieve convergence during input-output data training/learning. This paper therefore provides a guide to neural network users for choosing appropriate algorithms based on the availability of computation capabilities used for research.

  9. Novel search algorithms for a mid-infrared spectral library of cotton contaminants.

    PubMed

    Loudermilk, J Brian; Himmelsbach, David S; Barton, Franklin E; de Haseth, James A

    2008-06-01

    During harvest, a variety of plant based contaminants are collected along with cotton lint. The USDA previously created a mid-infrared, attenuated total reflection (ATR), Fourier transform infrared (FT-IR) spectral library of cotton contaminants for contaminant identification as the contaminants have negative impacts on yarn quality. This library has shown impressive identification rates for extremely similar cellulose based contaminants in cases where the library was representative of the samples searched. When spectra of contaminant samples from crops grown in different geographic locations, seasons, and conditions and measured with a different spectrometer and accessories were searched, identification rates for standard search algorithms decreased significantly. Six standard algorithms were examined: dot product, correlation, sum of absolute values of differences, sum of the square root of the absolute values of differences, sum of absolute values of differences of derivatives, and sum of squared differences of derivatives. Four categories of contaminants derived from cotton plants were considered: leaf, stem, seed coat, and hull. Experiments revealed that the performance of the standard search algorithms depended upon the category of sample being searched and that different algorithms provided complementary information about sample identity. These results indicated that choosing a single standard algorithm to search the library was not possible. Three voting scheme algorithms based on result frequency, result rank, category frequency, or a combination of these factors for the results returned by the standard algorithms were developed and tested for their capability to overcome the unpredictability of the standard algorithms' performances. The group voting scheme search was based on the number of spectra from each category of samples represented in the library returned in the top ten results of the standard algorithms. This group algorithm was able to identify correctly as many test spectra as the best standard algorithm without relying on human choice to select a standard algorithm to perform the searches.

  10. Applying dynamic data collection to improve dry electrode system performance for a P300-based brain-computer interface

    NASA Astrophysics Data System (ADS)

    Clements, J. M.; Sellers, E. W.; Ryan, D. B.; Caves, K.; Collins, L. M.; Throckmorton, C. S.

    2016-12-01

    Objective. Dry electrodes have an advantage over gel-based ‘wet’ electrodes by providing quicker set-up time for electroencephalography recording; however, the potentially poorer contact can result in noisier recordings. We examine the impact that this may have on brain-computer interface communication and potential approaches for mitigation. Approach. We present a performance comparison of wet and dry electrodes for use with the P300 speller system in both healthy participants and participants with communication disabilities (ALS and PLS), and investigate the potential for a data-driven dynamic data collection algorithm to compensate for the lower signal-to-noise ratio (SNR) in dry systems. Main results. Performance results from sixteen healthy participants obtained in the standard static data collection environment demonstrate a substantial loss in accuracy with the dry system. Using a dynamic stopping algorithm, performance may have been improved by collecting more data in the dry system for ten healthy participants and eight participants with communication disabilities; however, the algorithm did not fully compensate for the lower SNR of the dry system. An analysis of the wet and dry system recordings revealed that delta and theta frequency band power (0.1-4 Hz and 4-8 Hz, respectively) are consistently higher in dry system recordings across participants, indicating that transient and drift artifacts may be an issue for dry systems. Significance. Using dry electrodes is desirable for reduced set-up time; however, this study demonstrates that online performance is significantly poorer than for wet electrodes for users with and without disabilities. We test a new application of dynamic stopping algorithms to compensate for poorer SNR. Dynamic stopping improved dry system performance; however, further signal processing efforts are likely necessary for full mitigation.

  11. A new method for solving routing and wavelength assignment problems under inaccurate routing information in optical networks with conversion capability

    NASA Astrophysics Data System (ADS)

    Luo, Yanting; Zhang, Yongjun; Gu, Wanyi

    2009-11-01

    In large dynamic networks it is extremely difficult to maintain accurate routing information on all network nodes. The existing studies have illustrated the impact of imprecise state information on the performance of dynamic routing and wavelength assignment (RWA) algorithms. An algorithm called Bypass Based Optical Routing (BBOR) proposed by Xavier Masip-Bruin et al can reduce the effects of having inaccurate routing information in networks operating under the wavelength-continuity constraint. Then they extended the BBOR mechanism (for convenience it's called EBBOR mechanism below) to be applied to the networks with sparse and limited wavelength conversion. But it only considers the characteristic of wavelength conversion in the step of computing the bypass-paths so that its performance may decline with increasing the degree of wavelength translation (this concept will be explained in the section of introduction again). We will demonstrate the issue through theoretical analysis and introduce a novel algorithm which modifies both the lightpath selection and the bypass-paths computation in comparison to EBBOR algorithm. Simulations show that the Modified EBBOR (MEBBOR) algorithm improves the blocking performance significantly in optical networks with Conversion Capability.

  12. A robust and accurate center-frequency estimation (RACE) algorithm for improving motion estimation performance of SinMod on tagged cardiac MR images without known tagging parameters.

    PubMed

    Liu, Hong; Wang, Jie; Xu, Xiangyang; Song, Enmin; Wang, Qian; Jin, Renchao; Hung, Chih-Cheng; Fei, Baowei

    2014-11-01

    A robust and accurate center-frequency (CF) estimation (RACE) algorithm for improving the performance of the local sine-wave modeling (SinMod) method, which is a good motion estimation method for tagged cardiac magnetic resonance (MR) images, is proposed in this study. The RACE algorithm can automatically, effectively and efficiently produce a very appropriate CF estimate for the SinMod method, under the circumstance that the specified tagging parameters are unknown, on account of the following two key techniques: (1) the well-known mean-shift algorithm, which can provide accurate and rapid CF estimation; and (2) an original two-direction-combination strategy, which can further enhance the accuracy and robustness of CF estimation. Some other available CF estimation algorithms are brought out for comparison. Several validation approaches that can work on the real data without ground truths are specially designed. Experimental results on human body in vivo cardiac data demonstrate the significance of accurate CF estimation for SinMod, and validate the effectiveness of RACE in facilitating the motion estimation performance of SinMod. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Iterative Track Fitting Using Cluster Classification in Multi Wire Proportional Chamber

    NASA Astrophysics Data System (ADS)

    Primor, David; Mikenberg, Giora; Etzion, Erez; Messer, Hagit

    2007-10-01

    This paper addresses the problem of track fitting of a charged particle in a multi wire proportional chamber (MWPC) using cathode readout strips. When a charged particle crosses a MWPC, a positive charge is induced on a cluster of adjacent strips. In the presence of high radiation background, the cluster charge measurements may be contaminated due to background particles, leading to less accurate hit position estimation. The least squares method for track fitting assumes the same position error distribution for all hits and thus loses its optimal properties on contaminated data. For this reason, a new robust algorithm is proposed. The algorithm first uses the known spatial charge distribution caused by a single charged particle over the strips, and classifies the clusters into ldquocleanrdquo and ldquodirtyrdquo clusters. Then, using the classification results, it performs an iterative weighted least squares fitting procedure, updating its optimal weights each iteration. The performance of the suggested algorithm is compared to other track fitting techniques using a simulation of tracks with radiation background. It is shown that the algorithm improves the track fitting performance significantly. A practical implementation of the algorithm is presented for muon track fitting in the cathode strip chamber (CSC) of the ATLAS experiment.

  14. Handling Dynamic Weights in Weighted Frequent Pattern Mining

    NASA Astrophysics Data System (ADS)

    Ahmed, Chowdhury Farhan; Tanbeer, Syed Khairuzzaman; Jeong, Byeong-Soo; Lee, Young-Koo

    Even though weighted frequent pattern (WFP) mining is more effective than traditional frequent pattern mining because it can consider different semantic significances (weights) of items, existing WFP algorithms assume that each item has a fixed weight. But in real world scenarios, the weight (price or significance) of an item can vary with time. Reflecting these changes in item weight is necessary in several mining applications, such as retail market data analysis and web click stream analysis. In this paper, we introduce the concept of a dynamic weight for each item, and propose an algorithm, DWFPM (dynamic weighted frequent pattern mining), that makes use of this concept. Our algorithm can address situations where the weight (price or significance) of an item varies dynamically. It exploits a pattern growth mining technique to avoid the level-wise candidate set generation-and-test methodology. Furthermore, it requires only one database scan, so it is eligible for use in stream data mining. An extensive performance analysis shows that our algorithm is efficient and scalable for WFP mining using dynamic weights.

  15. Fuzzy C-Means Algorithm for Segmentation of Aerial Photography Data Obtained Using Unmanned Aerial Vehicle

    NASA Astrophysics Data System (ADS)

    Akinin, M. V.; Akinina, N. V.; Klochkov, A. Y.; Nikiforov, M. B.; Sokolova, A. V.

    2015-05-01

    The report reviewed the algorithm fuzzy c-means, performs image segmentation, give an estimate of the quality of his work on the criterion of Xie-Beni, contain the results of experimental studies of the algorithm in the context of solving the problem of drawing up detailed two-dimensional maps with the use of unmanned aerial vehicles. According to the results of the experiment concluded that the possibility of applying the algorithm in problems of decoding images obtained as a result of aerial photography. The considered algorithm can significantly break the original image into a plurality of segments (clusters) in a relatively short period of time, which is achieved by modification of the original k-means algorithm to work in a fuzzy task.

  16. Analysis of parameter estimation and optimization application of ant colony algorithm in vehicle routing problem

    NASA Astrophysics Data System (ADS)

    Xu, Quan-Li; Cao, Yu-Wei; Yang, Kun

    2018-03-01

    Ant Colony Optimization (ACO) is the most widely used artificial intelligence algorithm at present. This study introduced the principle and mathematical model of ACO algorithm in solving Vehicle Routing Problem (VRP), and designed a vehicle routing optimization model based on ACO, then the vehicle routing optimization simulation system was developed by using c ++ programming language, and the sensitivity analyses, estimations and improvements of the three key parameters of ACO were carried out. The results indicated that the ACO algorithm designed in this paper can efficiently solve rational planning and optimization of VRP, and the different values of the key parameters have significant influence on the performance and optimization effects of the algorithm, and the improved algorithm is not easy to locally converge prematurely and has good robustness.

  17. Implementation of Multispectral Image Classification on a Remote Adaptive Computer

    NASA Technical Reports Server (NTRS)

    Figueiredo, Marco A.; Gloster, Clay S.; Stephens, Mark; Graves, Corey A.; Nakkar, Mouna

    1999-01-01

    As the demand for higher performance computers for the processing of remote sensing science algorithms increases, the need to investigate new computing paradigms its justified. Field Programmable Gate Arrays enable the implementation of algorithms at the hardware gate level, leading to orders of m a,gnitude performance increase over microprocessor based systems. The automatic classification of spaceborne multispectral images is an example of a computation intensive application, that, can benefit from implementation on an FPGA - based custom computing machine (adaptive or reconfigurable computer). A probabilistic neural network is used here to classify pixels of of a multispectral LANDSAT-2 image. The implementation described utilizes Java client/server application programs to access the adaptive computer from a remote site. Results verify that a remote hardware version of the algorithm (implemented on an adaptive computer) is significantly faster than a local software version of the same algorithm implemented on a typical general - purpose computer).

  18. Quantitative Features of Liver Lesions, Lung Nodules, and Renal Stones at Multi-Detector Row CT Examinations: Dependency on Radiation Dose and Reconstruction Algorithm.

    PubMed

    Solomon, Justin; Mileto, Achille; Nelson, Rendon C; Roy Choudhury, Kingshuk; Samei, Ehsan

    2016-04-01

    To determine if radiation dose and reconstruction algorithm affect the computer-based extraction and analysis of quantitative imaging features in lung nodules, liver lesions, and renal stones at multi-detector row computed tomography (CT). Retrospective analysis of data from a prospective, multicenter, HIPAA-compliant, institutional review board-approved clinical trial was performed by extracting 23 quantitative imaging features (size, shape, attenuation, edge sharpness, pixel value distribution, and texture) of lesions on multi-detector row CT images of 20 adult patients (14 men, six women; mean age, 63 years; range, 38-72 years) referred for known or suspected focal liver lesions, lung nodules, or kidney stones. Data were acquired between September 2011 and April 2012. All multi-detector row CT scans were performed at two different radiation dose levels; images were reconstructed with filtered back projection, adaptive statistical iterative reconstruction, and model-based iterative reconstruction (MBIR) algorithms. A linear mixed-effects model was used to assess the effect of radiation dose and reconstruction algorithm on extracted features. Among the 23 imaging features assessed, radiation dose had a significant effect on five, three, and four of the features for liver lesions, lung nodules, and renal stones, respectively (P < .002 for all comparisons). Adaptive statistical iterative reconstruction had a significant effect on three, one, and one of the features for liver lesions, lung nodules, and renal stones, respectively (P < .002 for all comparisons). MBIR reconstruction had a significant effect on nine, 11, and 15 of the features for liver lesions, lung nodules, and renal stones, respectively (P < .002 for all comparisons). Of note, the measured size of lung nodules and renal stones with MBIR was significantly different than those for the other two algorithms (P < .002 for all comparisons). Although lesion texture was significantly affected by the reconstruction algorithm used (average of 3.33 features affected by MBIR throughout lesion types; P < .002, for all comparisons), no significant effect of the radiation dose setting was observed for all but one of the texture features (P = .002-.998). Radiation dose settings and reconstruction algorithms affect the extraction and analysis of quantitative imaging features in lesions at multi-detector row CT.

  19. A collaborative approach to developing an electronic health record phenotyping algorithm for drug-induced liver injury

    PubMed Central

    Overby, Casey Lynnette; Pathak, Jyotishman; Gottesman, Omri; Haerian, Krystl; Perotte, Adler; Murphy, Sean; Bruce, Kevin; Johnson, Stephanie; Talwalkar, Jayant; Shen, Yufeng; Ellis, Steve; Kullo, Iftikhar; Chute, Christopher; Friedman, Carol; Bottinger, Erwin; Hripcsak, George; Weng, Chunhua

    2013-01-01

    Objective To describe a collaborative approach for developing an electronic health record (EHR) phenotyping algorithm for drug-induced liver injury (DILI). Methods We analyzed types and causes of differences in DILI case definitions provided by two institutions—Columbia University and Mayo Clinic; harmonized two EHR phenotyping algorithms; and assessed the performance, measured by sensitivity, specificity, positive predictive value, and negative predictive value, of the resulting algorithm at three institutions except that sensitivity was measured only at Columbia University. Results Although these sites had the same case definition, their phenotyping methods differed by selection of liver injury diagnoses, inclusion of drugs cited in DILI cases, laboratory tests assessed, laboratory thresholds for liver injury, exclusion criteria, and approaches to validating phenotypes. We reached consensus on a DILI phenotyping algorithm and implemented it at three institutions. The algorithm was adapted locally to account for differences in populations and data access. Implementations collectively yielded 117 algorithm-selected cases and 23 confirmed true positive cases. Discussion Phenotyping for rare conditions benefits significantly from pooling data across institutions. Despite the heterogeneity of EHRs and varied algorithm implementations, we demonstrated the portability of this algorithm across three institutions. The performance of this algorithm for identifying DILI was comparable with other computerized approaches to identify adverse drug events. Conclusions Phenotyping algorithms developed for rare and complex conditions are likely to require adaptive implementation at multiple institutions. Better approaches are also needed to share algorithms. Early agreement on goals, data sources, and validation methods may improve the portability of the algorithms. PMID:23837993

  20. An Efficient Next Hop Selection Algorithm for Multi-Hop Body Area Networks

    PubMed Central

    Ayatollahitafti, Vahid; Ngadi, Md Asri; Mohamad Sharif, Johan bin; Abdullahi, Mohammed

    2016-01-01

    Body Area Networks (BANs) consist of various sensors which gather patient’s vital signs and deliver them to doctors. One of the most significant challenges faced, is the design of an energy-efficient next hop selection algorithm to satisfy Quality of Service (QoS) requirements for different healthcare applications. In this paper, a novel efficient next hop selection algorithm is proposed in multi-hop BANs. This algorithm uses the minimum hop count and a link cost function jointly in each node to choose the best next hop node. The link cost function includes the residual energy, free buffer size, and the link reliability of the neighboring nodes, which is used to balance the energy consumption and to satisfy QoS requirements in terms of end to end delay and reliability. Extensive simulation experiments were performed to evaluate the efficiency of the proposed algorithm using the NS-2 simulator. Simulation results show that our proposed algorithm provides significant improvement in terms of energy consumption, number of packets forwarded, end to end delay and packet delivery ratio compared to the existing routing protocol. PMID:26771586

  1. Design and Implementation of a Distributed Version of the NASA Engine Performance Program

    NASA Technical Reports Server (NTRS)

    Cours, Jeffrey T.

    1994-01-01

    Distributed NEPP is a new version of the NASA Engine Performance Program that runs in parallel on a collection of Unix workstations connected through a network. The program is fault-tolerant, efficient, and shows significant speed-up in a multi-user, heterogeneous environment. This report describes the issues involved in designing distributed NEPP, the algorithms the program uses, and the performance distributed NEPP achieves. It develops an analytical model to predict and measure the performance of the simple distribution, multiple distribution, and fault-tolerant distribution algorithms that distributed NEPP incorporates. Finally, the appendices explain how to use distributed NEPP and document the organization of the program's source code.

  2. Automated method for measuring the extent of selective logging damage with airborne LiDAR data

    NASA Astrophysics Data System (ADS)

    Melendy, L.; Hagen, S. C.; Sullivan, F. B.; Pearson, T. R. H.; Walker, S. M.; Ellis, P.; Kustiyo; Sambodo, Ari Katmoko; Roswintiarti, O.; Hanson, M. A.; Klassen, A. W.; Palace, M. W.; Braswell, B. H.; Delgado, G. M.

    2018-05-01

    Selective logging has an impact on the global carbon cycle, as well as on the forest micro-climate, and longer-term changes in erosion, soil and nutrient cycling, and fire susceptibility. Our ability to quantify these impacts is dependent on methods and tools that accurately identify the extent and features of logging activity. LiDAR-based measurements of these features offers significant promise. Here, we present a set of algorithms for automated detection and mapping of critical features associated with logging - roads/decks, skid trails, and gaps - using commercial airborne LiDAR data as input. The automated algorithm was applied to commercial LiDAR data collected over two logging concessions in Kalimantan, Indonesia in 2014. The algorithm results were compared to measurements of the logging features collected in the field soon after logging was complete. The automated algorithm-mapped road/deck and skid trail features match closely with features measured in the field, with agreement levels ranging from 69% to 99% when adjusting for GPS location error. The algorithm performed most poorly with gaps, which, by their nature, are variable due to the unpredictable impact of tree fall versus the linear and regular features directly created by mechanical means. Overall, the automated algorithm performs well and offers significant promise as a generalizable tool useful to efficiently and accurately capture the effects of selective logging, including the potential to distinguish reduced impact logging from conventional logging.

  3. Quick Vegas: Improving Performance of TCP Vegas for High Bandwidth-Delay Product Networks

    NASA Astrophysics Data System (ADS)

    Chan, Yi-Cheng; Lin, Chia-Liang; Ho, Cheng-Yuan

    An important issue in designing a TCP congestion control algorithm is that it should allow the protocol to quickly adjust the end-to-end communication rate to the bandwidth on the bottleneck link. However, the TCP congestion control may function poorly in high bandwidth-delay product networks because of its slow response with large congestion windows. In this paper, we propose an enhanced version of TCP Vegas called Quick Vegas, in which we present an efficient congestion window control algorithm for a TCP source. Our algorithm improves the slow-start and congestion avoidance techniques of original Vegas. Simulation results show that Quick Vegas significantly improves the performance of connections as well as remaining fair when the bandwidth-delay product increases.

  4. An application of locally linear model tree algorithm with combination of feature selection in credit scoring

    NASA Astrophysics Data System (ADS)

    Siami, Mohammad; Gholamian, Mohammad Reza; Basiri, Javad

    2014-10-01

    Nowadays, credit scoring is one of the most important topics in the banking sector. Credit scoring models have been widely used to facilitate the process of credit assessing. In this paper, an application of the locally linear model tree algorithm (LOLIMOT) was experimented to evaluate the superiority of its performance to predict the customer's credit status. The algorithm is improved with an aim of adjustment by credit scoring domain by means of data fusion and feature selection techniques. Two real world credit data sets - Australian and German - from UCI machine learning database were selected to demonstrate the performance of our new classifier. The analytical results indicate that the improved LOLIMOT significantly increase the prediction accuracy.

  5. The Electrooculogram and a New Blink Detection Algorithm

    DTIC Science & Technology

    2015-10-30

    applications, and physiological monitoring has proven quite helpful with this assessment. One such physiological signal , the electrooculogram ( EOG ...significantly improve performance. One such physiological signal , the electrooculogram ( EOG ), can provide blink rate and blink duration measures. Blink...that such variability substantiates the need for blink detection algorithms, using the EOG signal , that are robust to noise, artifacts, and intra- and

  6. Multiscale high-order/low-order (HOLO) algorithms and applications

    NASA Astrophysics Data System (ADS)

    Chacón, L.; Chen, G.; Knoll, D. A.; Newman, C.; Park, H.; Taitano, W.; Willert, J. A.; Womeldorff, G.

    2017-02-01

    We review the state of the art in the formulation, implementation, and performance of so-called high-order/low-order (HOLO) algorithms for challenging multiscale problems. HOLO algorithms attempt to couple one or several high-complexity physical models (the high-order model, HO) with low-complexity ones (the low-order model, LO). The primary goal of HOLO algorithms is to achieve nonlinear convergence between HO and LO components while minimizing memory footprint and managing the computational complexity in a practical manner. Key to the HOLO approach is the use of the LO representations to address temporal stiffness, effectively accelerating the convergence of the HO/LO coupled system. The HOLO approach is broadly underpinned by the concept of nonlinear elimination, which enables segregation of the HO and LO components in ways that can effectively use heterogeneous architectures. The accuracy and efficiency benefits of HOLO algorithms are demonstrated with specific applications to radiation transport, gas dynamics, plasmas (both Eulerian and Lagrangian formulations), and ocean modeling. Across this broad application spectrum, HOLO algorithms achieve significant accuracy improvements at a fraction of the cost compared to conventional approaches. It follows that HOLO algorithms hold significant potential for high-fidelity system scale multiscale simulations leveraging exascale computing.

  7. Comparison of multihardware parallel implementations for a phase unwrapping algorithm

    NASA Astrophysics Data System (ADS)

    Hernandez-Lopez, Francisco Javier; Rivera, Mariano; Salazar-Garibay, Adan; Legarda-Sáenz, Ricardo

    2018-04-01

    Phase unwrapping is an important problem in the areas of optical metrology, synthetic aperture radar (SAR) image analysis, and magnetic resonance imaging (MRI) analysis. These images are becoming larger in size and, particularly, the availability and need for processing of SAR and MRI data have increased significantly with the acquisition of remote sensing data and the popularization of magnetic resonators in clinical diagnosis. Therefore, it is important to develop faster and accurate phase unwrapping algorithms. We propose a parallel multigrid algorithm of a phase unwrapping method named accumulation of residual maps, which builds on a serial algorithm that consists of the minimization of a cost function; minimization achieved by means of a serial Gauss-Seidel kind algorithm. Our algorithm also optimizes the original cost function, but unlike the original work, our algorithm is a parallel Jacobi class with alternated minimizations. This strategy is known as the chessboard type, where red pixels can be updated in parallel at same iteration since they are independent. Similarly, black pixels can be updated in parallel in an alternating iteration. We present parallel implementations of our algorithm for different parallel multicore architecture such as CPU-multicore, Xeon Phi coprocessor, and Nvidia graphics processing unit. In all the cases, we obtain a superior performance of our parallel algorithm when compared with the original serial version. In addition, we present a detailed comparative performance of the developed parallel versions.

  8. Development and Evaluation of Algorithms for Breath Alcohol Screening.

    PubMed

    Ljungblad, Jonas; Hök, Bertil; Ekström, Mikael

    2016-04-01

    Breath alcohol screening is important for traffic safety, access control and other areas of health promotion. A family of sensor devices useful for these purposes is being developed and evaluated. This paper is focusing on algorithms for the determination of breath alcohol concentration in diluted breath samples using carbon dioxide to compensate for the dilution. The examined algorithms make use of signal averaging, weighting and personalization to reduce estimation errors. Evaluation has been performed by using data from a previously conducted human study. It is concluded that these features in combination will significantly reduce the random error compared to the signal averaging algorithm taken alone.

  9. Differential carrier phase recovery for QPSK optical coherent systems with integrated tunable lasers.

    PubMed

    Fatadin, Irshaad; Ives, David; Savory, Seb J

    2013-04-22

    The performance of a differential carrier phase recovery algorithm is investigated for the quadrature phase shift keying (QPSK) modulation format with an integrated tunable laser. The phase noise of the widely-tunable laser measured using a digital coherent receiver is shown to exhibit significant drift compared to a standard distributed feedback (DFB) laser due to enhanced low frequency noise component. The simulated performance of the differential algorithm is compared to the Viterbi-Viterbi phase estimation at different baud rates using the measured phase noise for the integrated tunable laser.

  10. Easy-to-learn cardiopulmonary resuscitation training programme: a randomised controlled trial on laypeople’s resuscitation performance

    PubMed Central

    Ko, Rachel Jia Min; Lim, Swee Han; Wu, Vivien Xi; Leong, Tak Yam; Liaw, Sok Ying

    2018-01-01

    INTRODUCTION Simplifying the learning of cardiopulmonary resuscitation (CPR) is advocated to improve skill acquisition and retention. A simplified CPR training programme focusing on continuous chest compression, with a simple landmark tracing technique, was introduced to laypeople. The study aimed to examine the effectiveness of the simplified CPR training in improving lay rescuers’ CPR performance as compared to standard CPR. METHODS A total of 85 laypeople (aged 21–60 years) were recruited and randomly assigned to undertake either a two-hour simplified or standard CPR training session. They were tested two months after the training on a simulated cardiac arrest scenario. Participants’ performance on the sequence of CPR steps was observed and evaluated using a validated CPR algorithm checklist. The quality of chest compression and ventilation was assessed from the recording manikins. RESULTS The simplified CPR group performed significantly better on the CPR algorithm when compared to the standard CPR group (p < 0.01). No significant difference was found between the groups in time taken to initiate CPR. However, a significantly higher number of compressions and proportion of adequate compressions was demonstrated by the simplified group than the standard group (p < 0.01). Hands-off time was significantly shorter in the simplified CPR group than in the standard CPR group (p < 0.001). CONCLUSION Simplifying the learning of CPR by focusing on continuous chest compressions, with simple hand placement for chest compression, could lead to better acquisition and retention of CPR algorithms, and better quality of chest compressions than standard CPR. PMID:29167910

  11. Easy-to-learn cardiopulmonary resuscitation training programme: a randomised controlled trial on laypeople's resuscitation performance.

    PubMed

    Ko, Rachel Jia Min; Lim, Swee Han; Wu, Vivien Xi; Leong, Tak Yam; Liaw, Sok Ying

    2018-04-01

    Simplifying the learning of cardiopulmonary resuscitation (CPR) is advocated to improve skill acquisition and retention. A simplified CPR training programme focusing on continuous chest compression, with a simple landmark tracing technique, was introduced to laypeople. The study aimed to examine the effectiveness of the simplified CPR training in improving lay rescuers' CPR performance as compared to standard CPR. A total of 85 laypeople (aged 21-60 years) were recruited and randomly assigned to undertake either a two-hour simplified or standard CPR training session. They were tested two months after the training on a simulated cardiac arrest scenario. Participants' performance on the sequence of CPR steps was observed and evaluated using a validated CPR algorithm checklist. The quality of chest compression and ventilation was assessed from the recording manikins. The simplified CPR group performed significantly better on the CPR algorithm when compared to the standard CPR group (p < 0.01). No significant difference was found between the groups in time taken to initiate CPR. However, a significantly higher number of compressions and proportion of adequate compressions was demonstrated by the simplified group than the standard group (p < 0.01). Hands-off time was significantly shorter in the simplified CPR group than in the standard CPR group (p < 0.001). Simplifying the learning of CPR by focusing on continuous chest compressions, with simple hand placement for chest compression, could lead to better acquisition and retention of CPR algorithms, and better quality of chest compressions than standard CPR. Copyright: © Singapore Medical Association.

  12. Parallel performance of TORT on the CRAY J90: Model and measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnett, A.; Azmy, Y.Y.

    1997-10-01

    A limitation on the parallel performance of TORT on the CRAY J90 is the amount of extra work introduced by the multitasking algorithm itself. The extra work beyond that of the serial version of the code, called overhead, arises from the synchronization of the parallel tasks and the accumulation of results by the master task. The goal of recent updates to TORT was to reduce the time consumed by these activities. To help understand which components of the multitasking algorithm contribute significantly to the overhead, a parallel performance model was constructed and compared to measurements of actual timings of themore » code.« less

  13. Sequential Nonlinear Learning for Distributed Multiagent Systems via Extreme Learning Machines.

    PubMed

    Vanli, Nuri Denizcan; Sayin, Muhammed O; Delibalta, Ibrahim; Kozat, Suleyman Serdar

    2017-03-01

    We study online nonlinear learning over distributed multiagent systems, where each agent employs a single hidden layer feedforward neural network (SLFN) structure to sequentially minimize arbitrary loss functions. In particular, each agent trains its own SLFN using only the data that is revealed to itself. On the other hand, the aim of the multiagent system is to train the SLFN at each agent as well as the optimal centralized batch SLFN that has access to all the data, by exchanging information between neighboring agents. We address this problem by introducing a distributed subgradient-based extreme learning machine algorithm. The proposed algorithm provides guaranteed upper bounds on the performance of the SLFN at each agent and shows that each of these individual SLFNs asymptotically achieves the performance of the optimal centralized batch SLFN. Our performance guarantees explicitly distinguish the effects of data- and network-dependent parameters on the convergence rate of the proposed algorithm. The experimental results illustrate that the proposed algorithm achieves the oracle performance significantly faster than the state-of-the-art methods in the machine learning and signal processing literature. Hence, the proposed method is highly appealing for the applications involving big data.

  14. Style-independent document labeling: design and performance evaluation

    NASA Astrophysics Data System (ADS)

    Mao, Song; Kim, Jong Woo; Thoma, George R.

    2003-12-01

    The Medical Article Records System or MARS has been developed at the U.S. National Library of Medicine (NLM) for automated data entry of bibliographical information from medical journals into MEDLINE, the premier bibliographic citation database at NLM. Currently, a rule-based algorithm (called ZoneCzar) is used for labeling important bibliographical fields (title, author, affiliation, and abstract) on medical journal article page images. While rules have been created for medical journals with regular layout types, new rules have to be manually created for any input journals with arbitrary or new layout types. Therefore, it is of interest to label any journal articles independent of their layout styles. In this paper, we first describe a system (called ZoneMatch) for automated generation of crucial geometric and non-geometric features of important bibliographical fields based on string-matching and clustering techniques. The rule based algorithm is then modified to use these features to perform style-independent labeling. We then describe a performance evaluation method for quantitatively evaluating our algorithm and characterizing its error distributions. Experimental results show that the labeling performance of the rule-based algorithm is significantly improved when the generated features are used.

  15. An efficient coding algorithm for the compression of ECG signals using the wavelet transform.

    PubMed

    Rajoub, Bashar A

    2002-04-01

    A wavelet-based electrocardiogram (ECG) data compression algorithm is proposed in this paper. The ECG signal is first preprocessed, the discrete wavelet transform (DWT) is then applied to the preprocessed signal. Preprocessing guarantees that the magnitudes of the wavelet coefficients be less than one, and reduces the reconstruction errors near both ends of the compressed signal. The DWT coefficients are divided into three groups, each group is thresholded using a threshold based on a desired energy packing efficiency. A binary significance map is then generated by scanning the wavelet decomposition coefficients and outputting a binary one if the scanned coefficient is significant, and a binary zero if it is insignificant. Compression is achieved by 1) using a variable length code based on run length encoding to compress the significance map and 2) using direct binary representation for representing the significant coefficients. The ability of the coding algorithm to compress ECG signals is investigated, the results were obtained by compressing and decompressing the test signals. The proposed algorithm is compared with direct-based and wavelet-based compression algorithms and showed superior performance. A compression ratio of 24:1 was achieved for MIT-BIH record 117 with a percent root mean square difference as low as 1.08%.

  16. Block-Based Connected-Component Labeling Algorithm Using Binary Decision Trees

    PubMed Central

    Chang, Wan-Yu; Chiu, Chung-Cheng; Yang, Jia-Horng

    2015-01-01

    In this paper, we propose a fast labeling algorithm based on block-based concepts. Because the number of memory access points directly affects the time consumption of the labeling algorithms, the aim of the proposed algorithm is to minimize neighborhood operations. Our algorithm utilizes a block-based view and correlates a raster scan to select the necessary pixels generated by a block-based scan mask. We analyze the advantages of a sequential raster scan for the block-based scan mask, and integrate the block-connected relationships using two different procedures with binary decision trees to reduce unnecessary memory access. This greatly simplifies the pixel locations of the block-based scan mask. Furthermore, our algorithm significantly reduces the number of leaf nodes and depth levels required in the binary decision tree. We analyze the labeling performance of the proposed algorithm alongside that of other labeling algorithms using high-resolution images and foreground images. The experimental results from synthetic and real image datasets demonstrate that the proposed algorithm is faster than other methods. PMID:26393597

  17. Performance in population models for count data, part II: a new SAEM algorithm

    PubMed Central

    Savic, Radojka; Lavielle, Marc

    2009-01-01

    Analysis of count data from clinical trials using mixed effect analysis has recently become widely used. However, algorithms available for the parameter estimation, including LAPLACE and Gaussian quadrature (GQ), are associated with certain limitations, including bias in parameter estimates and the long analysis runtime. The stochastic approximation expectation maximization (SAEM) algorithm has proven to be a very efficient and powerful tool in the analysis of continuous data. The aim of this study was to implement and investigate the performance of a new SAEM algorithm for application to count data. A new SAEM algorithm was implemented in MATLAB for estimation of both, parameters and the Fisher information matrix. Stochastic Monte Carlo simulations followed by re-estimation were performed according to scenarios used in previous studies (part I) to investigate properties of alternative algorithms (1). A single scenario was used to explore six probability distribution models. For parameter estimation, the relative bias was less than 0.92% and 4.13 % for fixed and random effects, for all models studied including ones accounting for over- or under-dispersion. Empirical and estimated relative standard errors were similar, with distance between them being <1.7 % for all explored scenarios. The longest CPU time was 95s for parameter estimation and 56s for SE estimation. The SAEM algorithm was extended for analysis of count data. It provides accurate estimates of both, parameters and standard errors. The estimation is significantly faster compared to LAPLACE and GQ. The algorithm is implemented in Monolix 3.1, (beta-version available in July 2009). PMID:19680795

  18. Diagnostic Performance of a Novel Coronary CT Angiography Algorithm: Prospective Multicenter Validation of an Intracycle CT Motion Correction Algorithm for Diagnostic Accuracy.

    PubMed

    Andreini, Daniele; Lin, Fay Y; Rizvi, Asim; Cho, Iksung; Heo, Ran; Pontone, Gianluca; Bartorelli, Antonio L; Mushtaq, Saima; Villines, Todd C; Carrascosa, Patricia; Choi, Byoung Wook; Bloom, Stephen; Wei, Han; Xing, Yan; Gebow, Dan; Gransar, Heidi; Chang, Hyuk-Jae; Leipsic, Jonathon; Min, James K

    2018-06-01

    Motion artifact can reduce the diagnostic accuracy of coronary CT angiography (CCTA) for coronary artery disease (CAD). The purpose of this study was to compare the diagnostic performance of an algorithm dedicated to correcting coronary motion artifact with the performance of standard reconstruction methods in a prospective international multicenter study. Patients referred for clinically indicated invasive coronary angiography (ICA) for suspected CAD prospectively underwent an investigational CCTA examination free from heart rate-lowering medications before they underwent ICA. Blinded core laboratory interpretations of motion-corrected and standard reconstructions for obstructive CAD (≥ 50% stenosis) were compared with ICA findings. Segments unevaluable owing to artifact were considered obstructive. The primary endpoint was per-subject diagnostic accuracy of the intracycle motion correction algorithm for obstructive CAD found at ICA. Among 230 patients who underwent CCTA with the motion correction algorithm and standard reconstruction, 92 (40.0%) had obstructive CAD on the basis of ICA findings. At a mean heart rate of 68.0 ± 11.7 beats/min, the motion correction algorithm reduced the number of nondiagnostic scans compared with standard reconstruction (20.4% vs 34.8%; p < 0.001). Diagnostic accuracy for obstructive CAD with the motion correction algorithm (62%; 95% CI, 56-68%) was not significantly different from that of standard reconstruction on a per-subject basis (59%; 95% CI, 53-66%; p = 0.28) but was superior on a per-vessel basis: 77% (95% CI, 74-80%) versus 72% (95% CI, 69-75%) (p = 0.02). The motion correction algorithm was superior in subgroups of patients with severely obstructive (≥ 70%) stenosis, heart rate ≥ 70 beats/min, and vessels in the atrioventricular groove. The motion correction algorithm studied reduces artifacts and improves diagnostic performance for obstructive CAD on a per-vessel basis and in selected subgroups on a per-subject basis.

  19. Integrating Natural Language Processing and Machine Learning Algorithms to Categorize Oncologic Response in Radiology Reports.

    PubMed

    Chen, Po-Hao; Zafar, Hanna; Galperin-Aizenberg, Maya; Cook, Tessa

    2018-04-01

    A significant volume of medical data remains unstructured. Natural language processing (NLP) and machine learning (ML) techniques have shown to successfully extract insights from radiology reports. However, the codependent effects of NLP and ML in this context have not been well-studied. Between April 1, 2015 and November 1, 2016, 9418 cross-sectional abdomen/pelvis CT and MR examinations containing our internal structured reporting element for cancer were separated into four categories: Progression, Stable Disease, Improvement, or No Cancer. We combined each of three NLP techniques with five ML algorithms to predict the assigned label using the unstructured report text and compared the performance of each combination. The three NLP algorithms included term frequency-inverse document frequency (TF-IDF), term frequency weighting (TF), and 16-bit feature hashing. The ML algorithms included logistic regression (LR), random decision forest (RDF), one-vs-all support vector machine (SVM), one-vs-all Bayes point machine (BPM), and fully connected neural network (NN). The best-performing NLP model consisted of tokenized unigrams and bigrams with TF-IDF. Increasing N-gram length yielded little to no added benefit for most ML algorithms. With all parameters optimized, SVM had the best performance on the test dataset, with 90.6 average accuracy and F score of 0.813. The interplay between ML and NLP algorithms and their effect on interpretation accuracy is complex. The best accuracy is achieved when both algorithms are optimized concurrently.

  20. Resource-constrained scheduling with hard due windows and rejection penalties

    NASA Astrophysics Data System (ADS)

    Garcia, Christopher

    2016-09-01

    This work studies a scheduling problem where each job must be either accepted and scheduled to complete within its specified due window, or rejected altogether. Each job has a certain processing time and contributes a certain profit if accepted or penalty cost if rejected. There is a set of renewable resources, and no resource limit can be exceeded at any time. Each job requires a certain amount of each resource when processed, and the objective is to maximize total profit. A mixed-integer programming formulation and three approximation algorithms are presented: a priority rule heuristic, an algorithm based on the metaheuristic for randomized priority search and an evolutionary algorithm. Computational experiments comparing these four solution methods were performed on a set of generated benchmark problems covering a wide range of problem characteristics. The evolutionary algorithm outperformed the other methods in most cases, often significantly, and never significantly underperformed any method.

  1. Learning from Bees: An Approach for Influence Maximization on Viral Campaigns

    PubMed Central

    Sankar, C. Prem; S., Asharaf

    2016-01-01

    Maximisation of influence propagation is a key ingredient to any viral marketing or socio-political campaigns. However, it is an NP-hard problem, and various approximate algorithms have been suggested to address the issue, though not largely successful. In this paper, we propose a bio-inspired approach to select the initial set of nodes which is significant in rapid convergence towards a sub-optimal solution in minimal runtime. The performance of the algorithm is evaluated using the re-tweet network of the hashtag #KissofLove on Twitter associated with the non-violent protest against the moral policing spread to many parts of India. Comparison with existing centrality based node ranking process the proposed method significant improvement on influence propagation. The proposed algorithm is one of the hardly few bio-inspired algorithms in network theory. We also report the results of the exploratory analysis of the network kiss of love campaign. PMID:27992472

  2. A Fast Exact k-Nearest Neighbors Algorithm for High Dimensional Search Using k-Means Clustering and Triangle Inequality.

    PubMed

    Wang, Xueyi

    2012-02-08

    The k-nearest neighbors (k-NN) algorithm is a widely used machine learning method that finds nearest neighbors of a test object in a feature space. We present a new exact k-NN algorithm called kMkNN (k-Means for k-Nearest Neighbors) that uses the k-means clustering and the triangle inequality to accelerate the searching for nearest neighbors in a high dimensional space. The kMkNN algorithm has two stages. In the buildup stage, instead of using complex tree structures such as metric trees, kd-trees, or ball-tree, kMkNN uses a simple k-means clustering method to preprocess the training dataset. In the searching stage, given a query object, kMkNN finds nearest training objects starting from the nearest cluster to the query object and uses the triangle inequality to reduce the distance calculations. Experiments show that the performance of kMkNN is surprisingly good compared to the traditional k-NN algorithm and tree-based k-NN algorithms such as kd-trees and ball-trees. On a collection of 20 datasets with up to 10(6) records and 10(4) dimensions, kMkNN shows a 2-to 80-fold reduction of distance calculations and a 2- to 60-fold speedup over the traditional k-NN algorithm for 16 datasets. Furthermore, kMkNN performs significant better than a kd-tree based k-NN algorithm for all datasets and performs better than a ball-tree based k-NN algorithm for most datasets. The results show that kMkNN is effective for searching nearest neighbors in high dimensional spaces.

  3. Computer-aided US diagnosis of breast lesions by using cell-based contour grouping.

    PubMed

    Cheng, Jie-Zhi; Chou, Yi-Hong; Huang, Chiun-Sheng; Chang, Yeun-Chung; Tiu, Chui-Mei; Chen, Kuei-Wu; Chen, Chung-Ming

    2010-06-01

    To develop a computer-aided diagnostic algorithm with automatic boundary delineation for differential diagnosis of benign and malignant breast lesions at ultrasonography (US) and investigate the effect of boundary quality on the performance of a computer-aided diagnostic algorithm. This was an institutional review board-approved retrospective study with waiver of informed consent. A cell-based contour grouping (CBCG) segmentation algorithm was used to delineate the lesion boundaries automatically. Seven morphologic features were extracted. The classifier was a logistic regression function. Five hundred twenty breast US scans were obtained from 520 subjects (age range, 15-89 years), including 275 benign (mean size, 15 mm; range, 5-35 mm) and 245 malignant (mean size, 18 mm; range, 8-29 mm) lesions. The newly developed computer-aided diagnostic algorithm was evaluated on the basis of boundary quality and differentiation performance. The segmentation algorithms and features in two conventional computer-aided diagnostic algorithms were used for comparative study. The CBCG-generated boundaries were shown to be comparable with the manually delineated boundaries. The area under the receiver operating characteristic curve (AUC) and differentiation accuracy were 0.968 +/- 0.010 and 93.1% +/- 0.7, respectively, for all 520 breast lesions. At the 5% significance level, the newly developed algorithm was shown to be superior to the use of the boundaries and features of the two conventional computer-aided diagnostic algorithms in terms of AUC (0.974 +/- 0.007 versus 0.890 +/- 0.008 and 0.788 +/- 0.024, respectively). The newly developed computer-aided diagnostic algorithm that used a CBCG segmentation method to measure boundaries achieved a high differentiation performance. Copyright RSNA, 2010

  4. High-speed cell recognition algorithm for ultrafast flow cytometer imaging system.

    PubMed

    Zhao, Wanyue; Wang, Chao; Chen, Hongwei; Chen, Minghua; Yang, Sigang

    2018-04-01

    An optical time-stretch flow imaging system enables high-throughput examination of cells/particles with unprecedented high speed and resolution. A significant amount of raw image data is produced. A high-speed cell recognition algorithm is, therefore, highly demanded to analyze large amounts of data efficiently. A high-speed cell recognition algorithm consisting of two-stage cascaded detection and Gaussian mixture model (GMM) classification is proposed. The first stage of detection extracts cell regions. The second stage integrates distance transform and the watershed algorithm to separate clustered cells. Finally, the cells detected are classified by GMM. We compared the performance of our algorithm with support vector machine. Results show that our algorithm increases the running speed by over 150% without sacrificing the recognition accuracy. This algorithm provides a promising solution for high-throughput and automated cell imaging and classification in the ultrafast flow cytometer imaging platform. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  5. High-speed cell recognition algorithm for ultrafast flow cytometer imaging system

    NASA Astrophysics Data System (ADS)

    Zhao, Wanyue; Wang, Chao; Chen, Hongwei; Chen, Minghua; Yang, Sigang

    2018-04-01

    An optical time-stretch flow imaging system enables high-throughput examination of cells/particles with unprecedented high speed and resolution. A significant amount of raw image data is produced. A high-speed cell recognition algorithm is, therefore, highly demanded to analyze large amounts of data efficiently. A high-speed cell recognition algorithm consisting of two-stage cascaded detection and Gaussian mixture model (GMM) classification is proposed. The first stage of detection extracts cell regions. The second stage integrates distance transform and the watershed algorithm to separate clustered cells. Finally, the cells detected are classified by GMM. We compared the performance of our algorithm with support vector machine. Results show that our algorithm increases the running speed by over 150% without sacrificing the recognition accuracy. This algorithm provides a promising solution for high-throughput and automated cell imaging and classification in the ultrafast flow cytometer imaging platform.

