Science.gov

Sample records for algorithm significantly outperforms

  1. Acoustic diagnosis of pulmonary hypertension: automated speech- recognition-inspired classification algorithm outperforms physicians

    PubMed Central

    Kaddoura, Tarek; Vadlamudi, Karunakar; Kumar, Shine; Bobhate, Prashant; Guo, Long; Jain, Shreepal; Elgendi, Mohamed; Coe, James Y; Kim, Daniel; Taylor, Dylan; Tymchak, Wayne; Schuurmans, Dale; Zemp, Roger J.; Adatia, Ian

    2016-01-01

    We hypothesized that an automated speech- recognition-inspired classification algorithm could differentiate between the heart sounds in subjects with and without pulmonary hypertension (PH) and outperform physicians. Heart sounds, electrocardiograms, and mean pulmonary artery pressures (mPAp) were recorded simultaneously. Heart sound recordings were digitized to train and test speech-recognition-inspired classification algorithms. We used mel-frequency cepstral coefficients to extract features from the heart sounds. Gaussian-mixture models classified the features as PH (mPAp ≥ 25 mmHg) or normal (mPAp < 25 mmHg). Physicians blinded to patient data listened to the same heart sound recordings and attempted a diagnosis. We studied 164 subjects: 86 with mPAp ≥ 25 mmHg (mPAp 41 ± 12 mmHg) and 78 with mPAp < 25 mmHg (mPAp 17 ± 5 mmHg) (p  < 0.005). The correct diagnostic rate of the automated speech-recognition-inspired algorithm was 74% compared to 56% by physicians (p = 0.005). The false positive rate for the algorithm was 34% versus 50% (p = 0.04) for clinicians. The false negative rate for the algorithm was 23% and 68% (p = 0.0002) for physicians. We developed an automated speech-recognition-inspired classification algorithm for the acoustic diagnosis of PH that outperforms physicians that could be used to screen for PH and encourage earlier specialist referral. PMID:27609672

  2. Acoustic diagnosis of pulmonary hypertension: automated speech- recognition-inspired classification algorithm outperforms physicians

    NASA Astrophysics Data System (ADS)

    Kaddoura, Tarek; Vadlamudi, Karunakar; Kumar, Shine; Bobhate, Prashant; Guo, Long; Jain, Shreepal; Elgendi, Mohamed; Coe, James Y.; Kim, Daniel; Taylor, Dylan; Tymchak, Wayne; Schuurmans, Dale; Zemp, Roger J.; Adatia, Ian

    2016-09-01

    We hypothesized that an automated speech- recognition-inspired classification algorithm could differentiate between the heart sounds in subjects with and without pulmonary hypertension (PH) and outperform physicians. Heart sounds, electrocardiograms, and mean pulmonary artery pressures (mPAp) were recorded simultaneously. Heart sound recordings were digitized to train and test speech-recognition-inspired classification algorithms. We used mel-frequency cepstral coefficients to extract features from the heart sounds. Gaussian-mixture models classified the features as PH (mPAp ≥ 25 mmHg) or normal (mPAp < 25 mmHg). Physicians blinded to patient data listened to the same heart sound recordings and attempted a diagnosis. We studied 164 subjects: 86 with mPAp ≥ 25 mmHg (mPAp 41 ± 12 mmHg) and 78 with mPAp < 25 mmHg (mPAp 17 ± 5 mmHg) (p  < 0.005). The correct diagnostic rate of the automated speech-recognition-inspired algorithm was 74% compared to 56% by physicians (p = 0.005). The false positive rate for the algorithm was 34% versus 50% (p = 0.04) for clinicians. The false negative rate for the algorithm was 23% and 68% (p = 0.0002) for physicians. We developed an automated speech-recognition-inspired classification algorithm for the acoustic diagnosis of PH that outperforms physicians that could be used to screen for PH and encourage earlier specialist referral.

  3. Least significant qubit algorithm for quantum images

    NASA Astrophysics Data System (ADS)

    Sang, Jianzhi; Wang, Shen; Li, Qiong

    2016-11-01

    To study the feasibility of the classical image least significant bit (LSB) information hiding algorithm on quantum computer, a least significant qubit (LSQb) information hiding algorithm of quantum image is proposed. In this paper, we focus on a novel quantum representation for color digital images (NCQI). Firstly, by designing the three qubits comparator and unitary operators, the reasonability and feasibility of LSQb based on NCQI are presented. Then, the concrete LSQb information hiding algorithm is proposed, which can realize the aim of embedding the secret qubits into the least significant qubits of RGB channels of quantum cover image. Quantum circuit of the LSQb information hiding algorithm is also illustrated. Furthermore, the secrets extracting algorithm and circuit are illustrated through utilizing control-swap gates. The two merits of our algorithm are: (1) it is absolutely blind and (2) when extracting secret binary qubits, it does not need any quantum measurement operation or any other help from classical computer. Finally, simulation and comparative analysis show the performance of our algorithm.

  4. Discovering sequence similarity by the algorithmic significance method

    SciTech Connect

    Milosavljevic, A.

    1993-02-01

    The minimal-length encoding approach is applied to define concept of sequence similarity. A sequence is defined to be similar to another sequence or to a set of keywords if it can be encoded in a small number of bits by taking advantage of common subwords. Minimal-length encoding of a sequence is computed in linear time, using a data compression algorithm that is based on a dynamic programming strategy and the directed acyclic word graph data structure. No assumptions about common word ( k-tuple'') length are made in advance, and common words of any length are considered. The newly proposed algorithmic significance method provides an exact upper bound on the probability that sequence similarity has occurred by chance, thus eliminating the need for any arbitrary choice of similarity thresholds. Preliminary experiments indicate that a small number of keywords can positively identify a DNA sequence, which is extremely relevant in the context of partial sequencing by hybridization.

  5. Discovering sequence similarity by the algorithmic significance method

    SciTech Connect

    Milosavljevic, A.

    1993-02-01

    The minimal-length encoding approach is applied to define concept of sequence similarity. A sequence is defined to be similar to another sequence or to a set of keywords if it can be encoded in a small number of bits by taking advantage of common subwords. Minimal-length encoding of a sequence is computed in linear time, using a data compression algorithm that is based on a dynamic programming strategy and the directed acyclic word graph data structure. No assumptions about common word (``k-tuple``) length are made in advance, and common words of any length are considered. The newly proposed algorithmic significance method provides an exact upper bound on the probability that sequence similarity has occurred by chance, thus eliminating the need for any arbitrary choice of similarity thresholds. Preliminary experiments indicate that a small number of keywords can positively identify a DNA sequence, which is extremely relevant in the context of partial sequencing by hybridization.

  6. Algorithms for Detecting Significantly Mutated Pathways in Cancer

    NASA Astrophysics Data System (ADS)

    Vandin, Fabio; Upfal, Eli; Raphael, Benjamin J.

    Recent genome sequencing studies have shown that the somatic mutations that drive cancer development are distributed across a large number of genes. This mutational heterogeneity complicates efforts to distinguish functional mutations from sporadic, passenger mutations. Since cancer mutations are hypothesized to target a relatively small number of cellular signaling and regulatory pathways, a common approach is to assess whether known pathways are enriched for mutated genes. However, restricting attention to known pathways will not reveal novel cancer genes or pathways. An alterative strategy is to examine mutated genes in the context of genome-scale interaction networks that include both well characterized pathways and additional gene interactions measured through various approaches. We introduce a computational framework for de novo identification of subnetworks in a large gene interaction network that are mutated in a significant number of patients. This framework includes two major features. First, we introduce a diffusion process on the interaction network to define a local neighborhood of "influence" for each mutated gene in the network. Second, we derive a two-stage multiple hypothesis test to bound the false discovery rate (FDR) associated with the identified subnetworks. We test these algorithms on a large human protein-protein interaction network using mutation data from two recent studies: glioblastoma samples from The Cancer Genome Atlas and lung adenocarcinoma samples from the Tumor Sequencing Project. We successfully recover pathways that are known to be important in these cancers, such as the p53 pathway. We also identify additional pathways, such as the Notch signaling pathway, that have been implicated in other cancers but not previously reported as mutated in these samples. Our approach is the first, to our knowledge, to demonstrate a computationally efficient strategy for de novo identification of statistically significant mutated subnetworks. We

  7. A Hybrid Swarm Intelligence Algorithm for Intrusion Detection Using Significant Features

    PubMed Central

    Amudha, P.; Karthik, S.; Sivakumari, S.

    2015-01-01

    Intrusion detection has become a main part of network security due to the huge number of attacks which affects the computers. This is due to the extensive growth of internet connectivity and accessibility to information systems worldwide. To deal with this problem, in this paper a hybrid algorithm is proposed to integrate Modified Artificial Bee Colony (MABC) with Enhanced Particle Swarm Optimization (EPSO) to predict the intrusion detection problem. The algorithms are combined together to find out better optimization results and the classification accuracies are obtained by 10-fold cross-validation method. The purpose of this paper is to select the most relevant features that can represent the pattern of the network traffic and test its effect on the success of the proposed hybrid classification algorithm. To investigate the performance of the proposed method, intrusion detection KDDCup'99 benchmark dataset from the UCI Machine Learning repository is used. The performance of the proposed method is compared with the other machine learning algorithms and found to be significantly different. PMID:26221625

  8. Significant Advances in the AIRS Science Team Version-6 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena; Molnar, Gyula

    2012-01-01

    AIRS/AMSU is the state of the art infrared and microwave atmospheric sounding system flying aboard EOS Aqua. The Goddard DISC has analyzed AIRS/AMSU observations, covering the period September 2002 until the present, using the AIRS Science Team Version-S retrieval algorithm. These products have been used by many researchers to make significant advances in both climate and weather applications. The AIRS Science Team Version-6 Retrieval, which will become operation in mid-20l2, contains many significant theoretical and practical improvements compared to Version-5 which should further enhance the utility of AIRS products for both climate and weather applications. In particular, major changes have been made with regard to the algOrithms used to 1) derive surface skin temperature and surface spectral emissivity; 2) generate the initial state used to start the retrieval procedure; 3) compute Outgoing Longwave Radiation; and 4) determine Quality Control. This paper will describe these advances found in the AIRS Version-6 retrieval algorithm and demonstrate the improvement of AIRS Version-6 products compared to those obtained using Version-5,

  9. New Classification Method Based on Support-Significant Association Rules Algorithm

    NASA Astrophysics Data System (ADS)

    Li, Guoxin; Shi, Wen

    One of the most well-studied problems in data mining is mining for association rules. There was also research that introduced association rule mining methods to conduct classification tasks. These classification methods, based on association rule mining, could be applied for customer segmentation. Currently, most of the association rule mining methods are based on a support-confidence structure, where rules satisfied both minimum support and minimum confidence were returned as strong association rules back to the analyzer. But, this types of association rule mining methods lack of rigorous statistic guarantee, sometimes even caused misleading. A new classification model for customer segmentation, based on association rule mining algorithm, was proposed in this paper. This new model was based on the support-significant association rule mining method, where the measurement of confidence for association rule was substituted by the significant of association rule that was a better evaluation standard for association rules. Data experiment for customer segmentation from UCI indicated the effective of this new model.

  10. A hybrid genetic algorithm-extreme learning machine approach for accurate significant wave height reconstruction

    NASA Astrophysics Data System (ADS)

    Alexandre, E.; Cuadra, L.; Nieto-Borge, J. C.; Candil-García, G.; del Pino, M.; Salcedo-Sanz, S.

    2015-08-01

    Wave parameters computed from time series measured by buoys (significant wave height Hs, mean wave period, etc.) play a key role in coastal engineering and in the design and operation of wave energy converters. Storms or navigation accidents can make measuring buoys break down, leading to missing data gaps. In this paper we tackle the problem of locally reconstructing Hs at out-of-operation buoys by using wave parameters from nearby buoys, based on the spatial correlation among values at neighboring buoy locations. The novelty of our approach for its potential application to problems in coastal engineering is twofold. On one hand, we propose a genetic algorithm hybridized with an extreme learning machine that selects, among the available wave parameters from the nearby buoys, a subset FnSP with nSP parameters that minimizes the Hs reconstruction error. On the other hand, we evaluate to what extent the selected parameters in subset FnSP are good enough in assisting other machine learning (ML) regressors (extreme learning machines, support vector machines and gaussian process regression) to reconstruct Hs. The results show that all the ML method explored achieve a good Hs reconstruction in the two different locations studied (Caribbean Sea and West Atlantic).

  11. The photon dose calculation algorithm used in breast radiotherapy has significant impact on the parameters of radiobiological models.

    PubMed

    Petillion, Saskia; Swinnen, Ans; Defraene, Gilles; Verhoeven, Karolien; Weltens, Caroline; Van den Heuvel, Frank

    2014-07-08

    The comparison of the pencil beam dose calculation algorithm with modified Batho heterogeneity correction (PBC-MB) and the analytical anisotropic algorithm (AAA) and the mutual comparison of advanced dose calculation algorithms used in breast radiotherapy have focused on the differences between the physical dose distributions. Studies on the radiobiological impact of the algorithm (both on the tumor control and the moderate breast fibrosis prediction) are lacking. We, therefore, investigated the radiobiological impact of the dose calculation algorithm in whole breast radiotherapy. The clinical dose distributions of 30 breast cancer patients, calculated with PBC-MB, were recalculated with fixed monitor units using more advanced algorithms: AAA and Acuros XB. For the latter, both dose reporting modes were used (i.e., dose-to-medium and dose-to-water). Next, the tumor control probability (TCP) and the normal tissue complication probability (NTCP) of each dose distribution were calculated with the Poisson model and with the relative seriality model, respectively. The endpoint for the NTCP calculation was moderate breast fibrosis five years post treatment. The differences were checked for significance with the paired t-test. The more advanced algorithms predicted a significantly lower TCP and NTCP of moderate breast fibrosis then found during the corresponding clinical follow-up study based on PBC calculations. The differences varied between 1% and 2.1% for the TCP and between 2.9% and 5.5% for the NTCP of moderate breast fibrosis. The significant differences were eliminated by determination of algorithm-specific model parameters using least square fitting. Application of the new parameters on a second group of 30 breast cancer patients proved their appropriateness. In this study, we assessed the impact of the dose calculation algorithms used in whole breast radiotherapy on the parameters of the radiobiological models. The radiobiological impact was eliminated by

  12. Weak-value measurements can outperform conventional measurements

    NASA Astrophysics Data System (ADS)

    Magaña-Loaiza, Omar S.; Harris, Jérémie; Lundeen, Jeff S.; Boyd, Robert W.

    2017-02-01

    In this paper we provide a simple, straightforward example of a specific situation in which weak-value amplification (WVA) clearly outperforms conventional measurement in determining the angular orientation of an optical component. We also offer a perspective reconciling the views of some theorists, who claim WVA to be inherently sub-optimal for parameter estimation, with the perspective of the many experimentalists and theorists who have used the procedure to successfully access otherwise elusive phenomena.

  13. An algorithm for finding biologically significant features in microarray data based on a priori manifold learning.

    PubMed

    Hira, Zena M; Trigeorgis, George; Gillies, Duncan F

    2014-01-01

    Microarray databases are a large source of genetic data, which, upon proper analysis, could enhance our understanding of biology and medicine. Many microarray experiments have been designed to investigate the genetic mechanisms of cancer, and analytical approaches have been applied in order to classify different types of cancer or distinguish between cancerous and non-cancerous tissue. However, microarrays are high-dimensional datasets with high levels of noise and this causes problems when using machine learning methods. A popular approach to this problem is to search for a set of features that will simplify the structure and to some degree remove the noise from the data. The most widely used approach to feature extraction is principal component analysis (PCA) which assumes a multivariate Gaussian model of the data. More recently, non-linear methods have been investigated. Among these, manifold learning algorithms, for example Isomap, aim to project the data from a higher dimensional space onto a lower dimension one. We have proposed a priori manifold learning for finding a manifold in which a representative set of microarray data is fused with relevant data taken from the KEGG pathway database. Once the manifold has been constructed the raw microarray data is projected onto it and clustering and classification can take place. In contrast to earlier fusion based methods, the prior knowledge from the KEGG databases is not used in, and does not bias the classification process--it merely acts as an aid to find the best space in which to search the data. In our experiments we have found that using our new manifold method gives better classification results than using either PCA or conventional Isomap.

  14. Testing earthquake prediction algorithms: Statistically significant advance prediction of the largest earthquakes in the Circum-Pacific, 1992-1997

    USGS Publications Warehouse

    Kossobokov, V.G.; Romashkova, L.L.; Keilis-Borok, V. I.; Healy, J.H.

    1999-01-01

    Algorithms M8 and MSc (i.e., the Mendocino Scenario) were used in a real-time intermediate-term research prediction of the strongest earthquakes in the Circum-Pacific seismic belt. Predictions are made by M8 first. Then, the areas of alarm are reduced by MSc at the cost that some earthquakes are missed in the second approximation of prediction. In 1992-1997, five earthquakes of magnitude 8 and above occurred in the test area: all of them were predicted by M8 and MSc identified correctly the locations of four of them. The space-time volume of the alarms is 36% and 18%, correspondingly, when estimated with a normalized product measure of empirical distribution of epicenters and uniform time. The statistical significance of the achieved results is beyond 99% both for M8 and MSc. For magnitude 7.5 + , 10 out of 19 earthquakes were predicted by M8 in 40% and five were predicted by M8-MSc in 13% of the total volume considered. This implies a significance level of 81% for M8 and 92% for M8-MSc. The lower significance levels might result from a global change in seismic regime in 1993-1996, when the rate of the largest events has doubled and all of them become exclusively normal or reversed faults. The predictions are fully reproducible; the algorithms M8 and MSc in complete formal definitions were published before we started our experiment [Keilis-Borok, V.I., Kossobokov, V.G., 1990. Premonitory activation of seismic flow: Algorithm M8, Phys. Earth and Planet. Inter. 61, 73-83; Kossobokov, V.G., Keilis-Borok, V.I., Smith, S.W., 1990. Localization of intermediate-term earthquake prediction, J. Geophys. Res., 95, 19763-19772; Healy, J.H., Kossobokov, V.G., Dewey, J.W., 1992. A test to evaluate the earthquake prediction algorithm, M8. U.S. Geol. Surv. OFR 92-401]. M8 is available from the IASPEI Software Library [Healy, J.H., Keilis-Borok, V.I., Lee, W.H.K. (Eds.), 1997. Algorithms for Earthquake Statistics and Prediction, Vol. 6. IASPEI Software Library]. ?? 1999 Elsevier

  15. Weak Value Amplification Can Outperform Conventional Measurement in the Presence of Detector Saturation

    NASA Astrophysics Data System (ADS)

    Harris, Jérémie; Boyd, Robert W.; Lundeen, Jeff S.

    2017-02-01

    Weak value amplification (WVA) is a technique by which one can magnify the apparent strength of a measurement signal. Some have claimed that WVA can outperform more conventional measurement schemes in parameter estimation. Nonetheless, a significant body of theoretical work has challenged this perspective, suggesting WVA to be fundamentally suboptimal. Optimal measurements may not be practical, however. Two practical considerations that have been conjectured to afford a benefit to WVA over conventional measurement are certain types of noise and detector saturation. Here, we report a theoretical study of the role of saturation and pixel noise in WVA-based measurement, in which we carry out a Bayesian analysis of the Fisher information available using a saturable, pixelated, digitized, and/or noisy detector. We draw two conclusions: first, that saturation alone does not confer an advantage to the WVA approach over conventional measurement, and second, that WVA can outperform conventional measurement when saturation is combined with intrinsic pixel noise and/or digitization.

  16. The ontogeny of human point following in dogs: When younger dogs outperform older.

    PubMed

    Zaine, Isabela; Domeniconi, Camila; Wynne, Clive D L

    2015-10-01

    We investigated puppies' responsiveness to hand points differing in salience. Experiment 1 compared performance of younger (8 weeks old) and older (12 weeks) shelter pups in following pointing gestures. We hypothesized that older puppies would show better performance. Both groups followed the easy and moderate but not the difficult pointing cues. Surprisingly, the younger pups outperformed the older ones in following the moderate and difficult points. Investigation of subjects' backgrounds revealed that significantly more younger pups had experience living in human homes than did the older pups. Thus, we conducted a second experiment to isolate the variable experience. We collected additional data from older pet pups living in human homes on the same three point types and compared their performance with the shelter pups from Experiment 1. The pups living in homes accurately followed all three pointing cues. When comparing both experienced groups, the older pet pups outperformed the younger shelter ones, as predicted. When comparing the two same-age groups differing in background experience, the pups living in homes outperformed the shelter pups. A significant correlation between experience with humans and success in following less salient cues was found. The importance of ontogenetic learning in puppies' responsiveness to certain human social cues is discussed.

  17. A reconstruction algorithm for photoacoustic imaging based on the nonuniform FFT.

    PubMed

    Haltmeier, Markus; Scherzer, Otmar; Zangerl, Gerhard

    2009-11-01

    Fourier reconstruction algorithms significantly outperform conventional backprojection algorithms in terms of computation time. In photoacoustic imaging, these methods require interpolation in the Fourier space domain, which creates artifacts in reconstructed images. We propose a novel reconstruction algorithm that applies the one-dimensional nonuniform fast Fourier transform to photoacoustic imaging. It is shown theoretically and numerically that our algorithm avoids artifacts while preserving the computational effectiveness of Fourier reconstruction.

  18. Better than Nature: Nicotinamide Biomimetics That Outperform Natural Coenzymes.

    PubMed

    Knaus, Tanja; Paul, Caroline E; Levy, Colin W; de Vries, Simon; Mutti, Francesco G; Hollmann, Frank; Scrutton, Nigel S

    2016-01-27

    The search for affordable, green biocatalytic processes is a challenge for chemicals manufacture. Redox biotransformations are potentially attractive, but they rely on unstable and expensive nicotinamide coenzymes that have prevented their widespread exploitation. Stoichiometric use of natural coenzymes is not viable economically, and the instability of these molecules hinders catalytic processes that employ coenzyme recycling. Here, we investigate the efficiency of man-made synthetic biomimetics of the natural coenzymes NAD(P)H in redox biocatalysis. Extensive studies with a range of oxidoreductases belonging to the "ene" reductase family show that these biomimetics are excellent analogues of the natural coenzymes, revealed also in crystal structures of the ene reductase XenA with selected biomimetics. In selected cases, these biomimetics outperform the natural coenzymes. "Better-than-Nature" biomimetics should find widespread application in fine and specialty chemicals production by harnessing the power of high stereo-, regio-, and chemoselective redox biocatalysts and enabling reactions under mild conditions at low cost.

  19. Extortion can outperform generosity in the iterated prisoner's dilemma.

    PubMed

    Wang, Zhijian; Zhou, Yanran; Lien, Jaimie W; Zheng, Jie; Xu, Bin

    2016-04-12

    Zero-determinant (ZD) strategies, as discovered by Press and Dyson, can enforce a linear relationship between a pair of players' scores in the iterated prisoner's dilemma. Particularly, the extortionate ZD strategies can enforce and exploit cooperation, providing a player with a score advantage, and consequently higher scores than those from either mutual cooperation or generous ZD strategies. In laboratory experiments in which human subjects were paired with computer co-players, we demonstrate that both the generous and the extortionate ZD strategies indeed enforce a unilateral control of the reward. When the experimental setting is sufficiently long and the computerized nature of the opponent is known to human subjects, the extortionate strategy outperforms the generous strategy. Human subjects' cooperation rates when playing against extortionate and generous ZD strategies are similar after learning has occurred. More than half of extortionate strategists finally obtain an average score higher than that from mutual cooperation.

  20. Extortion can outperform generosity in the iterated prisoner's dilemma

    PubMed Central

    Wang, Zhijian; Zhou, Yanran; Lien, Jaimie W.; Zheng, Jie; Xu, Bin

    2016-01-01

    Zero-determinant (ZD) strategies, as discovered by Press and Dyson, can enforce a linear relationship between a pair of players' scores in the iterated prisoner's dilemma. Particularly, the extortionate ZD strategies can enforce and exploit cooperation, providing a player with a score advantage, and consequently higher scores than those from either mutual cooperation or generous ZD strategies. In laboratory experiments in which human subjects were paired with computer co-players, we demonstrate that both the generous and the extortionate ZD strategies indeed enforce a unilateral control of the reward. When the experimental setting is sufficiently long and the computerized nature of the opponent is known to human subjects, the extortionate strategy outperforms the generous strategy. Human subjects' cooperation rates when playing against extortionate and generous ZD strategies are similar after learning has occurred. More than half of extortionate strategists finally obtain an average score higher than that from mutual cooperation. PMID:27067513

  1. Classification of Non-Small Cell Lung Cancer Using Significance Analysis of Microarray-Gene Set Reduction Algorithm

    PubMed Central

    Zhang, Lei; Wang, Linlin; Du, Bochuan; Wang, Tianjiao; Tian, Pu

    2016-01-01

    Among non-small cell lung cancer (NSCLC), adenocarcinoma (AC), and squamous cell carcinoma (SCC) are two major histology subtypes, accounting for roughly 40% and 30% of all lung cancer cases, respectively. Since AC and SCC differ in their cell of origin, location within the lung, and growth pattern, they are considered as distinct diseases. Gene expression signatures have been demonstrated to be an effective tool for distinguishing AC and SCC. Gene set analysis is regarded as irrelevant to the identification of gene expression signatures. Nevertheless, we found that one specific gene set analysis method, significance analysis of microarray-gene set reduction (SAMGSR), can be adopted directly to select relevant features and to construct gene expression signatures. In this study, we applied SAMGSR to a NSCLC gene expression dataset. When compared with several novel feature selection algorithms, for example, LASSO, SAMGSR has equivalent or better performance in terms of predictive ability and model parsimony. Therefore, SAMGSR is a feature selection algorithm, indeed. Additionally, we applied SAMGSR to AC and SCC subtypes separately to discriminate their respective stages, that is, stage II versus stage I. Few overlaps between these two resulting gene signatures illustrate that AC and SCC are technically distinct diseases. Therefore, stratified analyses on subtypes are recommended when diagnostic or prognostic signatures of these two NSCLC subtypes are constructed. PMID:27446945

  2. Classification of Non-Small Cell Lung Cancer Using Significance Analysis of Microarray-Gene Set Reduction Algorithm.

    PubMed

    Zhang, Lei; Wang, Linlin; Du, Bochuan; Wang, Tianjiao; Tian, Pu; Tian, Suyan

    2016-01-01

    Among non-small cell lung cancer (NSCLC), adenocarcinoma (AC), and squamous cell carcinoma (SCC) are two major histology subtypes, accounting for roughly 40% and 30% of all lung cancer cases, respectively. Since AC and SCC differ in their cell of origin, location within the lung, and growth pattern, they are considered as distinct diseases. Gene expression signatures have been demonstrated to be an effective tool for distinguishing AC and SCC. Gene set analysis is regarded as irrelevant to the identification of gene expression signatures. Nevertheless, we found that one specific gene set analysis method, significance analysis of microarray-gene set reduction (SAMGSR), can be adopted directly to select relevant features and to construct gene expression signatures. In this study, we applied SAMGSR to a NSCLC gene expression dataset. When compared with several novel feature selection algorithms, for example, LASSO, SAMGSR has equivalent or better performance in terms of predictive ability and model parsimony. Therefore, SAMGSR is a feature selection algorithm, indeed. Additionally, we applied SAMGSR to AC and SCC subtypes separately to discriminate their respective stages, that is, stage II versus stage I. Few overlaps between these two resulting gene signatures illustrate that AC and SCC are technically distinct diseases. Therefore, stratified analyses on subtypes are recommended when diagnostic or prognostic signatures of these two NSCLC subtypes are constructed.

  3. Automated facial coding software outperforms people in recognizing neutral faces as neutral from standardized datasets.

    PubMed

    Lewinski, Peter

    2015-01-01

    Little is known about people's accuracy of recognizing neutral faces as neutral. In this paper, I demonstrate the importance of knowing how well people recognize neutral faces. I contrasted human recognition scores of 100 typical, neutral front-up facial images with scores of an arguably objective judge - automated facial coding (AFC) software. I hypothesized that the software would outperform humans in recognizing neutral faces because of the inherently objective nature of computer algorithms. Results confirmed this hypothesis. I provided the first-ever evidence that computer software (90%) was more accurate in recognizing neutral faces than people were (59%). I posited two theoretical mechanisms, i.e., smile-as-a-baseline and false recognition of emotion, as possible explanations for my findings.

  4. Automated facial coding software outperforms people in recognizing neutral faces as neutral from standardized datasets

    PubMed Central

    Lewinski, Peter

    2015-01-01

    Little is known about people’s accuracy of recognizing neutral faces as neutral. In this paper, I demonstrate the importance of knowing how well people recognize neutral faces. I contrasted human recognition scores of 100 typical, neutral front-up facial images with scores of an arguably objective judge – automated facial coding (AFC) software. I hypothesized that the software would outperform humans in recognizing neutral faces because of the inherently objective nature of computer algorithms. Results confirmed this hypothesis. I provided the first-ever evidence that computer software (90%) was more accurate in recognizing neutral faces than people were (59%). I posited two theoretical mechanisms, i.e., smile-as-a-baseline and false recognition of emotion, as possible explanations for my findings. PMID:26441761

  5. Smiling on the Inside: The Social Benefits of Suppressing Positive Emotions in Outperformance Situations.

    PubMed

    Schall, Marina; Martiny, Sarah E; Goetz, Thomas; Hall, Nathan C

    2016-05-01

    Although expressing positive emotions is typically socially rewarded, in the present work, we predicted that people suppress positive emotions and thereby experience social benefits when outperformed others are present. We tested our predictions in three experimental studies with high school students. In Studies 1 and 2, we manipulated the type of social situation (outperformance vs. non-outperformance) and assessed suppression of positive emotions. In both studies, individuals reported suppressing positive emotions more in outperformance situations than in non-outperformance situations. In Study 3, we manipulated the social situation (outperformance vs. non-outperformance) as well as the videotaped person's expression of positive emotions (suppression vs. expression). The findings showed that when outperforming others, individuals were indeed evaluated more positively when they suppressed rather than expressed their positive emotions, and demonstrate the importance of the specific social situation with respect to the effects of suppression.

  6. Better than Nature: Nicotinamide Biomimetics That Outperform Natural Coenzymes

    PubMed Central

    2016-01-01

    The search for affordable, green biocatalytic processes is a challenge for chemicals manufacture. Redox biotransformations are potentially attractive, but they rely on unstable and expensive nicotinamide coenzymes that have prevented their widespread exploitation. Stoichiometric use of natural coenzymes is not viable economically, and the instability of these molecules hinders catalytic processes that employ coenzyme recycling. Here, we investigate the efficiency of man-made synthetic biomimetics of the natural coenzymes NAD(P)H in redox biocatalysis. Extensive studies with a range of oxidoreductases belonging to the “ene” reductase family show that these biomimetics are excellent analogues of the natural coenzymes, revealed also in crystal structures of the ene reductase XenA with selected biomimetics. In selected cases, these biomimetics outperform the natural coenzymes. “Better-than-Nature” biomimetics should find widespread application in fine and specialty chemicals production by harnessing the power of high stereo-, regio-, and chemoselective redox biocatalysts and enabling reactions under mild conditions at low cost. PMID:26727612

  7. Adult vultures outperform juveniles in challenging thermal soaring conditions.

    PubMed

    Harel, Roi; Horvitz, Nir; Nathan, Ran

    2016-06-13

    Due to the potentially detrimental consequences of low performance in basic functional tasks, individuals are expected to improve performance with age and show the most marked changes during early stages of life. Soaring-gliding birds use rising-air columns (thermals) to reduce energy expenditure allocated to flight. We offer a framework to evaluate thermal soaring performance, and use GPS-tracking to study movements of Eurasian griffon vultures (Gyps fulvus). Because the location and intensity of thermals are variable, we hypothesized that soaring performance would improve with experience and predicted that the performance of inexperienced individuals (<2 months) would be inferior to that of experienced ones (>5 years). No differences were found in body characteristics, climb rates under low wind shear, and thermal selection, presumably due to vultures' tendency to forage in mixed-age groups. Adults, however, outperformed juveniles in their ability to adjust fine-scale movements under challenging conditions, as juveniles had lower climb rates under intermediate wind shear, particularly on the lee-side of thermal columns. Juveniles were also less efficient along the route both in terms of time and energy. The consequences of these handicaps are probably exacerbated if juveniles lag behind adults in finding and approaching food.

  8. Adult vultures outperform juveniles in challenging thermal soaring conditions

    PubMed Central

    Harel, Roi; Horvitz, Nir; Nathan, Ran

    2016-01-01

    Due to the potentially detrimental consequences of low performance in basic functional tasks, individuals are expected to improve performance with age and show the most marked changes during early stages of life. Soaring-gliding birds use rising-air columns (thermals) to reduce energy expenditure allocated to flight. We offer a framework to evaluate thermal soaring performance, and use GPS-tracking to study movements of Eurasian griffon vultures (Gyps fulvus). Because the location and intensity of thermals are variable, we hypothesized that soaring performance would improve with experience and predicted that the performance of inexperienced individuals (<2 months) would be inferior to that of experienced ones (>5 years). No differences were found in body characteristics, climb rates under low wind shear, and thermal selection, presumably due to vultures’ tendency to forage in mixed-age groups. Adults, however, outperformed juveniles in their ability to adjust fine-scale movements under challenging conditions, as juveniles had lower climb rates under intermediate wind shear, particularly on the lee-side of thermal columns. Juveniles were also less efficient along the route both in terms of time and energy. The consequences of these handicaps are probably exacerbated if juveniles lag behind adults in finding and approaching food. PMID:27291590

  9. On the retrieval of significant wave heights from spaceborne Synthetic Aperture Radar using the Max-Planck Institut algorithm.

    PubMed

    Violante-Carvalho, Nelson

    2005-12-01

    Synthetic Aperture Radar (SAR) onboard satellites is the only source of directional wave spectra with continuous and global coverage. Millions of SAR Wave Mode (SWM) imagettes have been acquired since the launch in the early 1990's of the first European Remote Sensing Satellite ERS-1 and its successors ERS-2 and ENVISAT, which has opened up many possibilities specially for wave data assimilation purposes. The main aim of data assimilation is to improve the forecasting introducing available observations into the modeling procedures in order to minimize the differences between model estimates and measurements. However there are limitations in the retrieval of the directional spectrum from SAR images due to nonlinearities in the mapping mechanism. The Max-Planck Institut (MPI) scheme, the first proposed and most widely used algorithm to retrieve directional wave spectra from SAR images, is employed to compare significant wave heights retrieved from ERS-1 SAR against buoy measurements and against the WAM wave model. It is shown that for periods shorter than 12 seconds the WAM model performs better than the MPI, despite the fact that the model is used as first guess to the MPI method, that is the retrieval is deteriorating the first guess. For periods longer than 12 seconds, the part of the spectrum that is directly measured by SAR, the performance of the MPI scheme is at least as good as the WAM model.

  10. Haptic identification of raised-line drawings: high visuospatial imagers outperform low visuospatial imagers.

    PubMed

    Lebaz, Samuel; Jouffrais, Christophe; Picard, Delphine

    2012-09-01

    It has been assumed (Lederman et al. 1990, Perception & psychophysics) that a visual imagery process is involved in the haptic identification of raised-line drawings of common objects. The finding of significant correlations between visual imagery ability and performance on picture-naming tasks was taken as experimental evidence in support of this assumption. However, visual imagery measures came from self-report procedures, which can be unreliable. The present study therefore used an objective measure of visuospatial imagery abilities in sighted participants and compared three groups of high, medium and low visuospatial imagers on their accuracy and response times in identifying raised-line drawings by touch. Results revealed between-group differences on accuracy, with high visuospatial imagers outperforming low visuospatial imagers, but not on response times. These findings lend support to the view that visuospatial imagery plays a role in the identification of raised-line drawings by sighted adults.

  11. Quantum algorithms: an overview

    NASA Astrophysics Data System (ADS)

    Montanaro, Ashley

    2016-01-01

    Quantum computers are designed to outperform standard computers by running quantum algorithms. Areas in which quantum algorithms can be applied include cryptography, search and optimisation, simulation of quantum systems and solving large systems of linear equations. Here we briefly survey some known quantum algorithms, with an emphasis on a broad overview of their applications rather than their technical details. We include a discussion of recent developments and near-term applications of quantum algorithms.

  12. Interobserver agreement of proliferation index (Ki-67) outperforms mitotic count in pulmonary carcinoids.

    PubMed

    Warth, Arne; Fink, Ludger; Fisseler-Eckhoff, Annette; Jonigk, Danny; Keller, Marius; Ott, German; Rieker, Ralf J; Sinn, Peter; Söder, Stephan; Soltermann, Alex; Willenbrock, Klaus; Weichert, Wilko

    2013-05-01

    Evaluation of proliferative activity is a cornerstone in the classification of endocrine tumors; in pulmonary carcinoids, the mitotic count delineates typical carcinoid (TC) from atypical carcinoid (AC). Data on the reproducibility of manual mitotic counting and other methods of proliferation index evaluation in this tumor entity are sparse. Nine experienced pulmonary pathologists evaluated 20 carcinoid tumors for mitotic count (hematoxylin and eosin) and Ki-67 index. In addition, Ki-67 index was automatically evaluated with a software-based algorithm. Results were compared with respect to correlation coefficients (CC) and kappa values for clinically relevant grouping algorithms. Evaluation of mitotic activity resulted in a low interobserver agreement with a median CC of 0.196 and a median kappa of 0.213 for the delineation of TC from AC. The median CC for hotspot (0.658) and overall (0.746) Ki-67 evaluation was considerably higher. However, kappa values for grouped comparisons of overall Ki-67 were only fair (median 0.323). The agreement of manual and automated Ki-67 evaluation was good (median CC 0.851, median kappa 0.805) and was further increased when more than one participant evaluated a given case. Ki-67 staining clearly outperforms mitotic count with respect to interobserver agreement in pulmonary carcinoids, with the latter having an unacceptable low performance status. Manual evaluation of Ki-67 is reliable, and consistency further increases with more than one evaluator per case. Although the prognostic value needs further validation, Ki-67 might perspectively be considered a helpful diagnostic parameter to optimize the separation of TC from AC.

  13. US line-ups outperform UK line-ups

    PubMed Central

    Seale-Carlisle, Travis M.

    2016-01-01

    In the USA and the UK, many thousands of police suspects are identified by eyewitnesses every year. Unfortunately, many of those suspects are innocent, which becomes evident when they are exonerated by DNA testing, often after having been imprisoned for years. It is, therefore, imperative to use identification procedures that best enable eyewitnesses to discriminate innocent from guilty suspects. Although police investigators in both countries often administer line-up procedures, the details of how line-ups are presented are quite different and an important direct comparison has yet to be conducted. We investigated whether these two line-up procedures differ in terms of (i) discriminability (using receiver operating characteristic analysis) and (ii) reliability (using confidence–accuracy characteristic analysis). A total of 2249 participants watched a video of a crime and were later tested using either a six-person simultaneous photo line-up procedure (USA) or a nine-person sequential video line-up procedure (UK). US line-up procedure yielded significantly higher discriminability and significantly higher reliability. The results do not pinpoint the reason for the observed difference between the two procedures, but they do suggest that there is much room for improvement with the UK line-up. PMID:27703695

  14. Do new wipe materials outperform traditional lead dust cleaning methods?

    PubMed

    Lewis, Roger D; Ong, Kee Hean; Emo, Brett; Kennedy, Jason; Brown, Christopher A; Condoor, Sridhar; Thummalakunta, Laxmi

    2012-01-01

    Government guidelines have traditionally recommended the use of wet mopping, sponging, or vacuuming for removal of lead-contaminated dust from hard surfaces in homes. The emergence of new technologies, such as the electrostatic dry cloth and wet disposable clothes used on mopheads, for removal of dust provides an opportunity to evaluate their ability to remove lead compared with more established methods. The purpose of this study was to determine if relative differences exist between two new and two older methods for removal of lead-contaminated dust (LCD) from three wood surfaces that were characterized by different roughness or texture. Standard leaded dust, <75 μm, was deposited by gravity onto the wood specimens. Specimens were cleaned using an automated device. Electrostatic dry cloths (dry Swiffer), wet Swiffer cloths, paper shop towels with non-ionic detergent, and vacuuming were used for cleaning LCD from the specimens. Lead analysis was by anodic stripping voltammetry. After the cleaning study was conducted, a study of the coefficient of friction was performed for each wipe material. Analysis of variance was used to evaluate the surface and cleaning methods. There were significant interactions between cleaning method and surface types, p = 0.007. Cleaning method was found be a significant factor in removal of lead, p <0.001, indicating that effectiveness of each cleaning methods is different. However, cleaning was not affected by types of surfaces. The coefficient of friction, significantly different among the three wipes, is likely to influence the cleaning action. Cleaning method appears to be more important than texture in LCD removal from hard surfaces. There are some small but important factors in cleaning LCD from hard surfaces, including the limits of a Swiffer mop to conform to curved surfaces and the efficiency of the wetted shop towel and vacuuming for cleaning all surface textures. The mean percentage reduction in lead dust achieved by the

  15. Fast neuromimetic object recognition using FPGA outperforms GPU implementations.

    PubMed

    Orchard, Garrick; Martin, Jacob G; Vogelstein, R Jacob; Etienne-Cummings, Ralph

    2013-08-01

    Recognition of objects in still images has traditionally been regarded as a difficult computational problem. Although modern automated methods for visual object recognition have achieved steadily increasing recognition accuracy, even the most advanced computational vision approaches are unable to obtain performance equal to that of humans. This has led to the creation of many biologically inspired models of visual object recognition, among them the hierarchical model and X (HMAX) model. HMAX is traditionally known to achieve high accuracy in visual object recognition tasks at the expense of significant computational complexity. Increasing complexity, in turn, increases computation time, reducing the number of images that can be processed per unit time. In this paper we describe how the computationally intensive and biologically inspired HMAX model for visual object recognition can be modified for implementation on a commercial field-programmable aate Array, specifically the Xilinx Virtex 6 ML605 evaluation board with XC6VLX240T FPGA. We show that with minor modifications to the traditional HMAX model we can perform recognition on images of size 128 × 128 pixels at a rate of 190 images per second with a less than 1% loss in recognition accuracy in both binary and multiclass visual object recognition tasks.

  16. A novel bit-quad-based Euler number computing algorithm.

    PubMed

    Yao, Bin; He, Lifeng; Kang, Shiying; Chao, Yuyan; Zhao, Xiao

    2015-01-01

    The Euler number of a binary image is an important topological property in computer vision and pattern recognition. This paper proposes a novel bit-quad-based Euler number computing algorithm. Based on graph theory and analysis on bit-quad patterns, our algorithm only needs to count two bit-quad patterns. Moreover, by use of the information obtained during processing the previous bit-quad, the average number of pixels to be checked for processing a bit-quad is only 1.75. Experimental results demonstrated that our method outperforms significantly conventional Euler number computing algorithms.

  17. Using edge-preserving algorithm with non-local mean for significantly improved image-domain material decomposition in dual-energy CT

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Niu, Tianye; Xing, Lei; Xie, Yaoqin; Xiong, Guanglei; Elmore, Kimberly; Zhu, Jun; Wang, Luyao; Min, James K.

    2016-02-01

    Increased noise is a general concern for dual-energy material decomposition. Here, we develop an image-domain material decomposition algorithm for dual-energy CT (DECT) by incorporating an edge-preserving filter into the Local HighlY constrained backPRojection reconstruction (HYPR-LR) framework. With effective use of the non-local mean, the proposed algorithm, which is referred to as HYPR-NLM, reduces the noise in dual-energy decomposition while preserving the accuracy of quantitative measurement and spatial resolution of the material-specific dual-energy images. We demonstrate the noise reduction and resolution preservation of the algorithm with an iodine concentrate numerical phantom by comparing the HYPR-NLM algorithm to the direct matrix inversion, HYPR-LR and iterative image-domain material decomposition (Iter-DECT). We also show the superior performance of the HYPR-NLM over the existing methods by using two sets of cardiac perfusing imaging data. The DECT material decomposition comparison study shows that all four algorithms yield acceptable quantitative measurements of iodine concentrate. Direct matrix inversion yields the highest noise level, followed by HYPR-LR and Iter-DECT. HYPR-NLM in an iterative formulation significantly reduces image noise and the image noise is comparable to or even lower than that generated using Iter-DECT. For the HYPR-NLM method, there are marginal edge effects in the difference image, suggesting the high-frequency details are well preserved. In addition, when the search window size increases from 11× 11 to 19× 19 , there are no significant changes or marginal edge effects in the HYPR-NLM difference images. The reference drawn from the comparison study includes: (1) HYPR-NLM significantly reduces the DECT material decomposition noise while preserving quantitative measurements and high-frequency edge information, and (2) HYPR-NLM is robust with respect to parameter selection.

  18. Surface hopping outperforms secular Redfield theory when reorganization energies range from small to moderate (and nuclei are classical)

    NASA Astrophysics Data System (ADS)

    Landry, Brian R.; Subotnik, Joseph E.