  6. Zero-block mode decision algorithm for H.264/AVC.

    PubMed

    Lee, Yu-Ming; Lin, Yinyi

    2009-03-01

    In the previous paper , we proposed a zero-block intermode decision algorithm for H.264 video coding based upon the number of zero-blocks of 4 x 4 DCT coefficients between the current macroblock and the co-located macroblock. The proposed algorithm can achieve significant improvement in computation, but the computation performance is limited for high bit-rate coding. To improve computation efficiency, in this paper, we suggest an enhanced zero-block decision algorithm, which uses an early zero-block detection method to compute the number of zero-blocks instead of direct DCT and quantization (DCT/Q) calculation and incorporates two adequate decision methods into semi-stationary and nonstationary regions of a video sequence. In addition, the zero-block decision algorithm is also applied to the intramode prediction in the P frame. The enhanced zero-block decision algorithm brings out a reduction of average 27% of total encoding time compared to the zero-block decision algorithm.

  7. Noise-robust speech triage.

    PubMed

    Bartos, Anthony L; Cipr, Tomas; Nelson, Douglas J; Schwarz, Petr; Banowetz, John; Jerabek, Ladislav

    2018-04-01

    A method is presented in which conventional speech algorithms are applied, with no modifications, to improve their performance in extremely noisy environments. It has been demonstrated that, for eigen-channel algorithms, pre-training multiple speaker identification (SID) models at a lattice of signal-to-noise-ratio (SNR) levels and then performing SID using the appropriate SNR dependent model was successful in mitigating noise at all SNR levels. In those tests, it was found that SID performance was optimized when the SNR of the testing and training data were close or identical. In this current effort multiple i-vector algorithms were used, greatly improving both processing throughput and equal error rate classification accuracy. Using identical approaches in the same noisy environment, performance of SID, language identification, gender identification, and diarization were significantly improved. A critical factor in this improvement is speech activity detection (SAD) that performs reliably in extremely noisy environments, where the speech itself is barely audible. To optimize SAD operation at all SNR levels, two algorithms were employed. The first maximized detection probability at low levels (-10 dB ≤ SNR < +10 dB) using just the voiced speech envelope, and the second exploited features extracted from the original speech to improve overall accuracy at higher quality levels (SNR ≥ +10 dB).

  8. Performance comparison of independent component analysis algorithms for fetal cardiac signal reconstruction: a study on synthetic fMCG data

    NASA Astrophysics Data System (ADS)

    Mantini, D.; Hild, K. E., II; Alleva, G.; Comani, S.

    2006-02-01

    Independent component analysis (ICA) algorithms have been successfully used for signal extraction tasks in the field of biomedical signal processing. We studied the performances of six algorithms (FastICA, CubICA, JADE, Infomax, TDSEP and MRMI-SIG) for fetal magnetocardiography (fMCG). Synthetic datasets were used to check the quality of the separated components against the original traces. Real fMCG recordings were simulated with linear combinations of typical fMCG source signals: maternal and fetal cardiac activity, ambient noise, maternal respiration, sensor spikes and thermal noise. Clusters of different dimensions (19, 36 and 55 sensors) were prepared to represent different MCG systems. Two types of signal-to-interference ratios (SIR) were measured. The first involves averaging over all estimated components and the second is based solely on the fetal trace. The computation time to reach a minimum of 20 dB SIR was measured for all six algorithms. No significant dependency on gestational age or cluster dimension was observed. Infomax performed poorly when a sub-Gaussian source was included; TDSEP and MRMI-SIG were sensitive to additive noise, whereas FastICA, CubICA and JADE showed the best performances. Of all six methods considered, FastICA had the best overall performance in terms of both separation quality and computation times.

  9. Evaluation of a hyperspectral image database for demosaicking purposes

    NASA Astrophysics Data System (ADS)

    Larabi, Mohamed-Chaker; Süsstrunk, Sabine

    2011-01-01

    We present a study on the the applicability of hyperspectral images to evaluate color filter array (CFA) design and the performance of demosaicking algorithms. The aim is to simulate a typical digital still camera processing pipe-line and to compare two different scenarios: evaluate the performance of demosaicking algorithms applied to raw camera RGB values before color rendering to sRGB, and evaluate the performance of demosaicking algorithms applied on the final sRGB color rendered image. The second scenario is the most frequently used one in literature because CFA design and algorithms are usually tested on a set of existing images that are already rendered, such as the Kodak Photo CD set containing the well-known lighthouse image. We simulate the camera processing pipe-line with measured spectral sensitivity functions of a real camera. Modeling a Bayer CFA, we select three linear demosaicking techniques in order to perform the tests. The evaluation is done using CMSE, CPSNR, s-CIELAB and MSSIM metrics to compare demosaicking results. We find that the performance, and especially the difference between demosaicking algorithms, is indeed significant depending if the mosaicking/demosaicking is applied to camera raw values as opposed to already rendered sRGB images. We argue that evaluating the former gives a better indication how a CFA/demosaicking combination will work in practice, and that it is in the interest of the community to create a hyperspectral image dataset dedicated to that effect.

  10. Real-Time Robust Tracking for Motion Blur and Fast Motion via Correlation Filters

    PubMed Central

    Xu, Lingyun; Luo, Haibo; Hui, Bin; Chang, Zheng

    2016-01-01

    Visual tracking has extensive applications in intelligent monitoring and guidance systems. Among state-of-the-art tracking algorithms, Correlation Filter methods perform favorably in robustness, accuracy and speed. However, it also has shortcomings when dealing with pervasive target scale variation, motion blur and fast motion. In this paper we proposed a new real-time robust scheme based on Kernelized Correlation Filter (KCF) to significantly improve performance on motion blur and fast motion. By fusing KCF and STC trackers, our algorithm also solve the estimation of scale variation in many scenarios. We theoretically analyze the problem for CFs towards motions and utilize the point sharpness function of the target patch to evaluate the motion state of target. Then we set up an efficient scheme to handle the motion and scale variation without much time consuming. Our algorithm preserves the properties of KCF besides the ability to handle special scenarios. In the end extensive experimental results on benchmark of VOT datasets show our algorithm performs advantageously competed with the top-rank trackers. PMID:27618046

  11. Effect of various digital processing algorithms on the measurement accuracy of endodontic file length.

    PubMed

    Kal, Betül Ilhan; Baksi, B Güniz; Dündar, Nesrin; Sen, Bilge Hakan

    2007-02-01

    The aim of this study was to compare the accuracy of endodontic file lengths after application of various image enhancement modalities. Endodontic files of three different ISO sizes were inserted in 20 single-rooted extracted permanent mandibular premolar teeth and standardized images were obtained. Original digital images were then enhanced using five processing algorithms. Six evaluators measured the length of each file on each image. The measurements from each processing algorithm and each file size were compared using repeated measures ANOVA and Bonferroni tests (P = 0.05). Paired t test was performed to compare the measurements with the true lengths of the files (P = 0.05). All of the processing algorithms provided significantly shorter measurements than the true length of each file size (P < 0.05). The threshold enhancement modality produced significantly higher mean error values (P < 0.05), while there was no significant difference among the other enhancement modalities (P > 0.05). Decrease in mean error value was observed with increasing file size (P < 0.05). Invert, contrast/brightness and edge enhancement algorithms may be recommended for accurate file length measurements when utilizing storage phosphor plates.

  12. Do bioclimate variables improve performance of climate envelope models?

    USGS Publications Warehouse

    Watling, James I.; Romañach, Stephanie S.; Bucklin, David N.; Speroterra, Carolina; Brandt, Laura A.; Pearlstine, Leonard G.; Mazzotti, Frank J.

    2012-01-01

    Climate envelope models are widely used to forecast potential effects of climate change on species distributions. A key issue in climate envelope modeling is the selection of predictor variables that most directly influence species. To determine whether model performance and spatial predictions were related to the selection of predictor variables, we compared models using bioclimate variables with models constructed from monthly climate data for twelve terrestrial vertebrate species in the southeastern USA using two different algorithms (random forests or generalized linear models), and two model selection techniques (using uncorrelated predictors or a subset of user-defined biologically relevant predictor variables). There were no differences in performance between models created with bioclimate or monthly variables, but one metric of model performance was significantly greater using the random forest algorithm compared with generalized linear models. Spatial predictions between maps using bioclimate and monthly variables were very consistent using the random forest algorithm with uncorrelated predictors, whereas we observed greater variability in predictions using generalized linear models.

  13. Extended-Kalman-filter-based regenerative and friction blended braking control for electric vehicle equipped with axle motor considering damping and elastic properties of electric powertrain

    NASA Astrophysics Data System (ADS)

    Lv, Chen; Zhang, Junzhi; Li, Yutong

    2014-11-01

    Because of the damping and elastic properties of an electrified powertrain, the regenerative brake of an electric vehicle (EV) is very different from a conventional friction brake with respect to the system dynamics. The flexibility of an electric drivetrain would have a negative effect on the blended brake control performance. In this study, models of the powertrain system of an electric car equipped with an axle motor are developed. Based on these models, the transfer characteristics of the motor torque in the driveline and its effect on blended braking control performance are analysed. To further enhance a vehicle's brake performance and energy efficiency, blended braking control algorithms with compensation for the powertrain flexibility are proposed using an extended Kalman filter. These algorithms are simulated under normal deceleration braking. The results show that the brake performance and blended braking control accuracy of the vehicle are significantly enhanced by the newly proposed algorithms.

  14. Benchmarking database performance for genomic data.

    PubMed

    Khushi, Matloob

    2015-06-01

    Genomic regions represent features such as gene annotations, transcription factor binding sites and epigenetic modifications. Performing various genomic operations such as identifying overlapping/non-overlapping regions or nearest gene annotations are common research needs. The data can be saved in a database system for easy management, however, there is no comprehensive database built-in algorithm at present to identify overlapping regions. Therefore I have developed a novel region-mapping (RegMap) SQL-based algorithm to perform genomic operations and have benchmarked the performance of different databases. Benchmarking identified that PostgreSQL extracts overlapping regions much faster than MySQL. Insertion and data uploads in PostgreSQL were also better, although general searching capability of both databases was almost equivalent. In addition, using the algorithm pair-wise, overlaps of >1000 datasets of transcription factor binding sites and histone marks, collected from previous publications, were reported and it was found that HNF4G significantly co-locates with cohesin subunit STAG1 (SA1).Inc. © 2015 Wiley Periodicals, Inc.

  15. Neural network-based run-to-run controller using exposure and resist thickness adjustment

    NASA Astrophysics Data System (ADS)

    Geary, Shane; Barry, Ronan

    2003-06-01

    This paper describes the development of a run-to-run control algorithm using a feedforward neural network, trained using the backpropagation training method. The algorithm is used to predict the critical dimension of the next lot using previous lot information. It is compared to a common prediction algorithm - the exponentially weighted moving average (EWMA) and is shown to give superior prediction performance in simulations. The manufacturing implementation of the final neural network showed significantly improved process capability when compared to the case where no run-to-run control was utilised.

  16. Structural health monitoring feature design by genetic programming

    NASA Astrophysics Data System (ADS)

    Harvey, Dustin Y.; Todd, Michael D.

    2014-09-01

    Structural health monitoring (SHM) systems provide real-time damage and performance information for civil, aerospace, and other high-capital or life-safety critical structures. Conventional data processing involves pre-processing and extraction of low-dimensional features from in situ time series measurements. The features are then input to a statistical pattern recognition algorithm to perform the relevant classification or regression task necessary to facilitate decisions by the SHM system. Traditional design of signal processing and feature extraction algorithms can be an expensive and time-consuming process requiring extensive system knowledge and domain expertise. Genetic programming, a heuristic program search method from evolutionary computation, was recently adapted by the authors to perform automated, data-driven design of signal processing and feature extraction algorithms for statistical pattern recognition applications. The proposed method, called Autofead, is particularly suitable to handle the challenges inherent in algorithm design for SHM problems where the manifestation of damage in structural response measurements is often unclear or unknown. Autofead mines a training database of response measurements to discover information-rich features specific to the problem at hand. This study provides experimental validation on three SHM applications including ultrasonic damage detection, bearing damage classification for rotating machinery, and vibration-based structural health monitoring. Performance comparisons with common feature choices for each problem area are provided demonstrating the versatility of Autofead to produce significant algorithm improvements on a wide range of problems.

  17. Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge

    PubMed Central

    Litjens, Geert; Toth, Robert; van de Ven, Wendy; Hoeks, Caroline; Kerkstra, Sjoerd; van Ginneken, Bram; Vincent, Graham; Guillard, Gwenael; Birbeck, Neil; Zhang, Jindang; Strand, Robin; Malmberg, Filip; Ou, Yangming; Davatzikos, Christos; Kirschner, Matthias; Jung, Florian; Yuan, Jing; Qiu, Wu; Gao, Qinquan; Edwards, Philip “Eddie”; Maan, Bianca; van der Heijden, Ferdinand; Ghose, Soumya; Mitra, Jhimli; Dowling, Jason; Barratt, Dean; Huisman, Henkjan; Madabhushi, Anant

    2014-01-01

    Prostate MRI image segmentation has been an area of intense research due to the increased use of MRI as a modality for the clinical workup of prostate cancer. Segmentation is useful for various tasks, e.g. to accurately localize prostate boundaries for radiotherapy or to initialize multi-modal registration algorithms. In the past, it has been difficult for research groups to evaluate prostate segmentation algorithms on multi-center, multi-vendor and multi-protocol data. Especially because we are dealing with MR images, image appearance, resolution and the presence of artifacts are affected by differences in scanners and/or protocols, which in turn can have a large influence on algorithm accuracy. The Prostate MR Image Segmentation (PROMISE12) challenge was setup to allow a fair and meaningful comparison of segmentation methods on the basis of performance and robustness. In this work we will discuss the initial results of the online PROMISE12 challenge, and the results obtained in the live challenge workshop hosted by the MICCAI2012 conference. In the challenge, 100 prostate MR cases from 4 different centers were included, with differences in scanner manufacturer, field strength and protocol. A total of 11 teams from academic research groups and industry participated. Algorithms showed a wide variety in methods and implementation, including active appearance models, atlas registration and level sets. Evaluation was performed using boundary and volume based metrics which were combined into a single score relating the metrics to human expert performance. The winners of the challenge where the algorithms by teams Imorphics and ScrAutoProstate, with scores of 85.72 and 84.29 overall. Both algorithms where significantly better than all other algorithms in the challenge (p < 0.05) and had an efficient implementation with a run time of 8 minutes and 3 second per case respectively. Overall, active appearance model based approaches seemed to outperform other approaches like multi-atlas registration, both on accuracy and computation time. Although average algorithm performance was good to excellent and the Imorphics algorithm outperformed the second observer on average, we showed that algorithm combination might lead to further improvement, indicating that optimal performance for prostate segmentation is not yet obtained. All results are available online at http://promise12.grand-challenge.org/. PMID:24418598

  18. An Energy-Efficient Spectrum-Aware Reinforcement Learning-Based Clustering Algorithm for Cognitive Radio Sensor Networks

    PubMed Central

    Mustapha, Ibrahim; Ali, Borhanuddin Mohd; Rasid, Mohd Fadlee A.; Sali, Aduwati; Mohamad, Hafizal

    2015-01-01

    It is well-known that clustering partitions network into logical groups of nodes in order to achieve energy efficiency and to enhance dynamic channel access in cognitive radio through cooperative sensing. While the topic of energy efficiency has been well investigated in conventional wireless sensor networks, the latter has not been extensively explored. In this paper, we propose a reinforcement learning-based spectrum-aware clustering algorithm that allows a member node to learn the energy and cooperative sensing costs for neighboring clusters to achieve an optimal solution. Each member node selects an optimal cluster that satisfies pairwise constraints, minimizes network energy consumption and enhances channel sensing performance through an exploration technique. We first model the network energy consumption and then determine the optimal number of clusters for the network. The problem of selecting an optimal cluster is formulated as a Markov Decision Process (MDP) in the algorithm and the obtained simulation results show convergence, learning and adaptability of the algorithm to dynamic environment towards achieving an optimal solution. Performance comparisons of our algorithm with the Groupwise Spectrum Aware (GWSA)-based algorithm in terms of Sum of Square Error (SSE), complexity, network energy consumption and probability of detection indicate improved performance from the proposed approach. The results further reveal that an energy savings of 9% and a significant Primary User (PU) detection improvement can be achieved with the proposed approach. PMID:26287191

  19. An Energy-Efficient Spectrum-Aware Reinforcement Learning-Based Clustering Algorithm for Cognitive Radio Sensor Networks.

    PubMed

    Mustapha, Ibrahim; Mohd Ali, Borhanuddin; Rasid, Mohd Fadlee A; Sali, Aduwati; Mohamad, Hafizal

    2015-08-13

    It is well-known that clustering partitions network into logical groups of nodes in order to achieve energy efficiency and to enhance dynamic channel access in cognitive radio through cooperative sensing. While the topic of energy efficiency has been well investigated in conventional wireless sensor networks, the latter has not been extensively explored. In this paper, we propose a reinforcement learning-based spectrum-aware clustering algorithm that allows a member node to learn the energy and cooperative sensing costs for neighboring clusters to achieve an optimal solution. Each member node selects an optimal cluster that satisfies pairwise constraints, minimizes network energy consumption and enhances channel sensing performance through an exploration technique. We first model the network energy consumption and then determine the optimal number of clusters for the network. The problem of selecting an optimal cluster is formulated as a Markov Decision Process (MDP) in the algorithm and the obtained simulation results show convergence, learning and adaptability of the algorithm to dynamic environment towards achieving an optimal solution. Performance comparisons of our algorithm with the Groupwise Spectrum Aware (GWSA)-based algorithm in terms of Sum of Square Error (SSE), complexity, network energy consumption and probability of detection indicate improved performance from the proposed approach. The results further reveal that an energy savings of 9% and a significant Primary User (PU) detection improvement can be achieved with the proposed approach.

  20. A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling.

    PubMed

    Leger, Stefan; Zwanenburg, Alex; Pilz, Karoline; Lohaus, Fabian; Linge, Annett; Zöphel, Klaus; Kotzerke, Jörg; Schreiber, Andreas; Tinhofer, Inge; Budach, Volker; Sak, Ali; Stuschke, Martin; Balermpas, Panagiotis; Rödel, Claus; Ganswindt, Ute; Belka, Claus; Pigorsch, Steffi; Combs, Stephanie E; Mönnich, David; Zips, Daniel; Krause, Mechthild; Baumann, Michael; Troost, Esther G C; Löck, Steffen; Richter, Christian

    2017-10-16

    Radiomics applies machine learning algorithms to quantitative imaging data to characterise the tumour phenotype and predict clinical outcome. For the development of radiomics risk models, a variety of different algorithms is available and it is not clear which one gives optimal results. Therefore, we assessed the performance of 11 machine learning algorithms combined with 12 feature selection methods by the concordance index (C-Index), to predict loco-regional tumour control (LRC) and overall survival for patients with head and neck squamous cell carcinoma. The considered algorithms are able to deal with continuous time-to-event survival data. Feature selection and model building were performed on a multicentre cohort (213 patients) and validated using an independent cohort (80 patients). We found several combinations of machine learning algorithms and feature selection methods which achieve similar results, e.g. C-Index = 0.71 and BT-COX: C-Index = 0.70 in combination with Spearman feature selection. Using the best performing models, patients were stratified into groups of low and high risk of recurrence. Significant differences in LRC were obtained between both groups on the validation cohort. Based on the presented analysis, we identified a subset of algorithms which should be considered in future radiomics studies to develop stable and clinically relevant predictive models for time-to-event endpoints.

  1. Hip and Wrist Accelerometer Algorithms for Free-Living Behavior Classification.

    PubMed

    Ellis, Katherine; Kerr, Jacqueline; Godbole, Suneeta; Staudenmayer, John; Lanckriet, Gert

    2016-05-01

    Accelerometers are a valuable tool for objective measurement of physical activity (PA). Wrist-worn devices may improve compliance over standard hip placement, but more research is needed to evaluate their validity for measuring PA in free-living settings. Traditional cut-point methods for accelerometers can be inaccurate and need testing in free living with wrist-worn devices. In this study, we developed and tested the performance of machine learning (ML) algorithms for classifying PA types from both hip and wrist accelerometer data. Forty overweight or obese women (mean age = 55.2 ± 15.3 yr; BMI = 32.0 ± 3.7) wore two ActiGraph GT3X+ accelerometers (right hip, nondominant wrist; ActiGraph, Pensacola, FL) for seven free-living days. Wearable cameras captured ground truth activity labels. A classifier consisting of a random forest and hidden Markov model classified the accelerometer data into four activities (sitting, standing, walking/running, and riding in a vehicle). Free-living wrist and hip ML classifiers were compared with each other, with traditional accelerometer cut points, and with an algorithm developed in a laboratory setting. The ML classifier obtained average values of 89.4% and 84.6% balanced accuracy over the four activities using the hip and wrist accelerometer, respectively. In our data set with average values of 28.4 min of walking or running per day, the ML classifier predicted average values of 28.5 and 24.5 min of walking or running using the hip and wrist accelerometer, respectively. Intensity-based cut points and the laboratory algorithm significantly underestimated walking minutes. Our results demonstrate the superior performance of our PA-type classification algorithm, particularly in comparison with traditional cut points. Although the hip algorithm performed better, additional compliance achieved with wrist devices might justify using a slightly lower performing algorithm.

  2. Comparative Analysis of Particle Swarm and Differential Evolution via Tuning on Ultrasmall Titanium Oxide Nanoclusters

    NASA Astrophysics Data System (ADS)

    Inclan, Eric; Lassester, Jack; Geohegan, David; Yoon, Mina

    Optimization algorithms (OA) coupled with numerical methods enable researchers to identify and study (meta) stable nanoclusters without the control restrictions of empirical methods. An algorithm's performance is governed by two factors: (1) its compatibility with an objective function, (2) the dimension of a design space, which increases with cluster size. Although researchers often tune an algorithm's user-defined parameters (UDP), tuning is not guaranteed to improve performance. In this research, Particle Swarm (PSO) and Differential Evolution (DE), are compared by tuning their UDP in a multi-objective optimization environment (MOE). Combined with a Kolmogorov Smirnov test for statistical significance, the MOE enables the study of the Pareto Front (PF), made of the UDP settings that trade-off between best performance in energy minimization (``effectiveness'') based on force-field potential energy, and best convergence rate (``efficiency''). By studying the PF, this research finds that UDP values frequently suggested in the literature do not provide best effectiveness for these methods. Additionally, monotonic convergence is found to significantly improve efficiency without sacrificing effectiveness for very small systems, suggesting better compatibility. Work is supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  3. Adaptive optics image restoration algorithm based on wavefront reconstruction and adaptive total variation method

    NASA Astrophysics Data System (ADS)

    Li, Dongming; Zhang, Lijuan; Wang, Ting; Liu, Huan; Yang, Jinhua; Chen, Guifen

    2016-11-01

    To improve the adaptive optics (AO) image's quality, we study the AO image restoration algorithm based on wavefront reconstruction technology and adaptive total variation (TV) method in this paper. Firstly, the wavefront reconstruction using Zernike polynomial is used for initial estimated for the point spread function (PSF). Then, we develop our proposed iterative solutions for AO images restoration, addressing the joint deconvolution issue. The image restoration experiments are performed to verify the image restoration effect of our proposed algorithm. The experimental results show that, compared with the RL-IBD algorithm and Wiener-IBD algorithm, we can see that GMG measures (for real AO image) from our algorithm are increased by 36.92%, and 27.44% respectively, and the computation time are decreased by 7.2%, and 3.4% respectively, and its estimation accuracy is significantly improved.

  4. Prediction of cancer proteins by integrating protein interaction, domain frequency, and domain interaction data using machine learning algorithms.

    PubMed

    Huang, Chien-Hung; Peng, Huai-Shun; Ng, Ka-Lok

    2015-01-01

    Many proteins are known to be associated with cancer diseases. It is quite often that their precise functional role in disease pathogenesis remains unclear. A strategy to gain a better understanding of the function of these proteins is to make use of a combination of different aspects of proteomics data types. In this study, we extended Aragues's method by employing the protein-protein interaction (PPI) data, domain-domain interaction (DDI) data, weighted domain frequency score (DFS), and cancer linker degree (CLD) data to predict cancer proteins. Performances were benchmarked based on three kinds of experiments as follows: (I) using individual algorithm, (II) combining algorithms, and (III) combining the same classification types of algorithms. When compared with Aragues's method, our proposed methods, that is, machine learning algorithm and voting with the majority, are significantly superior in all seven performance measures. We demonstrated the accuracy of the proposed method on two independent datasets. The best algorithm can achieve a hit ratio of 89.4% and 72.8% for lung cancer dataset and lung cancer microarray study, respectively. It is anticipated that the current research could help understand disease mechanisms and diagnosis.

  5. Prediction of Cancer Proteins by Integrating Protein Interaction, Domain Frequency, and Domain Interaction Data Using Machine Learning Algorithms

    PubMed Central

    2015-01-01

    Many proteins are known to be associated with cancer diseases. It is quite often that their precise functional role in disease pathogenesis remains unclear. A strategy to gain a better understanding of the function of these proteins is to make use of a combination of different aspects of proteomics data types. In this study, we extended Aragues's method by employing the protein-protein interaction (PPI) data, domain-domain interaction (DDI) data, weighted domain frequency score (DFS), and cancer linker degree (CLD) data to predict cancer proteins. Performances were benchmarked based on three kinds of experiments as follows: (I) using individual algorithm, (II) combining algorithms, and (III) combining the same classification types of algorithms. When compared with Aragues's method, our proposed methods, that is, machine learning algorithm and voting with the majority, are significantly superior in all seven performance measures. We demonstrated the accuracy of the proposed method on two independent datasets. The best algorithm can achieve a hit ratio of 89.4% and 72.8% for lung cancer dataset and lung cancer microarray study, respectively. It is anticipated that the current research could help understand disease mechanisms and diagnosis. PMID:25866773

  6. Lightning Jump Algorithm Development for the GOES·R Geostationary Lightning Mapper

    NASA Technical Reports Server (NTRS)

    Schultz. E.; Schultz. C.; Chronis, T.; Stough, S.; Carey, L.; Calhoun, K.; Ortega, K.; Stano, G.; Cecil, D.; Bateman, M.; hide

    2014-01-01

    Current work on the lightning jump algorithm to be used in GOES-R Geostationary Lightning Mapper (GLM)'s data stream is multifaceted due to the intricate interplay between the storm tracking, GLM proxy data, and the performance of the lightning jump itself. This work outlines the progress of the last year, where analysis and performance of the lightning jump algorithm with automated storm tracking and GLM proxy data were assessed using over 700 storms from North Alabama. The cases analyzed coincide with previous semi-objective work performed using total lightning mapping array (LMA) measurements in Schultz et al. (2011). Analysis shows that key components of the algorithm (flash rate and sigma thresholds) have the greatest influence on the performance of the algorithm when validating using severe storm reports. Automated objective analysis using the GLM proxy data has shown probability of detection (POD) values around 60% with false alarm rates (FAR) around 73% using similar methodology to Schultz et al. (2011). However, when applying verification methods similar to those employed by the National Weather Service, POD values increase slightly (69%) and FAR values decrease (63%). The relationship between storm tracking and lightning jump has also been tested in a real-time framework at NSSL. This system includes fully automated tracking by radar alone, real-time LMA and radar observations and the lightning jump. Results indicate that the POD is strong at 65%. However, the FAR is significantly higher than in Schultz et al. (2011) (50-80% depending on various tracking/lightning jump parameters) when using storm reports for verification. Given known issues with Storm Data, the performance of the real-time jump algorithm is also being tested with high density radar and surface observations from the NSSL Severe Hazards Analysis & Verification Experiment (SHAVE).

  7. Demonstration of accuracy and clinical versatility of mutual information for automatic multimodality image fusion using affine and thin-plate spline warped geometric deformations.

    PubMed

    Meyer, C R; Boes, J L; Kim, B; Bland, P H; Zasadny, K R; Kison, P V; Koral, K; Frey, K A; Wahl, R L

    1997-04-01

    This paper applies and evaluates an automatic mutual information-based registration algorithm across a broad spectrum of multimodal volume data sets. The algorithm requires little or no pre-processing, minimal user input and easily implements either affine, i.e. linear or thin-plate spline (TPS) warped registrations. We have evaluated the algorithm in phantom studies as well as in selected cases where few other algorithms could perform as well, if at all, to demonstrate the value of this new method. Pairs of multimodal gray-scale volume data sets were registered by iteratively changing registration parameters to maximize mutual information. Quantitative registration errors were assessed in registrations of a thorax phantom using PET/CT and in the National Library of Medicine's Visible Male using MRI T2-/T1-weighted acquisitions. Registrations of diverse clinical data sets were demonstrated including rotate-translate mapping of PET/MRI brain scans with significant missing data, full affine mapping of thoracic PET/CT and rotate-translate mapping of abdominal SPECT/CT. A five-point thin-plate spline (TPS) warped registration of thoracic PET/CT is also demonstrated. The registration algorithm converged in times ranging between 3.5 and 31 min for affine clinical registrations and 57 min for TPS warping. Mean error vector lengths for rotate-translate registrations were measured to be subvoxel in phantoms. More importantly the rotate-translate algorithm performs well even with missing data. The demonstrated clinical fusions are qualitatively excellent at all levels. We conclude that such automatic, rapid, robust algorithms significantly increase the likelihood that multimodality registrations will be routinely used to aid clinical diagnoses and post-therapeutic assessment in the near future.

  8. Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer.

    PubMed

    Ehteshami Bejnordi, Babak; Veta, Mitko; Johannes van Diest, Paul; van Ginneken, Bram; Karssemeijer, Nico; Litjens, Geert; van der Laak, Jeroen A W M; Hermsen, Meyke; Manson, Quirine F; Balkenhol, Maschenka; Geessink, Oscar; Stathonikos, Nikolaos; van Dijk, Marcory Crf; Bult, Peter; Beca, Francisco; Beck, Andrew H; Wang, Dayong; Khosla, Aditya; Gargeya, Rishab; Irshad, Humayun; Zhong, Aoxiao; Dou, Qi; Li, Quanzheng; Chen, Hao; Lin, Huang-Jing; Heng, Pheng-Ann; Haß, Christian; Bruni, Elia; Wong, Quincy; Halici, Ugur; Öner, Mustafa Ümit; Cetin-Atalay, Rengul; Berseth, Matt; Khvatkov, Vitali; Vylegzhanin, Alexei; Kraus, Oren; Shaban, Muhammad; Rajpoot, Nasir; Awan, Ruqayya; Sirinukunwattana, Korsuk; Qaiser, Talha; Tsang, Yee-Wah; Tellez, David; Annuscheit, Jonas; Hufnagl, Peter; Valkonen, Mira; Kartasalo, Kimmo; Latonen, Leena; Ruusuvuori, Pekka; Liimatainen, Kaisa; Albarqouni, Shadi; Mungal, Bharti; George, Ami; Demirci, Stefanie; Navab, Nassir; Watanabe, Seiryo; Seno, Shigeto; Takenaka, Yoichi; Matsuda, Hideo; Ahmady Phoulady, Hady; Kovalev, Vassili; Kalinovsky, Alexander; Liauchuk, Vitali; Bueno, Gloria; Fernandez-Carrobles, M Milagro; Serrano, Ismael; Deniz, Oscar; Racoceanu, Daniel; Venâncio, Rui

    2017-12-12

    Application of deep learning algorithms to whole-slide pathology images can potentially improve diagnostic accuracy and efficiency. Assess the performance of automated deep learning algorithms at detecting metastases in hematoxylin and eosin-stained tissue sections of lymph nodes of women with breast cancer and compare it with pathologists' diagnoses in a diagnostic setting. Researcher challenge competition (CAMELYON16) to develop automated solutions for detecting lymph node metastases (November 2015-November 2016). A training data set of whole-slide images from 2 centers in the Netherlands with (n = 110) and without (n = 160) nodal metastases verified by immunohistochemical staining were provided to challenge participants to build algorithms. Algorithm performance was evaluated in an independent test set of 129 whole-slide images (49 with and 80 without metastases). The same test set of corresponding glass slides was also evaluated by a panel of 11 pathologists with time constraint (WTC) from the Netherlands to ascertain likelihood of nodal metastases for each slide in a flexible 2-hour session, simulating routine pathology workflow, and by 1 pathologist without time constraint (WOTC). Deep learning algorithms submitted as part of a challenge competition or pathologist interpretation. The presence of specific metastatic foci and the absence vs presence of lymph node metastasis in a slide or image using receiver operating characteristic curve analysis. The 11 pathologists participating in the simulation exercise rated their diagnostic confidence as definitely normal, probably normal, equivocal, probably tumor, or definitely tumor. The area under the receiver operating characteristic curve (AUC) for the algorithms ranged from 0.556 to 0.994. The top-performing algorithm achieved a lesion-level, true-positive fraction comparable with that of the pathologist WOTC (72.4% [95% CI, 64.3%-80.4%]) at a mean of 0.0125 false-positives per normal whole-slide image. For the whole-slide image classification task, the best algorithm (AUC, 0.994 [95% CI, 0.983-0.999]) performed significantly better than the pathologists WTC in a diagnostic simulation (mean AUC, 0.810 [range, 0.738-0.884]; P < .001). The top 5 algorithms had a mean AUC that was comparable with the pathologist interpreting the slides in the absence of time constraints (mean AUC, 0.960 [range, 0.923-0.994] for the top 5 algorithms vs 0.966 [95% CI, 0.927-0.998] for the pathologist WOTC). In the setting of a challenge competition, some deep learning algorithms achieved better diagnostic performance than a panel of 11 pathologists participating in a simulation exercise designed to mimic routine pathology workflow; algorithm performance was comparable with an expert pathologist interpreting whole-slide images without time constraints. Whether this approach has clinical utility will require evaluation in a clinical setting.

  9. Sum of the Magnitude for Hard Decision Decoding Algorithm Based on Loop Update Detection.

    PubMed

    Meng, Jiahui; Zhao, Danfeng; Tian, Hai; Zhang, Liang

    2018-01-15

    In order to improve the performance of non-binary low-density parity check codes (LDPC) hard decision decoding algorithm and to reduce the complexity of decoding, a sum of the magnitude for hard decision decoding algorithm based on loop update detection is proposed. This will also ensure the reliability, stability and high transmission rate of 5G mobile communication. The algorithm is based on the hard decision decoding algorithm (HDA) and uses the soft information from the channel to calculate the reliability, while the sum of the variable nodes' (VN) magnitude is excluded for computing the reliability of the parity checks. At the same time, the reliability information of the variable node is considered and the loop update detection algorithm is introduced. The bit corresponding to the error code word is flipped multiple times, before this is searched in the order of most likely error probability to finally find the correct code word. Simulation results show that the performance of one of the improved schemes is better than the weighted symbol flipping (WSF) algorithm under different hexadecimal numbers by about 2.2 dB and 2.35 dB at the bit error rate (BER) of 10 -5 over an additive white Gaussian noise (AWGN) channel, respectively. Furthermore, the average number of decoding iterations is significantly reduced.

  10. Diagnostic accuracy of administrative data algorithms in the diagnosis of osteoarthritis: a systematic review.

    PubMed

    Shrestha, Swastina; Dave, Amish J; Losina, Elena; Katz, Jeffrey N

    2016-07-07

    Administrative health care data are frequently used to study disease burden and treatment outcomes in many conditions including osteoarthritis (OA). OA is a chronic condition with significant disease burden affecting over 27 million adults in the US. There are few studies examining the performance of administrative data algorithms to diagnose OA. The purpose of this study is to perform a systematic review of administrative data algorithms for OA diagnosis; and, to evaluate the diagnostic characteristics of algorithms based on restrictiveness and reference standards. Two reviewers independently screened English-language articles published in Medline, Embase, PubMed, and Cochrane databases that used administrative data to identify OA cases. Each algorithm was classified as restrictive or less restrictive based on number and type of administrative codes required to satisfy the case definition. We recorded sensitivity and specificity of algorithms and calculated positive likelihood ratio (LR+) and positive predictive value (PPV) based on assumed OA prevalence of 0.1, 0.25, and 0.50. The search identified 7 studies that used 13 algorithms. Of these 13 algorithms, 5 were classified as restrictive and 8 as less restrictive. Restrictive algorithms had lower median sensitivity and higher median specificity compared to less restrictive algorithms when reference standards were self-report and American college of Rheumatology (ACR) criteria. The algorithms compared to reference standard of physician diagnosis had higher sensitivity and specificity than those compared to self-reported diagnosis or ACR criteria. Restrictive algorithms are more specific for OA diagnosis and can be used to identify cases when false positives have higher costs e.g. interventional studies. Less restrictive algorithms are more sensitive and suited for studies that attempt to identify all cases e.g. screening programs.

  11. GaAs Supercomputing: Architecture, Language, And Algorithms For Image Processing

    NASA Astrophysics Data System (ADS)

    Johl, John T.; Baker, Nick C.

    1988-10-01

    The application of high-speed GaAs processors in a parallel system matches the demanding computational requirements of image processing. The architecture of the McDonnell Douglas Astronautics Company (MDAC) vector processor is described along with the algorithms and language translator. Most image and signal processing algorithms can utilize parallel processing and show a significant performance improvement over sequential versions. The parallelization performed by this system is within each vector instruction. Since each vector has many elements, each requiring some computation, useful concurrent arithmetic operations can easily be performed. Balancing the memory bandwidth with the computation rate of the processors is an important design consideration for high efficiency and utilization. The architecture features a bus-based execution unit consisting of four to eight 32-bit GaAs RISC microprocessors running at a 200 MHz clock rate for a peak performance of 1.6 BOPS. The execution unit is connected to a vector memory with three buses capable of transferring two input words and one output word every 10 nsec. The address generators inside the vector memory perform different vector addressing modes and feed the data to the execution unit. The functions discussed in this paper include basic MATRIX OPERATIONS, 2-D SPATIAL CONVOLUTION, HISTOGRAM, and FFT. For each of these algorithms, assembly language programs were run on a behavioral model of the system to obtain performance figures.

  12. Time-varying delays compensation algorithm for powertrain active damping of an electrified vehicle equipped with an axle motor during regenerative braking

    NASA Astrophysics Data System (ADS)

    Zhang, Junzhi; Li, Yutong; Lv, Chen; Gou, Jinfang; Yuan, Ye

    2017-03-01

    The flexibility of the electrified powertrain system elicits a negative effect upon the cooperative control performance between regenerative and hydraulic braking and the active damping control performance. Meanwhile, the connections among sensors, controllers, and actuators are realized via network communication, i.e., controller area network (CAN), that introduces time-varying delays and deteriorates the control performances of the closed-loop control systems. As such, the goal of this paper is to develop a control algorithm to cope with all these challenges. To this end, the models of the stochastic network induced time-varying delays, based on a real in-vehicle network topology and on a flexible electrified powertrain, were firstly built. In order to further enhance the control performances of active damping and cooperative control of regenerative and hydraulic braking, the time-varying delays compensation algorithm for the electrified powertrain active damping during regenerative braking was developed based on a predictive scheme. The augmented system is constructed and the H∞ performance is analyzed. Based on this analysis, the control gains are derived by solving a nonlinear minimization problem. The simulations and hardware-in-loop (HIL) tests were carried out to validate the effectiveness of the developed algorithm. The test results show that the active damping and cooperative control performances are enhanced significantly.

  13. Accelerating Dust Storm Simulation by Balancing Task Allocation in Parallel Computing Environment

    NASA Astrophysics Data System (ADS)

    Gui, Z.; Yang, C.; XIA, J.; Huang, Q.; YU, M.

    2013-12-01

    Dust storm has serious negative impacts on environment, human health, and assets. The continuing global climate change has increased the frequency and intensity of dust storm in the past decades. To better understand and predict the distribution, intensity and structure of dust storm, a series of dust storm models have been developed, such as Dust Regional Atmospheric Model (DREAM), the NMM meteorological module (NMM-dust) and Chinese Unified Atmospheric Chemistry Environment for Dust (CUACE/Dust). The developments and applications of these models have contributed significantly to both scientific research and our daily life. However, dust storm simulation is a data and computing intensive process. Normally, a simulation for a single dust storm event may take several days or hours to run. It seriously impacts the timeliness of prediction and potential applications. To speed up the process, high performance computing is widely adopted. By partitioning a large study area into small subdomains according to their geographic location and executing them on different computing nodes in a parallel fashion, the computing performance can be significantly improved. Since spatiotemporal correlations exist in the geophysical process of dust storm simulation, each subdomain allocated to a node need to communicate with other geographically adjacent subdomains to exchange data. Inappropriate allocations may introduce imbalance task loads and unnecessary communications among computing nodes. Therefore, task allocation method is the key factor, which may impact the feasibility of the paralleling. The allocation algorithm needs to carefully leverage the computing cost and communication cost for each computing node to minimize total execution time and reduce overall communication cost for the entire system. This presentation introduces two algorithms for such allocation and compares them with evenly distributed allocation method. Specifically, 1) In order to get optimized solutions, a quadratic programming based modeling method is proposed. This algorithm performs well with small amount of computing tasks. However, its efficiency decreases significantly as the subdomain number and computing node number increase. 2) To compensate performance decreasing for large scale tasks, a K-Means clustering based algorithm is introduced. Instead of dedicating to get optimized solutions, this method can get relatively good feasible solutions within acceptable time. However, it may introduce imbalance communication for nodes or node-isolated subdomains. This research shows both two algorithms have their own strength and weakness for task allocation. A combination of the two algorithms is under study to obtain a better performance. Keywords: Scheduling; Parallel Computing; Load Balance; Optimization; Cost Model

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akcakaya, Murat; Nehorai, Arye; Sen, Satyabrata

    Most existing radar algorithms are developed under the assumption that the environment (clutter) is stationary. However, in practice, the characteristics of the clutter can vary enormously depending on the radar-operational scenarios. If unaccounted for, these nonstationary variabilities may drastically hinder the radar performance. Therefore, to overcome such shortcomings, we develop a data-driven method for target detection in nonstationary environments. In this method, the radar dynamically detects changes in the environment and adapts to these changes by learning the new statistical characteristics of the environment and by intelligibly updating its statistical detection algorithm. Specifically, we employ drift detection algorithms to detectmore » changes in the environment; incremental learning, particularly learning under concept drift algorithms, to learn the new statistical characteristics of the environment from the new radar data that become available in batches over a period of time. The newly learned environment characteristics are then integrated in the detection algorithm. Furthermore, we use Monte Carlo simulations to demonstrate that the developed method provides a significant improvement in the detection performance compared with detection techniques that are not aware of the environmental changes.« less

  15. Automated and real-time segmentation of suspicious breast masses using convolutional neural network

    PubMed Central

    Gregory, Adriana; Denis, Max; Meixner, Duane D.; Bayat, Mahdi; Whaley, Dana H.; Fatemi, Mostafa; Alizad, Azra

    2018-01-01

    In this work, a computer-aided tool for detection was developed to segment breast masses from clinical ultrasound (US) scans. The underlying Multi U-net algorithm is based on convolutional neural networks. Under the Mayo Clinic Institutional Review Board protocol, a prospective study of the automatic segmentation of suspicious breast masses was performed. The cohort consisted of 258 female patients who were clinically identified with suspicious breast masses and underwent clinical US scan and breast biopsy. The computer-aided detection tool effectively segmented the breast masses, achieving a mean Dice coefficient of 0.82, a true positive fraction (TPF) of 0.84, and a false positive fraction (FPF) of 0.01. By avoiding positioning of an initial seed, the algorithm is able to segment images in real time (13–55 ms per image), and can have potential clinical applications. The algorithm is at par with a conventional seeded algorithm, which had a mean Dice coefficient of 0.84 and performs significantly better (P< 0.0001) than the original U-net algorithm. PMID:29768415

  16. A dual-processor multi-frequency implementation of the FINDS algorithm

    NASA Technical Reports Server (NTRS)

    Godiwala, Pankaj M.; Caglayan, Alper K.

    1987-01-01

    This report presents a parallel processing implementation of the FINDS (Fault Inferring Nonlinear Detection System) algorithm on a dual processor configured target flight computer. First, a filter initialization scheme is presented which allows the no-fail filter (NFF) states to be initialized using the first iteration of the flight data. A modified failure isolation strategy, compatible with the new failure detection strategy reported earlier, is discussed and the performance of the new FDI algorithm is analyzed using flight recorded data from the NASA ATOPS B-737 aircraft in a Microwave Landing System (MLS) environment. The results show that low level MLS, IMU, and IAS sensor failures are detected and isolated instantaneously, while accelerometer and rate gyro failures continue to take comparatively longer to detect and isolate. The parallel implementation is accomplished by partitioning the FINDS algorithm into two parts: one based on the translational dynamics and the other based on the rotational kinematics. Finally, a multi-rate implementation of the algorithm is presented yielding significantly low execution times with acceptable estimation and FDI performance.

  17. Comparison of algorithms to quantify muscle fatigue in upper limb muscles based on sEMG signals.

    PubMed

    Kahl, Lorenz; Hofmann, Ulrich G

    2016-11-01

    This work compared the performance of six different fatigue detection algorithms quantifying muscle fatigue based on electromyographic signals. Surface electromyography (sEMG) was obtained by an experiment from upper arm contractions at three different load levels from twelve volunteers. Fatigue detection algorithms mean frequency (MNF), spectral moments ratio (SMR), the wavelet method WIRM1551, sample entropy (SampEn), fuzzy approximate entropy (fApEn) and recurrence quantification analysis (RQA%DET) were calculated. The resulting fatigue signals were compared considering the disturbances incorporated in fatiguing situations as well as according to the possibility to differentiate the load levels based on the fatigue signals. Furthermore we investigated the influence of the electrode locations on the fatigue detection quality and whether an optimized channel set is reasonable. The results of the MNF, SMR, WIRM1551 and fApEn algorithms fell close together. Due to the small amount of subjects in this study significant differences could not be found. In terms of disturbances the SMR algorithm showed a slight tendency to out-perform the others. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  18. The effect of explanations on mathematical reasoning tasks

    NASA Astrophysics Data System (ADS)

    Norqvist, Mathias

    2018-01-01

    Studies in mathematics education often point to the necessity for students to engage in more cognitively demanding activities than just solving tasks by applying given solution methods. Previous studies have shown that students that engage in creative mathematically founded reasoning to construct a solution method, perform significantly better in follow up tests than students that are given a solution method and engage in algorithmic reasoning. However, teachers and textbooks, at least occasionally, provide explanations together with an algorithmic method, and this could possibly be more efficient than creative reasoning. In this study, three matched groups practiced with either creative, algorithmic, or explained algorithmic tasks. The main finding was that students that practiced with creative tasks did, outperform the students that practiced with explained algorithmic tasks in a post-test, despite a much lower practice score. The two groups that got a solution method presented, performed similarly in both practice and post-test, even though one group got an explanation to the given solution method. Additionally, there were some differences between the groups in which variables predicted the post-test score.

  19. Biological network motif detection and evaluation

    PubMed Central

    2011-01-01

    Background Molecular level of biological data can be constructed into system level of data as biological networks. Network motifs are defined as over-represented small connected subgraphs in networks and they have been used for many biological applications. Since network motif discovery involves computationally challenging processes, previous algorithms have focused on computational efficiency. However, we believe that the biological quality of network motifs is also very important. Results We define biological network motifs as biologically significant subgraphs and traditional network motifs are differentiated as structural network motifs in this paper. We develop five algorithms, namely, EDGEGO-BNM, EDGEBETWEENNESS-BNM, NMF-BNM, NMFGO-BNM and VOLTAGE-BNM, for efficient detection of biological network motifs, and introduce several evaluation measures including motifs included in complex, motifs included in functional module and GO term clustering score in this paper. Experimental results show that EDGEGO-BNM and EDGEBETWEENNESS-BNM perform better than existing algorithms and all of our algorithms are applicable to find structural network motifs as well. Conclusion We provide new approaches to finding network motifs in biological networks. Our algorithms efficiently detect biological network motifs and further improve existing algorithms to find high quality structural network motifs, which would be impossible using existing algorithms. The performances of the algorithms are compared based on our new evaluation measures in biological contexts. We believe that our work gives some guidelines of network motifs research for the biological networks. PMID:22784624

  20. Any Two Learning Algorithms Are (Almost) Exactly Identical

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.

    2000-01-01

    This paper shows that if one is provided with a loss function, it can be used in a natural way to specify a distance measure quantifying the similarity of any two supervised learning algorithms, even non-parametric algorithms. Intuitively, this measure gives the fraction of targets and training sets for which the expected performance of the two algorithms differs significantly. Bounds on the value of this distance are calculated for the case of binary outputs and 0-1 loss, indicating that any two learning algorithms are almost exactly identical for such scenarios. As an example, for any two algorithms A and B, even for small input spaces and training sets, for less than 2e(-50) of all targets will the difference between A's and B's generalization performance of exceed 1%. In particular, this is true if B is bagging applied to A, or boosting applied to A. These bounds can be viewed alternatively as telling us, for example, that the simple English phrase 'I expect that algorithm A will generalize from the training set with an accuracy of at least 75% on the rest of the target' conveys 20,000 bytes of information concerning the target. The paper ends by discussing some of the subtleties of extending the distance measure to give a full (non-parametric) differential geometry of the manifold of learning algorithms.

  1. A metal artifact reduction algorithm in CT using multiple prior images by recursive active contour segmentation

    PubMed Central

    Nam, Haewon

    2017-01-01

    We propose a novel metal artifact reduction (MAR) algorithm for CT images that completes a corrupted sinogram along the metal trace region. When metal implants are located inside a field of view, they create a barrier to the transmitted X-ray beam due to the high attenuation of metals, which significantly degrades the image quality. To fill in the metal trace region efficiently, the proposed algorithm uses multiple prior images with residual error compensation in sinogram space. Multiple prior images are generated by applying a recursive active contour (RAC) segmentation algorithm to the pre-corrected image acquired by MAR with linear interpolation, where the number of prior image is controlled by RAC depending on the object complexity. A sinogram basis is then acquired by forward projection of the prior images. The metal trace region of the original sinogram is replaced by the linearly combined sinogram of the prior images. Then, the additional correction in the metal trace region is performed to compensate the residual errors occurred by non-ideal data acquisition condition. The performance of the proposed MAR algorithm is compared with MAR with linear interpolation and the normalized MAR algorithm using simulated and experimental data. The results show that the proposed algorithm outperforms other MAR algorithms, especially when the object is complex with multiple bone objects. PMID:28604794

  2. Segmentation of pomegranate MR images using spatial fuzzy c-means (SFCM) algorithm

    NASA Astrophysics Data System (ADS)

    Moradi, Ghobad; Shamsi, Mousa; Sedaaghi, M. H.; Alsharif, M. R.

    2011-10-01

    Segmentation is one of the fundamental issues of image processing and machine vision. It plays a prominent role in a variety of image processing applications. In this paper, one of the most important applications of image processing in MRI segmentation of pomegranate is explored. Pomegranate is a fruit with pharmacological properties such as being anti-viral and anti-cancer. Having a high quality product in hand would be critical factor in its marketing. The internal quality of the product is comprehensively important in the sorting process. The determination of qualitative features cannot be manually made. Therefore, the segmentation of the internal structures of the fruit needs to be performed as accurately as possible in presence of noise. Fuzzy c-means (FCM) algorithm is noise-sensitive and pixels with noise are classified inversely. As a solution, in this paper, the spatial FCM algorithm in pomegranate MR images' segmentation is proposed. The algorithm is performed with setting the spatial neighborhood information in FCM and modification of fuzzy membership function for each class. The segmentation algorithm results on the original and the corrupted Pomegranate MR images by Gaussian, Salt Pepper and Speckle noises show that the SFCM algorithm operates much more significantly than FCM algorithm. Also, after diverse steps of qualitative and quantitative analysis, we have concluded that the SFCM algorithm with 5×5 window size is better than the other windows.

  3. Satellite on-board processing for earth resources data

    NASA Technical Reports Server (NTRS)

    Bodenheimer, R. E.; Gonzalez, R. C.; Gupta, J. N.; Hwang, K.; Rochelle, R. W.; Wilson, J. B.; Wintz, P. A.

    1975-01-01

    Results of a survey of earth resources user applications and their data requirements, earth resources multispectral scanner sensor technology, and preprocessing algorithms for correcting the sensor outputs and for data bulk reduction are presented along with a candidate data format. Computational requirements required to implement the data analysis algorithms are included along with a review of computer architectures and organizations. Computer architectures capable of handling the algorithm computational requirements are suggested and the environmental effects of an on-board processor discussed. By relating performance parameters to the system requirements of each of the user requirements the feasibility of on-board processing is determined for each user. A tradeoff analysis is performed to determine the sensitivity of results to each of the system parameters. Significant results and conclusions are discussed, and recommendations are presented.

  4. Discovering the Unknown: Improving Detection of Novel Species and Genera from Short Reads

    DOE PAGES

    Rosen, Gail L.; Polikar, Robi; Caseiro, Diamantino A.; ...

    2011-01-01

    High-throughput sequencing technologies enable metagenome profiling, simultaneous sequencing of multiple microbial species present within an environmental sample. Since metagenomic data includes sequence fragments (“reads”) from organisms that are absent from any database, new algorithms must be developed for the identification and annotation of novel sequence fragments. Homology-based techniques have been modified to detect novel species and genera, but, composition-based methods, have not been adapted. We develop a detection technique that can discriminate between “known” and “unknown” taxa, which can be used with composition-based methods, as well as a hybrid method. Unlike previous studies, we rigorously evaluate all algorithms for theirmore » ability to detect novel taxa. First, we show that the integration of a detector with a composition-based method performs significantly better than homology-based methods for the detection of novel species and genera, with best performance at finer taxonomic resolutions. Most importantly, we evaluate all the algorithms by introducing an “unknown” class and show that the modified version of PhymmBL has similar or better overall classification performance than the other modified algorithms, especially for the species-level and ultrashort reads. Finally, we evaluate theperformance of several algorithms on a real acid mine drainage dataset.« less

  5. HRSSA - Efficient hybrid stochastic simulation for spatially homogeneous biochemical reaction networks

    NASA Astrophysics Data System (ADS)

    Marchetti, Luca; Priami, Corrado; Thanh, Vo Hong

    2016-07-01

    This paper introduces HRSSA (Hybrid Rejection-based Stochastic Simulation Algorithm), a new efficient hybrid stochastic simulation algorithm for spatially homogeneous biochemical reaction networks. HRSSA is built on top of RSSA, an exact stochastic simulation algorithm which relies on propensity bounds to select next reaction firings and to reduce the average number of reaction propensity updates needed during the simulation. HRSSA exploits the computational advantage of propensity bounds to manage time-varying transition propensities and to apply dynamic partitioning of reactions, which constitute the two most significant bottlenecks of hybrid simulation. A comprehensive set of simulation benchmarks is provided for evaluating performance and accuracy of HRSSA against other state of the art algorithms.

  6. Quantum connectivity optimization algorithms for entanglement source deployment in a quantum multi-hop network

    NASA Astrophysics Data System (ADS)

    Zou, Zhen-Zhen; Yu, Xu-Tao; Zhang, Zai-Chen

    2018-04-01

    At first, the entanglement source deployment problem is studied in a quantum multi-hop network, which has a significant influence on quantum connectivity. Two optimization algorithms are introduced with limited entanglement sources in this paper. A deployment algorithm based on node position (DNP) improves connectivity by guaranteeing that all overlapping areas of the distribution ranges of the entanglement sources contain nodes. In addition, a deployment algorithm based on an improved genetic algorithm (DIGA) is implemented by dividing the region into grids. From the simulation results, DNP and DIGA improve quantum connectivity by 213.73% and 248.83% compared to random deployment, respectively, and the latter performs better in terms of connectivity. However, DNP is more flexible and adaptive to change, as it stops running when all nodes are covered.

  7. A novel gene network inference algorithm using predictive minimum description length approach.

    PubMed

    Chaitankar, Vijender; Ghosh, Preetam; Perkins, Edward J; Gong, Ping; Deng, Youping; Zhang, Chaoyang

    2010-05-28

    Reverse engineering of gene regulatory networks using information theory models has received much attention due to its simplicity, low computational cost, and capability of inferring large networks. One of the major problems with information theory models is to determine the threshold which defines the regulatory relationships between genes. The minimum description length (MDL) principle has been implemented to overcome this problem. The description length of the MDL principle is the sum of model length and data encoding length. A user-specified fine tuning parameter is used as control mechanism between model and data encoding, but it is difficult to find the optimal parameter. In this work, we proposed a new inference algorithm which incorporated mutual information (MI), conditional mutual information (CMI) and predictive minimum description length (PMDL) principle to infer gene regulatory networks from DNA microarray data. In this algorithm, the information theoretic quantities MI and CMI determine the regulatory relationships between genes and the PMDL principle method attempts to determine the best MI threshold without the need of a user-specified fine tuning parameter. The performance of the proposed algorithm was evaluated using both synthetic time series data sets and a biological time series data set for the yeast Saccharomyces cerevisiae. The benchmark quantities precision and recall were used as performance measures. The results show that the proposed algorithm produced less false edges and significantly improved the precision, as compared to the existing algorithm. For further analysis the performance of the algorithms was observed over different sizes of data. We have proposed a new algorithm that implements the PMDL principle for inferring gene regulatory networks from time series DNA microarray data that eliminates the need of a fine tuning parameter. The evaluation results obtained from both synthetic and actual biological data sets show that the PMDL principle is effective in determining the MI threshold and the developed algorithm improves precision of gene regulatory network inference. Based on the sensitivity analysis of all tested cases, an optimal CMI threshold value has been identified. Finally it was observed that the performance of the algorithms saturates at a certain threshold of data size.

  8. Models of performance of evolutionary program induction algorithms based on indicators of problem difficulty.

    PubMed

    Graff, Mario; Poli, Riccardo; Flores, Juan J

    2013-01-01

    Modeling the behavior of algorithms is the realm of evolutionary algorithm theory. From a practitioner's point of view, theory must provide some guidelines regarding which algorithm/parameters to use in order to solve a particular problem. Unfortunately, most theoretical models of evolutionary algorithms are difficult to apply to realistic situations. However, in recent work (Graff and Poli, 2008, 2010), where we developed a method to practically estimate the performance of evolutionary program-induction algorithms (EPAs), we started addressing this issue. The method was quite general; however, it suffered from some limitations: it required the identification of a set of reference problems, it required hand picking a distance measure in each particular domain, and the resulting models were opaque, typically being linear combinations of 100 features or more. In this paper, we propose a significant improvement of this technique that overcomes the three limitations of our previous method. We achieve this through the use of a novel set of features for assessing problem difficulty for EPAs which are very general, essentially based on the notion of finite difference. To show the capabilities or our technique and to compare it with our previous performance models, we create models for the same two important classes of problems-symbolic regression on rational functions and Boolean function induction-used in our previous work. We model a variety of EPAs. The comparison showed that for the majority of the algorithms and problem classes, the new method produced much simpler and more accurate models than before. To further illustrate the practicality of the technique and its generality (beyond EPAs), we have also used it to predict the performance of both autoregressive models and EPAs on the problem of wind speed forecasting, obtaining simpler and more accurate models that outperform in all cases our previous performance models.

  9. A generic EEG artifact removal algorithm based on the multi-channel Wiener filter

    NASA Astrophysics Data System (ADS)

    Somers, Ben; Francart, Tom; Bertrand, Alexander

    2018-06-01

    Objective. The electroencephalogram (EEG) is an essential neuro-monitoring tool for both clinical and research purposes, but is susceptible to a wide variety of undesired artifacts. Removal of these artifacts is often done using blind source separation techniques, relying on a purely data-driven transformation, which may sometimes fail to sufficiently isolate artifacts in only one or a few components. Furthermore, some algorithms perform well for specific artifacts, but not for others. In this paper, we aim to develop a generic EEG artifact removal algorithm, which allows the user to annotate a few artifact segments in the EEG recordings to inform the algorithm. Approach. We propose an algorithm based on the multi-channel Wiener filter (MWF), in which the artifact covariance matrix is replaced by a low-rank approximation based on the generalized eigenvalue decomposition. The algorithm is validated using both hybrid and real EEG data, and is compared to other algorithms frequently used for artifact removal. Main results. The MWF-based algorithm successfully removes a wide variety of artifacts with better performance than current state-of-the-art methods. Significance. Current EEG artifact removal techniques often have limited applicability due to their specificity to one kind of artifact, their complexity, or simply because they are too ‘blind’. This paper demonstrates a fast, robust and generic algorithm for removal of EEG artifacts of various types, i.e. those that were annotated as unwanted by the user.

  10. Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning.

    PubMed

    Abràmoff, Michael David; Lou, Yiyue; Erginay, Ali; Clarida, Warren; Amelon, Ryan; Folk, James C; Niemeijer, Meindert

    2016-10-01

    To compare performance of a deep-learning enhanced algorithm for automated detection of diabetic retinopathy (DR), to the previously published performance of that algorithm, the Iowa Detection Program (IDP)-without deep learning components-on the same publicly available set of fundus images and previously reported consensus reference standard set, by three US Board certified retinal specialists. We used the previously reported consensus reference standard of referable DR (rDR), defined as International Clinical Classification of Diabetic Retinopathy moderate, severe nonproliferative (NPDR), proliferative DR, and/or macular edema (ME). Neither Messidor-2 images, nor the three retinal specialists setting the Messidor-2 reference standard were used for training IDx-DR version X2.1. Sensitivity, specificity, negative predictive value, area under the curve (AUC), and their confidence intervals (CIs) were calculated. Sensitivity was 96.8% (95% CI: 93.3%-98.8%), specificity was 87.0% (95% CI: 84.2%-89.4%), with 6/874 false negatives, resulting in a negative predictive value of 99.0% (95% CI: 97.8%-99.6%). No cases of severe NPDR, PDR, or ME were missed. The AUC was 0.980 (95% CI: 0.968-0.992). Sensitivity was not statistically different from published IDP sensitivity, which had a CI of 94.4% to 99.3%, but specificity was significantly better than the published IDP specificity CI of 55.7% to 63.0%. A deep-learning enhanced algorithm for the automated detection of DR, achieves significantly better performance than a previously reported, otherwise essentially identical, algorithm that does not employ deep learning. Deep learning enhanced algorithms have the potential to improve the efficiency of DR screening, and thereby to prevent visual loss and blindness from this devastating disease.

  11. A generalised significance test for individual communities in networks.

    PubMed

    Kojaku, Sadamori; Masuda, Naoki

    2018-05-09

    Many empirical networks have community structure, in which nodes are densely interconnected within each community (i.e., a group of nodes) and sparsely across different communities. Like other local and meso-scale structure of networks, communities are generally heterogeneous in various aspects such as the size, density of edges, connectivity to other communities and significance. In the present study, we propose a method to statistically test the significance of individual communities in a given network. Compared to the previous methods, the present algorithm is unique in that it accepts different community-detection algorithms and the corresponding quality function for single communities. The present method requires that a quality of each community can be quantified and that community detection is performed as optimisation of such a quality function summed over the communities. Various community detection algorithms including modularity maximisation and graph partitioning meet this criterion. Our method estimates a distribution of the quality function for randomised networks to calculate a likelihood of each community in the given network. We illustrate our algorithm by synthetic and empirical networks.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chacón, L., E-mail: chacon@lanl.gov; Chen, G.; Knoll, D.A.

    We review the state of the art in the formulation, implementation, and performance of so-called high-order/low-order (HOLO) algorithms for challenging multiscale problems. HOLO algorithms attempt to couple one or several high-complexity physical models (the high-order model, HO) with low-complexity ones (the low-order model, LO). The primary goal of HOLO algorithms is to achieve nonlinear convergence between HO and LO components while minimizing memory footprint and managing the computational complexity in a practical manner. Key to the HOLO approach is the use of the LO representations to address temporal stiffness, effectively accelerating the convergence of the HO/LO coupled system. The HOLOmore » approach is broadly underpinned by the concept of nonlinear elimination, which enables segregation of the HO and LO components in ways that can effectively use heterogeneous architectures. The accuracy and efficiency benefits of HOLO algorithms are demonstrated with specific applications to radiation transport, gas dynamics, plasmas (both Eulerian and Lagrangian formulations), and ocean modeling. Across this broad application spectrum, HOLO algorithms achieve significant accuracy improvements at a fraction of the cost compared to conventional approaches. It follows that HOLO algorithms hold significant potential for high-fidelity system scale multiscale simulations leveraging exascale computing.« less

  13. A fast global fitting algorithm for fluorescence lifetime imaging microscopy based on image segmentation.

    PubMed

    Pelet, S; Previte, M J R; Laiho, L H; So, P T C

    2004-10-01

    Global fitting algorithms have been shown to improve effectively the accuracy and precision of the analysis of fluorescence lifetime imaging microscopy data. Global analysis performs better than unconstrained data fitting when prior information exists, such as the spatial invariance of the lifetimes of individual fluorescent species. The highly coupled nature of global analysis often results in a significantly slower convergence of the data fitting algorithm as compared with unconstrained analysis. Convergence speed can be greatly accelerated by providing appropriate initial guesses. Realizing that the image morphology often correlates with fluorophore distribution, a global fitting algorithm has been developed to assign initial guesses throughout an image based on a segmentation analysis. This algorithm was tested on both simulated data sets and time-domain lifetime measurements. We have successfully measured fluorophore distribution in fibroblasts stained with Hoechst and calcein. This method further allows second harmonic generation from collagen and elastin autofluorescence to be differentiated in fluorescence lifetime imaging microscopy images of ex vivo human skin. On our experimental measurement, this algorithm increased convergence speed by over two orders of magnitude and achieved significantly better fits. Copyright 2004 Biophysical Society

  14. Multiscale high-order/low-order (HOLO) algorithms and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chacon, Luis; Chen, Guangye; Knoll, Dana Alan

    Here, we review the state of the art in the formulation, implementation, and performance of so-called high-order/low-order (HOLO) algorithms for challenging multiscale problems. HOLO algorithms attempt to couple one or several high-complexity physical models (the high-order model, HO) with low-complexity ones (the low-order model, LO). The primary goal of HOLO algorithms is to achieve nonlinear convergence between HO and LO components while minimizing memory footprint and managing the computational complexity in a practical manner. Key to the HOLO approach is the use of the LO representations to address temporal stiffness, effectively accelerating the convergence of the HO/LO coupled system. Themore » HOLO approach is broadly underpinned by the concept of nonlinear elimination, which enables segregation of the HO and LO components in ways that can effectively use heterogeneous architectures. The accuracy and efficiency benefits of HOLO algorithms are demonstrated with specific applications to radiation transport, gas dynamics, plasmas (both Eulerian and Lagrangian formulations), and ocean modeling. Across this broad application spectrum, HOLO algorithms achieve significant accuracy improvements at a fraction of the cost compared to conventional approaches. It follows that HOLO algorithms hold significant potential for high-fidelity system scale multiscale simulations leveraging exascale computing.« less

  15. Multiscale high-order/low-order (HOLO) algorithms and applications

    DOE PAGES

    Chacon, Luis; Chen, Guangye; Knoll, Dana Alan; ...

    2016-11-11

    Here, we review the state of the art in the formulation, implementation, and performance of so-called high-order/low-order (HOLO) algorithms for challenging multiscale problems. HOLO algorithms attempt to couple one or several high-complexity physical models (the high-order model, HO) with low-complexity ones (the low-order model, LO). The primary goal of HOLO algorithms is to achieve nonlinear convergence between HO and LO components while minimizing memory footprint and managing the computational complexity in a practical manner. Key to the HOLO approach is the use of the LO representations to address temporal stiffness, effectively accelerating the convergence of the HO/LO coupled system. Themore » HOLO approach is broadly underpinned by the concept of nonlinear elimination, which enables segregation of the HO and LO components in ways that can effectively use heterogeneous architectures. The accuracy and efficiency benefits of HOLO algorithms are demonstrated with specific applications to radiation transport, gas dynamics, plasmas (both Eulerian and Lagrangian formulations), and ocean modeling. Across this broad application spectrum, HOLO algorithms achieve significant accuracy improvements at a fraction of the cost compared to conventional approaches. It follows that HOLO algorithms hold significant potential for high-fidelity system scale multiscale simulations leveraging exascale computing.« less

  16. Grayscale image segmentation for real-time traffic sign recognition: the hardware point of view

    NASA Astrophysics Data System (ADS)

    Cao, Tam P.; Deng, Guang; Elton, Darrell

    2009-02-01

    In this paper, we study several grayscale-based image segmentation methods for real-time road sign recognition applications on an FPGA hardware platform. The performance of different image segmentation algorithms in different lighting conditions are initially compared using PC simulation. Based on these results and analysis, suitable algorithms are implemented and tested on a real-time FPGA speed sign detection system. Experimental results show that the system using segmented images uses significantly less hardware resources on an FPGA while maintaining comparable system's performance. The system is capable of processing 60 live video frames per second.

  17. Vectorization of a Monte Carlo simulation scheme for nonequilibrium gas dynamics

    NASA Technical Reports Server (NTRS)

    Boyd, Iain D.

    1991-01-01

    Significant improvement has been obtained in the numerical performance of a Monte Carlo scheme for the analysis of nonequilibrium gas dynamics through an implementation of the algorithm which takes advantage of vector hardware, as presently demonstrated through application to three different problems. These are (1) a 1D standing-shock wave; (2) the flow of an expanding gas through an axisymmetric nozzle; and (3) the hypersonic flow of Ar gas over a 3D wedge. Problem (3) is illustrative of the greatly increased number of molecules which the simulation may involve, thanks to improved algorithm performance.

  18. Efficient Aho-Corasick String Matching on Emerging Multicore Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumeo, Antonino; Villa, Oreste; Secchi, Simone

    String matching algorithms are critical to several scientific fields. Beside text processing and databases, emerging applications such as DNA protein sequence analysis, data mining, information security software, antivirus, ma- chine learning, all exploit string matching algorithms [3]. All these applica- tions usually process large quantity of textual data, require high performance and/or predictable execution times. Among all the string matching algorithms, one of the most studied, especially for text processing and security applica- tions, is the Aho-Corasick algorithm. 1 2 Book title goes here Aho-Corasick is an exact, multi-pattern string matching algorithm which performs the search in a time linearlymore » proportional to the length of the input text independently from pattern set size. However, depending on the imple- mentation, when the number of patterns increase, the memory occupation may raise drastically. In turn, this can lead to significant variability in the performance, due to the memory access times and the caching effects. This is a significant concern for many mission critical applications and modern high performance architectures. For example, security applications such as Network Intrusion Detection Systems (NIDS), must be able to scan network traffic against very large dictionaries in real time. Modern Ethernet links reach up to 10 Gbps, and malicious threats are already well over 1 million, and expo- nentially growing [28]. When performing the search, a NIDS should not slow down the network, or let network packets pass unchecked. Nevertheless, on the current state-of-the-art cache based processors, there may be a large per- formance variability when dealing with big dictionaries and inputs that have different frequencies of matching patterns. In particular, when few patterns are matched and they are all in the cache, the procedure is fast. Instead, when they are not in the cache, often because many patterns are matched and the caches are continuously thrashed, they should be retrieved from the system memory and the procedure is slowed down by the increased latency. Efficient implementations of string matching algorithms have been the fo- cus of several works, targeting Field Programmable Gate Arrays [4, 25, 15, 5], highly multi-threaded solutions like the Cray XMT [34], multicore proces- sors [19] or heterogeneous processors like the Cell Broadband Engine [35, 22]. Recently, several researchers have also started to investigate the use Graphic Processing Units (GPUs) for string matching algorithms in security applica- tions [20, 10, 32, 33]. Most of these approaches mainly focus on reaching high peak performance, or try to optimize the memory occupation, rather than looking at performance stability. However, hardware solutions supports only small dictionary sizes due to lack of memory and are difficult to customize, while platforms such as the Cell/B.E. are very complex to program.« less

  19. Preliminary Study of Image Reconstruction Algorithm on a Digital Signal Processor

    DTIC Science & Technology

    2014-03-01

    5.2 Comparison of CPU-GPU, CPU-FPGA, and CPU-DSP Designs The work for implementing VHDL description of the back-projection algorithm on a physical...FPGA was not complete. Hence, the DSP implementation results are compared with the simulated results for the VHDL design. Simulating VHDL provides an...rather than at the software level. Depending on an application’s characteristics, FPGA implementations can provide a significant performance

  20. Strain gage selection in loads equations using a genetic algorithm

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Traditionally, structural loads are measured using strain gages. A loads calibration test must be done before loads can be accurately measured. In one measurement method, a series of point loads is applied to the structure, and loads equations are derived via the least squares curve fitting algorithm using the strain gage responses to the applied point loads. However, many research structures are highly instrumented with strain gages, and the number and selection of gages used in a loads equation can be problematic. This paper presents an improved technique using a genetic algorithm to choose the strain gages used in the loads equations. Also presented are a comparison of the genetic algorithm performance with the current T-value technique and a variant known as the Best Step-down technique. Examples are shown using aerospace vehicle wings of high and low aspect ratio. In addition, a significant limitation in the current methods is revealed. The genetic algorithm arrived at a comparable or superior set of gages with significantly less human effort, and could be applied in instances when the current methods could not.

  1. Axial Cone Beam Reconstruction by Weighted BPF/DBPF and Orthogonal Butterfly Filtering

    PubMed Central

    Tang, Shaojie; Tang, Xiangyang

    2016-01-01

    Goal The backprojection-filtration (BPF) and the derivative backprojection filtered (DBPF) algorithms, in which Hilbert filtering is the common algorithmic feature, are originally derived for exact helical reconstruction from cone beam (CB) scan data and axial reconstruction from fan beam data, respectively. These two algorithms can be heuristically extended for image reconstruction from axial CB scan data, but induce severe artifacts in images located away from the central plane determined by the circular source trajectory. We propose an algorithmic solution herein to eliminate the artifacts. Methods The solution is an integration of three-dimensional (3D) weighted axial CB-BPF/ DBPF algorithm with orthogonal butterfly filtering, namely axial CB-BPF/DBPF cascaded with orthogonal butterfly filtering. Using the computer simulated Forbild head and thoracic phantoms that are rigorous in inspecting reconstruction accuracy and an anthropomorphic thoracic phantom with projection data acquired by a CT scanner, we evaluate performance of the proposed algorithm. Results Preliminary results show that the orthogonal butterfly filtering can eliminate the severe streak artifacts existing in the images reconstructed by the 3D weighted axial CB-BPF/DBPF algorithm located at off-central planes. Conclusion Integrated with orthogonal butterfly filtering, the 3D weighted CB-BPF/DBPF algorithm can perform at least as well as the 3D weighted CB-FBP algorithm in image reconstruction from axial CB scan data. Significance The proposed 3D weighted axial CB-BPF/DBPF cascaded with orthogonal butterfly filtering can be an algorithmic solution for CT imaging in extensive clinical and preclinical applications. PMID:26660512

  2. Congestion Pricing for Aircraft Pushback Slot Allocation.

    PubMed

    Liu, Lihua; Zhang, Yaping; Liu, Lan; Xing, Zhiwei

    2017-01-01

    In order to optimize aircraft pushback management during rush hour, aircraft pushback slot allocation based on congestion pricing is explored while considering monetary compensation based on the quality of the surface operations. First, the concept of the "external cost of surface congestion" is proposed, and a quantitative study on the external cost is performed. Then, an aircraft pushback slot allocation model for minimizing the total surface cost is established. An improved discrete differential evolution algorithm is also designed. Finally, a simulation is performed on Xinzheng International Airport using the proposed model. By comparing the pushback slot control strategy based on congestion pricing with other strategies, the advantages of the proposed model and algorithm are highlighted. In addition to reducing delays and optimizing the delay distribution, the model and algorithm are better suited for use for actual aircraft pushback management during rush hour. Further, it is also observed they do not result in significant increases in the surface cost. These results confirm the effectiveness and suitability of the proposed model and algorithm.

  3. Congestion Pricing for Aircraft Pushback Slot Allocation

    PubMed Central

    Zhang, Yaping

    2017-01-01

    In order to optimize aircraft pushback management during rush hour, aircraft pushback slot allocation based on congestion pricing is explored while considering monetary compensation based on the quality of the surface operations. First, the concept of the “external cost of surface congestion” is proposed, and a quantitative study on the external cost is performed. Then, an aircraft pushback slot allocation model for minimizing the total surface cost is established. An improved discrete differential evolution algorithm is also designed. Finally, a simulation is performed on Xinzheng International Airport using the proposed model. By comparing the pushback slot control strategy based on congestion pricing with other strategies, the advantages of the proposed model and algorithm are highlighted. In addition to reducing delays and optimizing the delay distribution, the model and algorithm are better suited for use for actual aircraft pushback management during rush hour. Further, it is also observed they do not result in significant increases in the surface cost. These results confirm the effectiveness and suitability of the proposed model and algorithm. PMID:28114429

  4. Classification of adaptive memetic algorithms: a comparative study.

    PubMed

    Ong, Yew-Soon; Lim, Meng-Hiot; Zhu, Ning; Wong, Kok-Wai

    2006-02-01

    Adaptation of parameters and operators represents one of the recent most important and promising areas of research in evolutionary computations; it is a form of designing self-configuring algorithms that acclimatize to suit the problem in hand. Here, our interests are on a recent breed of hybrid evolutionary algorithms typically known as adaptive memetic algorithms (MAs). One unique feature of adaptive MAs is the choice of local search methods or memes and recent studies have shown that this choice significantly affects the performances of problem searches. In this paper, we present a classification of memes adaptation in adaptive MAs on the basis of the mechanism used and the level of historical knowledge on the memes employed. Then the asymptotic convergence properties of the adaptive MAs considered are analyzed according to the classification. Subsequently, empirical studies on representatives of adaptive MAs for different type-level meme adaptations using continuous benchmark problems indicate that global-level adaptive MAs exhibit better search performances. Finally we conclude with some promising research directions in the area.

  5. Unsupervised spike sorting based on discriminative subspace learning.

    PubMed

    Keshtkaran, Mohammad Reza; Yang, Zhi

    2014-01-01

    Spike sorting is a fundamental preprocessing step for many neuroscience studies which rely on the analysis of spike trains. In this paper, we present two unsupervised spike sorting algorithms based on discriminative subspace learning. The first algorithm simultaneously learns the discriminative feature subspace and performs clustering. It uses histogram of features in the most discriminative projection to detect the number of neurons. The second algorithm performs hierarchical divisive clustering that learns a discriminative 1-dimensional subspace for clustering in each level of the hierarchy until achieving almost unimodal distribution in the subspace. The algorithms are tested on synthetic and in-vivo data, and are compared against two widely used spike sorting methods. The comparative results demonstrate that our spike sorting methods can achieve substantially higher accuracy in lower dimensional feature space, and they are highly robust to noise. Moreover, they provide significantly better cluster separability in the learned subspace than in the subspace obtained by principal component analysis or wavelet transform.

  6. TinyOS-based quality of service management in wireless sensor networks

    USGS Publications Warehouse

    Peterson, N.; Anusuya-Rangappa, L.; Shirazi, B.A.; Huang, R.; Song, W.-Z.; Miceli, M.; McBride, D.; Hurson, A.; LaHusen, R.

    2009-01-01

    Previously the cost and extremely limited capabilities of sensors prohibited Quality of Service (QoS) implementations in wireless sensor networks. With advances in technology, sensors are becoming significantly less expensive and the increases in computational and storage capabilities are opening the door for new, sophisticated algorithms to be implemented. Newer sensor network applications require higher data rates with more stringent priority requirements. We introduce a dynamic scheduling algorithm to improve bandwidth for high priority data in sensor networks, called Tiny-DWFQ. Our Tiny-Dynamic Weighted Fair Queuing scheduling algorithm allows for dynamic QoS for prioritized communications by continually adjusting the treatment of communication packages according to their priorities and the current level of network congestion. For performance evaluation, we tested Tiny-DWFQ, Tiny-WFQ (traditional WFQ algorithm implemented in TinyOS), and FIFO queues on an Imote2-based wireless sensor network and report their throughput and packet loss. Our results show that Tiny-DWFQ performs better in all test cases. ?? 2009 IEEE.

  7. On Applying the Prognostic Performance Metrics

    NASA Technical Reports Server (NTRS)

    Saxena, Abhinav; Celaya, Jose; Saha, Bhaskar; Saha, Sankalita; Goebel, Kai

    2009-01-01

    Prognostics performance evaluation has gained significant attention in the past few years. As prognostics technology matures and more sophisticated methods for prognostic uncertainty management are developed, a standardized methodology for performance evaluation becomes extremely important to guide improvement efforts in a constructive manner. This paper is in continuation of previous efforts where several new evaluation metrics tailored for prognostics were introduced and were shown to effectively evaluate various algorithms as compared to other conventional metrics. Specifically, this paper presents a detailed discussion on how these metrics should be interpreted and used. Several shortcomings identified, while applying these metrics to a variety of real applications, are also summarized along with discussions that attempt to alleviate these problems. Further, these metrics have been enhanced to include the capability of incorporating probability distribution information from prognostic algorithms as opposed to evaluation based on point estimates only. Several methods have been suggested and guidelines have been provided to help choose one method over another based on probability distribution characteristics. These approaches also offer a convenient and intuitive visualization of algorithm performance with respect to some of these new metrics like prognostic horizon and alpha-lambda performance, and also quantify the corresponding performance while incorporating the uncertainty information.

  8. Evaluation of five diffeomorphic image registration algorithms for mouse brain magnetic resonance microscopy.

    PubMed

    Fu, Zhenrong; Lin, Lan; Tian, Miao; Wang, Jingxuan; Zhang, Baiwen; Chu, Pingping; Li, Shaowu; Pathan, Muhammad Mohsin; Deng, Yulin; Wu, Shuicai

    2017-11-01

    The development of genetically engineered mouse models for neuronal diseases and behavioural disorders have generated a growing need for small animal imaging. High-resolution magnetic resonance microscopy (MRM) provides powerful capabilities for noninvasive studies of mouse brains, while avoiding some limits associated with the histological procedures. Quantitative comparison of structural images is a critical step in brain imaging analysis, which highly relies on the performance of image registration techniques. Nowadays, there is a mushrooming growth of human brain registration algorithms, while fine-tuning of those algorithms for mouse brain MRMs is rarely addressed. Because of their topology preservation property and outstanding performance in human studies, diffeomorphic transformations have become popular in computational anatomy. In this study, we specially tuned five diffeomorphic image registration algorithms [DARTEL, geodesic shooting, diffeo-demons, SyN (Greedy-SyN and geodesic-SyN)] for mouse brain MRMs and evaluated their performance using three measures [volume overlap percentage (VOP), residual intensity error (RIE) and surface concordance ratio (SCR)]. Geodesic-SyN performed significantly better than the other methods according to all three different measures. These findings are important for the studies on structural brain changes that may occur in wild-type and transgenic mouse brains. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  9. On the performance of SART and ART algorithms for microwave imaging

    NASA Astrophysics Data System (ADS)

    Aprilliyani, Ria; Prabowo, Rian Gilang; Basari

    2018-02-01

    The development of advanced technology leads to the change of human lifestyle in current society. One of the disadvantage impact is arising the degenerative diseases such as cancers and tumors, not just common infectious diseases. Every year, victims of cancers and tumors grow significantly leading to one of the death causes in the world. In early stage, cancer/tumor does not have definite symptoms, but it will grow abnormally as tissue cells and damage normal tissue. Hence, early cancer detection is required. Some common diagnostics modalities such as MRI, CT and PET are quite difficult to be operated in home or mobile environment such as ambulance. Those modalities are also high cost, unpleasant, complex, less safety and harder to move. Hence, this paper proposes a microwave imaging system due to its portability and low cost. In current study, we address on the performance of simultaneous algebraic reconstruction technique (SART) algorithm that was applied in microwave imaging. In addition, SART algorithm performance compared with our previous work on algebraic reconstruction technique (ART), in order to have performance comparison, especially in the case of reconstructed image quality. The result showed that by applying SART algorithm on microwave imaging, suspicious cancer/tumor can be detected with better image quality.

  10. Carrier-to-noise power estimation for the Block 5 Receiver

    NASA Technical Reports Server (NTRS)

    Monk, A. M.

    1991-01-01

    Two possible algorithms for the carrier to noise power (P sub c/N sub 0) estimation in the Block V Receiver are analyzed and their performances compared. The expected value and the variance of each estimator algorithm are derived. The two algorithms examined are known as the I arm estimator, which relies on samples from only the in-phase arm of the digital phase lock loop, and the IQ arm estimator, which uses both in-phase and quadrature-phase arm signals. The IQ arm algorithm is currently implemented in the Advanced Receiver II (ARX II). Both estimators are biased. The performance degradation due to phase jitter in the carrier tracking loop is taken into account. Curves of the expected value and the signal to noise ratio of the P sub c/N sub 0 estimators vs. actual P sub c/N sub 0 are shown. From this, it is clear that the I arm estimator performs better than the IQ arm estimator when the data to noise power ratio (P sub d/N sub 0) is high, i.e., at high P sub c/N sub 0 values and a significant modulation index. When P sub d/N sub 0 is low, the two estimators have essentially the same performance.

  11. Performance Analysis of Continuous Black-Box Optimization Algorithms via Footprints in Instance Space.

    PubMed

    Muñoz, Mario A; Smith-Miles, Kate A

    2017-01-01

    This article presents a method for the objective assessment of an algorithm's strengths and weaknesses. Instead of examining the performance of only one or more algorithms on a benchmark set, or generating custom problems that maximize the performance difference between two algorithms, our method quantifies both the nature of the test instances and the algorithm performance. Our aim is to gather information about possible phase transitions in performance, that is, the points in which a small change in problem structure produces algorithm failure. The method is based on the accurate estimation and characterization of the algorithm footprints, that is, the regions of instance space in which good or exceptional performance is expected from an algorithm. A footprint can be estimated for each algorithm and for the overall portfolio. Therefore, we select a set of features to generate a common instance space, which we validate by constructing a sufficiently accurate prediction model. We characterize the footprints by their area and density. Our method identifies complementary performance between algorithms, quantifies the common features of hard problems, and locates regions where a phase transition may lie.

  12. Blind color isolation for color-channel-based fringe pattern profilometry using digital projection

    NASA Astrophysics Data System (ADS)

    Hu, Yingsong; Xi, Jiangtao; Chicharo, Joe; Yang, Zongkai

    2007-08-01

    We present an algorithm for estimating the color demixing matrix based on the color fringe patterns captured from the reference plane or the surface of the object. The advantage of this algorithm is that it is a blind approach to calculating the demixing matrix in the sense that no extra images are required for color calibration before performing profile measurement. Simulation and experimental results convince us that the proposed algorithm can significantly reduce the influence of the color cross talk and at the same time improve the measurement accuracy of the color-channel-based phase-shifting profilometry.

  13. Machine Learning for Big Data: A Study to Understand Limits at Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sukumar, Sreenivas R.; Del-Castillo-Negrete, Carlos Emilio

    This report aims to empirically understand the limits of machine learning when applied to Big Data. We observe that recent innovations in being able to collect, access, organize, integrate, and query massive amounts of data from a wide variety of data sources have brought statistical data mining and machine learning under more scrutiny, evaluation and application for gleaning insights from the data than ever before. Much is expected from algorithms without understanding their limitations at scale while dealing with massive datasets. In that context, we pose and address the following questions How does a machine learning algorithm perform on measuresmore » such as accuracy and execution time with increasing sample size and feature dimensionality? Does training with more samples guarantee better accuracy? How many features to compute for a given problem? Do more features guarantee better accuracy? Do efforts to derive and calculate more features and train on larger samples worth the effort? As problems become more complex and traditional binary classification algorithms are replaced with multi-task, multi-class categorization algorithms do parallel learners perform better? What happens to the accuracy of the learning algorithm when trained to categorize multiple classes within the same feature space? Towards finding answers to these questions, we describe the design of an empirical study and present the results. We conclude with the following observations (i) accuracy of the learning algorithm increases with increasing sample size but saturates at a point, beyond which more samples do not contribute to better accuracy/learning, (ii) the richness of the feature space dictates performance - both accuracy and training time, (iii) increased dimensionality often reflected in better performance (higher accuracy in spite of longer training times) but the improvements are not commensurate the efforts for feature computation and training and (iv) accuracy of the learning algorithms drop significantly with multi-class learners training on the same feature matrix and (v) learning algorithms perform well when categories in labeled data are independent (i.e., no relationship or hierarchy exists among categories).« less

  14. Reduced kernel recursive least squares algorithm for aero-engine degradation prediction

    NASA Astrophysics Data System (ADS)

    Zhou, Haowen; Huang, Jinquan; Lu, Feng

    2017-10-01

    Kernel adaptive filters (KAFs) generate a linear growing radial basis function (RBF) network with the number of training samples, thereby lacking sparseness. To deal with this drawback, traditional sparsification techniques select a subset of original training data based on a certain criterion to train the network and discard the redundant data directly. Although these methods curb the growth of the network effectively, it should be noted that information conveyed by these redundant samples is omitted, which may lead to accuracy degradation. In this paper, we present a novel online sparsification method which requires much less training time without sacrificing the accuracy performance. Specifically, a reduced kernel recursive least squares (RKRLS) algorithm is developed based on the reduced technique and the linear independency. Unlike conventional methods, our novel methodology employs these redundant data to update the coefficients of the existing network. Due to the effective utilization of the redundant data, the novel algorithm achieves a better accuracy performance, although the network size is significantly reduced. Experiments on time series prediction and online regression demonstrate that RKRLS algorithm requires much less computational consumption and maintains the satisfactory accuracy performance. Finally, we propose an enhanced multi-sensor prognostic model based on RKRLS and Hidden Markov Model (HMM) for remaining useful life (RUL) estimation. A case study in a turbofan degradation dataset is performed to evaluate the performance of the novel prognostic approach.

  15. RGCA: A Reliable GPU Cluster Architecture for Large-Scale Internet of Things Computing Based on Effective Performance-Energy Optimization

    PubMed Central

    Chen, Qingkui; Zhao, Deyu; Wang, Jingjuan

    2017-01-01

    This paper aims to develop a low-cost, high-performance and high-reliability computing system to process large-scale data using common data mining algorithms in the Internet of Things (IoT) computing environment. Considering the characteristics of IoT data processing, similar to mainstream high performance computing, we use a GPU (Graphics Processing Unit) cluster to achieve better IoT services. Firstly, we present an energy consumption calculation method (ECCM) based on WSNs. Then, using the CUDA (Compute Unified Device Architecture) Programming model, we propose a Two-level Parallel Optimization Model (TLPOM) which exploits reasonable resource planning and common compiler optimization techniques to obtain the best blocks and threads configuration considering the resource constraints of each node. The key to this part is dynamic coupling Thread-Level Parallelism (TLP) and Instruction-Level Parallelism (ILP) to improve the performance of the algorithms without additional energy consumption. Finally, combining the ECCM and the TLPOM, we use the Reliable GPU Cluster Architecture (RGCA) to obtain a high-reliability computing system considering the nodes’ diversity, algorithm characteristics, etc. The results show that the performance of the algorithms significantly increased by 34.1%, 33.96% and 24.07% for Fermi, Kepler and Maxwell on average with TLPOM and the RGCA ensures that our IoT computing system provides low-cost and high-reliability services. PMID:28777325

  16. RGCA: A Reliable GPU Cluster Architecture for Large-Scale Internet of Things Computing Based on Effective Performance-Energy Optimization.