    2015-03-01

    We evaluate the accuracy of Tully's surface hopping algorithm for the spin-boson model in the limit of small to moderate reorganization energy. We calculate transition rates between diabatic surfaces in the exciton basis and compare against exact results from the hierarchical equations of motion; we also compare against approximate rates from the secular Redfield equation and Ehrenfest dynamics. We show that decoherence-corrected surface hopping performs very well in this regime, agreeing with secular Redfield theory for very weak system-bath coupling and outperforming secular Redfield theory for moderate system-bath coupling. Surface hopping can also be extended beyond the Markovian limits of standard Redfield theory. Given previous work [B. R. Landry and J. E. Subotnik, J. Chem. Phys. 137, 22A513 (2012)] that establishes the accuracy of decoherence-corrected surface-hopping in the Marcus regime, this work suggests that surface hopping may well have a very wide range of applicability.

  19. Surface hopping outperforms secular Redfield theory when reorganization energies range from small to moderate (and nuclei are classical)

    SciTech Connect

    Landry, Brian R. Subotnik, Joseph E.

    2015-03-14

    We evaluate the accuracy of Tully’s surface hopping algorithm for the spin-boson model in the limit of small to moderate reorganization energy. We calculate transition rates between diabatic surfaces in the exciton basis and compare against exact results from the hierarchical equations of motion; we also compare against approximate rates from the secular Redfield equation and Ehrenfest dynamics. We show that decoherence-corrected surface hopping performs very well in this regime, agreeing with secular Redfield theory for very weak system-bath coupling and outperforming secular Redfield theory for moderate system-bath coupling. Surface hopping can also be extended beyond the Markovian limits of standard Redfield theory. Given previous work [B. R. Landry and J. E. Subotnik, J. Chem. Phys. 137, 22A513 (2012)] that establishes the accuracy of decoherence-corrected surface-hopping in the Marcus regime, this work suggests that surface hopping may well have a very wide range of applicability.

  20. Feasibility of an automatic computer-assisted algorithm for the detection of significant coronary artery disease in patients presenting with acute chest pain.

    PubMed

    Kang, Ki-woon; Chang, Hyuk-jae; Shim, Hackjoon; Kim, Young-jin; Choi, Byoung-wook; Yang, Woo-in; Shim, Jee-young; Ha, Jongwon; Chung, Namsik

    2012-04-01

    Automatic computer-assisted detection (auto-CAD) of significant coronary artery disease (CAD) in coronary computed tomography angiography (cCTA) has been shown to have relatively high accuracy. However, to date, scarce data are available regarding the performance of auto-CAD in the setting of acute chest pain. This study sought to demonstrate the feasibility of an auto-CAD algorithm for cCTA in patients presenting with acute chest pain. We retrospectively investigated 398 consecutive patients (229 male, mean age 50±21 years) who had acute chest pain and underwent cCTA between Apr 2007 and Jan 2011 in the emergency department (ED). All cCTA data were analyzed using an auto-CAD algorithm for the detection of >50% CAD on cCTA. The accuracy of auto-CAD was compared with the formal radiology report. In 380 of 398 patients (18 were excluded due to failure of data processing), per-patient analysis of auto-CAD revealed the following: sensitivity 94%, specificity 63%, positive predictive value (PPV) 76%, and negative predictive value (NPV) 89%. After the exclusion of 37 cases that were interpreted as invalid by the auto-CAD algorithm, the NPV was further increased up to 97%, considering the false-negative cases in the formal radiology report, and was confirmed by subsequent invasive angiogram during the index visit. We successfully demonstrated the high accuracy of an auto-CAD algorithm, compared with the formal radiology report, for the detection of >50% CAD on cCTA in the setting of acute chest pain. The auto-CAD algorithm can be used to facilitate the decision-making process in the ED.

  1. A Mozart is not a Pavarotti: singers outperform instrumentalists on foreign accent imitation

    PubMed Central

    Christiner, Markus; Reiterer, Susanne Maria

    2015-01-01

    Recent findings have shown that people with higher musical aptitude were also better in oral language imitation tasks. However, whether singing capacity and instrument playing contribute differently to the imitation of speech has been ignored so far. Research has just recently started to understand that instrumentalists develop quite distinct skills when compared to vocalists. In the same vein the role of the vocal motor system in language acquisition processes has poorly been investigated as most investigations (neurobiological and behavioral) favor to examine speech perception. We set out to test whether the vocal motor system can influence an ability to learn, produce and perceive new languages by contrasting instrumentalists and vocalists. Therefore, we investigated 96 participants, 27 instrumentalists, 33 vocalists and 36 non-musicians/non-singers. They were tested for their abilities to imitate foreign speech: unknown language (Hindi), second language (English) and their musical aptitude. Results revealed that both instrumentalists and vocalists have a higher ability to imitate unintelligible speech and foreign accents than non-musicians/non-singers. Within the musician group, vocalists outperformed instrumentalists significantly. Conclusion: First, adaptive plasticity for speech imitation is not reliant on audition alone but also on vocal-motor induced processes. Second, vocal flexibility of singers goes together with higher speech imitation aptitude. Third, vocal motor training, as of singers, may speed up foreign language acquisition processes. PMID:26379537

  2. The frailty index outperforms DNA methylation age and its derivatives as an indicator of biological age.

    PubMed

    Kim, Sangkyu; Myers, Leann; Wyckoff, Jennifer; Cherry, Katie E; Jazwinski, S Michal

    2017-02-01

    The measurement of biological age as opposed to chronological age is important to allow the study of factors that are responsible for the heterogeneity in the decline in health and function ability among individuals during aging. Various measures of biological aging have been proposed. Frailty indices based on health deficits in diverse body systems have been well studied, and we have documented the use of a frailty index (FI34) composed of 34 health items, for measuring biological age. A different approach is based on leukocyte DNA methylation. It has been termed DNA methylation age, and derivatives of this metric called age acceleration difference and age acceleration residual have also been employed. Any useful measure of biological age must predict survival better than chronological age does. Meta-analyses indicate that age acceleration difference and age acceleration residual are significant predictors of mortality, qualifying them as indicators of biological age. In this article, we compared the measures based on DNA methylation with FI34. Using a well-studied cohort, we assessed the efficiency of these measures side by side in predicting mortality. In the presence of chronological age as a covariate, FI34 was a significant predictor of mortality, whereas none of the DNA methylation age-based metrics were. The outperformance of FI34 over DNA methylation age measures was apparent when FI34 and each of the DNA methylation age measures were used together as explanatory variables, along with chronological age: FI34 remained significant but the DNA methylation measures did not. These results indicate that FI34 is a robust predictor of biological age, while these DNA methylation measures are largely a statistical reflection of the passage of chronological time.

  3. Does CBT for Youth Anxiety Outperform Usual Care in Community Clinics? An Initial Effectiveness Test

    PubMed Central

    Southam-Gerow, Michael A.; Weisz, John R.; Chu, Brian C.; McLeod, Bryce D.; Gordis, Elana B.; Connor-Smith, Jennifer K.

    2010-01-01

    Objective Most tests of cognitive behavioral therapy (CBT) for youth anxiety disorders have shown beneficial effects, but these have been efficacy trials with recruited youths treated by researcher-employed therapists. One previous (non-randomized) trial in community clinics found that CBT did not outperform usual care (UC). We used a more stringent effectiveness design to test CBT vs. UC among youths referred to community clinics, with all treatment provided by therapists employed in the clinics. Method RCT methodology was used. Therapists were randomized to (a) training and supervision in the Coping Cat CBT program or (b) UC. Forty-eight (48) youths (56% girls; aged 8–15; 38% Caucasian, 33% Latino, 15% African-American) diagnosed with DSM-IV anxiety disorders were randomized to CBT or UC. Results At the end of treatment more than half the youths no longer met criteria for their primary anxiety disorder, but the groups did not differ significantly on symptom (e.g., parent report η2=.0001; child report η2=.09, both differences favoring UC) or diagnostic outcomes (CBT: 66.7% without primary diagnosis; UC: 73.7%; OR=.71). No differences were found with regard to outcomes of comorbid conditions, treatment duration, or costs. However, youths receiving CBT used fewer additional services than UC youths (χ2(1) = 8.82, p = .006). Conclusions CBT did not produce better clinical outcomes than usual community clinic care. This initial test involved a relatively modest sample size; more research is needed to clarify whether there are conditions under which CBT can produce better clinical outcomes than usual clinical care. PMID:20855049

  4. On the Simulation of Sea States with High Significant Wave Height for the Validation of Parameter Retrieval Algorithms for Future Altimetry Missions

    NASA Astrophysics Data System (ADS)

    Kuschenerus, Mieke; Cullen, Robert

    2016-08-01

    To ensure reliability and precision of wave height estimates for future satellite altimetry missions such as Sentinel 6, reliable parameter retrieval algorithms that can extract significant wave heights up to 20 m have to be established. The retrieved parameters, i.e. the retrieval methods need to be validated extensively on a wide range of possible significant wave heights. Although current missions require wave height retrievals up to 20 m, there is little evidence of systematic validation of parameter retrieval methods for sea states with wave heights above 10 m. This paper provides a definition of a set of simulated sea states with significant wave height up to 20 m, that allow simulation of radar altimeter response echoes for extreme sea states in SAR and low resolution mode. The simulated radar responses are used to derive significant wave height estimates, which can be compared with the initial models, allowing precision estimations of the applied parameter retrieval methods. Thus we establish a validation method for significant wave height retrieval for sea states causing high significant wave heights, to allow improved understanding and planning of future satellite altimetry mission validation.

  5. Why Do Chinese-Australian Students Outperform Their Australian Peers in Mathematics: A Comparative Case Study

    ERIC Educational Resources Information Center

    Zhao, Dacheng; Singh, Michael

    2011-01-01

    International comparative studies and cross-cultural studies of mathematics achievement indicate that Chinese students (whether living in or outside China) consistently outperform their Western counterparts. This study shows that the gap between Chinese-Australian and other Australian students is best explained by differences in motivation to…

  6. Using Outperformance Pay to Motivate Academics: Insiders' Accounts of Promises and Problems

    ERIC Educational Resources Information Center

    Field, Laurie

    2015-01-01

    Many researchers have investigated the appropriateness of pay for outperformance, (also called "merit-based pay" and "performance-based pay") for academics, but a review of this body of work shows that the voice of academics themselves is largely absent. This article is a contribution to addressing this gap, summarising the…

  7. A Sparse Reconstruction Algorithm for Ultrasonic Images in Nondestructive Testing

    PubMed Central

    Guarneri, Giovanni Alfredo; Pipa, Daniel Rodrigues; Junior, Flávio Neves; de Arruda, Lúcia Valéria Ramos; Zibetti, Marcelo Victor Wüst

    2015-01-01

    Ultrasound imaging systems (UIS) are essential tools in nondestructive testing (NDT). In general, the quality of images depends on two factors: system hardware features and image reconstruction algorithms. This paper presents a new image reconstruction algorithm for ultrasonic NDT. The algorithm reconstructs images from A-scan signals acquired by an ultrasonic imaging system with a monostatic transducer in pulse-echo configuration. It is based on regularized least squares using a l1 regularization norm. The method is tested to reconstruct an image of a point-like reflector, using both simulated and real data. The resolution of reconstructed image is compared with four traditional ultrasonic imaging reconstruction algorithms: B-scan, SAFT, ω-k SAFT and regularized least squares (RLS). The method demonstrates significant resolution improvement when compared with B-scan—about 91% using real data. The proposed scheme also outperforms traditional algorithms in terms of signal-to-noise ratio (SNR). PMID:25905700

  8. MO-FG-204-03: Using Edge-Preserving Algorithm for Significantly Improved Image-Domain Material Decomposition in Dual Energy CT

    SciTech Connect

    Zhao, W; Niu, T; Xing, L; Xiong, G; Elmore, K; Min, J; Zhu, J; Wang, L

    2015-06-15

    Purpose: To significantly improve dual energy CT (DECT) imaging by establishing a new theoretical framework of image-domain material decomposition with incorporation of edge-preserving techniques. Methods: The proposed algorithm, HYPR-NLM, combines the edge-preserving non-local mean filter (NLM) with the HYPR-LR (Local HighlY constrained backPRojection Reconstruction) framework. Image denoising using HYPR-LR framework depends on the noise level of the composite image which is the average of the different energy images. For DECT, the composite image is the average of high- and low-energy images. To further reduce noise, one may want to increase the window size of the filter of the HYPR-LR, leading resolution degradation. By incorporating the NLM filtering and the HYPR-LR framework, HYPR-NLM reduces the boost material decomposition noise using energy information redundancies as well as the non-local mean. We demonstrate the noise reduction and resolution preservation of the algorithm with both iodine concentration numerical phantom and clinical patient data by comparing the HYPR-NLM algorithm to the direct matrix inversion, HYPR-LR and iterative image-domain material decomposition (Iter-DECT). Results: The results show iterative material decomposition method reduces noise to the lowest level and provides improved DECT images. HYPR-NLM significantly reduces noise while preserving the accuracy of quantitative measurement and resolution. For the iodine concentration numerical phantom, the averaged noise levels are about 2.0, 0.7, 0.2 and 0.4 for direct inversion, HYPR-LR, Iter- DECT and HYPR-NLM, respectively. For the patient data, the noise levels of the water images are about 0.36, 0.16, 0.12 and 0.13 for direct inversion, HYPR-LR, Iter-DECT and HYPR-NLM, respectively. Difference images of both HYPR-LR and Iter-DECT show edge effect, while no significant edge effect is shown for HYPR-NLM, suggesting spatial resolution is well preserved for HYPR-NLM. Conclusion: HYPR

  9. Two hybrid compaction algorithms for the layout optimization problem.

    PubMed

    Xiao, Ren-Bin; Xu, Yi-Chun; Amos, Martyn

    2007-01-01

    In this paper we present two new algorithms for the layout optimization problem: this concerns the placement of circular, weighted objects inside a circular container, the two objectives being to minimize imbalance of mass and to minimize the radius of the container. This problem carries real practical significance in industrial applications (such as the design of satellites), as well as being of significant theoretical interest. We present two nature-inspired algorithms for this problem, the first based on simulated annealing, and the second on particle swarm optimization. We compare our algorithms with the existing best-known algorithm, and show that our approaches out-perform it in terms of both solution quality and execution time.

  10. A Fast and Efficient Algorithm for Mining Top-k Nodes in Complex Networks

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Jing, Yun; Zhao, Jing; Wang, Wenjun; Song, Guojie

    2017-02-01

    One of the key problems in social network analysis is influence maximization, which has great significance both in theory and practical applications. Given a complex network and a positive integer k, and asks the k nodes to trigger the largest expected number of the remaining nodes. Many mature algorithms are mainly divided into propagation-based algorithms and topology- based algorithms. The propagation-based algorithms are based on optimization of influence spread process, so the influence spread of them significantly outperforms the topology-based algorithms. But these algorithms still takes days to complete on large networks. Contrary to propagation based algorithms, the topology-based algorithms are based on intuitive parameter statistics and static topology structure properties. Their running time are extremely short but the results of influence spread are unstable. In this paper, we propose a novel topology-based algorithm based on local index rank (LIR). The influence spread of our algorithm is close to the propagation-based algorithm and sometimes over them. Moreover, the running time of our algorithm is millions of times shorter than that of propagation-based algorithms. Our experimental results show that our algorithm has a good and stable performance in IC and LT model.

  11. A Fast and Efficient Algorithm for Mining Top-k Nodes in Complex Networks.

    PubMed

    Liu, Dong; Jing, Yun; Zhao, Jing; Wang, Wenjun; Song, Guojie

    2017-02-27

    One of the key problems in social network analysis is influence maximization, which has great significance both in theory and practical applications. Given a complex network and a positive integer k, and asks the k nodes to trigger the largest expected number of the remaining nodes. Many mature algorithms are mainly divided into propagation-based algorithms and topology- based algorithms. The propagation-based algorithms are based on optimization of influence spread process, so the influence spread of them significantly outperforms the topology-based algorithms. But these algorithms still takes days to complete on large networks. Contrary to propagation based algorithms, the topology-based algorithms are based on intuitive parameter statistics and static topology structure properties. Their running time are extremely short but the results of influence spread are unstable. In this paper, we propose a novel topology-based algorithm based on local index rank (LIR). The influence spread of our algorithm is close to the propagation-based algorithm and sometimes over them. Moreover, the running time of our algorithm is millions of times shorter than that of propagation-based algorithms. Our experimental results show that our algorithm has a good and stable performance in IC and LT model.

  12. A Fast and Efficient Algorithm for Mining Top-k Nodes in Complex Networks

    PubMed Central

    Liu, Dong; Jing, Yun; Zhao, Jing; Wang, Wenjun; Song, Guojie

    2017-01-01

    One of the key problems in social network analysis is influence maximization, which has great significance both in theory and practical applications. Given a complex network and a positive integer k, and asks the k nodes to trigger the largest expected number of the remaining nodes. Many mature algorithms are mainly divided into propagation-based algorithms and topology- based algorithms. The propagation-based algorithms are based on optimization of influence spread process, so the influence spread of them significantly outperforms the topology-based algorithms. But these algorithms still takes days to complete on large networks. Contrary to propagation based algorithms, the topology-based algorithms are based on intuitive parameter statistics and static topology structure properties. Their running time are extremely short but the results of influence spread are unstable. In this paper, we propose a novel topology-based algorithm based on local index rank (LIR). The influence spread of our algorithm is close to the propagation-based algorithm and sometimes over them. Moreover, the running time of our algorithm is millions of times shorter than that of propagation-based algorithms. Our experimental results show that our algorithm has a good and stable performance in IC and LT model. PMID:28240238

  13. Adaptive reference update (ARU) algorithm. A stochastic search algorithm for efficient optimization of multi-drug cocktails

    PubMed Central

    2012-01-01

    Background Multi-target therapeutics has been shown to be effective for treating complex diseases, and currently, it is a common practice to combine multiple drugs to treat such diseases to optimize the therapeutic outcomes. However, considering the huge number of possible ways to mix multiple drugs at different concentrations, it is practically difficult to identify the optimal drug combination through exhaustive testing. Results In this paper, we propose a novel stochastic search algorithm, called the adaptive reference update (ARU) algorithm, that can provide an efficient and systematic way for optimizing multi-drug cocktails. The ARU algorithm iteratively updates the drug combination to improve its response, where the update is made by comparing the response of the current combination with that of a reference combination, based on which the beneficial update direction is predicted. The reference combination is continuously updated based on the drug response values observed in the past, thereby adapting to the underlying drug response function. To demonstrate the effectiveness of the proposed algorithm, we evaluated its performance based on various multi-dimensional drug functions and compared it with existing algorithms. Conclusions Simulation results show that the ARU algorithm significantly outperforms existing stochastic search algorithms, including the Gur Game algorithm. In fact, the ARU algorithm can more effectively identify potent drug combinations and it typically spends fewer iterations for finding effective combinations. Furthermore, the ARU algorithm is robust to random fluctuations and noise in the measured drug response, which makes the algorithm well-suited for practical drug optimization applications. PMID:23134742

  14. 3D-Printed Permanent Magnets Outperform Conventional Versions, Conserve Rare Materials

    SciTech Connect

    Paranthaman, Parans

    2016-11-01

    Researchers at the Department of Energy’s Oak Ridge National Laboratory have demonstrated that permanent magnets produced by additive manufacturing can outperform bonded magnets made using traditional techniques while conserving critical materials. The project is part of DOE’s Critical Materials Institute (CMI), which seeks ways to eliminate and reduce reliance on rare earth metals and other materials critical to the success of clean energy technologies.

  15. 3D-Printed Permanent Magnets Outperform Conventional Versions, Conserve Rare Materials

    ScienceCinema

    Paranthaman, Parans

    2016-11-23

    Researchers at the Department of Energy’s Oak Ridge National Laboratory have demonstrated that permanent magnets produced by additive manufacturing can outperform bonded magnets made using traditional techniques while conserving critical materials. The project is part of DOE’s Critical Materials Institute (CMI), which seeks ways to eliminate and reduce reliance on rare earth metals and other materials critical to the success of clean energy technologies.

  16. Advanced GF(32) nonbinary LDPC coded modulation with non-uniform 9-QAM outperforming star 8-QAM.

    PubMed

    Liu, Tao; Lin, Changyu; Djordjevic, Ivan B

    2016-06-27

    In this paper, we first describe a 9-symbol non-uniform signaling scheme based on Huffman code, in which different symbols are transmitted with different probabilities. By using the Huffman procedure, prefix code is designed to approach the optimal performance. Then, we introduce an algorithm to determine the optimal signal constellation sets for our proposed non-uniform scheme with the criterion of maximizing constellation figure of merit (CFM). The proposed nonuniform polarization multiplexed signaling 9-QAM scheme has the same spectral efficiency as the conventional 8-QAM. Additionally, we propose a specially designed GF(32) nonbinary quasi-cyclic LDPC code for the coded modulation system based on the 9-QAM non-uniform scheme. Further, we study the efficiency of our proposed non-uniform 9-QAM, combined with nonbinary LDPC coding, and demonstrate by Monte Carlo simulation that the proposed GF(23) nonbinary LDPC coded 9-QAM scheme outperforms nonbinary LDPC coded uniform 8-QAM by at least 0.8dB.

  17. An effective cache algorithm for heterogeneous storage systems.

    PubMed

    Li, Yong; Feng, Dan; Shi, Zhan

    2013-01-01

    Modern storage environment is commonly composed of heterogeneous storage devices. However, traditional cache algorithms exhibit performance degradation in heterogeneous storage systems because they were not designed to work with the diverse performance characteristics. In this paper, we present a new cache algorithm called HCM for heterogeneous storage systems. The HCM algorithm partitions the cache among the disks and adopts an effective scheme to balance the work across the disks. Furthermore, it applies benefit-cost analysis to choose the best allocation of cache block to improve the performance. Conducting simulations with a variety of traces and a wide range of cache size, our experiments show that HCM significantly outperforms the existing state-of-the-art storage-aware cache algorithms.

  18. Naive Bayes-guided bat algorithm for feature selection.

    PubMed

    Taha, Ahmed Majid; Mustapha, Aida; Chen, Soong-Der

    2013-01-01

    When the amount of data and information is said to double in every 20 months or so, feature selection has become highly important and beneficial. Further improvements in feature selection will positively affect a wide array of applications in fields such as pattern recognition, machine learning, or signal processing. Bio-inspired method called Bat Algorithm hybridized with a Naive Bayes classifier has been presented in this work. The performance of the proposed feature selection algorithm was investigated using twelve benchmark datasets from different domains and was compared to three other well-known feature selection algorithms. Discussion focused on four perspectives: number of features, classification accuracy, stability, and feature generalization. The results showed that BANB significantly outperformed other algorithms in selecting lower number of features, hence removing irrelevant, redundant, or noisy features while maintaining the classification accuracy. BANB is also proven to be more stable than other methods and is capable of producing more general feature subsets.

  19. New dispenser types for integrated pest management of agriculturally significant insect pests: an algorithm with specialized searching capacity in electronic data bases.

    PubMed

    Hummel, H E; Eisinger, M T; Hein, D F; Breuer, M; Schmid, S; Leithold, G

    2012-01-01

    Pheromone effects discovered some 130 years, but scientifically defined just half a century ago, are a great bonus for basic and applied biology. Specifically, pest management efforts have been advanced in many insect orders, either for purposes or monitoring, mass trapping, or for mating disruption. Finding and applying a new search algorithm, nearly 20,000 entries in the pheromone literature have been counted, a number much higher than originally anticipated. This compilation contains identified and thus synthesizable structures for all major orders of insects. Among them are hundreds of agriculturally significant insect pests whose aggregated damages and costly control measures range in the multibillions of dollars annually. Unfortunately, and despite a lot of effort within the international entomological scene, the number of efficient and cheap engineering solutions for dispensing pheromones under variable field conditions is uncomfortably lagging behind. Some innovative approaches are cited from the relevant literature in an attempt to rectify this situation. Recently, specifically designed electrospun organic nanofibers offer a lot of promise. With their use, the mating communication of vineyard insects like Lobesia botrana (Lep.: Tortricidae) can be disrupted for periods of seven weeks.

  20. A Cooperative Framework for Fireworks Algorithm.

    PubMed

    Zheng, Shaoqiu; Li, Junzhi; Janecek, Andreas; Tan, Ying

    2017-01-01

    This paper presents a cooperative framework for fireworks algorithm (CoFFWA). A detailed analysis of existing fireworks algorithm (FWA) and its recently developed variants has revealed that ( i) the current selection strategy has the drawback that the contribution of the firework with the best fitness (denoted as core firework) overwhelms the contributions of all other fireworks (non-core fireworks) in the explosion operator, ( ii) the Gaussian mutation operator is not as effective as it is designed to be. To overcome these limitations, the CoFFWA is proposed, which significantly improves the exploitation capability by using an independent selection method and also increases the exploration capability by incorporating a crowdness-avoiding cooperative strategy among the fireworks. Experimental results on the CEC2013 benchmark functions indicate that CoFFWA outperforms the state-of-the-art FWA variants, artificial bee colony, differential evolution, and the standard particle swarm optimization SPSO2007/SPSO2011 in terms of convergence performance.

  1. Brief cognitive-behavioral depression prevention program for high-risk adolescents outperforms two alternative interventions: a randomized efficacy trial.

    PubMed

    Stice, Eric; Rohde, Paul; Seeley, John R; Gau, Jeff M

    2008-08-01

    In this depression prevention trial, 341 high-risk adolescents (mean age = 15.6 years, SD = 1.2) with elevated depressive symptoms were randomized to a brief group cognitive-behavioral (CB) intervention, group supportive-expressive intervention, bibliotherapy, or assessment-only control condition. CB participants showed significantly greater reductions in depressive symptoms than did supportive-expressive, bibliotherapy, and assessment-only participants at posttest, though only the difference compared with assessment controls was significant at 6-month follow-up. CB participants showed significantly greater improvements in social adjustment and reductions in substance use at posttest and 6-month follow-up than did participants in all 3 other conditions. Supportive-expressive and bibliotherapy participants showed greater reductions in depressive symptoms than did assessment-only controls at certain follow-up assessments but produced no effects for social adjustment and substance use. CB, supportive-expressive, and bibliotherapy participants showed a significantly lower risk for major depression onset over the 6-month follow-up than did assessment-only controls. The evidence that this brief CB intervention reduced risk for future depression onset and outperformed alternative interventions for certain ecologically important outcomes suggests that this intervention may have clinical utility.

  2. Preconditioned Alternating Projection Algorithms for Maximum a Posteriori ECT Reconstruction

    PubMed Central

    Krol, Andrzej; Li, Si; Shen, Lixin; Xu, Yuesheng

    2012-01-01

    We propose a preconditioned alternating projection algorithm (PAPA) for solving the maximum a posteriori (MAP) emission computed tomography (ECT) reconstruction problem. Specifically, we formulate the reconstruction problem as a constrained convex optimization problem with the total variation (TV) regularization. We then characterize the solution of the constrained convex optimization problem and show that it satisfies a system of fixed-point equations defined in terms of two proximity operators raised from the convex functions that define the TV-norm and the constrain involved in the problem. The characterization (of the solution) via the proximity operators that define two projection operators naturally leads to an alternating projection algorithm for finding the solution. For efficient numerical computation, we introduce to the alternating projection algorithm a preconditioning matrix (the EM-preconditioner) for the dense system matrix involved in the optimization problem. We prove theoretically convergence of the preconditioned alternating projection algorithm. In numerical experiments, performance of our algorithms, with an appropriately selected preconditioning matrix, is compared with performance of the conventional MAP expectation-maximization (MAP-EM) algorithm with TV regularizer (EM-TV) and that of the recently developed nested EM-TV algorithm for ECT reconstruction. Based on the numerical experiments performed in this work, we observe that the alternating projection algorithm with the EM-preconditioner outperforms significantly the EM-TV in all aspects including the convergence speed, the noise in the reconstructed images and the image quality. It also outperforms the nested EM-TV in the convergence speed while providing comparable image quality. PMID:23271835

  3. Delignification outperforms alkaline extraction for xylan fingerprinting of oil palm empty fruit bunch.

    PubMed

    Murciano Martínez, Patricia; Kabel, Mirjam A; Gruppen, Harry

    2016-11-20

    Enzyme hydrolysed (hemi-)celluloses from oil palm empty fruit bunches (EFBs) are a source for production of bio-fuels or chemicals. In this study, after either peracetic acid delignification or alkaline extraction, EFB hemicellulose structures were described, aided by xylanase hydrolysis. Delignification of EFB facilitated the hydrolysis of EFB-xylan by a pure endo-β-1,4-xylanase. Up to 91% (w/w) of the non-extracted xylan in the delignified EFB was hydrolysed compared to less than 4% (w/w) of that in untreated EFB. Alkaline extraction of EFB, without prior delignification, yielded only 50% of the xylan. The xylan obtained was hydrolysed only for 40% by the endo-xylanase used. Hence, delignification alone outperformed alkaline extraction as pretreatment for enzymatic fingerprinting of EFB xylans. From the analysis of the oligosaccharide-fingerprint of the delignified endo-xylanase hydrolysed EFB xylan, the structure was proposed as acetylated 4-O-methylglucuronoarabinoxylan.

  4. Proteome Profiling Outperforms Transcriptome Profiling for Coexpression Based Gene Function Prediction*

    PubMed Central

    Wang, Jing; Ma, Zihao; Carr, Steven A.; Mertins, Philipp; Zhang, Hui; Zhang, Zhen; Chan, Daniel W.; Ellis, Matthew J. C.; Townsend, R. Reid; Smith, Richard D.; McDermott, Jason E.; Chen, Xian; Paulovich, Amanda G.; Boja, Emily S.; Mesri, Mehdi; Kinsinger, Christopher R.; Rodriguez, Henry; Rodland, Karin D.; Liebler, Daniel C.; Zhang, Bing

    2017-01-01

    Coexpression of mRNAs under multiple conditions is commonly used to infer cofunctionality of their gene products despite well-known limitations of this “guilt-by-association” (GBA) approach. Recent advancements in mass spectrometry-based proteomic technologies have enabled global expression profiling at the protein level; however, whether proteome profiling data can outperform transcriptome profiling data for coexpression based gene function prediction has not been systematically investigated. Here, we address this question by constructing and analyzing mRNA and protein coexpression networks for three cancer types with matched mRNA and protein profiling data from The Cancer Genome Atlas (TCGA) and the Clinical Proteomic Tumor Analysis Consortium (CPTAC). Our analyses revealed a marked difference in wiring between the mRNA and protein coexpression networks. Whereas protein coexpression was driven primarily by functional similarity between coexpressed genes, mRNA coexpression was driven by both cofunction and chromosomal colocalization of the genes. Functionally coherent mRNA modules were more likely to have their edges preserved in corresponding protein networks than functionally incoherent mRNA modules. Proteomic data strengthened the link between gene expression and function for at least 75% of Gene Ontology (GO) biological processes and 90% of KEGG pathways. A web application Gene2Net (http://cptac.gene2net.org) developed based on the three protein coexpression networks revealed novel gene-function relationships, such as linking ERBB2 (HER2) to lipid biosynthetic process in breast cancer, identifying PLG as a new gene involved in complement activation, and identifying AEBP1 as a new epithelial-mesenchymal transition (EMT) marker. Our results demonstrate that proteome profiling outperforms transcriptome profiling for coexpression based gene function prediction. Proteomics should be integrated if not preferred in gene function and human disease studies. PMID

  5. Low-Friction Minilaparoscopy Outperforms Regular 5-mm and 3-mm Instruments for Precise Tasks

    PubMed Central

    Firme, Wood A.; Lima, Diego L.; de Paula Lopes, Vladmir Goldstein; Montandon, Isabelle D.; Filho, Flavio Santos; Shadduck, Phillip P.

    2015-01-01

    Background and Objectives: Therapeutic laparoscopy was incorporated into surgical practice more than 25 y ago. Several modifications have since been developed to further minimize surgical trauma and improve results. Minilaparoscopy, performed with 2- to 3-mm instruments was introduced in the mid 1990s but failed to attain mainstream use, mostly because of the limitations of the early devices. Buoyed by a renewed interest, new generations of mini instruments are being developed with improved functionality and durability. This study is an objective evaluation of a new set of mini instruments with a novel low-friction design. Method: Twenty-two medical students and 22 surgical residents served as study participants. Three designs of laparoscopic instruments were evaluated: conventional 5 mm, traditional 3 mm, and low-friction 3 mm. The instruments were evaluated with a standard surgical simulator, emulating 4 exercises of various complexities, testing grasping, precise 2-handed movements, and suturing. The metric measured was time to task completion, with 5 replicates for every combination of instrument–exercise–participant. Results: For all 4 tasks, the instrument design that performed the best was the same in both the medical student and surgical resident groups. For the gross-grasping task, the 5-mm conventional instruments performed best, followed by the low-friction mini instruments. For the 3 more complex and precise tasks, the low-friction mini instruments outperformed both of the other instrument designs. Conclusion: In standard surgical simulator exercises, low-friction minilaparoscopic instruments outperformed both conventional 3- and 5-mm laparoscopic instruments for precise tasks. PMID:26390530

  6. Inferring Gene Regulatory Networks by Singular Value Decomposition and Gravitation Field Algorithm

    PubMed Central

    Zheng, Ming; Wu, Jia-nan; Huang, Yan-xin; Liu, Gui-xia; Zhou, You; Zhou, Chun-guang

    2012-01-01

    Reconstruction of gene regulatory networks (GRNs) is of utmost interest and has become a challenge computational problem in system biology. However, every existing inference algorithm from gene expression profiles has its own advantages and disadvantages. In particular, the effectiveness and efficiency of every previous algorithm is not high enough. In this work, we proposed a novel inference algorithm from gene expression data based on differential equation model. In this algorithm, two methods were included for inferring GRNs. Before reconstructing GRNs, singular value decomposition method was used to decompose gene expression data, determine the algorithm solution space, and get all candidate solutions of GRNs. In these generated family of candidate solutions, gravitation field algorithm was modified to infer GRNs, used to optimize the criteria of differential equation model, and search the best network structure result. The proposed algorithm is validated on both the simulated scale-free network and real benchmark gene regulatory network in networks database. Both the Bayesian method and the traditional differential equation model were also used to infer GRNs, and the results were used to compare with the proposed algorithm in our work. And genetic algorithm and simulated annealing were also used to evaluate gravitation field algorithm. The cross-validation results confirmed the effectiveness of our algorithm, which outperforms significantly other previous algorithms. PMID:23226565

  7. Inferring gene regulatory networks by singular value decomposition and gravitation field algorithm.

    PubMed

    Zheng, Ming; Wu, Jia-nan; Huang, Yan-xin; Liu, Gui-xia; Zhou, You; Zhou, Chun-guang

    2012-01-01

    Reconstruction of gene regulatory networks (GRNs) is of utmost interest and has become a challenge computational problem in system biology. However, every existing inference algorithm from gene expression profiles has its own advantages and disadvantages. In particular, the effectiveness and efficiency of every previous algorithm is not high enough. In this work, we proposed a novel inference algorithm from gene expression data based on differential equation model. In this algorithm, two methods were included for inferring GRNs. Before reconstructing GRNs, singular value decomposition method was used to decompose gene expression data, determine the algorithm solution space, and get all candidate solutions of GRNs. In these generated family of candidate solutions, gravitation field algorithm was modified to infer GRNs, used to optimize the criteria of differential equation model, and search the best network structure result. The proposed algorithm is validated on both the simulated scale-free network and real benchmark gene regulatory network in networks database. Both the Bayesian method and the traditional differential equation model were also used to infer GRNs, and the results were used to compare with the proposed algorithm in our work. And genetic algorithm and simulated annealing were also used to evaluate gravitation field algorithm. The cross-validation results confirmed the effectiveness of our algorithm, which outperforms significantly other previous algorithms.

  8. Bayesian Markov models consistently outperform PWMs at predicting motifs in nucleotide sequences

    PubMed Central

    Siebert, Matthias; Söding, Johannes

    2016-01-01

    Position weight matrices (PWMs) are the standard model for DNA and RNA regulatory motifs. In PWMs nucleotide probabilities are independent of nucleotides at other positions. Models that account for dependencies need many parameters and are prone to overfitting. We have developed a Bayesian approach for motif discovery using Markov models in which conditional probabilities of order k − 1 act as priors for those of order k. This Bayesian Markov model (BaMM) training automatically adapts model complexity to the amount of available data. We also derive an EM algorithm for de-novo discovery of enriched motifs. For transcription factor binding, BaMMs achieve significantly (P    =  1/16) higher cross-validated partial AUC than PWMs in 97% of 446 ChIP-seq ENCODE datasets and improve performance by 36% on average. BaMMs also learn complex multipartite motifs, improving predictions of transcription start sites, polyadenylation sites, bacterial pause sites, and RNA binding sites by 26–101%. BaMMs never performed worse than PWMs. These robust improvements argue in favour of generally replacing PWMs by BaMMs. PMID:27288444

  9. Hip fracture risk assessment: artificial neural network outperforms conditional logistic regression in an age- and sex-matched case control study

    PubMed Central

    2013-01-01

    Background Osteoporotic hip fractures with a significant morbidity and excess mortality among the elderly have imposed huge health and economic burdens on societies worldwide. In this age- and sex-matched case control study, we examined the risk factors of hip fractures and assessed the fracture risk by conditional logistic regression (CLR) and ensemble artificial neural network (ANN). The performances of these two classifiers were compared. Methods The study population consisted of 217 pairs (149 women and 68 men) of fractures and controls with an age older than 60 years. All the participants were interviewed with the same standardized questionnaire including questions on 66 risk factors in 12 categories. Univariate CLR analysis was initially conducted to examine the unadjusted odds ratio of all potential risk factors. The significant risk factors were then tested by multivariate analyses. For fracture risk assessment, the participants were randomly divided into modeling and testing datasets for 10-fold cross validation analyses. The predicting models built by CLR and ANN in modeling datasets were applied to testing datasets for generalization study. The performances, including discrimination and calibration, were compared with non-parametric Wilcoxon tests. Results In univariate CLR analyses, 16 variables achieved significant level, and six of them remained significant in multivariate analyses, including low T score, low BMI, low MMSE score, milk intake, walking difficulty, and significant fall at home. For discrimination, ANN outperformed CLR in both 16- and 6-variable analyses in modeling and testing datasets (p?outperformed CLR only in 16-variable analyses in modeling and testing datasets (p?=?0.013 and 0.047, respectively). Conclusions The risk factors of hip fracture are more personal than environmental. With adequate model construction, ANN may outperform CLR in both discrimination and calibration. ANN seems to have not been

  10. A hybrid frame concealment algorithm for H.264/AVC.

    PubMed

    Yan, Bo; Gharavi, Hamid

    2010-01-01

    In packet-based video transmissions, packets loss due to channel errors may result in the loss of the whole video frame. Recently, many error concealment algorithms have been proposed in order to combat channel errors; however, most of the existing algorithms can only deal with the loss of macroblocks and are not able to conceal the whole missing frame. In order to resolve this problem, in this paper, we have proposed a new hybrid motion vector extrapolation (HMVE) algorithm to recover the whole missing frame, and it is able to provide more accurate estimation for the motion vectors of the missing frame than other conventional methods. Simulation results show that it is highly effective and significantly outperforms other existing frame recovery methods.

  11. Study of genetic direct search algorithms for function optimization

    NASA Technical Reports Server (NTRS)

    Zeigler, B. P.

    1974-01-01

    The results are presented of a study to determine the performance of genetic direct search algorithms in solving function optimization problems arising in the optimal and adaptive control areas. The findings indicate that: (1) genetic algorithms can outperform standard algorithms in multimodal and/or noisy optimization situations, but suffer from lack of gradient exploitation facilities when gradient information can be utilized to guide the search. (2) For large populations, or low dimensional function spaces, mutation is a sufficient operator. However for small populations or high dimensional functions, crossover applied in about equal frequency with mutation is an optimum combination. (3) Complexity, in terms of storage space and running time, is significantly increased when population size is increased or the inversion operator, or the second level adaptation routine is added to the basic structure.

  12. Outperforming Game Theoretic Play with Opponent Modeling in Two Player Dominoes

    DTIC Science & Technology

    2014-03-27

    with an evaluation function to predict the ending score in the leaf nodes. The algorithm then cycles this final score up through the nodes to the two...utility (or quantified outcome) in a 16 game situation. The first part of this section discusses the M* search algorithm that aids a game...theoretic approach by providing an opponent model to adversary search (MiniMax). The second part discusses research in applying opponent modeling to

  13. Advanced time integration algorithms for dislocation dynamics simulations of work hardening

    NASA Astrophysics Data System (ADS)

    Sills, Ryan B.; Aghaei, Amin; Cai, Wei

    2016-05-01

    Efficient time integration is a necessity for dislocation dynamics simulations of work hardening to achieve experimentally relevant strains. In this work, an efficient time integration scheme using a high order explicit method with time step subcycling and a newly-developed collision detection algorithm are evaluated. First, time integrator performance is examined for an annihilating Frank-Read source, showing the effects of dislocation line collision. The integrator with subcycling is found to significantly out-perform other integration schemes. The performance of the time integration and collision detection algorithms is then tested in a work hardening simulation. The new algorithms show a 100-fold speed-up relative to traditional schemes. Subcycling is shown to improve efficiency significantly while maintaining an accurate solution, and the new collision algorithm allows an arbitrarily large time step size without missing collisions.

  14. Advanced time integration algorithms for dislocation dynamics simulations of work hardening

    DOE PAGES

    Sills, Ryan B.; Aghaei, Amin; Cai, Wei

    2016-04-25

    Efficient time integration is a necessity for dislocation dynamics simulations of work hardening to achieve experimentally relevant strains. In this work, an efficient time integration scheme using a high order explicit method with time step subcycling and a newly-developed collision detection algorithm are evaluated. First, time integrator performance is examined for an annihilating Frank–Read source, showing the effects of dislocation line collision. The integrator with subcycling is found to significantly out-perform other integration schemes. The performance of the time integration and collision detection algorithms is then tested in a work hardening simulation. The new algorithms show a 100-fold speed-up relativemore » to traditional schemes. As a result, subcycling is shown to improve efficiency significantly while maintaining an accurate solution, and the new collision algorithm allows an arbitrarily large time step size without missing collisions.« less

  15. Advanced time integration algorithms for dislocation dynamics simulations of work hardening

    SciTech Connect

    Sills, Ryan B.; Aghaei, Amin; Cai, Wei

    2016-04-25

    Efficient time integration is a necessity for dislocation dynamics simulations of work hardening to achieve experimentally relevant strains. In this work, an efficient time integration scheme using a high order explicit method with time step subcycling and a newly-developed collision detection algorithm are evaluated. First, time integrator performance is examined for an annihilating Frank–Read source, showing the effects of dislocation line collision. The integrator with subcycling is found to significantly out-perform other integration schemes. The performance of the time integration and collision detection algorithms is then tested in a work hardening simulation. The new algorithms show a 100-fold speed-up relative to traditional schemes. As a result, subcycling is shown to improve efficiency significantly while maintaining an accurate solution, and the new collision algorithm allows an arbitrarily large time step size without missing collisions.

  16. Algorithm aversion: people erroneously avoid algorithms after seeing them err.

    PubMed

    Dietvorst, Berkeley J; Simmons, Joseph P; Massey, Cade

    2015-02-01

    Research shows that evidence-based algorithms more accurately predict the future than do human forecasters. Yet when forecasters are deciding whether to use a human forecaster or a statistical algorithm, they often choose the human forecaster. This phenomenon, which we call algorithm aversion, is costly, and it is important to understand its causes. We show that people are especially averse to algorithmic forecasters after seeing them perform, even when they see them outperform a human forecaster. This is because people more quickly lose confidence in algorithmic than human forecasters after seeing them make the same mistake. In 5 studies, participants either saw an algorithm make forecasts, a human make forecasts, both, or neither. They then decided whether to tie their incentives to the future predictions of the algorithm or the human. Participants who saw the algorithm perform were less confident in it, and less likely to choose it over an inferior human forecaster. This was true even among those who saw the algorithm outperform the human.

  17. The GALAD scoring algorithm based on AFP, AFP-L3, and DCP significantly improves detection of BCLC early stage hepatocellular carcinoma.

    PubMed

    Best, J; Bilgi, H; Heider, D; Schotten, C; Manka, P; Bedreli, S; Gorray, M; Ertle, J; van Grunsven, L A; Dechêne, A

    2016-12-01

    Background: Hepatocellular carcinoma (HCC) is one of the leading causes of death in cirrhotic patients worldwide. The detection rate for early stage HCC remains low despite screening programs. Thus, the majority of HCC cases are detected at advanced tumor stages with limited treatment options. To facilitate earlier diagnosis, this study aims to validate the added benefit of the combination of AFP, the novel biomarkers AFP-L3, DCP, and an associated novel diagnostic algorithm called GALAD. Material and methods: Between 2007 and 2008 and from 2010 to 2012, 285 patients newly diagnosed with HCC and 402 control patients suffering from chronic liver disease were enrolled. AFP, AFP-L3, and DCP were measured using the µTASWako i30 automated immunoanalyzer. The diagnostic performance of biomarkers was measured as single parameters and in a logistic regression model. Furthermore, a diagnostic algorithm (GALAD) based on gender, age, and the biomarkers mentioned above was validated. Results: AFP, AFP-L3, and DCP showed comparable sensitivities and specifities for HCC detection. The combination of all biomarkers had the highest sensitivity with decreased specificity. In contrast, utilization of the biomarker-based GALAD score resulted in a superior specificity of 93.3 % and sensitivity of 85.6 %. In the scenario of BCLC 0/A stage HCC, the GALAD algorithm provided the highest overall AUROC with 0.9242, which was superior to any other marker combination. Conclusions: We could demonstrate in our cohort the superior detection of early stage HCC with the combined use of the respective biomarkers and in particular GALAD even in AFP-negative tumors.