    PubMed

    Fang, Yuling; Chen, Qingkui; Xiong, Neal N; Zhao, Deyu; Wang, Jingjuan

    2017-08-04

    This paper aims to develop a low-cost, high-performance and high-reliability computing system to process large-scale data using common data mining algorithms in the Internet of Things (IoT) computing environment. Considering the characteristics of IoT data processing, similar to mainstream high performance computing, we use a GPU (Graphics Processing Unit) cluster to achieve better IoT services. Firstly, we present an energy consumption calculation method (ECCM) based on WSNs. Then, using the CUDA (Compute Unified Device Architecture) Programming model, we propose a Two-level Parallel Optimization Model (TLPOM) which exploits reasonable resource planning and common compiler optimization techniques to obtain the best blocks and threads configuration considering the resource constraints of each node. The key to this part is dynamic coupling Thread-Level Parallelism (TLP) and Instruction-Level Parallelism (ILP) to improve the performance of the algorithms without additional energy consumption. Finally, combining the ECCM and the TLPOM, we use the Reliable GPU Cluster Architecture (RGCA) to obtain a high-reliability computing system considering the nodes' diversity, algorithm characteristics, etc. The results show that the performance of the algorithms significantly increased by 34.1%, 33.96% and 24.07% for Fermi, Kepler and Maxwell on average with TLPOM and the RGCA ensures that our IoT computing system provides low-cost and high-reliability services.

  17. The sonographic features of malignant mediastinal lymph nodes and a proposal for an algorithmic approach for sampling during endobronchial ultrasound.

    PubMed

    Alici, Ibrahim Onur; Yılmaz Demirci, Nilgün; Yılmaz, Aydın; Karakaya, Jale; Özaydın, Esra

    2016-09-01

    There are several papers on the sonographic features of mediastinal lymph nodes affected by several diseases, but none gives the importance and clinical utility of the features. In order to find out which lymph node should be sampled in a particular nodal station during endobronchial ultrasound, we investigated the diagnostic performances of certain sonographic features and proposed an algorithmic approach. We retrospectively analyzed 1051 lymph nodes and randomly assigned them into a preliminary experimental and a secondary study group. The diagnostic performances of the sonographic features (gray scale, echogeneity, shape, size, margin, presence of necrosis, presence of calcification and absence of central hilar structure) were calculated, and an algorithm for lymph node sampling was obtained with decision tree analysis in the experimental group. Later, a modified algorithm was applied to the patients in the study group to give the accuracy. The demographic characteristics of the patients were not statistically significant between the primary and the secondary groups. All of the features were discriminative between malignant and benign diseases. The modified algorithm sensitivity, specificity, and positive and negative predictive values and diagnostic accuracy for detecting metastatic lymph nodes were 100%, 51.2%, 50.6%, 100% and 67.5%, respectively. In this retrospective analysis, the standardized sonographic classification system and the proposed algorithm performed well in choosing the node that should be sampled in a particular station during endobronchial ultrasound. © 2015 John Wiley & Sons Ltd.

  18. Unveiling the development of intracranial injury using dynamic brain EIT: an evaluation of current reconstruction algorithms.

    PubMed

    Li, Haoting; Chen, Rongqing; Xu, Canhua; Liu, Benyuan; Tang, Mengxing; Yang, Lin; Dong, Xiuzhen; Fu, Feng

    2017-08-21

    Dynamic brain electrical impedance tomography (EIT) is a promising technique for continuously monitoring the development of cerebral injury. While there are many reconstruction algorithms available for brain EIT, there is still a lack of study to compare their performance in the context of dynamic brain monitoring. To address this problem, we develop a framework for evaluating different current algorithms with their ability to correctly identify small intracranial conductivity changes. Firstly, a simulation 3D head phantom with realistic layered structure and impedance distribution is developed. Next several reconstructing algorithms, such as back projection (BP), damped least-square (DLS), Bayesian, split Bregman (SB) and GREIT are introduced. We investigate their temporal response, noise performance, location and shape error with respect to different noise levels on the simulation phantom. The results show that the SB algorithm demonstrates superior performance in reducing image error. To further improve the location accuracy, we optimize SB by incorporating the brain structure-based conductivity distribution priors, in which differences of the conductivities between different brain tissues and the inhomogeneous conductivity distribution of the skull are considered. We compare this novel algorithm (called SB-IBCD) with SB and DLS using anatomically correct head shaped phantoms with spatial varying skull conductivity. Main results and Significance: The results showed that SB-IBCD is the most effective in unveiling small intracranial conductivity changes, where it can reduce the image error by an average of 30.0% compared to DLS.

  19. Efficient Training of Supervised Spiking Neural Network via Accurate Synaptic-Efficiency Adjustment Method.

    PubMed

    Xie, Xiurui; Qu, Hong; Yi, Zhang; Kurths, Jurgen

    2017-06-01

    The spiking neural network (SNN) is the third generation of neural networks and performs remarkably well in cognitive tasks, such as pattern recognition. The temporal neural encode mechanism found in biological hippocampus enables SNN to possess more powerful computation capability than networks with other encoding schemes. However, this temporal encoding approach requires neurons to process information serially on time, which reduces learning efficiency significantly. To keep the powerful computation capability of the temporal encoding mechanism and to overcome its low efficiency in the training of SNNs, a new training algorithm, the accurate synaptic-efficiency adjustment method is proposed in this paper. Inspired by the selective attention mechanism of the primate visual system, our algorithm selects only the target spike time as attention areas, and ignores voltage states of the untarget ones, resulting in a significant reduction of training time. Besides, our algorithm employs a cost function based on the voltage difference between the potential of the output neuron and the firing threshold of the SNN, instead of the traditional precise firing time distance. A normalized spike-timing-dependent-plasticity learning window is applied to assigning this error to different synapses for instructing their training. Comprehensive simulations are conducted to investigate the learning properties of our algorithm, with input neurons emitting both single spike and multiple spikes. Simulation results indicate that our algorithm possesses higher learning performance than the existing other methods and achieves the state-of-the-art efficiency in the training of SNN.

  20. SU-E-J-112: Intensity-Based Pulmonary Image Registration: An Evaluation Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, F; Meyer, J; Sandison, G

    2015-06-15

    Purpose: Accurate alignment of thoracic CT images is essential for dose tracking and to safely implement adaptive radiotherapy in lung cancers. At the same time it is challenging given the highly elastic nature of lung tissue deformations. The objective of this study was to assess the performances of three state-of-art intensity-based algorithms in terms of their ability to register thoracic CT images subject to affine, barrel, and sinusoid transformation. Methods: Intensity similarity measures of the evaluated algorithms contained sum-of-squared difference (SSD), local mutual information (LMI), and residual complexity (RC). Five thoracic CT scans obtained from the EMPIRE10 challenge database weremore » included and served as reference images. Each CT dataset was distorted by realistic affine, barrel, and sinusoid transformations. Registration performances of the three algorithms were evaluated for each distortion type in terms of intensity root mean square error (IRMSE) between the reference and registered images in the lung regions. Results: For affine distortions, the three algorithms differed significantly in registration of thoracic images both visually and nominally in terms of IRMSE with a mean of 0.011 for SSD, 0.039 for RC, and 0.026 for LMI (p<0.01; Kruskal-Wallis test). For barrel distortion, the three algorithms showed nominally no significant difference in terms of IRMSE with a mean of 0.026 for SSD, 0.086 for RC, and 0.054 for LMI (p=0.16) . A significant difference was seen for sinusoid distorted thoracic CT data with mean lung IRMSE of 0.039 for SSD, 0.092 for RC, and 0.035 for LMI (p=0.02). Conclusion: Pulmonary deformations might vary to a large extent in nature in a daily clinical setting due to factors ranging from anatomy variations to respiratory motion to image quality. It can be appreciated from the results of the present study that the suitability of application of a particular algorithm for pulmonary image registration is deformation-dependent.« less

  1. Probabilistic streamflow forecasting for hydroelectricity production: A comparison of two non-parametric system identification algorithms

    NASA Astrophysics Data System (ADS)

    Pande, Saket; Sharma, Ashish

    2014-05-01

    This study is motivated by the need to robustly specify, identify, and forecast runoff generation processes for hydroelectricity production. It atleast requires the identification of significant predictors of runoff generation and the influence of each such significant predictor on runoff response. To this end, we compare two non-parametric algorithms of predictor subset selection. One is based on information theory that assesses predictor significance (and hence selection) based on Partial Information (PI) rationale of Sharma and Mehrotra (2014). The other algorithm is based on a frequentist approach that uses bounds on probability of error concept of Pande (2005), assesses all possible predictor subsets on-the-go and converges to a predictor subset in an computationally efficient manner. Both the algorithms approximate the underlying system by locally constant functions and select predictor subsets corresponding to these functions. The performance of the two algorithms is compared on a set of synthetic case studies as well as a real world case study of inflow forecasting. References: Sharma, A., and R. Mehrotra (2014), An information theoretic alternative to model a natural system using observational information alone, Water Resources Research, 49, doi:10.1002/2013WR013845. Pande, S. (2005), Generalized local learning in water resource management, PhD dissertation, Utah State University, UT-USA, 148p.

  2. A new warfarin dosing algorithm including VKORC1 3730 G > A polymorphism: comparison with results obtained by other published algorithms.

    PubMed

    Cini, Michela; Legnani, Cristina; Cosmi, Benilde; Guazzaloca, Giuliana; Valdrè, Lelia; Frascaro, Mirella; Palareti, Gualtiero

    2012-08-01

    Warfarin dosing is affected by clinical and genetic variants, but the contribution of the genotype associated with warfarin resistance in pharmacogenetic algorithms has not been well assessed yet. We developed a new dosing algorithm including polymorphisms associated both with warfarin sensitivity and resistance in the Italian population, and its performance was compared with those of eight previously published algorithms. Clinical and genetic data (CYP2C9*2, CYP2C9*3, VKORC1 -1639 G > A, and VKORC1 3730 G > A) were used to elaborate the new algorithm. Derivation and validation groups comprised 55 (58.2% men, mean age 69 years) and 40 (57.5% men, mean age 70 years) patients, respectively, who were on stable anticoagulation therapy for at least 3 months with different oral anticoagulation therapy (OAT) indications. Performance of the new algorithm, evaluated with mean absolute error (MAE) defined as the absolute value of the difference between observed daily maintenance dose and predicted daily dose, correlation with the observed dose and R(2) value, was comparable with or slightly lower than that obtained using the other algorithms. The new algorithm could correctly assign 53.3%, 50.0%, and 57.1% of patients to the low (≤25 mg/week), intermediate (26-44 mg/week) and high (≥ 45 mg/week) dosing range, respectively. Our data showed a significant increase in predictive accuracy among patients requiring high warfarin dose compared with the other algorithms (ranging from 0% to 28.6%). The algorithm including VKORC1 3730 G > A, associated with warfarin resistance, allowed a more accurate identification of resistant patients who require higher warfarin dosage.

  3. A multi-band semi-analytical algorithm for estimating chlorophyll-a concentration in the Yellow River Estuary, China.

    PubMed

    Chen, Jun; Quan, Wenting; Cui, Tingwei

    2015-01-01

    In this study, two sample semi-analytical algorithms and one new unified multi-band semi-analytical algorithm (UMSA) for estimating chlorophyll-a (Chla) concentration were constructed by specifying optimal wavelengths. The three sample semi-analytical algorithms, including the three-band semi-analytical algorithm (TSA), four-band semi-analytical algorithm (FSA), and UMSA algorithm, were calibrated and validated by the dataset collected in the Yellow River Estuary between September 1 and 10, 2009. By comparing of the accuracy of assessment of TSA, FSA, and UMSA algorithms, it was found that the UMSA algorithm had a superior performance in comparison with the two other algorithms, TSA and FSA. Using the UMSA algorithm in retrieving Chla concentration in the Yellow River Estuary decreased by 25.54% NRMSE (normalized root mean square error) when compared with the FSA algorithm, and 29.66% NRMSE in comparison with the TSA algorithm. These are very significant improvements upon previous methods. Additionally, the study revealed that the TSA and FSA algorithms are merely more specific forms of the UMSA algorithm. Owing to the special form of the UMSA algorithm, if the same bands were used for both the TSA and UMSA algorithms or FSA and UMSA algorithms, the UMSA algorithm would theoretically produce superior results in comparison with the TSA and FSA algorithms. Thus, good results may also be produced if the UMSA algorithm were to be applied for predicting Chla concentration for datasets of Gitelson et al. (2008) and Le et al. (2009).

  4. A high-performance spatial database based approach for pathology imaging algorithm evaluation

    PubMed Central

    Wang, Fusheng; Kong, Jun; Gao, Jingjing; Cooper, Lee A.D.; Kurc, Tahsin; Zhou, Zhengwen; Adler, David; Vergara-Niedermayr, Cristobal; Katigbak, Bryan; Brat, Daniel J.; Saltz, Joel H.

    2013-01-01

    Background: Algorithm evaluation provides a means to characterize variability across image analysis algorithms, validate algorithms by comparison with human annotations, combine results from multiple algorithms for performance improvement, and facilitate algorithm sensitivity studies. The sizes of images and image analysis results in pathology image analysis pose significant challenges in algorithm evaluation. We present an efficient parallel spatial database approach to model, normalize, manage, and query large volumes of analytical image result data. This provides an efficient platform for algorithm evaluation. Our experiments with a set of brain tumor images demonstrate the application, scalability, and effectiveness of the platform. Context: The paper describes an approach and platform for evaluation of pathology image analysis algorithms. The platform facilitates algorithm evaluation through a high-performance database built on the Pathology Analytic Imaging Standards (PAIS) data model. Aims: (1) Develop a framework to support algorithm evaluation by modeling and managing analytical results and human annotations from pathology images; (2) Create a robust data normalization tool for converting, validating, and fixing spatial data from algorithm or human annotations; (3) Develop a set of queries to support data sampling and result comparisons; (4) Achieve high performance computation capacity via a parallel data management infrastructure, parallel data loading and spatial indexing optimizations in this infrastructure. Materials and Methods: We have considered two scenarios for algorithm evaluation: (1) algorithm comparison where multiple result sets from different methods are compared and consolidated; and (2) algorithm validation where algorithm results are compared with human annotations. We have developed a spatial normalization toolkit to validate and normalize spatial boundaries produced by image analysis algorithms or human annotations. The validated data were formatted based on the PAIS data model and loaded into a spatial database. To support efficient data loading, we have implemented a parallel data loading tool that takes advantage of multi-core CPUs to accelerate data injection. The spatial database manages both geometric shapes and image features or classifications, and enables spatial sampling, result comparison, and result aggregation through expressive structured query language (SQL) queries with spatial extensions. To provide scalable and efficient query support, we have employed a shared nothing parallel database architecture, which distributes data homogenously across multiple database partitions to take advantage of parallel computation power and implements spatial indexing to achieve high I/O throughput. Results: Our work proposes a high performance, parallel spatial database platform for algorithm validation and comparison. This platform was evaluated by storing, managing, and comparing analysis results from a set of brain tumor whole slide images. The tools we develop are open source and available to download. Conclusions: Pathology image algorithm validation and comparison are essential to iterative algorithm development and refinement. One critical component is the support for queries involving spatial predicates and comparisons. In our work, we develop an efficient data model and parallel database approach to model, normalize, manage and query large volumes of analytical image result data. Our experiments demonstrate that the data partitioning strategy and the grid-based indexing result in good data distribution across database nodes and reduce I/O overhead in spatial join queries through parallel retrieval of relevant data and quick subsetting of datasets. The set of tools in the framework provide a full pipeline to normalize, load, manage and query analytical results for algorithm evaluation. PMID:23599905

  5. Sensor fusion approaches for EMI and GPR-based subsurface threat identification

    NASA Astrophysics Data System (ADS)

    Torrione, Peter; Morton, Kenneth, Jr.; Besaw, Lance E.

    2011-06-01

    Despite advances in both electromagnetic induction (EMI) and ground penetrating radar (GPR) sensing and related signal processing, neither sensor alone provides a perfect tool for detecting the myriad of possible buried objects that threaten the lives of Soldiers and civilians. However, while neither GPR nor EMI sensing alone can provide optimal detection across all target types, the two approaches are highly complementary. As a result, many landmine systems seek to make use of both sensing modalities simultaneously and fuse the results from both sensors to improve detection performance for targets with widely varying metal content and GPR responses. Despite this, little work has focused on large-scale comparisons of different approaches to sensor fusion and machine learning for combining data from these highly orthogonal phenomenologies. In this work we explore a wide array of pattern recognition techniques for algorithm development and sensor fusion. Results with the ARA Nemesis landmine detection system suggest that nonlinear and non-parametric classification algorithms provide significant performance benefits for single-sensor algorithm development, and that fusion of multiple algorithms can be performed satisfactorily using basic parametric approaches, such as logistic discriminant classification, for the targets under consideration in our data sets.

  6. Vehicle-triggered video compression/decompression for fast and efficient searching in large video databases

    NASA Astrophysics Data System (ADS)

    Bulan, Orhan; Bernal, Edgar A.; Loce, Robert P.; Wu, Wencheng

    2013-03-01

    Video cameras are widely deployed along city streets, interstate highways, traffic lights, stop signs and toll booths by entities that perform traffic monitoring and law enforcement. The videos captured by these cameras are typically compressed and stored in large databases. Performing a rapid search for a specific vehicle within a large database of compressed videos is often required and can be a time-critical life or death situation. In this paper, we propose video compression and decompression algorithms that enable fast and efficient vehicle or, more generally, event searches in large video databases. The proposed algorithm selects reference frames (i.e., I-frames) based on a vehicle having been detected at a specified position within the scene being monitored while compressing a video sequence. A search for a specific vehicle in the compressed video stream is performed across the reference frames only, which does not require decompression of the full video sequence as in traditional search algorithms. Our experimental results on videos captured in a local road show that the proposed algorithm significantly reduces the search space (thus reducing time and computational resources) in vehicle search tasks within compressed video streams, particularly those captured in light traffic volume conditions.

  7. Spatial Statistics for Tumor Cell Counting and Classification

    NASA Astrophysics Data System (ADS)

    Wirjadi, Oliver; Kim, Yoo-Jin; Breuel, Thomas

    To count and classify cells in histological sections is a standard task in histology. One example is the grading of meningiomas, benign tumors of the meninges, which requires to assess the fraction of proliferating cells in an image. As this process is very time consuming when performed manually, automation is required. To address such problems, we propose a novel application of Markov point process methods in computer vision, leading to algorithms for computing the locations of circular objects in images. In contrast to previous algorithms using such spatial statistics methods in image analysis, the present one is fully trainable. This is achieved by combining point process methods with statistical classifiers. Using simulated data, the method proposed in this paper will be shown to be more accurate and more robust to noise than standard image processing methods. On the publicly available SIMCEP benchmark for cell image analysis algorithms, the cell count performance of the present paper is significantly more accurate than results published elsewhere, especially when cells form dense clusters. Furthermore, the proposed system performs as well as a state-of-the-art algorithm for the computer-aided histological grading of meningiomas when combined with a simple k-nearest neighbor classifier for identifying proliferating cells.

  8. A Comparison of Genetic Programming Variants for Hyper-Heuristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, Sean

    Modern society is faced with ever more complex problems, many of which can be formulated as generate-and-test optimization problems. General-purpose optimization algorithms are not well suited for real-world scenarios where many instances of the same problem class need to be repeatedly and efficiently solved, such as routing vehicles over highways with constantly changing traffic flows, because they are not targeted to a particular scenario. Hyper-heuristics automate the design of algorithms to create a custom algorithm for a particular scenario. Hyper-heuristics typically employ Genetic Programming (GP) and this project has investigated the relationship between the choice of GP and performance inmore » Hyper-heuristics. Results are presented demonstrating the existence of problems for which there is a statistically significant performance differential between the use of different types of GP.« less

  9. Quantum red-green-blue image steganography

    NASA Astrophysics Data System (ADS)

    Heidari, Shahrokh; Pourarian, Mohammad Rasoul; Gheibi, Reza; Naseri, Mosayeb; Houshmand, Monireh

    One of the most considering matters in the field of quantum information processing is quantum data hiding including quantum steganography and quantum watermarking. This field is an efficient tool for protecting any kind of digital data. In this paper, three quantum color images steganography algorithms are investigated based on Least Significant Bit (LSB). The first algorithm employs only one of the image’s channels to cover secret data. The second procedure is based on LSB XORing technique, and the last algorithm utilizes two channels to cover the color image for hiding secret quantum data. The performances of the proposed schemes are analyzed by using software simulations in MATLAB environment. The analysis of PSNR, BER and Histogram graphs indicate that the presented schemes exhibit acceptable performances and also theoretical analysis demonstrates that the networks complexity of the approaches scales squarely.

  10. Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer

    PubMed Central

    Veta, Mitko; Johannes van Diest, Paul; van Ginneken, Bram; Karssemeijer, Nico; Litjens, Geert; van der Laak, Jeroen A. W. M.; Hermsen, Meyke; Manson, Quirine F; Balkenhol, Maschenka; Geessink, Oscar; Stathonikos, Nikolaos; van Dijk, Marcory CRF; Bult, Peter; Beca, Francisco; Beck, Andrew H; Wang, Dayong; Khosla, Aditya; Gargeya, Rishab; Irshad, Humayun; Zhong, Aoxiao; Dou, Qi; Li, Quanzheng; Chen, Hao; Lin, Huang-Jing; Heng, Pheng-Ann; Haß, Christian; Bruni, Elia; Wong, Quincy; Halici, Ugur; Öner, Mustafa Ümit; Cetin-Atalay, Rengul; Berseth, Matt; Khvatkov, Vitali; Vylegzhanin, Alexei; Kraus, Oren; Shaban, Muhammad; Rajpoot, Nasir; Awan, Ruqayya; Sirinukunwattana, Korsuk; Qaiser, Talha; Tsang, Yee-Wah; Tellez, David; Annuscheit, Jonas; Hufnagl, Peter; Valkonen, Mira; Kartasalo, Kimmo; Latonen, Leena; Ruusuvuori, Pekka; Liimatainen, Kaisa; Albarqouni, Shadi; Mungal, Bharti; George, Ami; Demirci, Stefanie; Navab, Nassir; Watanabe, Seiryo; Seno, Shigeto; Takenaka, Yoichi; Matsuda, Hideo; Ahmady Phoulady, Hady; Kovalev, Vassili; Kalinovsky, Alexander; Liauchuk, Vitali; Bueno, Gloria; Fernandez-Carrobles, M. Milagro; Serrano, Ismael; Deniz, Oscar; Racoceanu, Daniel; Venâncio, Rui

    2017-01-01

    Importance Application of deep learning algorithms to whole-slide pathology images can potentially improve diagnostic accuracy and efficiency. Objective Assess the performance of automated deep learning algorithms at detecting metastases in hematoxylin and eosin–stained tissue sections of lymph nodes of women with breast cancer and compare it with pathologists’ diagnoses in a diagnostic setting. Design, Setting, and Participants Researcher challenge competition (CAMELYON16) to develop automated solutions for detecting lymph node metastases (November 2015-November 2016). A training data set of whole-slide images from 2 centers in the Netherlands with (n = 110) and without (n = 160) nodal metastases verified by immunohistochemical staining were provided to challenge participants to build algorithms. Algorithm performance was evaluated in an independent test set of 129 whole-slide images (49 with and 80 without metastases). The same test set of corresponding glass slides was also evaluated by a panel of 11 pathologists with time constraint (WTC) from the Netherlands to ascertain likelihood of nodal metastases for each slide in a flexible 2-hour session, simulating routine pathology workflow, and by 1 pathologist without time constraint (WOTC). Exposures Deep learning algorithms submitted as part of a challenge competition or pathologist interpretation. Main Outcomes and Measures The presence of specific metastatic foci and the absence vs presence of lymph node metastasis in a slide or image using receiver operating characteristic curve analysis. The 11 pathologists participating in the simulation exercise rated their diagnostic confidence as definitely normal, probably normal, equivocal, probably tumor, or definitely tumor. Results The area under the receiver operating characteristic curve (AUC) for the algorithms ranged from 0.556 to 0.994. The top-performing algorithm achieved a lesion-level, true-positive fraction comparable with that of the pathologist WOTC (72.4% [95% CI, 64.3%-80.4%]) at a mean of 0.0125 false-positives per normal whole-slide image. For the whole-slide image classification task, the best algorithm (AUC, 0.994 [95% CI, 0.983-0.999]) performed significantly better than the pathologists WTC in a diagnostic simulation (mean AUC, 0.810 [range, 0.738-0.884]; P < .001). The top 5 algorithms had a mean AUC that was comparable with the pathologist interpreting the slides in the absence of time constraints (mean AUC, 0.960 [range, 0.923-0.994] for the top 5 algorithms vs 0.966 [95% CI, 0.927-0.998] for the pathologist WOTC). Conclusions and Relevance In the setting of a challenge competition, some deep learning algorithms achieved better diagnostic performance than a panel of 11 pathologists participating in a simulation exercise designed to mimic routine pathology workflow; algorithm performance was comparable with an expert pathologist interpreting whole-slide images without time constraints. Whether this approach has clinical utility will require evaluation in a clinical setting. PMID:29234806

  11. Light-extraction enhancement for light-emitting diodes: a firefly-inspired structure refined by the genetic algorithm

    NASA Astrophysics Data System (ADS)

    Bay, Annick; Mayer, Alexandre

    2014-09-01

    The efficiency of light-emitting diodes (LED) has increased significantly over the past few years, but the overall efficiency is still limited by total internal reflections due to the high dielectric-constant contrast between the incident and emergent media. The bioluminescent organ of fireflies gave incentive for light-extraction enhance-ment studies. A specific factory-roof shaped structure was shown, by means of light-propagation simulations and measurements, to enhance light extraction significantly. In order to achieve a similar effect for light-emitting diodes, the structure needs to be adapted to the specific set-up of LEDs. In this context simulations were carried out to determine the best geometrical parameters. In the present work, the search for a geometry that maximizes the extraction of light has been conducted by using a genetic algorithm. The idealized structure considered previously was generalized to a broader variety of shapes. The genetic algorithm makes it possible to search simultaneously over a wider range of parameters. It is also significantly less time-consuming than the previous approach that was based on a systematic scan on parameters. The results of the genetic algorithm show that (1) the calculations can be performed in a smaller amount of time and (2) the light extraction can be enhanced even more significantly by using optimal parameters determined by the genetic algorithm for the generalized structure. The combination of the genetic algorithm with the Rigorous Coupled Waves Analysis method constitutes a strong simulation tool, which provides us with adapted designs for enhancing light extraction from light-emitting diodes.

  12. Detection of anomaly in human retina using Laplacian Eigenmaps and vectorized matched filtering

    NASA Astrophysics Data System (ADS)

    Yacoubou Djima, Karamatou A.; Simonelli, Lucia D.; Cunningham, Denise; Czaja, Wojciech

    2015-03-01

    We present a novel method for automated anomaly detection on auto fluorescent data provided by the National Institute of Health (NIH). This is motivated by the need for new tools to improve the capability of diagnosing macular degeneration in its early stages, track the progression over time, and test the effectiveness of new treatment methods. In previous work, macular anomalies have been detected automatically through multiscale analysis procedures such as wavelet analysis or dimensionality reduction algorithms followed by a classification algorithm, e.g., Support Vector Machine. The method that we propose is a Vectorized Matched Filtering (VMF) algorithm combined with Laplacian Eigenmaps (LE), a nonlinear dimensionality reduction algorithm with locality preserving properties. By applying LE, we are able to represent the data in the form of eigenimages, some of which accentuate the visibility of anomalies. We pick significant eigenimages and proceed with the VMF algorithm that classifies anomalies across all of these eigenimages simultaneously. To evaluate our performance, we compare our method to two other schemes: a matched filtering algorithm based on anomaly detection on single images and a combination of PCA and VMF. LE combined with VMF algorithm performs best, yielding a high rate of accurate anomaly detection. This shows the advantage of using a nonlinear approach to represent the data and the effectiveness of VMF, which operates on the images as a data cube rather than individual images.

  13. Performance evaluations of demons and free form deformation algorithms for the liver region.

    PubMed

    Wang, Hui; Gong, Guanzhong; Wang, Hongjun; Li, Dengwang; Yin, Yong; Lu, Jie

    2014-04-01

    We investigated the influence of breathing motion on radiation therapy according to four- dimensional computed tomography (4D-CT) technology and indicated the registration of 4D-CT images was significant. The demons algorithm in two interpolation modes was compared to the FFD model algorithm to register the different phase images of 4D-CT in tumor tracking, using iodipin as verification. Linear interpolation was used in both mode 1 and mode 2. Mode 1 set outside pixels to nearest pixel, while mode 2 set outside pixels to zero. We used normalized mutual information (NMI), sum of squared differences, modified Hausdorff-distance, and registration speed to evaluate the performance of each algorithm. The average NMI after demons registration method in mode 1 improved 1.76% and 4.75% when compared to mode 2 and FFD model algorithm, respectively. Further, the modified Hausdorff-distance was no different between demons modes 1 and 2, but mode 1 was 15.2% lower than FFD. Finally, demons algorithm has the absolute advantage in registration speed. The demons algorithm in mode 1 was therefore found to be much more suitable for the registration of 4D-CT images. The subtractions of floating images and reference image before and after registration by demons further verified that influence of breathing motion cannot be ignored and the demons registration method is feasible.

  14. Academic consortium for the evaluation of computer-aided diagnosis (CADx) in mammography

    NASA Astrophysics Data System (ADS)

    Mun, Seong K.; Freedman, Matthew T.; Wu, Chris Y.; Lo, Shih-Chung B.; Floyd, Carey E., Jr.; Lo, Joseph Y.; Chan, Heang-Ping; Helvie, Mark A.; Petrick, Nicholas; Sahiner, Berkman; Wei, Datong; Chakraborty, Dev P.; Clarke, Laurence P.; Kallergi, Maria; Clark, Bob; Kim, Yongmin

    1995-04-01

    Computer aided diagnosis (CADx) is a promising technology for the detection of breast cancer in screening mammography. A number of different approaches have been developed for CADx research that have achieved significant levels of performance. Research teams now recognize the need for a careful and detailed evaluation study of approaches to accelerate the development of CADx, to make CADx more clinically relevant and to optimize the CADx algorithms based on unbiased evaluations. The results of such a comparative study may provide each of the participating teams with new insights into the optimization of their individual CADx algorithms. This consortium of experienced CADx researchers is working as a group to compare results of the algorithms and to optimize the performance of CADx algorithms by learning from each other. Each institution will be contributing an equal number of cases that will be collected under a standard protocol for case selection, truth determination, and data acquisition to establish a common and unbiased database for the evaluation study. An evaluation procedure for the comparison studies are being developed to analyze the results of individual algorithms for each of the test cases in the common database. Optimization of individual CADx algorithms can be made based on the comparison studies. The consortium effort is expected to accelerate the eventual clinical implementation of CADx algorithms at participating institutions.

  15. Ocean observations with EOS/MODIS: Algorithm development and post launch studies

    NASA Technical Reports Server (NTRS)

    Gordon, Howard R.

    1995-01-01

    An investigation of the influence of stratospheric aerosol on the performance of the atmospheric correction algorithm was carried out. The results indicate how the performance of the algorithm is degraded if the stratospheric aerosol is ignored. Use of the MODIS 1380 nm band to effect a correction for stratospheric aerosols was also studied. The development of a multi-layer Monte Carlo radiative transfer code that includes polarization by molecular and aerosol scattering and wind-induced sea surface roughness has been completed. Comparison tests with an existing two-layer successive order of scattering code suggests that both codes are capable of producing top-of-atmosphere radiances with errors usually less than 0.1 percent. An initial set of simulations to study the effects of ignoring the polarization of the the ocean-atmosphere light field, in both the development of the atmospheric correction algorithm and the generation of the lookup tables used for operation of the algorithm, have been completed. An algorithm was developed that can be used to invert the radiance exiting the top and bottom of the atmosphere to yield the columnar optical properties of the atmospheric aerosol under clear sky conditions over the ocean, for aerosol optical thicknesses as large as 2. The algorithm is capable of retrievals with such large optical thicknesses because all significant orders of multiple scattering are included.

  16. Sum of the Magnitude for Hard Decision Decoding Algorithm Based on Loop Update Detection

    PubMed Central

    Meng, Jiahui; Zhao, Danfeng; Tian, Hai; Zhang, Liang

    2018-01-01

    In order to improve the performance of non-binary low-density parity check codes (LDPC) hard decision decoding algorithm and to reduce the complexity of decoding, a sum of the magnitude for hard decision decoding algorithm based on loop update detection is proposed. This will also ensure the reliability, stability and high transmission rate of 5G mobile communication. The algorithm is based on the hard decision decoding algorithm (HDA) and uses the soft information from the channel to calculate the reliability, while the sum of the variable nodes’ (VN) magnitude is excluded for computing the reliability of the parity checks. At the same time, the reliability information of the variable node is considered and the loop update detection algorithm is introduced. The bit corresponding to the error code word is flipped multiple times, before this is searched in the order of most likely error probability to finally find the correct code word. Simulation results show that the performance of one of the improved schemes is better than the weighted symbol flipping (WSF) algorithm under different hexadecimal numbers by about 2.2 dB and 2.35 dB at the bit error rate (BER) of 10−5 over an additive white Gaussian noise (AWGN) channel, respectively. Furthermore, the average number of decoding iterations is significantly reduced. PMID:29342963

  17. A Crowd-Sourcing Indoor Localization Algorithm via Optical Camera on a Smartphone Assisted by Wi-Fi Fingerprint RSSI

    PubMed Central

    Chen, Wei; Wang, Weiping; Li, Qun; Chang, Qiang; Hou, Hongtao

    2016-01-01

    Indoor positioning based on existing Wi-Fi fingerprints is becoming more and more common. Unfortunately, the Wi-Fi fingerprint is susceptible to multiple path interferences, signal attenuation, and environmental changes, which leads to low accuracy. Meanwhile, with the recent advances in charge-coupled device (CCD) technologies and the processing speed of smartphones, indoor positioning using the optical camera on a smartphone has become an attractive research topic; however, the major challenge is its high computational complexity; as a result, real-time positioning cannot be achieved. In this paper we introduce a crowd-sourcing indoor localization algorithm via an optical camera and orientation sensor on a smartphone to address these issues. First, we use Wi-Fi fingerprint based on the K Weighted Nearest Neighbor (KWNN) algorithm to make a coarse estimation. Second, we adopt a mean-weighted exponent algorithm to fuse optical image features and orientation sensor data as well as KWNN in the smartphone to refine the result. Furthermore, a crowd-sourcing approach is utilized to update and supplement the positioning database. We perform several experiments comparing our approach with other positioning algorithms on a common smartphone to evaluate the performance of the proposed sensor-calibrated algorithm, and the results demonstrate that the proposed algorithm could significantly improve accuracy, stability, and applicability of positioning. PMID:27007379

  18. A Crowd-Sourcing Indoor Localization Algorithm via Optical Camera on a Smartphone Assisted by Wi-Fi Fingerprint RSSI.

    PubMed

    Chen, Wei; Wang, Weiping; Li, Qun; Chang, Qiang; Hou, Hongtao

    2016-03-19

    Indoor positioning based on existing Wi-Fi fingerprints is becoming more and more common. Unfortunately, the Wi-Fi fingerprint is susceptible to multiple path interferences, signal attenuation, and environmental changes, which leads to low accuracy. Meanwhile, with the recent advances in charge-coupled device (CCD) technologies and the processing speed of smartphones, indoor positioning using the optical camera on a smartphone has become an attractive research topic; however, the major challenge is its high computational complexity; as a result, real-time positioning cannot be achieved. In this paper we introduce a crowd-sourcing indoor localization algorithm via an optical camera and orientation sensor on a smartphone to address these issues. First, we use Wi-Fi fingerprint based on the K Weighted Nearest Neighbor (KWNN) algorithm to make a coarse estimation. Second, we adopt a mean-weighted exponent algorithm to fuse optical image features and orientation sensor data as well as KWNN in the smartphone to refine the result. Furthermore, a crowd-sourcing approach is utilized to update and supplement the positioning database. We perform several experiments comparing our approach with other positioning algorithms on a common smartphone to evaluate the performance of the proposed sensor-calibrated algorithm, and the results demonstrate that the proposed algorithm could significantly improve accuracy, stability, and applicability of positioning.

  19. Images Encryption Method using Steganographic LSB Method, AES and RSA algorithm

    NASA Astrophysics Data System (ADS)

    Moumen, Abdelkader; Sissaoui, Hocine

    2017-03-01

    Vulnerability of communication of digital images is an extremely important issue nowadays, particularly when the images are communicated through insecure channels. To improve communication security, many cryptosystems have been presented in the image encryption literature. This paper proposes a novel image encryption technique based on an algorithm that is faster than current methods. The proposed algorithm eliminates the step in which the secrete key is shared during the encryption process. It is formulated based on the symmetric encryption, asymmetric encryption and steganography theories. The image is encrypted using a symmetric algorithm, then, the secret key is encrypted by means of an asymmetrical algorithm and it is hidden in the ciphered image using a least significant bits steganographic scheme. The analysis results show that while enjoying the faster computation, our method performs close to optimal in terms of accuracy.

  20. Improving the resolution for Lamb wave testing via a smoothed Capon algorithm

    NASA Astrophysics Data System (ADS)

    Cao, Xuwei; Zeng, Liang; Lin, Jing; Hua, Jiadong

    2018-04-01

    Lamb wave testing is promising for damage detection and evaluation in large-area structures. The dispersion of Lamb waves is often unavoidable, restricting testing resolution and making the signal hard to interpret. A smoothed Capon algorithm is proposed in this paper to estimate the accurate path length of each wave packet. In the algorithm, frequency domain whitening is firstly used to obtain the transfer function in the bandwidth of the excitation pulse. Subsequently, wavenumber domain smoothing is employed to reduce the correlation between wave packets. Finally, the path lengths are determined by distance domain searching based on the Capon algorithm. Simulations are applied to optimize the number of smoothing times. Experiments are performed on an aluminum plate consisting of two simulated defects. The results demonstrate that spatial resolution is improved significantly by the proposed algorithm.

  1. Goal-oriented evaluation of binarization algorithms for historical document images

    NASA Astrophysics Data System (ADS)

    Obafemi-Ajayi, Tayo; Agam, Gady

    2013-01-01

    Binarization is of significant importance in document analysis systems. It is an essential first step, prior to further stages such as Optical Character Recognition (OCR), document segmentation, or enhancement of readability of the document after some restoration stages. Hence, proper evaluation of binarization methods to verify their effectiveness is of great value to the document analysis community. In this work, we perform a detailed goal-oriented evaluation of image quality assessment of the 18 binarization methods that participated in the DIBCO 2011 competition using the 16 historical document test images used in the contest. We are interested in the image quality assessment of the outputs generated by the different binarization algorithms as well as the OCR performance, where possible. We compare our evaluation of the algorithms based on human perception of quality to the DIBCO evaluation metrics. The results obtained provide an insight into the effectiveness of these methods with respect to human perception of image quality as well as OCR performance.

  2. Fast algorithms for computing phylogenetic divergence time.

    PubMed

    Crosby, Ralph W; Williams, Tiffani L

    2017-12-06

    The inference of species divergence time is a key step in most phylogenetic studies. Methods have been available for the last ten years to perform the inference, but the performance of the methods does not yet scale well to studies with hundreds of taxa and thousands of DNA base pairs. For example a study of 349 primate taxa was estimated to require over 9 months of processing time. In this work, we present a new algorithm, AncestralAge, that significantly improves the performance of the divergence time process. As part of AncestralAge, we demonstrate a new method for the computation of phylogenetic likelihood and our experiments show a 90% improvement in likelihood computation time on the aforementioned dataset of 349 primates taxa with over 60,000 DNA base pairs. Additionally, we show that our new method for the computation of the Bayesian prior on node ages reduces the running time for this computation on the 349 taxa dataset by 99%. Through the use of these new algorithms we open up the ability to perform divergence time inference on large phylogenetic studies.

  3. Automatic feature learning using multichannel ROI based on deep structured algorithms for computerized lung cancer diagnosis.

    PubMed

    Sun, Wenqing; Zheng, Bin; Qian, Wei

    2017-10-01

    This study aimed to analyze the ability of extracting automatically generated features using deep structured algorithms in lung nodule CT image diagnosis, and compare its performance with traditional computer aided diagnosis (CADx) systems using hand-crafted features. All of the 1018 cases were acquired from Lung Image Database Consortium (LIDC) public lung cancer database. The nodules were segmented according to four radiologists' markings, and 13,668 samples were generated by rotating every slice of nodule images. Three multichannel ROI based deep structured algorithms were designed and implemented in this study: convolutional neural network (CNN), deep belief network (DBN), and stacked denoising autoencoder (SDAE). For the comparison purpose, we also implemented a CADx system using hand-crafted features including density features, texture features and morphological features. The performance of every scheme was evaluated by using a 10-fold cross-validation method and an assessment index of the area under the receiver operating characteristic curve (AUC). The observed highest area under the curve (AUC) was 0.899±0.018 achieved by CNN, which was significantly higher than traditional CADx with the AUC=0.848±0.026. The results from DBN was also slightly higher than CADx, while SDAE was slightly lower. By visualizing the automatic generated features, we found some meaningful detectors like curvy stroke detectors from deep structured schemes. The study results showed the deep structured algorithms with automatically generated features can achieve desirable performance in lung nodule diagnosis. With well-tuned parameters and large enough dataset, the deep learning algorithms can have better performance than current popular CADx. We believe the deep learning algorithms with similar data preprocessing procedure can be used in other medical image analysis areas as well. Copyright © 2017. Published by Elsevier Ltd.

  4. An Image-Based Algorithm for Precise and Accurate High Throughput Assessment of Drug Activity against the Human Parasite Trypanosoma cruzi

    PubMed Central

    Moraes, Carolina Borsoi; Yang, Gyongseon; Kang, Myungjoo; Freitas-Junior, Lucio H.; Hansen, Michael A. E.

    2014-01-01

    We present a customized high content (image-based) and high throughput screening algorithm for the quantification of Trypanosoma cruzi infection in host cells. Based solely on DNA staining and single-channel images, the algorithm precisely segments and identifies the nuclei and cytoplasm of mammalian host cells as well as the intracellular parasites infecting the cells. The algorithm outputs statistical parameters including the total number of cells, number of infected cells and the total number of parasites per image, the average number of parasites per infected cell, and the infection ratio (defined as the number of infected cells divided by the total number of cells). Accurate and precise estimation of these parameters allow for both quantification of compound activity against parasites, as well as the compound cytotoxicity, thus eliminating the need for an additional toxicity-assay, hereby reducing screening costs significantly. We validate the performance of the algorithm using two known drugs against T.cruzi: Benznidazole and Nifurtimox. Also, we have checked the performance of the cell detection with manual inspection of the images. Finally, from the titration of the two compounds, we confirm that the algorithm provides the expected half maximal effective concentration (EC50) of the anti-T. cruzi activity. PMID:24503652

  5. Advanced Algorithms for Local Routing Strategy on Complex Networks

    PubMed Central

    Lin, Benchuan; Chen, Bokui; Gao, Yachun; Tse, Chi K.; Dong, Chuanfei; Miao, Lixin; Wang, Binghong

    2016-01-01

    Despite the significant improvement on network performance provided by global routing strategies, their applications are still limited to small-scale networks, due to the need for acquiring global information of the network which grows and changes rapidly with time. Local routing strategies, however, need much less local information, though their transmission efficiency and network capacity are much lower than that of global routing strategies. In view of this, three algorithms are proposed and a thorough investigation is conducted in this paper. These algorithms include a node duplication avoidance algorithm, a next-nearest-neighbor algorithm and a restrictive queue length algorithm. After applying them to typical local routing strategies, the critical generation rate of information packets Rc increases by over ten-fold and the average transmission time 〈T〉 decreases by 70–90 percent, both of which are key physical quantities to assess the efficiency of routing strategies on complex networks. More importantly, in comparison with global routing strategies, the improved local routing strategies can yield better network performance under certain circumstances. This is a revolutionary leap for communication networks, because local routing strategy enjoys great superiority over global routing strategy not only in terms of the reduction of computational expense, but also in terms of the flexibility of implementation, especially for large-scale networks. PMID:27434502

  6. Advanced Algorithms for Local Routing Strategy on Complex Networks.

    PubMed

    Lin, Benchuan; Chen, Bokui; Gao, Yachun; Tse, Chi K; Dong, Chuanfei; Miao, Lixin; Wang, Binghong

    2016-01-01

    Despite the significant improvement on network performance provided by global routing strategies, their applications are still limited to small-scale networks, due to the need for acquiring global information of the network which grows and changes rapidly with time. Local routing strategies, however, need much less local information, though their transmission efficiency and network capacity are much lower than that of global routing strategies. In view of this, three algorithms are proposed and a thorough investigation is conducted in this paper. These algorithms include a node duplication avoidance algorithm, a next-nearest-neighbor algorithm and a restrictive queue length algorithm. After applying them to typical local routing strategies, the critical generation rate of information packets Rc increases by over ten-fold and the average transmission time 〈T〉 decreases by 70-90 percent, both of which are key physical quantities to assess the efficiency of routing strategies on complex networks. More importantly, in comparison with global routing strategies, the improved local routing strategies can yield better network performance under certain circumstances. This is a revolutionary leap for communication networks, because local routing strategy enjoys great superiority over global routing strategy not only in terms of the reduction of computational expense, but also in terms of the flexibility of implementation, especially for large-scale networks.

  7. Spatio-temporal colour correction of strongly degraded movies

    NASA Astrophysics Data System (ADS)

    Islam, A. B. M. Tariqul; Farup, Ivar

    2011-01-01

    The archives of motion pictures represent an important part of precious cultural heritage. Unfortunately, these cinematography collections are vulnerable to different distortions such as colour fading which is beyond the capability of photochemical restoration process. Spatial colour algorithms-Retinex and ACE provide helpful tool in restoring strongly degraded colour films but, there are some challenges associated with these algorithms. We present an automatic colour correction technique for digital colour restoration of strongly degraded movie material. The method is based upon the existing STRESS algorithm. In order to cope with the problem of highly correlated colour channels, we implemented a preprocessing step in which saturation enhancement is performed in a PCA space. Spatial colour algorithms tend to emphasize all details in the images, including dust and scratches. Surprisingly, we found that the presence of these defects does not affect the behaviour of the colour correction algorithm. Although the STRESS algorithm is already in itself more efficient than traditional spatial colour algorithms, it is still computationally expensive. To speed it up further, we went beyond the spatial domain of the frames and extended the algorithm to the temporal domain. This way, we were able to achieve an 80 percent reduction of the computational time compared to processing every single frame individually. We performed two user experiments and found that the visual quality of the resulting frames was significantly better than with existing methods. Thus, our method outperforms the existing ones in terms of both visual quality and computational efficiency.

  8. Comparison of Traditional and Reverse Syphilis Screening Algorithms in Medical Health Checkups.

    PubMed

    Nah, Eun Hee; Cho, Seon; Kim, Suyoung; Cho, Han Ik; Chai, Jong Yil

    2017-11-01

    The syphilis diagnostic algorithms applied in different countries vary significantly depending on the local syphilis epidemiology and other considerations, including the expected workload, the need for automation in the laboratory and budget factors. This study was performed to investigate the efficacy of traditional and reverse syphilis diagnostic algorithms during general health checkups. In total, 1,000 blood specimens were obtained from 908 men and 92 women during their regular health checkups. Traditional screening and reverse screening were applied to the same specimens using automatic rapid plasma regain (RPR) and Treponema pallidum latex agglutination (TPLA) tests, respectively. Specimens that were reverse algorithm (TPLA) reactive, were subjected to a second treponemal test performed by using the chemiluminescent microparticle immunoassay (CMIA). Of the 1,000 specimens tested, 68 (6.8%) were reactive by reverse screening (TPLA) compared with 11 (1.1%) by traditional screening (RPR). The traditional algorithm failed to detect 48 specimens [TPLA(+)/RPR(-)/CMIA(+)]. The median TPLA cutoff index (COI) was higher in CMIA-reactive cases than in CMIA-nonreactive cases (90.5 vs 12.5 U). The reverse screening algorithm could detect the subjects with possible latent syphilis who were not detected by the traditional algorithm. Those individuals could be provided with opportunities for evaluating syphilis during their health checkups. The COI values of the initial TPLA test may be helpful in excluding false-positive TPLA test results in the reverse algorithm. © The Korean Society for Laboratory Medicine

  9. Fast stochastic algorithm for simulating evolutionary population dynamics

    NASA Astrophysics Data System (ADS)

    Tsimring, Lev; Hasty, Jeff; Mather, William

    2012-02-01

    Evolution and co-evolution of ecological communities are stochastic processes often characterized by vastly different rates of reproduction and mutation and a coexistence of very large and very small sub-populations of co-evolving species. This creates serious difficulties for accurate statistical modeling of evolutionary dynamics. In this talk, we introduce a new exact algorithm for fast fully stochastic simulations of birth/death/mutation processes. It produces a significant speedup compared to the direct stochastic simulation algorithm in a typical case when the total population size is large and the mutation rates are much smaller than birth/death rates. We illustrate the performance of the algorithm on several representative examples: evolution on a smooth fitness landscape, NK model, and stochastic predator-prey system.

  10. Image compression using quad-tree coding with morphological dilation

    NASA Astrophysics Data System (ADS)

    Wu, Jiaji; Jiang, Weiwei; Jiao, Licheng; Wang, Lei

    2007-11-01

    In this paper, we propose a new algorithm which integrates morphological dilation operation to quad-tree coding, the purpose of doing this is to compensate each other's drawback by using quad-tree coding and morphological dilation operation respectively. New algorithm can not only quickly find the seed significant coefficient of dilation but also break the limit of block boundary of quad-tree coding. We also make a full use of both within-subband and cross-subband correlation to avoid the expensive cost of representing insignificant coefficients. Experimental results show that our algorithm outperforms SPECK and SPIHT. Without using any arithmetic coding, our algorithm can achieve good performance with low computational cost and it's more suitable to mobile devices or scenarios with a strict real-time requirement.

  11. HRSSA – Efficient hybrid stochastic simulation for spatially homogeneous biochemical reaction networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchetti, Luca, E-mail: marchetti@cosbi.eu; Priami, Corrado, E-mail: priami@cosbi.eu; University of Trento, Department of Mathematics

    This paper introduces HRSSA (Hybrid Rejection-based Stochastic Simulation Algorithm), a new efficient hybrid stochastic simulation algorithm for spatially homogeneous biochemical reaction networks. HRSSA is built on top of RSSA, an exact stochastic simulation algorithm which relies on propensity bounds to select next reaction firings and to reduce the average number of reaction propensity updates needed during the simulation. HRSSA exploits the computational advantage of propensity bounds to manage time-varying transition propensities and to apply dynamic partitioning of reactions, which constitute the two most significant bottlenecks of hybrid simulation. A comprehensive set of simulation benchmarks is provided for evaluating performance andmore » accuracy of HRSSA against other state of the art algorithms.« less

  12. Robust Face Detection from Still Images

    DTIC Science & Technology

    2014-01-01

    significant change in false acceptance rates. Keywords— face detection; illumination; skin color variation; Haar-like features; OpenCV I. INTRODUCTION... OpenCV and an algorithm which used histogram equalization. The test is performed against 17 subjects under 576 viewing conditions from the extended Yale...original OpenCV algorithm proved the least accurate, having a hit rate of only 75.6%. It also had the lowest FAR but only by a slight margin at 25.2

  13. Iterative image-domain decomposition for dual-energy CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu, Tianye; Dong, Xue; Petrongolo, Michael

    2014-04-15

    Purpose: Dual energy CT (DECT) imaging plays an important role in advanced imaging applications due to its capability of material decomposition. Direct decomposition via matrix inversion suffers from significant degradation of image signal-to-noise ratios, which reduces clinical values of DECT. Existing denoising algorithms achieve suboptimal performance since they suppress image noise either before or after the decomposition and do not fully explore the noise statistical properties of the decomposition process. In this work, the authors propose an iterative image-domain decomposition method for noise suppression in DECT, using the full variance-covariance matrix of the decomposed images. Methods: The proposed algorithm ismore » formulated in the form of least-square estimation with smoothness regularization. Based on the design principles of a best linear unbiased estimator, the authors include the inverse of the estimated variance-covariance matrix of the decomposed images as the penalty weight in the least-square term. The regularization term enforces the image smoothness by calculating the square sum of neighboring pixel value differences. To retain the boundary sharpness of the decomposed images, the authors detect the edges in the CT images before decomposition. These edge pixels have small weights in the calculation of the regularization term. Distinct from the existing denoising algorithms applied on the images before or after decomposition, the method has an iterative process for noise suppression, with decomposition performed in each iteration. The authors implement the proposed algorithm using a standard conjugate gradient algorithm. The method performance is evaluated using an evaluation phantom (Catphan©600) and an anthropomorphic head phantom. The results are compared with those generated using direct matrix inversion with no noise suppression, a denoising method applied on the decomposed images, and an existing algorithm with similar formulation as the proposed method but with an edge-preserving regularization term. Results: On the Catphan phantom, the method maintains the same spatial resolution on the decomposed images as that of the CT images before decomposition (8 pairs/cm) while significantly reducing their noise standard deviation. Compared to that obtained by the direct matrix inversion, the noise standard deviation in the images decomposed by the proposed algorithm is reduced by over 98%. Without considering the noise correlation properties in the formulation, the denoising scheme degrades the spatial resolution to 6 pairs/cm for the same level of noise suppression. Compared to the edge-preserving algorithm, the method achieves better low-contrast detectability. A quantitative study is performed on the contrast-rod slice of Catphan phantom. The proposed method achieves lower electron density measurement error as compared to that by the direct matrix inversion, and significantly reduces the error variation by over 97%. On the head phantom, the method reduces the noise standard deviation of decomposed images by over 97% without blurring the sinus structures. Conclusions: The authors propose an iterative image-domain decomposition method for DECT. The method combines noise suppression and material decomposition into an iterative process and achieves both goals simultaneously. By exploring the full variance-covariance properties of the decomposed images and utilizing the edge predetection, the proposed algorithm shows superior performance on noise suppression with high image spatial resolution and low-contrast detectability.« less

  14. Evaluation of a metal artifacts reduction algorithm applied to postinterventional flat panel detector CT imaging.

    PubMed

    Stidd, D A; Theessen, H; Deng, Y; Li, Y; Scholz, B; Rohkohl, C; Jhaveri, M D; Moftakhar, R; Chen, M; Lopes, D K

    2014-01-01

    Flat panel detector CT images are degraded by streak artifacts caused by radiodense implanted materials such as coils or clips. A new metal artifacts reduction prototype algorithm has been used to minimize these artifacts. The application of this new metal artifacts reduction algorithm was evaluated for flat panel detector CT imaging performed in a routine clinical setting. Flat panel detector CT images were obtained from 59 patients immediately following cerebral endovascular procedures or as surveillance imaging for cerebral endovascular or surgical procedures previously performed. The images were independently evaluated by 7 physicians for metal artifacts reduction on a 3-point scale at 2 locations: immediately adjacent to the metallic implant and 3 cm away from it. The number of visible vessels before and after metal artifacts reduction correction was also evaluated within a 3-cm radius around the metallic implant. The metal artifacts reduction algorithm was applied to the 59 flat panel detector CT datasets without complications. The metal artifacts in the reduction-corrected flat panel detector CT images were significantly reduced in the area immediately adjacent to the implanted metal object (P = .05) and in the area 3 cm away from the metal object (P = .03). The average number of visible vessel segments increased from 4.07 to 5.29 (P = .1235) after application of the metal artifacts reduction algorithm to the flat panel detector CT images. Metal artifacts reduction is an effective method to improve flat panel detector CT images degraded by metal artifacts. Metal artifacts are significantly decreased by the metal artifacts reduction algorithm, and there was a trend toward increased vessel-segment visualization. © 2014 by American Journal of Neuroradiology.

  15. Mapping forested wetlands in the Great Zhan River Basin through integrating optical, radar, and topographical data classification techniques.

    PubMed

    Na, X D; Zang, S Y; Wu, C S; Li, W L

    2015-11-01

    Knowledge of the spatial extent of forested wetlands is essential to many studies including wetland functioning assessment, greenhouse gas flux estimation, and wildlife suitable habitat identification. For discriminating forested wetlands from their adjacent land cover types, researchers have resorted to image analysis techniques applied to numerous remotely sensed data. While with some success, there is still no consensus on the optimal approaches for mapping forested wetlands. To address this problem, we examined two machine learning approaches, random forest (RF) and K-nearest neighbor (KNN) algorithms, and applied these two approaches to the framework of pixel-based and object-based classifications. The RF and KNN algorithms were constructed using predictors derived from Landsat 8 imagery, Radarsat-2 advanced synthetic aperture radar (SAR), and topographical indices. The results show that the objected-based classifications performed better than per-pixel classifications using the same algorithm (RF) in terms of overall accuracy and the difference of their kappa coefficients are statistically significant (p<0.01). There were noticeably omissions for forested and herbaceous wetlands based on the per-pixel classifications using the RF algorithm. As for the object-based image analysis, there were also statistically significant differences (p<0.01) of Kappa coefficient between results performed based on RF and KNN algorithms. The object-based classification using RF provided a more visually adequate distribution of interested land cover types, while the object classifications based on the KNN algorithm showed noticeably commissions for forested wetlands and omissions for agriculture land. This research proves that the object-based classification with RF using optical, radar, and topographical data improved the mapping accuracy of land covers and provided a feasible approach to discriminate the forested wetlands from the other land cover types in forestry area.

  16. Reliability of a new 4th generation FloTrac algorithm to track cardiac output changes in patients receiving phenylephrine.

    PubMed

    Ji, Fuhai; Li, Jian; Fleming, Neal; Rose, David; Liu, Hong

    2015-08-01

    Phenylephrine is often used to treat intra-operative hypotension. Previous studies have shown that the FloTrac cardiac monitor may overestimate cardiac output (CO) changes following phenylephrine administration. A new algorithm (4th generation) has been developed to improve performance in this setting. We performed a prospective observational study to assess the effects of phenylephrine administration on CO values measured by the 3rd and 4th generation FloTrac algorithms. 54 patients were enrolled in this study. We used the Nexfin, a pulse contour method shown to be insensitive to vasopressor administration, as the reference method. Radial arterial pressures were recorded continuously in patients undergoing surgery. Phenylephrine administration times were documented. Arterial pressure recordings were subsequently analyzed offline using three different pulse contour analysis algorithms: FloTrac 3rd generation (G3), FloTrac 4th generation (G4), and Nexfin (nf). One minute of hemodynamic measurements was analyzed immediately before phenylephrine administration and then repeated when the mean arterial pressure peaked. A total of 157 (4.6 ± 3.2 per patient, range 1-15) paired sets of hemodynamic recordings were analyzed. Phenylephrine induced a significant increase in stroke volume (SV) and CO with the FloTrac G3, but not with FloTrac G4 or Nexfin algorithms. Agreement between FloTrac G3 and Nexfin was: 0.23 ± 1.19 l/min and concordance was 51.1%. In contrast, agreement between FloTrac G4 and Nexfin was: 0.19 ± 0.86 l/min and concordance was 87.2%. In conclusion, the pulse contour method of measuring CO, as implemented in FloTrac 4th generation algorithm, has significantly improved its ability to track the changes in CO induced by phenylephrine.

  17. Design and optimization of all-optical networks

    NASA Astrophysics Data System (ADS)

    Xiao, Gaoxi

    1999-10-01

    In this thesis, we present our research results on the design and optimization of all-optical networks. We divide our results into the following four parts: 1.In the first part, we consider broadcast-and-select networks. In our research, we propose an alternative and cheaper network configuration to hide the tuning time. In addition, we derive lower bounds on the optimal schedule lengths and prove that they are tighter than the best existing bounds. 2.In the second part, we consider all-optical wide area networks. We propose a set of algorithms for allocating a given number of WCs to the nodes. We adopt a simulation-based optimization approach, in which we collect utilization statistics of WCs from computer simulation and then perform optimization to allocate the WCs. Therefore, our algorithms are widely applicable and they are not restricted to any particular model and assumption. We have conducted extensive computer simulation on regular and irregular networks under both uniform and non-uniform traffic. We see that our method can get nearly the same performance as that of full wavelength conversion by using a much smaller number of WCs. Compared with the best existing method, the results show that our algorithms can significantly reduce (1)the overall blocking probability (i.e., better mean quality of service) and (2)the maximum of the blocking probabilities experienced at all the source nodes (i.e., better fairness). Equivalently, for a given performance requirement on blocking probability, our algorithms can significantly reduce the number of WCs required. 3.In the third part, we design and optimize the physical topology of all-optical wide area networks. We show that the design problem is NP-complete and we propose a heuristic algorithm called two-stage cut saturation algorithm for this problem. Simulation results show that (1)the proposed algorithm can efficiently design networks with low cost and high utilization, and (2)if wavelength converters are available to support full wavelength conversion, the cost of the links can be significantly reduced. 4.In the fourth part, we consider all-optical wide area networks with multiple fibers per link. We design a node configuration for all-optical networks. We exploit the flexibility that, to establish a lightpath across a node, we can select any one of the available channels in the incoming link and any one of the available channels in the outgoing link. As a result, the proposed node configuration requires a small number of small optical switches while it can achieve nearly the same performance as the existing one. And there is no additional crosstalk other than the intrinsic crosstalk within each single-chip optical switch.* (Abstract shortened by UMI.) *Originally published in DAI Vol. 60, No. 2. Reprinted here with corrected author name.

  18. Syndromic Algorithms for Detection of Gambiense Human African Trypanosomiasis in South Sudan

    PubMed Central

    Palmer, Jennifer J.; Surur, Elizeous I.; Goch, Garang W.; Mayen, Mangar A.; Lindner, Andreas K.; Pittet, Anne; Kasparian, Serena; Checchi, Francesco; Whitty, Christopher J. M.

    2013-01-01

    Background Active screening by mobile teams is considered the best method for detecting human African trypanosomiasis (HAT) caused by Trypanosoma brucei gambiense but the current funding context in many post-conflict countries limits this approach. As an alternative, non-specialist health care workers (HCWs) in peripheral health facilities could be trained to identify potential cases who need testing based on their symptoms. We explored the predictive value of syndromic referral algorithms to identify symptomatic cases of HAT among a treatment-seeking population in Nimule, South Sudan. Methodology/Principal Findings Symptom data from 462 patients (27 cases) presenting for a HAT test via passive screening over a 7 month period were collected to construct and evaluate over 14,000 four item syndromic algorithms considered simple enough to be used by peripheral HCWs. For comparison, algorithms developed in other settings were also tested on our data, and a panel of expert HAT clinicians were asked to make referral decisions based on the symptom dataset. The best performing algorithms consisted of three core symptoms (sleep problems, neurological problems and weight loss), with or without a history of oedema, cervical adenopathy or proximity to livestock. They had a sensitivity of 88.9–92.6%, a negative predictive value of up to 98.8% and a positive predictive value in this context of 8.4–8.7%. In terms of sensitivity, these out-performed more complex algorithms identified in other studies, as well as the expert panel. The best-performing algorithm is predicted to identify about 9/10 treatment-seeking HAT cases, though only 1/10 patients referred would test positive. Conclusions/Significance In the absence of regular active screening, improving referrals of HAT patients through other means is essential. Systematic use of syndromic algorithms by peripheral HCWs has the potential to increase case detection and would increase their participation in HAT programmes. The algorithms proposed here, though promising, should be validated elsewhere. PMID:23350005

  19. Assessment of satellite retrieval algorithms for chlorophyll-a concentration under high solar zenith angle

    NASA Astrophysics Data System (ADS)

    Li, Hao; He, Xianqiang; Bai, Yan; Chen, Xiaoyan; Gong, Fang; Zhu, Qiankun; Hu, Zifeng

    2016-10-01

    Numerous empirical algorithms have been operationally used to retrieve the global ocean chlorophyll-a concentration (Chla) from ocean color satellite data, e.g., the OC4V4 algorithm for SeaWiFS and OC3M for MODIS. However, the algorithms have been established and validated based on the in situ data mainly measured under low to moderate solar zenith angle (<70°). Currently, with the development of the geostationary satellite ocean color remote sensing which observes from early morning to later afternoon, it is necessary to know whether the empirical Chla algorithms could be applied to high solar zenith angle. In this study, the performances of seven widely-used Chla algorithms under high solar zenith angles, i.e., OC2, OC3M, OC3V, OC4V4, CLARK, OCI, and YOC algorithms, were evaluated using the NOMAD global in situ ocean color dataset. The results showed that the performances of all the seven algorithms decreased significantly under high solar zenith angles as compared to those under low-moderate solar zenith angles. For instance, for the OC4V4 algorithm, the relative percent difference (RPD) and root-mean-square error (RMSE) were 13.78% and 1.66 μg/l for the whole dataset, and 3.95% and 1.49 μg/l for the solar zenith angles ranged from 30° to 40°, respectively. However, the RPD and RMSE increased to 30.45% and 6.10μg/l for solar zenith angle larger than 70°.

  20. An efficient genetic algorithm for maximum coverage deployment in wireless sensor networks.

    PubMed

    Yoon, Yourim; Kim, Yong-Hyuk

    2013-10-01

    Sensor networks have a lot of applications such as battlefield surveillance, environmental monitoring, and industrial diagnostics. Coverage is one of the most important performance metrics for sensor networks since it reflects how well a sensor field is monitored. In this paper, we introduce the maximum coverage deployment problem in wireless sensor networks and analyze the properties of the problem and its solution space. Random deployment is the simplest way to deploy sensor nodes but may cause unbalanced deployment and therefore, we need a more intelligent way for sensor deployment. We found that the phenotype space of the problem is a quotient space of the genotype space in a mathematical view. Based on this property, we propose an efficient genetic algorithm using a novel normalization method. A Monte Carlo method is adopted to design an efficient evaluation function, and its computation time is decreased without loss of solution quality using a method that starts from a small number of random samples and gradually increases the number for subsequent generations. The proposed genetic algorithms could be further improved by combining with a well-designed local search. The performance of the proposed genetic algorithm is shown by a comparative experimental study. When compared with random deployment and existing methods, our genetic algorithm was not only about twice faster, but also showed significant performance improvement in quality.

  1. Combining approaches to on-line handwriting information retrieval

    NASA Astrophysics Data System (ADS)

    Peña Saldarriaga, Sebastián; Viard-Gaudin, Christian; Morin, Emmanuel

    2010-01-01

    In this work, we propose to combine two quite different approaches for retrieving handwritten documents. Our hypothesis is that different retrieval algorithms should retrieve different sets of documents for the same query. Therefore, significant improvements in retrieval performances can be expected. The first approach is based on information retrieval techniques carried out on the noisy texts obtained through handwriting recognition, while the second approach is recognition-free using a word spotting algorithm. Results shows that for texts having a word error rate (WER) lower than 23%, the performances obtained with the combined system are close to the performances obtained on clean digital texts. In addition, for poorly recognized texts (WER > 52%), an improvement of nearly 17% can be observed with respect to the best available baseline method.

  2. Dynamic graph cuts for efficient inference in Markov Random Fields.

    PubMed

    Kohli, Pushmeet; Torr, Philip H S

    2007-12-01

    Abstract-In this paper we present a fast new fully dynamic algorithm for the st-mincut/max-flow problem. We show how this algorithm can be used to efficiently compute MAP solutions for certain dynamically changing MRF models in computer vision such as image segmentation. Specifically, given the solution of the max-flow problem on a graph, the dynamic algorithm efficiently computes the maximum flow in a modified version of the graph. The time taken by it is roughly proportional to the total amount of change in the edge weights of the graph. Our experiments show that, when the number of changes in the graph is small, the dynamic algorithm is significantly faster than the best known static graph cut algorithm. We test the performance of our algorithm on one particular problem: the object-background segmentation problem for video. It should be noted that the application of our algorithm is not limited to the above problem, the algorithm is generic and can be used to yield similar improvements in many other cases that involve dynamic change.

  3. Scalable domain decomposition solvers for stochastic PDEs in high performance computing

    DOE PAGES

    Desai, Ajit; Khalil, Mohammad; Pettit, Chris; ...

    2017-09-21

    Stochastic spectral finite element models of practical engineering systems may involve solutions of linear systems or linearized systems for non-linear problems with billions of unknowns. For stochastic modeling, it is therefore essential to design robust, parallel and scalable algorithms that can efficiently utilize high-performance computing to tackle such large-scale systems. Domain decomposition based iterative solvers can handle such systems. And though these algorithms exhibit excellent scalabilities, significant algorithmic and implementational challenges exist to extend them to solve extreme-scale stochastic systems using emerging computing platforms. Intrusive polynomial chaos expansion based domain decomposition algorithms are extended here to concurrently handle high resolutionmore » in both spatial and stochastic domains using an in-house implementation. Sparse iterative solvers with efficient preconditioners are employed to solve the resulting global and subdomain level local systems through multi-level iterative solvers. We also use parallel sparse matrix–vector operations to reduce the floating-point operations and memory requirements. Numerical and parallel scalabilities of these algorithms are presented for the diffusion equation having spatially varying diffusion coefficient modeled by a non-Gaussian stochastic process. Scalability of the solvers with respect to the number of random variables is also investigated.« less

  4. Dynamic load balancing for petascale quantum Monte Carlo applications: The Alias method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudheer, C. D.; Krishnan, S.; Srinivasan, A.

    Diffusion Monte Carlo is the most accurate widely used Quantum Monte Carlo method for the electronic structure of materials, but it requires frequent load balancing or population redistribution steps to maintain efficiency and avoid accumulation of systematic errors on parallel machines. The load balancing step can be a significant factor affecting performance, and will become more important as the number of processing elements increases. We propose a new dynamic load balancing algorithm, the Alias Method, and evaluate it theoretically and empirically. An important feature of the new algorithm is that the load can be perfectly balanced with each process receivingmore » at most one message. It is also optimal in the maximum size of messages received by any process. We also optimize its implementation to reduce network contention, a process facilitated by the low messaging requirement of the algorithm. Empirical results on the petaflop Cray XT Jaguar supercomputer at ORNL showing up to 30% improvement in performance on 120,000 cores. The load balancing algorithm may be straightforwardly implemented in existing codes. The algorithm may also be employed by any method with many near identical computational tasks that requires load balancing.« less

  5. An algorithm developed in Matlab for the automatic selection of cut-off frequencies, in the correction of strong motion data

    NASA Astrophysics Data System (ADS)

    Sakkas, Georgios; Sakellariou, Nikolaos

    2018-05-01

    Strong motion recordings are the key in many earthquake engineering applications and are also fundamental for seismic design. The present study focuses on the automated correction of accelerograms, analog and digital. The main feature of the proposed algorithm is the automatic selection for the cut-off frequencies based on a minimum spectral value in a predefined frequency bandwidth, instead of the typical signal-to-noise approach. The algorithm follows the basic steps of the correction procedure (instrument correction, baseline correction and appropriate filtering). Besides the corrected time histories, Peak Ground Acceleration, Peak Ground Velocity, Peak Ground Displacement values and the corrected Fourier Spectra are also calculated as well as the response spectra. The algorithm is written in Matlab environment, is fast enough and can be used for batch processing or in real-time applications. In addition, the possibility to also perform a signal-to-noise ratio is added as well as to perform causal or acausal filtering. The algorithm has been tested in six significant earthquakes (Kozani-Grevena 1995, Aigio 1995, Athens 1999, Lefkada 2003 and Kefalonia 2014) of the Greek territory with analog and digital accelerograms.

  6. Scalable domain decomposition solvers for stochastic PDEs in high performance computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, Ajit; Khalil, Mohammad; Pettit, Chris

    Stochastic spectral finite element models of practical engineering systems may involve solutions of linear systems or linearized systems for non-linear problems with billions of unknowns. For stochastic modeling, it is therefore essential to design robust, parallel and scalable algorithms that can efficiently utilize high-performance computing to tackle such large-scale systems. Domain decomposition based iterative solvers can handle such systems. And though these algorithms exhibit excellent scalabilities, significant algorithmic and implementational challenges exist to extend them to solve extreme-scale stochastic systems using emerging computing platforms. Intrusive polynomial chaos expansion based domain decomposition algorithms are extended here to concurrently handle high resolutionmore » in both spatial and stochastic domains using an in-house implementation. Sparse iterative solvers with efficient preconditioners are employed to solve the resulting global and subdomain level local systems through multi-level iterative solvers. We also use parallel sparse matrix–vector operations to reduce the floating-point operations and memory requirements. Numerical and parallel scalabilities of these algorithms are presented for the diffusion equation having spatially varying diffusion coefficient modeled by a non-Gaussian stochastic process. Scalability of the solvers with respect to the number of random variables is also investigated.« less

  7. Aircraft control surface failure detection and isolation using the OSGLR test. [orthogonal series generalized likelihood ratio

    NASA Technical Reports Server (NTRS)

    Bonnice, W. F.; Motyka, P.; Wagner, E.; Hall, S. R.

    1986-01-01

    The performance of the orthogonal series generalized likelihood ratio (OSGLR) test in detecting and isolating commercial aircraft control surface and actuator failures is evaluated. A modification to incorporate age-weighting which significantly reduces the sensitivity of the algorithm to modeling errors is presented. The steady-state implementation of the algorithm based on a single linear model valid for a cruise flight condition is tested using a nonlinear aircraft simulation. A number of off-nominal no-failure flight conditions including maneuvers, nonzero flap deflections, different turbulence levels and steady winds were tested. Based on the no-failure decision functions produced by off-nominal flight conditions, the failure detection and isolation performance at the nominal flight condition was determined. The extension of the algorithm to a wider flight envelope by scheduling on dynamic pressure and flap deflection is examined. Based on this testing, the OSGLR algorithm should be capable of detecting control surface failures that would affect the safe operation of a commercial aircraft. Isolation may be difficult if there are several surfaces which produce similar effects on the aircraft. Extending the algorithm over the entire operating envelope of a commercial aircraft appears feasible.

  8. A novel data-driven learning method for radar target detection in nonstationary environments

    DOE PAGES

    Akcakaya, Murat; Nehorai, Arye; Sen, Satyabrata

    2016-04-12

    Most existing radar algorithms are developed under the assumption that the environment (clutter) is stationary. However, in practice, the characteristics of the clutter can vary enormously depending on the radar-operational scenarios. If unaccounted for, these nonstationary variabilities may drastically hinder the radar performance. Therefore, to overcome such shortcomings, we develop a data-driven method for target detection in nonstationary environments. In this method, the radar dynamically detects changes in the environment and adapts to these changes by learning the new statistical characteristics of the environment and by intelligibly updating its statistical detection algorithm. Specifically, we employ drift detection algorithms to detectmore » changes in the environment; incremental learning, particularly learning under concept drift algorithms, to learn the new statistical characteristics of the environment from the new radar data that become available in batches over a period of time. The newly learned environment characteristics are then integrated in the detection algorithm. Furthermore, we use Monte Carlo simulations to demonstrate that the developed method provides a significant improvement in the detection performance compared with detection techniques that are not aware of the environmental changes.« less

  9. Novel edge treatment method for improving the transmission reconstruction quality in Tomographic Gamma Scanning.

    PubMed

    Han, Miaomiao; Guo, Zhirong; Liu, Haifeng; Li, Qinghua

    2018-05-01

    Tomographic Gamma Scanning (TGS) is a method used for the nondestructive assay of radioactive wastes. In TGS, the actual irregular edge voxels are regarded as regular cubic voxels in the traditional treatment method. In this study, in order to improve the performance of TGS, a novel edge treatment method is proposed that considers the actual shapes of these voxels. The two different edge voxel treatment methods were compared by computing the pixel-level relative errors and normalized mean square errors (NMSEs) between the reconstructed transmission images and the ideal images. Both methods were coupled with two different interative algorithms comprising Algebraic Reconstruction Technique (ART) with a non-negativity constraint and Maximum Likelihood Expectation Maximization (MLEM). The results demonstrated that the traditional method for edge voxel treatment can introduce significant error and that the real irregular edge voxel treatment method can improve the performance of TGS by obtaining better transmission reconstruction images. With the real irregular edge voxel treatment method, MLEM algorithm and ART algorithm can be comparable when assaying homogenous matrices, but MLEM algorithm is superior to ART algorithm when assaying heterogeneous matrices. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Assistant for Analyzing Tropical-Rain-Mapping Radar Data

    NASA Technical Reports Server (NTRS)

    James, Mark

    2006-01-01

    A document is defined that describes an approach for a Tropical Rain Mapping Radar Data System (TDS). TDS is composed of software and hardware elements incorporating a two-frequency spaceborne radar system for measuring tropical precipitation. The TDS would be used primarily in generating data products for scientific investigations. The most novel part of the TDS would be expert-system software to aid in the selection of algorithms for converting raw radar-return data into such primary observables as rain rate, path-integrated rain rate, and surface backscatter. The expert-system approach would address the issue that selection of algorithms for processing the data requires a significant amount of preprocessing, non-intuitive reasoning, and heuristic application, making it infeasible, in many cases, to select the proper algorithm in real time. In the TDS, tentative selections would be made to enable conversions in real time. The expert system would remove straightforwardly convertible data from further consideration, and would examine ambiguous data, performing analysis in depth to determine which algorithms to select. Conversions performed by these algorithms, presumed to be correct, would be compared with the corresponding real-time conversions. Incorrect real-time conversions would be updated using the correct conversions.

  11. Using human brain activity to guide machine learning.

    PubMed

    Fong, Ruth C; Scheirer, Walter J; Cox, David D

    2018-03-29

    Machine learning is a field of computer science that builds algorithms that learn. In many cases, machine learning algorithms are used to recreate a human ability like adding a caption to a photo, driving a car, or playing a game. While the human brain has long served as a source of inspiration for machine learning, little effort has been made to directly use data collected from working brains as a guide for machine learning algorithms. Here we demonstrate a new paradigm of "neurally-weighted" machine learning, which takes fMRI measurements of human brain activity from subjects viewing images, and infuses these data into the training process of an object recognition learning algorithm to make it more consistent with the human brain. After training, these neurally-weighted classifiers are able to classify images without requiring any additional neural data. We show that our neural-weighting approach can lead to large performance gains when used with traditional machine vision features, as well as to significant improvements with already high-performing convolutional neural network features. The effectiveness of this approach points to a path forward for a new class of hybrid machine learning algorithms which take both inspiration and direct constraints from neuronal data.

  12. Missing value imputation for microarray data: a comprehensive comparison study and a web tool.

    PubMed

    Chiu, Chia-Chun; Chan, Shih-Yao; Wang, Chung-Ching; Wu, Wei-Sheng

    2013-01-01

    Microarray data are usually peppered with missing values due to various reasons. However, most of the downstream analyses for microarray data require complete datasets. Therefore, accurate algorithms for missing value estimation are needed for improving the performance of microarray data analyses. Although many algorithms have been developed, there are many debates on the selection of the optimal algorithm. The studies about the performance comparison of different algorithms are still incomprehensive, especially in the number of benchmark datasets used, the number of algorithms compared, the rounds of simulation conducted, and the performance measures used. In this paper, we performed a comprehensive comparison by using (I) thirteen datasets, (II) nine algorithms, (III) 110 independent runs of simulation, and (IV) three types of measures to evaluate the performance of each imputation algorithm fairly. First, the effects of different types of microarray datasets on the performance of each imputation algorithm were evaluated. Second, we discussed whether the datasets from different species have different impact on the performance of different algorithms. To assess the performance of each algorithm fairly, all evaluations were performed using three types of measures. Our results indicate that the performance of an imputation algorithm mainly depends on the type of a dataset but not on the species where the samples come from. In addition to the statistical measure, two other measures with biological meanings are useful to reflect the impact of missing value imputation on the downstream data analyses. Our study suggests that local-least-squares-based methods are good choices to handle missing values for most of the microarray datasets. In this work, we carried out a comprehensive comparison of the algorithms for microarray missing value imputation. Based on such a comprehensive comparison, researchers could choose the optimal algorithm for their datasets easily. Moreover, new imputation algorithms could be compared with the existing algorithms using this comparison strategy as a standard protocol. In addition, to assist researchers in dealing with missing values easily, we built a web-based and easy-to-use imputation tool, MissVIA (http://cosbi.ee.ncku.edu.tw/MissVIA), which supports many imputation algorithms. Once users upload a real microarray dataset and choose the imputation algorithms, MissVIA will determine the optimal algorithm for the users' data through a series of simulations, and then the imputed results can be downloaded for the downstream data analyses.

  13. Two-dimensional statistical linear discriminant analysis for real-time robust vehicle-type recognition

    NASA Astrophysics Data System (ADS)

    Zafar, I.; Edirisinghe, E. A.; Acar, S.; Bez, H. E.

    2007-02-01

    Automatic vehicle Make and Model Recognition (MMR) systems provide useful performance enhancements to vehicle recognitions systems that are solely based on Automatic License Plate Recognition (ALPR) systems. Several car MMR systems have been proposed in literature. However these approaches are based on feature detection algorithms that can perform sub-optimally under adverse lighting and/or occlusion conditions. In this paper we propose a real time, appearance based, car MMR approach using Two Dimensional Linear Discriminant Analysis that is capable of addressing this limitation. We provide experimental results to analyse the proposed algorithm's robustness under varying illumination and occlusions conditions. We have shown that the best performance with the proposed 2D-LDA based car MMR approach is obtained when the eigenvectors of lower significance are ignored. For the given database of 200 car images of 25 different make-model classifications, a best accuracy of 91% was obtained with the 2D-LDA approach. We use a direct Principle Component Analysis (PCA) based approach as a benchmark to compare and contrast the performance of the proposed 2D-LDA approach to car MMR. We conclude that in general the 2D-LDA based algorithm supersedes the performance of the PCA based approach.

  14. Performance assessment of methods for estimation of fractal dimension from scanning electron microscope images.

    PubMed

    Risović, Dubravko; Pavlović, Zivko

    2013-01-01

    Processing of gray scale images in order to determine the corresponding fractal dimension is very important due to widespread use of imaging technologies and application of fractal analysis in many areas of science, technology, and medicine. To this end, many methods for estimation of fractal dimension from gray scale images have been developed and routinely used. Unfortunately different methods (dimension estimators) often yield significantly different results in a manner that makes interpretation difficult. Here, we report results of comparative assessment of performance of several most frequently used algorithms/methods for estimation of fractal dimension. To that purpose, we have used scanning electron microscope images of aluminum oxide surfaces with different fractal dimensions. The performance of algorithms/methods was evaluated using the statistical Z-score approach. The differences between performances of six various methods are discussed and further compared with results obtained by electrochemical impedance spectroscopy on the same samples. The analysis of results shows that the performance of investigated algorithms varies considerably and that systematically erroneous fractal dimensions could be estimated using certain methods. The differential cube counting, triangulation, and box counting algorithms showed satisfactory performance in the whole investigated range of fractal dimensions. Difference statistic is proved to be less reliable generating 4% of unsatisfactory results. The performances of the Power spectrum, Partitioning and EIS were unsatisfactory in 29%, 38%, and 75% of estimations, respectively. The results of this study should be useful and provide guidelines to researchers using/attempting fractal analysis of images obtained by scanning microscopy or atomic force microscopy. © Wiley Periodicals, Inc.

  15. Increasing BCI communication rates with dynamic stopping towards more practical use: an ALS study.

    PubMed

    Mainsah, B O; Collins, L M; Colwell, K A; Sellers, E W; Ryan, D B; Caves, K; Throckmorton, C S

    2015-02-01

    The P300 speller is a brain-computer interface (BCI) that can possibly restore communication abilities to individuals with severe neuromuscular disabilities, such as amyotrophic lateral sclerosis (ALS), by exploiting elicited brain signals in electroencephalography (EEG) data. However, accurate spelling with BCIs is slow due to the need to average data over multiple trials to increase the signal-to-noise ratio (SNR) of the elicited brain signals. Probabilistic approaches to dynamically control data collection have shown improved performance in non-disabled populations; however, validation of these approaches in a target BCI user population has not occurred. We have developed a data-driven algorithm for the P300 speller based on Bayesian inference that improves spelling time by adaptively selecting the number of trials based on the acute SNR of a user's EEG data. We further enhanced the algorithm by incorporating information about the user's language. In this current study, we test and validate the algorithms online in a target BCI user population, by comparing the performance of the dynamic stopping (DS) (or early stopping) algorithms against the current state-of-the-art method, static data collection, where the amount of data collected is fixed prior to online operation. Results from online testing of the DS algorithms in participants with ALS demonstrate a significant increase in communication rate as measured in bits/min (100-300%), and theoretical bit rate (100-550%), while maintaining selection accuracy. Participants also overwhelmingly preferred the DS algorithms. We have developed a viable BCI algorithm that has been tested in a target BCI population which has the potential for translation to improve BCI speller performance towards more practical use for communication.

  16. Data and software tools for gamma radiation spectral threat detection and nuclide identification algorithm development and evaluation

    NASA Astrophysics Data System (ADS)

    Portnoy, David; Fisher, Brian; Phifer, Daniel

    2015-06-01

    The detection of radiological and nuclear threats is extremely important to national security. The federal government is spending significant resources developing new detection systems and attempting to increase the performance of existing ones. The detection of illicit radionuclides that may pose a radiological or nuclear threat is a challenging problem complicated by benign radiation sources (e.g., cat litter and medical treatments), shielding, and large variations in background radiation. Although there is a growing acceptance within the community that concentrating efforts on algorithm development (independent of the specifics of fully assembled systems) has the potential for significant overall system performance gains, there are two major hindrances to advancements in gamma spectral analysis algorithms under the current paradigm: access to data and common performance metrics along with baseline performance measures. Because many of the signatures collected during performance measurement campaigns are classified, dissemination to algorithm developers is extremely limited. This leaves developers no choice but to collect their own data if they are lucky enough to have access to material and sensors. This is often combined with their own definition of metrics for measuring performance. These two conditions make it all but impossible for developers and external reviewers to make meaningful comparisons between algorithms. Without meaningful comparisons, performance advancements become very hard to achieve and (more importantly) recognize. The objective of this work is to overcome these obstacles by developing and freely distributing real and synthetically generated gamma-spectra data sets as well as software tools for performance evaluation with associated performance baselines to national labs, academic institutions, government agencies, and industry. At present, datasets for two tracks, or application domains, have been developed: one that includes temporal spectral data at 1 s time intervals, which represents data collected by a mobile system operating in a dynamic radiation background environment; and one that represents static measurements with a foreground spectrum (background plus source) and a background spectrum. These data include controlled variations in both Source Related Factors (nuclide, nuclide combinations, activities, distances, collection times, shielding configurations, and background spectra) and Detector Related Factors (currently only gain shifts, but resolution changes and non-linear energy calibration errors will be added soon). The software tools will allow the developer to evaluate the performance impact of each of these factors. Although this first implementation is somewhat limited in scope, considering only NaI-based detection systems and two application domains, it is hoped that (with community feedback) a wider range of detector types and applications will be included in the future. This article describes the methods used for dataset creation, the software validation/performance measurement tools, the performance metrics used, and examples of baseline performance.

  17. Compressively sampled MR image reconstruction using generalized thresholding iterative algorithm

    NASA Astrophysics Data System (ADS)

    Elahi, Sana; kaleem, Muhammad; Omer, Hammad

    2018-01-01

    Compressed sensing (CS) is an emerging area of interest in Magnetic Resonance Imaging (MRI). CS is used for the reconstruction of the images from a very limited number of samples in k-space. This significantly reduces the MRI data acquisition time. One important requirement for signal recovery in CS is the use of an appropriate non-linear reconstruction algorithm. It is a challenging task to choose a reconstruction algorithm that would accurately reconstruct the MR images from the under-sampled k-space data. Various algorithms have been used to solve the system of non-linear equations for better image quality and reconstruction speed in CS. In the recent past, iterative soft thresholding algorithm (ISTA) has been introduced in CS-MRI. This algorithm directly cancels the incoherent artifacts produced because of the undersampling in k -space. This paper introduces an improved iterative algorithm based on p -thresholding technique for CS-MRI image reconstruction. The use of p -thresholding function promotes sparsity in the image which is a key factor for CS based image reconstruction. The p -thresholding based iterative algorithm is a modification of ISTA, and minimizes non-convex functions. It has been shown that the proposed p -thresholding iterative algorithm can be used effectively to recover fully sampled image from the under-sampled data in MRI. The performance of the proposed method is verified using simulated and actual MRI data taken at St. Mary's Hospital, London. The quality of the reconstructed images is measured in terms of peak signal-to-noise ratio (PSNR), artifact power (AP), and structural similarity index measure (SSIM). The proposed approach shows improved performance when compared to other iterative algorithms based on log thresholding, soft thresholding and hard thresholding techniques at different reduction factors.

  18. Design and implementation of streaming media server cluster based on FFMpeg.

    PubMed

    Zhao, Hong; Zhou, Chun-long; Jin, Bao-zhao

    2015-01-01

    Poor performance and network congestion are commonly observed in the streaming media single server system. This paper proposes a scheme to construct a streaming media server cluster system based on FFMpeg. In this scheme, different users are distributed to different servers according to their locations and the balance among servers is maintained by the dynamic load-balancing algorithm based on active feedback. Furthermore, a service redirection algorithm is proposed to improve the transmission efficiency of streaming media data. The experiment results show that the server cluster system has significantly alleviated the network congestion and improved the performance in comparison with the single server system.

  19. Design and Implementation of Streaming Media Server Cluster Based on FFMpeg

    PubMed Central

    Zhao, Hong; Zhou, Chun-long; Jin, Bao-zhao

    2015-01-01

    Poor performance and network congestion are commonly observed in the streaming media single server system. This paper proposes a scheme to construct a streaming media server cluster system based on FFMpeg. In this scheme, different users are distributed to different servers according to their locations and the balance among servers is maintained by the dynamic load-balancing algorithm based on active feedback. Furthermore, a service redirection algorithm is proposed to improve the transmission efficiency of streaming media data. The experiment results show that the server cluster system has significantly alleviated the network congestion and improved the performance in comparison with the single server system. PMID:25734187

  20. Correction of rotational distortion for catheter-based en face OCT and OCT angiography

    PubMed Central

    Ahsen, Osman O.; Lee, Hsiang-Chieh; Giacomelli, Michael G.; Wang, Zhao; Liang, Kaicheng; Tsai, Tsung-Han; Potsaid, Benjamin; Mashimo, Hiroshi; Fujimoto, James G.

    2015-01-01

    We demonstrate a computationally efficient method for correcting the nonuniform rotational distortion (NURD) in catheter-based imaging systems to improve endoscopic en face optical coherence tomography (OCT) and OCT angiography. The method performs nonrigid registration using fiducial markers on the catheter to correct rotational speed variations. Algorithm performance is investigated with an ultrahigh-speed endoscopic OCT system and micromotor catheter. Scan nonuniformity is quantitatively characterized, and artifacts from rotational speed variations are significantly reduced. Furthermore, we present endoscopic en face OCT and OCT angiography images of human gastrointestinal tract in vivo to demonstrate the image quality improvement using the correction algorithm. PMID:25361133

  1. Implementation of a fully-balanced periodic tridiagonal solver on a parallel distributed memory architecture

    NASA Technical Reports Server (NTRS)

    Eidson, T. M.; Erlebacher, G.