  18. Multifunctional Cellulolytic Enzymes Outperform Processive Fungal Cellulases for Coproduction of Nanocellulose and Biofuels.

    PubMed

    Yarbrough, John M; Zhang, Ruoran; Mittal, Ashutosh; Vander Wall, Todd; Bomble, Yannick J; Decker, Stephen R; Himmel, Michael E; Ciesielski, Peter N

    2017-03-28

    Producing fuels, chemicals, and materials from renewable resources to meet societal demands remains an important step in the transition to a sustainable, clean energy economy. The use of cellulolytic enzymes for the production of nanocellulose enables the coproduction of sugars for biofuels production in a format that is largely compatible with the process design employed by modern lignocellulosic (second generation) biorefineries. However, yields of enzymatically produced nanocellulose are typically much lower than those achieved by mineral acid production methods. In this study, we compare the capacity for coproduction of nanocellulose and fermentable sugars using two vastly different cellulase systems: the classical "free enzyme" system of the saprophytic fungus, Trichoderma reesei (T. reesei) and the complexed, multifunctional enzymes produced by the hot springs resident, Caldicellulosiruptor bescii (C. bescii). We demonstrate by comparative digestions that the C. bescii system outperforms the fungal enzyme system in terms of total cellulose conversion, sugar production, and nanocellulose production. In addition, we show by multimodal imaging and dynamic light scattering that the nanocellulose produced by the C. bescii cellulase system is substantially more uniform than that produced by the T. reesei system. These disparities in the yields and characteristics of the nanocellulose produced by these disparate systems can be attributed to the dramatic differences in the mechanisms of action of the dominant enzymes in each system.

  19. A paclitaxel-loaded recombinant polypeptide nanoparticle outperforms Abraxane in multiple murine cancer models

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Jayanta; Bellucci, Joseph J.; Weitzhandler, Isaac; McDaniel, Jonathan R.; Spasojevic, Ivan; Li, Xinghai; Lin, Chao-Chieh; Chi, Jen-Tsan Ashley; Chilkoti, Ashutosh

    2015-08-01

    Packaging clinically relevant hydrophobic drugs into a self-assembled nanoparticle can improve their aqueous solubility, plasma half-life, tumour-specific uptake and therapeutic potential. To this end, here we conjugated paclitaxel (PTX) to recombinant chimeric polypeptides (CPs) that spontaneously self-assemble into ~60 nm near-monodisperse nanoparticles that increased the systemic exposure of PTX by sevenfold compared with free drug and twofold compared with the Food and Drug Administration-approved taxane nanoformulation (Abraxane). The tumour uptake of the CP-PTX nanoparticle was fivefold greater than free drug and twofold greater than Abraxane. In a murine cancer model of human triple-negative breast cancer and prostate cancer, CP-PTX induced near-complete tumour regression after a single dose in both tumour models, whereas at the same dose, no mice treated with Abraxane survived for >80 days (breast) and 60 days (prostate), respectively. These results show that a molecularly engineered nanoparticle with precisely engineered design features outperforms Abraxane, the current gold standard for PTX delivery.

  20. Plants adapted to warmer climate do not outperform regional plants during a natural heat wave.

    PubMed

    Bucharova, Anna; Durka, Walter; Hermann, Julia-Maria; Hölzel, Norbert; Michalski, Stefan; Kollmann, Johannes; Bossdorf, Oliver

    2016-06-01

    With ongoing climate change, many plant species may not be able to adapt rapidly enough, and some conservation experts are therefore considering to translocate warm-adapted ecotypes to mitigate effects of climate warming. Although this strategy, called assisted migration, is intuitively plausible, most of the support comes from models, whereas experimental evidence is so far scarce. Here we present data on multiple ecotypes of six grassland species, which we grew in four common gardens in Germany during a natural heat wave, with temperatures 1.4-2.0°C higher than the long-term means. In each garden we compared the performance of regional ecotypes with plants from a locality with long-term summer temperatures similar to what the plants experienced during the summer heat wave. We found no difference in performance between regional and warm-adapted plants in four of the six species. In two species, regional ecotypes even outperformed warm-adapted plants, despite elevated temperatures, which suggests that translocating warm-adapted ecotypes may not only lack the desired effect of increased performance but may even have negative consequences. Even if adaptation to climate plays a role, other factors involved in local adaptation, such as biotic interactions, may override it. Based on our results, we cannot advocate assisted migration as a universal tool to enhance the performance of local plant populations and communities during climate change.

  1. A Paclitaxel-Loaded Recombinant Polypeptide Nanoparticle Outperforms Abraxane in Multiple Murine Cancer Models

    PubMed Central

    Bhattacharyya, Jayanta; Bellucci, Joseph J.; Weitzhandler, Isaac; McDaniel, Jonathan R.; Spasojevic, Ivan; Li, Xinghai; Lin, Chao-Chieh; Chi, Jen-Tsan Ashley; Chilkoti, Ashutosh

    2015-01-01

    Packaging clinically relevant hydrophobic drugs into a self-assembled nanoparticle can improve their aqueous solubility, plasma half-life, tumor specific uptake and therapeutic potential. To this end, here we conjugated paclitaxel (PTX) to recombinant chimeric polypeptides (CPs) that spontaneously self-assemble into ~60-nm diameter near-monodisperse nanoparticles that increased the systemic exposure of PTX by 7-fold compared to free drug and 2-fold compared to the FDA approved taxane nanoformulation (Abraxane®). The tumor uptake of the CP-PTX nanoparticle was 5-fold greater than free drug and 2-fold greater than Abraxane. In a murine cancer model of human triple negative breast cancer and prostate cancer, CP-PTX induced near complete tumor regression after a single dose in both tumor models, whereas at the same dose, no mice treated with Abraxane survived for more than 80 days (breast) and 60 days (prostate) respectively. These results show that a molecularly engineered nanoparticle with precisely engineered design features outperforms Abraxane, the current gold standard for paclitaxel delivery. PMID:26239362

  2. Gender differences in primary and secondary education: Are girls really outperforming boys?

    NASA Astrophysics Data System (ADS)

    Driessen, Geert; van Langen, Annemarie

    2013-06-01

    A moral panic has broken out in several countries after recent studies showed that girls were outperforming boys in education. Commissioned by the Dutch Ministry of Education, the present study examines the position of boys and girls in Dutch primary education and in the first phase of secondary education over the past ten to fifteen years. On the basis of several national and international large-scale databases, the authors examined whether one can indeed speak of a gender gap, at the expense of boys. Three domains were investigated, namely cognitive competencies, non-cognitive competencies, and school career features. The results as expressed in effect sizes show that there are hardly any differences with regard to language and mathematics proficiency. However, the position of boys in terms of educational level and attitudes and behaviour is much more unfavourable than that of girls. Girls, on the other hand, score more unfavourably with regard to sector and subject choice. While the present situation in general does not differ very much from that of a decade ago, it is difficult to predict in what way the balances might shift in the years to come.

  3. Limiting Index Sort: A New Non-Dominated Sorting Algorithm and its Comparison to the State-of-the-Art

    DTIC Science & Technology

    2010-05-01

    Skyline Algorithm ( SaLSa ), and the Divide-and-Conquer (D&C) approach. LIS outperformed SaLSa in all tests, and it outperformed D&C when sorting...dominé de pointe, le Sort and Limit Skyline Algorithm ( SaLSa ) et l’algorithme Divide-and-Conquer (D&C). LIS a surclassé SaLSa dans tous les tests...art non-dominated sorting algorithms, the Sort and Limit Skyline Algorithm ( SaLSa ), and the Divide-and-Conquer (D&C) approach. LIS outperformed

  4. Lianas always outperform tree seedlings regardless of soil nutrients: results from a long-term fertilization experiment.

    PubMed

    Pasquini, Sarah C; Wright, S Joseph; Santiago, Louis S

    2015-07-01

    Lianas are a prominent growth form in tropical forests, and there is compelling evidence that they are increasing in abundance throughout the Neotropics. While recent evidence shows that soil resources limit tree growth even in deep shade, the degree to which soil resources limit lianas in forest understories, where they coexist with trees for decades, remains unknown. Regardless, the physiological underpinnings of soil resource limitation in deeply shaded tropical habitats remain largely unexplored for either trees or lianas. Theory predicts that lianas should be more limited by soil resources than trees because they occupy the quick-return end of the "leaf economic spectrum," characterized by high rates of photosynthesis, high specific leaf area, short leaf life span, affinity to high-nutrient sites, and greater foliar nutrient concentrations. To address these issues, we asked whether soil resources (nitrogen, phosphorus, and potassium), alone or in combination, applied experimentally for more than a decade would cause significant changes in the morphology or physiology of tree and liana seedlings in a lowland tropical forest. We found evidence for the first time that phosphorus limits the photosynthetic performance of both trees and lianas in deeply shaded understory habitats. More importantly, lianas always showed significantly greater photosynthetic capacity, quenching, and saturating light levels compared to trees across all treatments. We found little evidence for nutrient x growth form interactions, indicating that lianas were not disproportionately favored in nutrient-rich habitats. Tree and liana seedlings differed markedly for six key morphological traits, demonstrating that architectural differences occurred very early in ontogeny prior to lianas finding a trellis (all seedlings were self-supporting). Overall, our results do not support nutrient loading as a mechanism of increasing liana abundance in the Neotropics. Rather, our finding that lianas

  5. Dynamic classification using case-specific training cohorts outperforms static gene expression signatures in breast cancer

    PubMed Central

    Győrffy, Balázs; Karn, Thomas; Sztupinszki, Zsófia; Weltz, Boglárka; Müller, Volkmar; Pusztai, Lajos

    2015-01-01

    The molecular diversity of breast cancer makes it impossible to identify prognostic markers that are applicable to all breast cancers. To overcome limitations of previous multigene prognostic classifiers, we propose a new dynamic predictor: instead of using a single universal training cohort and an identical list of informative genes to predict the prognosis of new cases, a case-specific predictor is developed for each test case. Gene expression data from 3,534 breast cancers with clinical annotation including relapse-free survival is analyzed. For each test case, we select a case-specific training subset including only molecularly similar cases and a case-specific predictor is generated. This method yields different training sets and different predictors for each new patient. The model performance was assessed in leave-one-out validation and also in 325 independent cases. Prognostic discrimination was high for all cases (n = 3,534, HR = 3.68, p = 1.67 E−56). The dynamic predictor showed higher overall accuracy (0.68) than genomic surrogates for Oncotype DX (0.64), Genomic Grade Index (0.61) or MammaPrint (0.47). The dynamic predictor was also effective in triple-negative cancers (n = 427, HR = 3.08, p = 0.0093) where the above classifiers all failed. Validation in independent patients yielded similar classification power (HR = 3.57). The dynamic classifier is available online at http://www.recurrenceonline.com/?q=Re_training. In summary, we developed a new method to make personalized prognostic prediction using case-specific training cohorts. The dynamic predictors outperform static models developed from single historical training cohorts and they also predict well in triple-negative cancers. PMID:25274406

  6. Pathway-Dependent Effectiveness of Network Algorithms for Gene Prioritization

    PubMed Central

    Shim, Jung Eun; Hwang, Sohyun; Lee, Insuk

    2015-01-01

    A network-based approach has proven useful for the identification of novel genes associated with complex phenotypes, including human diseases. Because network-based gene prioritization algorithms are based on propagating information of known phenotype-associated genes through networks, the pathway structure of each phenotype might significantly affect the effectiveness of algorithms. We systematically compared two popular network algorithms with distinct mechanisms – direct neighborhood which propagates information to only direct network neighbors, and network diffusion which diffuses information throughout the entire network – in prioritization of genes for worm and human phenotypes. Previous studies reported that network diffusion generally outperforms direct neighborhood for human diseases. Although prioritization power is generally measured for all ranked genes, only the top candidates are significant for subsequent functional analysis. We found that high prioritizing power of a network algorithm for all genes cannot guarantee successful prioritization of top ranked candidates for a given phenotype. Indeed, the majority of the phenotypes that were more efficiently prioritized by network diffusion showed higher prioritizing power for top candidates by direct neighborhood. We also found that connectivity among pathway genes for each phenotype largely determines which network algorithm is more effective, suggesting that the network algorithm used for each phenotype should be chosen with consideration of pathway gene connectivity. PMID:26091506

  7. Algorithms and Algorithmic Languages.

    ERIC Educational Resources Information Center

    Veselov, V. M.; Koprov, V. M.

    This paper is intended as an introduction to a number of problems connected with the description of algorithms and algorithmic languages, particularly the syntaxes and semantics of algorithmic languages. The terms "letter, word, alphabet" are defined and described. The concept of the algorithm is defined and the relation between the algorithm and…

  8. Adaptive search range adjustment and multiframe selection algorithm for motion estimation in H.264/AVC

    NASA Astrophysics Data System (ADS)

    Liu, Yingzhe; Wang, Jinxiang; Fu, Fangfa

    2013-04-01

    The H.264/AVC video standard adopts a fixed search range (SR) and fixed reference frame (RF) for motion estimation. These fixed settings result in a heavy computational load in the video encoder. We propose a dynamic SR and multiframe selection algorithm to improve the computational efficiency of motion estimation. By exploiting the relationship between the predicted motion vector and the SR size, we develop an adaptive SR adjustment algorithm. We also design a RF selection scheme based on the correlation between the different block sizes of the macroblock. Experimental results show that our algorithm can significantly reduce the computational complexity of motion estimation compared with the JM15.1 reference software, with a negligible decrease in peak signal-to-noise ratio and a slight increase in bit rate. Our algorithm also outperforms existing methods in terms of its low complexity and high coding quality.

  9. Managed Bumblebees Outperform Honeybees in Increasing Peach Fruit Set in China: Different Limiting Processes with Different Pollinators

    PubMed Central

    Williams, Paul H.; Vaissière, Bernard E.; Zhou, Zhiyong; Gai, Qinbao; Dong, Jie; An, Jiandong

    2015-01-01

    Peach Prunus persica (L.) Batsch is self-compatible and largely self-fertile, but under greenhouse conditions pollinators must be introduced to achieve good fruit set and quality. Because little work has been done to assess the effectiveness of different pollinators on peach trees under greenhouse conditions, we studied ‘Okubo’ peach in greenhouse tunnels near Beijing between 2012 and 2014. We measured pollen deposition, pollen-tube growth rates, ovary development, and initial fruit set after the flowers were visited by either of two managed pollinators: bumblebees, Bombus patagiatus Nylander, and honeybees, Apis mellifera L. The results show that B. patagiatus is more effective than A. mellifera as a pollinator of peach in greenhouses because of differences in two processes. First, B. patagiatus deposits more pollen grains on peach stigmas than A. mellifera, both during a single visit and during a whole day of open pollination. Second, there are differences in the fertilization performance of the pollen deposited. Half of the flowers visited by B. patagiatus are fertilized 9–11 days after bee visits, while for flowers visited by A. mellifera, half are fertilized 13–15 days after bee visits. Consequently, fruit development is also accelerated by bumblebees, showing that the different pollinators have not only different pollination efficiency, but also influence the subsequent time course of fertilization and fruit set. Flowers visited by B. patagiatus show faster ovary growth and ultimately these flowers produce more fruit. Our work shows that pollinators may influence fruit production beyond the amount of pollen delivered. We show that managed indigenous bumblebees significantly outperform introduced honeybees in increasing peach initial fruit set under greenhouse conditions. PMID:25799170

  10. Managed bumblebees outperform honeybees in increasing peach fruit set in China: different limiting processes with different pollinators.

    PubMed

    Zhang, Hong; Huang, Jiaxing; Williams, Paul H; Vaissière, Bernard E; Zhou, Zhiyong; Gai, Qinbao; Dong, Jie; An, Jiandong

    2015-01-01

    Peach Prunus persica (L.) Batsch is self-compatible and largely self-fertile, but under greenhouse conditions pollinators must be introduced to achieve good fruit set and quality. Because little work has been done to assess the effectiveness of different pollinators on peach trees under greenhouse conditions, we studied 'Okubo' peach in greenhouse tunnels near Beijing between 2012 and 2014. We measured pollen deposition, pollen-tube growth rates, ovary development, and initial fruit set after the flowers were visited by either of two managed pollinators: bumblebees, Bombus patagiatus Nylander, and honeybees, Apis mellifera L. The results show that B. patagiatus is more effective than A. mellifera as a pollinator of peach in greenhouses because of differences in two processes. First, B. patagiatus deposits more pollen grains on peach stigmas than A. mellifera, both during a single visit and during a whole day of open pollination. Second, there are differences in the fertilization performance of the pollen deposited. Half of the flowers visited by B. patagiatus are fertilized 9-11 days after bee visits, while for flowers visited by A. mellifera, half are fertilized 13-15 days after bee visits. Consequently, fruit development is also accelerated by bumblebees, showing that the different pollinators have not only different pollination efficiency, but also influence the subsequent time course of fertilization and fruit set. Flowers visited by B. patagiatus show faster ovary growth and ultimately these flowers produce more fruit. Our work shows that pollinators may influence fruit production beyond the amount of pollen delivered. We show that managed indigenous bumblebees significantly outperform introduced honeybees in increasing peach initial fruit set under greenhouse conditions.

  11. Does Cognitive Behavioral Therapy for Youth Anxiety Outperform Usual Care in Community Clinics? An Initial Effectiveness Test

    ERIC Educational Resources Information Center

    Southam-Gerow, Michael A.; Weisz, John R.; Chu, Brian C.; McLeod, Bryce D.; Gordis, Elana B.; Connor-Smith, Jennifer K.

    2010-01-01

    Objective: Most tests of cognitive behavioral therapy (CBT) for youth anxiety disorders have shown beneficial effects, but these have been efficacy trials with recruited youths treated by researcher-employed therapists. One previous (nonrandomized) trial in community clinics found that CBT did not outperform usual care (UC). The present study used…

  12. 3R phase of MoS2 and WS2 outperforms the corresponding 2H phase for hydrogen evolution.

    PubMed

    Toh, Rou Jun; Sofer, Zdeněk; Luxa, Jan; Sedmidubský, David; Pumera, Martin

    2017-03-09

    Herein, we compare the bulk, 2H and 3R phases of two most prevalent TMD materials: MoS2 and WS2. The 3R phase outperforms its 2H phase counterpart in hydrogen evolution reaction catalysis and is even comparable with the exfoliated, 1T phase in the case of MoS2.

  13. Multisensor data fusion algorithm development

    SciTech Connect

    Yocky, D.A.; Chadwick, M.D.; Goudy, S.P.; Johnson, D.K.

    1995-12-01

    This report presents a two-year LDRD research effort into multisensor data fusion. We approached the problem by addressing the available types of data, preprocessing that data, and developing fusion algorithms using that data. The report reflects these three distinct areas. First, the possible data sets for fusion are identified. Second, automated registration techniques for imagery data are analyzed. Third, two fusion techniques are presented. The first fusion algorithm is based on the two-dimensional discrete wavelet transform. Using test images, the wavelet algorithm is compared against intensity modulation and intensity-hue-saturation image fusion algorithms that are available in commercial software. The wavelet approach outperforms the other two fusion techniques by preserving spectral/spatial information more precisely. The wavelet fusion algorithm was also applied to Landsat Thematic Mapper and SPOT panchromatic imagery data. The second algorithm is based on a linear-regression technique. We analyzed the technique using the same Landsat and SPOT data.

  14. An Optimal Class Association Rule Algorithm

    NASA Astrophysics Data System (ADS)

    Jean Claude, Turiho; Sheng, Yang; Chuang, Li; Kaia, Xie

    Classification and association rule mining algorithms are two important aspects of data mining. Class association rule mining algorithm is a promising approach for it involves the use of association rule mining algorithm to discover classification rules. This paper introduces an optimal class association rule mining algorithm known as OCARA. It uses optimal association rule mining algorithm and the rule set is sorted by priority of rules resulting into a more accurate classifier. It outperforms the C4.5, CBA, RMR on UCI eight data sets, which is proved by experimental results.

  15. Improved zerotree coding algorithm for wavelet image compression

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Li, Yunsong; Wu, Chengke

    2000-12-01

    A listless minimum zerotree coding algorithm based on the fast lifting wavelet transform with lower memory requirement and higher compression performance is presented in this paper. Most state-of-the-art image compression techniques based on wavelet coefficients, such as EZW and SPIHT, exploit the dependency between the subbands in a wavelet transformed image. We propose a minimum zerotree of wavelet coefficients which exploits the dependency not only between the coarser and the finer subbands but also within the lowest frequency subband. And a ne listless significance map coding algorithm based on the minimum zerotree, using new flag maps and new scanning order different form Wen-Kuo Lin et al. LZC, is also proposed. A comparison reveals that the PSNR results of LMZC are higher than those of LZC, and the compression performance of LMZC outperforms that of SPIHT in terms of hard implementation.

  16. A hierarchical algorithm for molecular similarity (H-FORMS).

    PubMed

    Ramirez-Manzanares, Alonso; Peña, Joaquin; Azpiroz, Jon M; Merino, Gabriel

    2015-07-15

    A new hierarchical method to determine molecular similarity is introduced. The goal of this method is to detect if a pair of molecules has the same structure by estimating a rigid transformation that aligns the molecules and a correspondence function that matches their atoms. The algorithm firstly detect similarity based on the global spatial structure. If this analysis is not sufficient, the algorithm computes novel local structural rotation-invariant descriptors for the atom neighborhood and uses this information to match atoms. Two strategies (deterministic and stochastic) on the matching based alignment computation are tested. As a result, the atom-matching based on local similarity indexes decreases the number of testing trials and significantly reduces the dimensionality of the Hungarian assignation problem. The experiments on well-known datasets show that our proposal outperforms state-of-the-art methods in terms of the required computational time and accuracy.

  17. Outperforming whom? A multilevel study of performance-prove goal orientation, performance, and the moderating role of shared team identification.

    PubMed

    Dietz, Bart; van Knippenberg, Daan; Hirst, Giles; Restubog, Simon Lloyd D

    2015-11-01

    Performance-prove goal orientation affects performance because it drives people to try to outperform others. A proper understanding of the performance-motivating potential of performance-prove goal orientation requires, however, that we consider the question of whom people desire to outperform. In a multilevel analysis of this issue, we propose that the shared team identification of a team plays an important moderating role here, directing the performance-motivating influence of performance-prove goal orientation to either the team level or the individual level of performance. A multilevel study of salespeople nested in teams supports this proposition, showing that performance-prove goal orientation motivates team performance more with higher shared team identification, whereas performance-prove goal orientation motivates individual performance more with lower shared team identification. Establishing the robustness of these findings, a second study replicates them with individual and team performance in an educational context.

  18. Highly efficient codec based on significance-linked connected-component analysis of wavelet coefficients

    NASA Astrophysics Data System (ADS)

    Chai, Bing-Bing; Vass, Jozsef; Zhuang, Xinhua

    1997-04-01

    Recent success in wavelet coding is mainly attributed to the recognition of importance of data organization. There has been several very competitive wavelet codecs developed, namely, Shapiro's Embedded Zerotree Wavelets (EZW), Servetto et. al.'s Morphological Representation of Wavelet Data (MRWD), and Said and Pearlman's Set Partitioning in Hierarchical Trees (SPIHT). In this paper, we propose a new image compression algorithm called Significant-Linked Connected Component Analysis (SLCCA) of wavelet coefficients. SLCCA exploits both within-subband clustering of significant coefficients and cross-subband dependency in significant fields. A so-called significant link between connected components is designed to reduce the positional overhead of MRWD. In addition, the significant coefficients' magnitude are encoded in bit plane order to match the probability model of the adaptive arithmetic coder. Experiments show that SLCCA outperforms both EZW and MRWD, and is tied with SPIHT. Furthermore, it is observed that SLCCA generally has the best performance on images with large portion of texture. When applied to fingerprint image compression, it outperforms FBI's wavelet scalar quantization by about 1 dB.

  19. 3D printed cellular solid outperforms traditional stochastic foam in long-term mechanical response

    NASA Astrophysics Data System (ADS)

    Maiti, A.; Small, W.; Lewicki, J. P.; Weisgraber, T. H.; Duoss, E. B.; Chinn, S. C.; Pearson, M. A.; Spadaccini, C. M.; Maxwell, R. S.; Wilson, T. S.

    2016-04-01

    3D printing of polymeric foams by direct-ink-write is a recent technological breakthrough that enables the creation of versatile compressible solids with programmable microstructure, customizable shapes, and tunable mechanical response including negative elastic modulus. However, in many applications the success of these 3D printed materials as a viable replacement for traditional stochastic foams critically depends on their mechanical performance and micro-architectural stability while deployed under long-term mechanical strain. To predict the long-term performance of the two types of foams we employed multi-year-long accelerated aging studies under compressive strain followed by a time-temperature-superposition analysis using a minimum-arc-length-based algorithm. The resulting master curves predict superior long-term performance of the 3D printed foam in terms of two different metrics, i.e., compression set and load retention. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. This indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material, which might explain the latter’s improved long-term stability and mechanical performance.

  20. 3D printed cellular solid outperforms traditional stochastic foam in long-term mechanical response

    DOE PAGES

    Maiti, A.; Small, W.; Lewicki, J.; ...

    2016-04-27

    3D printing of polymeric foams by direct-ink-write is a recent technological breakthrough that enables the creation of versatile compressible solids with programmable microstructure, customizable shapes, and tunable mechanical response including negative elastic modulus. However, in many applications the success of these 3D printed materials as a viable replacement for traditional stochastic foams critically depends on their mechanical performance and micro-architectural stability while deployed under long-term mechanical strain. To predict the long-term performance of the two types of foams we employed multi-year-long accelerated aging studies under compressive strain followed by a time-temperature-superposition analysis using a minimum-arc-length-based algorithm. The resulting master curvesmore » predict superior long-term performance of the 3D printed foam in terms of two different metrics, i.e., compression set and load retention. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. As a result, this indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material, which might explain the latter’s improved long-term stability and mechanical performance.« less

  1. 3D printed cellular solid outperforms traditional stochastic foam in long-term mechanical response

    SciTech Connect

    Maiti, A.; Small, W.; Lewicki, J.; Weisgraber, T. H.; Duoss, E. B.; Chinn, S. C.; Pearson, M. A.; Spadaccini, C. M.; Maxwell, R. S.; Wilson, T. S.

    2016-04-27

    3D printing of polymeric foams by direct-ink-write is a recent technological breakthrough that enables the creation of versatile compressible solids with programmable microstructure, customizable shapes, and tunable mechanical response including negative elastic modulus. However, in many applications the success of these 3D printed materials as a viable replacement for traditional stochastic foams critically depends on their mechanical performance and micro-architectural stability while deployed under long-term mechanical strain. To predict the long-term performance of the two types of foams we employed multi-year-long accelerated aging studies under compressive strain followed by a time-temperature-superposition analysis using a minimum-arc-length-based algorithm. The resulting master curves predict superior long-term performance of the 3D printed foam in terms of two different metrics, i.e., compression set and load retention. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. As a result, this indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material, which might explain the latter’s improved long-term stability and mechanical performance.

  2. 3D printed cellular solid outperforms traditional stochastic foam in long-term mechanical response

    PubMed Central

    Maiti, A.; Small, W.; Lewicki, J. P.; Weisgraber, T. H.; Duoss, E. B.; Chinn, S. C.; Pearson, M. A.; Spadaccini, C. M.; Maxwell, R. S.; Wilson, T. S.

    2016-01-01

    3D printing of polymeric foams by direct-ink-write is a recent technological breakthrough that enables the creation of versatile compressible solids with programmable microstructure, customizable shapes, and tunable mechanical response including negative elastic modulus. However, in many applications the success of these 3D printed materials as a viable replacement for traditional stochastic foams critically depends on their mechanical performance and micro-architectural stability while deployed under long-term mechanical strain. To predict the long-term performance of the two types of foams we employed multi-year-long accelerated aging studies under compressive strain followed by a time-temperature-superposition analysis using a minimum-arc-length-based algorithm. The resulting master curves predict superior long-term performance of the 3D printed foam in terms of two different metrics, i.e., compression set and load retention. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. This indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material, which might explain the latter’s improved long-term stability and mechanical performance. PMID:27117858

  3. A variable splitting based algorithm for fast multi-coil blind compressed sensing MRI reconstruction.

    PubMed

    Bhave, Sampada; Lingala, Sajan Goud; Jacob, Mathews

    2014-01-01

    Recent work on blind compressed sensing (BCS) has shown that exploiting sparsity in dictionaries that are learnt directly from the data at hand can outperform compressed sensing (CS) that uses fixed dictionaries. A challenge with BCS however is the large computational complexity during its optimization, which limits its practical use in several MRI applications. In this paper, we propose a novel optimization algorithm that utilize variable splitting strategies to significantly improve the convergence speed of the BCS optimization. The splitting allows us to efficiently decouple the sparse coefficient, and dictionary update steps from the data fidelity term, resulting in subproblems that take closed form analytical solutions, which otherwise require slower iterative conjugate gradient algorithms. Through experiments on multi coil parametric MRI data, we demonstrate the superior performance of BCS over conventional CS schemes, while achieving convergence speed up factors of over 10 fold over the previously proposed implementation of the BCS algorithm.

  4. A low complexity reweighted proportionate affine projection algorithm with memory and row action projection

    NASA Astrophysics Data System (ADS)

    Liu, Jianming; Grant, Steven L.; Benesty, Jacob

    2015-12-01

    A new reweighted proportionate affine projection algorithm (RPAPA) with memory and row action projection (MRAP) is proposed in this paper. The reweighted PAPA is derived from a family of sparseness measures, which demonstrate performance similar to mu-law and the l 0 norm PAPA but with lower computational complexity. The sparseness of the channel is taken into account to improve the performance for dispersive system identification. Meanwhile, the memory of the filter's coefficients is combined with row action projections (RAP) to significantly reduce computational complexity. Simulation results demonstrate that the proposed RPAPA MRAP algorithm outperforms both the affine projection algorithm (APA) and PAPA, and has performance similar to l 0 PAPA and mu-law PAPA, in terms of convergence speed and tracking ability. Meanwhile, the proposed RPAPA MRAP has much lower computational complexity than PAPA, mu-law PAPA, and l 0 PAPA, etc., which makes it very appealing for real-time implementation.

  5. C-element: a new clustering algorithm to find high quality functional modules in PPI networks.

    PubMed

    Ghasemi, Mahdieh; Rahgozar, Maseud; Bidkhori, Gholamreza; Masoudi-Nejad, Ali

    2013-01-01

    Graph clustering algorithms are widely used in the analysis of biological networks. Extracting functional modules in protein-protein interaction (PPI) networks is one such use. Most clustering algorithms whose focuses are on finding functional modules try either to find a clique like sub networks or to grow clusters starting from vertices with high degrees as seeds. These algorithms do not make any difference between a biological network and any other networks. In the current research, we present a new procedure to find functional modules in PPI networks. Our main idea is to model a biological concept and to use this concept for finding good functional modules in PPI networks. In order to evaluate the quality of the obtained clusters, we compared the results of our algorithm with those of some other widely used clustering algorithms on three high throughput PPI networks from Sacchromyces Cerevisiae, Homo sapiens and Caenorhabditis elegans as well as on some tissue specific networks. Gene Ontology (GO) analyses were used to compare the results of different algorithms. Each algorithm's result was then compared with GO-term derived functional modules. We also analyzed the effect of using tissue specific networks on the quality of the obtained clusters. The experimental results indicate that the new algorithm outperforms most of the others, and this improvement is more significant when tissue specific networks are used.

  6. 1/f noise outperforms white noise in sensitizing baroreflex function in the human brain.

    PubMed

    Soma, Rika; Nozaki, Daichi; Kwak, Shin; Yamamoto, Yoshiharu

    2003-08-15

    We show that externally added 1/f noise more effectively sensitizes the baroreflex centers in the human brain than white noise. We examined the compensatory heart rate response to a weak periodic signal introduced via venous blood pressure receptors while adding 1/f or white noise with the same variance to the brain stem through bilateral cutaneous stimulation of the vestibular afferents. In both cases, this noisy galvanic vestibular stimulation optimized covariance between the weak input signals and the heart rate responses. However, the optimal level with 1/f noise was significantly lower than with white noise, suggesting a functional benefit of 1/f noise for neuronal information transfer in the brain.

  7. 1/f Noise Outperforms White Noise in Sensitizing Baroreflex Function in the Human Brain

    NASA Astrophysics Data System (ADS)

    Soma, Rika; Nozaki, Daichi; Kwak, Shin; Yamamoto, Yoshiharu

    2003-08-01

    We show that externally added 1/f noise more effectively sensitizes the baroreflex centers in the human brain than white noise. We examined the compensatory heart rate response to a weak periodic signal introduced via venous blood pressure receptors while adding 1/f or white noise with the same variance to the brain stem through bilateral cutaneous stimulation of the vestibular afferents. In both cases, this noisy galvanic vestibular stimulation optimized covariance between the weak input signals and the heart rate responses. However, the optimal level with 1/f noise was significantly lower than with white noise, suggesting a functional benefit of 1/f noise for neuronal information transfer in the brain.

  8. A glucose-targeted mixed micellar formulation outperforms Genexol in breast cancer cells.

    PubMed

    Moretton, Marcela A; Bernabeu, Ezequiel; Grotz, Estefanía; Gonzalez, Lorena; Zubillaga, Marcela; Chiappetta, Diego A

    2017-05-01

    Breast cancer represents the top cancer among women, accounting 521.000 deaths per year. Development of targeted nanomedicines to breast cancer tissues represents a milestone to reduce chemotherapy side effects. Taking advantage of the over-expression of glucose (Glu) membrane transporters in breast cancer cells, we aim to expand the potential of a paclitaxel (PTX)-loaded mixed micellar formulation based on polyvinyl caprolactam-polyvinylacetate-polyethylene glycol graft copolymer (Soluplus®) and D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) by its surface decoration with Glu moieties. The glycopolymer (Soluplus(Glu)) was obtained by microwave-assisted ring opening reaction of δ-gluconolactone initiated by Soluplus®. The glycosylation was confirmed by (1)H NMR and by agglutination assays employing Concanavalin A. The hydrodynamic diameter of Soluplus(Glu) micelles was characterized by dynamic light scattering (100.3±3.8nm) as well as the critical micellar concentration value (0.0151% w/v). Then, a mixed micelle formulation employing Soluplus®, Soluplus(Glu) and TPGS (3:1:1wt ratio) loaded with PTX (4mg/mL) was developed as a multifunctional nanocarrier. Its in vitro anticancer performance in MCF-7 (1.6-fold) and MDA-MB-231 (14.1-fold) was significantly enhanced (p<0.05) versus the unique commercially available micellar-based PTX-nanoformulation (Genexol®). Furthermore, the in vitro PTX cellular uptake assays revealed that the drug intracellular/cell content was significantly (p<0.05) higher for the Glu-containing mixed micelles versus Genexol® after 6h of incubation with MCF-7 (30.5-fold) and MDA-MB-231 (5-fold). Overall, results confirmed the potential of our Glu-decorated mixed colloidal formulation as an intelligent nanocarrier for PTX-targeted breast cancer chemotherapy.

  9. Physician-owned Surgical Hospitals Outperform Other Hospitals in the Medicare Value-based Purchasing Program

    PubMed Central

    Ramirez, Adriana G; Tracci, Margaret C; Stukenborg, George J; Turrentine, Florence E; Kozower, Benjamin D; Jones, R Scott

    2016-01-01

    Background The Hospital Value-Based Purchasing Program measures value of care provided by participating Medicare hospitals while creating financial incentives for quality improvement and fostering increased transparency. Limited information is available comparing hospital performance across healthcare business models. Study Design 2015 hospital Value-Based Purchasing Program results were used to examine hospital performance by business model. General linear modeling assessed differences in mean total performance score, hospital case mix index, and differences after adjustment for differences in hospital case mix index. Results Of 3089 hospitals with Total Performance Scores (TPS), categories of representative healthcare business models included 104 Physician-owned Surgical Hospitals (POSH), 111 University HealthSystem Consortium (UHC), 14 US News & World Report Honor Roll (USNWR) Hospitals, 33 Kaiser Permanente, and 124 Pioneer Accountable Care Organization affiliated hospitals. Estimated mean TPS for POSH (64.4, 95% CI 61.83, 66.38) and Kaiser (60.79, 95% CI 56.56, 65.03) were significantly higher compared to all remaining hospitals while UHC members (36.8, 95% CI 34.51, 39.17) performed below the mean (p < 0.0001). Significant differences in mean hospital case mix index included POSH (mean 2.32, p<0.0001), USNWR honorees (mean 2.24, p 0.0140) and UHC members (mean =1.99, p<0.0001) while Kaiser Permanente hospitals had lower case mix value (mean =1.54, p<0.0001). Re-estimation of TPS did not change the original results after adjustment for differences in hospital case mix index. Conclusions The Hospital Value-Based Purchasing Program revealed superior hospital performance associated with business model. Closer inspection of high-value hospitals may guide value improvement and policy-making decisions for all Medicare Value-Based Purchasing Program Hospitals. PMID:27502368

  10. Ant colonies outperform individuals when a sensory discrimination task is difficult but not when it is easy.

    PubMed

    Sasaki, Takao; Granovskiy, Boris; Mann, Richard P; Sumpter, David J T; Pratt, Stephen C

    2013-08-20

    "Collective intelligence" and "wisdom of crowds" refer to situations in which groups achieve more accurate perception and better decisions than solitary agents. Whether groups outperform individuals should depend on the kind of task and its difficulty, but the nature of this relationship remains unknown. Here we show that colonies of Temnothorax ants outperform individuals for a difficult perception task but that individuals do better than groups when the task is easy. Subjects were required to choose the better of two nest sites as the quality difference was varied. For small differences, colonies were more likely than isolated ants to choose the better site, but this relationship was reversed for large differences. We explain these results using a mathematical model, which shows that positive feedback between group members effectively integrates information and sharpens the discrimination of fine differences. When the task is easier the same positive feedback can lock the colony into a suboptimal choice. These results suggest the conditions under which crowds do or do not become wise.

  11. Single tactile afferents outperform human subjects in a vibrotactile intensity discrimination task.

    PubMed

    Arabzadeh, Ehsan; Clifford, Colin W G; Harris, Justin A; Mahns, David A; Macefield, Vaughan G; Birznieks, Ingvars

    2014-11-15

    We simultaneously compared the sensitivity of single primary afferent neurons supplying the glabrous skin of the hand and the psychophysical amplitude discrimination thresholds in human subjects for a set of vibrotactile stimuli delivered to the receptive field. All recorded afferents had a dynamic range narrower than the range of amplitudes across which the subjects could discriminate. However, when the vibration amplitude was chosen to be within the steepest part of the afferent's stimulus-response function the response of single afferents, defined as the spike count over the vibration duration (500 ms), was often more sensitive in discriminating vibration amplitude than the perceptual judgment of the participants. We quantified how the neuronal performance depended on the integration window: for short windows the neuronal performance was inferior to the performance of the subject. The neuronal performance progressively improved with increasing spike count duration and reached a level significantly above that of the subjects when the integration window was 250 ms or longer. The superiority in performance of individual neurons over observers could reflect a nonoptimal integration window or be due to the presence of noise between the sensory periphery and the cortical decision stage. Additionally, it could indicate that the range of perceptual sensitivity comes at the cost of discrimination through pooling across neurons with different response functions.

  12. Microscopy outperformed in a comparison of five methods for detecting Trichomonas vaginalis in symptomatic women.

    PubMed

    Nathan, B; Appiah, J; Saunders, P; Heron, D; Nichols, T; Brum, R; Alexander, S; Baraitser, P; Ison, C

    2015-03-01

    In the UK, despite its low sensitivity, wet mount microscopy is often the only method of detecting Trichomonas vaginalis infection. A study was conducted in symptomatic women to compare the performance of five methods for detecting T. vaginalis: an in-house polymerase chain reaction (PCR); Aptima T. vaginalis kit; OSOM ®Trichomonas Rapid Test; culture and microscopy. Symptomatic women underwent routine testing; microscopy and further swabs were taken for molecular testing, OSOM and culture. A true positive was defined as a sample that was positive for T. vaginalis by two or more different methods. Two hundred and forty-six women were recruited: 24 patients were positive for T. vaginalis by two or more different methods. Of these 24 patients, 21 patients were detected by real-time PCR (sensitivity 88%); 22 patients were detected by the Aptima T. vaginalis kit (sensitivity 92%); 22 patients were detected by OSOM (sensitivity 92%); nine were detected by wet mount microscopy (sensitivity 38%); and 21 were detected by culture (sensitivity 88%). Two patients were positive by just one method and were not considered true positives. All the other detection methods had a sensitivity to detect T. vaginalis that was significantly greater than wet mount microscopy, highlighting the number of cases that are routinely missed even in symptomatic women if microscopy is the only diagnostic method available.

  13. Hippocampus neuronal metabolic gene expression outperforms whole tissue data in accurately predicting Alzheimer's disease progression.

    PubMed

    Stempler, Shiri; Waldman, Yedael Y; Wolf, Lior; Ruppin, Eytan

    2012-09-01

    Numerous metabolic alterations are associated with the impairment of brain cells in Alzheimer's disease (AD). Here we use gene expression microarrays of both whole hippocampus tissue and hippocampal neurons of AD patients to investigate the ability of metabolic gene expression to predict AD progression and its cognitive decline. We find that the prediction accuracy of different AD stages is markedly higher when using neuronal expression data (0.9) than when using whole tissue expression (0.76). Furthermore, the metabolic genes' expression is shown to be as effective in predicting AD severity as the entire gene list. Remarkably, a regression model from hippocampal metabolic gene expression leads to a marked correlation of 0.57 with the Mini-Mental State Examination cognitive score. Notably, the expression of top predictive neuronal genes in AD is significantly higher than that of other metabolic genes in the brains of healthy subjects. All together, the analyses point to a subset of metabolic genes that is strongly associated with normal brain functioning and whose disruption plays a major role in AD.

  14. Sensory gain outperforms efficient readout mechanisms in predicting attention-related improvements in behavior.

    PubMed

    Itthipuripat, Sirawaj; Ester, Edward F; Deering, Sean; Serences, John T

    2014-10-01

    Spatial attention has been postulated to facilitate perceptual processing via several different mechanisms. For instance, attention can amplify neural responses in sensory areas (sensory gain), mediate neural variability (noise modulation), or alter the manner in which sensory signals are selectively read out by postsensory decision mechanisms (efficient readout). Even in the context of simple behavioral tasks, it is unclear how well each of these mechanisms can account for the relationship between attention-modulated changes in behavior and neural activity because few studies have systematically mapped changes between stimulus intensity, attentional focus, neural activity, and behavioral performance. Here, we used a combination of psychophysics, event-related potentials (ERPs), and quantitative modeling to explicitly link attention-related changes in perceptual sensitivity with changes in the ERP amplitudes recorded from human observers. Spatial attention led to a multiplicative increase in the amplitude of an early sensory ERP component (the P1, peaking ∼80-130 ms poststimulus) and in the amplitude of the late positive deflection component (peaking ∼230-330 ms poststimulus). A simple model based on signal detection theory demonstrates that these multiplicative gain changes were sufficient to account for attention-related improvements in perceptual sensitivity, without a need to invoke noise modulation. Moreover, combining the observed multiplicative gain with a postsensory readout mechanism resulted in a significantly poorer description of the observed behavioral data. We conclude that, at least in the context of relatively simple visual discrimination tasks, spatial attention modulates perceptual sensitivity primarily by modulating the gain of neural responses during early sensory processing.

  15. Amphipols Outperform Dodecylmaltoside Micelles in Stabilizing Membrane Protein Structure in the Gas Phase

    PubMed Central

    2014-01-01

    Noncovalent mass spectrometry (MS) is emerging as an invaluable technique to probe the structure, interactions, and dynamics of membrane proteins (MPs). However, maintaining native-like MP conformations in the gas phase using detergent solubilized proteins is often challenging and may limit structural analysis. Amphipols, such as the well characterized A8-35, are alternative reagents able to maintain the solubility of MPs in detergent-free solution. In this work, the ability of A8-35 to retain the structural integrity of MPs for interrogation by electrospray ionization-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS) is compared systematically with the commonly used detergent dodecylmaltoside. MPs from the two major structural classes were selected for analysis, including two β-barrel outer MPs, PagP and OmpT (20.2 and 33.5 kDa, respectively), and two α-helical proteins, Mhp1 and GalP (54.6 and 51.7 kDa, respectively). Evaluation of the rotationally averaged collision cross sections of the observed ions revealed that the native structures of detergent solubilized MPs were not always retained in the gas phase, with both collapsed and unfolded species being detected. In contrast, ESI-IMS-MS analysis of the amphipol solubilized MPs studied resulted in charge state distributions consistent with less gas phase induced unfolding, and the presence of lowly charged ions which exhibit collision cross sections comparable with those calculated from high resolution structural data. The data demonstrate that A8-35 can be more effective than dodecylmaltoside at maintaining native MP structure and interactions in the gas phase, permitting noncovalent ESI-IMS-MS analysis of MPs from the two major structural classes, while gas phase dissociation from dodecylmaltoside micelles leads to significant gas phase unfolding, especially for the α-helical MPs studied. PMID:25495802

  16. Evaluation of Common Methods for Sampling Invertebrate Pollinator Assemblages: Net Sampling Out-Perform Pan Traps

    PubMed Central

    Popic, Tony J.; Davila, Yvonne C.; Wardle, Glenda M.