    1994-01-01

    While parallel computers offer significant computational performance, it is generally necessary to evaluate several programming strategies. Two programming strategies for a fairly common problem - a periodic tridiagonal solver - are developed and evaluated. Simple model calculations as well as timing results are presented to evaluate the various strategies. The particular tridiagonal solver evaluated is used in many computational fluid dynamic simulation codes. The feature that makes this algorithm unique is that these simulation codes usually require simultaneous solutions for multiple right-hand-sides (RHS) of the system of equations. Each RHS solutions is independent and thus can be computed in parallel. Thus a Gaussian elimination type algorithm can be used in a parallel computation and the more complicated approaches such as cyclic reduction are not required. The two strategies are a transpose strategy and a distributed solver strategy. For the transpose strategy, the data is moved so that a subset of all the RHS problems is solved on each of the several processors. This usually requires significant data movement between processor memories across a network. The second strategy attempts to have the algorithm allow the data across processor boundaries in a chained manner. This usually requires significantly less data movement. An approach to accomplish this second strategy in a near-perfect load-balanced manner is developed. In addition, an algorithm will be shown to directly transform a sequential Gaussian elimination type algorithm into the parallel chained, load-balanced algorithm.

  2. High performance transcription factor-DNA docking with GPU computing

    PubMed Central

    2012-01-01

    Background Protein-DNA docking is a very challenging problem in structural bioinformatics and has important implications in a number of applications, such as structure-based prediction of transcription factor binding sites and rational drug design. Protein-DNA docking is very computational demanding due to the high cost of energy calculation and the statistical nature of conformational sampling algorithms. More importantly, experiments show that the docking quality depends on the coverage of the conformational sampling space. It is therefore desirable to accelerate the computation of the docking algorithm, not only to reduce computing time, but also to improve docking quality. Methods In an attempt to accelerate the sampling process and to improve the docking performance, we developed a graphics processing unit (GPU)-based protein-DNA docking algorithm. The algorithm employs a potential-based energy function to describe the binding affinity of a protein-DNA pair, and integrates Monte-Carlo simulation and a simulated annealing method to search through the conformational space. Algorithmic techniques were developed to improve the computation efficiency and scalability on GPU-based high performance computing systems. Results The effectiveness of our approach is tested on a non-redundant set of 75 TF-DNA complexes and a newly developed TF-DNA docking benchmark. We demonstrated that the GPU-based docking algorithm can significantly accelerate the simulation process and thereby improving the chance of finding near-native TF-DNA complex structures. This study also suggests that further improvement in protein-DNA docking research would require efforts from two integral aspects: improvement in computation efficiency and energy function design. Conclusions We present a high performance computing approach for improving the prediction accuracy of protein-DNA docking. The GPU-based docking algorithm accelerates the search of the conformational space and thus increases the chance of finding more near-native structures. To the best of our knowledge, this is the first ad hoc effort of applying GPU or GPU clusters to the protein-DNA docking problem. PMID:22759575

  3. Solving the stability-accuracy-diversity dilemma of recommender systems

    NASA Astrophysics Data System (ADS)

    Hou, Lei; Liu, Kecheng; Liu, Jianguo; Zhang, Runtong

    2017-02-01

    Recommender systems are of great significance in predicting the potential interesting items based on the target user's historical selections. However, the recommendation list for a specific user has been found changing vastly when the system changes, due to the unstable quantification of item similarities, which is defined as the recommendation stability problem. To improve the similarity stability and recommendation stability is crucial for the user experience enhancement and the better understanding of user interests. While the stability as well as accuracy of recommendation could be guaranteed by recommending only popular items, studies have been addressing the necessity of diversity which requires the system to recommend unpopular items. By ranking the similarities in terms of stability and considering only the most stable ones, we present a top- n-stability method based on the Heat Conduction algorithm (denoted as TNS-HC henceforth) for solving the stability-accuracy-diversity dilemma. Experiments on four benchmark data sets indicate that the TNS-HC algorithm could significantly improve the recommendation stability and accuracy simultaneously and still retain the high-diversity nature of the Heat Conduction algorithm. Furthermore, we compare the performance of the TNS-HC algorithm with a number of benchmark recommendation algorithms. The result suggests that the TNS-HC algorithm is more efficient in solving the stability-accuracy-diversity triple dilemma of recommender systems.

  4. A Fuzzy Technique for Performing Lateral-Axis Formation Flight Navigation Using Wingtip Vortices

    NASA Technical Reports Server (NTRS)

    Hanson, Curtis E.

    2003-01-01

    Close formation flight involving aerodynamic coupling through wingtip vortices shows significant promise to improve the efficiency of cooperative aircraft operations. Impediments to the application of this technology include internship communication required to establish precise relative positioning. This report proposes a method for estimating the lateral relative position between two aircraft in close formation flight through real-time estimates of the aerodynamic effects imparted by the leading airplane on the trailing airplane. A fuzzy algorithm is developed to map combinations of vortex-induced drag and roll effects to relative lateral spacing. The algorithm is refined using self-tuning techniques to provide lateral relative position estimates accurate to 14 in., well within the requirement to maintain significant levels of drag reduction. The fuzzy navigation algorithm is integrated with a leader-follower formation flight autopilot in a two-ship F/A-18 simulation with no intership communication modeled. It is shown that in the absence of measurements from the leading airplane the algorithm provides sufficient estimation of lateral formation spacing for the autopilot to maintain stable formation flight within the vortex. Formation autopilot trim commands are used to estimate vortex effects for the algorithm. The fuzzy algorithm is shown to operate satisfactorily with anticipated levels of input uncertainties.

  5. An Improved Simulated Annealing Technique for Enhanced Mobility in Smart Cities.

    PubMed

    Amer, Hayder; Salman, Naveed; Hawes, Matthew; Chaqfeh, Moumena; Mihaylova, Lyudmila; Mayfield, Martin

    2016-06-30

    Vehicular traffic congestion is a significant problem that arises in many cities. This is due to the increasing number of vehicles that are driving on city roads of limited capacity. The vehicular congestion significantly impacts travel distance, travel time, fuel consumption and air pollution. Avoidance of traffic congestion and providing drivers with optimal paths are not trivial tasks. The key contribution of this work consists of the developed approach for dynamic calculation of optimal traffic routes. Two attributes (the average travel speed of the traffic and the roads' length) are utilized by the proposed method to find the optimal paths. The average travel speed values can be obtained from the sensors deployed in smart cities and communicated to vehicles via the Internet of Vehicles and roadside communication units. The performance of the proposed algorithm is compared to three other algorithms: the simulated annealing weighted sum, the simulated annealing technique for order preference by similarity to the ideal solution and the Dijkstra algorithm. The weighted sum and technique for order preference by similarity to the ideal solution methods are used to formulate different attributes in the simulated annealing cost function. According to the Sheffield scenario, simulation results show that the improved simulated annealing technique for order preference by similarity to the ideal solution method improves the traffic performance in the presence of congestion by an overall average of 19.22% in terms of travel time, fuel consumption and CO₂ emissions as compared to other algorithms; also, similar performance patterns were achieved for the Birmingham test scenario.

  6. Machine Learning Techniques for the Detection of Shockable Rhythms in Automated External Defibrillators

    PubMed Central

    Irusta, Unai; Morgado, Eduardo; Aramendi, Elisabete; Ayala, Unai; Wik, Lars; Kramer-Johansen, Jo; Eftestøl, Trygve; Alonso-Atienza, Felipe

    2016-01-01

    Early recognition of ventricular fibrillation (VF) and electrical therapy are key for the survival of out-of-hospital cardiac arrest (OHCA) patients treated with automated external defibrillators (AED). AED algorithms for VF-detection are customarily assessed using Holter recordings from public electrocardiogram (ECG) databases, which may be different from the ECG seen during OHCA events. This study evaluates VF-detection using data from both OHCA patients and public Holter recordings. ECG-segments of 4-s and 8-s duration were analyzed. For each segment 30 features were computed and fed to state of the art machine learning (ML) algorithms. ML-algorithms with built-in feature selection capabilities were used to determine the optimal feature subsets for both databases. Patient-wise bootstrap techniques were used to evaluate algorithm performance in terms of sensitivity (Se), specificity (Sp) and balanced error rate (BER). Performance was significantly better for public data with a mean Se of 96.6%, Sp of 98.8% and BER 2.2% compared to a mean Se of 94.7%, Sp of 96.5% and BER 4.4% for OHCA data. OHCA data required two times more features than the data from public databases for an accurate detection (6 vs 3). No significant differences in performance were found for different segment lengths, the BER differences were below 0.5-points in all cases. Our results show that VF-detection is more challenging for OHCA data than for data from public databases, and that accurate VF-detection is possible with segments as short as 4-s. PMID:27441719

  7. Machine Learning Techniques for the Detection of Shockable Rhythms in Automated External Defibrillators.

    PubMed

    Figuera, Carlos; Irusta, Unai; Morgado, Eduardo; Aramendi, Elisabete; Ayala, Unai; Wik, Lars; Kramer-Johansen, Jo; Eftestøl, Trygve; Alonso-Atienza, Felipe

    2016-01-01

    Early recognition of ventricular fibrillation (VF) and electrical therapy are key for the survival of out-of-hospital cardiac arrest (OHCA) patients treated with automated external defibrillators (AED). AED algorithms for VF-detection are customarily assessed using Holter recordings from public electrocardiogram (ECG) databases, which may be different from the ECG seen during OHCA events. This study evaluates VF-detection using data from both OHCA patients and public Holter recordings. ECG-segments of 4-s and 8-s duration were analyzed. For each segment 30 features were computed and fed to state of the art machine learning (ML) algorithms. ML-algorithms with built-in feature selection capabilities were used to determine the optimal feature subsets for both databases. Patient-wise bootstrap techniques were used to evaluate algorithm performance in terms of sensitivity (Se), specificity (Sp) and balanced error rate (BER). Performance was significantly better for public data with a mean Se of 96.6%, Sp of 98.8% and BER 2.2% compared to a mean Se of 94.7%, Sp of 96.5% and BER 4.4% for OHCA data. OHCA data required two times more features than the data from public databases for an accurate detection (6 vs 3). No significant differences in performance were found for different segment lengths, the BER differences were below 0.5-points in all cases. Our results show that VF-detection is more challenging for OHCA data than for data from public databases, and that accurate VF-detection is possible with segments as short as 4-s.

  8. An Improved Simulated Annealing Technique for Enhanced Mobility in Smart Cities

    PubMed Central

    Amer, Hayder; Salman, Naveed; Hawes, Matthew; Chaqfeh, Moumena; Mihaylova, Lyudmila; Mayfield, Martin

    2016-01-01

    Vehicular traffic congestion is a significant problem that arises in many cities. This is due to the increasing number of vehicles that are driving on city roads of limited capacity. The vehicular congestion significantly impacts travel distance, travel time, fuel consumption and air pollution. Avoidance of traffic congestion and providing drivers with optimal paths are not trivial tasks. The key contribution of this work consists of the developed approach for dynamic calculation of optimal traffic routes. Two attributes (the average travel speed of the traffic and the roads’ length) are utilized by the proposed method to find the optimal paths. The average travel speed values can be obtained from the sensors deployed in smart cities and communicated to vehicles via the Internet of Vehicles and roadside communication units. The performance of the proposed algorithm is compared to three other algorithms: the simulated annealing weighted sum, the simulated annealing technique for order preference by similarity to the ideal solution and the Dijkstra algorithm. The weighted sum and technique for order preference by similarity to the ideal solution methods are used to formulate different attributes in the simulated annealing cost function. According to the Sheffield scenario, simulation results show that the improved simulated annealing technique for order preference by similarity to the ideal solution method improves the traffic performance in the presence of congestion by an overall average of 19.22% in terms of travel time, fuel consumption and CO2 emissions as compared to other algorithms; also, similar performance patterns were achieved for the Birmingham test scenario. PMID:27376289

  9. Framework for performance evaluation of face, text, and vehicle detection and tracking in video: data, metrics, and protocol.

    PubMed

    Kasturi, Rangachar; Goldgof, Dmitry; Soundararajan, Padmanabhan; Manohar, Vasant; Garofolo, John; Bowers, Rachel; Boonstra, Matthew; Korzhova, Valentina; Zhang, Jing

    2009-02-01

    Common benchmark data sets, standardized performance metrics, and baseline algorithms have demonstrated considerable impact on research and development in a variety of application domains. These resources provide both consumers and developers of technology with a common framework to objectively compare the performance of different algorithms and algorithmic improvements. In this paper, we present such a framework for evaluating object detection and tracking in video: specifically for face, text, and vehicle objects. This framework includes the source video data, ground-truth annotations (along with guidelines for annotation), performance metrics, evaluation protocols, and tools including scoring software and baseline algorithms. For each detection and tracking task and supported domain, we developed a 50-clip training set and a 50-clip test set. Each data clip is approximately 2.5 minutes long and has been completely spatially/temporally annotated at the I-frame level. Each task/domain, therefore, has an associated annotated corpus of approximately 450,000 frames. The scope of such annotation is unprecedented and was designed to begin to support the necessary quantities of data for robust machine learning approaches, as well as a statistically significant comparison of the performance of algorithms. The goal of this work was to systematically address the challenges of object detection and tracking through a common evaluation framework that permits a meaningful objective comparison of techniques, provides the research community with sufficient data for the exploration of automatic modeling techniques, encourages the incorporation of objective evaluation into the development process, and contributes useful lasting resources of a scale and magnitude that will prove to be extremely useful to the computer vision research community for years to come.

  10. Modelling and Prediction of Spark-ignition Engine Power Performance Using Incremental Least Squares Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Wong, Pak-kin; Vong, Chi-man; Wong, Hang-cheong; Li, Ke

    2010-05-01

    Modern automotive spark-ignition (SI) power performance usually refers to output power and torque, and they are significantly affected by the setup of control parameters in the engine management system (EMS). EMS calibration is done empirically through tests on the dynamometer (dyno) because no exact mathematical engine model is yet available. With an emerging nonlinear function estimation technique of Least squares support vector machines (LS-SVM), the approximate power performance model of a SI engine can be determined by training the sample data acquired from the dyno. A novel incremental algorithm based on typical LS-SVM is also proposed in this paper, so the power performance models built from the incremental LS-SVM can be updated whenever new training data arrives. With updating the models, the model accuracies can be continuously increased. The predicted results using the estimated models from the incremental LS-SVM are good agreement with the actual test results and with the almost same average accuracy of retraining the models from scratch, but the incremental algorithm can significantly shorten the model construction time when new training data arrives.

  11. Verification, improvement and application of aerosol optical depths in China Part 1: Inter-comparison of NPP-VIIRS and Aqua-MODIS

    NASA Astrophysics Data System (ADS)

    Wei, Jing; Sun, Lin; Huang, Bo; Bilal, Muhammad; Zhang, Zhaoyang; Wang, Lunche

    2018-02-01

    The objective of this study is to evaluate typical aerosol optical depth (AOD) products in China, which experienced seriously increasing atmospheric particulate pollution. For this, the Aqua-MODerate resolution Imaging Spectroradiometer (MODIS) AOD products (MYD04) at 10 km spatial resolution and Visible Infrared Imaging Radiometer Suite (VIIRS) Environmental Data Record (EDR) AOD product at 6 km resolution for different Quality Flags (QF) are obtained for validation against AErosol RObotic NETwork (AERONET) AOD measurements during 2013-2016. Results show that VIIRS EDR similarly Dark Target (DT) and MODIS DT algorithms perform worse with only 45.36% and 45.59% of the retrievals (QF = 3) falling within the Expected Error (EE, ±(0.05 + 15%)) compared to the Deep Blue (DB) algorithm (69.25%, QF ≥ 2). The DT retrievals perform poorly over the Beijing-Tianjin-Hebei (BTH) and Yangtze-River-Delta (YRD) regions, which significantly overestimate the AOD observations, but the performance is better over the Pearl-River-Delta (PRD) region than DB retrievals, which seriously under-estimate the AOD loadings. It is not surprising that the DT algorithm performs better over vegetated areas, while the DB algorithm performs better over bright areas mainly depends on the accuracy of surface reflectance estimation over different land use types. In general, the sensitivity of aerosol to apparent reflectance reduces by about 34% with an increasing surface reflectance by 0.01. Moreover, VIIRS EDR and MODIS DT algorithms perform overall better in the winter as 64.53% and 72.22% of the retrievals are within the EE but with less retrievals. However, the DB algorithm performs worst (57.17%) in summer mainly affected by the vegetation growth but there are overall high accuracies with more than 62% of the collections falling within the EE in other three seasons. Results suggest that the quality assurance process can help improve the overall data quality for MYD04 DB retrievals, but it is not always true for VIIRS EDR and MYD04 DT AOD retrievals.

  12. A Novel Hybrid Classification Model of Genetic Algorithms, Modified k-Nearest Neighbor and Developed Backpropagation Neural Network

    PubMed Central

    Salari, Nader; Shohaimi, Shamarina; Najafi, Farid; Nallappan, Meenakshii; Karishnarajah, Isthrinayagy

    2014-01-01

    Among numerous artificial intelligence approaches, k-Nearest Neighbor algorithms, genetic algorithms, and artificial neural networks are considered as the most common and effective methods in classification problems in numerous studies. In the present study, the results of the implementation of a novel hybrid feature selection-classification model using the above mentioned methods are presented. The purpose is benefitting from the synergies obtained from combining these technologies for the development of classification models. Such a combination creates an opportunity to invest in the strength of each algorithm, and is an approach to make up for their deficiencies. To develop proposed model, with the aim of obtaining the best array of features, first, feature ranking techniques such as the Fisher's discriminant ratio and class separability criteria were used to prioritize features. Second, the obtained results that included arrays of the top-ranked features were used as the initial population of a genetic algorithm to produce optimum arrays of features. Third, using a modified k-Nearest Neighbor method as well as an improved method of backpropagation neural networks, the classification process was advanced based on optimum arrays of the features selected by genetic algorithms. The performance of the proposed model was compared with thirteen well-known classification models based on seven datasets. Furthermore, the statistical analysis was performed using the Friedman test followed by post-hoc tests. The experimental findings indicated that the novel proposed hybrid model resulted in significantly better classification performance compared with all 13 classification methods. Finally, the performance results of the proposed model was benchmarked against the best ones reported as the state-of-the-art classifiers in terms of classification accuracy for the same data sets. The substantial findings of the comprehensive comparative study revealed that performance of the proposed model in terms of classification accuracy is desirable, promising, and competitive to the existing state-of-the-art classification models. PMID:25419659

  13. A single chip VLSI Reed-Solomon decoder

    NASA Technical Reports Server (NTRS)

    Shao, H. M.; Truong, T. K.; Hsu, I. S.; Deutsch, L. J.; Reed, I. S.

    1986-01-01

    A new VLSI design of a pipeline Reed-Solomon decoder is presented. The transform decoding technique used in a previous design is replaced by a time domain algorithm. A new architecture that implements such an algorithm permits efficient pipeline processing with minimum circuitry. A systolic array is also developed to perform erasure corrections in the new design. A modified form of Euclid's algorithm is implemented by a new architecture that maintains the throughput rate with less circuitry. Such improvements result in both enhanced capability and a significant reduction in silicon area, therefore making it possible to build a pipeline (31,15)RS decoder on a single VLSI chip.

  14. Ocean observations with EOS/MODIS: Algorithm Development and Post Launch Studies

    NASA Technical Reports Server (NTRS)

    Gordon, Howard R.

    1998-01-01

    Significant accomplishments made during the present reporting period: (1) We expanded our "spectral-matching" algorithm (SMA), for identifying the presence of absorbing aerosols and simultaneously performing atmospheric correction and derivation of the ocean's bio-optical parameters, to the point where it could be added as a subroutine to the MODIS water-leaving radiance algorithm; (2) A modification to the SMA that does not require detailed aerosol models has been developed. This is important as the requirement for realistic aerosol models has been a weakness of the SMA; and (3) We successfully acquired micro pulse lidar data in a Saharan dust outbreak during ACE-2 in the Canary Islands.

  15. EIT image regularization by a new Multi-Objective Simulated Annealing algorithm.

    PubMed

    Castro Martins, Thiago; Sales Guerra Tsuzuki, Marcos

    2015-01-01

    Multi-Objective Optimization can be used to produce regularized Electrical Impedance Tomography (EIT) images where the weight of the regularization term is not known a priori. This paper proposes a novel Multi-Objective Optimization algorithm based on Simulated Annealing tailored for EIT image reconstruction. Images are reconstructed from experimental data and compared with images from other Multi and Single Objective optimization methods. A significant performance enhancement from traditional techniques can be inferred from the results.

  16. AUC-Maximizing Ensembles through Metalearning.

    PubMed

    LeDell, Erin; van der Laan, Mark J; Petersen, Maya

    2016-05-01

    Area Under the ROC Curve (AUC) is often used to measure the performance of an estimator in binary classification problems. An AUC-maximizing classifier can have significant advantages in cases where ranking correctness is valued or if the outcome is rare. In a Super Learner ensemble, maximization of the AUC can be achieved by the use of an AUC-maximining metalearning algorithm. We discuss an implementation of an AUC-maximization technique that is formulated as a nonlinear optimization problem. We also evaluate the effectiveness of a large number of different nonlinear optimization algorithms to maximize the cross-validated AUC of the ensemble fit. The results provide evidence that AUC-maximizing metalearners can, and often do, out-perform non-AUC-maximizing metalearning methods, with respect to ensemble AUC. The results also demonstrate that as the level of imbalance in the training data increases, the Super Learner ensemble outperforms the top base algorithm by a larger degree.

  17. AUC-Maximizing Ensembles through Metalearning

    PubMed Central

    LeDell, Erin; van der Laan, Mark J.; Peterson, Maya

    2016-01-01

    Area Under the ROC Curve (AUC) is often used to measure the performance of an estimator in binary classification problems. An AUC-maximizing classifier can have significant advantages in cases where ranking correctness is valued or if the outcome is rare. In a Super Learner ensemble, maximization of the AUC can be achieved by the use of an AUC-maximining metalearning algorithm. We discuss an implementation of an AUC-maximization technique that is formulated as a nonlinear optimization problem. We also evaluate the effectiveness of a large number of different nonlinear optimization algorithms to maximize the cross-validated AUC of the ensemble fit. The results provide evidence that AUC-maximizing metalearners can, and often do, out-perform non-AUC-maximizing metalearning methods, with respect to ensemble AUC. The results also demonstrate that as the level of imbalance in the training data increases, the Super Learner ensemble outperforms the top base algorithm by a larger degree. PMID:27227721

  18. [Algorithm for the prevention of female genital mutilation. Case study from primary care].

    PubMed

    Alcón Belchí, Carolina; Jiménez Ruiz, Ismael; Pastor Bravo, María del Mar; Almansa Martínez, Pilar

    2016-03-01

    Create and implement a protocol for identifying and preventing female genital mutilation in a municipality of the Region of Murcia. A bibliographical review and significant databases were consulted for the creation of the algorithm performance. These include Cuiden, Dialnet, Medes, Medline, and other documentary sources of interest. The instrument for data collection was completed by interviewing parents of girls at risk. The multi-disciplinary team was formed; the female genital mutilation risk cases were collected, and were summoned to the nursing consulting room. Two girls had been mutilated, the rest were at risk of female genital mutilation, and in one case the risk was imminent. The algorithm designed guides practitioners in their performance, achieving an effective detection and prevention of genital mutilation of girls. This is a first approach to the development of a regional protocol. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.

  19. Image quality classification for DR screening using deep learning.

    PubMed

    FengLi Yu; Jing Sun; Annan Li; Jun Cheng; Cheng Wan; Jiang Liu

    2017-07-01

    The quality of input images significantly affects the outcome of automated diabetic retinopathy (DR) screening systems. Unlike the previous methods that only consider simple low-level features such as hand-crafted geometric and structural features, in this paper we propose a novel method for retinal image quality classification (IQC) that performs computational algorithms imitating the working of the human visual system. The proposed algorithm combines unsupervised features from saliency map and supervised features coming from convolutional neural networks (CNN), which are fed to an SVM to automatically detect high quality vs poor quality retinal fundus images. We demonstrate the superior performance of our proposed algorithm on a large retinal fundus image dataset and the method could achieve higher accuracy than other methods. Although retinal images are used in this study, the methodology is applicable to the image quality assessment and enhancement of other types of medical images.

  20. Prediction based active ramp metering control strategy with mobility and safety assessment

    NASA Astrophysics Data System (ADS)

    Fang, Jie; Tu, Lili

    2018-04-01

    Ramp metering is one of the most direct and efficient motorway traffic flow management measures so as to improve traffic conditions. However, owing to short of traffic conditions prediction, in earlier studies, the impact on traffic flow dynamics of the applied RM control was not quantitatively evaluated. In this study, a RM control algorithm adopting Model Predictive Control (MPC) framework to predict and assess future traffic conditions, which taking both the current traffic conditions and the RM-controlled future traffic states into consideration, was presented. The designed RM control algorithm targets at optimizing the network mobility and safety performance. The designed algorithm is evaluated in a field-data-based simulation. Through comparing the presented algorithm controlled scenario with the uncontrolled scenario, it was proved that the proposed RM control algorithm can effectively relieve the congestion of traffic network with no significant compromises in safety aspect.

  1. Science Concierge: A Fast Content-Based Recommendation System for Scientific Publications.

    PubMed

    Achakulvisut, Titipat; Acuna, Daniel E; Ruangrong, Tulakan; Kording, Konrad

    2016-01-01

    Finding relevant publications is important for scientists who have to cope with exponentially increasing numbers of scholarly material. Algorithms can help with this task as they help for music, movie, and product recommendations. However, we know little about the performance of these algorithms with scholarly material. Here, we develop an algorithm, and an accompanying Python library, that implements a recommendation system based on the content of articles. Design principles are to adapt to new content, provide near-real time suggestions, and be open source. We tested the library on 15K posters from the Society of Neuroscience Conference 2015. Human curated topics are used to cross validate parameters in the algorithm and produce a similarity metric that maximally correlates with human judgments. We show that our algorithm significantly outperformed suggestions based on keywords. The work presented here promises to make the exploration of scholarly material faster and more accurate.

  2. Particle swarm optimization based space debris surveillance network scheduling

    NASA Astrophysics Data System (ADS)

    Jiang, Hai; Liu, Jing; Cheng, Hao-Wen; Zhang, Yao

    2017-02-01

    The increasing number of space debris has created an orbital debris environment that poses increasing impact risks to existing space systems and human space flights. For the safety of in-orbit spacecrafts, we should optimally schedule surveillance tasks for the existing facilities to allocate resources in a manner that most significantly improves the ability to predict and detect events involving affected spacecrafts. This paper analyzes two criteria that mainly affect the performance of a scheduling scheme and introduces an artificial intelligence algorithm into the scheduling of tasks of the space debris surveillance network. A new scheduling algorithm based on the particle swarm optimization algorithm is proposed, which can be implemented in two different ways: individual optimization and joint optimization. Numerical experiments with multiple facilities and objects are conducted based on the proposed algorithm, and simulation results have demonstrated the effectiveness of the proposed algorithm.

  3. Science Concierge: A Fast Content-Based Recommendation System for Scientific Publications

    PubMed Central

    Achakulvisut, Titipat; Acuna, Daniel E.; Ruangrong, Tulakan; Kording, Konrad

    2016-01-01

    Finding relevant publications is important for scientists who have to cope with exponentially increasing numbers of scholarly material. Algorithms can help with this task as they help for music, movie, and product recommendations. However, we know little about the performance of these algorithms with scholarly material. Here, we develop an algorithm, and an accompanying Python library, that implements a recommendation system based on the content of articles. Design principles are to adapt to new content, provide near-real time suggestions, and be open source. We tested the library on 15K posters from the Society of Neuroscience Conference 2015. Human curated topics are used to cross validate parameters in the algorithm and produce a similarity metric that maximally correlates with human judgments. We show that our algorithm significantly outperformed suggestions based on keywords. The work presented here promises to make the exploration of scholarly material faster and more accurate. PMID:27383424

  4. Ant Colony Optimization With Local Search for Dynamic Traveling Salesman Problems.

    PubMed

    Mavrovouniotis, Michalis; Muller, Felipe M; Yang, Shengxiang

    2016-06-13

    For a dynamic traveling salesman problem (DTSP), the weights (or traveling times) between two cities (or nodes) may be subject to changes. Ant colony optimization (ACO) algorithms have proved to be powerful methods to tackle such problems due to their adaptation capabilities. It has been shown that the integration of local search operators can significantly improve the performance of ACO. In this paper, a memetic ACO algorithm, where a local search operator (called unstring and string) is integrated into ACO, is proposed to address DTSPs. The best solution from ACO is passed to the local search operator, which removes and inserts cities in such a way that improves the solution quality. The proposed memetic ACO algorithm is designed to address both symmetric and asymmetric DTSPs. The experimental results show the efficiency of the proposed memetic algorithm for addressing DTSPs in comparison with other state-of-the-art algorithms.

  5. [An improved algorithm for electrohysterogram envelope extraction].

    PubMed

    Lu, Yaosheng; Pan, Jie; Chen, Zhaoxia; Chen, Zhaoxia

    2017-02-01

    Extraction uterine contraction signal from abdominal uterine electromyogram(EMG) signal is considered as the most promising method to replace the traditional tocodynamometer(TOCO) for detecting uterine contractions activity. The traditional root mean square(RMS) algorithm has only some limited values in canceling the impulsive noise. In our study, an improved algorithm for uterine EMG envelope extraction was proposed to overcome the problem. Firstly, in our experiment, zero-crossing detection method was used to separate the burst of uterine electrical activity from the raw uterine EMG signal. After processing the separated signals by employing two filtering windows which have different width, we used the traditional RMS algorithm to extract uterus EMG envelope. To assess the performance of the algorithm, the improved algorithm was compared with two existing intensity of uterine electromyogram(IEMG) extraction algorithms. The results showed that the improved algorithm was better than the traditional ones in eliminating impulsive noise present in the uterine EMG signal. The measurement sensitivity and positive predictive value(PPV) of the improved algorithm were 0.952 and 0.922, respectively, which were not only significantly higher than the corresponding values(0.859 and 0.847) of the first comparison algorithm, but also higher than the values(0.928 and 0.877) of the second comparison algorithm. Thus the new method is reliable and effective.

  6. Comment on 'Modeling of Convective-Stratiform Precipitation Processes: Sensitivity to Partitioning Methods' by Matthias Steiner

    NASA Technical Reports Server (NTRS)

    Lang, Steve; Tao, W.-K.; Simpson, J.; Ferrier, B.

    2003-01-01

    Despite the obvious notion that the presence of hail or graupel is a good indication of convection, the model results show this does not provide an objective benchmark partly due to the unrealistic presence of small amounts of hail or graupel throughout the anvil in the model but mainly because of the significant amounts of hail or graupel, especially in the tropical TOGA COARE simulation, in the transition zone. Without use of a "transition" category, it is open to debate as how this region should best be defined, as stratiform or as convective. So, the presence of significant hail or graupel contents in this zone significantly degrades its use an objective benchmark for convection. The separation algorithm comparison was done in the context of a cloud-resolving model. These models are widely used and serve a variety of purposes especially with regard to retrieving information that cannot be directly measured by providing synthetic data sets that are consistent and complete. Separation algorithms are regularly applied in these models. However, as with any modeling system, these types 'of models are constantly being improved to overcome any known deficiencies and make them more accurate representations of observed systems. The presence of hail and graupel in the anvil and the bias towards heavy rainfall rates are two such examples of areas that need improvement. Since, both of these can effect the perceived performance of the separation algorithms, the Lang et al. (2003) study did not want to overstate the relative performance of any specific algorithms.

  7. Reducing false asystole alarms in intensive care.

    PubMed

    Dekimpe, Remi; Heldt, Thomas

    2017-07-01

    High rates of false monitoring alarms in intensive care can desensitize staff and therefore pose a significant risk to patient safety. Like other critical arrhythmia alarms, asystole alarms require immediate attention by the care providers as a true asystole event can be acutely life threatening. Here, it is illustrated that most false asystole alarms can be attributed to poor signal quality, and we propose and evaluate an algorithm to identify data windows of poor signal quality and thereby help suppress false asystole alarms. The algorithm combines intuitive signal-quality features (degree of signal saturation and baseline wander) and information from other physiological signals that might be available. Algorithm training and testing was performed on the MIMIC II and 2015 PhysioNet/Computing in Cardiology Challenge databases, respectively. The algorithm achieved an alarm specificity of 81.0% and sensitivity of 95.4%, missing only one out of 22 true asystole alarms. On a separate neonatal data set, the algorithm was able to reject 89.7% (890 out of 992) of false asystole alarms while keeping all 22 true events. The results show that the false asystole alarm rate can be significantly reduced through basic signal quality evaluation.

  8. Fingerprint Identification Using SIFT-Based Minutia Descriptors and Improved All Descriptor-Pair Matching

    PubMed Central

    Zhou, Ru; Zhong, Dexing; Han, Jiuqiang

    2013-01-01

    The performance of conventional minutiae-based fingerprint authentication algorithms degrades significantly when dealing with low quality fingerprints with lots of cuts or scratches. A similar degradation of the minutiae-based algorithms is observed when small overlapping areas appear because of the quite narrow width of the sensors. Based on the detection of minutiae, Scale Invariant Feature Transformation (SIFT) descriptors are employed to fulfill verification tasks in the above difficult scenarios. However, the original SIFT algorithm is not suitable for fingerprint because of: (1) the similar patterns of parallel ridges; and (2) high computational resource consumption. To enhance the efficiency and effectiveness of the algorithm for fingerprint verification, we propose a SIFT-based Minutia Descriptor (SMD) to improve the SIFT algorithm through image processing, descriptor extraction and matcher. A two-step fast matcher, named improved All Descriptor-Pair Matching (iADM), is also proposed to implement the 1:N verifications in real-time. Fingerprint Identification using SMD and iADM (FISiA) achieved a significant improvement with respect to accuracy in representative databases compared with the conventional minutiae-based method. The speed of FISiA also can meet real-time requirements. PMID:23467056

  9. Nonstationary EO/IR Clutter Suppression and Dim Object Tracking

    NASA Astrophysics Data System (ADS)

    Tartakovsky, A.; Brown, A.; Brown, J.

    2010-09-01

    We develop and evaluate the performance of advanced algorithms which provide significantly improved capabilities for automated detection and tracking of ballistic and flying dim objects in the presence of highly structured intense clutter. Applications include ballistic missile early warning, midcourse tracking, trajectory prediction, and resident space object detection and tracking. The set of algorithms include, in particular, adaptive spatiotemporal clutter estimation-suppression and nonlinear filtering-based multiple-object track-before-detect. These algorithms are suitable for integration into geostationary, highly elliptical, or low earth orbit scanning or staring sensor suites, and are based on data-driven processing that adapts to real-world clutter backgrounds, including celestial, earth limb, or terrestrial clutter. In many scenarios of interest, e.g., for highly elliptic and, especially, low earth orbits, the resulting clutter is highly nonstationary, providing a significant challenge for clutter suppression to or below sensor noise levels, which is essential for dim object detection and tracking. We demonstrate the success of the developed algorithms using semi-synthetic and real data. In particular, our algorithms are shown to be capable of detecting and tracking point objects with signal-to-clutter levels down to 1/1000 and signal-to-noise levels down to 1/4.

  10. Hierarchical heuristic search using a Gaussian mixture model for UAV coverage planning.

    PubMed

    Lin, Lanny; Goodrich, Michael A

    2014-12-01

    During unmanned aerial vehicle (UAV) search missions, efficient use of UAV flight time requires flight paths that maximize the probability of finding the desired subject. The probability of detecting the desired subject based on UAV sensor information can vary in different search areas due to environment elements like varying vegetation density or lighting conditions, making it likely that the UAV can only partially detect the subject. This adds another dimension of complexity to the already difficult (NP-Hard) problem of finding an optimal search path. We present a new class of algorithms that account for partial detection in the form of a task difficulty map and produce paths that approximate the payoff of optimal solutions. The algorithms use the mode goodness ratio heuristic that uses a Gaussian mixture model to prioritize search subregions. The algorithms search for effective paths through the parameter space at different levels of resolution. We compare the performance of the new algorithms against two published algorithms (Bourgault's algorithm and LHC-GW-CONV algorithm) in simulated searches with three real search and rescue scenarios, and show that the new algorithms outperform existing algorithms significantly and can yield efficient paths that yield payoffs near the optimal.

  11. Performance Evaluation of Machine Learning Methods for Leaf Area Index Retrieval from Time-Series MODIS Reflectance Data

    PubMed Central

    Wang, Tongtong; Xiao, Zhiqiang; Liu, Zhigang

    2017-01-01

    Leaf area index (LAI) is an important biophysical parameter and the retrieval of LAI from remote sensing data is the only feasible method for generating LAI products at regional and global scales. However, most LAI retrieval methods use satellite observations at a specific time to retrieve LAI. Because of the impacts of clouds and aerosols, the LAI products generated by these methods are spatially incomplete and temporally discontinuous, and thus they cannot meet the needs of practical applications. To generate high-quality LAI products, four machine learning algorithms, including back-propagation neutral network (BPNN), radial basis function networks (RBFNs), general regression neutral networks (GRNNs), and multi-output support vector regression (MSVR) are proposed to retrieve LAI from time-series Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance data in this study and performance of these machine learning algorithms is evaluated. The results demonstrated that GRNNs, RBFNs, and MSVR exhibited low sensitivity to training sample size, whereas BPNN had high sensitivity. The four algorithms performed slightly better with red, near infrared (NIR), and short wave infrared (SWIR) bands than red and NIR bands, and the results were significantly better than those obtained using single band reflectance data (red or NIR). Regardless of band composition, GRNNs performed better than the other three methods. Among the four algorithms, BPNN required the least training time, whereas MSVR needed the most for any sample size. PMID:28045443

  12. Performance Evaluation of Machine Learning Methods for Leaf Area Index Retrieval from Time-Series MODIS Reflectance Data.

    PubMed

    Wang, Tongtong; Xiao, Zhiqiang; Liu, Zhigang

    2017-01-01

    Leaf area index (LAI) is an important biophysical parameter and the retrieval of LAI from remote sensing data is the only feasible method for generating LAI products at regional and global scales. However, most LAI retrieval methods use satellite observations at a specific time to retrieve LAI. Because of the impacts of clouds and aerosols, the LAI products generated by these methods are spatially incomplete and temporally discontinuous, and thus they cannot meet the needs of practical applications. To generate high-quality LAI products, four machine learning algorithms, including back-propagation neutral network (BPNN), radial basis function networks (RBFNs), general regression neutral networks (GRNNs), and multi-output support vector regression (MSVR) are proposed to retrieve LAI from time-series Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance data in this study and performance of these machine learning algorithms is evaluated. The results demonstrated that GRNNs, RBFNs, and MSVR exhibited low sensitivity to training sample size, whereas BPNN had high sensitivity. The four algorithms performed slightly better with red, near infrared (NIR), and short wave infrared (SWIR) bands than red and NIR bands, and the results were significantly better than those obtained using single band reflectance data (red or NIR). Regardless of band composition, GRNNs performed better than the other three methods. Among the four algorithms, BPNN required the least training time, whereas MSVR needed the most for any sample size.

  13. An Elegant Sufficiency: Load-Aware Differentiated Scheduling of Data Transfers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kettimuthu, Rajkumar; Vardoyan, Gayane; Agrawal, Gagan

    2015-11-15

    We investigate the file transfer scheduling problem, where transfers among different endpoints must be scheduled to maximize pertinent metrics. We propose two new algorithms that exploit the fact that the aggregate bandwidth obtained over a network or at a storage system tends to increase with the number of concurrent transfers—but only up to a certain limit. The first algorithm, SEAL, uses runtime information and data-driven models to approximate system load and adapt transfer schedules and concurrency so as to maximize performance while avoiding saturation. We implement this algorithm using GridFTP as the transfer protocol and evaluate it using real transfermore » logs in a production WAN environment. Results show that SEAL can improve average slowdowns and turnaround times by up to 25% and worst-case slowdown and turnaround times by up to 50%, compared with the best-performing baseline scheme. Our second algorithm, STEAL, further leverages user-supplied categorization of transfers as either “interactive” (requiring immediate processing) or “batch” (less time-critical). Results show that STEAL reduces the average slowdown of interactive transfers by 63% compared to the best-performing baseline and by 21% compared to SEAL. For batch transfers, compared to the best-performing baseline, STEAL improves by 18% the utilization of the bandwidth unused by interactive transfers. By elegantly ensuring a sufficient, but not excessive, allocation of concurrency to the right transfers, we significantly improve overall performance despite constraints.« less

  14. Evaluation of Residual Static Corrections by Hybrid Genetic Algorithm Steepest Ascent Autostatics Inversion.Application southern Algerian fields

    NASA Astrophysics Data System (ADS)

    Eladj, Said; bansir, fateh; ouadfeul, sid Ali

    2016-04-01

    The application of genetic algorithm starts with an initial population of chromosomes representing a "model space". Chromosome chains are preferentially Reproduced based on Their fitness Compared to the total population. However, a good chromosome has a Greater opportunity to Produce offspring Compared To other chromosomes in the population. The advantage of the combination HGA / SAA is the use of a global search approach on a large population of local maxima to Improve Significantly the performance of the method. To define the parameters of the Hybrid Genetic Algorithm Steepest Ascent Auto Statics (HGA / SAA) job, we Evaluated by testing in the first stage of "Steepest Ascent," the optimal parameters related to the data used. 1- The number of iterations "Number of hill climbing iteration" is equal to 40 iterations. This parameter defines the participation of the algorithm "SA", in this hybrid approach. 2- The minimum eigenvalue for SA '= 0.8. This is linked to the quality of data and S / N ratio. To find an implementation performance of hybrid genetic algorithms in the inversion for estimating of the residual static corrections, tests Were Performed to determine the number of generation of HGA / SAA. Using the values of residual static corrections already calculated by the Approaches "SAA and CSAA" learning has Proved very effective in the building of the cross-correlation table. To determine the optimal number of generation, we Conducted a series of tests ranging from [10 to 200] generations. The application on real seismic data in southern Algeria allowed us to judge the performance and capacity of the inversion with this hybrid method "HGA / SAA". This experience Clarified the influence of the corrections quality estimated from "SAA / CSAA" and the optimum number of generation hybrid genetic algorithm "HGA" required to have a satisfactory performance. Twenty (20) generations Were enough to Improve continuity and resolution of seismic horizons. This Will allow us to achieve a more accurate structural interpretation Key words: Hybrid Genetic Algorithm, number of generations, model space, local maxima, Number of hill climbing iteration, Minimum eigenvalue, cross-correlation table

  15. Performance of the Wavelet Decomposition on Massively Parallel Architectures

    NASA Technical Reports Server (NTRS)

    El-Ghazawi, Tarek A.; LeMoigne, Jacqueline; Zukor, Dorothy (Technical Monitor)

    2001-01-01

    Traditionally, Fourier Transforms have been utilized for performing signal analysis and representation. But although it is straightforward to reconstruct a signal from its Fourier transform, no local description of the signal is included in its Fourier representation. To alleviate this problem, Windowed Fourier transforms and then wavelet transforms have been introduced, and it has been proven that wavelets give a better localization than traditional Fourier transforms, as well as a better division of the time- or space-frequency plane than Windowed Fourier transforms. Because of these properties and after the development of several fast algorithms for computing the wavelet representation of any signal, in particular the Multi-Resolution Analysis (MRA) developed by Mallat, wavelet transforms have increasingly been applied to signal analysis problems, especially real-life problems, in which speed is critical. In this paper we present and compare efficient wavelet decomposition algorithms on different parallel architectures. We report and analyze experimental measurements, using NASA remotely sensed images. Results show that our algorithms achieve significant performance gains on current high performance parallel systems, and meet scientific applications and multimedia requirements. The extensive performance measurements collected over a number of high-performance computer systems have revealed important architectural characteristics of these systems, in relation to the processing demands of the wavelet decomposition of digital images.

  16. A theoretical comparison of evolutionary algorithms and simulated annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, W.E.

    1995-08-28

    This paper theoretically compares the performance of simulated annealing and evolutionary algorithms. Our main result is that under mild conditions a wide variety of evolutionary algorithms can be shown to have greater performance than simulated annealing after a sufficiently large number of function evaluations. This class of EAs includes variants of evolutionary strategie and evolutionary programming, the canonical genetic algorithm, as well as a variety of genetic algorithms that have been applied to combinatorial optimization problems. The proof of this result is based on a performance analysis of a very general class of stochastic optimization algorithms, which has implications formore » the performance of a variety of other optimization algorithm.« less

  17. The Effect of Shadow Area on Sgm Algorithm and Disparity Map Refinement from High Resolution Satellite Stereo Images

    NASA Astrophysics Data System (ADS)

    Tatar, N.; Saadatseresht, M.; Arefi, H.

    2017-09-01

    Semi Global Matching (SGM) algorithm is known as a high performance and reliable stereo matching algorithm in photogrammetry community. However, there are some challenges using this algorithm especially for high resolution satellite stereo images over urban areas and images with shadow areas. As it can be seen, unfortunately the SGM algorithm computes highly noisy disparity values for shadow areas around the tall neighborhood buildings due to mismatching in these lower entropy areas. In this paper, a new method is developed to refine the disparity map in shadow areas. The method is based on the integration of potential of panchromatic and multispectral image data to detect shadow areas in object level. In addition, a RANSAC plane fitting and morphological filtering are employed to refine the disparity map. The results on a stereo pair of GeoEye-1 captured over Qom city in Iran, shows a significant increase in the rate of matched pixels compared to standard SGM algorithm.

  18. Effects of high-order correlations on personalized recommendations for bipartite networks

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Guo; Zhou, Tao; Che, Hong-An; Wang, Bing-Hong; Zhang, Yi-Cheng

    2010-02-01

    In this paper, we introduce a modified collaborative filtering (MCF) algorithm, which has remarkably higher accuracy than the standard collaborative filtering. In the MCF, instead of the cosine similarity index, the user-user correlations are obtained by a diffusion process. Furthermore, by considering the second-order correlations, we design an effective algorithm that depresses the influence of mainstream preferences. Simulation results show that the algorithmic accuracy, measured by the average ranking score, is further improved by 20.45% and 33.25% in the optimal cases of MovieLens and Netflix data. More importantly, the optimal value λ depends approximately monotonously on the sparsity of the training set. Given a real system, we could estimate the optimal parameter according to the data sparsity, which makes this algorithm easy to be applied. In addition, two significant criteria of algorithmic performance, diversity and popularity, are also taken into account. Numerical results show that as the sparsity increases, the algorithm considering the second-order correlation can outperform the MCF simultaneously in all three criteria.

  19. Radionuclide identification algorithm for organic scintillator-based radiation portal monitor

    NASA Astrophysics Data System (ADS)

    Paff, Marc Gerrit; Di Fulvio, Angela; Clarke, Shaun D.; Pozzi, Sara A.

    2017-03-01

    We have developed an algorithm for on-the-fly radionuclide identification for radiation portal monitors using organic scintillation detectors. The algorithm was demonstrated on experimental data acquired with our pedestrian portal monitor on moving special nuclear material and industrial sources at a purpose-built radiation portal monitor testing facility. The experimental data also included common medical isotopes. The algorithm takes the power spectral density of the cumulative distribution function of the measured pulse height distributions and matches these to reference spectra using a spectral angle mapper. F-score analysis showed that the new algorithm exhibited significant performance improvements over previously implemented radionuclide identification algorithms for organic scintillators. Reliable on-the-fly radionuclide identification would help portal monitor operators more effectively screen out the hundreds of thousands of nuisance alarms they encounter annually due to recent nuclear-medicine patients and cargo containing naturally occurring radioactive material. Portal monitor operators could instead focus on the rare but potentially high impact incidents of nuclear and radiological material smuggling detection for which portal monitors are intended.

  20. Real time target allocation in cooperative unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Kudleppanavar, Ganesh

    The prolific development of Unmanned Aerial Vehicles (UAV's) in recent years has the potential to provide tremendous advantages in military, commercial and law enforcement applications. While safety and performance take precedence in the development lifecycle, autonomous operations and, in particular, cooperative missions have the ability to significantly enhance the usability of these vehicles. The success of cooperative missions relies on the optimal allocation of targets while taking into consideration the resource limitation of each vehicle. The task allocation process can be centralized or decentralized. This effort presents the development of a real time target allocation algorithm that considers available stored energy in each vehicle while minimizing the communication between each UAV. The algorithm utilizes a nearest neighbor search algorithm to locate new targets with respect to existing targets. Simulations show that this novel algorithm compares favorably to the mixed integer linear programming method, which is computationally more expensive. The implementation of this algorithm on Arduino and Xbee wireless modules shows the capability of the algorithm to execute efficiently on hardware with minimum computation complexity.

  1. Simulation for noise cancellation using LMS adaptive filter

    NASA Astrophysics Data System (ADS)

    Lee, Jia-Haw; Ooi, Lu-Ean; Ko, Ying-Hao; Teoh, Choe-Yung

    2017-06-01

    In this paper, the fundamental algorithm of noise cancellation, Least Mean Square (LMS) algorithm is studied and enhanced with adaptive filter. The simulation of the noise cancellation using LMS adaptive filter algorithm is developed. The noise corrupted speech signal and the engine noise signal are used as inputs for LMS adaptive filter algorithm. The filtered signal is compared to the original noise-free speech signal in order to highlight the level of attenuation of the noise signal. The result shows that the noise signal is successfully canceled by the developed adaptive filter. The difference of the noise-free speech signal and filtered signal are calculated and the outcome implies that the filtered signal is approaching the noise-free speech signal upon the adaptive filtering. The frequency range of the successfully canceled noise by the LMS adaptive filter algorithm is determined by performing Fast Fourier Transform (FFT) on the signals. The LMS adaptive filter algorithm shows significant noise cancellation at lower frequency range.

  2. A new bio-optical algorithm for the remote sensing of algal blooms in complex ocean waters

    NASA Astrophysics Data System (ADS)

    Shanmugam, Palanisamy

    2011-04-01

    A new bio-optical algorithm has been developed to provide accurate assessments of chlorophyll a (Chl a) concentration for detection and mapping of algal blooms from satellite data in optically complex waters, where the presence of suspended sediments and dissolved substances can interfere with phytoplankton signal and thus confound conventional band ratio algorithms. A global data set of concurrent measurements of pigment concentration and radiometric reflectance was compiled and used to develop this algorithm that uses the normalized water-leaving radiance ratios along with an algal bloom index (ABI) between three visible bands to determine Chl a concentrations. The algorithm is derived using Sea-viewing Wide Field-of-view Sensor bands, and it is subsequently tuned to be applicable to Moderate Resolution Imaging Spectroradiometer (MODIS)/Aqua data. When compared with large in situ data sets and satellite matchups in a variety of coastal and ocean waters the present algorithm makes good retrievals of the Chl a concentration and shows statistically significant improvement over current global algorithms (e.g., OC3 and OC4v4). An examination of the performance of these algorithms on several MODIS/Aqua images in complex waters of the Arabian Sea and west Florida shelf shows that the new algorithm provides a better means for detecting and differentiating algal blooms from other turbid features, whereas the OC3 algorithm has significant errors although yielding relatively consistent results in clear waters. These findings imply that, provided that an accurate atmospheric correction scheme is available to deal with complex waters, the current MODIS/Aqua, MERIS and OCM data could be extensively used for quantitative and operational monitoring of algal blooms in various regional and global waters.

  3. A grammar-based semantic similarity algorithm for natural language sentences.

    PubMed

    Lee, Ming Che; Chang, Jia Wei; Hsieh, Tung Cheng

    2014-01-01

    This paper presents a grammar and semantic corpus based similarity algorithm for natural language sentences. Natural language, in opposition to "artificial language", such as computer programming languages, is the language used by the general public for daily communication. Traditional information retrieval approaches, such as vector models, LSA, HAL, or even the ontology-based approaches that extend to include concept similarity comparison instead of cooccurrence terms/words, may not always determine the perfect matching while there is no obvious relation or concept overlap between two natural language sentences. This paper proposes a sentence similarity algorithm that takes advantage of corpus-based ontology and grammatical rules to overcome the addressed problems. Experiments on two famous benchmarks demonstrate that the proposed algorithm has a significant performance improvement in sentences/short-texts with arbitrary syntax and structure.

  4. Study of genetic direct search algorithms for function optimization

    NASA Technical Reports Server (NTRS)

    Zeigler, B. P.

    1974-01-01

    The results are presented of a study to determine the performance of genetic direct search algorithms in solving function optimization problems arising in the optimal and adaptive control areas. The findings indicate that: (1) genetic algorithms can outperform standard algorithms in multimodal and/or noisy optimization situations, but suffer from lack of gradient exploitation facilities when gradient information can be utilized to guide the search. (2) For large populations, or low dimensional function spaces, mutation is a sufficient operator. However for small populations or high dimensional functions, crossover applied in about equal frequency with mutation is an optimum combination. (3) Complexity, in terms of storage space and running time, is significantly increased when population size is increased or the inversion operator, or the second level adaptation routine is added to the basic structure.

  5. Design and implementation of a vision-based hovering and feature tracking algorithm for a quadrotor

    NASA Astrophysics Data System (ADS)

    Lee, Y. H.; Chahl, J. S.

    2016-10-01

    This paper demonstrates an approach to the vision-based control of the unmanned quadrotors for hover and object tracking. The algorithms used the Speed Up Robust Features (SURF) algorithm to detect objects. The pose of the object in the image was then calculated in order to pass the pose information to the flight controller. Finally, the flight controller steered the quadrotor to approach the object based on the calculated pose data. The above processes was run using standard onboard resources found in the 3DR Solo quadrotor in an embedded computing environment. The obtained results showed that the algorithm behaved well during its missions, tracking and hovering, although there were significant latencies due to low CPU performance of the onboard image processing system.

  6. Angiographic CT: in vitro comparison of different carotid artery stents-does stent orientation matter?

    PubMed

    Lettau, Michael; Bendszus, Martin; Hähnel, Stefan

    2013-06-01

    Our aim was to evaluate the in vitro visualization of different carotid artery stents on angiographic CT (ACT). Of particular interest was the influence of stent orientation to the angiography system by measurement of artificial lumen narrowing (ALN) caused by the stent material within the stented vessel segment to determine whether ACT can be used to detect restenosis within the stent. ACT appearances of 17 carotid artery stents of different designs and sizes (4.0 to 11.0 mm) were investigated in vitro. Stents were placed in different orientations to the angiography system. Standard algorithm image reconstruction and stent-optimized algorithm image reconstruction was performed. For each stent, ALN was calculated. With standard algorithm image reconstruction, ALN ranged from 19.0 to 43.6 %. With stent-optimized algorithm image reconstruction, ALN was significantly lower and ranged from 8.2 to 18.7 %. Stent struts could be visualized in all stents. Differences in ALN between the different stent orientations to the angiography system were not significant. ACT evaluation of vessel patency after stent placement is possible but is impaired by ALN. Stent orientation of the stents to the angiography system did not significantly influence ALN. Stent-optimized algorithm image reconstruction decreases ALN but further research is required to define the visibility of in-stent stenosis depending on image reconstruction.

  7. External validation of a publicly available computer assisted diagnostic tool for mammographic mass lesions with two high prevalence research datasets.

    PubMed

    Benndorf, Matthias; Burnside, Elizabeth S; Herda, Christoph; Langer, Mathias; Kotter, Elmar

    2015-08-01

    Lesions detected at mammography are described with a highly standardized terminology: the breast imaging-reporting and data system (BI-RADS) lexicon. Up to now, no validated semantic computer assisted classification algorithm exists to interactively link combinations of morphological descriptors from the lexicon to a probabilistic risk estimate of malignancy. The authors therefore aim at the external validation of the mammographic mass diagnosis (MMassDx) algorithm. A classification algorithm like MMassDx must perform well in a variety of clinical circumstances and in datasets that were not used to generate the algorithm in order to ultimately become accepted in clinical routine. The MMassDx algorithm uses a naïve Bayes network and calculates post-test probabilities of malignancy based on two distinct sets of variables, (a) BI-RADS descriptors and age ("descriptor model") and (b) BI-RADS descriptors, age, and BI-RADS assessment categories ("inclusive model"). The authors evaluate both the MMassDx (descriptor) and MMassDx (inclusive) models using two large publicly available datasets of mammographic mass lesions: the digital database for screening mammography (DDSM) dataset, which contains two subsets from the same examinations-a medio-lateral oblique (MLO) view and cranio-caudal (CC) view dataset-and the mammographic mass (MM) dataset. The DDSM contains 1220 mass lesions and the MM dataset contains 961 mass lesions. The authors evaluate discriminative performance using area under the receiver-operating-characteristic curve (AUC) and compare this to the BI-RADS assessment categories alone (i.e., the clinical performance) using the DeLong method. The authors also evaluate whether assigned probabilistic risk estimates reflect the lesions' true risk of malignancy using calibration curves. The authors demonstrate that the MMassDx algorithms show good discriminatory performance. AUC for the MMassDx (descriptor) model in the DDSM data is 0.876/0.895 (MLO/CC view) and AUC for the MMassDx (inclusive) model in the DDSM data is 0.891/0.900 (MLO/CC view). AUC for the MMassDx (descriptor) model in the MM data is 0.862 and AUC for the MMassDx (inclusive) model in the MM data is 0.900. In all scenarios, MMassDx performs significantly better than clinical performance, P < 0.05 each. The authors furthermore demonstrate that the MMassDx algorithm systematically underestimates the risk of malignancy in the DDSM and MM datasets, especially when low probabilities of malignancy are assigned. The authors' results reveal that the MMassDx algorithms have good discriminatory performance but less accurate calibration when tested on two independent validation datasets. Improvement in calibration and testing in a prospective clinical population will be important steps in the pursuit of translation of these algorithms to the clinic.

  8. Multifractal detrending moving-average cross-correlation analysis

    NASA Astrophysics Data System (ADS)

    Jiang, Zhi-Qiang; Zhou, Wei-Xing

    2011-07-01

    There are a number of situations in which several signals are simultaneously recorded in complex systems, which exhibit long-term power-law cross correlations. The multifractal detrended cross-correlation analysis (MFDCCA) approaches can be used to quantify such cross correlations, such as the MFDCCA based on the detrended fluctuation analysis (MFXDFA) method. We develop in this work a class of MFDCCA algorithms based on the detrending moving-average analysis, called MFXDMA. The performances of the proposed MFXDMA algorithms are compared with the MFXDFA method by extensive numerical experiments on pairs of time series generated from bivariate fractional Brownian motions, two-component autoregressive fractionally integrated moving-average processes, and binomial measures, which have theoretical expressions of the multifractal nature. In all cases, the scaling exponents hxy extracted from the MFXDMA and MFXDFA algorithms are very close to the theoretical values. For bivariate fractional Brownian motions, the scaling exponent of the cross correlation is independent of the cross-correlation coefficient between two time series, and the MFXDFA and centered MFXDMA algorithms have comparative performances, which outperform the forward and backward MFXDMA algorithms. For two-component autoregressive fractionally integrated moving-average processes, we also find that the MFXDFA and centered MFXDMA algorithms have comparative performances, while the forward and backward MFXDMA algorithms perform slightly worse. For binomial measures, the forward MFXDMA algorithm exhibits the best performance, the centered MFXDMA algorithms performs worst, and the backward MFXDMA algorithm outperforms the MFXDFA algorithm when the moment order q<0 and underperforms when q>0. We apply these algorithms to the return time series of two stock market indexes and to their volatilities. For the returns, the centered MFXDMA algorithm gives the best estimates of hxy(q) since its hxy(2) is closest to 0.5, as expected, and the MFXDFA algorithm has the second best performance. For the volatilities, the forward and backward MFXDMA algorithms give similar results, while the centered MFXDMA and the MFXDFA algorithms fail to extract rational multifractal nature.

  9. Missing value imputation for microarray data: a comprehensive comparison study and a web tool

    PubMed Central

    2013-01-01

    Background Microarray data are usually peppered with missing values due to various reasons. However, most of the downstream analyses for microarray data require complete datasets. Therefore, accurate algorithms for missing value estimation are needed for improving the performance of microarray data analyses. Although many algorithms have been developed, there are many debates on the selection of the optimal algorithm. The studies about the performance comparison of different algorithms are still incomprehensive, especially in the number of benchmark datasets used, the number of algorithms compared, the rounds of simulation conducted, and the performance measures used. Results In this paper, we performed a comprehensive comparison by using (I) thirteen datasets, (II) nine algorithms, (III) 110 independent runs of simulation, and (IV) three types of measures to evaluate the performance of each imputation algorithm fairly. First, the effects of different types of microarray datasets on the performance of each imputation algorithm were evaluated. Second, we discussed whether the datasets from different species have different impact on the performance of different algorithms. To assess the performance of each algorithm fairly, all evaluations were performed using three types of measures. Our results indicate that the performance of an imputation algorithm mainly depends on the type of a dataset but not on the species where the samples come from. In addition to the statistical measure, two other measures with biological meanings are useful to reflect the impact of missing value imputation on the downstream data analyses. Our study suggests that local-least-squares-based methods are good choices to handle missing values for most of the microarray datasets. Conclusions In this work, we carried out a comprehensive comparison of the algorithms for microarray missing value imputation. Based on such a comprehensive comparison, researchers could choose the optimal algorithm for their datasets easily. Moreover, new imputation algorithms could be compared with the existing algorithms using this comparison strategy as a standard protocol. In addition, to assist researchers in dealing with missing values easily, we built a web-based and easy-to-use imputation tool, MissVIA (http://cosbi.ee.ncku.edu.tw/MissVIA), which supports many imputation algorithms. Once users upload a real microarray dataset and choose the imputation algorithms, MissVIA will determine the optimal algorithm for the users' data through a series of simulations, and then the imputed results can be downloaded for the downstream data analyses. PMID:24565220

  10. A novel power efficient location-based cooperative routing with transmission power-upper-limit for wireless sensor networks.

    PubMed

    Shi, Juanfei; Calveras, Anna; Cheng, Ye; Liu, Kai

    2013-05-15

    The extensive usage of wireless sensor networks (WSNs) has led to the development of many power- and energy-efficient routing protocols. Cooperative routing in WSNs can improve performance in these types of networks. In this paper we discuss the existing proposals and we propose a routing algorithm for wireless sensor networks called Power Efficient Location-based Cooperative Routing with Transmission Power-upper-limit (PELCR-TP). The algorithm is based on the principle of minimum link power and aims to take advantage of nodes cooperation to make the link work well in WSNs with a low transmission power. In the proposed scheme, with a determined transmission power upper limit, nodes find the most appropriate next nodes and single-relay nodes with the proposed algorithm. Moreover, this proposal subtly avoids non-working nodes, because we add a Bad nodes Avoidance Strategy (BAS). Simulation results show that the proposed algorithm with BAS can significantly improve the performance in reducing the overall link power, enhancing the transmission success rate and decreasing the retransmission rate.

  11. Optimal pattern distributions in Rete-based production systems

    NASA Technical Reports Server (NTRS)

    Scott, Stephen L.

    1994-01-01

    Since its introduction into the AI community in the early 1980's, the Rete algorithm has been widely used. This algorithm has formed the basis for many AI tools, including NASA's CLIPS. One drawback of Rete-based implementation, however, is that the network structures used internally by the Rete algorithm make it sensitive to the arrangement of individual patterns within rules. Thus while rules may be more or less arbitrarily placed within source files, the distribution of individual patterns within these rules can significantly affect the overall system performance. Some heuristics have been proposed to optimize pattern placement, however, these suggestions can be conflicting. This paper describes a systematic effort to measure the effect of pattern distribution on production system performance. An overview of the Rete algorithm is presented to provide context. A description of the methods used to explore the pattern ordering problem area are presented, using internal production system metrics such as the number of partial matches, and coarse-grained operating system data such as memory usage and time. The results of this study should be of interest to those developing and optimizing software for Rete-based production systems.

  12. Fuzzy-logic based Q-Learning interference management algorithms in two-tier networks

    NASA Astrophysics Data System (ADS)

    Xu, Qiang; Xu, Zezhong; Li, Li; Zheng, Yan

    2017-10-01

    Unloading from macrocell network and enhancing coverage can be realized by deploying femtocells in the indoor scenario. However, the system performance of the two-tier network could be impaired by the co-tier and cross-tier interference. In this paper, a distributed resource allocation scheme is studied when each femtocell base station is self-governed and the resource cannot be assigned centrally through the gateway. A novel Q-Learning interference management scheme is proposed, that is divided into cooperative and independent part. In the cooperative algorithm, the interference information is exchanged between the cell-edge users which are classified by the fuzzy logic in the same cell. Meanwhile, we allocate the orthogonal subchannels to the high-rate cell-edge users to disperse the interference power when the data rate requirement is satisfied. The resource is assigned directly according to the minimum power principle in the independent algorithm. Simulation results are provided to demonstrate the significant performance improvements in terms of the average data rate, interference power and energy efficiency over the cutting-edge resource allocation algorithms.

  13. Development of a two-stage gene selection method that incorporates a novel hybrid approach using the cuckoo optimization algorithm and harmony search for cancer classification.

    PubMed

    Elyasigomari, V; Lee, D A; Screen, H R C; Shaheed, M H

    2017-03-01

    For each cancer type, only a few genes are informative. Due to the so-called 'curse of dimensionality' problem, the gene selection task remains a challenge. To overcome this problem, we propose a two-stage gene selection method called MRMR-COA-HS. In the first stage, the minimum redundancy and maximum relevance (MRMR) feature selection is used to select a subset of relevant genes. The selected genes are then fed into a wrapper setup that combines a new algorithm, COA-HS, using the support vector machine as a classifier. The method was applied to four microarray datasets, and the performance was assessed by the leave one out cross-validation method. Comparative performance assessment of the proposed method with other evolutionary algorithms suggested that the proposed algorithm significantly outperforms other methods in selecting a fewer number of genes while maintaining the highest classification accuracy. The functions of the selected genes were further investigated, and it was confirmed that the selected genes are biologically relevant to each cancer type. Copyright © 2017. Published by Elsevier Inc.

  14. A Novel Power Efficient Location-Based Cooperative Routing with Transmission Power-Upper-Limit for Wireless Sensor Networks

    PubMed Central

    Shi, Juanfei; Calveras, Anna; Cheng, Ye; Liu, Kai

    2013-01-01

    The extensive usage of wireless sensor networks (WSNs) has led to the development of many power- and energy-efficient routing protocols. Cooperative routing in WSNs can improve performance in these types of networks. In this paper we discuss the existing proposals and we propose a routing algorithm for wireless sensor networks called Power Efficient Location-based Cooperative Routing with Transmission Power-upper-limit (PELCR-TP). The algorithm is based on the principle of minimum link power and aims to take advantage of nodes cooperation to make the link work well in WSNs with a low transmission power. In the proposed scheme, with a determined transmission power upper limit, nodes find the most appropriate next nodes and single-relay nodes with the proposed algorithm. Moreover, this proposal subtly avoids non-working nodes, because we add a Bad nodes Avoidance Strategy (BAS). Simulation results show that the proposed algorithm with BAS can significantly improve the performance in reducing the overall link power, enhancing the transmission success rate and decreasing the retransmission rate. PMID:23676625

  15. Hybrid EEG--Eye Tracker: Automatic Identification and Removal of Eye Movement and Blink Artifacts from Electroencephalographic Signal.

    PubMed

    Mannan, Malik M Naeem; Kim, Shinjung; Jeong, Myung Yung; Kamran, M Ahmad

    2016-02-19

    Contamination of eye movement and blink artifacts in Electroencephalogram (EEG) recording makes the analysis of EEG data more difficult and could result in mislead findings. Efficient removal of these artifacts from EEG data is an essential step in improving classification accuracy to develop the brain-computer interface (BCI). In this paper, we proposed an automatic framework based on independent component analysis (ICA) and system identification to identify and remove ocular artifacts from EEG data by using hybrid EEG and eye tracker system. The performance of the proposed algorithm is illustrated using experimental and standard EEG datasets. The proposed algorithm not only removes the ocular artifacts from artifactual zone but also preserves the neuronal activity related EEG signals in non-artifactual zone. The comparison with the two state-of-the-art techniques namely ADJUST based ICA and REGICA reveals the significant improved performance of the proposed algorithm for removing eye movement and blink artifacts from EEG data. Additionally, results demonstrate that the proposed algorithm can achieve lower relative error and higher mutual information values between corrected EEG and artifact-free EEG data.

  16. A detection method for X-ray images based on wavelet transforms: the case of the ROSAT PSPC.

    NASA Astrophysics Data System (ADS)

    Damiani, F.; Maggio, A.; Micela, G.; Sciortino, S.

    1996-02-01

    The authors have developed a method based on wavelet transforms (WT) to detect efficiently sources in PSPC X-ray images. The multiscale approach typical of WT can be used to detect sources with a large range of sizes, and to estimate their size and count rate. Significance thresholds for candidate detections (found as local WT maxima) have been derived from a detailed study of the probability distribution of the WT of a locally uniform background. The use of the exposure map allows good detection efficiency to be retained even near PSPC ribs and edges. The algorithm may also be used to get upper limits to the count rate of undetected objects. Simulations of realistic PSPC images containing either pure background or background+sources were used to test the overall algorithm performances, and to assess the frequency of spurious detections (vs. detection threshold) and the algorithm sensitivity. Actual PSPC images of galaxies and star clusters show the algorithm to have good performance even in cases of extended sources and crowded fields.

  17. A Fast Implementation of the ISOCLUS Algorithm

    NASA Technical Reports Server (NTRS)

    Memarsadeghi, Nargess; Mount, David M.; Netanyahu, Nathan S.; LeMoigne, Jacqueline

    2003-01-01

    Unsupervised clustering is a fundamental tool in numerous image processing and remote sensing applications. For example, unsupervised clustering is often used to obtain vegetation maps of an area of interest. This approach is useful when reliable training data are either scarce or expensive, and when relatively little a priori information about the data is available. Unsupervised clustering methods play a significant role in the pursuit of unsupervised classification. One of the most popular and widely used clustering schemes for remote sensing applications is the ISOCLUS algorithm, which is based on the ISODATA method. The algorithm is given a set of n data points (or samples) in d-dimensional space, an integer k indicating the initial number of clusters, and a number of additional parameters. The general goal is to compute a set of cluster centers in d-space. Although there is no specific optimization criterion, the algorithm is similar in spirit to the well known k-means clustering method in which the objective is to minimize the average squared distance of each point to its nearest center, called the average distortion. One significant feature of ISOCLUS over k-means is that clusters may be merged or split, and so the final number of clusters may be different from the number k supplied as part of the input. This algorithm will be described in later in this paper. The ISOCLUS algorithm can run very slowly, particularly on large data sets. Given its wide use in remote sensing, its efficient computation is an important goal. We have developed a fast implementation of the ISOCLUS algorithm. Our improvement is based on a recent acceleration to the k-means algorithm, the filtering algorithm, by Kanungo et al.. They showed that, by storing the data in a kd-tree, it was possible to significantly reduce the running time of k-means. We have adapted this method for the ISOCLUS algorithm. For technical reasons, which are explained later, it is necessary to make a minor modification to the ISOCLUS specification. We provide empirical evidence, on both synthetic and Landsat image data sets, that our algorithm's performance is essentially the same as that of ISOCLUS, but with significantly lower running times. We show that our algorithm runs from 3 to 30 times faster than a straightforward implementation of ISOCLUS. Our adaptation of the filtering algorithm involves the efficient computation of a number of cluster statistics that are needed for ISOCLUS, but not for k-means.

  18. Strategies for concurrent processing of complex algorithms in data driven architectures

    NASA Technical Reports Server (NTRS)

    Som, Sukhamoy; Stoughton, John W.; Mielke, Roland R.

    1990-01-01

    Performance modeling and performance enhancement for periodic execution of large-grain, decision-free algorithms in data flow architectures are discussed. Applications include real-time implementation of control and signal processing algorithms where performance is required to be highly predictable. The mapping of algorithms onto the specified class of data flow architectures is realized by a marked graph model called algorithm to architecture mapping model (ATAMM). Performance measures and bounds are established. Algorithm transformation techniques are identified for performance enhancement and reduction of resource (computing element) requirements. A systematic design procedure is described for generating operating conditions for predictable performance both with and without resource constraints. An ATAMM simulator is used to test and validate the performance prediction by the design procedure. Experiments on a three resource testbed provide verification of the ATAMM model and the design procedure.

  19. A semi-learning algorithm for noise rejection: an fNIRS study on ADHD children

    NASA Astrophysics Data System (ADS)

    Sutoko, Stephanie; Funane, Tsukasa; Katura, Takusige; Sato, Hiroki; Kiguchi, Masashi; Maki, Atsushi; Monden, Yukifumi; Nagashima, Masako; Yamagata, Takanori; Dan, Ippeita

    2017-02-01

    In pediatrics studies, the quality of functional near infrared spectroscopy (fNIRS) signals is often reduced by motion artifacts. These artifacts likely mislead brain functionality analysis, causing false discoveries. While noise correction methods and their performance have been investigated, these methods require several parameter assumptions that apparently result in noise overfitting. In contrast, the rejection of noisy signals serves as a preferable method because it maintains the originality of the signal waveform. Here, we describe a semi-learning algorithm to detect and eliminate noisy signals. The algorithm dynamically adjusts noise detection according to the predetermined noise criteria, which are spikes, unusual activation values (averaged amplitude signals within the brain activation period), and high activation variances (among trials). Criteria were sequentially organized in the algorithm and orderly assessed signals based on each criterion. By initially setting an acceptable rejection rate, particular criteria causing excessive data rejections are neglected, whereas others with tolerable rejections practically eliminate noises. fNIRS data measured during the attention response paradigm (oddball task) in children with attention deficit/hyperactivity disorder (ADHD) were utilized to evaluate and optimize the algorithm's performance. This algorithm successfully substituted the visual noise identification done in the previous studies and consistently found significantly lower activation of the right prefrontal and parietal cortices in ADHD patients than in typical developing children. Thus, we conclude that the semi-learning algorithm confers more objective and standardized judgment for noise rejection and presents a promising alternative to visual noise rejection

  20. Exact consideration of data redundancies for spiral cone-beam CT

    NASA Astrophysics Data System (ADS)

    Lauritsch, Guenter; Katsevich, Alexander; Hirsch, Michael

    2004-05-01

    In multi-slice spiral computed tomography (CT) there is an obvious trend in adding more and more detector rows. The goals are numerous: volume coverage, isotropic spatial resolution, and speed. Consequently, there will be a variety of scan protocols optimizing clinical applications. Flexibility in table feed requires consideration of data redundancies to ensure efficient detector usage. Until recently this was achieved by approximate reconstruction algorithms only. However, due to the increasing cone angles there is a need of exact treatment of the cone beam geometry. A new, exact and efficient 3-PI algorithm for considering three-fold data redundancies was derived from a general, theoretical framework based on 3D Radon inversion using Grangeat's formula. The 3-PI algorithm possesses a simple and efficient structure as the 1-PI method for non-redundant data previously proposed. Filtering is one-dimensional, performed along lines with variable tilt on the detector. This talk deals with a thorough evaluation of the performance of the 3-PI algorithm in comparison to the 1-PI method. Image quality of the 3-PI algorithm is superior. The prominent spiral artifacts and other discretization artifacts are significantly reduced due to averaging effects when taking into account redundant data. Certainly signal-to-noise ratio is increased. The computational expense is comparable even to that of approximate algorithms. The 3-PI algorithm proves its practicability for applications in medical imaging. Other exact n-PI methods for n-fold data redundancies (n odd) can be deduced from the general, theoretical framework.

  1. Low complexity feature extraction for classification of harmonic signals

    NASA Astrophysics Data System (ADS)

    William, Peter E.

    In this dissertation, feature extraction algorithms have been developed for extraction of characteristic features from harmonic signals. The common theme for all developed algorithms is the simplicity in generating a significant set of features directly from the time domain harmonic signal. The features are a time domain representation of the composite, yet sparse, harmonic signature in the spectral domain. The algorithms are adequate for low-power unattended sensors which perform sensing, feature extraction, and classification in a standalone scenario. The first algorithm generates the characteristic features using only the duration between successive zero-crossing intervals. The second algorithm estimates the harmonics' amplitudes of the harmonic structure employing a simplified least squares method without the need to estimate the true harmonic parameters of the source signal. The third algorithm, resulting from a collaborative effort with Daniel White at the DSP Lab, University of Nebraska-Lincoln, presents an analog front end approach that utilizes a multichannel analog projection and integration to extract the sparse spectral features from the analog time domain signal. Classification is performed using a multilayer feedforward neural network. Evaluation of the proposed feature extraction algorithms for classification through the processing of several acoustic and vibration data sets (including military vehicles and rotating electric machines) with comparison to spectral features shows that, for harmonic signals, time domain features are simpler to extract and provide equivalent or improved reliability over the spectral features in both the detection probabilities and false alarm rate.

  2. PCTFPeval: a web tool for benchmarking newly developed algorithms for predicting cooperative transcription factor pairs in yeast.

    PubMed

    Lai, Fu-Jou; Chang, Hong-Tsun; Wu, Wei-Sheng

    2015-01-01

    Computational identification of cooperative transcription factor (TF) pairs helps understand the combinatorial regulation of gene expression in eukaryotic cells. Many advanced algorithms have been proposed to predict cooperative TF pairs in yeast. However, it is still difficult to conduct a comprehensive and objective performance comparison of different algorithms because of lacking sufficient performance indices and adequate overall performance scores. To solve this problem, in our previous study (published in BMC Systems Biology 2014), we adopted/proposed eight performance indices and designed two overall performance scores to compare the performance of 14 existing algorithms for predicting cooperative TF pairs in yeast. Most importantly, our performance comparison framework can be applied to comprehensively and objectively evaluate the performance of a newly developed algorithm. However, to use our framework, researchers have to put a lot of effort to construct it first. To save researchers time and effort, here we develop a web tool to implement our performance comparison framework, featuring fast data processing, a comprehensive performance comparison and an easy-to-use web interface. The developed tool is called PCTFPeval (Predicted Cooperative TF Pair evaluator), written in PHP and Python programming languages. The friendly web interface allows users to input a list of predicted cooperative TF pairs from their algorithm and select (i) the compared algorithms among the 15 existing algorithms, (ii) the performance indices among the eight existing indices, and (iii) the overall performance scores from two possible choices. The comprehensive performance comparison results are then generated in tens of seconds and shown as both bar charts and tables. The original comparison results of each compared algorithm and each selected performance index can be downloaded as text files for further analyses. Allowing users to select eight existing performance indices and 15 existing algorithms for comparison, our web tool benefits researchers who are eager to comprehensively and objectively evaluate the performance of their newly developed algorithm. Thus, our tool greatly expedites the progress in the research of computational identification of cooperative TF pairs.

  3. PCTFPeval: a web tool for benchmarking newly developed algorithms for predicting cooperative transcription factor pairs in yeast

    PubMed Central

    2015-01-01

    Background Computational identification of cooperative transcription factor (TF) pairs helps understand the combinatorial regulation of gene expression in eukaryotic cells. Many advanced algorithms have been proposed to predict cooperative TF pairs in yeast. However, it is still difficult to conduct a comprehensive and objective performance comparison of different algorithms because of lacking sufficient performance indices and adequate overall performance scores. To solve this problem, in our previous study (published in BMC Systems Biology 2014), we adopted/proposed eight performance indices and designed two overall performance scores to compare the performance of 14 existing algorithms for predicting cooperative TF pairs in yeast. Most importantly, our performance comparison framework can be applied to comprehensively and objectively evaluate the performance of a newly developed algorithm. However, to use our framework, researchers have to put a lot of effort to construct it first. To save researchers time and effort, here we develop a web tool to implement our performance comparison framework, featuring fast data processing, a comprehensive performance comparison and an easy-to-use web interface. Results The developed tool is called PCTFPeval (Predicted Cooperative TF Pair evaluator), written in PHP and Python programming languages. The friendly web interface allows users to input a list of predicted cooperative TF pairs from their algorithm and select (i) the compared algorithms among the 15 existing algorithms, (ii) the performance indices among the eight existing indices, and (iii) the overall performance scores from two possible choices. The comprehensive performance comparison results are then generated in tens of seconds and shown as both bar charts and tables. The original comparison results of each compared algorithm and each selected performance index can be downloaded as text files for further analyses. Conclusions Allowing users to select eight existing performance indices and 15 existing algorithms for comparison, our web tool benefits researchers who are eager to comprehensively and objectively evaluate the performance of their newly developed algorithm. Thus, our tool greatly expedites the progress in the research of computational identification of cooperative TF pairs. PMID:26677932

  4. Inter-method Performance Study of Tumor Volumetry Assessment on Computed Tomography Test-retest Data

    PubMed Central

    Buckler, Andrew J.; Danagoulian, Jovanna; Johnson, Kjell; Peskin, Adele; Gavrielides, Marios A.; Petrick, Nicholas; Obuchowski, Nancy A.; Beaumont, Hubert; Hadjiiski, Lubomir; Jarecha, Rudresh; Kuhnigk, Jan-Martin; Mantri, Ninad; McNitt-Gray, Michael; Moltz, Jan Hendrik; Nyiri, Gergely; Peterson, Sam; Tervé, Pierre; Tietjen, Christian; von Lavante, Etienne; Ma, Xiaonan; Pierre, Samantha St.; Athelogou, Maria

    2015-01-01

    Rationale and objectives Tumor volume change has potential as a biomarker for diagnosis, therapy planning, and treatment response. Precision was evaluated and compared among semi-automated lung tumor volume measurement algorithms from clinical thoracic CT datasets. The results inform approaches and testing requirements for establishing conformance with the Quantitative Imaging Biomarker Alliance (QIBA) CT Volumetry Profile. Materials and Methods Industry and academic groups participated in a challenge study. Intra-algorithm repeatability and inter-algorithm reproducibility were estimated. Relative magnitudes of various sources of variability were estimated using a linear mixed effects model. Segmentation boundaries were compared to provide a basis on which to optimize algorithm performance for developers. Results Intra-algorithm repeatability ranged from 13% (best performing) to 100% (least performing), with most algorithms demonstrating improved repeatability as the tumor size increased. Inter-algorithm reproducibility determined in three partitions and found to be 58% for the four best performing groups, 70% for the set of groups meeting repeatability requirements, and 84% when all groups but the least performer were included. The best performing partition performed markedly better on tumors with equivalent diameters above 40 mm. Larger tumors benefitted by human editing but smaller tumors did not. One-fifth to one-half of the total variability came from sources independent of the algorithms. Segmentation boundaries differed substantially, not just in overall volume but in detail. Conclusions Nine of the twelve participating algorithms pass precision requirements similar to what is indicated in the QIBA Profile, with the caveat that the current study was not designed to explicitly evaluate algorithm Profile conformance. Change in tumor volume can be measured with confidence to within ±14% using any of these nine algorithms on tumor sizes above 10 mm. No partition of the algorithms were able to meet the QIBA requirements for interchangeability down to 10 mm, though the partition comprised of the best performing algorithms did meet this requirement above a tumor size of approximately 40 mm. PMID:26376841

  5. GPS vertical axis performance enhancement for helicopter precision landing approach

    NASA Technical Reports Server (NTRS)

    Denaro, Robert P.; Beser, Jacques

    1986-01-01

    Several areas were investigated for improving vertical accuracy for a rotorcraft using the differential Global Positioning System (GPS) during a landing approach. Continuous deltaranging was studied and the potential improvement achieved by estimating acceleration was studied by comparing the performance on a constant acceleration turn and a rough landing profile of several filters: a position-velocity (PV) filter, a position-velocity-constant acceleration (PVAC) filter, and a position-velocity-turning acceleration (PVAT) filter. In overall statistics, the PVAC filter was found to be most efficient with the more complex PVAT performing equally well. Vertical performance was not significantly different among the filters. Satellite selection algorithms based on vertical errors only (vertical dilution of precision or VDOP) and even-weighted cross-track and vertical errors (XVDOP) were tested. The inclusion of an altimeter was studied by modifying the PVAC filter to include a baro bias estimate. Improved vertical accuracy during degraded DOP conditions resulted. Flight test results for raw differential results excluding filter effects indicated that the differential performance significantly improved overall navigation accuracy. A landing glidepath steering algorithm was devised which exploits the flexibility of GPS in determining precise relative position. A method for propagating the steering command over the GPS update interval was implemented.

  6. The application of cat swarm optimisation algorithm in classifying small loan performance

    NASA Astrophysics Data System (ADS)

    Kencana, Eka N.; Kiswanti, Nyoman; Sari, Kartika

    2017-10-01

    It is common for banking system to analyse the feasibility of credit application before its approval. Although this process has been carefully done, there is no warranty that all credits will be repaid smoothly. This study aimed to know the accuracy of Cat Swarm Optimisation (CSO) algorithm in classifying small loans’ performance that is approved by Bank Rakyat Indonesia (BRI), one of several public banks in Indonesia. Data collected from 200 lenders were used in this work. The data matrix consists of 9 independent variables that represent profile of the credit, and one categorical dependent variable reflects credit’s performance. Prior to the analyses, data was divided into two data subset with equal size. Ordinal logistic regression (OLR) procedure is applied for the first subset and gave 3 out of 9 independent variables i.e. the amount of credit, credit’s period, and income per month of lender proved significantly affect credit performance. By using significantly estimated parameters from OLR procedure as the initial values for observations at the second subset, CSO procedure started. This procedure gave 76 percent of classification accuracy of credit performance, slightly better compared to 64 percent resulted from OLR procedure.

  7. GPU based cloud system for high-performance arrhythmia detection with parallel k-NN algorithm.

    PubMed

    Tae Joon Jun; Hyun Ji Park; Hyuk Yoo; Young-Hak Kim; Daeyoung Kim

    2016-08-01

    In this paper, we propose an GPU based Cloud system for high-performance arrhythmia detection. Pan-Tompkins algorithm is used for QRS detection and we optimized beat classification algorithm with K-Nearest Neighbor (K-NN). To support high performance beat classification on the system, we parallelized beat classification algorithm with CUDA to execute the algorithm on virtualized GPU devices on the Cloud system. MIT-BIH Arrhythmia database is used for validation of the algorithm. The system achieved about 93.5% of detection rate which is comparable to previous researches while our algorithm shows 2.5 times faster execution time compared to CPU only detection algorithm.

  8. Automated mammographic breast density estimation using a fully convolutional network.

    PubMed

    Lee, Juhun; Nishikawa, Robert M

    2018-03-01

    The purpose of this study was to develop a fully automated algorithm for mammographic breast density estimation using deep learning. Our algorithm used a fully convolutional network, which is a deep learning framework for image segmentation, to segment both the breast and the dense fibroglandular areas on mammographic images. Using the segmented breast and dense areas, our algorithm computed the breast percent density (PD), which is the faction of dense area in a breast. Our dataset included full-field digital screening mammograms of 604 women, which included 1208 mediolateral oblique (MLO) and 1208 craniocaudal (CC) views. We allocated 455, 58, and 91 of 604 women and their exams into training, testing, and validation datasets, respectively. We established ground truth for the breast and the dense fibroglandular areas via manual segmentation and segmentation using a simple thresholding based on BI-RADS density assessments by radiologists, respectively. Using the mammograms and ground truth, we fine-tuned a pretrained deep learning network to train the network to segment both the breast and the fibroglandular areas. Using the validation dataset, we evaluated the performance of the proposed algorithm against radiologists' BI-RADS density assessments. Specifically, we conducted a correlation analysis between a BI-RADS density assessment of a given breast and its corresponding PD estimate by the proposed algorithm. In addition, we evaluated our algorithm in terms of its ability to classify the BI-RADS density using PD estimates, and its ability to provide consistent PD estimates for the left and the right breast and the MLO and CC views of the same women. To show the effectiveness of our algorithm, we compared the performance of our algorithm against a state of the art algorithm, laboratory for individualized breast radiodensity assessment (LIBRA). The PD estimated by our algorithm correlated well with BI-RADS density ratings by radiologists. Pearson's rho values of our algorithm for CC view, MLO view, and CC-MLO-averaged were 0.81, 0.79, and 0.85, respectively, while those of LIBRA were 0.58, 0.71, and 0.69, respectively. For CC view and CC-MLO averaged cases, the difference in rho values between the proposed algorithm and LIBRA showed statistical significance (P < 0.006). In addition, our algorithm provided reliable PD estimates for the left and the right breast (Pearson's ρ > 0.87) and for the MLO and CC views (Pearson's ρ = 0.76). However, LIBRA showed a lower Pearson's rho value (0.66) for both the left and right breasts for the CC view. In addition, our algorithm showed an excellent ability to separate each sub BI-RADS breast density class (statistically significant, p-values = 0.0001 or less); only one comparison pair, density 1 and density 2 in the CC view, was not statistically significant (P = 0.54). However, LIBRA failed to separate breasts in density 1 and 2 for both the CC and MLO views (P > 0.64). We have developed a new deep learning based algorithm for breast density segmentation and estimation. We showed that the proposed algorithm correlated well with BI-RADS density assessments by radiologists and outperformed an existing state of the art algorithm. © 2018 American Association of Physicists in Medicine.

  9. Constrained independent component analysis approach to nonobtrusive pulse rate measurements

    NASA Astrophysics Data System (ADS)

    Tsouri, Gill R.; Kyal, Survi; Dianat, Sohail; Mestha, Lalit K.

    2012-07-01

    Nonobtrusive pulse rate measurement using a webcam is considered. We demonstrate how state-of-the-art algorithms based on independent component analysis suffer from a sorting problem which hinders their performance, and propose a novel algorithm based on constrained independent component analysis to improve performance. We present how the proposed algorithm extracts a photoplethysmography signal and resolves the sorting problem. In addition, we perform a comparative study between the proposed algorithm and state-of-the-art algorithms over 45 video streams using a finger probe oxymeter for reference measurements. The proposed algorithm provides improved accuracy: the root mean square error is decreased from 20.6 and 9.5 beats per minute (bpm) for existing algorithms to 3.5 bpm for the proposed algorithm. An error of 3.5 bpm is within the inaccuracy expected from the reference measurements. This implies that the proposed algorithm provided performance of equal accuracy to the finger probe oximeter.

  10. Constrained independent component analysis approach to nonobtrusive pulse rate measurements.

    PubMed

    Tsouri, Gill R; Kyal, Survi; Dianat, Sohail; Mestha, Lalit K

    2012-07-01

    Nonobtrusive pulse rate measurement using a webcam is considered. We demonstrate how state-of-the-art algorithms based on independent component analysis suffer from a sorting problem which hinders their performance, and propose a novel algorithm based on constrained independent component analysis to improve performance. We present how the proposed algorithm extracts a photoplethysmography signal and resolves the sorting problem. In addition, we perform a comparative study between the proposed algorithm and state-of-the-art algorithms over 45 video streams using a finger probe oxymeter for reference measurements. The proposed algorithm provides improved accuracy: the root mean square error is decreased from 20.6 and 9.5 beats per minute (bpm) for existing algorithms to 3.5 bpm for the proposed algorithm. An error of 3.5 bpm is within the inaccuracy expected from the reference measurements. This implies that the proposed algorithm provided performance of equal accuracy to the finger probe oximeter.