    2013-01-01

    Methods for sampling ecological assemblages strive to be efficient, repeatable, and representative. Unknowingly, common methods may be limited in terms of revealing species function and so of less value for comparative studies. The global decline in pollination services has stimulated surveys of flower-visiting invertebrates, using pan traps and net sampling. We explore the relative merits of these two methods in terms of species discovery, quantifying abundance, function, and composition, and responses of species to changing floral resources. Using a spatially-nested design we sampled across a 5000 km2 area of arid grasslands, including 432 hours of net sampling and 1296 pan trap-days, between June 2010 and July 2011. Net sampling yielded 22% more species and 30% higher abundance than pan traps, and better reflected the spatio-temporal variation of floral resources. Species composition differed significantly between methods; from 436 total species, 25% were sampled by both methods, 50% only by nets, and the remaining 25% only by pans. Apart from being less comprehensive, if pan traps do not sample flower-visitors, the link to pollination is questionable. By contrast, net sampling functionally linked species to pollination through behavioural observations of flower-visitation interaction frequency. Netted specimens are also necessary for evidence of pollen transport. Benefits of net-based sampling outweighed minor differences in overall sampling effort. As pan traps and net sampling methods are not equivalent for sampling invertebrate-flower interactions, we recommend net sampling of invertebrate pollinator assemblages, especially if datasets are intended to document declines in pollination and guide measures to retain this important ecosystem service. PMID:23799127

  17. Evaluation of common methods for sampling invertebrate pollinator assemblages: net sampling out-perform pan traps.

    PubMed

    Popic, Tony J; Davila, Yvonne C; Wardle, Glenda M

    2013-01-01

    Methods for sampling ecological assemblages strive to be efficient, repeatable, and representative. Unknowingly, common methods may be limited in terms of revealing species function and so of less value for comparative studies. The global decline in pollination services has stimulated surveys of flower-visiting invertebrates, using pan traps and net sampling. We explore the relative merits of these two methods in terms of species discovery, quantifying abundance, function, and composition, and responses of species to changing floral resources. Using a spatially-nested design we sampled across a 5000 km(2) area of arid grasslands, including 432 hours of net sampling and 1296 pan trap-days, between June 2010 and July 2011. Net sampling yielded 22% more species and 30% higher abundance than pan traps, and better reflected the spatio-temporal variation of floral resources. Species composition differed significantly between methods; from 436 total species, 25% were sampled by both methods, 50% only by nets, and the remaining 25% only by pans. Apart from being less comprehensive, if pan traps do not sample flower-visitors, the link to pollination is questionable. By contrast, net sampling functionally linked species to pollination through behavioural observations of flower-visitation interaction frequency. Netted specimens are also necessary for evidence of pollen transport. Benefits of net-based sampling outweighed minor differences in overall sampling effort. As pan traps and net sampling methods are not equivalent for sampling invertebrate-flower interactions, we recommend net sampling of invertebrate pollinator assemblages, especially if datasets are intended to document declines in pollination and guide measures to retain this important ecosystem service.

  18. Algorithms for Brownian first-passage-time estimation.

    PubMed

    Adib, Artur B

    2009-09-01

    A class of algorithms in discrete space and continuous time for Brownian first-passage-time estimation is considered. A simple algorithm is derived that yields exact mean first-passage times (MFPTs) for linear potentials in one dimension, regardless of the lattice spacing. When applied to nonlinear potentials and/or higher spatial dimensions, numerical evidence suggests that this algorithm yields MFPT estimates that either outperform or rival Langevin-based (discrete time and continuous space) estimates.

  19. Clustering algorithm for determining community structure in large networks

    NASA Astrophysics Data System (ADS)

    Pujol, Josep M.; Béjar, Javier; Delgado, Jordi

    2006-07-01

    We propose an algorithm to find the community structure in complex networks based on the combination of spectral analysis and modularity optimization. The clustering produced by our algorithm is as accurate as the best algorithms on the literature of modularity optimization; however, the main asset of the algorithm is its efficiency. The best match for our algorithm is Newman’s fast algorithm, which is the reference algorithm for clustering in large networks due to its efficiency. When both algorithms are compared, our algorithm outperforms the fast algorithm both in efficiency and accuracy of the clustering, in terms of modularity. Thus, the results suggest that the proposed algorithm is a good choice to analyze the community structure of medium and large networks in the range of tens and hundreds of thousand vertices.

  20. A novel swarm intelligence algorithm for finding DNA motifs.

    PubMed

    Lei, Chengwei; Ruan, Jianhua

    2009-01-01

    Discovering DNA motifs from co-expressed or co-regulated genes is an important step towards deciphering complex gene regulatory networks and understanding gene functions. Despite significant improvement in the last decade, it still remains one of the most challenging problems in computational molecular biology. In this work, we propose a novel motif finding algorithm that finds consensus patterns using a population-based stochastic optimisation technique called Particle Swarm Optimisation (PSO), which has been shown to be effective in optimising difficult multidimensional problems in continuous domains. We propose to use a word dissimilarity graph to remap the neighborhood structure of the solution space of DNA motifs, and propose a modification of the naive PSO algorithm to accommodate discrete variables. In order to improve efficiency, we also propose several strategies for escaping from local optima and for automatically determining the termination criteria. Experimental results on simulated challenge problems show that our method is both more efficient and more accurate than several existing algorithms. Applications to several sets of real promoter sequences also show that our approach is able to detect known transcription factor binding sites, and outperforms two of the most popular existing algorithms.

  1. QUEST: Eliminating Online Supervised Learning for Efficient Classification Algorithms

    PubMed Central

    Zwartjes, Ardjan; Havinga, Paul J. M.; Smit, Gerard J. M.; Hurink, Johann L.

    2016-01-01

    In this work, we introduce QUEST (QUantile Estimation after Supervised Training), an adaptive classification algorithm for Wireless Sensor Networks (WSNs) that eliminates the necessity for online supervised learning. Online processing is important for many sensor network applications. Transmitting raw sensor data puts high demands on the battery, reducing network life time. By merely transmitting partial results or classifications based on the sampled data, the amount of traffic on the network can be significantly reduced. Such classifications can be made by learning based algorithms using sampled data. An important issue, however, is the training phase of these learning based algorithms. Training a deployed sensor network requires a lot of communication and an impractical amount of human involvement. QUEST is a hybrid algorithm that combines supervised learning in a controlled environment with unsupervised learning on the location of deployment. Using the SITEX02 dataset, we demonstrate that the presented solution works with a performance penalty of less than 10% in 90% of the tests. Under some circumstances, it even outperforms a network of classifiers completely trained with supervised learning. As a result, the need for on-site supervised learning and communication for training is completely eliminated by our solution. PMID:27706071

  2. Sampling protein conformations using segment libraries and a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Gunn, John R.

    1997-03-01

    We present a new simulation algorithm for minimizing empirical contact potentials for a simplified model of protein structure. The model consists of backbone atoms only (including Cβ) with the φ and ψ dihedral angles as the only degrees of freedom. In addition, φ and ψ are restricted to a finite set of 532 discrete pairs of values, and the secondary structural elements are held fixed in ideal geometries. The potential function consists of a look-up table based on discretized inter-residue atomic distances. The minimization consists of two principal elements: the use of preselected lists of trial moves and the use of a genetic algorithm. The trial moves consist of substitutions of one or two complete loop regions, and the lists are in turn built up using preselected lists of randomly-generated three-residue segments. The genetic algorithm consists of mutation steps (namely, the loop replacements), as well as a hybridization step in which new structures are created by combining parts of two "parents'' and a selection step in which hybrid structures are introduced into the population. These methods are combined into a Monte Carlo simulated annealing algorithm which has the overall structure of a random walk on a restricted set of preselected conformations. The algorithm is tested using two types of simple model potential. The first uses global information derived from the radius of gyration and the rms deviation to drive the folding, whereas the second is based exclusively on distance-geometry constraints. The hierarchical algorithm significantly outperforms conventional Monte Carlo simulation for a set of test proteins in both cases, with the greatest advantage being for the largest molecule having 193 residues. When tested on a realistic potential function, the method consistently generates structures ranked lower than the crystal structure. The results also show that the improved efficiency of the hierarchical algorithm exceeds that which would be anticipated

  3. Multiple One-Dimensional Search (MODS) algorithm for fast optimization of laser-matter interaction by phase-only fs-laser pulse shaping

    NASA Astrophysics Data System (ADS)

    Galvan-Sosa, M.; Portilla, J.; Hernandez-Rueda, J.; Siegel, J.; Moreno, L.; Solis, J.

    2014-09-01

    In this work, we have developed and implemented a powerful search strategy for optimization of nonlinear optical effects by means of femtosecond pulse shaping, based on topological concepts derived from quantum control theory. Our algorithm [Multiple One-Dimensional Search (MODS)] is based on deterministic optimization of a single solution rather than pseudo-random optimization of entire populations as done by commonly used evolutionary algorithms. We have tested MODS against a genetic algorithm in a nontrivial problem consisting in optimizing the Kerr gating signal (self-interaction) of a shaped laser pulse in a detuned Michelson interferometer configuration. The obtained results show that our search method (MODS) strongly outperforms the genetic algorithm in terms of both convergence speed and quality of the solution. These findings demonstrate the applicability of concepts of quantum control theory to nonlinear laser-matter interaction problems, even in the presence of significant experimental noise.

  4. Complexity of the Quantum Adiabatic Algorithm

    NASA Technical Reports Server (NTRS)

    Hen, Itay

    2013-01-01

    The Quantum Adiabatic Algorithm (QAA) has been proposed as a mechanism for efficiently solving optimization problems on a quantum computer. Since adiabatic computation is analog in nature and does not require the design and use of quantum gates, it can be thought of as a simpler and perhaps more profound method for performing quantum computations that might also be easier to implement experimentally. While these features have generated substantial research in QAA, to date there is still a lack of solid evidence that the algorithm can outperform classical optimization algorithms.

  5. Bayesian methods outperform parsimony but at the expense of precision in the estimation of phylogeny from discrete morphological data

    PubMed Central

    Puttick, Mark N.; Parry, Luke; Tanner, Alastair R.; Tarver, James E.; Fleming, James

    2016-01-01

    Different analytical methods can yield competing interpretations of evolutionary history and, currently, there is no definitive method for phylogenetic reconstruction using morphological data. Parsimony has been the primary method for analysing morphological data, but there has been a resurgence of interest in the likelihood-based Mk-model. Here, we test the performance of the Bayesian implementation of the Mk-model relative to both equal and implied-weight implementations of parsimony. Using simulated morphological data, we demonstrate that the Mk-model outperforms equal-weights parsimony in terms of topological accuracy, and implied-weights performs the most poorly. However, the Mk-model produces phylogenies that have less resolution than parsimony methods. This difference in the accuracy and precision of parsimony and Bayesian approaches to topology estimation needs to be considered when selecting a method for phylogeny reconstruction. PMID:27095266

  6. MEDUSAHEAD OUTPERFORMS SQUIRRETAIL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the ecological processes fostering invasion and dominance by medusahead is central to its management. The objectives of this study were 1) to quantify and compare interference between medusahead and squirreltail under different concentrations of soil N and P and 2) to compare growth r...

  7. Why envy outperforms admiration.

    PubMed

    van de Ven, Niels; Zeelenberg, Marcel; Pieters, Rik

    2011-06-01

    Four studies tested the hypothesis that the emotion of benign envy, but not the emotions of admiration or malicious envy, motivates people to improve themselves. Studies 1 to 3 found that only benign envy was related to the motivation to study more (Study 1) and to actual performance on the Remote Associates Task (which measures intelligence and creativity; Studies 2 and 3). Study 4 found that an upward social comparison triggered benign envy and subsequent better performance only when people thought self-improvement was attainable. When participants thought self-improvement was hard, an upward social comparison led to more admiration and no motivation to do better. Implications of these findings for theories of social emotions such as envy, social comparisons, and for understanding the influence of role models are discussed.

  8. PhyPA: Phylogenetic method with pairwise sequence alignment outperforms likelihood methods in phylogenetics involving highly diverged sequences.

    PubMed

    Xia, Xuhua

    2016-09-01

    While pairwise sequence alignment (PSA) by dynamic programming is guaranteed to generate one of the optimal alignments, multiple sequence alignment (MSA) of highly divergent sequences often results in poorly aligned sequences, plaguing all subsequent phylogenetic analysis. One way to avoid this problem is to use only PSA to reconstruct phylogenetic trees, which can only be done with distance-based methods. I compared the accuracy of this new computational approach (named PhyPA for phylogenetics by pairwise alignment) against the maximum likelihood method using MSA (the ML+MSA approach), based on nucleotide, amino acid and codon sequences simulated with different topologies and tree lengths. I present a surprising discovery that the fast PhyPA method consistently outperforms the slow ML+MSA approach for highly diverged sequences even when all optimization options were turned on for the ML+MSA approach. Only when sequences are not highly diverged (i.e., when a reliable MSA can be obtained) does the ML+MSA approach outperforms PhyPA. The true topologies are always recovered by ML with the true alignment from the simulation. However, with MSA derived from alignment programs such as MAFFT or MUSCLE, the recovered topology consistently has higher likelihood than that for the true topology. Thus, the failure to recover the true topology by the ML+MSA is not because of insufficient search of tree space, but by the distortion of phylogenetic signal by MSA methods. I have implemented in DAMBE PhyPA and two approaches making use of multi-gene data sets to derive phylogenetic support for subtrees equivalent to resampling techniques such as bootstrapping and jackknifing.

  9. Intensive care unit scoring systems outperform emergency department scoring systems for mortality prediction in critically ill patients: a prospective cohort study

    PubMed Central

    2014-01-01

    Background Multiple scoring systems have been developed for both the intensive care unit (ICU) and the emergency department (ED) to risk stratify patients and predict mortality. However, it remains unclear whether the additional data needed to compute ICU scores improves mortality prediction for critically ill patients compared to the simpler ED scores. Methods We studied a prospective observational cohort of 227 critically ill patients admitted to the ICU directly from the ED at an academic, tertiary care medical center. We compared Acute Physiology and Chronic Health Evaluation (APACHE) II, APACHE III, Simplified Acute Physiology Score (SAPS) II, Modified Early Warning Score (MEWS), Rapid Emergency Medicine Score (REMS), Prince of Wales Emergency Department Score (PEDS), and a pre-hospital critical illness prediction score developed by Seymour et al. (JAMA 2010, 304(7):747–754). The primary endpoint was 60-day mortality. We compared the receiver operating characteristic (ROC) curves of the different scores and their calibration using the Hosmer-Lemeshow goodness-of-fit test and visual assessment. Results The ICU scores outperformed the ED scores with higher area under the curve (AUC) values (p = 0.01). There were no differences in discrimination among the ED-based scoring systems (AUC 0.698 to 0.742; p = 0.45) or among the ICU-based scoring systems (AUC 0.779 to 0.799; p = 0.60). With the exception of the Seymour score, the ED-based scoring systems did not discriminate as well as the best-performing ICU-based scoring system, APACHE III (p = 0.005 to 0.01 for comparison of ED scores to APACHE III). The Seymour score had a superior AUC to other ED scores and, despite a lower AUC than all the ICU scores, was not significantly different than APACHE III (p = 0.09). When data from the first 24 h in the ICU was used to calculate the ED scores, the AUC for the ED scores improved numerically, but this improvement was not statistically significant

  10. An Intelligent Model for Pairs Trading Using Genetic Algorithms.

    PubMed

    Huang, Chien-Feng; Hsu, Chi-Jen; Chen, Chi-Chung; Chang, Bao Rong; Li, Chen-An

    2015-01-01

    Pairs trading is an important and challenging research area in computational finance, in which pairs of stocks are bought and sold in pair combinations for arbitrage opportunities. Traditional methods that solve this set of problems mostly rely on statistical methods such as regression. In contrast to the statistical approaches, recent advances in computational intelligence (CI) are leading to promising opportunities for solving problems in the financial applications more effectively. In this paper, we present a novel methodology for pairs trading using genetic algorithms (GA). Our results showed that the GA-based models are able to significantly outperform the benchmark and our proposed method is capable of generating robust models to tackle the dynamic characteristics in the financial application studied. Based upon the promising results obtained, we expect this GA-based method to advance the research in computational intelligence for finance and provide an effective solution to pairs trading for investment in practice.

  11. An Intelligent Model for Pairs Trading Using Genetic Algorithms

    PubMed Central

    Huang, Chien-Feng; Hsu, Chi-Jen; Chen, Chi-Chung; Chang, Bao Rong; Li, Chen-An

    2015-01-01

    Pairs trading is an important and challenging research area in computational finance, in which pairs of stocks are bought and sold in pair combinations for arbitrage opportunities. Traditional methods that solve this set of problems mostly rely on statistical methods such as regression. In contrast to the statistical approaches, recent advances in computational intelligence (CI) are leading to promising opportunities for solving problems in the financial applications more effectively. In this paper, we present a novel methodology for pairs trading using genetic algorithms (GA). Our results showed that the GA-based models are able to significantly outperform the benchmark and our proposed method is capable of generating robust models to tackle the dynamic characteristics in the financial application studied. Based upon the promising results obtained, we expect this GA-based method to advance the research in computational intelligence for finance and provide an effective solution to pairs trading for investment in practice. PMID:26339236

  12. YAMPA: Yet Another Matching Pursuit Algorithm for compressive sensing

    NASA Astrophysics Data System (ADS)

    Lodhi, Muhammad A.; Voronin, Sergey; Bajwa, Waheed U.

    2016-05-01

    State-of-the-art sparse recovery methods often rely on the restricted isometry property for their theoretical guarantees. However, they cannot explicitly incorporate metrics such as restricted isometry constants within their recovery procedures due to the computational intractability of calculating such metrics. This paper formulates an iterative algorithm, termed yet another matching pursuit algorithm (YAMPA), for recovery of sparse signals from compressive measurements. YAMPA differs from other pursuit algorithms in that: (i) it adapts to the measurement matrix using a threshold that is explicitly dependent on two computable coherence metrics of the matrix, and (ii) it does not require knowledge of the signal sparsity. Performance comparisons of YAMPA against other matching pursuit and approximate message passing algorithms are made for several types of measurement matrices. These results show that while state-of-the-art approximate message passing algorithms outperform other algorithms (including YAMPA) in the case of well-conditioned random matrices, they completely break down in the case of ill-conditioned measurement matrices. On the other hand, YAMPA and comparable pursuit algorithms not only result in reasonable performance for well-conditioned matrices, but their performance also degrades gracefully for ill-conditioned matrices. The paper also shows that YAMPA uniformly outperforms other pursuit algorithms for the case of thresholding parameters chosen in a clairvoyant fashion. Further, when combined with a simple and fast technique for selecting thresholding parameters in the case of ill-conditioned matrices, YAMPA outperforms other pursuit algorithms in the regime of low undersampling, although some of these algorithms can outperform YAMPA in the regime of high undersampling in this setting.

  13. Protein-fold recognition using an improved single-source K diverse shortest paths algorithm.

    PubMed

    Lhota, John; Xie, Lei

    2016-04-01

    Protein structure prediction, when construed as a fold recognition problem, is one of the most important applications of similarity search in bioinformatics. A new protein-fold recognition method is reported which combines a single-source K diverse shortest path (SSKDSP) algorithm with Enrichment of Network Topological Similarity (ENTS) algorithm to search a graphic feature space generated using sequence similarity and structural similarity metrics. A modified, more efficient SSKDSP algorithm is developed to improve the performance of graph searching. The new implementation of the SSKDSP algorithm empirically requires 82% less memory and 61% less time than the current implementation, allowing for the analysis of larger, denser graphs. Furthermore, the statistical significance of fold ranking generated from SSKDSP is assessed using ENTS. The reported ENTS-SSKDSP algorithm outperforms original ENTS that uses random walk with restart for the graph search as well as other state-of-the-art protein structure prediction algorithms HHSearch and Sparks-X, as evaluated by a benchmark of 600 query proteins. The reported methods may easily be extended to other similarity search problems in bioinformatics and chemoinformatics. The SSKDSP software is available at http://compsci.hunter.cuny.edu/~leixie/sskdsp.html.

  14. DOPGA: a new fitness assignment scheme for multi-objective evolutionary algorithms

    NASA Astrophysics Data System (ADS)

    Ufuk Ergul, Engin; Eminoglu, Ilyas

    2014-03-01

    In this article, a new fitness assignment scheme to evaluate the Pareto-optimal solutions for multi-objective evolutionary algorithms is proposed. The proposed DOmination Power of an individual Genetic Algorithm (DOPGA) method can order the individuals in a form in which each individual (the so-called solution) could have a unique rank. With this new method, a multi-objective problem can be treated as if it were a single-objective problem without drastically deviating from the Pareto definition. In DOPGA, relative position of a solution is embedded into the fitness assignment procedures. We compare the performance of the algorithm with two benchmark evolutionary algorithms (Strength Pareto Evolutionary Algorithm (SPEA) and Strength Pareto Evolutionary Algorithm 2 (SPEA2)) on 12 unconstrained bi-objective and one tri-objective test problems. DOPGA significantly outperforms SPEA on all test problems. DOPGA performs better than SPEA2 in terms of convergence metric on all test problems. Also, Pareto-optimal solutions found by DOPGA spread better than SPEA2 on eight of 13 test problems.

  15. Accelerated Path-following Iterative Shrinkage Thresholding Algorithm with Application to Semiparametric Graph Estimation

    PubMed Central

    Zhao, Tuo; Liu, Han

    2016-01-01

    We propose an accelerated path-following iterative shrinkage thresholding algorithm (APISTA) for solving high dimensional sparse nonconvex learning problems. The main difference between APISTA and the path-following iterative shrinkage thresholding algorithm (PISTA) is that APISTA exploits an additional coordinate descent subroutine to boost the computational performance. Such a modification, though simple, has profound impact: APISTA not only enjoys the same theoretical guarantee as that of PISTA, i.e., APISTA attains a linear rate of convergence to a unique sparse local optimum with good statistical properties, but also significantly outperforms PISTA in empirical benchmarks. As an application, we apply APISTA to solve a family of nonconvex optimization problems motivated by estimating sparse semiparametric graphical models. APISTA allows us to obtain new statistical recovery results which do not exist in the existing literature. Thorough numerical results are provided to back up our theory. PMID:28133430

  16. Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge.

    PubMed

    Litjens, Geert; Toth, Robert; van de Ven, Wendy; Hoeks, Caroline; Kerkstra, Sjoerd; van Ginneken, Bram; Vincent, Graham; Guillard, Gwenael; Birbeck, Neil; Zhang, Jindang; Strand, Robin; Malmberg, Filip; Ou, Yangming; Davatzikos, Christos; Kirschner, Matthias; Jung, Florian; Yuan, Jing; Qiu, Wu; Gao, Qinquan; Edwards, Philip Eddie; Maan, Bianca; van der Heijden, Ferdinand; Ghose, Soumya; Mitra, Jhimli; Dowling, Jason; Barratt, Dean; Huisman, Henkjan; Madabhushi, Anant

    2014-02-01

    Prostate MRI image segmentation has been an area of intense research due to the increased use of MRI as a modality for the clinical workup of prostate cancer. Segmentation is useful for various tasks, e.g. to accurately localize prostate boundaries for radiotherapy or to initialize multi-modal registration algorithms. In the past, it has been difficult for research groups to evaluate prostate segmentation algorithms on multi-center, multi-vendor and multi-protocol data. Especially because we are dealing with MR images, image appearance, resolution and the presence of artifacts are affected by differences in scanners and/or protocols, which in turn can have a large influence on algorithm accuracy. The Prostate MR Image Segmentation (PROMISE12) challenge was setup to allow a fair and meaningful comparison of segmentation methods on the basis of performance and robustness. In this work we will discuss the initial results of the online PROMISE12 challenge, and the results obtained in the live challenge workshop hosted by the MICCAI2012 conference. In the challenge, 100 prostate MR cases from 4 different centers were included, with differences in scanner manufacturer, field strength and protocol. A total of 11 teams from academic research groups and industry participated. Algorithms showed a wide variety in methods and implementation, including active appearance models, atlas registration and level sets. Evaluation was performed using boundary and volume based metrics which were combined into a single score relating the metrics to human expert performance. The winners of the challenge where the algorithms by teams Imorphics and ScrAutoProstate, with scores of 85.72 and 84.29 overall. Both algorithms where significantly better than all other algorithms in the challenge (p<0.05) and had an efficient implementation with a run time of 8min and 3s per case respectively. Overall, active appearance model based approaches seemed to outperform other approaches like multi

  17. A Quantum Algorithm Detecting Concentrated Maps.

    PubMed

    Beichl, Isabel; Bullock, Stephen S; Song, Daegene

    2007-01-01

    We consider an arbitrary mapping f: {0, …, N - 1} → {0, …, N - 1} for N = 2 (n) , n some number of quantum bits. Using N calls to a classical oracle evaluating f(x) and an N-bit memory, it is possible to determine whether f(x) is one-to-one. For some radian angle 0 ≤ θ ≤ π/2, we say f(x) is θ - concentrated if and only if [Formula: see text] for some given ψ 0 and any 0 ≤ x ≤ N - 1. We present a quantum algorithm that distinguishes a θ-concentrated f(x) from a one-to-one f(x) in O(1) calls to a quantum oracle function Uf with high probability. For 0 < θ < 0.3301 rad, the quantum algorithm outperforms random (classical) evaluation of the function testing for dispersed values (on average). Maximal outperformance occurs at [Formula: see text] rad.

  18. Learning deterministic finite automata with a smart state labeling evolutionary algorithm.

    PubMed

    Lucas, Simon M; Reynolds, T Jeff

    2005-07-01

    Learning a Deterministic Finite Automaton (DFA) from a training set of labeled strings is a hard task that has been much studied within the machine learning community. It is equivalent to learning a regular language by example and has applications in language modeling. In this paper, we describe a novel evolutionary method for learning DFA that evolves only the transition matrix and uses a simple deterministic procedure to optimally assign state labels. We compare its performance with the Evidence Driven State Merging (EDSM) algorithm, one of the most powerful known DFA learning algorithms. We present results on random DFA induction problems of varying target size and training set density. We also studythe effects of noisy training data on the evolutionary approach and on EDSM. On noise-free data, we find that our evolutionary method outperforms EDSM on small sparse data sets. In the case of noisy training data, we find that our evolutionary method consistently outperforms EDSM, as well as other significant methods submitted to two recent competitions.

  19. Mutation-Based Artificial Fish Swarm Algorithm for Bound Constrained Global Optimization

    NASA Astrophysics Data System (ADS)

    Rocha, Ana Maria A. C.; Fernandes, Edite M. G. P.

    2011-09-01

    The herein presented mutation-based artificial fish swarm (AFS) algorithm includes mutation operators to prevent the algorithm to falling into local solutions, diversifying the search, and to accelerate convergence to the global optima. Three mutation strategies are introduced into the AFS algorithm to define the trial points that emerge from random, leaping and searching behaviors. Computational results show that the new algorithm outperforms other well-known global stochastic solution methods.

  20. Maximal sum of metabolic exchange fluxes outperforms biomass yield as a predictor of growth rate of microorganisms.

    PubMed

    Zarecki, Raphy; Oberhardt, Matthew A; Yizhak, Keren; Wagner, Allon; Shtifman Segal, Ella; Freilich, Shiri; Henry, Christopher S; Gophna, Uri; Ruppin, Eytan

    2014-01-01

    Growth rate has long been considered one of the most valuable phenotypes that can be measured in cells. Aside from being highly accessible and informative in laboratory cultures, maximal growth rate is often a prime determinant of cellular fitness, and predicting phenotypes that underlie fitness is key to both understanding and manipulating life. Despite this, current methods for predicting microbial fitness typically focus on yields [e.g., predictions of biomass yield using GEnome-scale metabolic Models (GEMs)] or notably require many empirical kinetic constants or substrate uptake rates, which render these methods ineffective in cases where fitness derives most directly from growth rate. Here we present a new method for predicting cellular growth rate, termed SUMEX, which does not require any empirical variables apart from a metabolic network (i.e., a GEM) and the growth medium. SUMEX is calculated by maximizing the SUM of molar EXchange fluxes (hence SUMEX) in a genome-scale metabolic model. SUMEX successfully predicts relative microbial growth rates across species, environments, and genetic conditions, outperforming traditional cellular objectives (most notably, the convention assuming biomass maximization). The success of SUMEX suggests that the ability of a cell to catabolize substrates and produce a strong proton gradient enables fast cell growth. Easily applicable heuristics for predicting growth rate, such as what we demonstrate with SUMEX, may contribute to numerous medical and biotechnological goals, ranging from the engineering of faster-growing industrial strains, modeling of mixed ecological communities, and the inhibition of cancer growth.

  1. Sorting on STAR. [CDC computer algorithm timing comparison

    NASA Technical Reports Server (NTRS)

    Stone, H. S.

    1978-01-01

    Timing comparisons are given for three sorting algorithms written for the CDC STAR computer. One algorithm is Hoare's (1962) Quicksort, which is the fastest or nearly the fastest sorting algorithm for most computers. A second algorithm is a vector version of Quicksort that takes advantage of the STAR's vector operations. The third algorithm is an adaptation of Batcher's (1968) sorting algorithm, which makes especially good use of vector operations but has a complexity of N(log N)-squared as compared with a complexity of N log N for the Quicksort algorithms. In spite of its worse complexity, Batcher's sorting algorithm is competitive with the serial version of Quicksort for vectors up to the largest that can be treated by STAR. Vector Quicksort outperforms the other two algorithms and is generally preferred. These results indicate that unusual instruction sets can introduce biases in program execution time that counter results predicted by worst-case asymptotic complexity analysis.

  2. Efficient and scalable Pareto optimization by evolutionary local selection algorithms.

    PubMed

    Menczer, F; Degeratu, M; Street, W N

    2000-01-01

    Local selection is a simple selection scheme in evolutionary computation. Individual fitnesses are accumulated over time and compared to a fixed threshold, rather than to each other, to decide who gets to reproduce. Local selection, coupled with fitness functions stemming from the consumption of finite shared environmental resources, maintains diversity in a way similar to fitness sharing. However, it is more efficient than fitness sharing and lends itself to parallel implementations for distributed tasks. While local selection is not prone to premature convergence, it applies minimal selection pressure to the population. Local selection is, therefore, particularly suited to Pareto optimization or problem classes where diverse solutions must be covered. This paper introduces ELSA, an evolutionary algorithm employing local selection and outlines three experiments in which ELSA is applied to multiobjective problems: a multimodal graph search problem, and two Pareto optimization problems. In all these experiments, ELSA significantly outperforms other well-known evolutionary algorithms. The paper also discusses scalability, parameter dependence, and the potential distributed applications of the algorithm.

  3. An Evolved Wavelet Library Based on Genetic Algorithm

    PubMed Central

    Vaithiyanathan, D.; Seshasayanan, R.; Kunaraj, K.; Keerthiga, J.

    2014-01-01

    As the size of the images being captured increases, there is a need for a robust algorithm for image compression which satiates the bandwidth limitation of the transmitted channels and preserves the image resolution without considerable loss in the image quality. Many conventional image compression algorithms use wavelet transform which can significantly reduce the number of bits needed to represent a pixel and the process of quantization and thresholding further increases the compression. In this paper the authors evolve two sets of wavelet filter coefficients using genetic algorithm (GA), one for the whole image portion except the edge areas and the other for the portions near the edges in the image (i.e., global and local filters). Images are initially separated into several groups based on their frequency content, edges, and textures and the wavelet filter coefficients are evolved separately for each group. As there is a possibility of the GA settling in local maximum, we introduce a new shuffling operator to prevent the GA from this effect. The GA used to evolve filter coefficients primarily focuses on maximizing the peak signal to noise ratio (PSNR). The evolved filter coefficients by the proposed method outperform the existing methods by a 0.31 dB improvement in the average PSNR and a 0.39 dB improvement in the maximum PSNR. PMID:25405225

  4. Performance evaluation of operational atmospheric correction algorithms over the East China Seas

    NASA Astrophysics Data System (ADS)

    He, Shuangyan; He, Mingxia; Fischer, Jürgen

    2017-01-01

    To acquire high-quality operational data products for Chinese in-orbit and scheduled ocean color sensors, the performances of two operational atmospheric correction (AC) algorithms (ESA MEGS 7.4.1 and NASA SeaDAS 6.1) were evaluated over the East China Seas (ECS) using MERIS data. The spectral remote sensing reflectance R rs(λ), aerosol optical thickness (AOT), and Ångström exponent (α) retrieved using the two algorithms were validated using in situ measurements obtained between May 2002 and October 2009. Match-ups of R rs, AOT, and α between the in situ and MERIS data were obtained through strict exclusion criteria. Statistical analysis of R rs(λ) showed a mean percentage difference (MPD) of 9%-13% in the 490-560 nm spectral range, and significant overestimation was observed at 413 nm (MPD>72%). The AOTs were overestimated (MPD>32%), and although the ESA algorithm outperformed the NASA algorithm in the blue-green bands, the situation was reversed in the red-near-infrared bands. The value of α was obviously underestimated by the ESA algorithm (MPD=41%) but not by the NASA algorithm (MPD=35%). To clarify why the NASA algorithm performed better in the retrieval of α, scatter plots of the α single scattering albedo (SSA) density were prepared. These α-SSA density scatter plots showed that the applicability of the aerosol models used by the NASA algorithm over the ECS is better than that used by the ESA algorithm, although neither aerosol model is suitable for the ECS region. The results of this study provide a reference to both data users and data agencies regarding the use of operational data products and the investigation into the improvement of current AC schemes over the ECS.

  5. Evaluation of dynamically dimensioned search algorithm for optimizing SWAT by altering sampling distributions and searching range

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The primary advantage of Dynamically Dimensioned Search algorithm (DDS) is that it outperforms many other optimization techniques in both convergence speed and the ability in searching for parameter sets that satisfy statistical guidelines while requiring only one algorithm parameter (perturbation f...

  6. The global Minmax k-means algorithm.

    PubMed

    Wang, Xiaoyan; Bai, Yanping

    2016-01-01

    The global k-means algorithm is an incremental approach to clustering that dynamically adds one cluster center at a time through a deterministic global search procedure from suitable initial positions, and employs k-means to minimize the sum of the intra-cluster variances. However the global k-means algorithm sometimes results singleton clusters and the initial positions sometimes are bad, after a bad initialization, poor local optimal can be easily obtained by k-means algorithm. In this paper, we modified the global k-means algorithm to eliminate the singleton clusters at first, and then we apply MinMax k-means clustering error method to global k-means algorithm to overcome the effect of bad initialization, proposed the global Minmax k-means algorithm. The proposed clustering method is tested on some popular data sets and compared to the k-means algorithm, the global k-means algorithm and the MinMax k-means algorithm. The experiment results show our proposed algorithm outperforms other algorithms mentioned in the paper.

  7. Invasive Acer negundo outperforms native species in non-limiting resource environments due to its higher phenotypic plasticity

    PubMed Central

    2011-01-01

    Background To identify the determinants of invasiveness, comparisons of traits of invasive and native species are commonly performed. Invasiveness is generally linked to higher values of reproductive, physiological and growth-related traits of the invasives relative to the natives in the introduced range. Phenotypic plasticity of these traits has also been cited to increase the success of invasive species but has been little studied in invasive tree species. In a greenhouse experiment, we compared ecophysiological traits between an invasive species to Europe, Acer negundo, and early- and late-successional co-occurring native species, under different light, nutrient availability and disturbance regimes. We also compared species of the same species groups in situ, in riparian forests. Results Under non-limiting resources, A. negundo seedlings showed higher growth rates than the native species. However, A. negundo displayed equivalent or lower photosynthetic capacities and nitrogen content per unit leaf area compared to the native species; these findings were observed both on the seedlings in the greenhouse experiment and on adult trees in situ. These physiological traits were mostly conservative along the different light, nutrient and disturbance environments. Overall, under non-limiting light and nutrient conditions, specific leaf area and total leaf area of A. negundo were substantially larger. The invasive species presented a higher plasticity in allocation to foliage and therefore in growth with increasing nutrient and light availability relative to the native species. Conclusions The higher level of plasticity of the invasive species in foliage allocation in response to light and nutrient availability induced a better growth in non-limiting resource environments. These results give us more elements on the invasiveness of A. negundo and suggest that such behaviour could explain the ability of A. negundo to outperform native tree species, contributes to its spread

  8. Genetic algorithms

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Bayer, Steven E.

    1991-01-01

    Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology.

  9. A Heuristic Initialized Stochastic Memetic Algorithm for MDPVRP With Interdependent Depot Operations.

    PubMed

    Azad, Abdus Salam; Islam, Md Monirul; Chakraborty, Saikat

    2017-01-27

    The vehicle routing problem (VRP) is a widely studied combinatorial optimization problem. We introduce a variant of the multidepot and periodic VRP (MDPVRP) and propose a heuristic initialized stochastic memetic algorithm to solve it. The main challenge in designing such an algorithm for a large combinatorial optimization problem is to avoid premature convergence by maintaining a balance between exploration and exploitation of the search space. We employ intelligent initialization and stochastic learning to address this challenge. The intelligent initialization technique constructs a population by a mix of random and heuristic generated solutions. The stochastic learning enhances the solutions' quality selectively using simulated annealing with a set of random and heuristic operators. The hybridization of randomness and greediness in the initialization and learning process helps to maintain the balance between exploration and exploitation. Our proposed algorithm has been tested extensively on the existing benchmark problems and outperformed the baseline algorithms by a large margin. We further compared our results with that of the state-of-the-art algorithms working under MDPVRP formulation and found a significant improvement over their results.

  10. Environment Sensitivity-based Cooperative Co-evolutionary Algorithms for Dynamic Multi-objective Optimization.

    PubMed

    Xu, Biao; Zhang, Yong; Gong, Dunwei; Guo, Yinan; Rong, Miao

    2017-01-16

    Dynamic multi-objective optimization problems (DMOPs) not only involve multiple conflicting objectives, but these objectives may also vary with time, raising a challenge for researchers to solve them. This paper presents a cooperative co-evolutionary strategy based on environment sensitivities for solving DMOPs. In this strategy, a new method that groups decision variables is first proposed, in which all the decision variables are partitioned into two subcomponents according to their interrelation with environment. Adopting two populations to cooperatively optimize the two subcomponents, two prediction methods, i.e., differential prediction and Cauchy mutation, are then employed respectively to speed up their responses on the change of the environment. Furthermore, two improved dynamic multi-objective optimization algorithms, i.e., DNSGAII-CO and DMOPSO-CO, are proposed by incorporating the above strategy into NSGA-II and multi-objective particle swarm optimization, respectively. The proposed algorithms are compared with three state-of-the-art algorithms by applying to seven benchmark DMOPs. Experimental results reveal that the proposed algorithms significantly outperform the compared algorithms in terms of convergence and distribution on most DMOPs.

  11. Efficient Approximation Algorithms for Weighted $b$-Matching

    SciTech Connect

    Khan, Arif; Pothen, Alex; Mostofa Ali Patwary, Md.; Satish, Nadathur Rajagopalan; Sundaram, Narayanan; Manne, Fredrik; Halappanavar, Mahantesh; Dubey, Pradeep

    2016-01-01

    We describe a half-approximation algorithm, b-Suitor, for computing a b-Matching of maximum weight in a graph with weights on the edges. b-Matching is a generalization of the well-known Matching problem in graphs, where the objective is to choose a subset of M edges in the graph such that at most a specified number b(v) of edges in M are incident on each vertex v. Subject to this restriction we maximize the sum of the weights of the edges in M. We prove that the b-Suitor algorithm computes the same b-Matching as the one obtained by the greedy algorithm for the problem. We implement the algorithm on serial and shared-memory parallel processors, and compare its performance against a collection of approximation algorithms that have been proposed for the Matching problem. Our results show that the b-Suitor algorithm outperforms the Greedy and Locally Dominant edge algorithms by one to two orders of magnitude on a serial processor. The b-Suitor algorithm has a high degree of concurrency, and it scales well up to 240 threads on a shared memory multiprocessor. The b-Suitor algorithm outperforms the Locally Dominant edge algorithm by a factor of fourteen on 16 cores of an Intel Xeon multiprocessor.

  12. Quantifying edge significance on maintaining global connectivity

    PubMed Central

    Qian, Yuhua; Li, Yebin; Zhang, Min; Ma, Guoshuai; Lu, Furong

    2017-01-01

    Global connectivity is a quite important issue for networks. The failures of some key edges may lead to breakdown of the whole system. How to find them will provide a better understanding on system robustness. Based on topological information, we propose an approach named LE (link entropy) to quantify the edge significance on maintaining global connectivity. Then we compare the LE with the other six acknowledged indices on the edge significance: the edge betweenness centrality, degree product, bridgeness, diffusion importance, topological overlap and k-path edge centrality. Experimental results show that the LE approach outperforms in quantifying edge significance on maintaining global connectivity. PMID:28349923

  13. Performance evaluation of nonnegative matrix factorization algorithms to estimate task-related neuronal activities from fMRI data.

    PubMed

    Ding, Xiaoyu; Lee, Jong-Hwan; Lee, Seong-Whan

    2013-04-01

    Nonnegative matrix factorization (NMF) is a blind source separation (BSS) algorithm which is based on the distinct constraint of nonnegativity of the estimated parameters as well as on the measured data. In this study, according to the potential feasibility of NMF for fMRI data, the four most popular NMF algorithms, corresponding to the following two types of (1) least-squares based update [i.e., alternating least-squares NMF (ALSNMF) and projected gradient descent NMF] and (2) multiplicative update (i.e., NMF based on Euclidean distance and NMF based on divergence cost function), were investigated by using them to estimate task-related neuronal activities. These algorithms were applied firstly to individual data from a single subject and, subsequently, to group data sets from multiple subjects. On the single-subject level, although all four algorithms detected task-related activation from simulated data, the performance of multiplicative update NMFs was significantly deteriorated when evaluated using visuomotor task fMRI data, for which they failed in estimating any task-related neuronal activities. In group-level analysis on both simulated data and real fMRI data, ALSNMF outperformed the other three algorithms. The presented findings may suggest that ALSNMF appears to be the most promising option among the tested NMF algorithms to extract task-related neuronal activities from fMRI data.

  14. A hybrid multi-objective particle swarm algorithm for a mixed-model assembly line sequencing problem

    NASA Astrophysics Data System (ADS)

    Rahimi-Vahed, A. R.; Mirghorbani, S. M.; Rabbani, M.

    2007-12-01

    Mixed-model assembly line sequencing is one of the most important strategic problems in the field of production management where diversified customers' demands exist. In this article, three major goals are considered: (i) total utility work, (ii) total production rate variation and (iii) total setup cost. Due to the complexity of the problem, a hybrid multi-objective algorithm based on particle swarm optimization (PSO) and tabu search (TS) is devised to obtain the locally Pareto-optimal frontier where simultaneous minimization of the above-mentioned objectives is desired. In order to validate the performance of the proposed algorithm in terms of solution quality and diversity level, the algorithm is applied to various test problems and its reliability, based on different comparison metrics, is compared with three prominent multi-objective genetic algorithms, PS-NC GA, NSGA-II and SPEA-II. The computational results show that the proposed hybrid algorithm significantly outperforms existing genetic algorithms in large-sized problems.

  15. A Novel Algorithm Combining Finite State Method and Genetic Algorithm for Solving Crude Oil Scheduling Problem

    PubMed Central

    Duan, Qian-Qian; Yang, Gen-Ke; Pan, Chang-Chun

    2014-01-01

    A hybrid optimization algorithm combining finite state method (FSM) and genetic algorithm (GA) is proposed to solve the crude oil scheduling problem. The FSM and GA are combined to take the advantage of each method and compensate deficiencies of individual methods. In the proposed algorithm, the finite state method makes up for the weakness of GA which is poor at local searching ability. The heuristic returned by the FSM can guide the GA algorithm towards good solutions. The idea behind this is that we can generate promising substructure or partial solution by using FSM. Furthermore, the FSM can guarantee that the entire solution space is uniformly covered. Therefore, the combination of the two algorithms has better global performance than the existing GA or FSM which is operated individually. Finally, a real-life crude oil scheduling problem from the literature is used for conducting simulation. The experimental results validate that the proposed method outperforms the state-of-art GA method. PMID:24772031

  16. A novel algorithm combining finite state method and genetic algorithm for solving crude oil scheduling problem.

    PubMed

    Duan, Qian-Qian; Yang, Gen-Ke; Pan, Chang-Chun

    2014-01-01

    A hybrid optimization algorithm combining finite state method (FSM) and genetic algorithm (GA) is proposed to solve the crude oil scheduling problem. The FSM and GA are combined to take the advantage of each method and compensate deficiencies of individual methods. In the proposed algorithm, the finite state method makes up for the weakness of GA which is poor at local searching ability. The heuristic returned by the FSM can guide the GA algorithm towards good solutions. The idea behind this is that we can generate promising substructure or partial solution by using FSM. Furthermore, the FSM can guarantee that the entire solution space is uniformly covered. Therefore, the combination of the two algorithms has better global performance than the existing GA or FSM which is operated individually. Finally, a real-life crude oil scheduling problem from the literature is used for conducting simulation. The experimental results validate that the proposed method outperforms the state-of-art GA method.