  11. 3-D CSEM data inversion algorithm based on simultaneously active multiple transmitters concept

    NASA Astrophysics Data System (ADS)

    Dehiya, Rahul; Singh, Arun; Gupta, Pravin Kumar; Israil, Mohammad

    2017-05-01

    We present an algorithm for efficient 3-D inversion of marine controlled-source electromagnetic data. The efficiency is achieved by exploiting the redundancy in data. The data redundancy is reduced by compressing the data through stacking of the response of transmitters which are in close proximity. This stacking is equivalent to synthesizing the data as if the multiple transmitters are simultaneously active. The redundancy in data, arising due to close transmitter spacing, has been studied through singular value analysis of the Jacobian formed in 1-D inversion. This study reveals that the transmitter spacing of 100 m, typically used in marine data acquisition, does result in redundancy in the data. In the proposed algorithm, the data are compressed through stacking which leads to both computational advantage and reduction in noise. The performance of the algorithm for noisy data is demonstrated through the studies on two types of noise, viz., uncorrelated additive noise and correlated non-additive noise. It is observed that in case of uncorrelated additive noise, up to a moderately high (10 percent) noise level the algorithm addresses the noise as effectively as the traditional full data inversion. However, when the noise level in the data is high (20 percent), the algorithm outperforms the traditional full data inversion in terms of data misfit. Similar results are obtained in case of correlated non-additive noise and the algorithm performs better if the level of noise is high. The inversion results of a real field data set are also presented to demonstrate the robustness of the algorithm. The significant computational advantage in all cases presented makes this algorithm a better choice.

  12. The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector

    NASA Astrophysics Data System (ADS)

    Acciarri, R.; Adams, C.; An, R.; Anthony, J.; Asaadi, J.; Auger, M.; Bagby, L.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; Bass, M.; Bay, F.; Bishai, M.; Blake, A.; Bolton, T.; Camilleri, L.; Caratelli, D.; Carls, B.; Castillo Fernandez, R.; Cavanna, F.; Chen, H.; Church, E.; Cianci, D.; Cohen, E.; Collin, G. H.; Conrad, J. M.; Convery, M.; Crespo-Anadón, J. I.; Del Tutto, M.; Devitt, D.; Dytman, S.; Eberly, B.; Ereditato, A.; Escudero Sanchez, L.; Esquivel, J.; Fadeeva, A. A.; Fleming, B. T.; Foreman, W.; Furmanski, A. P.; Garcia-Gamez, D.; Garvey, G. T.; Genty, V.; Goeldi, D.; Gollapinni, S.; Graf, N.; Gramellini, E.; Greenlee, H.; Grosso, R.; Guenette, R.; Hackenburg, A.; Hamilton, P.; Hen, O.; Hewes, J.; Hill, C.; Ho, J.; Horton-Smith, G.; Hourlier, A.; Huang, E.-C.; James, C.; Jan de Vries, J.; Jen, C.-M.; Jiang, L.; Johnson, R. A.; Joshi, J.; Jostlein, H.; Kaleko, D.; Karagiorgi, G.; Ketchum, W.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Laube, A.; Li, Y.; Lister, A.; Littlejohn, B. R.; Lockwitz, S.; Lorca, D.; Louis, W. C.; Luethi, M.; Lundberg, B.; Luo, X.; Marchionni, A.; Mariani, C.; Marshall, J.; Martinez Caicedo, D. A.; Meddage, V.; Miceli, T.; Mills, G. B.; Moon, J.; Mooney, M.; Moore, C. D.; Mousseau, J.; Murrells, R.; Naples, D.; Nienaber, P.; Nowak, J.; Palamara, O.; Paolone, V.; Papavassiliou, V.; Pate, S. F.; Pavlovic, Z.; Piasetzky, E.; Porzio, D.; Pulliam, G.; Qian, X.; Raaf, J. L.; Rafique, A.; Rochester, L.; Rudolf von Rohr, C.; Russell, B.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, M. H.; Sinclair, J.; Smith, A.; Snider, E. L.; Soderberg, M.; Söldner-Rembold, S.; Soleti, S. R.; Spentzouris, P.; Spitz, J.; St. John, J.; Strauss, T.; Szelc, A. M.; Tagg, N.; Terao, K.; Thomson, M.; Toups, M.; Tsai, Y.-T.; Tufanli, S.; Usher, T.; Van De Pontseele, W.; Van de Water, R. G.; Viren, B.; Weber, M.; Wickremasinghe, D. A.; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Yang, T.; Yates, L.; Zeller, G. P.; Zennamo, J.; Zhang, C.

    2018-01-01

    The development and operation of liquid-argon time-projection chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens of algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.

  13. Nonrigid Image Registration in Digital Subtraction Angiography Using Multilevel B-Spline

    PubMed Central

    2013-01-01

    We address the problem of motion artifact reduction in digital subtraction angiography (DSA) using image registration techniques. Most of registration algorithms proposed for application in DSA, have been designed for peripheral and cerebral angiography images in which we mainly deal with global rigid motions. These algorithms did not yield good results when applied to coronary angiography images because of complex nonrigid motions that exist in this type of angiography images. Multiresolution and iterative algorithms are proposed to cope with this problem, but these algorithms are associated with high computational cost which makes them not acceptable for real-time clinical applications. In this paper we propose a nonrigid image registration algorithm for coronary angiography images that is significantly faster than multiresolution and iterative blocking methods and outperforms competing algorithms evaluated on the same data sets. This algorithm is based on a sparse set of matched feature point pairs and the elastic registration is performed by means of multilevel B-spline image warping. Experimental results with several clinical data sets demonstrate the effectiveness of our approach. PMID:23971026

  14. Minimalist ensemble algorithms for genome-wide protein localization prediction.

    PubMed

    Lin, Jhih-Rong; Mondal, Ananda Mohan; Liu, Rong; Hu, Jianjun

    2012-07-03

    Computational prediction of protein subcellular localization can greatly help to elucidate its functions. Despite the existence of dozens of protein localization prediction algorithms, the prediction accuracy and coverage are still low. Several ensemble algorithms have been proposed to improve the prediction performance, which usually include as many as 10 or more individual localization algorithms. However, their performance is still limited by the running complexity and redundancy among individual prediction algorithms. This paper proposed a novel method for rational design of minimalist ensemble algorithms for practical genome-wide protein subcellular localization prediction. The algorithm is based on combining a feature selection based filter and a logistic regression classifier. Using a novel concept of contribution scores, we analyzed issues of algorithm redundancy, consensus mistakes, and algorithm complementarity in designing ensemble algorithms. We applied the proposed minimalist logistic regression (LR) ensemble algorithm to two genome-wide datasets of Yeast and Human and compared its performance with current ensemble algorithms. Experimental results showed that the minimalist ensemble algorithm can achieve high prediction accuracy with only 1/3 to 1/2 of individual predictors of current ensemble algorithms, which greatly reduces computational complexity and running time. It was found that the high performance ensemble algorithms are usually composed of the predictors that together cover most of available features. Compared to the best individual predictor, our ensemble algorithm improved the prediction accuracy from AUC score of 0.558 to 0.707 for the Yeast dataset and from 0.628 to 0.646 for the Human dataset. Compared with popular weighted voting based ensemble algorithms, our classifier-based ensemble algorithms achieved much better performance without suffering from inclusion of too many individual predictors. We proposed a method for rational design of minimalist ensemble algorithms using feature selection and classifiers. The proposed minimalist ensemble algorithm based on logistic regression can achieve equal or better prediction performance while using only half or one-third of individual predictors compared to other ensemble algorithms. The results also suggested that meta-predictors that take advantage of a variety of features by combining individual predictors tend to achieve the best performance. The LR ensemble server and related benchmark datasets are available at http://mleg.cse.sc.edu/LRensemble/cgi-bin/predict.cgi.

  15. Minimalist ensemble algorithms for genome-wide protein localization prediction

    PubMed Central

    2012-01-01

    Background Computational prediction of protein subcellular localization can greatly help to elucidate its functions. Despite the existence of dozens of protein localization prediction algorithms, the prediction accuracy and coverage are still low. Several ensemble algorithms have been proposed to improve the prediction performance, which usually include as many as 10 or more individual localization algorithms. However, their performance is still limited by the running complexity and redundancy among individual prediction algorithms. Results This paper proposed a novel method for rational design of minimalist ensemble algorithms for practical genome-wide protein subcellular localization prediction. The algorithm is based on combining a feature selection based filter and a logistic regression classifier. Using a novel concept of contribution scores, we analyzed issues of algorithm redundancy, consensus mistakes, and algorithm complementarity in designing ensemble algorithms. We applied the proposed minimalist logistic regression (LR) ensemble algorithm to two genome-wide datasets of Yeast and Human and compared its performance with current ensemble algorithms. Experimental results showed that the minimalist ensemble algorithm can achieve high prediction accuracy with only 1/3 to 1/2 of individual predictors of current ensemble algorithms, which greatly reduces computational complexity and running time. It was found that the high performance ensemble algorithms are usually composed of the predictors that together cover most of available features. Compared to the best individual predictor, our ensemble algorithm improved the prediction accuracy from AUC score of 0.558 to 0.707 for the Yeast dataset and from 0.628 to 0.646 for the Human dataset. Compared with popular weighted voting based ensemble algorithms, our classifier-based ensemble algorithms achieved much better performance without suffering from inclusion of too many individual predictors. Conclusions We proposed a method for rational design of minimalist ensemble algorithms using feature selection and classifiers. The proposed minimalist ensemble algorithm based on logistic regression can achieve equal or better prediction performance while using only half or one-third of individual predictors compared to other ensemble algorithms. The results also suggested that meta-predictors that take advantage of a variety of features by combining individual predictors tend to achieve the best performance. The LR ensemble server and related benchmark datasets are available at http://mleg.cse.sc.edu/LRensemble/cgi-bin/predict.cgi. PMID:22759391

  16. On Efficient Deployment of Wireless Sensors for Coverage and Connectivity in Constrained 3D Space.

    PubMed

    Wu, Chase Q; Wang, Li

    2017-10-10

    Sensor networks have been used in a rapidly increasing number of applications in many fields. This work generalizes a sensor deployment problem to place a minimum set of wireless sensors at candidate locations in constrained 3D space to k -cover a given set of target objects. By exhausting the combinations of discreteness/continuousness constraints on either sensor locations or target objects, we formulate four classes of sensor deployment problems in 3D space: deploy sensors at Discrete/Continuous Locations (D/CL) to cover Discrete/Continuous Targets (D/CT). We begin with the design of an approximate algorithm for DLDT and then reduce DLCT, CLDT, and CLCT to DLDT by discretizing continuous sensor locations or target objects into a set of divisions without sacrificing sensing precision. Furthermore, we consider a connected version of each problem where the deployed sensors must form a connected network, and design an approximation algorithm to minimize the number of deployed sensors with connectivity guarantee. For performance comparison, we design and implement an optimal solution and a genetic algorithm (GA)-based approach. Extensive simulation results show that the proposed deployment algorithms consistently outperform the GA-based heuristic and achieve a close-to-optimal performance in small-scale problem instances and a significantly superior overall performance than the theoretical upper bound.

  17. Using an Improved SIFT Algorithm and Fuzzy Closed-Loop Control Strategy for Object Recognition in Cluttered Scenes

    PubMed Central

    Nie, Haitao; Long, Kehui; Ma, Jun; Yue, Dan; Liu, Jinguo

    2015-01-01

    Partial occlusions, large pose variations, and extreme ambient illumination conditions generally cause the performance degradation of object recognition systems. Therefore, this paper presents a novel approach for fast and robust object recognition in cluttered scenes based on an improved scale invariant feature transform (SIFT) algorithm and a fuzzy closed-loop control method. First, a fast SIFT algorithm is proposed by classifying SIFT features into several clusters based on several attributes computed from the sub-orientation histogram (SOH), in the feature matching phase only features that share nearly the same corresponding attributes are compared. Second, a feature matching step is performed following a prioritized order based on the scale factor, which is calculated between the object image and the target object image, guaranteeing robust feature matching. Finally, a fuzzy closed-loop control strategy is applied to increase the accuracy of the object recognition and is essential for autonomous object manipulation process. Compared to the original SIFT algorithm for object recognition, the result of the proposed method shows that the number of SIFT features extracted from an object has a significant increase, and the computing speed of the object recognition processes increases by more than 40%. The experimental results confirmed that the proposed method performs effectively and accurately in cluttered scenes. PMID:25714094

  18. An algorithm for automatic parameter adjustment for brain extraction in BrainSuite

    NASA Astrophysics Data System (ADS)

    Rajagopal, Gautham; Joshi, Anand A.; Leahy, Richard M.

    2017-02-01

    Brain Extraction (classification of brain and non-brain tissue) of MRI brain images is a crucial pre-processing step necessary for imaging-based anatomical studies of the human brain. Several automated methods and software tools are available for performing this task, but differences in MR image parameters (pulse sequence, resolution) and instrumentand subject-dependent noise and artefacts affect the performance of these automated methods. We describe and evaluate a method that automatically adapts the default parameters of the Brain Surface Extraction (BSE) algorithm to optimize a cost function chosen to reflect accurate brain extraction. BSE uses a combination of anisotropic filtering, Marr-Hildreth edge detection, and binary morphology for brain extraction. Our algorithm automatically adapts four parameters associated with these steps to maximize the brain surface area to volume ratio. We evaluate the method on a total of 109 brain volumes with ground truth brain masks generated by an expert user. A quantitative evaluation of the performance of the proposed algorithm showed an improvement in the mean (s.d.) Dice coefficient from 0.8969 (0.0376) for default parameters to 0.9509 (0.0504) for the optimized case. These results indicate that automatic parameter optimization can result in significant improvements in definition of the brain mask.

  19. The pulse-pair algorithm as a robust estimator of turbulent weather spectral parameters using airborne pulse Doppler radar

    NASA Technical Reports Server (NTRS)

    Baxa, Ernest G., Jr.; Lee, Jonggil

    1991-01-01

    The pulse pair method for spectrum parameter estimation is commonly used in pulse Doppler weather radar signal processing since it is economical to implement and can be shown to be a maximum likelihood estimator. With the use of airborne weather radar for windshear detection, the turbulent weather and strong ground clutter return spectrum differs from that assumed in its derivation, so the performance robustness of the pulse pair technique must be understood. Here, the effect of radar system pulse to pulse phase jitter and signal spectrum skew on the pulse pair algorithm performance is discussed. Phase jitter effect may be significant when the weather return signal to clutter ratio is very low and clutter rejection filtering is attempted. The analysis can be used to develop design specifications for airborne radar system phase stability. It is also shown that the weather return spectrum skew can cause a significant bias in the pulse pair mean windspeed estimates, and that the poly pulse pair algorithm can reduce this bias. It is suggested that use of a spectrum mode estimator may be more appropriate in characterizing the windspeed within a radar range resolution cell for detection of hazardous windspeed gradients.

  20. Benefit of adaptive FEC in shared backup path protected elastic optical network.

    PubMed

    Guo, Hong; Dai, Hua; Wang, Chao; Li, Yongcheng; Bose, Sanjay K; Shen, Gangxiang

    2015-07-27

    We apply an adaptive forward error correction (FEC) allocation strategy to an Elastic Optical Network (EON) operated with shared backup path protection (SBPP). To maximize the protected network capacity that can be carried, an Integer Linear Programing (ILP) model and a spectrum window plane (SWP)-based heuristic algorithm are developed. Simulation results show that the FEC coding overhead required by the adaptive FEC scheme is significantly lower than that needed by a fixed FEC allocation strategy resulting in higher network capacity for the adaptive strategy. The adaptive FEC allocation strategy can also significantly outperform the fixed FEC allocation strategy both in terms of the spare capacity redundancy and the average FEC coding overhead needed per optical channel. The proposed heuristic algorithm is efficient and not only performs closer to the ILP model but also does much better than the shortest-path algorithm.

  1. Trade Studies for a Manned High-Power Nuclear Electric Propulsion Vehicle

    NASA Technical Reports Server (NTRS)

    SanSoucie, Michael; Hull, Patrick V.; Irwin, Ryan W.; TInker, Michael L.; Patton, Bruce W.

    2005-01-01

    Nuclear electric propulsion (NEP) vehicles will be needed for future manned missions to Mars and beyond. Candidate vehicles must be identified through trade studies for further detailed design from a large array of possibilities. Genetic algorithms have proven their utility in conceptual design studies by effectively searching a large design space to pinpoint unique optimal designs. This research combines analysis codes for NEP subsystems with genetic algorithm-based optimization. Trade studies for a NEP reference mission to the asteroids were conducted to identify important trends, and to determine the effects of various technologies and subsystems on vehicle performance. It was found that the electric thruster type and thruster performance have a major impact on the achievable system performance, and that significant effort in thruster research and development is merited.

  2. Improving the Numerical Stability of Fast Matrix Multiplication

    DOE PAGES

    Ballard, Grey; Benson, Austin R.; Druinsky, Alex; ...

    2016-10-04

    Fast algorithms for matrix multiplication, namely those that perform asymptotically fewer scalar operations than the classical algorithm, have been considered primarily of theoretical interest. Apart from Strassen's original algorithm, few fast algorithms have been efficiently implemented or used in practical applications. However, there exist many practical alternatives to Strassen's algorithm with varying performance and numerical properties. Fast algorithms are known to be numerically stable, but because their error bounds are slightly weaker than the classical algorithm, they are not used even in cases where they provide a performance benefit. We argue in this study that the numerical sacrifice of fastmore » algorithms, particularly for the typical use cases of practical algorithms, is not prohibitive, and we explore ways to improve the accuracy both theoretically and empirically. The numerical accuracy of fast matrix multiplication depends on properties of the algorithm and of the input matrices, and we consider both contributions independently. We generalize and tighten previous error analyses of fast algorithms and compare their properties. We discuss algorithmic techniques for improving the error guarantees from two perspectives: manipulating the algorithms, and reducing input anomalies by various forms of diagonal scaling. In conclusion, we benchmark performance and demonstrate our improved numerical accuracy.« less

  3. [The comparison of two different types of baseline data regarding the performance of aberration detection algorithm for infectious disease outbreaks].

    PubMed

    Lai, Sheng-jie; Li, Zhong-jie; Zhang, Hong-long; Lan, Ya-jia; Yang, Wei-zhong

    2011-06-01

    To compare the performance of aberration detection algorithm for infectious disease outbreaks, based on two different types of baseline data. Cases and outbreaks of hand-foot-and-mouth disease (HFMD) reported by six provinces of China in 2009 were used as the source of data. Two types of baseline data on algorithms of C1, C2 and C3 were tested, by distinguishing the baseline data of weekdays and weekends. Time to detection (TTD) and false alarm rate (FAR) were adopted as two evaluation indices to compare the performance of 3 algorithms based on these two types of baseline data. A total of 405 460 cases of HFMD were reported by 6 provinces in 2009. On average, each county reported 1.78 cases per day during the weekdays and 1.29 cases per day during weekends, with significant difference (P < 0.01) between them. When using the baseline data without distinguish weekdays and weekends, the optimal thresholds for C1, C2 and C3 was 0.2, 0.4 and 0.6 respectively while the TTD of C1, C2 and C3 was all 1 day and the FARs were 5.33%, 4.88% and 4.50% respectively. On the contrast, when using the baseline data to distinguish the weekdays and weekends, the optimal thresholds for C1, C2 and C3 became 0.4, 0.6 and 1.0 while the TTD of C1, C2 and C3 also appeared equally as 1 day. However, the FARs became 4.81%, 4.75% and 4.16% respectively, which were lower than the baseline data from the first type. The number of HFMD cases reported in weekdays and weekends were significantly different, suggesting that when using the baseline data to distinguish weekdays and weekends, the FAR of C1, C2 and C3 algorithm could effectively reduce so as to improve the accuracy of outbreak detection.

  4. Ocean observations with EOS/MODIS: Algorithm development and post launch studies

    NASA Technical Reports Server (NTRS)

    Gordon, Howard R.

    1996-01-01

    An investigation of the influence of stratospheric aerosol on the performance of the atmospheric correction algorithm is nearly complete. The results indicate how the performance of the algorithm is degraded if the stratospheric aerosol is ignored. Use of the MODIS 1380 nm band to effect a correction for stratospheric aerosols was also studied. Simple algorithms such as subtracting the reflectance at 1380 nm from the visible and near infrared bands can significantly reduce the error; however, only if the diffuse transmittance of the aerosol layer is taken into account. The atmospheric correction code has been modified for use with absorbing aerosols. Tests of the code showed that, in contrast to non absorbing aerosols, the retrievals were strongly influenced by the vertical structure of the aerosol, even when the candidate aerosol set was restricted to a set appropriate to the absorbing aerosol. This will further complicate the problem of atmospheric correction in an atmosphere with strongly absorbing aerosols. Our whitecap radiometer system and solar aureole camera were both tested at sea and performed well. Investigation of a technique to remove the effects of residual instrument polarization sensitivity were initiated and applied to an instrument possessing (approx.) 3-4 times the polarization sensitivity expected for MODIS. Preliminary results suggest that for such an instrument, elimination of the polarization effect is possible at the required level of accuracy by estimating the polarization of the top-of-atmosphere radiance to be that expected for a pure Rayleigh scattering atmosphere. This may be of significance for design of a follow-on MODIS instrument. W.M. Balch participated on two month-long cruises to the Arabian sea, measuring coccolithophore abundance, production, and optical properties. A thorough understanding of the relationship between calcite abundance and light scatter, in situ, will provide the basis for a generic suspended calcite algorithm.

  5. A genetic-based algorithm for personalized resistance training

    PubMed Central

    Kiely, J; Suraci, B; Collins, DJ; de Lorenzo, D; Pickering, C; Grimaldi, KA

    2016-01-01

    Association studies have identified dozens of genetic variants linked to training responses and sport-related traits. However, no intervention studies utilizing the idea of personalised training based on athlete's genetic profile have been conducted. Here we propose an algorithm that allows achieving greater results in response to high- or low-intensity resistance training programs by predicting athlete's potential for the development of power and endurance qualities with the panel of 15 performance-associated gene polymorphisms. To develop and validate such an algorithm we performed two studies in independent cohorts of male athletes (study 1: athletes from different sports (n = 28); study 2: soccer players (n = 39)). In both studies athletes completed an eight-week high- or low-intensity resistance training program, which either matched or mismatched their individual genotype. Two variables of explosive power and aerobic fitness, as measured by the countermovement jump (CMJ) and aerobic 3-min cycle test (Aero3) were assessed pre and post 8 weeks of resistance training. In study 1, the athletes from the matched groups (i.e. high-intensity trained with power genotype or low-intensity trained with endurance genotype) significantly increased results in CMJ (P = 0.0005) and Aero3 (P = 0.0004). Whereas, athletes from the mismatched group (i.e. high-intensity trained with endurance genotype or low-intensity trained with power genotype) demonstrated non-significant improvements in CMJ (P = 0.175) and less prominent results in Aero3 (P = 0.0134). In study 2, soccer players from the matched group also demonstrated significantly greater (P < 0.0001) performance changes in both tests compared to the mismatched group. Among non- or low responders of both studies, 82% of athletes (both for CMJ and Aero3) were from the mismatched group (P < 0.0001). Our results indicate that matching the individual's genotype with the appropriate training modality leads to more effective resistance training. The developed algorithm may be used to guide individualised resistance-training interventions. PMID:27274104

  6. Combining two open source tools for neural computation (BioPatRec and Netlab) improves movement classification for prosthetic control.

    PubMed

    Prahm, Cosima; Eckstein, Korbinian; Ortiz-Catalan, Max; Dorffner, Georg; Kaniusas, Eugenijus; Aszmann, Oskar C

    2016-08-31

    Controlling a myoelectric prosthesis for upper limbs is increasingly challenging for the user as more electrodes and joints become available. Motion classification based on pattern recognition with a multi-electrode array allows multiple joints to be controlled simultaneously. Previous pattern recognition studies are difficult to compare, because individual research groups use their own data sets. To resolve this shortcoming and to facilitate comparisons, open access data sets were analysed using components of BioPatRec and Netlab pattern recognition models. Performances of the artificial neural networks, linear models, and training program components were compared. Evaluation took place within the BioPatRec environment, a Matlab-based open source platform that provides feature extraction, processing and motion classification algorithms for prosthetic control. The algorithms were applied to myoelectric signals for individual and simultaneous classification of movements, with the aim of finding the best performing algorithm and network model. Evaluation criteria included classification accuracy and training time. Results in both the linear and the artificial neural network models demonstrated that Netlab's implementation using scaled conjugate training algorithm reached significantly higher accuracies than BioPatRec. It is concluded that the best movement classification performance would be achieved through integrating Netlab training algorithms in the BioPatRec environment so that future prosthesis training can be shortened and control made more reliable. Netlab was therefore included into the newest release of BioPatRec (v4.0).

  7. Terascale Optimal PDE Simulations (TOPS) Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Professor Olof B. Widlund

    2007-07-09

    Our work has focused on the development and analysis of domain decomposition algorithms for a variety of problems arising in continuum mechanics modeling. In particular, we have extended and analyzed FETI-DP and BDDC algorithms; these iterative solvers were first introduced and studied by Charbel Farhat and his collaborators, see [11, 45, 12], and by Clark Dohrmann of SANDIA, Albuquerque, see [43, 2, 1], respectively. These two closely related families of methods are of particular interest since they are used more extensively than other iterative substructuring methods to solve very large and difficult problems. Thus, the FETI algorithms are part ofmore » the SALINAS system developed by the SANDIA National Laboratories for very large scale computations, and as already noted, BDDC was first developed by a SANDIA scientist, Dr. Clark Dohrmann. The FETI algorithms are also making inroads in commercial engineering software systems. We also note that the analysis of these algorithms poses very real mathematical challenges. The success in developing this theory has, in several instances, led to significant improvements in the performance of these algorithms. A very desirable feature of these iterative substructuring and other domain decomposition algorithms is that they respect the memory hierarchy of modern parallel and distributed computing systems, which is essential for approaching peak floating point performance. The development of improved methods, together with more powerful computer systems, is making it possible to carry out simulations in three dimensions, with quite high resolution, relatively easily. This work is supported by high quality software systems, such as Argonne's PETSc library, which facilitates code development as well as the access to a variety of parallel and distributed computer systems. The success in finding scalable and robust domain decomposition algorithms for very large number of processors and very large finite element problems is, e.g., illustrated in [24, 25, 26]. This work is based on [29, 31]. Our work over these five and half years has, in our opinion, helped advance the knowledge of domain decomposition methods significantly. We see these methods as providing valuable alternatives to other iterative methods, in particular, those based on multi-grid. In our opinion, our accomplishments also match the goals of the TOPS project quite closely.« less

  8. GoFFish: A Sub-Graph Centric Framework for Large-Scale Graph Analytics1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmhan, Yogesh; Kumbhare, Alok; Wickramaarachchi, Charith

    2014-08-25

    Large scale graph processing is a major research area for Big Data exploration. Vertex centric programming models like Pregel are gaining traction due to their simple abstraction that allows for scalable execution on distributed systems naturally. However, there are limitations to this approach which cause vertex centric algorithms to under-perform due to poor compute to communication overhead ratio and slow convergence of iterative superstep. In this paper we introduce GoFFish a scalable sub-graph centric framework co-designed with a distributed persistent graph storage for large scale graph analytics on commodity clusters. We introduce a sub-graph centric programming abstraction that combines themore » scalability of a vertex centric approach with the flexibility of shared memory sub-graph computation. We map Connected Components, SSSP and PageRank algorithms to this model to illustrate its flexibility. Further, we empirically analyze GoFFish using several real world graphs and demonstrate its significant performance improvement, orders of magnitude in some cases, compared to Apache Giraph, the leading open source vertex centric implementation. We map Connected Components, SSSP and PageRank algorithms to this model to illustrate its flexibility. Further, we empirically analyze GoFFish using several real world graphs and demonstrate its significant performance improvement, orders of magnitude in some cases, compared to Apache Giraph, the leading open source vertex centric implementation.« less

  9. An assessment of algorithms to estimate respiratory rate from the electrocardiogram and photoplethysmogram.

    PubMed

    Charlton, Peter H; Bonnici, Timothy; Tarassenko, Lionel; Clifton, David A; Beale, Richard; Watkinson, Peter J

    2016-04-01

    Over 100 algorithms have been proposed to estimate respiratory rate (RR) from the electrocardiogram (ECG) and photoplethysmogram (PPG). As they have never been compared systematically it is unclear which algorithm performs the best. Our primary aim was to determine how closely algorithms agreed with a gold standard RR measure when operating under ideal conditions. Secondary aims were: (i) to compare algorithm performance with IP, the clinical standard for continuous respiratory rate measurement in spontaneously breathing patients; (ii) to compare algorithm performance when using ECG and PPG; and (iii) to provide a toolbox of algorithms and data to allow future researchers to conduct reproducible comparisons of algorithms. Algorithms were divided into three stages: extraction of respiratory signals, estimation of RR, and fusion of estimates. Several interchangeable techniques were implemented for each stage. Algorithms were assembled using all possible combinations of techniques, many of which were novel. After verification on simulated data, algorithms were tested on data from healthy participants. RRs derived from ECG, PPG and IP were compared to reference RRs obtained using a nasal-oral pressure sensor using the limits of agreement (LOA) technique. 314 algorithms were assessed. Of these, 270 could operate on either ECG or PPG, and 44 on only ECG. The best algorithm had 95% LOAs of  -4.7 to 4.7 bpm and a bias of 0.0 bpm when using the ECG, and  -5.1 to 7.2 bpm and 1.0 bpm when using PPG. IP had 95% LOAs of  -5.6 to 5.2 bpm and a bias of  -0.2 bpm. Four algorithms operating on ECG performed better than IP. All high-performing algorithms consisted of novel combinations of time domain RR estimation and modulation fusion techniques. Algorithms performed better when using ECG than PPG. The toolbox of algorithms and data used in this study are publicly available.

  10. An assessment of algorithms to estimate respiratory rate from the electrocardiogram and photoplethysmogram

    PubMed Central

    Charlton, Peter H; Bonnici, Timothy; Tarassenko, Lionel; Clifton, David A; Beale, Richard; Watkinson, Peter J

    2016-01-01

    Abstract Over 100 algorithms have been proposed to estimate respiratory rate (RR) from the electrocardiogram (ECG) and photoplethysmogram (PPG). As they have never been compared systematically it is unclear which algorithm performs the best. Our primary aim was to determine how closely algorithms agreed with a gold standard RR measure when operating under ideal conditions. Secondary aims were: (i) to compare algorithm performance with IP, the clinical standard for continuous respiratory rate measurement in spontaneously breathing patients; (ii) to compare algorithm performance when using ECG and PPG; and (iii) to provide a toolbox of algorithms and data to allow future researchers to conduct reproducible comparisons of algorithms. Algorithms were divided into three stages: extraction of respiratory signals, estimation of RR, and fusion of estimates. Several interchangeable techniques were implemented for each stage. Algorithms were assembled using all possible combinations of techniques, many of which were novel. After verification on simulated data, algorithms were tested on data from healthy participants. RRs derived from ECG, PPG and IP were compared to reference RRs obtained using a nasal-oral pressure sensor using the limits of agreement (LOA) technique. 314 algorithms were assessed. Of these, 270 could operate on either ECG or PPG, and 44 on only ECG. The best algorithm had 95% LOAs of  −4.7 to 4.7 bpm and a bias of 0.0 bpm when using the ECG, and  −5.1 to 7.2 bpm and 1.0 bpm when using PPG. IP had 95% LOAs of  −5.6 to 5.2 bpm and a bias of  −0.2 bpm. Four algorithms operating on ECG performed better than IP. All high-performing algorithms consisted of novel combinations of time domain RR estimation and modulation fusion techniques. Algorithms performed better when using ECG than PPG. The toolbox of algorithms and data used in this study are publicly available. PMID:27027672

  11. Quantitative Comparison of Minimum Inductance and Minimum Power Algorithms for the Design of Shim Coils for Small Animal Imaging

    PubMed Central

    HUDSON, PARISA; HUDSON, STEPHEN D.; HANDLER, WILLIAM B.; SCHOLL, TIMOTHY J.; CHRONIK, BLAINE A.

    2010-01-01

    High-performance shim coils are required for high-field magnetic resonance imaging and spectroscopy. Complete sets of high-power and high-performance shim coils were designed using two different methods: the minimum inductance and the minimum power target field methods. A quantitative comparison of shim performance in terms of merit of inductance (ML) and merit of resistance (MR) was made for shim coils designed using the minimum inductance and the minimum power design algorithms. In each design case, the difference in ML and the difference in MR given by the two design methods was <15%. Comparison of wire patterns obtained using the two design algorithms show that minimum inductance designs tend to feature oscillations within the current density; while minimum power designs tend to feature less rapidly varying current densities and lower power dissipation. Overall, the differences in coil performance obtained by the two methods are relatively small. For the specific case of shim systems customized for small animal imaging, the reduced power dissipation obtained when using the minimum power method is judged to be more significant than the improvements in switching speed obtained from the minimum inductance method. PMID:20411157

  12. LDPC decoder with a limited-precision FPGA-based floating-point multiplication coprocessor

    NASA Astrophysics Data System (ADS)

    Moberly, Raymond; O'Sullivan, Michael; Waheed, Khurram

    2007-09-01

    Implementing the sum-product algorithm, in an FPGA with an embedded processor, invites us to consider a tradeoff between computational precision and computational speed. The algorithm, known outside of the signal processing community as Pearl's belief propagation, is used for iterative soft-decision decoding of LDPC codes. We determined the feasibility of a coprocessor that will perform product computations. Our FPGA-based coprocessor (design) performs computer algebra with significantly less precision than the standard (e.g. integer, floating-point) operations of general purpose processors. Using synthesis, targeting a 3,168 LUT Xilinx FPGA, we show that key components of a decoder are feasible and that the full single-precision decoder could be constructed using a larger part. Soft-decision decoding by the iterative belief propagation algorithm is impacted both positively and negatively by a reduction in the precision of the computation. Reducing precision reduces the coding gain, but the limited-precision computation can operate faster. A proposed solution offers custom logic to perform computations with less precision, yet uses the floating-point format to interface with the software. Simulation results show the achievable coding gain. Synthesis results help theorize the the full capacity and performance of an FPGA-based coprocessor.

  13. Windowed multipole for cross section Doppler broadening

    NASA Astrophysics Data System (ADS)

    Josey, C.; Ducru, P.; Forget, B.; Smith, K.

    2016-02-01

    This paper presents an in-depth analysis on the accuracy and performance of the windowed multipole Doppler broadening method. The basic theory behind cross section data is described, along with the basic multipole formalism followed by the approximations leading to windowed multipole method and the algorithm used to efficiently evaluate Doppler broadened cross sections. The method is tested by simulating the BEAVRS benchmark with a windowed multipole library composed of 70 nuclides. Accuracy of the method is demonstrated on a single assembly case where total neutron production rates and 238U capture rates compare within 0.1% to ACE format files at the same temperature. With regards to performance, clock cycle counts and cache misses were measured for single temperature ACE table lookup and for windowed multipole. The windowed multipole method was found to require 39.6% more clock cycles to evaluate, translating to a 7.9% performance loss overall. However, the algorithm has significantly better last-level cache performance, with 3 fewer misses per evaluation, or a 65% reduction in last-level misses. This is due to the small memory footprint of the windowed multipole method and better memory access pattern of the algorithm.

  14. Parallel Algorithms for Computational Models of Geophysical Systems

    NASA Astrophysics Data System (ADS)

    Carrillo Ledesma, A.; Herrera, I.; de la Cruz, L. M.; Hernández, G.; Grupo de Modelacion Matematica y Computacional

    2013-05-01

    Mathematical models of many systems of interest, including very important continuous systems of Earth Sciences and Engineering, lead to a great variety of partial differential equations (PDEs) whose solution methods are based on the computational processing of large-scale algebraic systems. Furthermore, the incredible expansion experienced by the existing computational hardware and software has made amenable to effective treatment problems of an ever increasing diversity and complexity, posed by scientific and engineering applications. Parallel computing is outstanding among the new computational tools and, in order to effectively use the most advanced computers available today, massively parallel software is required. Domain decomposition methods (DDMs) have been developed precisely for effectively treating PDEs in paralle. Ideally, the main objective of domain decomposition research is to produce algorithms capable of 'obtaining the global solution by exclusively solving local problems', but up-to-now this has only been an aspiration; that is, a strong desire for achieving such a property and so we call it 'the DDM-paradigm'. In recent times, numerically competitive DDM-algorithms are non-overlapping, preconditioned and necessarily incorporate constraints which pose an additional challenge for achieving the DDM-paradigm. Recently a group of four algorithms, referred to as the 'DVS-algorithms', which fulfill the DDM-paradigm, was developed. To derive them a new discretization method, which uses a non-overlapping system of nodes (the derived-nodes), was introduced. This discretization procedure can be applied to any boundary-value problem, or system of such equations. In turn, the resulting system of discrete equations can be treated using any available DDM-algorithm. In particular, two of the four DVS-algorithms mentioned above were obtained by application of the well-known and very effective algorithms BDDC and FETI-DP; these will be referred to as the DVS-BDDC and DVS-FETI-DP algorithms. The other two, which will be referred to as the DVS-PRIMAL and DVS-DUAL algorithms, were obtained by application of two new algorithms that had not been previously reported in the literature. As said before, the four DVS-algorithms constitute a group of preconditioned and constrained algorithms that, for the first time, fulfill the DDM-paradigm. Both, BDDC and FETI-DP, are very well-known; and both are highly efficient. Recently, it was established that these two methods are closely related and its numerical performance is quite similar. On the other hand, through numerical experiments, we have established that the numerical performances of each one of the members of DVS-algorithms group (DVS-BDDC, DVS-FETI-DP, DVS-PRIMAL and DVS-DUAL) are very similar too. Furthermore, we have carried out comparisons of the performances of the standard versions of BDDC and FETI-DP with DVS-BDDC and DVS-FETI-DP, and in all such numerical experiments the DVS algorithms have performed significantly better.

  15. Vascular system modeling in parallel environment - distributed and shared memory approaches

    PubMed Central

    Jurczuk, Krzysztof; Kretowski, Marek; Bezy-Wendling, Johanne

    2011-01-01

    The paper presents two approaches in parallel modeling of vascular system development in internal organs. In the first approach, new parts of tissue are distributed among processors and each processor is responsible for perfusing its assigned parts of tissue to all vascular trees. Communication between processors is accomplished by passing messages and therefore this algorithm is perfectly suited for distributed memory architectures. The second approach is designed for shared memory machines. It parallelizes the perfusion process during which individual processing units perform calculations concerning different vascular trees. The experimental results, performed on a computing cluster and multi-core machines, show that both algorithms provide a significant speedup. PMID:21550891

  16. Development and Evaluation of an Automated Machine Learning Algorithm for In-Hospital Mortality Risk Adjustment Among Critical Care Patients.

    PubMed

    Delahanty, Ryan J; Kaufman, David; Jones, Spencer S

    2018-06-01

    Risk adjustment algorithms for ICU mortality are necessary for measuring and improving ICU performance. Existing risk adjustment algorithms are not widely adopted. Key barriers to adoption include licensing and implementation costs as well as labor costs associated with human-intensive data collection. Widespread adoption of electronic health records makes automated risk adjustment feasible. Using modern machine learning methods and open source tools, we developed and evaluated a retrospective risk adjustment algorithm for in-hospital mortality among ICU patients. The Risk of Inpatient Death score can be fully automated and is reliant upon data elements that are generated in the course of usual hospital processes. One hundred thirty-one ICUs in 53 hospitals operated by Tenet Healthcare. A cohort of 237,173 ICU patients discharged between January 2014 and December 2016. The data were randomly split into training (36 hospitals), and validation (17 hospitals) data sets. Feature selection and model training were carried out using the training set while the discrimination, calibration, and accuracy of the model were assessed in the validation data set. Model discrimination was evaluated based on the area under receiver operating characteristic curve; accuracy and calibration were assessed via adjusted Brier scores and visual analysis of calibration curves. Seventeen features, including a mix of clinical and administrative data elements, were retained in the final model. The Risk of Inpatient Death score demonstrated excellent discrimination (area under receiver operating characteristic curve = 0.94) and calibration (adjusted Brier score = 52.8%) in the validation dataset; these results compare favorably to the published performance statistics for the most commonly used mortality risk adjustment algorithms. Low adoption of ICU mortality risk adjustment algorithms impedes progress toward increasing the value of the healthcare delivered in ICUs. The Risk of Inpatient Death score has many attractive attributes that address the key barriers to adoption of ICU risk adjustment algorithms and performs comparably to existing human-intensive algorithms. Automated risk adjustment algorithms have the potential to obviate known barriers to adoption such as cost-prohibitive licensing fees and significant direct labor costs. Further evaluation is needed to ensure that the level of performance observed in this study could be achieved at independent sites.

  17. Strategies for concurrent processing of complex algorithms in data driven architectures

    NASA Technical Reports Server (NTRS)

    Stoughton, John W.; Mielke, Roland R.; Som, Sukhamony

    1990-01-01

    The performance modeling and enhancement for periodic execution of large-grain, decision-free algorithms in data flow architectures is examined. Applications include real-time implementation of control and signal processing algorithms where performance is required to be highly predictable. The mapping of algorithms onto the specified class of data flow architectures is realized by a marked graph model called ATAMM (Algorithm To Architecture Mapping Model). Performance measures and bounds are established. Algorithm transformation techniques are identified for performance enhancement and reduction of resource (computing element) requirements. A systematic design procedure is described for generating operating conditions for predictable performance both with and without resource constraints. An ATAMM simulator is used to test and validate the performance prediction by the design procedure. Experiments on a three resource testbed provide verification of the ATAMM model and the design procedure.

  18. Spatial cluster detection using dynamic programming.

    PubMed

    Sverchkov, Yuriy; Jiang, Xia; Cooper, Gregory F

    2012-03-25

    The task of spatial cluster detection involves finding spatial regions where some property deviates from the norm or the expected value. In a probabilistic setting this task can be expressed as finding a region where some event is significantly more likely than usual. Spatial cluster detection is of interest in fields such as biosurveillance, mining of astronomical data, military surveillance, and analysis of fMRI images. In almost all such applications we are interested both in the question of whether a cluster exists in the data, and if it exists, we are interested in finding the most accurate characterization of the cluster. We present a general dynamic programming algorithm for grid-based spatial cluster detection. The algorithm can be used for both Bayesian maximum a-posteriori (MAP) estimation of the most likely spatial distribution of clusters and Bayesian model averaging over a large space of spatial cluster distributions to compute the posterior probability of an unusual spatial clustering. The algorithm is explained and evaluated in the context of a biosurveillance application, specifically the detection and identification of Influenza outbreaks based on emergency department visits. A relatively simple underlying model is constructed for the purpose of evaluating the algorithm, and the algorithm is evaluated using the model and semi-synthetic test data. When compared to baseline methods, tests indicate that the new algorithm can improve MAP estimates under certain conditions: the greedy algorithm we compared our method to was found to be more sensitive to smaller outbreaks, while as the size of the outbreaks increases, in terms of area affected and proportion of individuals affected, our method overtakes the greedy algorithm in spatial precision and recall. The new algorithm performs on-par with baseline methods in the task of Bayesian model averaging. We conclude that the dynamic programming algorithm performs on-par with other available methods for spatial cluster detection and point to its low computational cost and extendability as advantages in favor of further research and use of the algorithm.

  19. Spatial cluster detection using dynamic programming

    PubMed Central

    2012-01-01

    Background The task of spatial cluster detection involves finding spatial regions where some property deviates from the norm or the expected value. In a probabilistic setting this task can be expressed as finding a region where some event is significantly more likely than usual. Spatial cluster detection is of interest in fields such as biosurveillance, mining of astronomical data, military surveillance, and analysis of fMRI images. In almost all such applications we are interested both in the question of whether a cluster exists in the data, and if it exists, we are interested in finding the most accurate characterization of the cluster. Methods We present a general dynamic programming algorithm for grid-based spatial cluster detection. The algorithm can be used for both Bayesian maximum a-posteriori (MAP) estimation of the most likely spatial distribution of clusters and Bayesian model averaging over a large space of spatial cluster distributions to compute the posterior probability of an unusual spatial clustering. The algorithm is explained and evaluated in the context of a biosurveillance application, specifically the detection and identification of Influenza outbreaks based on emergency department visits. A relatively simple underlying model is constructed for the purpose of evaluating the algorithm, and the algorithm is evaluated using the model and semi-synthetic test data. Results When compared to baseline methods, tests indicate that the new algorithm can improve MAP estimates under certain conditions: the greedy algorithm we compared our method to was found to be more sensitive to smaller outbreaks, while as the size of the outbreaks increases, in terms of area affected and proportion of individuals affected, our method overtakes the greedy algorithm in spatial precision and recall. The new algorithm performs on-par with baseline methods in the task of Bayesian model averaging. Conclusions We conclude that the dynamic programming algorithm performs on-par with other available methods for spatial cluster detection and point to its low computational cost and extendability as advantages in favor of further research and use of the algorithm. PMID:22443103

  20. [InlineEquation not available: see fulltext.]-Means Based Fingerprint Segmentation with Sensor Interoperability

    NASA Astrophysics Data System (ADS)

    Yang, Gongping; Zhou, Guang-Tong; Yin, Yilong; Yang, Xiukun

    2010-12-01

    A critical step in an automatic fingerprint recognition system is the segmentation of fingerprint images. Existing methods are usually designed to segment fingerprint images originated from a certain sensor. Thus their performances are significantly affected when dealing with fingerprints collected by different sensors. This work studies the sensor interoperability of fingerprint segmentation algorithms, which refers to the algorithm's ability to adapt to the raw fingerprints obtained from different sensors. We empirically analyze the sensor interoperability problem, and effectively address the issue by proposing a [InlineEquation not available: see fulltext.]-means based segmentation method called SKI. SKI clusters foreground and background blocks of a fingerprint image based on the [InlineEquation not available: see fulltext.]-means algorithm, where a fingerprint block is represented by a 3-dimensional feature vector consisting of block-wise coherence, mean, and variance (abbreviated as CMV). SKI also employs morphological postprocessing to achieve favorable segmentation results. We perform SKI on each fingerprint to ensure sensor interoperability. The interoperability and robustness of our method are validated by experiments performed on a number of fingerprint databases which are obtained from various sensors.

Top