  17. Quantum Algorithms

    NASA Technical Reports Server (NTRS)

    Abrams, D.; Williams, C.

    1999-01-01

    This thesis describes several new quantum algorithms. These include a polynomial time algorithm that uses a quantum fast Fourier transform to find eigenvalues and eigenvectors of a Hamiltonian operator, and that can be applied in cases for which all know classical algorithms require exponential time.

  18. A novel color filter array and demosaicking algorithm for hexagonal grids

    NASA Astrophysics Data System (ADS)

    Fröhlich, Alexander; Unterweger, Andreas

    2015-03-01

    We propose a new color filter array for hexagonal sampling grids and a corresponding demosaicking algorithm. By exploiting properties of the human visual system in their design, we show that our proposed color filter array and its demosaicking algorithm are able to outperform the widely used Bayer pattern with state-of-the-art demosaicking algorithms in terms of both, objective and subjective image quality.

  19. Optimizing the Learning Order of Chinese Characters Using a Novel Topological Sort Algorithm

    PubMed Central

    Wang, Jinzhao

    2016-01-01

    We present a novel algorithm for optimizing the order in which Chinese characters are learned, one that incorporates the benefits of learning them in order of usage frequency and in order of their hierarchal structural relationships. We show that our work outperforms previously published orders and algorithms. Our algorithm is applicable to any scheduling task where nodes have intrinsic differences in importance and must be visited in topological order. PMID:27706234

  20. Estimating meme fitness in adaptive memetic algorithms for combinatorial problems.

    PubMed

    Smith, J E

    2012-01-01

    Among the most promising and active research areas in heuristic optimisation is the field of adaptive memetic algorithms (AMAs). These gain much of their reported robustness by adapting the probability with which each of a set of local improvement operators is applied, according to an estimate of their current value to the search process. This paper addresses the issue of how the current value should be estimated. Assuming the estimate occurs over several applications of a meme, we consider whether the extreme or mean improvements should be used, and whether this aggregation should be global, or local to some part of the solution space. To investigate these issues, we use the well-established COMA framework that coevolves the specification of a population of memes (representing different local search algorithms) alongside a population of candidate solutions to the problem at hand. Two very different memetic algorithms are considered: the first using adaptive operator pursuit to adjust the probabilities of applying a fixed set of memes, and a second which applies genetic operators to dynamically adapt and create memes and their functional definitions. For the latter, especially on combinatorial problems, credit assignment mechanisms based on historical records, or on notions of landscape locality, will have limited application, and it is necessary to estimate the value of a meme via some form of sampling. The results on a set of binary encoded combinatorial problems show that both methods are very effective, and that for some problems it is necessary to use thousands of variables in order to tease apart the differences between different reward schemes. However, for both memetic algorithms, a significant pattern emerges that reward based on mean improvement is better than that based on extreme improvement. This contradicts recent findings from adapting the parameters of operators involved in global evolutionary search. The results also show that local reward schemes

  1. CACONET: Ant Colony Optimization (ACO) Based Clustering Algorithm for VANET

    PubMed Central

    Bajwa, Khalid Bashir; Khan, Salabat; Chaudary, Nadeem Majeed; Akram, Adeel

    2016-01-01

    A vehicular ad hoc network (VANET) is a wirelessly connected network of vehicular nodes. A number of techniques, such as message ferrying, data aggregation, and vehicular node clustering aim to improve communication efficiency in VANETs. Cluster heads (CHs), selected in the process of clustering, manage inter-cluster and intra-cluster communication. The lifetime of clusters and number of CHs determines the efficiency of network. In this paper a Clustering algorithm based on Ant Colony Optimization (ACO) for VANETs (CACONET) is proposed. CACONET forms optimized clusters for robust communication. CACONET is compared empirically with state-of-the-art baseline techniques like Multi-Objective Particle Swarm Optimization (MOPSO) and Comprehensive Learning Particle Swarm Optimization (CLPSO). Experiments varying the grid size of the network, the transmission range of nodes, and number of nodes in the network were performed to evaluate the comparative effectiveness of these algorithms. For optimized clustering, the parameters considered are the transmission range, direction and speed of the nodes. The results indicate that CACONET significantly outperforms MOPSO and CLPSO. PMID:27149517

  2. Enhanced Landweber algorithm via Bregman iterations for bioluminescence tomography

    NASA Astrophysics Data System (ADS)

    Xia, Yi; Zhang, Meng

    2014-09-01

    Bioluminescence tomography (BLT) is an important optical molecular imaging modality aimed at visualizing physiological and pathological processes at cellular and molecular levels. While the forward process of light propagation is described by the diffusion approximation to radiative transfer equation, BLT is the inverse problem to reconstruct the 3D localization and quantification of internal bioluminescent sources distribution. Due to the inherent ill-posedness of the BLT problem, regularization is generally indispensable to obtain more favorable reconstruction. In particular, total variation (TV) regularization is known to be effective for piecewise-constant source distribution which can permit sharp discontinuities and preserve edges. However, total variation regularization generally suffers from the unsatisfactory staircasing effect. In this work, we introduce the Bregman iterative regularization to alleviate this degeneration and enhance the numerical reconstruction of BLT. Based on the existing Landweber method (LM), we put forward the Bregman-LM-TV algorithm for BLT. Numerical experiments are carried out and preliminary simulation results are reported to evaluate the proposed algorithms. It is found that Bregman-LM-TV can significantly outperform the individual Landweber method for BLT when the source distribution is piecewise-constant.

  3. Contrast Enhancement Algorithm Based on Gap Adjustment for Histogram Equalization

    PubMed Central

    Chiu, Chung-Cheng; Ting, Chih-Chung

    2016-01-01

    Image enhancement methods have been widely used to improve the visual effects of images. Owing to its simplicity and effectiveness histogram equalization (HE) is one of the methods used for enhancing image contrast. However, HE may result in over-enhancement and feature loss problems that lead to unnatural look and loss of details in the processed images. Researchers have proposed various HE-based methods to solve the over-enhancement problem; however, they have largely ignored the feature loss problem. Therefore, a contrast enhancement algorithm based on gap adjustment for histogram equalization (CegaHE) is proposed. It refers to a visual contrast enhancement algorithm based on histogram equalization (VCEA), which generates visually pleasing enhanced images, and improves the enhancement effects of VCEA. CegaHE adjusts the gaps between two gray values based on the adjustment equation, which takes the properties of human visual perception into consideration, to solve the over-enhancement problem. Besides, it also alleviates the feature loss problem and further enhances the textures in the dark regions of the images to improve the quality of the processed images for human visual perception. Experimental results demonstrate that CegaHE is a reliable method for contrast enhancement and that it significantly outperforms VCEA and other methods. PMID:27338412

  4. CACONET: Ant Colony Optimization (ACO) Based Clustering Algorithm for VANET.

    PubMed

    Aadil, Farhan; Bajwa, Khalid Bashir; Khan, Salabat; Chaudary, Nadeem Majeed; Akram, Adeel

    2016-01-01

    A vehicular ad hoc network (VANET) is a wirelessly connected network of vehicular nodes. A number of techniques, such as message ferrying, data aggregation, and vehicular node clustering aim to improve communication efficiency in VANETs. Cluster heads (CHs), selected in the process of clustering, manage inter-cluster and intra-cluster communication. The lifetime of clusters and number of CHs determines the efficiency of network. In this paper a Clustering algorithm based on Ant Colony Optimization (ACO) for VANETs (CACONET) is proposed. CACONET forms optimized clusters for robust communication. CACONET is compared empirically with state-of-the-art baseline techniques like Multi-Objective Particle Swarm Optimization (MOPSO) and Comprehensive Learning Particle Swarm Optimization (CLPSO). Experiments varying the grid size of the network, the transmission range of nodes, and number of nodes in the network were performed to evaluate the comparative effectiveness of these algorithms. For optimized clustering, the parameters considered are the transmission range, direction and speed of the nodes. The results indicate that CACONET significantly outperforms MOPSO and CLPSO.

  5. Sensitivity Analysis of the Scattering-Based SARBM3D Despeckling Algorithm

    PubMed Central

    Di Simone, Alessio

    2016-01-01

    Synthetic Aperture Radar (SAR) imagery greatly suffers from multiplicative speckle noise, typical of coherent image acquisition sensors, such as SAR systems. Therefore, a proper and accurate despeckling preprocessing step is almost mandatory to aid the interpretation and processing of SAR data by human users and computer algorithms, respectively. Very recently, a scattering-oriented version of the popular SAR Block-Matching 3D (SARBM3D) despeckling filter, named Scattering-Based (SB)-SARBM3D, was proposed. The new filter is based on the a priori knowledge of the local topography of the scene. In this paper, an experimental sensitivity analysis of the above-mentioned despeckling algorithm is carried out, and the main results are shown and discussed. In particular, the role of both electromagnetic and geometrical parameters of the surface and the impact of its scattering behavior are investigated. Furthermore, a comprehensive sensitivity analysis of the SB-SARBM3D filter against the Digital Elevation Model (DEM) resolution and the SAR image-DEM coregistration step is also provided. The sensitivity analysis shows a significant robustness of the algorithm against most of the surface parameters, while the DEM resolution plays a key role in the despeckling process. Furthermore, the SB-SARBM3D algorithm outperforms the original SARBM3D in the presence of the most realistic scattering behaviors of the surface. An actual scenario is also presented to assess the DEM role in real-life conditions. PMID:27347971

  6. Sensitivity Analysis of the Scattering-Based SARBM3D Despeckling Algorithm.

    PubMed

    Di Simone, Alessio

    2016-06-25

    Synthetic Aperture Radar (SAR) imagery greatly suffers from multiplicative speckle noise, typical of coherent image acquisition sensors, such as SAR systems. Therefore, a proper and accurate despeckling preprocessing step is almost mandatory to aid the interpretation and processing of SAR data by human users and computer algorithms, respectively. Very recently, a scattering-oriented version of the popular SAR Block-Matching 3D (SARBM3D) despeckling filter, named Scattering-Based (SB)-SARBM3D, was proposed. The new filter is based on the a priori knowledge of the local topography of the scene. In this paper, an experimental sensitivity analysis of the above-mentioned despeckling algorithm is carried out, and the main results are shown and discussed. In particular, the role of both electromagnetic and geometrical parameters of the surface and the impact of its scattering behavior are investigated. Furthermore, a comprehensive sensitivity analysis of the SB-SARBM3D filter against the Digital Elevation Model (DEM) resolution and the SAR image-DEM coregistration step is also provided. The sensitivity analysis shows a significant robustness of the algorithm against most of the surface parameters, while the DEM resolution plays a key role in the despeckling process. Furthermore, the SB-SARBM3D algorithm outperforms the original SARBM3D in the presence of the most realistic scattering behaviors of the surface. An actual scenario is also presented to assess the DEM role in real-life conditions.

  7. A novel neural-inspired learning algorithm with application to clinical risk prediction.

    PubMed

    Tay, Darwin; Poh, Chueh Loo; Kitney, Richard I

    2015-04-01

    Clinical risk prediction - the estimation of the likelihood an individual is at risk of a disease - is a coveted and exigent clinical task, and a cornerstone to the recommendation of life saving management strategies. This is especially important for individuals at risk of cardiovascular disease (CVD) given the fact that it is the leading causes of death in many developed counties. To this end, we introduce a novel learning algorithm - a key factor that influences the performance of machine learning-based prediction models - and utilities it to develop CVD risk prediction tool. This novel neural-inspired algorithm, called the Artificial Neural Cell System for classification (ANCSc), is inspired by mechanisms that develop the brain and empowering it with capabilities such as information processing/storage and recall, decision making and initiating actions on external environment. Specifically, we exploit on 3 natural neural mechanisms responsible for developing and enriching the brain - namely neurogenesis, neuroplasticity via nurturing and apoptosis - when implementing ANCSc algorithm. Benchmark testing was conducted using the Honolulu Heart Program (HHP) dataset and results are juxtaposed with 2 other algorithms - i.e. Support Vector Machine (SVM) and Evolutionary Data-Conscious Artificial Immune Recognition System (EDC-AIRS). Empirical experiments indicate that ANCSc algorithm (statistically) outperforms both SVM and EDC-AIRS algorithms. Key clinical markers identified by ANCSc algorithm include risk factors related to diet/lifestyle, pulmonary function, personal/family/medical history, blood data, blood pressure, and electrocardiography. These clinical markers, in general, are also found to be clinically significant - providing a promising avenue for identifying potential cardiovascular risk factors to be evaluated in clinical trials.

  8. Automatic design of decision-tree algorithms with evolutionary algorithms.

    PubMed

    Barros, Rodrigo C; Basgalupp, Márcio P; de Carvalho, André C P L F; Freitas, Alex A

    2013-01-01

    This study reports the empirical analysis of a hyper-heuristic evolutionary algorithm that is capable of automatically designing top-down decision-tree induction algorithms. Top-down decision-tree algorithms are of great importance, considering their ability to provide an intuitive and accurate knowledge representation for classification problems. The automatic design of these algorithms seems timely, given the large literature accumulated over more than 40 years of research in the manual design of decision-tree induction algorithms. The proposed hyper-heuristic evolutionary algorithm, HEAD-DT, is extensively tested using 20 public UCI datasets and 10 microarray gene expression datasets. The algorithms automatically designed by HEAD-DT are compared with traditional decision-tree induction algorithms, such as C4.5 and CART. Experimental results show that HEAD-DT is capable of generating algorithms which are significantly more accurate than C4.5 and CART.

  9. An efficient cuckoo search algorithm for numerical function optimization

    NASA Astrophysics Data System (ADS)

    Ong, Pauline; Zainuddin, Zarita

    2013-04-01

    Cuckoo search algorithm which reproduces the breeding strategy of the best known brood parasitic bird, the cuckoos has demonstrated its superiority in obtaining the global solution for numerical optimization problems. However, the involvement of fixed step approach in its exploration and exploitation behavior might slow down the search process considerably. In this regards, an improved cuckoo search algorithm with adaptive step size adjustment is introduced and its feasibility on a variety of benchmarks is validated. The obtained results show that the proposed scheme outperforms the standard cuckoo search algorithm in terms of convergence characteristic while preserving the fascinating features of the original method.

  10. Parallel processors and nonlinear structural dynamics algorithms and software

    NASA Technical Reports Server (NTRS)

    Belytschko, Ted; Gilbertsen, Noreen D.; Neal, Mark O.; Plaskacz, Edward J.

    1989-01-01

    The adaptation of a finite element program with explicit time integration to a massively parallel SIMD (single instruction multiple data) computer, the CONNECTION Machine is described. The adaptation required the development of a new algorithm, called the exchange algorithm, in which all nodal variables are allocated to the element with an exchange of nodal forces at each time step. The architectural and C* programming language features of the CONNECTION Machine are also summarized. Various alternate data structures and associated algorithms for nonlinear finite element analysis are discussed and compared. Results are presented which demonstrate that the CONNECTION Machine is capable of outperforming the CRAY XMP/14.

  11. Efficient sequential and parallel algorithms for record linkage

    PubMed Central

    Mamun, Abdullah-Al; Mi, Tian; Aseltine, Robert; Rajasekaran, Sanguthevar

    2014-01-01

    Background and objective Integrating data from multiple sources is a crucial and challenging problem. Even though there exist numerous algorithms for record linkage or deduplication, they suffer from either large time needs or restrictions on the number of datasets that they can integrate. In this paper we report efficient sequential and parallel algorithms for record linkage which handle any number of datasets and outperform previous algorithms. Methods Our algorithms employ hierarchical clustering algorithms as the basis. A key idea that we use is radix sorting on certain attributes to eliminate identical records before any further processing. Another novel idea is to form a graph that links similar records and find the connected components. Results Our sequential and parallel algorithms have been tested on a real dataset of 1 083 878 records and synthetic datasets ranging in size from 50 000 to 9 000 000 records. Our sequential algorithm runs at least two times faster, for any dataset, than the previous best-known algorithm, the two-phase algorithm using faster computation of the edit distance (TPA (FCED)). The speedups obtained by our parallel algorithm are almost linear. For example, we get a speedup of 7.5 with 8 cores (residing in a single node), 14.1 with 16 cores (residing in two nodes), and 26.4 with 32 cores (residing in four nodes). Conclusions We have compared the performance of our sequential algorithm with TPA (FCED) and found that our algorithm outperforms the previous one. The accuracy is the same as that of this previous best-known algorithm. PMID:24154837

  12. Robustness of Tree Extraction Algorithms from LIDAR

    NASA Astrophysics Data System (ADS)

    Dumitru, M.; Strimbu, B. M.

    2015-12-01

    Forest inventory faces a new era as unmanned aerial systems (UAS) increased the precision of measurements, while reduced field effort and price of data acquisition. A large number of algorithms were developed to identify various forest attributes from UAS data. The objective of the present research is to assess the robustness of two types of tree identification algorithms when UAS data are combined with digital elevation models (DEM). The algorithms use as input photogrammetric point cloud, which are subsequent rasterized. The first type of algorithms associate tree crown with an inversed watershed (subsequently referred as watershed based), while the second type is based on simultaneous representation of tree crown as an individual entity, and its relation with neighboring crowns (subsequently referred as simultaneous representation). A DJI equipped with a SONY a5100 was used to acquire images over an area from center Louisiana. The images were processed with Pix4D, and a photogrammetric point cloud with 50 points / m2 was attained. DEM was obtained from a flight executed in 2013, which also supplied a LIDAR point cloud with 30 points/m2. The algorithms were tested on two plantations with different species and crown class complexities: one homogeneous (i.e., a mature loblolly pine plantation), and one heterogeneous (i.e., an unmanaged uneven-aged stand with mixed species pine -hardwoods). Tree identification on photogrammetric point cloud reveled that simultaneous representation algorithm outperforms watershed algorithm, irrespective stand complexity. Watershed algorithm exhibits robustness to parameters, but the results were worse than majority sets of parameters needed by the simultaneous representation algorithm. The simultaneous representation algorithm is a better alternative to watershed algorithm even when parameters are not accurately estimated. Similar results were obtained when the two algorithms were run on the LIDAR point cloud.

  13. Electricity Load Forecasting Using Support Vector Regression with Memetic Algorithms

    PubMed Central

    Hu, Zhongyi; Xiong, Tao

    2013-01-01

    Electricity load forecasting is an important issue that is widely explored and examined in power systems operation literature and commercial transactions in electricity markets literature as well. Among the existing forecasting models, support vector regression (SVR) has gained much attention. Considering the performance of SVR highly depends on its parameters; this study proposed a firefly algorithm (FA) based memetic algorithm (FA-MA) to appropriately determine the parameters of SVR forecasting model. In the proposed FA-MA algorithm, the FA algorithm is applied to explore the solution space, and the pattern search is used to conduct individual learning and thus enhance the exploitation of FA. Experimental results confirm that the proposed FA-MA based SVR model can not only yield more accurate forecasting results than the other four evolutionary algorithms based SVR models and three well-known forecasting models but also outperform the hybrid algorithms in the related existing literature. PMID:24459425

  14. Fast algorithm for relaxation processes in big-data systems

    NASA Astrophysics Data System (ADS)

    Hwang, S.; Lee, D.-S.; Kahng, B.

    2014-10-01

    Relaxation processes driven by a Laplacian matrix can be found in many real-world big-data systems, for example, in search engines on the World Wide Web and the dynamic load-balancing protocols in mesh networks. To numerically implement such processes, a fast-running algorithm for the calculation of the pseudoinverse of the Laplacian matrix is essential. Here we propose an algorithm which computes quickly and efficiently the pseudoinverse of Markov chain generator matrices satisfying the detailed-balance condition, a general class of matrices including the Laplacian. The algorithm utilizes the renormalization of the Gaussian integral. In addition to its applicability to a wide range of problems, the algorithm outperforms other algorithms in its ability to compute within a manageable computing time arbitrary elements of the pseudoinverse of a matrix of size millions by millions. Therefore our algorithm can be used very widely in analyzing the relaxation processes occurring on large-scale networked systems.

  15. Robust face recognition algorithm for identifition of disaster victims

    NASA Astrophysics Data System (ADS)

    Gevaert, Wouter J. R.; de With, Peter H. N.

    2013-02-01

    We present a robust face recognition algorithm for the identification of occluded, injured and mutilated faces with a limited training set per person. In such cases, the conventional face recognition methods fall short due to specific aspects in the classification. The proposed algorithm involves recursive Principle Component Analysis for reconstruction of afiected facial parts, followed by a feature extractor based on Gabor wavelets and uniform multi-scale Local Binary Patterns. As a classifier, a Radial Basis Neural Network is employed. In terms of robustness to facial abnormalities, tests show that the proposed algorithm outperforms conventional face recognition algorithms like, the Eigenfaces approach, Local Binary Patterns and the Gabor magnitude method. To mimic real-life conditions in which the algorithm would have to operate, specific databases have been constructed and merged with partial existing databases and jointly compiled. Experiments on these particular databases show that the proposed algorithm achieves recognition rates beyond 95%.

  16. Variable neighbourhood simulated annealing algorithm for capacitated vehicle routing problems

    NASA Astrophysics Data System (ADS)

    Xiao, Yiyong; Zhao, Qiuhong; Kaku, Ikou; Mladenovic, Nenad

    2014-04-01

    This article presents the variable neighbourhood simulated annealing (VNSA) algorithm, a variant of the variable neighbourhood search (VNS) combined with simulated annealing (SA), for efficiently solving capacitated vehicle routing problems (CVRPs). In the new algorithm, the deterministic 'Move or not' criterion of the original VNS algorithm regarding the incumbent replacement is replaced by an SA probability, and the neighbourhood shifting of the original VNS (from near to far by k← k+1) is replaced by a neighbourhood shaking procedure following a specified rule. The geographical neighbourhood structure is introduced in constructing the neighbourhood structures for the CVRP of the string model. The proposed algorithm is tested against 39 well-known benchmark CVRP instances of different scales (small/middle, large, very large). The results show that the VNSA algorithm outperforms most existing algorithms in terms of computational effectiveness and efficiency, showing good performance in solving large and very large CVRPs.

  17. ParAlign: a parallel sequence alignment algorithm for rapid and sensitive database searches.

    PubMed

    Rognes, T

    2001-04-01

    There is a need for faster and more sensitive algorithms for sequence similarity searching in view of the rapidly increasing amounts of genomic sequence data available. Parallel processing capabilities in the form of the single instruction, multiple data (SIMD) technology are now available in common microprocessors and enable a single microprocessor to perform many operations in parallel. The ParAlign algorithm has been specifically designed to take advantage of this technology. The new algorithm initially exploits parallelism to perform a very rapid computation of the exact optimal ungapped alignment score for all diagonals in the alignment matrix. Then, a novel heuristic is employed to compute an approximate score of a gapped alignment by combining the scores of several diagonals. This approximate score is used to select the most interesting database sequences for a subsequent Smith-Waterman alignment, which is also parallelised. The resulting method represents a substantial improvement compared to existing heuristics. The sensitivity and specificity of ParAlign was found to be as good as Smith-Waterman implementations when the same method for computing the statistical significance of the matches was used. In terms of speed, only the significantly less sensitive NCBI BLAST 2 program was found to outperform the new approach. Online searches are available at http://dna.uio.no/search/

  18. Improved hybrid optimization algorithm for 3D protein structure prediction.

    PubMed

    Zhou, Changjun; Hou, Caixia; Wei, Xiaopeng; Zhang, Qiang

    2014-07-01

    A new improved hybrid optimization algorithm - PGATS algorithm, which is based on toy off-lattice model, is presented for dealing with three-dimensional protein structure prediction problems. The algorithm combines the particle swarm optimization (PSO), genetic algorithm (GA), and tabu search (TS) algorithms. Otherwise, we also take some different improved strategies. The factor of stochastic disturbance is joined in the particle swarm optimization to improve the search ability; the operations of crossover and mutation that are in the genetic algorithm are changed to a kind of random liner method; at last tabu search algorithm is improved by appending a mutation operator. Through the combination of a variety of strategies and algorithms, the protein structure prediction (PSP) in a 3D off-lattice model is achieved. The PSP problem is an NP-hard problem, but the problem can be attributed to a global optimization problem of multi-extremum and multi-parameters. This is the theoretical principle of the hybrid optimization algorithm that is proposed in this paper. The algorithm combines local search and global search, which overcomes the shortcoming of a single algorithm, giving full play to the advantage of each algorithm. In the current universal standard sequences, Fibonacci sequences and real protein sequences are certified. Experiments show that the proposed new method outperforms single algorithms on the accuracy of calculating the protein sequence energy value, which is proved to be an effective way to predict the structure of proteins.

  19. Hybrid Pareto artificial bee colony algorithm for multi-objective single machine group scheduling problem with sequence-dependent setup times and learning effects.

    PubMed

    Yue, Lei; Guan, Zailin; Saif, Ullah; Zhang, Fei; Wang, Hao

    2016-01-01

    Group scheduling is significant for efficient and cost effective production system. However, there exist setup times between the groups, which require to decrease it by sequencing groups in an efficient way. Current research is focused on a sequence dependent group scheduling problem with an aim to minimize the makespan in addition to minimize the total weighted tardiness simultaneously. In most of the production scheduling problems, the processing time of jobs is assumed as fixed. However, the actual processing time of jobs may be reduced due to "learning effect". The integration of sequence dependent group scheduling problem with learning effects has been rarely considered in literature. Therefore, current research considers a single machine group scheduling problem with sequence dependent setup times and learning effects simultaneously. A novel hybrid Pareto artificial bee colony algorithm (HPABC) with some steps of genetic algorithm is proposed for current problem to get Pareto solutions. Furthermore, five different sizes of test problems (small, small medium, medium, large medium, large) are tested using proposed HPABC. Taguchi method is used to tune the effective parameters of the proposed HPABC for each problem category. The performance of HPABC is compared with three famous multi objective optimization algorithms, improved strength Pareto evolutionary algorithm (SPEA2), non-dominated sorting genetic algorithm II (NSGAII) and particle swarm optimization algorithm (PSO). Results indicate that HPABC outperforms SPEA2, NSGAII and PSO and gives better Pareto optimal solutions in terms of diversity and quality for almost all the instances of the different sizes of problems.

  20. Brief Cognitive-Behavioral Depression Prevention Program for High-Risk Adolescents Outperforms Two Alternative Interventions: A Randomized Efficacy Trial

    ERIC Educational Resources Information Center

    Stice, Eric; Rohde, Paul; Seeley, John R.; Gau, Jeff M.

    2008-01-01

    In this depression prevention trial, 341 high-risk adolescents (mean age = 15.6 years, SD = 1.2) with elevated depressive symptoms were randomized to a brief group cognitive-behavioral (CB) intervention, group supportive-expressive intervention, bibliotherapy, or assessment-only control condition. CB participants showed significantly greater…

  1. Models of performance of evolutionary program induction algorithms based on indicators of problem difficulty.

    PubMed

    Graff, Mario; Poli, Riccardo; Flores, Juan J

    2013-01-01

    Modeling the behavior of algorithms is the realm of evolutionary algorithm theory. From a practitioner's point of view, theory must provide some guidelines regarding which algorithm/parameters to use in order to solve a particular problem. Unfortunately, most theoretical models of evolutionary algorithms are difficult to apply to realistic situations. However, in recent work (Graff and Poli, 2008, 2010), where we developed a method to practically estimate the performance of evolutionary program-induction algorithms (EPAs), we started addressing this issue. The method was quite general; however, it suffered from some limitations: it required the identification of a set of reference problems, it required hand picking a distance measure in each particular domain, and the resulting models were opaque, typically being linear combinations of 100 features or more. In this paper, we propose a significant improvement of this technique that overcomes the three limitations of our previous method. We achieve this through the use of a novel set of features for assessing problem difficulty for EPAs which are very general, essentially based on the notion of finite difference. To show the capabilities or our technique and to compare it with our previous performance models, we create models for the same two important classes of problems-symbolic regression on rational functions and Boolean function induction-used in our previous work. We model a variety of EPAs. The comparison showed that for the majority of the algorithms and problem classes, the new method produced much simpler and more accurate models than before. To further illustrate the practicality of the technique and its generality (beyond EPAs), we have also used it to predict the performance of both autoregressive models and EPAs on the problem of wind speed forecasting, obtaining simpler and more accurate models that outperform in all cases our previous performance models.

  2. Magnetic resonance imaging - ultrasound fusion targeted biopsy outperforms standard approaches in detecting prostate cancer: A meta-analysis

    PubMed Central

    Jiang, Xuping; Zhang, Jiayi; Tang, Jingyuan; Xu, Zhen; Zhang, Wei; Zhang, Qing; Guo, Hongqian; Zhou, Weimin

    2016-01-01

    The aim of the present study was to determine whether magnetic resonance imaging - ultrasound (MRI-US) fusion prostate biopsy is superior to systematic biopsy for making a definitive diagnosis of prostate cancer. The two strategies were also compared regarding their ability to detect clinically significant and insignificant prostate cancer. A literature search was conducted through the PubMed, EMBASE and China National Knowledge Infrastructure databases using appropriate search terms. A total of 3,415 cases from 21 studies were included in the present meta-analysis. Data were expressed as relative risk (RR) and 95% confidence interval. The results revealed that MRI-US fusion biopsy achieved a higher rate of overall prostate cancer detection compared with systematic biopsy (RR=1.09; P=0.047). Moreover, MRI-US fusion biopsy detected more clinically significant cancers compared with systematic biopsy (RR=1.22; P<0.01). It is therefore recommended that multi-parametric MRI-US is performed in men suspected of having prostate cancer to optimize the detection of clinically significant disease, while reducing the burden of biopsies. PMID:27446568

  3. Scheduling algorithms

    NASA Astrophysics Data System (ADS)

    Wolfe, William J.; Wood, David; Sorensen, Stephen E.

    1996-12-01

    This paper discusses automated scheduling as it applies to complex domains such as factories, transportation, and communications systems. The window-constrained-packing problem is introduced as an ideal model of the scheduling trade offs. Specific algorithms are compared in terms of simplicity, speed, and accuracy. In particular, dispatch, look-ahead, and genetic algorithms are statistically compared on randomly generated job sets. The conclusion is that dispatch methods are fast and fairly accurate; while modern algorithms, such as genetic and simulate annealing, have excessive run times, and are too complex to be practical.

  4. Haplotyping algorithms

    SciTech Connect

    Sobel, E.; Lange, K.; O`Connell, J.R.

    1996-12-31

    Haplotyping is the logical process of inferring gene flow in a pedigree based on phenotyping results at a small number of genetic loci. This paper formalizes the haplotyping problem and suggests four algorithms for haplotype reconstruction. These algorithms range from exhaustive enumeration of all haplotype vectors to combinatorial optimization by simulated annealing. Application of the algorithms to published genetic analyses shows that manual haplotyping is often erroneous. Haplotyping is employed in screening pedigrees for phenotyping errors and in positional cloning of disease genes from conserved haplotypes in population isolates. 26 refs., 6 figs., 3 tabs.

  5. Human ESC-Derived MSCs Outperform Bone Marrow MSCs in the Treatment of an EAE Model of Multiple Sclerosis

    PubMed Central

    Wang, Xiaofang; Kimbrel, Erin A.; Ijichi, Kumiko; Paul, Debayon; Lazorchak, Adam S.; Chu, Jianlin; Kouris, Nicholas A.; Yavanian, Gregory J.; Lu, Shi-Jiang; Pachter, Joel S.; Crocker, Stephen J.; Lanza, Robert; Xu, Ren-He

    2014-01-01

    Summary Current therapies for multiple sclerosis (MS) are largely palliative, not curative. Mesenchymal stem cells (MSCs) harbor regenerative and immunosuppressive functions, indicating a potential therapy for MS, yet the variability and low potency of MSCs from adult sources hinder their therapeutic potential. MSCs derived from human embryonic stem cells (hES-MSCs) may be better suited for clinical treatment of MS because of their unlimited and stable supply. Here, we show that hES-MSCs significantly reduce clinical symptoms and prevent neuronal demyelination in a mouse experimental autoimmune encephalitis (EAE) model of MS, and that the EAE disease-modifying effect of hES-MSCs is significantly greater than that of human bone-marrow-derived MSCs (BM-MSCs). Our evidence also suggests that increased IL-6 expression by BM-MSCs contributes to the reduced anti-EAE therapeutic activity of these cells. A distinct ability to extravasate and migrate into inflamed CNS tissues may also be associated with the robust therapeutic effects of hES-MSCs on EAE. PMID:25068126

  6. A modified genetic algorithm with fuzzy roulette wheel selection for job-shop scheduling problems

    NASA Astrophysics Data System (ADS)

    Thammano, Arit; Teekeng, Wannaporn

    2015-05-01

    The job-shop scheduling problem is one of the most difficult production planning problems. Since it is in the NP-hard class, a recent trend in solving the job-shop scheduling problem is shifting towards the use of heuristic and metaheuristic algorithms. This paper proposes a novel metaheuristic algorithm, which is a modification of the genetic algorithm. This proposed algorithm introduces two new concepts to the standard genetic algorithm: (1) fuzzy roulette wheel selection and (2) the mutation operation with tabu list. The proposed algorithm has been evaluated and compared with several state-of-the-art algorithms in the literature. The experimental results on 53 JSSPs show that the proposed algorithm is very effective in solving the combinatorial optimization problems. It outperforms all state-of-the-art algorithms on all benchmark problems in terms of the ability to achieve the optimal solution and the computational time.

  7. Speed and convergence properties of gradient algorithms for optimization of IMRT.

    PubMed

    Zhang, Xiaodong; Liu, Helen; Wang, Xiaochun; Dong, Lei; Wu, Qiuwen; Mohan, Radhe

    2004-05-01

    outperforms other algorithms in terms of speed. The SCG algorithm, which avoids expensive "line minimization," can speed up the standard CG algorithm by at least a factor of 2. For the same initial conditions, all algorithms converge essentially to the same plan. However, we demonstrate that for any of the algorithms studied, starting with previously optimized intensity distributions as the initial guess but for different objective function parameters, the solution frequently gets trapped in local minima. We found that the initial intensity distribution obtained from IMRT optimization utilizing objective function parameters, which favor a specific anatomic structure, would lead to a local minimum corresponding to that structure. Our results indicate that from among the gradient algorithms tested, Newton's method appears to be the fastest by far. Different gradient algorithms have the same convergence properties for dose-volume- and EUD-based objective functions. The hybrid dose calculation strategy is valid and can significantly accelerate the optimization process. The degree of acceleration achieved depends on the type of optimization problem being addressed (e.g., IMRT optimization, intensity modulated beam configuration optimization, or objective function parameter optimization). Under special conditions, gradient algorithms will get trapped in local minima, and reoptimization, starting with the results of previous optimization, will lead to solutions that are generally not significantly different from the local minimum.

  8. A PCR blood test outperforms chromogranin A in carcinoid detection and is unaffected by proton pump inhibitors.

    PubMed

    Modlin, Irvin M; Aslanian, Harry; Bodei, Lisa; Drozdov, Ignat; Kidd, Mark

    2014-12-01

    A critical requirement in neuroendocrine tumor (NET) management is a blood biomarker test that is sensitive, specific and reproducible. We evaluated a PCR-based 51-transcript signature to detect tumors, compared it with chromogranin A (CgA) and examined the confounding effect of proton pump inhibitors (PPIs), which cause falsely elevated CgA levels. The multigene signature was evaluated in two groups. Group 1: 125 prospectively collected NETs: gastroenteropancreatic NETs (n=91, including 42 pancreatic and 40 small intestinal), carcinoids of unknown primary (n=18) and other sites (n=16). Group 2: prospectively collected non-NET patients receiving PPIs (>1 month; dyspepsia, n=19; GERD, n=6; and pancreatitis, n=4) and 50 controls. All samples were analyzed by PCR (marker genes) and ELISA (DAKO-CgA). Sensitivity comparisons included χ(2), non-parametric measurements, and receiver operating characteristic (ROC) curves. Group 1: 123 NETs were PCR-positive (98.4%) compared with 50 (40%) CgA-positive (χ(2)=97.3, P<10(-26)). Significant differences (P<0.001) were noted between pancreas: PCR 95% vs CgA 29.2% (P<10(-9)) and small intestine: 100 vs 58% (P<10(-4)). The multigene test was elevated in all grades (G1-G3), in both local and disseminated disease, and was not normalized by somatostatin analog therapy. It was also elevated in 97% of CgA normal NETs. Group 2: PPI administration increased CgA in 83% and CgA was elevated in 26% of controls. PCR values were not elevated in either group. PCR performance metrics were as follows: sensitivity 98.4%, specificity 100%, positive predictive value 100%, negative predictive value 97.8%, and the ROC-derived area under the curve (AUC) was 0.997. These were significantly better than CgA (all metrics <60%; AUC, 0.54; Z-statistic, 10.44, P<0.0001). A 51-panel multigene blood transcript analysis is significantly more sensitive than plasma CgA for NET detection and is unaffected by acid suppression therapy.

  9. An Energy Aware Adaptive Sampling Algorithm for Energy Harvesting WSN with Energy Hungry Sensors.

    PubMed

    Srbinovski, Bruno; Magno, Michele; Edwards-Murphy, Fiona; Pakrashi, Vikram; Popovici, Emanuel

    2016-03-28

    Wireless sensor nodes have a limited power budget, though they are often expected to be functional in the field once deployed for extended periods of time. Therefore, minimization of energy consumption and energy harvesting technology in Wireless Sensor Networks (WSN) are key tools for maximizing network lifetime, and achieving self-sustainability. This paper proposes an energy aware Adaptive Sampling Algorithm (ASA) for WSN with power hungry sensors and harvesting capabilities, an energy management technique that can be implemented on any WSN platform with enough processing power to execute the proposed algorithm. An existing state-of-the-art ASA developed for wireless sensor networks with power hungry sensors is optimized and enhanced to adapt the sampling frequency according to the available energy of the node. The proposed algorithm is evaluated using two in-field testbeds that are supplied by two different energy harvesting sources (solar and wind). Simulation and comparison between the state-of-the-art ASA and the proposed energy aware ASA (EASA) in terms of energy durability are carried out using in-field measured harvested energy (using both wind and solar sources) and power hungry sensors (ultrasonic wind sensor and gas sensors). The simulation results demonstrate that using ASA in combination with an energy aware function on the nodes can drastically increase the lifetime of a WSN node and enable self-sustainability. In fact, the proposed EASA in conjunction with energy harvesting capability can lead towards perpetual WSN operation and significantly outperform the state-of-the-art ASA.

  10. The delay multiply and sum beamforming algorithm in ultrasound B-mode medical imaging.

    PubMed

    Matrone, Giulia; Savoia, Alessandro Stuart; Caliano, Giosue; Magenes, Giovanni

    2015-04-01

    Most of ultrasound medical imaging systems currently on the market implement standard Delay and Sum (DAS) beamforming to form B-mode images. However, image resolution and contrast achievable with DAS are limited by the aperture size and by the operating frequency. For this reason, different beamformers have been presented in the literature that are mainly based on adaptive algorithms, which allow achieving higher performance at the cost of an increased computational complexity. In this paper, we propose the use of an alternative nonlinear beamforming algorithm for medical ultrasound imaging, which is called Delay Multiply and Sum (DMAS) and that was originally conceived for a RADAR microwave system for breast cancer detection. We modify the DMAS beamformer and test its performance on both simulated and experimentally collected linear-scan data, by comparing the Point Spread Functions, beampatterns, synthetic phantom and in vivo carotid artery images obtained with standard DAS and with the proposed algorithm. Results show that the DMAS beamformer outperforms DAS in both simulated and experimental trials and that the main improvement brought about by this new method is a significantly higher contrast resolution (i.e., narrower main lobe and lower side lobes), which turns out into an increased dynamic range and better quality of B-mode images.

  11. Exploration of new multivariate spectral calibration algorithms.

    SciTech Connect

    Van Benthem, Mark Hilary; Haaland, David Michael; Melgaard, David Kennett; Martin, Laura Elizabeth; Wehlburg, Christine Marie; Pell, Randy J.; Guenard, Robert D.

    2004-03-01

    A variety of multivariate calibration algorithms for quantitative spectral analyses were investigated and compared, and new algorithms were developed in the course of this Laboratory Directed Research and Development project. We were able to demonstrate the ability of the hybrid classical least squares/partial least squares (CLSIPLS) calibration algorithms to maintain calibrations in the presence of spectrometer drift and to transfer calibrations between spectrometers from the same or different manufacturers. These methods were found to be as good or better in prediction ability as the commonly used partial least squares (PLS) method. We also present the theory for an entirely new class of algorithms labeled augmented classical least squares (ACLS) methods. New factor selection methods are developed and described for the ACLS algorithms. These factor selection methods are demonstrated using near-infrared spectra collected from a system of dilute aqueous solutions. The ACLS algorithm is also shown to provide improved ease of use and better prediction ability than PLS when transferring calibrations between near-infrared calibrations from the same manufacturer. Finally, simulations incorporating either ideal or realistic errors in the spectra were used to compare the prediction abilities of the new ACLS algorithm with that of PLS. We found that in the presence of realistic errors with non-uniform spectral error variance across spectral channels or with spectral errors correlated between frequency channels, ACLS methods generally out-performed the more commonly used PLS method. These results demonstrate the need for realistic error structure in simulations when the prediction abilities of various algorithms are compared. The combination of equal or superior prediction ability and the ease of use of the ACLS algorithms make the new ACLS methods the preferred algorithms to use for multivariate spectral calibrations.

  12. MicroPET Outperforms Beta-Microprobes in Determining Neuroreceptor Availability under Pharmacological Restriction for Cold Mass Occupancy

    PubMed Central

    Glorie, Dorien; Servaes, Stijn; Verhaeghe, Jeroen; Wyckhuys, Tine; Wyffels, Leonie; Vanderveken, Olivier; Stroobants, Sigrid; Staelens, Steven

    2017-01-01

    Both non-invasive micro-positron emission tomography (μPET) and in situ beta-microprobes have the ability to determine radiotracer kinetics and neuroreceptor availability in vivo. Beta-microprobes were proposed as a cost-effective alternative to μPET, but literature revealed conflicting results most likely due to methodological differences and inflicted tissue damage. The current study has three main objectives: (i) evaluate the theoretical advantages of beta-microprobes; (ii) perform μPET imaging to assess the impact of (beta-micro)probe implantation on relative tracer delivery (R1) and receptor occupancy (non-displaceable binding potential, BPND) in the rat brain; and (iii) investigate whether beta-microprobe recordings produce robust results when a pharmacological restriction for cold mass dose (tracer dose condition) is imposed. We performed acquisitions (n = 61) in naive animals, dummy probe implanted animals (outer diameter: 0.75 and 1.00 mm) and beta-microprobe implanted animals (outer diameter: 0.75 mm) using two different radiotracers with high affinity for the striatum: [11C]raclopride (n = 29) and [11C]ABP688 (n = 32). In addition, acquisitions were completed with or without an imposed restriction for cold mass occupancy. We estimated BPND and R1 values using the simplified reference tissue method (SRTM). [11C]raclopride dummy μPET BPND (0.75 mm: −13.01 ± 0.94%; 1.00 mm: −13.89 ± 1.20%) and R1 values (0.75 mm: −29.67 ± 4.94%; 1.00 mm: −39.07 ± 3.17%) significantly decreased at the implant side vs. the contralateral intact side. A similar comparison for [11C]ABP688 dummy μPET, demonstrated significantly (p < 0.05) decreased BPND (−19.09 ± 2.45%) and R1 values (−38.12 ± 6.58%) in the striatum with a 1.00 mm implant, but not with a 0.75 mm implant. Particularly in tracer dose conditions, despite lower impact of partial volume effects, beta-microprobes proved unfit to produce representative results due to tissue destruction associated

  13. MicroPET Outperforms Beta-Microprobes in Determining Neuroreceptor Availability under Pharmacological Restriction for Cold Mass Occupancy.

    PubMed

    Glorie, Dorien; Servaes, Stijn; Verhaeghe, Jeroen; Wyckhuys, Tine; Wyffels, Leonie; Vanderveken, Olivier; Stroobants, Sigrid; Staelens, Steven

    2017-01-01

    Both non-invasive micro-positron emission tomography (μPET) and in situ beta-microprobes have the ability to determine radiotracer kinetics and neuroreceptor availability in vivo. Beta-microprobes were proposed as a cost-effective alternative to μPET, but literature revealed conflicting results most likely due to methodological differences and inflicted tissue damage. The current study has three main objectives: (i) evaluate the theoretical advantages of beta-microprobes; (ii) perform μPET imaging to assess the impact of (beta-micro)probe implantation on relative tracer delivery (R1) and receptor occupancy (non-displaceable binding potential, BPND) in the rat brain; and (iii) investigate whether beta-microprobe recordings produce robust results when a pharmacological restriction for cold mass dose (tracer dose condition) is imposed. We performed acquisitions (n = 61) in naive animals, dummy probe implanted animals (outer diameter: 0.75 and 1.00 mm) and beta-microprobe implanted animals (outer diameter: 0.75 mm) using two different radiotracers with high affinity for the striatum: [(11)C]raclopride (n = 29) and [(11)C]ABP688 (n = 32). In addition, acquisitions were completed with or without an imposed restriction for cold mass occupancy. We estimated BPND and R1 values using the simplified reference tissue method (SRTM). [(11)C]raclopride dummy μPET BPND (0.75 mm: -13.01 ± 0.94%; 1.00 mm: -13.89 ± 1.20%) and R1 values (0.75 mm: -29.67 ± 4.94%; 1.00 mm: -39.07 ± 3.17%) significantly decreased at the implant side vs. the contralateral intact side. A similar comparison for [(11)C]ABP688 dummy μPET, demonstrated significantly (p < 0.05) decreased BPND (-19.09 ± 2.45%) and R1 values (-38.12 ± 6.58%) in the striatum with a 1.00 mm implant, but not with a 0.75 mm implant. Particularly in tracer dose conditions, despite lower impact of partial volume effects, beta-microprobes proved unfit to produce representative results due to tissue destruction associated with

  14. Comparative testing of DNA segmentation algorithms using benchmark simulations.

    PubMed

    Elhaik, Eran; Graur, Dan; Josic, Kresimir

    2010-05-01

    Numerous segmentation methods for the detection of compositionally homogeneous domains within genomic sequences have been proposed. Unfortunately, these methods yield inconsistent results. Here, we present a benchmark consisting of two sets of simulated genomic sequences for testing the performances of segmentation algorithms. Sequences in the first set are composed of fixed-sized homogeneous domains, distinct in their between-domain guanine and cytosine (GC) content variability. The sequences in the second set are composed of a mosaic of many short domains and a few long ones, distinguished by sharp GC content boundaries between neighboring domains. We use these sets to test the performance of seven segmentation algorithms in the literature. Our results show that recursive segmentation algorithms based on the Jensen-Shannon divergence outperform all other algorithms. However, even these algorithms perform poorly in certain instances because of the arbitrary choice of a segmentation-stopping criterion.

  15. Fast-convergence superpixel algorithm via an approximate optimization

    NASA Astrophysics Data System (ADS)

    Nakamura, Kensuke; Hong, Byung-Woo

    2016-09-01

    We propose an optimization scheme that achieves fast yet accurate computation of superpixels from an image. Our optimization is designed to improve the efficiency and robustness for the minimization of a composite energy functional in the expectation-minimization (EM) framework where we restrict the update of an estimate to avoid redundant computations. We consider a superpixel energy formulation that consists of L2-norm for the spatial regularity and L1-norm for the data fidelity in the demonstration of the robustness of the proposed algorithm. The quantitative and qualitative evaluations indicate that our superpixel algorithm outperforms SLIC and SEEDS algorithms. It is also demonstrated that our algorithm guarantees the convergence with less computational cost by up to 89% on average compared to the SLIC algorithm while preserving the accuracy. Our optimization scheme can be easily extended to other applications in which the alternating minimization is applicable in the EM framework.

  16. Silver nanoparticles outperform gold nanoparticles in radiosensitizing U251 cells in vitro and in an intracranial mouse model of glioma

    PubMed Central

    Liu, Peidang; Jin, Haizhen; Guo, Zhirui; Ma, Jun; Zhao, Jing; Li, Dongdong; Wu, Hao; Gu, Ning

    2016-01-01

    Radiotherapy performs an important function in the treatment of cancer, but resistance of tumor cells to radiation still remains a serious concern. More research on more effective radiosensitizers is urgently needed to overcome such resistance and thereby improve the treatment outcome. The goal of this study was to evaluate and compare the radiosensitizing efficacies of gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) on glioma at clinically relevant megavoltage energies. Both AuNPs and AgNPs potentiated the in vitro and in vivo antiglioma effects of radiation. AgNPs showed more powerful radiosensitizing ability than AuNPs at the same mass and molar concentrations, leading to a higher rate of apoptotic cell death. Furthermore, the combination of AgNPs with radiation significantly increased the levels of autophagy as compared with AuNPs plus radiation. These findings suggest the potential application of AgNPs as a highly effective nano-radiosensitizer for the treatment of glioma. PMID:27757033

  17. Predicting pupylation sites in prokaryotic proteins using semi-supervised self-training support vector machine algorithm.

    PubMed

    Ju, Zhe; Gu, Hong

    2016-08-15

    As one important post-translational modification of prokaryotic proteins, pupylation plays a key role in regulating various biological processes. The accurate identification of pupylation sites is crucial for understanding the underlying mechanisms of pupylation. Although several computational methods have been developed for the identification of pupylation sites, the prediction accuracy of them is still unsatisfactory. Here, a novel bioinformatics tool named IMP-PUP is proposed to improve the prediction of pupylation sites. IMP-PUP is constructed on the composition of k-spaced amino acid pairs and trained with a modified semi-supervised self-training support vector machine (SVM) algorithm. The proposed algorithm iteratively trains a series of support vector machine classifiers on both annotated and non-annotated pupylated proteins. Computational results show that IMP-PUP achieves the area under receiver operating characteristic curves of 0.91, 0.73, and 0.75 on our training set, Tung's testing set, and our testing set, respectively, which are better than those of the different error costs SVM algorithm and the original self-training SVM algorithm. Independent tests also show that IMP-PUP significantly outperforms three other existing pupylation site predictors: GPS-PUP, iPUP, and pbPUP. Therefore, IMP-PUP can be a useful tool for accurate prediction of pupylation sites. A MATLAB software package for IMP-PUP is available at https://juzhe1120.github.io/.

  18. Prediction Errors in Learning Drug Response from Gene Expression Data – Influence of Labeling, Sample Size, and Machine Learning Algorithm

    PubMed Central

    Bayer, Immanuel; Groth, Philip; Schneckener, Sebastian

    2013-01-01

    Model-based prediction is dependent on many choices ranging from the sample collection and prediction endpoint to the choice of algorithm and its parameters. Here we studied the effects of such choices, exemplified by predicting sensitivity (as IC50) of cancer cell lines towards a variety of compounds. For this, we used three independent sample collections and applied several machine learning algorithms for predicting a variety of endpoints for drug response. We compared all possible models for combinations of sample collections, algorithm, drug, and labeling to an identically generated null model. The predictability of treatment effects varies among compounds, i.e. response could be predicted for some but not for all. The choice of sample collection plays a major role towards lowering the prediction error, as does sample size. However, we found that no algorithm was able to consistently outperform the other and there was no significant difference between regression and two- or three class predictors in this experimental setting. These results indicate that response-modeling projects should direct efforts mainly towards sample collection and data quality, rather than method adjustment. PMID:23894636

  19. Prediction errors in learning drug response from gene expression data - influence of labeling, sample size, and machine learning algorithm.

    PubMed

    Bayer, Immanuel; Groth, Philip; Schneckener, Sebastian

    2013-01-01

    Model-based prediction is dependent on many choices ranging from the sample collection and prediction endpoint to the choice of algorithm and its parameters. Here we studied the effects of such choices, exemplified by predicting sensitivity (as IC50) of cancer cell lines towards a variety of compounds. For this, we used three independent sample collections and applied several machine learning algorithms for predicting a variety of endpoints for drug response. We compared all possible models for combinations of sample collections, algorithm, drug, and labeling to an identically generated null model. The predictability of treatment effects varies among compounds, i.e. response could be predicted for some but not for all. The choice of sample collection plays a major role towards lowering the prediction error, as does sample size. However, we found that no algorithm was able to consistently outperform the other and there was no significant difference between regression and two- or three class predictors in this experimental setting. These results indicate that response-modeling projects should direct efforts mainly towards sample collection and data quality, rather than method adjustment.

  20. A hybrid artificial bee colony algorithm for numerical function optimization

    NASA Astrophysics Data System (ADS)

    Alqattan, Zakaria N.; Abdullah, Rosni

    2015-02-01

    Artificial Bee Colony (ABC) algorithm is one of the swarm intelligence algorithms; it has been introduced by Karaboga in 2005. It is a meta-heuristic optimization search algorithm inspired from the intelligent foraging behavior of the honey bees in nature. Its unique search process made it as one of the most competitive algorithm with some other search algorithms in the area of optimization, such as Genetic algorithm (GA) and Particle Swarm Optimization (PSO). However, the ABC performance of the local search process and the bee movement or the solution improvement equation still has some weaknesses. The ABC is good in avoiding trapping at the local optimum but it spends its time searching around unpromising random selected solutions. Inspired by the PSO, we propose a Hybrid Particle-movement ABC algorithm called HPABC, which adapts the particle movement process to improve the exploration of the original ABC algorithm. Numerical benchmark functions were used in order to experimentally test the HPABC algorithm. The results illustrate that the HPABC algorithm can outperform the ABC algorithm in most of the experiments (75% better in accuracy and over 3 times faster).

  1. The Superior Lambert Algorithm

    NASA Astrophysics Data System (ADS)

    der, G.

    2011-09-01

    Lambert algorithms are used extensively for initial orbit determination, mission planning, space debris correlation, and missile targeting, just to name a few applications. Due to the significance of the Lambert problem in Astrodynamics, Gauss, Battin, Godal, Lancaster, Gooding, Sun and many others (References 1 to 15) have provided numerous formulations leading to various analytic solutions and iterative methods. Most Lambert algorithms and their computer programs can only work within one revolution, break down or converge slowly when the transfer angle is near zero or 180 degrees, and their multi-revolution limitations are either ignored or barely addressed. Despite claims of robustness, many Lambert algorithms fail without notice, and the users seldom have a clue why. The DerAstrodynamics lambert2 algorithm, which is based on the analytic solution formulated by Sun, works for any number of revolutions and converges rapidly at any transfer angle. It provides significant capability enhancements over every other Lambert algorithm in use today. These include improved speed, accuracy, robustness, and multirevolution capabilities as well as implementation simplicity. Additionally, the lambert2 algorithm provides a powerful tool for solving the angles-only problem without artificial singularities (pointed out by Gooding in Reference 16), which involves 3 lines of sight captured by optical sensors, or systems such as the Air Force Space Surveillance System (AFSSS). The analytic solution is derived from the extended Godal’s time equation by Sun, while the iterative method of solution is that of Laguerre, modified for robustness. The Keplerian solution of a Lambert algorithm can be extended to include the non-Keplerian terms of the Vinti algorithm via a simple targeting technique (References 17 to 19). Accurate analytic non-Keplerian trajectories can be predicted for satellites and ballistic missiles, while performing at least 100 times faster in speed than most

  2. The Rotated Speeded-Up Robust Features Algorithm (R-SURF) (CD-ROM)

    DTIC Science & Technology

    Weaknesses in the Fast Hessian detector utilized by the speeded-up robust features ( SURF ) algorithm are examined in this research. We evaluate the SURF ...algorithm to identify possible areas for improvement in the performance. A proposed alternative to the SURF detector is proposed called rotated SURF (R- SURF ...against the regular SURF detector. Performance testing shows that the R- SURF outperforms the regular SURF detector when subject to image blurring

  3. Bayesian regression models outperform partial least squares methods for predicting milk components and technological properties using infrared spectral data.

    PubMed

    Ferragina, A; de los Campos, G; Vazquez, A I; Cecchinato, A; Bittante, G

    2015-11-01

    The aim of this study was to assess the performance of Bayesian models commonly used for genomic selection to predict "difficult-to-predict" dairy traits, such as milk fatty acid (FA) expressed as percentage of total fatty acids, and technological properties, such as fresh cheese yield and protein recovery, using Fourier-transform infrared (FTIR) spectral data. Our main hypothesis was that Bayesian models that can estimate shrinkage and perform variable selection may improve our ability to predict FA traits and technological traits above and beyond what can be achieved using the current calibration models (e.g., partial least squares, PLS). To this end, we assessed a series of Bayesian methods and compared their prediction performance with that of PLS. The comparison between models was done using the same sets of data (i.e., same samples, same variability, same spectral treatment) for each trait. Data consisted of 1,264 individual milk samples collected from Brown Swiss cows for which gas chromatographic FA composition, milk coagulation properties, and cheese-yield traits were available. For each sample, 2 spectra in the infrared region from 5,011 to 925 cm(-1) were available and averaged before data analysis. Three Bayesian models: Bayesian ridge regression (Bayes RR), Bayes A, and Bayes B, and 2 reference models: PLS and modified PLS (MPLS) procedures, were used to calibrate equations for each of the traits. The Bayesian models used were implemented in the R package BGLR (http://cran.r-project.org/web/packages/BGLR/index.html), whereas the PLS and MPLS were those implemented in the WinISI II software (Infrasoft International LLC, State College, PA). Prediction accuracy was estimated for each trait and model using 25 replicates of a training-testing validation procedure. Compared with PLS, which is currently the most widely used calibration method, MPLS and the 3 Bayesian methods showed significantly greater prediction accuracy. Accuracy increased in moving from

  4. Approximation algorithms for the min-power symmetric connectivity problem

    NASA Astrophysics Data System (ADS)

    Plotnikov, Roman; Erzin, Adil; Mladenovic, Nenad

    2016-10-01

    We consider the NP-hard problem of synthesis of optimal spanning communication subgraph in a given arbitrary simple edge-weighted graph. This problem occurs in the wireless networks while minimizing the total transmission power consumptions. We propose several new heuristics based on the variable neighborhood search metaheuristic for the approximation solution of the problem. We have performed a numerical experiment where all proposed algorithms have been executed on the randomly generated test samples. For these instances, on average, our algorithms outperform the previously known heuristics.

  5. Event-chain Monte Carlo algorithms for hard-sphere systems.

    PubMed

    Bernard, Etienne P; Krauth, Werner; Wilson, David B

    2009-11-01

    In this paper we present the event-chain algorithms, which are fast Markov-chain Monte Carlo methods for hard spheres and related systems. In a single move of these rejection-free methods, an arbitrarily long chain of particles is displaced, and long-range coherent motion can be induced. Numerical simulations show that event-chain algorithms clearly outperform the conventional Metropolis method. Irreversible versions of the algorithms, which violate detailed balance, improve the speed of the method even further. We also compare our method with a recent implementations of the molecular-dynamics algorithm.

  6. Three-dimensional study of planar optical antennas made of split-ring architecture outperforming dipole antennas for increased field localization.

    PubMed

    Kilic, Veli Tayfun; Erturk, Vakur B; Demir, Hilmi Volkan

    2012-01-15

    Optical antennas are of fundamental importance for the strongly localizing field beyond the diffraction limit. We report that planar optical antennas made of split-ring architecture are numerically found in three-dimensional simulations to outperform dipole antennas for the enhancement of localized field intensity inside their gap regions. The computational results (finite-difference time-domain) indicate that the resulting field localization, which is of the order of many thousandfold, in the case of the split-ring resonators is at least 2 times stronger than the one in the dipole antennas resonant at the same operating wavelength, while the two antenna types feature the same gap size and tip sharpness.

  7. Boosted Regression Trees Outperforms Support Vector Machines in Predicting (Regional) Yields of Winter Wheat from Single and Cumulated Dekadal Spot-VGT Derived Normalized Difference Vegetation Indices

    NASA Astrophysics Data System (ADS)

    Stas, Michiel; Dong, Qinghan; Heremans, Stien; Zhang, Beier; Van Orshoven, Jos

    2016-08-01

    This paper compares two machine learning techniques to predict regional winter wheat yields. The models, based on Boosted Regression Trees (BRT) and Support Vector Machines (SVM), are constructed of Normalized Difference Vegetation Indices (NDVI) derived from low resolution SPOT VEGETATION satellite imagery. Three types of NDVI-related predictors were used: Single NDVI, Incremental NDVI and Targeted NDVI. BRT and SVM were first used to select features with high relevance for predicting the yield. Although the exact selections differed between the prefectures, certain periods with high influence scores for multiple prefectures could be identified. The same period of high influence stretching from March to June was detected by both machine learning methods. After feature selection, BRT and SVM models were applied to the subset of selected features for actual yield forecasting. Whereas both machine learning methods returned very low prediction errors, BRT seems to slightly but consistently outperform SVM.

  8. Significance-linked connected component analysis for wavelet image coding.

    PubMed

    Chai, B B; Vass, J; Zhuang, X

    1999-01-01

    Recent success in wavelet image coding is mainly attributed to a recognition of the importance of data organization and representation. There have been several very competitive wavelet coders developed, namely, Shapiro's (1993) embedded zerotree wavelets (EZW), Servetto et al.'s (1995) morphological representation of wavelet data (MRWD), and Said and Pearlman's (see IEEE Trans. Circuits Syst. Video Technol., vol.6, p.245-50, 1996) set partitioning in hierarchical trees (SPIHT). We develop a novel wavelet image coder called significance-linked connected component analysis (SLCCA) of wavelet coefficients that extends MRWD by exploiting both within-subband clustering of significant coefficients and cross-subband dependency in significant fields. Extensive computer experiments on both natural and texture images show convincingly that the proposed SLCCA outperforms EZW, MRWD, and SPIHT. For example, for the Barbara image, at 0.25 b/pixel, SLCCA outperforms EZW, MRWD, and SPIHT by 1.41 dB, 0.32 dB, and 0.60 dB in PSNR, respectively. It is also observed that SLCCA works extremely well for images with a large portion of texture. For eight typical 256x256 grayscale texture images compressed at 0.40 b/pixel, SLCCA outperforms SPIHT by 0.16 dB-0.63 dB in PSNR. This performance is achieved without using any optimal bit allocation procedure. Thus both the encoding and decoding procedures are fast.

  9. Lévy flight artificial bee colony algorithm

    NASA Astrophysics Data System (ADS)

    Sharma, Harish; Bansal, Jagdish Chand; Arya, K. V.; Yang, Xin-She

    2016-08-01

    Artificial bee colony (ABC) optimisation algorithm is a relatively simple and recent population-based probabilistic approach for global optimisation. The solution search equation of ABC is significantly influenced by a random quantity which helps in exploration at the cost of exploitation of the search space. In the ABC, there is a high chance to skip the true solution due to its large step sizes. In order to balance between diversity and convergence in the ABC, a Lévy flight inspired search strategy is proposed and integrated with ABC. The proposed strategy is named as Lévy Flight ABC (LFABC) has both the local and global search capability simultaneously and can be achieved by tuning the Lévy flight parameters and thus automatically tuning the step sizes. In the LFABC, new solutions are generated around the best solution and it helps to enhance the exploitation capability of ABC. Furthermore, to improve the exploration capability, the numbers of scout bees are increased. The experiments on 20 test problems of different complexities and five real-world engineering optimisation problems show that the proposed strategy outperforms the basic ABC and recent variants of ABC, namely, Gbest-guided ABC, best-so-far ABC and modified ABC in most of the experiments.

  10. Algorithm development

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.; Lomax, Harvard

    1987-01-01

    The past decade has seen considerable activity in algorithm development for the Navier-Stokes equations. This has resulted in a wide variety of useful new techniques. Some examples for the numerical solution of the Navier-Stokes equations are presented, divided into two parts. One is devoted to the incompressible Navier-Stokes equations, and the other to the compressible form.

  11. Approximation algorithms

    PubMed Central

    Schulz, Andreas S.; Shmoys, David B.; Williamson, David P.

    1997-01-01

    Increasing global competition, rapidly changing markets, and greater consumer awareness have altered the way in which corporations do business. To become more efficient, many industries have sought to model some operational aspects by gigantic optimization problems. It is not atypical to encounter models that capture 106 separate “yes” or “no” decisions to be made. Although one could, in principle, try all 2106 possible solutions to find the optimal one, such a method would be impractically slow. Unfortunately, for most of these models, no algorithms are known that find optimal solutions with reasonable computation times. Typically, industry must rely on solutions of unguaranteed quality that are constructed in an ad hoc manner. Fortunately, for some of these models there are good approximation algorithms: algorithms that produce solutions quickly that are provably close to optimal. Over the past 6 years, there has been a sequence of major breakthroughs in our understanding of the design of approximation algorithms and of limits to obtaining such performance guarantees; this area has been one of the most flourishing areas of discrete mathematics and theoretical computer science. PMID:9370525

  12. Efficient Record Linkage Algorithms Using Complete Linkage Clustering

    PubMed Central

    Mamun, Abdullah-Al; Aseltine, Robert; Rajasekaran, Sanguthevar

    2016-01-01

    Data from different agencies share data of the same individuals. Linking these datasets to identify all the records belonging to the same individuals is a crucial and challenging problem, especially given the large volumes of data. A large number of available algorithms for record linkage are prone to either time inefficiency or low-accuracy in finding matches and non-matches among the records. In this paper we propose efficient as well as reliable sequential and parallel algorithms for the record linkage problem employing hierarchical clustering methods. We employ complete linkage hierarchical clustering algorithms to address this problem. In addition to hierarchical clustering, we also use two other techniques: elimination of duplicate records and blocking. Our algorithms use sorting as a sub-routine to identify identical copies of records. We have tested our algorithms on datasets with millions of synthetic records. Experimental results show that our algorithms achieve nearly 100% accuracy. Parallel implementations achieve almost linear speedups. Time complexities of these algorithms do not exceed those of previous best-known algorithms. Our proposed algorithms outperform previous best-known algorithms in terms of accuracy consuming reasonable run times. PMID:27124604

  13. Efficient Record Linkage Algorithms Using Complete Linkage Clustering.

    PubMed

    Mamun, Abdullah-Al; Aseltine, Robert; Rajasekaran, Sanguthevar

    2016-01-01

    Data from different agencies share data of the same individuals. Linking these datasets to identify all the records belonging to the same individuals is a crucial and challenging problem, especially given the large volumes of data. A large number of available algorithms for record linkage are prone to either time inefficiency or low-accuracy in finding matches and non-matches among the records. In this paper we propose efficient as well as reliable sequential and parallel algorithms for the record linkage problem employing hierarchical clustering methods. We employ complete linkage hierarchical clustering algorithms to address this problem. In addition to hierarchical clustering, we also use two other techniques: elimination of duplicate records and blocking. Our algorithms use sorting as a sub-routine to identify identical copies of records. We have tested our algorithms on datasets with millions of synthetic records. Experimental results show that our algorithms achieve nearly 100% accuracy. Parallel implementations achieve almost linear speedups. Time complexities of these algorithms do not exceed those of previous best-known algorithms. Our proposed algorithms outperform previous best-known algorithms in terms of accuracy consuming reasonable run times.

  14. Genetic-based EM algorithm for learning Gaussian mixture models.

    PubMed

    Pernkopf, Franz; Bouchaffra, Djamel

    2005-08-01

    We propose a genetic-based expectation-maximization (GA-EM) algorithm for learning Gaussian mixture models from multivariate data. This algorithm is capable of selecting the number of components of the model using the minimum description length (MDL) criterion. Our approach benefits from the properties of Genetic algorithms (GA) and the EM algorithm by combination of both into a single procedure. The population-based stochastic search of the GA explores the search space more thoroughly than the EM method. Therefore, our algorithm enables escaping from local optimal solutions since the algorithm becomes less sensitive to its initialization. The GA-EM algorithm is elitist which maintains the monotonic convergence property of the EM algorithm. The experiments on simulated and real data show that the GA-EM outperforms the EM method since: 1) We have obtained a better MDL score while using exactly the same termination condition for both algorithms. 2) Our approach identifies the number of components which were used to generate the underlying data more often than the EM algorithm.

  15. Learning algorithms for human-machine interfaces.

    PubMed

    Danziger, Zachary; Fishbach, Alon; Mussa-Ivaldi, Ferdinando A

    2009-05-01

    The goal of this study is to create and examine machine learning algorithms that adapt in a controlled and cadenced way to foster a harmonious learning environment between the user and the controlled device. To evaluate these algorithms, we have developed a simple experimental framework. Subjects wear an instrumented data glove that records finger motions. The high-dimensional glove signals remotely control the joint angles of a simulated planar two-link arm on a computer screen, which is used to acquire targets. A machine learning algorithm was applied to adaptively change the transformation between finger motion and the simulated robot arm. This algorithm was either LMS gradient descent or the Moore-Penrose (MP) pseudoinverse transformation. Both algorithms modified the glove-to-joint angle map so as to reduce the endpoint errors measured in past performance. The MP group performed worse than the control group (subjects not exposed to any machine learning), while the LMS group outperformed the control subjects. However, the LMS subjects failed to achieve better generalization than the control subjects, and after extensive training converged to the same level of performance as the control subjects. These results highlight the limitations of coadaptive learning using only endpoint error reduction.

  16. A novel iris segmentation algorithm based on small eigenvalue analysis

    NASA Astrophysics Data System (ADS)

    Harish, B. S.; Aruna Kumar, S. V.; Guru, D. S.; Ngo, Minh Ngoc

    2015-12-01

    In this paper, a simple and robust algorithm is proposed for iris segmentation. The proposed method consists of two steps. In first step, iris and pupil is segmented using Robust Spatial Kernel FCM (RSKFCM) algorithm. RSKFCM is based on traditional Fuzzy-c-Means (FCM) algorithm, which incorporates spatial information and uses kernel metric as distance measure. In second step, small eigenvalue transformation is applied to localize iris boundary. The transformation is based on statistical and geometrical properties of the small eigenvalue of the covariance matrix of a set of edge pixels. Extensive experimentations are carried out on standard benchmark iris dataset (viz. CASIA-IrisV4 and UBIRIS.v2). We compared our proposed method with existing iris segmentation methods. Our proposed method has the least time complexity of O(n(i+p)) . The result of the experiments emphasizes that the proposed algorithm outperforms the existing iris segmentation methods.

  17. Linear antenna array optimization using flower pollination algorithm.

    PubMed

    Saxena, Prerna; Kothari, Ashwin

    2016-01-01

    Flower pollination algorithm (FPA) is a new nature-inspired evolutionary algorithm used to solve multi-objective optimization problems. The aim of this paper is to introduce FPA to the electromagnetics and antenna community for the optimization of linear antenna arrays. FPA is applied for the first time to linear array so as to obtain optimized antenna positions in order to achieve an array pattern with minimum side lobe level along with placement of deep nulls in desired directions. Various design examples are presented that illustrate the use of FPA for linear antenna array optimization, and subsequently the results are validated by benchmarking along with results obtained using other state-of-the-art, nature-inspired evolutionary algorithms such as particle swarm optimization, ant colony optimization and cat swarm optimization. The results suggest that in most cases, FPA outperforms the other evolutionary algorithms and at times it yields a similar performance.

  18. Introductory Students, Conceptual Understanding, and Algorithmic Success.

    ERIC Educational Resources Information Center

    Pushkin, David B.

    1998-01-01

    Addresses the distinction between conceptual and algorithmic learning and the clarification of what is meant by a second-tier student. Explores why novice learners in chemistry and physics are able to apply algorithms without significant conceptual understanding. (DDR)

  19. Cuckoo search epistasis: a new method for exploring significant genetic interactions.

    PubMed

    Aflakparast, M; Salimi, H; Gerami, A; Dubé, M-P; Visweswaran, S; Masoudi-Nejad, A

    2014-06-01

    The advent of high-throughput sequencing technology has resulted in the ability to measure millions of single-nucleotide polymorphisms (SNPs) from thousands of individuals. Although these high-dimensional data have paved the way for better understanding of the genetic architecture of common diseases, they have also given rise to challenges in developing computational methods for learning epistatic relationships among genetic markers. We propose a new method, named cuckoo search epistasis (CSE) for identifying significant epistatic interactions in population-based association studies with a case-control design. This method combines a computationally efficient Bayesian scoring function with an evolutionary-based heuristic search algorithm, and can be efficiently applied to high-dimensional genome-wide SNP data. The experimental results from synthetic data sets show that CSE outperforms existing methods including multifactorial dimensionality reduction and Bayesian epistasis association mapping. In addition, on a real genome-wide data set related to Alzheimer's disease, CSE identified SNPs that are consistent with previously reported results, and show the utility of CSE for application to genome-wide data.

  20. DNABIT Compress - Genome compression algorithm.

    PubMed

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-22

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, "DNABIT Compress" for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that "DNABIT Compress" algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases.

  1. Temperature Corrected Bootstrap Algorithm

    NASA Technical Reports Server (NTRS)

    Comiso, Joey C.; Zwally, H. Jay

    1997-01-01

    A temperature corrected Bootstrap Algorithm has been developed using Nimbus-7 Scanning Multichannel Microwave Radiometer data in preparation to the upcoming AMSR instrument aboard ADEOS and EOS-PM. The procedure first calculates the effective surface emissivity using emissivities of ice and water at 6 GHz and a mixing formulation that utilizes ice concentrations derived using the current Bootstrap algorithm but using brightness temperatures from 6 GHz and 37 GHz channels. These effective emissivities are then used to calculate surface ice which in turn are used to convert the 18 GHz and 37 GHz brightness temperatures to emissivities. Ice concentrations are then derived using the same technique as with the Bootstrap algorithm but using emissivities instead of brightness temperatures. The results show significant improvement in the area where ice temperature is expected to vary considerably such as near the continental areas in the Antarctic, where the ice temperature is colder than average, and in marginal ice zones.

  2. Scalable Nearest Neighbor Algorithms for High Dimensional Data.

    PubMed

    Muja, Marius; Lowe, David G

    2014-11-01

    For many computer vision and machine learning problems, large training sets are key for good performance. However, the most computationally expensive part of many computer vision and machine learning algorithms consists of finding nearest neighbor matches to high dimensional vectors that represent the training data. We propose new algorithms for approximate nearest neighbor matching and evaluate and compare them with previous algorithms. For matching high dimensional features, we find two algorithms to be the most efficient: the randomized k-d forest and a new algorithm proposed in this paper, the priority search k-means tree. We also propose a new algorithm for matching binary features by searching multiple hierarchical clustering trees and show it outperforms methods typically used in the literature. We show that the optimal nearest neighbor algorithm and its parameters depend on the data set characteristics and describe an automated configuration procedure for finding the best algorithm to search a particular data set. In order to scale to very large data sets that would otherwise not fit in the memory of a single machine, we propose a distributed nearest neighbor matching framework that can be used with any of the algorithms described in the paper. All this research has been released as an open source library called fast library for approximate nearest neighbors (FLANN), which has been incorporated into OpenCV and is now one of the most popular libraries for nearest neighbor matching.

  3. A new improved artificial bee colony algorithm for ship hull form optimization

    NASA Astrophysics Data System (ADS)

    Huang, Fuxin; Wang, Lijue; Yang, Chi

    2016-04-01

    The artificial bee colony (ABC) algorithm is a relatively new swarm intelligence-based optimization algorithm. Its simplicity of implementation, relatively few parameter settings and promising optimization capability make it widely used in different fields. However, it has problems of slow convergence due to its solution search equation. Here, a new solution search equation based on a combination of the elite solution pool and the block perturbation scheme is proposed to improve the performance of the algorithm. In addition, two different solution search equations are used by employed bees and onlooker bees to balance the exploration and exploitation of the algorithm. The developed algorithm is validated by a set of well-known numerical benchmark functions. It is then applied to optimize two ship hull forms with minimum resistance. The tested results show that the proposed new improved ABC algorithm can outperform the ABC algorithm in most of the tested problems.

  4. Efficient convex-elastic net algorithm to solve the Euclidean traveling salesman problem.

    PubMed

    Al-Mulhem, M; Al-Maghrabi, T

    1998-01-01

    This paper describes a hybrid algorithm that combines an adaptive-type neural network algorithm and a nondeterministic iterative algorithm to solve the Euclidean traveling salesman problem (E-TSP). It begins with a brief introduction to the TSP and the E-TSP. Then, it presents the proposed algorithm with its two major components: the convex-elastic net (CEN) algorithm and the nondeterministic iterative improvement (NII) algorithm. These two algorithms are combined into the efficient convex-elastic net (ECEN) algorithm. The CEN algorithm integrates the convex-hull property and elastic net algorithm to generate an initial tour for the E-TSP. The NII algorithm uses two rearrangement operators to improve the initial tour given by the CEN algorithm. The paper presents simulation results for two instances of E-TSP: randomly generated tours and tours for well-known problems in the literature. Experimental results are given to show that the proposed algorithm ran find the nearly optimal solution for the E-TSP that outperform many similar algorithms reported in the literature. The paper concludes with the advantages of the new algorithm and possible extensions.

  5. One algorithm to rule them all? An evaluation and discussion of ten eye movement event-detection algorithms.

    PubMed

    Andersson, Richard; Larsson, Linnea; Holmqvist, Kenneth; Stridh, Martin; Nyström, Marcus

    2016-05-18

    Almost all eye-movement researchers use algorithms to parse raw data and detect distinct types of eye movement events, such as fixations, saccades, and pursuit, and then base their results on these. Surprisingly, these algorithms are rarely evaluated. We evaluated the classifications of ten eye-movement event detection algorithms, on data from an SMI HiSpeed 1250 system, and compared them to manual ratings of two human experts. The evaluation focused on fixations, saccades, and post-saccadic oscillations. The evaluation used both event duration parameters, and sample-by-sample comparisons to rank the algorithms. The resulting event durations varied substantially as a function of what algorithm was used. This evaluation differed from previous evaluations by considering a relatively large set of algorithms, multiple events, and data from both static and dynamic stimuli. The main conclusion is that current detectors of only fixations and saccades work reasonably well for static stimuli, but barely better than chance for dynamic stimuli. Differing results across evaluation methods make it difficult to select one winner for fixation detection. For saccade detection, however, the algorithm by Larsson, Nyström and Stridh (IEEE Transaction on Biomedical Engineering, 60(9):2484-2493,2013) outperforms all algorithms in data from both static and dynamic stimuli. The data also show how improperly selected algorithms applied to dynamic data misestimate fixation and saccade properties.

  6. Online estimation of lower and upper bounds for heart sound boundaries in chest sound using Convex-hull algorithm.

    PubMed

    Çağlar, F; Ozbek, I Y

    2012-01-01

    Heart sound localization in chest sound is an essential part for many heart sound cancellation algorithms. The main difficulty for heart sound localization methods is the precise determination of the onset and offset boundaries of the heart sound segment. This paper presents a novel method to estimate lower and upper bounds for the onset and offset of the heart sound segment, which can be used as anchor points for more precise estimation. For this purpose, first chest sound is divided into frames and then entropy and smoothed entropy features of these frames are extracted, and used in the Convex-hull algorithm to estimate the upper and lower bounds for heart sound boundaries. The Convex-hull algorithm constructs a special type of envelope function for entropy features and if the maximal difference between the envelope function and the entropy is larger than a certain threshold, this point is considered as a heart sound bound. The results of the proposed method are compared with a baseline method which is a modified version of a well-known heart sound localization method. The results show that the proposed method outperforms the baseline method in terms of accuracy and detection error rate. Also, the experimental results show that smoothing entropy features significantly improves the performance of both baseline and proposed methods.

  7. Tumor stratification by a novel graph-regularized bi-clique finding algorithm.

    PubMed

    Ahmadi Adl, Amin; Qian, Xiaoning

    2015-08-01

    Due to involved disease mechanisms, many complex diseases such as cancer, demonstrate significant heterogeneity with varying behaviors, including different survival time, treatment responses, and recurrence rates. The aim of tumor stratification is to identify disease subtypes, which is an important first step towards precision medicine. Recent advances in profiling a large number of molecular variables such as in The Cancer Genome Atlas (TCGA), have enabled researchers to implement computational methods, including traditional clustering and bi-clustering algorithms, to systematically analyze high-throughput molecular measurements to identify tumor subtypes as well as their corresponding associated biomarkers. In this study we discuss critical issues and challenges in existing computational approaches for tumor stratification. We show that the problem can be formulated as finding densely connected sub-graphs (bi-cliques) in a bipartite graph representation of genomic data. We propose a novel algorithm that takes advantage of prior biology knowledge through a gene-gene interaction network to find such sub-graphs, which helps simultaneously identify both tumor subtypes and their corresponding genetic markers. Our experimental results show that our proposed method outperforms current state-of-the-art methods for tumor stratification.

  8. A Comparative Study of Probability Collectives Based Multi-agent Systems and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Huang, Chien-Feng; Wolpert, David H.; Bieniawski, Stefan; Strauss, Charles E. M.

    2005-01-01

    We compare Genetic Algorithms (GA's) with Probability Collectives (PC), a new framework for distributed optimization and control. In contrast to GA's, PC-based methods do not update populations of solutions. Instead they update an explicitly parameterized probability distribution p over the space of solutions. That updating of p arises as the optimization of a functional of p. The functional is chosen so that any p that optimizes it should be p peaked about good solutions. The PC approach works in both continuous and discrete problems. It does not suffer from the resolution limitation of the finite bit length encoding of parameters into GA alleles. It also has deep connections with both game theory and statistical physics. We review the PC approach using its motivation as the information theoretic formulation of bounded rationality for multi-agent systems. It is then compared with GA's on a diverse set of problems. To handle high dimensional surfaces, in the PC method investigated here p is restricted to a product distribution. Each distribution in that product is controlled by a separate agent. The test functions were selected for their difficulty using either traditional gradient descent or genetic algorithms. On those functions the PC-based approach significantly outperforms traditional GA's in both rate of descent, trapping in false minima, and long term optimization.

  9. Ligand Efficiency Outperforms pIC50 on Both 2D MLR and 3D CoMFA Models: A Case Study on AR Antagonists.

    PubMed

    Li, Jiazhong; Bai, Fang; Liu, Huanxiang; Gramatica, Paola

    2015-12-01

    The concept of ligand efficiency is defined as biological activity in each molecular size and is widely accepted throughout the drug design community. Among different LE indices, surface efficiency index (SEI) was reported to be the best one in support vector machine modeling, much better than the generally and traditionally used end-point pIC50. In this study, 2D multiple linear regression and 3D comparative molecular field analysis methods are employed to investigate the structure-activity relationships of a series of androgen receptor antagonists, using pIC50 and SEI as dependent variables to verify the influence of using different kinds of end-points. The obtained results suggest that SEI outperforms pIC50 on both MLR and CoMFA models with higher stability and predictive ability. After analyzing the characteristics of the two dependent variables SEI and pIC50, we deduce that the superiority of SEI maybe lie in that SEI could reflect the relationship between molecular structures and corresponding bioactivities, in nature, better than pIC50. This study indicates that SEI could be a more rational parameter to be optimized in the drug discovery process than pIC50.

  10. A Novel Activated-Charcoal-Doped Multiwalled Carbon Nanotube Hybrid for Quasi-Solid-State Dye-Sensitized Solar Cell Outperforming Pt Electrode.

    PubMed

    Arbab, Alvira Ayoub; Sun, Kyung Chul; Sahito, Iftikhar Ali; Qadir, Muhammad Bilal; Choi, Yun Seon; Jeong, Sung Hoon

    2016-03-23

    Highly conductive mesoporous carbon structures based on multiwalled carbon nanotubes (MWCNTs) and activated charcoal (AC) were synthesized by an enzymatic dispersion method. The synthesized carbon configuration consists of synchronized structures of highly conductive MWCNT and porous activated charcoal morphology. The proposed carbon structure was used as counter electrode (CE) for quasi-solid-state dye-sensitized solar cells (DSSCs). The AC-doped MWCNT hybrid showed much enhanced electrocatalytic activity (ECA) toward polymer gel electrolyte and revealed a charge transfer resistance (RCT) of 0.60 Ω, demonstrating a fast electron transport mechanism. The exceptional electrocatalytic activity and high conductivity of the AC-doped MWCNT hybrid CE are associated with its synchronized features of high surface area and electronic conductivity, which produces higher interfacial reaction with the quasi-solid electrolyte. Morphological studies confirm the forms of amorphous and conductive 3D carbon structure with high density of CNT colloid. The excessive oxygen surface groups and defect-rich structure can entrap an excessive volume of quasi-solid electrolyte and locate multiple sites for iodide/triiodide catalytic reaction. The resultant D719 DSSC composed of this novel hybrid CE fabricated with polymer gel electrolyte demonstrated an efficiency of 10.05% with a high fill factor (83%), outperforming the Pt electrode. Such facile synthesis of CE together with low cost and sustainability supports the proposed DSSCs' structure to stand out as an efficient next-generation photovoltaic device.

  11. Adult Cleaner Wrasse Outperform Capuchin Monkeys, Chimpanzees and Orang-utans in a Complex Foraging Task Derived from Cleaner – Client Reef Fish Cooperation

    PubMed Central

    Proctor, Darby; Essler, Jennifer; Pinto, Ana I.; Wismer, Sharon; Stoinski, Tara; Brosnan, Sarah F.; Bshary, Redouan

    2012-01-01

    The insight that animals' cognitive abilities are linked to their evolutionary history, and hence their ecology, provides the framework for the comparative approach. Despite primates renowned dietary complexity and social cognition, including cooperative abilities, we here demonstrate that cleaner wrasse outperform three primate species, capuchin monkeys, chimpanzees and orang-utans, in a foraging task involving a choice between two actions, both of which yield identical immediate rewards, but only one of which yields an additional delayed reward. The foraging task decisions involve partner choice in cleaners: they must service visiting client reef fish before resident clients to access both; otherwise the former switch to a different cleaner. Wild caught adult, but not juvenile, cleaners learned to solve the task quickly and relearned the task when it was reversed. The majority of primates failed to perform above chance after 100 trials, which is in sharp contrast to previous studies showing that primates easily learn to choose an action that yields immediate double rewards compared to an alternative action. In conclusion, the adult cleaners' ability to choose a superior action with initially neutral consequences is likely due to repeated exposure in nature, which leads to specific learned optimal foraging decision rules. PMID:23185293

  12. Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions

    PubMed Central

    Hengl, Tomislav; Heuvelink, Gerard B. M.; Kempen, Bas; Leenaars, Johan G. B.; Walsh, Markus G.; Shepherd, Keith D.; Sila, Andrew; MacMillan, Robert A.; Mendes de Jesus, Jorge; Tamene, Lulseged; Tondoh, Jérôme E.

    2015-01-01

    80% of arable land in Africa has low soil fertility and suffers from physical soil problems. Additionally, significant amounts of nutrients are lost every year due to unsustainable soil management practices. This is partially the result of insufficient use of soil management knowledge. To help bridge the soil information gap in Africa, the Africa Soil Information Service (AfSIS) project was established in 2008. Over the period 2008–2014, the AfSIS project compiled two point data sets: the Africa Soil Profiles (legacy) database and the AfSIS Sentinel Site database. These data sets contain over 28 thousand sampling locations and represent the most comprehensive soil sample data sets of the African continent to date. Utilizing these point data sets in combination with a large number of covariates, we have generated a series of spatial predictions of soil properties relevant to the agricultural management—organic carbon, pH, sand, silt and clay fractions, bulk density, cation-exchange capacity, total nitrogen, exchangeable acidity, Al content and exchangeable bases (Ca, K, Mg, Na). We specifically investigate differences between two predictive approaches: random forests and linear regression. Results of 5-fold cross-validation demonstrate that the random forests algorithm consistently outperforms the linear regression algorithm, with average decreases of 15–75% in Root Mean Squared Error (RMSE) across soil properties and depths. Fitting and running random forests models takes an order of magnitude more time and the modelling success is sensitive to artifacts in the input data, but as long as quality-controlled point data are provided, an increase in soil mapping accuracy can be expected. Results also indicate that globally predicted soil classes (USDA Soil Taxonomy, especially Alfisols and Mollisols) help improve continental scale soil property mapping, and are among the most important predictors. This indicates a promising potential for transferring pedological

  13. Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions.

    PubMed

    Hengl, Tomislav; Heuvelink, Gerard B M; Kempen, Bas; Leenaars, Johan G B; Walsh, Markus G; Shepherd, Keith D; Sila, Andrew; MacMillan, Robert A; Mendes de Jesus, Jorge; Tamene, Lulseged; Tondoh, Jérôme E

    2015-01-01

    80% of arable land in Africa has low soil fertility and suffers from physical soil problems. Additionally, significant amounts of nutrients are lost every year due to unsustainable soil management practices. This is partially the result of insufficient use of soil management knowledge. To help bridge the soil information gap in Africa, the Africa Soil Information Service (AfSIS) project was established in 2008. Over the period 2008-2014, the AfSIS project compiled two point data sets: the Africa Soil Profiles (legacy) database and the AfSIS Sentinel Site database. These data sets contain over 28 thousand sampling locations and represent the most comprehensive soil sample data sets of the African continent to date. Utilizing these point data sets in combination with a large number of covariates, we have generated a series of spatial predictions of soil properties relevant to the agricultural management--organic carbon, pH, sand, silt and clay fractions, bulk density, cation-exchange capacity, total nitrogen, exchangeable acidity, Al content and exchangeable bases (Ca, K, Mg, Na). We specifically investigate differences between two predictive approaches: random forests and linear regression. Results of 5-fold cross-validation demonstrate that the random forests algorithm consistently outperforms the linear regression algorithm, with average decreases of 15-75% in Root Mean Squared Error (RMSE) across soil properties and depths. Fitting and running random forests models takes an order of magnitude more time and the modelling success is sensitive to artifacts in the input data, but as long as quality-controlled point data are provided, an increase in soil mapping accuracy can be expected. Results also indicate that globally predicted soil classes (USDA Soil Taxonomy, especially Alfisols and Mollisols) help improve continental scale soil property mapping, and are among the most important predictors. This indicates a promising potential for transferring pedological

  14. Constraint satisfaction using a hybrid evolutionary hill-climbing algorithm that performs opportunistic arc and path revision

    SciTech Connect

    Bowen, J.; Dozier, G.

    1996-12-31

    This paper introduces a hybrid evolutionary hill-climbing algorithm that quickly solves (Constraint Satisfaction Problems (CSPs)). This hybrid uses opportunistic arc and path revision in an interleaved fashion to reduce the size of the search space and to realize when to quit if a CSP is based on an inconsistent constraint network. This hybrid outperforms a well known hill-climbing algorithm, the Iterative Descent Method, on a test suite of 750 randomly generated CSPs.

  15. Performance Comparison of Cuckoo Search and Differential Evolution Algorithm for Constrained Optimization

    NASA Astrophysics Data System (ADS)

    Iwan Solihin, Mahmud; Fauzi Zanil, Mohd

    2016-11-01

    Cuckoo Search (CS) and Differential Evolution (DE) algorithms are considerably robust meta-heuristic algorithms to solve constrained optimization problems. In this study, the performance of CS and DE are compared in solving the constrained optimization problem from selected benchmark functions. Selection of the benchmark functions are based on active or inactive constraints and dimensionality of variables (i.e. number of solution variable). In addition, a specific constraint handling and stopping criterion technique are adopted in the optimization algorithm. The results show, CS approach outperforms DE in term of repeatability and the quality of the optimum solutions.

  16. Experimental implementation of Hogg's algorithm on a three-quantum-bit NMR quantum computer

    NASA Astrophysics Data System (ADS)

    Peng, Xinhua; Zhu, Xiwen; Fang, Ximing; Feng, Mang; Liu, Maili; Gao, Kelin

    2002-04-01

    Using nuclear magnetic resonance (NMR) techniques with a three-qubit sample, we have experimentally implemented the highly structured algorithm for the satisfiability problem with one variable in each clause proposed by Hogg. A simplified temporal averaging procedure was employed to prepare the three-qubit pseudopure state. The algorithm was completed with only a single evaluation of the structure of the problem and the solutions were found theoretically with probability 100%, results that outperform both unstructured quantum and the best classical search algorithms. However, about 90% of the corresponding experimental fidelities can be attributed to the imperfections of manipulations.

  17. Ideal time-frequency masking algorithms lead to different speech intelligibility and quality in normal-hearing and cochlear implant listeners.

    PubMed

    Koning, Raphael; Madhu, Nilesh; Wouters, Jan

    2015-01-01

    Hearing impaired listeners using cochlear implants (CIs) suffer from a decrease in speech intelligibility (SI) in adverse listening conditions. Time-frequency masks are often applied to perform noise suppression in an attempt to increase SI. Two important masks are the so-called ideal binary mask (IBM) with its binary weights and the ideal Wiener filter (IWF) with its continuous weights. It is unclear which of the masks has the highest potential for SI and speech quality enhancement in CI users. In this study, both approaches for SI and quality enhancement were compared. The investigations were conducted in normal-hearing (NH) subjects listening to noise vocoder CI simulations and in CI users. The potential for SI improvement was assessed in a sentence recognition task with ideal mask estimates in multitalker babble and with an interfering talker. The robustness of the approaches was evaluated with simulated estimation errors. CI users assessed the speech quality in a preference rating. The IWF outperformed the IBM in NH listeners. In contrast, no significant difference was obtained in CI users. Estimation errors degraded SI in CI users for both approaches. In terms of quality, the IWF outperformed, slightly, the IBM processed signals. The outcomes of this study suggest that the mask pattern is not that crucial for CIs. Results of speech enhancement algorithms obtained with NH subjects listening to vocoded or normally processed stimuli do not translate to CI users. This outcome means that the effect of new strategies has to be quantified with the user group considered.

  18. A novel bee swarm optimization algorithm for numerical function optimization

    NASA Astrophysics Data System (ADS)

    Akbari, Reza; Mohammadi, Alireza; Ziarati, Koorush

    2010-10-01

    The optimization algorithms which are inspired from intelligent behavior of honey bees are among the most recently introduced population based techniques. In this paper, a novel algorithm called bee swarm optimization, or BSO, and its two extensions for improving its performance are presented. The BSO is a population based optimization technique which is inspired from foraging behavior of honey bees. The proposed approach provides different patterns which are used by the bees to adjust their flying trajectories. As the first extension, the BSO algorithm introduces different approaches such as repulsion factor and penalizing fitness (RP) to mitigate the stagnation problem. Second, to maintain efficiently the balance between exploration and exploitation, time-varying weights (TVW) are introduced into the BSO algorithm. The proposed algorithm (BSO) and its two extensions (BSO-RP and BSO-RPTVW) are compared with existing algorithms which are based on intelligent behavior of honey bees, on a set of well known numerical test functions. The experimental results show that the BSO algorithms are effective and robust; produce excellent results, and outperform other algorithms investigated in this consideration.

  19. A Hybrid Evolutionary Algorithm for Wheat Blending Problem

    PubMed Central

    Bonyadi, Mohammad Reza; Michalewicz, Zbigniew; Barone, Luigi

    2014-01-01

    This paper presents a hybrid evolutionary algorithm to deal with the wheat blending problem. The unique constraints of this problem make many existing algorithms fail: either they do not generate acceptable results or they are not able to complete optimization within the required time. The proposed algorithm starts with a filtering process that follows predefined rules to reduce the search space. Then the linear-relaxed version of the problem is solved using a standard linear programming algorithm. The result is used in conjunction with a solution generated by a heuristic method to generate an initial solution. After that, a hybrid of an evolutionary algorithm, a heuristic method, and a linear programming solver is used to improve the quality of the solution. A local search based posttuning method is also incorporated into the algorithm. The proposed algorithm has been tested on artificial test cases and also real data from past years. Results show that the algorithm is able to find quality results in all cases and outperforms the existing method in terms of both quality and speed. PMID:24707222

  20. An Improved Physarum polycephalum Algorithm for the Shortest Path Problem

    PubMed Central

    Wang, Qing; Adamatzky, Andrew; Chan, Felix T. S.; Mahadevan, Sankaran

    2014-01-01

    Shortest path is among classical problems of computer science. The problems are solved by hundreds of algorithms, silicon computing architectures and novel substrate, unconventional, computing devices. Acellular slime mould P. polycephalum is originally famous as a computing biological substrate due to its alleged ability to approximate shortest path from its inoculation site to a source of nutrients. Several algorithms were designed based on properties of the slime mould. Many of the Physarum-inspired algorithms suffer from a low converge speed. To accelerate the search of a solution and reduce a number of iterations we combined an original model of Physarum-inspired path solver with a new a parameter, called energy. We undertook a series of computational experiments on approximating shortest paths in networks with different topologies, and number of nodes varying from 15 to 2000. We found that the improved Physarum algorithm matches well with existing Physarum-inspired approaches yet outperforms them in number of iterations executed and a total running time. We also compare our algorithm with other existing algorithms, including the ant colony optimization algorithm and Dijkstra algorithm. PMID:24982960

  1. Generalized Pattern Search Algorithm for Peptide Structure Prediction

    PubMed Central

    Nicosia, Giuseppe; Stracquadanio, Giovanni

    2008-01-01

    Finding the near-native structure of a protein is one of the most important open problems in structural biology and biological physics. The problem becomes dramatically more difficult when a given protein has no regular secondary structure or it does not show a fold similar to structures already known. This situation occurs frequently when we need to predict the tertiary structure of small molecules, called peptides. In this research work, we propose a new ab initio algorithm, the generalized pattern search algorithm, based on the well-known class of Search-and-Poll algorithms. We performed an extensive set of simulations over a well-known set of 44 peptides to investigate the robustness and reliability of the proposed algorithm, and we compared the peptide conformation with a state-of-the-art algorithm for peptide structure prediction known as PEPstr. In particular, we tested the algorithm on the instances proposed by the originators of PEPstr, to validate the proposed algorithm; the experimental results confirm that the generalized pattern search algorithm outperforms PEPstr by 21.17% in terms of average root mean-square deviation, RMSD Cα. PMID:18487293

  2. Statistically significant relational data mining :

    SciTech Connect

    Berry, Jonathan W.; Leung, Vitus Joseph; Phillips, Cynthia Ann; Pinar, Ali; Robinson, David Gerald; Berger-Wolf, Tanya; Bhowmick, Sanjukta; Casleton, Emily; Kaiser, Mark; Nordman, Daniel J.; Wilson, Alyson G.

    2014-02-01

    This report summarizes the work performed under the project (3z(BStatitically significant relational data mining.(3y (BThe goal of the project was to add more statistical rigor to the fairly ad hoc area of data mining on graphs. Our goal was to develop better algorithms and better ways to evaluate algorithm quality. We concetrated on algorithms for community detection, approximate pattern matching, and graph similarity measures. Approximate pattern matching involves finding an instance of a relatively small pattern, expressed with tolerance, in a large graph of data observed with uncertainty. This report gathers the abstracts and references for the eight refereed publications that have appeared as part of this work. We then archive three pieces of research that have not yet been published. The first is theoretical and experimental evidence that a popular statistical measure for comparison of community assignments favors over-resolved communities over approximations to a ground truth. The second are statistically motivated methods for measuring the quality of an approximate match of a small pattern in a large graph. The third is a new probabilistic random graph model. Statisticians favor these models for graph analysis. The new local structure graph model overcomes some of the issues with popular models such as exponential random graph models and latent variable models.

  3. A hybrid genetic-simulated annealing algorithm for the location-inventory-routing problem considering returns under e-supply chain environment.

    PubMed

    Li, Yanhui; Guo, Hao; Wang, Lin; Fu, Jing

    2013-01-01

    Facility location, inventory control, and vehicle routes scheduling are critical and highly related problems in the design of logistics system for e-business. Meanwhile, the return ratio in Internet sales was significantly higher than in the traditional business. Many of returned merchandise have no quality defects, which can reenter sales channels just after a simple repackaging process. Focusing on the existing problem in e-commerce logistics system, we formulate a location-inventory-routing problem model with no quality defects returns. To solve this NP-hard problem, an effective hybrid genetic simulated annealing algorithm (HGSAA) is proposed. Results of numerical examples show that HGSAA outperforms GA on computing time, optimal solution, and computing stability. The proposed model is very useful to help managers make the right decisions under e-supply chain environment.

  4. A Hybrid Genetic-Simulated Annealing Algorithm for the Location-Inventory-Routing Problem Considering Returns under E-Supply Chain Environment

    PubMed Central

    Guo, Hao; Fu, Jing

    2013-01-01

    Facility location, inventory control, and vehicle routes scheduling are critical and highly related problems in the design of logistics system for e-business. Meanwhile, the return ratio in Internet sales was significantly higher than in the traditional business. Many of returned merchandise have no quality defects, which can reenter sales channels just after a simple repackaging process. Focusing on the existing problem in e-commerce logistics system, we formulate a location-inventory-routing problem model with no quality defects returns. To solve this NP-hard problem, an effective hybrid genetic simulated annealing algorithm (HGSAA) is proposed. Results of numerical examples show that HGSAA outperforms GA on computing time, optimal solution, and computing stability. The proposed model is very useful to help managers make the right decisions under e-supply chain environment. PMID:24489489

  5. Practical application of the Average Information Content Maximization (AIC-MAX) algorithm: selection of the most important structural features for serotonin receptor ligands.

    PubMed

    Warszycki, Dawid; Śmieja, Marek; Kafel, Rafał

    2017-02-09

    The Average Information Content Maximization algorithm (AIC-MAX) based on mutual information maximization was recently introduced to select the most discriminatory features. Here, this methodology was applied to select the most significant bits from the Klekota-Roth fingerprint for serotonin receptors ligands as well as to select the most important features for distinguishing ligands with activity for one receptor versus another. The interpretation of selected bits and machine-learning experiments performed using the reduced interpretations outperformed the raw fingerprints and indicated the most important structural features of the analyzed ligands in terms of activity and selectivity. Moreover, the AIC-MAX methodology applied here for serotonin receptor ligands can also be applied to other target classes.

  6. Chinese tallow trees (Triadica sebifera) from the invasive range outperform those from the native range with an active soil community or phosphorus fertilization.

    PubMed

    Zhang, Ling; Zhang, Yaojun; Wang, Hong; Zou, Jianwen; Siemann, Evan

    2013-01-01

    Two mechanisms that have been proposed to explain success of invasive plants are unusual biotic interactions, such as enemy release or enhanced mutualisms, and increased resource availability. However, while these mechanisms are usually considered separately, both may be involved in successful invasions. Biotic interactions may be positive or negative and may interact with nutritional resources in determining invasion success. In addition, the effects of different nutrients on invasions may vary. Finally, genetic variation in traits between populations located in introduced versus native ranges may be important for biotic interactions and/or resource use. Here, we investigated the roles of soil biota, resource availability, and plant genetic variation using seedlings of Triadica sebifera in an experiment in the native range (China). We manipulated nitrogen (control or 4 g/m(2)), phosphorus (control or 0.5 g/m(2)), soil biota (untreated or sterilized field soil), and plant origin (4 populations from the invasive range, 4 populations from the native range) in a full factorial experiment. Phosphorus addition increased root, stem, and leaf masses. Leaf mass and height growth depended on population origin and soil sterilization. Invasive populations had higher leaf mass and growth rates than native populations did in fresh soil but they had lower, comparable leaf mass and growth rates in sterilized soil. Invasive populations had higher growth rates with phosphorus addition but native ones did not. Soil sterilization decreased specific leaf area in both native and exotic populations. Negative effects of soil sterilization suggest that soil pathogens may not be as important as soil mutualists for T. sebifera performance. Moreover, interactive effects of sterilization and origin suggest that invasive T. sebifera may have evolved more beneficial relationships with the soil biota. Overall, seedlings from the invasive range outperformed those from the native range, however

  7. Droplet digital polymerase chain reaction (PCR) outperforms real-time PCR in the detection of environmental DNA from an invasive fish species.

    PubMed

    Doi, Hideyuki; Takahara, Teruhiko; Minamoto, Toshifumi; Matsuhashi, Saeko; Uchii, Kimiko; Yamanaka, Hiroki

    2015-05-05

    Environmental DNA (eDNA) has been used to investigate species distributions in aquatic ecosystems. Most of these studies use real-time polymerase chain reaction (PCR) to detect eDNA in water; however, PCR amplification is often inhibited by the presence of organic and inorganic matter. In droplet digital PCR (ddPCR), the sample is partitioned into thousands of nanoliter droplets, and PCR inhibition may be reduced by the detection of the end-point of PCR amplification in each droplet, independent of the amplification efficiency. In addition, real-time PCR reagents can affect PCR amplification and consequently alter detection rates. We compared the effectiveness of ddPCR and real-time PCR using two different PCR reagents for the detection of the eDNA from invasive bluegill sunfish, Lepomis macrochirus, in ponds. We found that ddPCR had higher detection rates of bluegill eDNA in pond water than real-time PCR with either of the PCR reagents, especially at low DNA concentrations. Limits of DNA detection, which were tested by spiking the bluegill DNA to DNA extracts from the ponds containing natural inhibitors, found that ddPCR had higher detection rate than real-time PCR. Our results suggest that ddPCR is more resistant to the presence of PCR inhibitors in field samples than real-time PCR. Thus, ddPCR outperforms real-time PCR methods for detecting eDNA to document species distributions in natural habitats, especially in habitats with high concentrations of PCR inhibitors.

  8. Improved Exact Enumerative Algorithms for the Planted (l, d)-Motif Search Problem.

    PubMed

    Tanaka, Shunji

    2014-01-01

    In this paper efficient exact algorithms are proposed for the planted ( l, d)-motif search problem. This problem is to find all motifs of length l that are planted in each input string with at most d mismatches. The "quorum" version of this problem is also treated in this paper to find motifs planted not in all input strings but in at least q input strings. The proposed algorithms are based on the previous algorithms called qPMSPruneI and qPMS7 that traverse a search tree starting from a l-length substring of an input string. To improve these previous algorithms, several techniques are introduced, which contribute to reducing the computation time for the traversal. In computational experiments, it will be shown that the proposed algorithms outperform the previous algorithms.

  9. Image reconstruction algorithms for electrical capacitance tomography based on ROF model using new numerical techniques

    NASA Astrophysics Data System (ADS)

    Chen, Jiaoxuan; Zhang, Maomao; Liu, Yinyan; Chen, Jiaoliao; Li, Yi

    2017-03-01

    Electrical capacitance tomography (ECT) is a promising technique applied in many fields. However, the solutions for ECT are not unique and highly sensitive to the measurement noise. To remain a good shape of reconstructed object and endure a noisy data, a Rudin–Osher–Fatemi (ROF) model with total variation regularization is applied to image reconstruction in ECT. Two numerical methods, which are simplified augmented Lagrangian (SAL) and accelerated alternating direction method of multipliers (AADMM), are innovatively introduced to try to solve the above mentioned problems in ECT. The effect of the parameters and the number of iterations for different algorithms, and the noise level in capacitance data are discussed. Both simulation and experimental tests were carried out to validate the feasibility of the proposed algorithms, compared to the Landweber iteration (LI) algorithm. The results show that the SAL and AADMM algorithms can handle a high level of noise and the AADMM algorithm outperforms other algorithms in identifying the object from its background.

  10. Factoring local sequence composition in motif significance analysis.

    PubMed

    Ng, Patrick; Keich, Uri

    2008-01-01

    We recently introduced a biologically realistic and reliable significance analysis of the output of a popular class of motif finders. In this paper we further improve our significance analysis by incorporating local base composition information. Relying on realistic biological data simulation, as well as on FDR analysis applied to real data, we show that our method is significantly better than the increasingly popular practice of using the normal approximation to estimate the significance of a finder's output. Finally we turn to leveraging our reliable significance analysis to improve the actual motif finding task. Specifically, endowing a variant of the Gibbs Sampler with our improved significance analysis we demonstrate that de novo finders can perform better than has been perceived. Significantly, our new variant outperforms all the finders reviewed in a recently published comprehensive analysis of the Harbison genome-wide binding location data. Interestingly, many of these finders incorporate additional information such as nucleosome positioning and the significance of binding data.

  11. LAHS: A novel harmony search algorithm based on learning automata

    NASA Astrophysics Data System (ADS)

    Enayatifar, Rasul; Yousefi, Moslem; Abdullah, Abdul Hanan; Darus, Amer Nordin

    2013-12-01

    This study presents a learning automata-based harmony search (LAHS) for unconstrained optimization of continuous problems. The harmony search (HS) algorithm performance strongly depends on the fine tuning of its parameters, including the harmony consideration rate (HMCR), pitch adjustment rate (PAR) and bandwidth (bw). Inspired by the spur-in-time responses in the musical improvisation process, learning capabilities are employed in the HS to select these parameters based on spontaneous reactions. An extensive numerical investigation is conducted on several well-known test functions, and the results are compared with the HS algorithm and its prominent variants, including the improved harmony search (IHS), global-best harmony search (GHS) and self-adaptive global-best harmony search (SGHS). The numerical results indicate that the LAHS is more efficient in finding optimum solutions and outperforms the existing HS algorithm variants.

  12. RCQ-GA: RDF Chain Query Optimization Using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Hogenboom, Alexander; Milea, Viorel; Frasincar, Flavius; Kaymak, Uzay

    The application of Semantic Web technologies in an Electronic Commerce environment implies a need for good support tools. Fast query engines are needed for efficient querying of large amounts of data, usually represented using RDF. We focus on optimizing a special class of SPARQL queries, the so-called RDF chain queries. For this purpose, we devise a genetic algorithm called RCQ-GA that determines the order in which joins need to be performed for an efficient evaluation of RDF chain queries. The approach is benchmarked against a two-phase optimization algorithm, previously proposed in literature. The more complex a query is, the more RCQ-GA outperforms the benchmark in solution quality, execution time needed, and consistency of solution quality. When the algorithms are constrained by a time limit, the overall performance of RCQ-GA compared to the benchmark further improves.

  13. Optimized dynamical decoupling via genetic algorithms

    NASA Astrophysics Data System (ADS)

    Quiroz, Gregory; Lidar, Daniel A.

    2013-11-01

    We utilize genetic algorithms aided by simulated annealing to find optimal dynamical decoupling (DD) sequences for a single-qubit system subjected to a general decoherence model under a variety of control pulse conditions. We focus on the case of sequences with equal pulse intervals and perform the optimization with respect to pulse type and order. In this manner, we obtain robust DD sequences, first in the limit of ideal pulses, then when including pulse imperfections such as finite-pulse duration and qubit rotation (flip-angle) errors. Although our optimization is numerical, we identify a deterministic structure that underlies the top-performing sequences. We use this structure to devise DD sequences which outperform previously designed concatenated DD (CDD) and quadratic DD (QDD) sequences in the presence of pulse errors. We explain our findings using time-dependent perturbation theory and provide a detailed scaling analysis of the optimal sequences.

  14. Detecting activity locations from raw GPS data: a novel kernel-based algorithm

    PubMed Central

    2013-01-01

    Background Health studies and mHealth applications are increasingly resorting to tracking technologies such as Global Positioning Systems (GPS) to study the relation between mobility, exposures, and health. GPS tracking generates large sets of geographic data that need to be transformed to be useful for health research. This paper proposes a method to test the performance of activity place detection algorithms, and compares the performance of a novel kernel-based algorithm with a more traditional time-distance cluster detection method. Methods A set of 750 artificial GPS tracks containing three stops each were generated, with various levels of noise.. A total of 9,000 tracks were processed to measure the algorithms’ capacity to detect stop locations and estimate stop durations, with varying GPS noise and algorithm parameters. Results The proposed kernel-based algorithm outperformed the traditional algorithm on most criteria associated to activity place detection, and offered a stronger resilience to GPS noise, managing to detect up to 92.3% of actual stops, and estimating stop duration within 5% error margins at all tested noise levels. Conclusions Capacity to detect activity locations is an important feature in a context of increasing use of GPS devices in health and place research. While further testing with real-life tracks is recommended, testing algorithms’ performance with artificial track sets for which characteristics are controlled is useful. The proposed novel algorithm outperformed the traditional algorithm under these conditions. PMID:23497213

  15. Improved satellite image compression and reconstruction via genetic algorithms

    NASA Astrophysics Data System (ADS)

    Babb, Brendan; Moore, Frank; Peterson, Michael; Lamont, Gary

    2008-10-01

    A wide variety of signal and image processing applications, including the US Federal Bureau of Investigation's fingerprint compression standard [3] and the JPEG-2000 image compression standard [26], utilize wavelets. This paper describes new research that demonstrates how a genetic algorithm (GA) may be used to evolve transforms that outperform wavelets for satellite image compression and reconstruction under conditions subject to quantization error. The new approach builds upon prior work by simultaneously evolving real-valued coefficients representing matched forward and inverse transform pairs at each of three levels of a multi-resolution analysis (MRA) transform. The training data for this investigation consists of actual satellite photographs of strategic urban areas. Test results show that a dramatic reduction in the error present in reconstructed satellite images may be achieved without sacrificing the compression capabilities of the forward transform. The transforms evolved during this research outperform previous start-of-the-art solutions, which optimized coefficients for the reconstruction transform only. These transforms also outperform wavelets, reducing error by more than 0.76 dB at a quantization level of 64. In addition, transforms trained using representative satellite images do not perform quite as well when subsequently tested against images from other classes (such as fingerprints or portraits). This result suggests that the GA developed for this research is automatically learning to exploit specific attributes common to the class of images represented in the training population.

  16. Algorithmic chemistry

    SciTech Connect

    Fontana, W.

    1990-12-13

    In this paper complex adaptive systems are defined by a self- referential loop in which objects encode functions that act back on these objects. A model for this loop is presented. It uses a simple recursive formal language, derived from the lambda-calculus, to provide a semantics that maps character strings into functions that manipulate symbols on strings. The interaction between two functions, or algorithms, is defined naturally within the language through function composition, and results in the production of a new function. An iterated map acting on sets of functions and a corresponding graph representation are defined. Their properties are useful to discuss the behavior of a fixed size ensemble of randomly interacting functions. This function gas'', or Turning gas'', is studied under various conditions, and evolves cooperative interaction patterns of considerable intricacy. These patterns adapt under the influence of perturbations consisting in the addition of new random functions to the system. Different organizations emerge depending on the availability of self-replicators.

  17. Benchmarking monthly homogenization algorithms

    NASA Astrophysics Data System (ADS)

    Venema, V. K. C.; Mestre, O.; Aguilar, E.; Auer, I.; Guijarro, J. A.; Domonkos, P.; Vertacnik, G.; Szentimrey, T.; Stepanek, P.; Zahradnicek, P.; Viarre, J.; Müller-Westermeier, G.; Lakatos, M.; Williams, C. N.; Menne, M.; Lindau, R.; Rasol, D.; Rustemeier, E.; Kolokythas, K.; Marinova, T.; Andresen, L.; Acquaotta, F.; Fratianni, S.; Cheval, S.; Klancar, M.; Brunetti, M.; Gruber, C.; Prohom Duran, M.; Likso, T.; Esteban, P.; Brandsma, T.

    2011-08-01

    The COST (European Cooperation in Science and Technology) Action ES0601: Advances in homogenization methods of climate series: an integrated approach (HOME) has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies and because they represent two important types of statistics (additive and multiplicative). The algorithms were validated against a realistic benchmark dataset. The benchmark contains real inhomogeneous data as well as simulated data with inserted inhomogeneities. Random break-type inhomogeneities were added to the simulated datasets modeled as a Poisson process with normally distributed breakpoint sizes. To approximate real world conditions, breaks were introduced that occur simultaneously in multiple station series within a simulated network of station data. The simulated time series also contained outliers, missing data periods and local station trends. Further, a stochastic nonlinear global (network-wide) trend was added. Participants provided 25 separate homogenized contributions as part of the blind study as well as 22 additional solutions submitted after the details of the imposed inhomogeneities were revealed. These homogenized datasets were assessed by a number of performance metrics including (i) the centered root mean square error relative to the true homogeneous value at various averaging scales, (ii) the error in linear trend estimates and (iii) traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Contingency scores by themselves are not very informative. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve precipitation data

  18. PCA-LBG-based algorithms for VQ codebook generation

    NASA Astrophysics Data System (ADS)

    Tsai, Jinn-Tsong; Yang, Po-Yuan

    2015-04-01

    Vector quantisation (VQ) codebooks are generated by combining principal component analysis (PCA) algorithms with Linde-Buzo-Gray (LBG) algorithms. All training vectors are grouped according to the projected values of the principal components. The PCA-LBG-based algorithms include (1) PCA-LBG-Median, which selects the median vector of each group, (2) PCA-LBG-Centroid, which adopts the centroid vector of each group, and (3) PCA-LBG-Random, which randomly selects a vector of each group. The LBG algorithm finds a codebook based on the better vectors sent to an initial codebook by the PCA. The PCA performs an orthogonal transformation to convert a set of potentially correlated variables into a set of variables that are not linearly correlated. Because the orthogonal transformation efficiently distinguishes test image vectors, the proposed PCA-LBG-based algorithm is expected to outperform conventional algorithms in designing VQ codebooks. The experimental results confirm that the proposed PCA-LBG-based algorithms indeed obtain better results compared to existing methods reported in the literature.

  19. Estimation of distribution algorithms with Kikuchi approximations.

    PubMed

    Santana, Roberto

    2005-01-01

    The question of finding feasible ways for estimating probability distributions is one of the main challenges for Estimation of Distribution Algorithms (EDAs). To estimate the distribution of the selected solutions, EDAs use factorizations constructed according to graphical models. The class of factorizations that can be obtained from these probability models is highly constrained. Expanding the class of factorizations that could be employed for probability approximation is a necessary step for the conception of more robust EDAs. In this paper we introduce a method for learning a more general class of probability factorizations. The method combines a reformulation of a probability approximation procedure known in statistical physics as the Kikuchi approximation of energy, with a novel approach for finding graph decompositions. We present the Markov Network Estimation of Distribution Algorithm (MN-EDA), an EDA that uses Kikuchi approximations to estimate the distribution, and Gibbs Sampling (GS) to generate new points. A systematic empirical evaluation of MN-EDA is done in comparison with different Bayesian network based EDAs. From our experiments we conclude that the algorithm can outperform other EDAs that use traditional methods of probability approximation in the optimization of functions with strong interactions among their variables.

  20. An improved genetic algorithm with dynamic topology

    NASA Astrophysics Data System (ADS)

    Cai, Kai-Quan; Tang, Yan-Wu; Zhang, Xue-Jun; Guan, Xiang-Min

    2016-12-01

    The genetic algorithm (GA) is a nature-inspired evolutionary algorithm to find optima in search space via the interaction of individuals. Recently, researchers demonstrated that the interaction topology plays an important role in information exchange among individuals of evolutionary algorithm. In this paper, we investigate the effect of different network topologies adopted to represent the interaction structures. It is found that GA with a high-density topology ends up more likely with an unsatisfactory solution, contrarily, a low-density topology can impede convergence. Consequently, we propose an improved GA with dynamic topology, named DT-GA, in which the topology structure varies dynamically along with the fitness evolution. Several experiments executed with 15 well-known test functions have illustrated that DT-GA outperforms other test GAs for making a balance of convergence speed and optimum quality. Our work may have implications in the combination of complex networks and computational intelligence. Project supported by the National Natural Science Foundation for Young Scientists of China (Grant No. 61401011), the National Key Technologies R & D Program of China (Grant No. 2015BAG15B01), and the National Natural Science Foundation of China (Grant No. U1533119).

  1. Genetic algorithms as discovery programs

    SciTech Connect

    Hilliard, M.R.; Liepins, G.

    1986-01-01

    Genetic algorithms are mathematical counterparts to natural selection and gene recombination. As such, they have provided one of the few significant breakthroughs in machine learning. Used with appropriate reward functions and apportionment of credit, they have been successfully applied to gas pipeline operation, x-ray registration and mathematical optimization problems. This paper discusses the basics of genetic algorithms, describes a few successes, and reports on current progress at Oak Ridge National Laboratory in applications to set covering and simulated robots.

  2. An Energy Aware Adaptive Sampling Algorithm for Energy Harvesting WSN with Energy Hungry Sensors

    PubMed Central

    Srbinovski, Bruno; Magno, Michele; Edwards-Murphy, Fiona; Pakrashi, Vikram; Popovici, Emanuel

    2016-01-01

    Wireless sensor nodes have a limited power budget, though they are often expected to be functional in the field once deployed for extended periods of time. Therefore, minimization of energy consumption and energy harvesting technology in Wireless Sensor Networks (WSN) are key tools for maximizing network lifetime, and achieving self-sustainability. This paper proposes an energy aware Adaptive Sampling Algorithm (ASA) for WSN with power hungry sensors and harvesting capabilities, an energy management technique that can be implemented on any WSN platform with enough processing power to execute the proposed algorithm. An existing state-of-the-art ASA developed for wireless sensor networks with power hungry sensors is optimized and enhanced to adapt the sampling frequency according to the available energy of the node. The proposed algorithm is evaluated using two in-field testbeds that are supplied by two different energy harvesting sources (solar and wind). Simulation and comparison between the state-of-the-art ASA and the proposed energy aware ASA (EASA) in terms of energy durability are carried out using in-field measured harvested energy (using both wind and solar sources) and power hungry sensors (ultrasonic wind sensor and gas sensors). The simulation results demonstrate that using ASA in combination with an energy aware function on the nodes can drastically increase the lifetime of a WSN node and enable self-sustainability. In fact, the proposed EASA in conjunction with energy harvesting capability can lead towards perpetual WSN operation and significantly outperform the state-of-the-art ASA. PMID:27043559

  3. Mitigating Multipath Bias Using a Dual-Polarization Antenna: Theoretical Performance, Algorithm Design, and Simulation

    PubMed Central

    Xie, Lin; Cui, Xiaowei; Zhao, Sihao; Lu, Mingquan

    2017-01-01

    It is well known that multipath effect remains a dominant error source that affects the positioning accuracy of Global Navigation Satellite System (GNSS) receivers. Significant efforts have been made by researchers and receiver manufacturers to mitigate multipath error in the past decades. Recently, a multipath mitigation technique using dual-polarization antennas has become a research hotspot for it provides another degree of freedom to distinguish the line-of-sight (LOS) signal from the LOS and multipath composite signal without extensively increasing the complexity of the receiver. Numbers of multipath mitigation techniques using dual-polarization antennas have been proposed and all of them report performance improvement over the single-polarization methods. However, due to the unpredictability of multipath, multipath mitigation techniques based on dual-polarization are not always effective while few studies discuss the condition under which the multipath mitigation using a dual-polarization antenna can outperform that using a single-polarization antenna, which is a fundamental question for dual-polarization multipath mitigation (DPMM) and the design of multipath mitigation algorithms. In this paper we analyze the characteristics of the signal received by a dual-polarization antenna and use the maximum likelihood estimation (MLE) to assess the theoretical performance of DPMM in different received signal cases. Based on the assessment we answer this fundamental question and find the dual-polarization antenna’s capability in mitigating short delay multipath—the most challenging one among all types of multipath for the majority of the multipath mitigation techniques. Considering these effective conditions, we propose a dual-polarization sequential iterative maximum likelihood estimation (DP-SIMLE) algorithm for DPMM. The simulation results verify our theory and show superior performance of the proposed DP-SIMLE algorithm over the traditional one using only an

  4. Mitigating Multipath Bias Using a Dual-Polarization Antenna: Theoretical Performance, Algorithm Design, and Simulation.

    PubMed

    Xie, Lin; Cui, Xiaowei; Zhao, Sihao; Lu, Mingquan

    2017-02-13

    It is well known that multipath effect remains a dominant error source that affects the positioning accuracy of Global Navigation Satellite System (GNSS) receivers. Significant efforts have been made by researchers and receiver manufacturers to mitigate multipath error in the past decades. Recently, a multipath mitigation technique using dual-polarization antennas has become a research hotspot for it provides another degree of freedom to distinguish the line-of-sight (LOS) signal from the LOS and multipath composite signal without extensively increasing the complexity of the receiver. Numbers of multipath mitigation techniques using dual-polarization antennas have been proposed and all of them report performance improvement over the single-polarization methods. However, due to the unpredictability of multipath, multipath mitigation techniques based on dual-polarization are not always effective while few studies discuss the condition under which the multipath mitigation using a dual-polarization antenna can outperform that using a single-polarization antenna, which is a fundamental question for dual-polarization multipath mitigation (DPMM) and the design of multipath mitigation algorithms. In this paper we analyze the characteristics of the signal received by a dual-polarization antenna and use the maximum likelihood estimation (MLE) to assess the theoretical performance of DPMM in different received signal cases. Based on the assessment we answer this fundamental question and find the dual-polarization antenna's capability in mitigating short delay multipath-the most challenging one among all types of multipath for the majority of the multipath mitigation techniques. Considering these effective conditions, we propose a dual-polarization sequential iterative maximum likelihood estimation (DP-SIMLE) algorithm for DPMM. The simulation results verify our theory and show superior performance of the proposed DP-SIMLE algorithm over the traditional one using only an RHCP

  5. Algorithm Animation with Galant.

    PubMed

    Stallmann, Matthias F

    2017-01-01

    Although surveys suggest positive student attitudes toward the use of algorithm animations, it is not clear that they improve learning outcomes. The Graph Algorithm Animation Tool, or Galant, challenges and motivates students to engage more deeply with algorithm concepts, without distracting them with programming language details or GUIs. Even though Galant is specifically designed for graph algorithms, it has also been used to animate other algorithms, most notably sorting algorithms.

  6. Development and evaluation of an algorithm for the computer-assisted segmentation of the human hypothalamus on 7-Tesla magnetic resonance images.

    PubMed

    Schindler, Stephanie; Schönknecht, Peter; Schmidt, Laura; Anwander, Alfred; Strauß, Maria; Trampel, Robert; Bazin, Pierre-Louis; Möller, Harald E; Hegerl, Ulrich; Turner, Robert; Geyer, Stefan

    2013-01-01

    Post mortem studies have shown volume changes of the hypothalamus in psychiatric patients. With 7T magnetic resonance imaging this effect can now be investigated in vivo in detail. To benefit from the sub-millimeter resolution requires an improved segmentation procedure. The traditional anatomical landmarks of the hypothalamus were refined using 7T T1-weighted magnetic resonance images. A detailed segmentation algorithm (unilateral hypothalamus) was developed for colour-coded, histogram-matched images, and evaluated in a sample of 10 subjects. Test-retest and inter-rater reliabilities were estimated in terms of intraclass-correlation coefficients (ICC) and Dice's coefficient (DC). The computer-assisted segmentation algorithm ensured test-retest reliabilities of ICC≥.97 (DC≥96.8) and inter-rater reliabilities of ICC≥.94 (DC = 95.2). There were no significant volume differences between the segmentation runs, raters, and hemispheres. The estimated volumes of the hypothalamus lie within the range of previous histological and neuroimaging results. We present a computer-assisted algorithm for the manual segmentation of the human hypothalamus using T1-weighted 7T magnetic resonance imaging. Providing very high test-retest and inter-rater reliabilities, it outperforms former procedures established at 1.5T and 3T magnetic resonance images and thus can serve as a gold standard for future automated procedures.

  7. Development of a two-stage gene selection method that incorporates a novel hybrid approach using the cuckoo optimization algorithm and harmony search for cancer classification.

    PubMed

    Elyasigomari, V; Lee, D A; Screen, H R C; Shaheed, M H

    2017-03-01

    For each cancer type, only a few genes are informative. Due to the so-called 'curse of dimensionality' problem, the gene selection task remains a challenge. To overcome this problem, we propose a two-stage gene selection method called MRMR-COA-HS. In the first stage, the minimum redundancy and maximum relevance (MRMR) feature selection is used to select a subset of relevant genes. The selected genes are then fed into a wrapper setup that combines a new algorithm, COA-HS, using the support vector machine as a classifier. The method was applied to four microarray datasets, and the performance was assessed by the leave one out cross-validation method. Comparative performance assessment of the proposed method with other evolutionary algorithms suggested that the proposed algorithm significantly outperforms other methods in selecting a fewer number of genes while maintaining the highest classification accuracy. The functions of the selected genes were further investigated, and it was confirmed that the selected genes are biologically relevant to each cancer type.

  8. Large scale tracking algorithms

    SciTech Connect

    Hansen, Ross L.; Love, Joshua Alan; Melgaard, David Kennett; Karelitz, David B.; Pitts, Todd Alan; Zollweg, Joshua David; Anderson, Dylan Z.; Nandy, Prabal; Whitlow, Gary L.; Bender, Daniel A.; Byrne, Raymond Harry

    2015-01-01

    Low signal-to-noise data processing algorithms for improved detection, tracking, discrimination and situational threat assessment are a key research challenge. As sensor technologies progress, the number of pixels will increase signi cantly. This will result in increased resolution, which could improve object discrimination, but unfortunately, will also result in a significant increase in the number of potential targets to track. Many tracking techniques, like multi-hypothesis trackers, suffer from a combinatorial explosion as the number of potential targets increase. As the resolution increases, the phenomenology applied towards detection algorithms also changes. For low resolution sensors, "blob" tracking is the norm. For higher resolution data, additional information may be employed in the detection and classfication steps. The most challenging scenarios are those where the targets cannot be fully resolved, yet must be tracked and distinguished for neighboring closely spaced objects. Tracking vehicles in an urban environment is an example of such a challenging scenario. This report evaluates several potential tracking algorithms for large-scale tracking in an urban environment.

  9. Robust three-dimensional best-path phase-unwrapping algorithm that avoids singularity loops.

    PubMed

    Abdul-Rahman, Hussein; Arevalillo-Herráez, Miguel; Gdeisat, Munther; Burton, David; Lalor, Michael; Lilley, Francis; Moore, Christopher; Sheltraw, Daniel; Qudeisat, Mohammed

    2009-08-10

    In this paper we propose a novel hybrid three-dimensional phase-unwrapping algorithm, which we refer to here as the three-dimensional best-path avoiding singularity loops (3DBPASL) algorithm. This algorithm combines the advantages and avoids the drawbacks of two well-known 3D phase-unwrapping algorithms, namely, the 3D phase-unwrapping noise-immune technique and the 3D phase-unwrapping best-path technique. The hybrid technique presented here is more robust than its predecessors since it not only follows a discrete unwrapping path depending on a 3D quality map, but it also avoids any singularity loops that may occur in the unwrapping path. Simulation and experimental results have shown that the proposed algorithm outperforms its parent techniques in terms of reliability and robustness.

  10. New Enhanced Artificial Bee Colony (JA-ABC5) Algorithm with Application for Reactive Power Optimization

    PubMed Central

    2015-01-01

    The standard artificial bee colony (ABC) algorithm involves exploration and exploitation processes which need to be balanced for enhanced performance. This paper proposes a new modified ABC algorithm named JA-ABC5 to enhance convergence speed and improve the ability to reach the global optimum by balancing exploration and exploitation processes. New stages have been proposed at the earlier stages of the algorithm to increase the exploitation process. Besides that, modified mutation equations have also been introduced in the employed and onlooker-bees phases to balance the two processes. The performance of JA-ABC5 has been analyzed on 27 commonly used benchmark functions and tested to optimize the reactive power optimization problem. The performance results have clearly shown that the newly proposed algorithm has outperformed other compared algorithms in terms of convergence speed and global optimum achievement. PMID:25879054

  11. A Guiding Evolutionary Algorithm with Greedy Strategy for Global Optimization Problems.

    PubMed

    Cao, Leilei; Xu, Lihong; Goodman, Erik D

    2016-01-01

    A Guiding Evolutionary Algorithm (GEA) with greedy strategy for global optimization problems is proposed. Inspired by Particle Swarm Optimization, the Genetic Algorithm, and the Bat Algorithm, the GEA was designed to retain some advantages of each method while avoiding some disadvantages. In contrast to the usual Genetic Algorithm, each individual in GEA is crossed with the current global best one instead of a randomly selected individual. The current best individual served as a guide to attract offspring to its region of genotype space. Mutation was added to offspring according to a dynamic mutation probability. To increase the capability of exploitation, a local search mechanism was applied to new individuals according to a dynamic probability of local search. Experimental results show that GEA outperformed the other three typical global optimization algorithms with which it was compared.

  12. A High Performance Cloud-Based Protein-Ligand Docking Prediction Algorithm

    PubMed Central

    Chen, Jui-Le; Yang, Chu-Sing

    2013-01-01

    The potential of predicting druggability for a particular disease by integrating biological and computer science technologies has witnessed success in recent years. Although the computer science technologies can be used to reduce the costs of the pharmaceutical research, the computation time of the structure-based protein-ligand docking prediction is still unsatisfied until now. Hence, in this paper, a novel docking prediction algorithm, named fast cloud-based protein-ligand docking prediction algorithm (FCPLDPA), is presented to accelerate the docking prediction algorithm. The proposed algorithm works by leveraging two high-performance operators: (1) the novel migration (information exchange) operator is designed specially for cloud-based environments to reduce the computation time; (2) the efficient operator is aimed at filtering out the worst search directions. Our simulation results illustrate that the proposed method outperforms the other docking algorithms compared in this paper in terms of both the computation time and the quality of the end result. PMID:23762864

  13. A Study on the Optimization Performance of Fireworks and Cuckoo Search Algorithms in Laser Machining Processes

    NASA Astrophysics Data System (ADS)

    Goswami, D.; Chakraborty, S.

    2014-11-01

    Laser machining is a promising non-contact process for effective machining of difficult-to-process advanced engineering materials. Increasing interest in the use of lasers for various machining operations can be attributed to its several unique advantages, like high productivity, non-contact processing, elimination of finishing operations, adaptability to automation, reduced processing cost, improved product quality, greater material utilization, minimum heat-affected zone and green manufacturing. To achieve the best desired machining performance and high quality characteristics of the machined components, it is extremely important to determine the optimal values of the laser machining process parameters. In this paper, fireworks algorithm and cuckoo search (CS) algorithm are applied for single as well as multi-response optimization of two laser machining processes. It is observed that although almost similar solutions are obtained for both these algorithms, CS algorithm outperforms fireworks algorithm with respect to average computation time, convergence rate and performance consistency.

  14. The multinomial simulation algorithm for discrete stochastic simulation of reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Lampoudi, Sotiria; Gillespie, Dan T.; Petzold, Linda R.

    2009-03-01

    The Inhomogeneous Stochastic Simulation Algorithm (ISSA) is a variant of the stochastic simulation algorithm in which the spatially inhomogeneous volume of the system is divided into homogeneous subvolumes, and the chemical reactions in those subvolumes are augmented by diffusive transfers of molecules between adjacent subvolumes. The ISSA can be prohibitively slow when the system is such that diffusive transfers occur much more frequently than chemical reactions. In this paper we present the Multinomial Simulation Algorithm (MSA), which is designed to, on the one hand, outperform the ISSA when diffusive transfer events outnumber reaction events, and on the other, to handle small reactant populations with greater accuracy than deterministic-stochastic hybrid algorithms. The MSA treats reactions in the usual ISSA fashion, but uses appropriately conditioned binomial random variables for representing the net numbers of molecules diffusing from any given subvolume to a neighbor within a prescribed distance. Simulation results illustrate the benefits of the algorithm.

  15. A Guiding Evolutionary Algorithm with Greedy Strategy for Global Optimization Problems

    PubMed Central

    Cao, Leilei; Xu, Lihong; Goodman, Erik D.

    2016-01-01

    A Guiding Evolutionary Algorithm (GEA) with greedy strategy for global optimization problems is proposed. Inspired by Particle Swarm Optimization, the Genetic Algorithm, and the Bat Algorithm, the GEA was designed to retain some advantages of each method while avoiding some disadvantages. In contrast to the usual Genetic Algorithm, each individual in GEA is crossed with the current global best one instead of a randomly selected individual. The current best individual served as a guide to attract offspring to its region of genotype space. Mutation was added to offspring according to a dynamic mutation probability. To increase the capability of exploitation, a local search mechanism was applied to new individuals according to a dynamic probability of local search. Experimental results show that GEA outperformed the other three typical global optimization algorithms with which it was compared. PMID:27293421

  16. A Community Detection Algorithm Based on Topology Potential and Spectral Clustering

    PubMed Central

    Wang, Zhixiao; Chen, Zhaotong; Zhao, Ya; Chen, Shaoda

    2014-01-01

    Community detection is of great value for complex networks in understanding their inherent law and predicting their behavior. Spectral clustering algorithms have been successfully applied in community detection. This kind of methods has two inadequacies: one is that the input matrixes they used cannot provide sufficient structural information for community detection and the other is that they cannot necessarily derive the proper community number from the ladder distribution of eigenvector elements. In order to solve these problems, this paper puts forward a novel community detection algorithm based on topology potential and spectral clustering. The new algorithm constructs the normalized Laplacian matrix with nodes' topology potential, which contains rich structural information of the network. In addition, the new algorithm can automatically get the optimal community number from the local maximum potential nodes. Experiments results showed that the new algorithm gave excellent performance on artificial networks and real world networks and outperforms other community detection methods. PMID:25147846

  17. An improved image compression algorithm using binary space partition scheme and geometric wavelets.

    PubMed

    Chopra, Garima; Pal, A K

    2011-01-01

    Geometric wavelet is a recent development in the field of multivariate nonlinear piecewise polynomials approximation. The present study improves the geometric wavelet (GW) image coding method by using the slope intercept representation of the straight line in the binary space partition scheme. The performance of the proposed algorithm is compared with the wavelet transform-based compression methods such as the embedded zerotree wavelet (EZW), the set partitioning in hierarchical trees (SPIHT) and the embedded block coding with optimized truncation (EBCOT), and other recently developed "sparse geometric representation" based compression algorithms. The proposed image compression algorithm outperforms the EZW, the Bandelets and the GW algorithm. The presented algorithm reports a gain of 0.22 dB over the GW method at the compression ratio of 64 for the Cameraman test image.

  18. Simulations of optical autofocus algorithms based on PGA in SAIL

    NASA Astrophysics Data System (ADS)

    Xu, Nan; Liu, Liren; Xu, Qian; Zhou, Yu; Sun, Jianfeng

    2011-09-01

    The phase perturbations due to propagation effects can destroy the high resolution imagery of Synthetic Aperture Imaging Ladar (SAIL). Some autofocus algorithms for Synthetic Aperture Radar (SAR) were developed and implemented. Phase Gradient Algorithm (PGA) is a well-known one for its robustness and wide application, and Phase Curvature Algorithm (PCA) as a similar algorithm expands its applied field to strip map mode. In this paper the autofocus algorithms utilized in optical frequency domain are proposed, including optical PGA and PCA respectively implemented in spotlight and strip map mode. Firstly, the mathematical flows of optical PGA and PCA in SAIL are derived. The simulations model of the airborne SAIL is established, and the compensation simulations of the synthetic aperture laser images corrupted by the random errors, linear phase errors and quadratic phase errors are executed. The compensation effect and the cycle index of the simulation are discussed. The simulation results show that both the two optical autofocus algorithms are effective while the optical PGA outperforms the optical PCA, which keeps consistency with the theory.

  19. Parallel algorithm development

    SciTech Connect

    Adams, T.F.

    1996-06-01

    Rapid changes in parallel computing technology are causing significant changes in the strategies being used for parallel algorithm development. One approach is simply to write computer code in a standard language like FORTRAN 77 or with the expectation that the compiler will produce executable code that will run in parallel. The alternatives are: (1) to build explicit message passing directly into the source code; or (2) to write source code without explicit reference to message passing or parallelism, but use a general communications library to provide efficient parallel execution. Application of these strategies is illustrated with examples of codes currently under development.

  20. G/SPLINES: A hybrid of Friedman's Multivariate Adaptive Regression Splines (MARS) algorithm with Holland's genetic algorithm

    NASA Technical Reports Server (NTRS)

    Rogers, David

    1991-01-01

    G/SPLINES are a hybrid of Friedman's Multivariable Adaptive Regression Splines (MARS) algorithm with Holland's Genetic Algorithm. In this hybrid, the incremental search is replaced by a genetic search. The G/SPLINE algorithm exhibits performance comparable to that of the MARS algorithm, requires fewer least squares computations, and allows significantly larger problems to be considered.

  1. Semi-supervised clustering algorithm for haplotype assembly problem based on MEC model.

    PubMed

    Xu, Xin-Shun; Li, Ying-Xin

    2012-01-01

    Haplotype assembly is to infer a pair of haplotypes from localized polymorphism data. In this paper, a semi-supervised clustering algorithm-SSK (semi-supervised K-means) is proposed for it, which, to our knowledge, is the first semi-supervised clustering method for it. In SSK, some positive information is firstly extracted. The information is then used to help k-means to cluster all SNP fragments into two sets from which two haplotypes can be reconstructed. The performance of SSK is tested on both real data and simulated data. The results show that it outperforms several state-of-the-art algorithms on minimum error correction (MEC) model.

  2. The BR eigenvalue algorithm

    SciTech Connect

    Geist, G.A.; Howell, G.W.; Watkins, D.S.

    1997-11-01

    The BR algorithm, a new method for calculating the eigenvalues of an upper Hessenberg matrix, is introduced. It is a bulge-chasing algorithm like the QR algorithm, but, unlike the QR algorithm, it is well adapted to computing the eigenvalues of the narrowband, nearly tridiagonal matrices generated by the look-ahead Lanczos process. This paper describes the BR algorithm and gives numerical evidence that it works well in conjunction with the Lanczos process. On the biggest problems run so far, the BR algorithm beats the QR algorithm by a factor of 30--60 in computing time and a factor of over 100 in matrix storage space.

  3. Voronoi-based localisation algorithm for mobile sensor networks

    NASA Astrophysics Data System (ADS)

    Guan, Zixiao; Zhang, Yongtao; Zhang, Baihai; Dong, Lijing

    2016-11-01

    Localisation is an essential and important part in wireless sensor networks (WSNs). Many applications require location information. So far, there are less researchers studying on mobile sensor networks (MSNs) than static sensor networks (SSNs). However, MSNs are required in more and more areas such that the number of anchor nodes can be reduced and the location accuracy can be improved. In this paper, we firstly propose a range-free Voronoi-based Monte Carlo localisation algorithm (VMCL) for MSNs. We improve the localisation accuracy by making better use of the information that a sensor node gathers. Then, we propose an optimal region selection strategy of Voronoi diagram based on VMCL, called ORSS-VMCL, to increase the efficiency and accuracy for VMCL by adapting the size of Voronoi area during the filtering process. Simulation results show that the accuracy of these two algorithms, especially ORSS-VMCL, outperforms traditional MCL.

  4. An Affinity Propagation-Based DNA Motif Discovery Algorithm.

    PubMed

    Sun, Chunxiao; Huo, Hongwei; Yu, Qiang; Guo, Haitao; Sun, Zhigang

    2015-01-01

    The planted (l, d) motif search (PMS) is one of the fundamental problems in bioinformatics, which plays an important role in locating transcription factor binding sites (TFBSs) in DNA sequences. Nowadays, identifying weak motifs and reducing the effect of local optimum are still important but challenging tasks for motif discovery. To solve the tasks, we propose a new algorithm, APMotif, which first applies the Affinity Propagation (AP) clustering in DNA sequences to produce informative and good candidate motifs and then employs Expectation Maximization (EM) refinement to obtain the optimal motifs from the candidate motifs. Experimental results both on simulated data sets and real biological data sets show that APMotif usually outperforms four other widely used algorithms in terms of high prediction accuracy.

  5. Growth algorithms for lattice heteropolymers at low temperatures

    NASA Astrophysics Data System (ADS)

    Hsu, Hsiao-Ping; Mehra, Vishal; Nadler, Walter; Grassberger, Peter

    2003-01-01

    Two improved versions of the pruned-enriched-Rosenbluth method (PERM) are proposed and tested on simple models of lattice heteropolymers. Both are found to outperform not only the previous version of PERM, but also all other stochastic algorithms which have been employed on this problem, except for the core directed chain growth method (CG) of Beutler and Dill. In nearly all test cases they are faster in finding low-energy states, and in many cases they found new lowest energy states missed in previous papers. The CG method is superior to our method in some cases, but less efficient in others. On the other hand, the CG method uses heavily heuristics based on presumptions about the hydrophobic core and does not give thermodynamic properties, while the present method is a fully blind general purpose algorithm giving correct Boltzmann-Gibbs weights, and can be applied in principle to any stochastic sampling problem.

  6. Memetic algorithms for ligand expulsion from protein cavities

    NASA Astrophysics Data System (ADS)

    Rydzewski, J.; Nowak, W.

    2015-09-01

    Ligand diffusion through a protein interior is a fundamental process governing biological signaling and enzymatic catalysis. A complex topology of channels in proteins leads often to difficulties in modeling ligand escape pathways by classical molecular dynamics simulations. In this paper, two novel memetic methods for searching the exit paths and cavity space exploration are proposed: Memory Enhanced Random Acceleration (MERA) Molecular Dynamics (MD) and Immune Algorithm (IA). In MERA, a pheromone concept is introduced to optimize an expulsion force. In IA, hybrid learning protocols are exploited to predict ligand exit paths. They are tested on three protein channels with increasing complexity: M2 muscarinic G-protein-coupled receptor, enzyme nitrile hydratase, and heme-protein cytochrome P450cam. In these cases, the memetic methods outperform simulated annealing and random acceleration molecular dynamics. The proposed algorithms are general and appropriate in all problems where an accelerated transport of an object through a network of channels is studied.

  7. A vertical handoff decision algorithm based on ARMA prediction model

    NASA Astrophysics Data System (ADS)

    Li, Ru; Shen, Jiao; Chen, Jun; Liu, Qiuhuan

    2011-12-01

    With the development of computer technology and the increasing demand for mobile communications, the next generation wireless networks will be composed of various wireless networks (e.g., WiMAX and WiFi). Vertical handoff is a key technology of next generation wireless networks. During the vertical handoff procedure, handoff decision is a crucial issue for an efficient mobility. Based on auto regression moving average (ARMA) prediction model, we propose a vertical handoff decision algorithm, which aims to improve the performance of vertical handoff and avoid unnecessary handoff. Based on the current received signal strength (RSS) and the previous RSS, the proposed approach adopt ARMA model to predict the next RSS. And then according to the predicted RSS to determine whether trigger the link layer triggering event and complete vertical handoff. The simulation results indicate that the proposed algorithm outperforms the RSS-based scheme with a threshold in the performance of handoff and the number of handoff.

  8. A vertical handoff decision algorithm based on ARMA prediction model

    NASA Astrophysics Data System (ADS)

    Li, Ru; Shen, Jiao; Chen, Jun; Liu, Qiuhuan

    2012-01-01

    With the development of computer technology and the increasing demand for mobile communications, the next generation wireless networks will be composed of various wireless networks (e.g., WiMAX and WiFi). Vertical handoff is a key technology of next generation wireless networks. During the vertical handoff procedure, handoff decision is a crucial issue for an efficient mobility. Based on auto regression moving average (ARMA) prediction model, we propose a vertical handoff decision algorithm, which aims to improve the performance of vertical handoff and avoid unnecessary handoff. Based on the current received signal strength (RSS) and the previous RSS, the proposed approach adopt ARMA model to predict the next RSS. And then according to the predicted RSS to determine whether trigger the link layer triggering event and complete vertical handoff. The simulation results indicate that the proposed algorithm outperforms the RSS-based scheme with a threshold in the performance of handoff and the number of handoff.

  9. Split Bregman's algorithm for three-dimensional mesh segmentation

    NASA Astrophysics Data System (ADS)

    Habiba, Nabi; Ali, Douik

    2016-05-01

    Variational methods have attracted a lot of attention in the literature, especially for image and mesh segmentation. The methods aim at minimizing the energy to optimize both edge and region detections. We propose a spectral mesh decomposition algorithm to obtain disjoint but meaningful regions of an input mesh. The related optimization problem is nonconvex, and it is very difficult to find a good approximation or global optimum, which represents a challenge in computer vision. We propose an alternating split Bregman algorithm for mesh segmentation, where we extended the image-dedicated model to a three-dimensional (3-D) mesh one. By applying our scheme to 3-D mesh segmentation, we obtain fast solvers that can outperform various conventional ones, such as graph-cut and primal dual methods. A consistent evaluation of the proposed method on various public domain 3-D databases for different metrics is elaborated, and a comparison with the state-of-the-art is performed.

  10. Algorithms Bridging Quantum Computation and Chemistry

    NASA Astrophysics Data System (ADS)

    McClean, Jarrod Ryan

    The design of new materials and chemicals derived entirely from computation has long been a goal of computational chemistry, and the governing equation whose solution would permit this dream is known. Unfortunately, the exact solution to this equation has been far too expensive and clever approximations fail in critical situations. Quantum computers offer a novel solution to this problem. In this work, we develop not only new algorithms to use quantum computers to study hard problems in chemistry, but also explore how such algorithms can help us to better understand and improve our traditional approaches. In particular, we first introduce a new method, the variational quantum eigensolver, which is designed to maximally utilize the quantum resources available in a device to solve chemical problems. We apply this method in a real quantum photonic device in the lab to study the dissociation of the helium hydride (HeH+) molecule. We also enhance this methodology with architecture specific optimizations on ion trap computers and show how linear-scaling techniques from traditional quantum chemistry can be used to improve the outlook of similar algorithms on quantum computers. We then show how studying quantum algorithms such as these can be used to understand and enhance the development of classical algorithms. In particular we use a tool from adiabatic quantum computation, Feynman's Clock, to develop a new discrete time variational principle and further establish a connection between real-time quantum dynamics and ground state eigenvalue problems. We use these tools to develop two novel parallel-in-time quantum algorithms that outperform competitive algorithms as well as offer new insights into the connection between the fermion sign problem of ground states and the dynamical sign problem of quantum dynamics. Finally we use insights gained in the study of quantum circuits to explore a general notion of sparsity in many-body quantum systems. In particular we use

  11. Algorithm development for hyperspectral anomaly detection

    NASA Astrophysics Data System (ADS)

    Rosario, Dalton S.

    2008-10-01

    process, one can achieve a desirably low cumulative probability of taking target samples by chance and using them as background samples. This probability is modeled by the binomial distribution family, where the only target related parameter---the proportion of target pixels potentially covering the imagery---is shown to be robust. PRS requires a suitable scoring algorithm to compare samples, although applying PRS with the new two-step univariate detectors is shown to outperform existing multivariate detectors.

  12. A Bayesian algorithm for detecting differentially expressed proteins and its application in breast cancer research

    NASA Astrophysics Data System (ADS)

    Santra, Tapesh; Delatola, Eleni Ioanna

    2016-07-01

    Presence of considerable noise and missing data points make analysis of mass-spectrometry (MS) based proteomic data a challenging task. The missing values in MS data are caused by the inability of MS machines to reliably detect proteins whose abundances fall below the detection limit. We developed a Bayesian algorithm that exploits this knowledge and uses missing data points as a complementary source of information to the observed protein intensities in order to find differentially expressed proteins by analysing MS based proteomic data. We compared its accuracy with many other methods using several simulated datasets. It consistently outperformed other methods. We then used it to analyse proteomic screens of a breast cancer (BC) patient cohort. It revealed large differences between the proteomic landscapes of triple negative and Luminal A, which are the most and least aggressive types of BC. Unexpectedly, majority of these differences could be attributed to the direct transcriptional activity of only seven transcription factors some of which are known to be inactive in triple negative BC. We also identified two new proteins which significantly correlated with the survival of BC patients, and therefore may have potential diagnostic/prognostic values.

  13. A novel Iterative algorithm to text segmentation for web born-digital images

    NASA Astrophysics Data System (ADS)

    Xu, Zhigang; Zhu, Yuesheng; Sun, Ziqiang; Liu, Zhen

    2015-07-01

    Since web born-digital images have low resolution and dense text atoms, text region over-merging and miss detection are still two open issues to be addressed. In this paper a novel iterative algorithm is proposed to locate and segment text regions. In each iteration, the candidate text regions are generated by detecting Maximally Stable Extremal Region (MSER) with diminishing thresholds, and categorized into different groups based on a new similarity graph, and the texted region groups are identified by applying several features and rules. With our proposed overlap checking method the final well-segmented text regions are selected from these groups in all iterations. Experiments have been carried out on the web born-digital image datasets used for robust reading competition in ICDAR 2011 and 2013, and the results demonstrate that our proposed scheme can significantly reduce both the number of over-merge regions and the lost rate of target atoms, and the overall performance outperforms the best compared with the methods shown in the two competitions in term of recall rate and f-score at the cost of slightly higher computational complexity.

  14. Rayleigh-Rice Mixture Parameter Estimation via EM Algorithm for Change Detection in Multispectral Images.

    PubMed

    Zanetti, Massimo; Bovolo, Francesca; Bruzzone, Lorenzo

    2015-12-01

    The problem of estimating the parameters of a Rayleigh-Rice mixture density is often encountered in image analysis (e.g., remote sensing and medical image processing). In this paper, we address this general problem in the framework of change detection (CD) in multitemporal and multispectral images. One widely used approach to CD in multispectral images is based on the change vector analysis. Here, the distribution of the magnitude of the difference image can be theoretically modeled by a Rayleigh-Rice mixture density. However, given the complexity of this model, in applications, a Gaussian-mixture approximation is often considered, which may affect the CD results. In this paper, we present a novel technique for parameter estimation of the Rayleigh-Rice density that is based on a specific definition of the expectation-maximization algorithm. The proposed technique, which is characterized by good theoretical properties, iteratively updates the parameters and does not depend on specific optimization routines. Several numerical experiments on synthetic data demonstrate the effectiveness of the method, which is general and can be applied to any image processing problem involving the Rayleigh-Rice mixture density. In the CD context, the Rayleigh-Rice model (which is theoretically derived) outperforms other empirical models. Experiments on real multitemporal and multispectral remote sensing images confirm the validity of the model by returning significantly higher CD accuracies than those obtained by using the state-of-the-art approaches.

  15. CPU vs. GPU - Performance comparison for the Gram-Schmidt algorithm

    NASA Astrophysics Data System (ADS)

    Brandes, T.; Arnold, A.; Soddemann, T.; Reith, D.

    2012-08-01

    The Gram-Schmidt method is a classical method for determining QR decompositions, which is commonly used in many applications in computational physics, such as orthogonalization of quantum mechanical operators or Lyapunov stability analysis. In this paper, we discuss how well the Gram-Schmidt method performs on different hardware architectures, including both state-of-the-art GPUs and CPUs. We explain, in detail, how a smart interplay between hardware and software can be used to speed up those rather compute intensive applications as well as the benefits and disadvantages of several approaches. In addition, we compare some highly optimized standard routines of the BLAS libraries against our own optimized routines on both processor types. Particular attention was paid to the strong hierarchical memory of modern GPUs and CPUs, which requires cache-aware blocking techniques for optimal performance. Our investigations show that the performance strongly depends on the employed algorithm, compiler and a little less on the employed hardware. Remarkably, the performance of the NVIDIA CUDA BLAS routines improved significantly from CUDA 3.2 to CUDA 4.0. Still, BLAS routines tend to be slightly slower than manually optimized code on GPUs, while we were not able to outperform the BLAS routines on CPUs. Comparing optimized implementations on different hardware architectures, we find that a NVIDIA GeForce GTX580 GPU is about 50% faster than a corresponding Intel X5650 Westmere hexacore CPU. The self-written codes are included as supplementary material.

  16. Performance of a cavity-method-based algorithm for the prize-collecting Steiner tree problem on graphs

    NASA Astrophysics Data System (ADS)

    Biazzo, Indaco; Braunstein, Alfredo; Zecchina, Riccardo

    2012-08-01

    We study the behavior of an algorithm derived from the cavity method for the prize-collecting steiner tree (PCST) problem on graphs. The algorithm is based on the zero temperature limit of the cavity equations and as such is formally simple (a fixed point equation resolved by iteration) and distributed (parallelizable). We provide a detailed comparison with state-of-the-art algorithms on a wide range of existing benchmarks, networks, and random graphs. Specifically, we consider an enhanced derivative of the Goemans-Williamson heuristics and the dhea solver, a branch and cut integer linear programming based approach. The comparison shows that the cavity algorithm outperforms the two algorithms in most large instances both in running time and quality of the solution. Finally we prove a few optimality properties of the solutions provided by our algorithm, including optimality under the two postprocessing procedures defined in the Goemans-Williamson derivative and global optimality in some limit cases.

  17. Comparison of l₁-Norm SVR and Sparse Coding Algorithms for Linear Regression.

    PubMed

    Zhang, Qingtian; Hu, Xiaolin; Zhang, Bo

    2015-08-01

    Support vector regression (SVR) is a popular function estimation technique based on Vapnik's concept of support vector machine. Among many variants, the l1-norm SVR is known to be good at selecting useful features when the features are redundant. Sparse coding (SC) is a technique widely used in many areas and a number of efficient algorithms are available. Both l1-norm SVR and SC can be used for linear regression. In this brief, the close connection between the l1-norm SVR and SC is revealed and some typical algorithms are compared for linear regression. The results show that the SC algorithms outperform the Newton linear programming algorithm, an efficient l1-norm SVR algorithm, in efficiency. The algorithms are then used to design the radial basis function (RBF) neural networks. Experiments on some benchmark data sets demonstrate the high efficiency of the SC algorithms. In particular, one of the SC algorithms, the orthogonal matching pursuit is two orders of magnitude faster than a well-known RBF network designing algorithm, the orthogonal least squares algorithm.

  18. Uses of clinical algorithms.

    PubMed

    Margolis, C Z

    1983-02-04

    The clinical algorithm (flow chart) is a text format that is specially suited for representing a sequence of clinical decisions, for teaching clinical decision making, and for guiding patient care. A representative clinical algorithm is described in detail; five steps for writing an algorithm and seven steps for writing a set of algorithms are outlined. Five clinical education and patient care uses of algorithms are then discussed, including a map for teaching clinical decision making and protocol charts for guiding step-by-step care of specific problems. Clinical algorithms are compared as to their clinical usefulness with decision analysis. Three objections to clinical algorithms are answered, including the one that they restrict thinking. It is concluded that methods should be sought for writing clinical algorithms that represent expert consensus. A clinical algorithm could then be written for any area of medical decision making that can be standardized. Medical practice could then be taught more effectively, monitored accurately, and understood better.

  19. Significance of periodogram peaks

    NASA Astrophysics Data System (ADS)

    Süveges, Maria; Guy, Leanne; Zucker, Shay

    2016-10-01

    Three versions of significance measures or False Alarm Probabilities (FAPs) for periodogram peaks are presented and compared for sinusoidal and box-like signals, with specific application on large-scale surveys in mind.

  20. Object tracking algorithm based on contextual visual saliency

    NASA Astrophysics Data System (ADS)

    Fu, Bao; Peng, XianRong

    2016-09-01

    As to object tracking, the local context surrounding of the target could provide much effective information for getting a robust tracker. The spatial-temporal context (STC) learning algorithm proposed recently considers the information of the dense context around the target and has achieved a better performance. However STC only used image intensity as the object appearance model. But this appearance model not enough to deal with complicated tracking scenarios. In this paper, we propose a novel object appearance model learning algorithm. Our approach formulates the spatial-temporal relationships between the object of interest and its local context based on a Bayesian framework, which models the statistical correlation between high-level features (Circular-Multi-Block Local Binary Pattern) from the target and its surrounding regions. The tracking problem is posed by computing a visual saliency map, and obtaining the best target location by maximizing an object location likelihood function. Extensive experimental results on public benchmark databases show that our algorithm outperforms the original STC algorithm and other state-of-the-art tracking algorithms.

  1. An active noise control algorithm for controlling multiple sinusoids.

    PubMed

    Lee, S M; Lee, H J; Yoo, C H; Youn, D H; Cha, I W

    1998-07-01

    The filtered-x LMS algorithm and its modified versions have been successfully applied in suppressing acoustic noise such as single and multiple tones and broadband random noise. This paper presents an adaptive algorithm based on the filtered-x LMS algorithm which may be applied in attenuating tonal acoustic noise. In the proposed method, the weights of the adaptive filter and estimation of the phase shift due to the acoustic path from a loudspeaker to a microphone are computed simultaneously for optimal control. The algorithm possesses advantages over other filtered-x LMS approaches in three aspects: (1) each frequency component is processed separately using an adaptive filter with two coefficients, (2) the convergence parameter for each sinusoid can be selected independently, and (3) the computational load can be reduced by eliminating the convolution process required to obtain the filtered reference signal. Simulation results for a single-input/single-output (SISO) environment demonstrate that the proposed method is robust to the changes of the acoustic path between the actuator and the microphone and outperforms the filtered-x LMS algorithm in simplicity and convergence speed.

  2. Sort-Mid tasks scheduling algorithm in grid computing.

    PubMed

    Reda, Naglaa M; Tawfik, A; Marzok, Mohamed A; Khamis, Soheir M

    2015-11-01

    Scheduling tasks on heterogeneous resources distributed over a grid computing system is an NP-complete problem. The main aim for several researchers is to develop variant scheduling algorithms for achieving optimality, and they have shown a good performance for tasks scheduling regarding resources selection. However, using of the full power of resources is still a challenge. In this paper, a new heuristic algorithm called Sort-Mid is proposed. It aims to maximizing the utilization and minimizing the makespan. The new strategy of Sort-Mid algorithm is to find appropriate resources. The base step is to get the average value via sorting list of completion time of each task. Then, the maximum average is obtained. Finally, the task has the maximum average is allocated to the machine that has the minimum completion time. The allocated task is deleted and then, these steps are repeated until all tasks are allocated. Experimental tests show that the proposed algorithm outperforms almost other algorithms in terms of resources utilization and makespan.

  3. A run-based two-scan labeling algorithm.

    PubMed

    He, Lifeng; Chao, Yuyan; Suzuki, Kenji

    2008-05-01

    We present an efficient run-based two-scan algorithm for labeling connected components in a binary image. Unlike conventional label-equivalence-based algorithms, which resolve label equivalences between provisional labels, our algorithm resolves label equivalences between provisional label sets. At any time, all provisional labels that are assigned to a connected component are combined in a set, and the smallest label is used as the representative label. The corresponding relation of a provisional label and its representative label is recorded in a table. Whenever different connected components are found to be connected, all provisional label sets concerned with these connected components are merged together, and the smallest provisional label is taken as the representative label. When the first scan is finished, all provisional labels that were assigned to each connected component in the given image will have a unique representative label. During the second scan, we need only to replace each provisional label by its representative label. Experimental results on various types of images demonstrate that our algorithm outperforms all conventional labeling algorithms.

  4. Threshold extended ID3 algorithm

    NASA Astrophysics Data System (ADS)

    Kumar, A. B. Rajesh; Ramesh, C. Phani; Madhusudhan, E.; Padmavathamma, M.

    2012-04-01

    Information exchange over insecure networks needs to provide authentication and confidentiality to the database in significant problem in datamining. In this paper we propose a novel authenticated multiparty ID3 Algorithm used to construct multiparty secret sharing decision tree for implementation in medical transactions.

  5. Research on B Cell Algorithm for Learning to Rank Method Based on Parallel Strategy

    PubMed Central

    Tian, Yuling; Zhang, Hongxian

    2016-01-01

    For the purposes of information retrieval, users must find highly relevant documents from within a system (and often a quite large one comprised of many individual documents) based on input query. Ranking the documents according to their relevance within the system to meet user needs is a challenging endeavor, and a hot research topic–there already exist several rank-learning methods based on machine learning techniques which can generate ranking functions automatically. This paper proposes a parallel B cell algorithm, RankBCA, for rank learning which utilizes a clonal selection mechanism based on biological immunity. The novel algorithm is compared with traditional rank-learning algorithms through experimentation and shown to outperform the others in respect to accuracy, learning time, and convergence rate; taken together, the experimental results show that the proposed algorithm indeed effectively and rapidly identifies optimal ranking functions. PMID:27487242

  6. Optimizing the Shunting Schedule of Electric Multiple Units Depot Using an Enhanced Particle Swarm Optimization Algorithm

    PubMed Central

    Jin, Junchen

    2016-01-01

    The shunting schedule of electric multiple units depot (SSED) is one of the essential plans for high-speed train maintenance activities. This paper presents a 0-1 programming model to address the problem of determining an optimal SSED through automatic computing. The objective of the model is to minimize the number of shunting movements and the constraints include track occupation conflicts, shunting routes conflicts, time durations of maintenance processes, and shunting running time. An enhanced particle swarm optimization (EPSO) algorithm is proposed to solve the optimization problem. Finally, an empirical study from Shanghai South EMU Depot is carried out to illustrate the model and EPSO algorithm. The optimization results indicate that the proposed method is valid for the SSED problem and that the EPSO algorithm outperforms the traditional PSO algorithm on the aspect of optimality. PMID:27436998

  7. Optimizing the Shunting Schedule of Electric Multiple Units Depot Using an Enhanced Particle Swarm Optimization Algorithm.

    PubMed

    Wang, Jiaxi; Lin, Boliang; Jin, Junchen

    2016-01-01

    The shunting schedule of electric multiple units depot (SSED) is one of the essential plans for high-speed train maintenance activities. This paper presents a 0-1 programming model to address the problem of determining an optimal SSED through automatic computing. The objective of the model is to minimize the number of shunting movements and the constraints include track occupation conflicts, shunting routes conflicts, time durations of maintenance processes, and shunting running time. An enhanced particle swarm optimization (EPSO) algorithm is proposed to solve the optimization problem. Finally, an empirical study from Shanghai South EMU Depot is carried out to illustrate the model and EPSO algorithm. The optimization results indicate that the proposed method is valid for the SSED problem and that the EPSO algorithm outperforms the traditional PSO algorithm on the aspect of optimality.

  8. Automatic Regionalization Algorithm for Distributed State Estimation in Power Systems: Preprint

    SciTech Connect

    Wang, Dexin; Yang, Liuqing; Florita, Anthony; Alam, S.M. Shafiul; Elgindy, Tarek; Hodge, Bri-Mathias

    2016-08-01

    The deregulation of the power system and the incorporation of generation from renewable energy sources recessitates faster state estimation in the smart grid. Distributed state estimation (DSE) has become a promising and scalable solution to this urgent demand. In this paper, we investigate the regionalization algorithms for the power system, a necessary step before distributed state estimation can be performed. To the best of the authors' knowledge, this is the first investigation on automatic regionalization (AR). We propose three spectral clustering based AR algorithms. Simulations show that our proposed algorithms outperform the two investigated manual regionalization cases. With the help of AR algorithms, we also show how the number of regions impacts the accuracy and convergence speed of the DSE and conclude that the number of regions needs to be chosen carefully to improve the convergence speed of DSEs.

  9. A High-Performance Neural Prosthesis Enabled by Control Algorithm Design

    PubMed Central

    Gilja, Vikash; Nuyujukian, Paul; Chestek, Cindy A.; Cunningham, John P.; Yu, Byron M.; Fan, Joline M.; Churchland, Mark M.; Kaufman, Matthew T.; Kao, Jonathan C.; Ryu, Stephen I.; Shenoy, Krishna V.

    2012-01-01

    Neural prostheses translate neural activity from the brain into control signals for guiding prosthetic devices, such as computer cursors and robotic limbs, and thus offer disabled patients greater interaction with the world. However, relatively low performance remains a critical barrier to successful clinical translation; current neural prostheses are considerably slower with less accurate control than the native arm. Here we present a new control algorithm, the recalibrated feedback intention-trained Kalman filter (ReFIT-KF), that incorporates assumptions about the nature of closed loop neural prosthetic control. When tested with rhesus monkeys implanted with motor cortical electrode arrays, the ReFIT-KF algorithm outperforms existing neural prostheses in all measured domains and halves acquisition time. This control algorithm permits sustained uninterrupted use for hours and generalizes to more challenging tasks without retraining. Using this algorithm, we demonstrate repeatable high performance for years after implantation across two monkeys, thereby increasing the clinical viability of neural prostheses. PMID:23160043

  10. Design and Implementation of Broadcast Algorithms for Extreme-Scale Systems

    SciTech Connect

    Shamis, Pavel; Graham, Richard L; Gorentla Venkata, Manjunath; Ladd, Joshua

    2011-01-01

    The scalability and performance of collective communication operations limit the scalability and performance of many scientific applications. This paper presents two new blocking and nonblocking Broadcast algorithms for communicators with arbitrary communication topology, and studies their performance. These algorithms benefit from increased concurrency and a reduced memory footprint, making them suitable for use on large-scale systems. Measuring small, medium, and large data Broadcasts on a Cray-XT5, using 24,576 MPI processes, the Cheetah algorithms outperform the native MPI on that system by 51%, 69%, and 9%, respectively, at the same process count. These results demonstrate an algorithmic approach to the implementation of the important class of collective communications, which is high performing, scalable, and also uses resources in a scalable manner.

  11. A swarm intelligence based memetic algorithm for task allocation in distributed systems

    NASA Astrophysics Data System (ADS)

    Sarvizadeh, Raheleh; Haghi Kashani, Mostafa

    2012-01-01

    This paper proposes a Swarm Intelligence based Memetic algorithm for Task Allocation and scheduling in distributed systems. The tasks scheduling in distributed systems is known as an NP-complete problem. Hence, many genetic algorithms have been proposed for searching optimal solutions from entire solution space. However, these existing approaches are going to scan the entire solution space without considering the techniques that can reduce the complexity of the optimization. Spending too much time for doing scheduling is considered the main shortcoming of these approaches. Therefore, in this paper memetic algorithm has been used to cope with this shortcoming. With regard to load balancing efficiently, Bee Colony Optimization (BCO) has been applied as local search in the proposed memetic algorithm. Extended experimental results demonstrated that the proposed method outperformed the existing GA-based method in terms of CPU utilization.

  12. A swarm intelligence based memetic algorithm for task allocation in distributed systems

    NASA Astrophysics Data System (ADS)

    Sarvizadeh, Raheleh; Haghi Kashani, Mostafa

    2011-12-01

    This paper proposes a Swarm Intelligence based Memetic algorithm for Task Allocation and scheduling in distributed systems. The tasks scheduling in distributed systems is known as an NP-complete problem. Hence, many genetic algorithms have been proposed for searching optimal solutions from entire solution space. However, these existing approaches are going to scan the entire solution space without considering the techniques that can reduce the complexity of the optimization. Spending too much time for doing scheduling is considered the main shortcoming of these approaches. Therefore, in this paper memetic algorithm has been used to cope with this shortcoming. With regard to load balancing efficiently, Bee Colony Optimization (BCO) has been applied as local search in the proposed memetic algorithm. Extended experimental results demonstrated that the proposed method outperformed the existing GA-based method in terms of CPU utilization.

  13. Statistical Significance Testing.

    ERIC Educational Resources Information Center

    McLean, James E., Ed.; Kaufman, Alan S., Ed.

    1998-01-01

    The controversy about the use or misuse of statistical significance testing has become the major methodological issue in educational research. This special issue contains three articles that explore the controversy, three commentaries on these articles, an overall response, and three rejoinders by the first three authors. They are: (1)…

  14. Significance of brown dwarfs

    NASA Technical Reports Server (NTRS)

    Black, D. C.

    1986-01-01

    The significance of brown dwarfs for resolving some major problems in astronomy is discussed. The importance of brown dwarfs for models of star formation by fragmentation of molecular clouds and for obtaining independent measurements of the ages of stars in binary systems is addressed. The relationship of brown dwarfs to planets is considered.

  15. Adaptive-feedback control algorithm.

    PubMed

    Huang, Debin

    2006-06-01

    This paper is motivated by giving the detailed proofs and some interesting remarks on the results the author obtained in a series of papers [Phys. Rev. Lett. 93, 214101 (2004); Phys. Rev. E 71, 037203 (2005); 69, 067201 (2004)], where an adaptive-feedback algorithm was proposed to effectively stabilize and synchronize chaotic systems. This note proves in detail the strictness of this algorithm from the viewpoint of mathematics, and gives some interesting remarks for its potential applications to chaos control & synchronization. In addition, a significant comment on synchronization-based parameter estimation is given, which shows some techniques proposed in literature less strict and ineffective in some cases.

  16. Adaboost face detector based on Joint Integral Histogram and Genetic Algorithms for feature extraction process.

    PubMed

    Jammoussi, Ameni Yangui; Ghribi, Sameh Fakhfakh; Masmoudi, Dorra Sellami

    2014-01-01

    Recently, many classes of objects can be efficiently detected by the way of machine learning techniques. In practice, boosting techniques are among the most widely used machine learning for various reasons. This is mainly due to low false positive rate of the cascade structure offering the possibility to be trained by different classes of object. However, it is especially used for face detection since it is the most popular sub-problem within object detection. The challenges of Adaboost based face detector include the selection of the most relevant features from a large feature set which are considered as weak classifiers. In many scenarios, however, selection of features based on lowering classification errors leads to computation complexity and excess of memory use. In this work, we propose a new method to train an effective detector by discarding redundant weak classifiers while achieving the pre-determined learning objective. To achieve this, on the one hand, we modify AdaBoost training so that the feature selection process is not based any more on the weak learner's training error. This is by incorporating the Genetic Algorithm (GA) on the training process. On the other hand, we make use of the Joint Integral Histogram in order to extract more powerful features. Experimental performance on human faces show that our proposed method requires smaller number of weak classifiers than the conventional learning algorithm, resulting in higher learning and faster classification rates. So, our method outperforms significantly state-of-the-art cascade methods in terms of detection rate and false positive rate and especially in reducing the number of weak classifiers per stage.

  17. Evaluation of the OSC-TV iterative reconstruction algorithm for cone-beam optical CT

    SciTech Connect

    Matenine, Dmitri Mascolo-Fortin, Julia; Goussard, Yves

    2015-11-15

    Purpose: The present work evaluates an iterative reconstruction approach, namely, the ordered subsets convex (OSC) algorithm with regularization via total variation (TV) minimization in the field of cone-beam optical computed tomography (optical CT). One of the uses of optical CT is gel-based 3D dosimetry for radiation therapy, where it is employed to map dose distributions in radiosensitive gels. Model-based iterative reconstruction may improve optical CT image quality and contribute to a wider use of optical CT in clinical gel dosimetry. Methods: This algorithm was evaluated using experimental data acquired by a cone-beam optical CT system, as well as complementary numerical simulations. A fast GPU implementation of OSC-TV was used to achieve reconstruction times comparable to those of conventional filtered backprojection. Images obtained via OSC-TV were compared with the corresponding filtered backprojections. Spatial resolution and uniformity phantoms were scanned and respective reconstructions were subject to evaluation of the modulation transfer function, image uniformity, and accuracy. The artifacts due to refraction and total signal loss from opaque objects were also studied. Results: The cone-beam optical CT data reconstructions showed that OSC-TV outperforms filtered backprojection in terms of image quality, thanks to a model-based simulation of the photon attenuation process. It was shown to significantly improve the image spatial resolution and reduce image noise. The accuracy of the estimation of linear attenuation coefficients remained similar to that obtained via filtered backprojection. Certain image artifacts due to opaque objects were reduced. Nevertheless, the common artifact due to the gel container walls could not be eliminated. Conclusions: The use of iterative reconstruction improves cone-beam optical CT image quality in many ways. The comparisons between OSC-TV and filtered backprojection presented in this paper demonstrate that OSC-TV can

  18. Software For Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Bayer, Steve E.

    1992-01-01

    SPLICER computer program is genetic-algorithm software tool used to solve search and optimization problems. Provides underlying framework and structure for building genetic-algorithm application program. Written in Think C.

  19. Algorithm-development activities

    NASA Technical Reports Server (NTRS)

    Carder, Kendall L.

    1994-01-01

    The task of algorithm-development activities at USF continues. The algorithm for determining chlorophyll alpha concentration, (Chl alpha) and gelbstoff absorption coefficient for SeaWiFS and MODIS-N radiance data is our current priority.

  20. Automatic control algorithm effects on energy production

    NASA Technical Reports Server (NTRS)

    Mcnerney, G. M.

    1981-01-01

    A computer model was developed using actual wind time series and turbine performance data to simulate the power produced by the Sandia 17-m VAWT operating in automatic control. The model was used to investigate the influence of starting algorithms on annual energy production. The results indicate that, depending on turbine and local wind characteristics, a bad choice of a control algorithm can significantly reduce overall energy production. The model can be used to select control algorithms and threshold parameters that maximize long term energy production. The results from local site and turbine characteristics were generalized to obtain general guidelines for control algorithm design.

  1. Accurate Finite Difference Algorithms

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1996-01-01

    Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.

  2. INSENS classification algorithm report

    SciTech Connect

    Hernandez, J.E.; Frerking, C.J.; Myers, D.W.

    1993-07-28

    This report describes a new algorithm developed for the Imigration and Naturalization Service (INS) in support of the INSENS project for classifying vehicles and pedestrians using seismic data. This algorithm is less sensitive to nuisance alarms due to environmental events than the previous algorithm. Furthermore, the algorithm is simple enough that it can be implemented in the 8-bit microprocessor used in the INSENS system.

  3. Composite Defect Significance.

    DTIC Science & Technology

    1982-07-13

    A12i 299 COMPOSITE DEFECT SIGNIFICANCE(U) MATERIALS SCIENCES 1/1 \\ CORP SPRING HOUSE PA S N CHATTERJEE ET AL. 13 JUL 82 MSC/TFR/1288/il87 NADC-80848...Directorate 30 Sensors & Avionics Technology Directorate 40 Communication & Navigation Technology Directorate 50 Software Computer Directorate 60 Aircraft ...instructions concerning commercial products herein do not constitute an endorsement by the Government nor do they convey or imply the license or right to use

  4. Significant Tsunami Events

    NASA Astrophysics Data System (ADS)

    Dunbar, P. K.; Furtney, M.; McLean, S. J.; Sweeney, A. D.

    2014-12-01

    Tsunamis have inflicted death and destruction on the coastlines of the world throughout history. The occurrence of tsunamis and the resulting effects have been collected and studied as far back as the second millennium B.C. The knowledge gained from cataloging and examining these events has led to significant changes in our understanding of tsunamis, tsunami sources, and methods to mitigate the effects of tsunamis. The most significant, not surprisingly, are often the most devastating, such as the 2011 Tohoku, Japan earthquake and tsunami. The goal of this poster is to give a brief overview of the occurrence of tsunamis and then focus specifically on several significant tsunamis. There are various criteria to determine the most significant tsunamis: the number of deaths, amount of damage, maximum runup height, had a major impact on tsunami science or policy, etc. As a result, descriptions will include some of the most costly (2011 Tohoku, Japan), the most deadly (2004 Sumatra, 1883 Krakatau), and the highest runup ever observed (1958 Lituya Bay, Alaska). The discovery of the Cascadia subduction zone as the source of the 1700 Japanese "Orphan" tsunami and a future tsunami threat to the U.S. northwest coast, contributed to the decision to form the U.S. National Tsunami Hazard Mitigation Program. The great Lisbon earthquake of 1755 marked the beginning of the modern era of seismology. Knowledge gained from the 1964 Alaska earthquake and tsunami helped confirm the theory of plate tectonics. The 1946 Alaska, 1952 Kuril Islands, 1960 Chile, 1964 Alaska, and the 2004 Banda Aceh, tsunamis all resulted in warning centers or systems being established.The data descriptions on this poster were extracted from NOAA's National Geophysical Data Center (NGDC) global historical tsunami database. Additional information about these tsunamis, as well as water level data can be found by accessing the NGDC website www.ngdc.noaa.gov/hazard/

  5. Visualizing output for a data learning algorithm

    NASA Astrophysics Data System (ADS)

    Carson, Daniel; Graham, James; Ternovskiy, Igor

    2016-05-01

    This paper details the process we went through to visualize the output for our data learning algorithm. We have been developing a hierarchical self-structuring learning algorithm based around the general principles of the LaRue model. One example of a proposed application of this algorithm would be traffic analysis, chosen because it is conceptually easy to follow and there is a significant amount of already existing data and related research material with which to work with. While we choose the tracking of vehicles for our initial approach, it is by no means the only target of our algorithm. Flexibility is the end goal, however, we still need somewhere to start. To that end, this paper details our creation of the visualization GUI for our algorithm, the features we included and the initial results we obtained from our algorithm running a few of the traffic based scenarios we designed.

  6. Clustering algorithm studies

    NASA Astrophysics Data System (ADS)

    Graf, Norman A.

    2001-07-01

    An object-oriented framework for undertaking clustering algorithm studies has been developed. We present here the definitions for the abstract Cells and Clusters as well as the interface for the algorithm. We intend to use this framework to investigate the interplay between various clustering algorithms and the resulting jet reconstruction efficiency and energy resolutions to assist in the design of the calorimeter detector.

  7. An Autonomous Star Identification Algorithm Based on One-Dimensional Vector Pattern for Star Sensors.

    PubMed

    Luo, Liyan; Xu, Luping; Zhang, Hua

    2015-07-07

    In order to enhance the robustness and accelerate the recognition speed of star identification, an autonomous star identification algorithm for star sensors is proposed based on the one-dimensional vector pattern (one_DVP). In the proposed algorithm, the space geometry information of the observed stars is used to form the one-dimensional vector pattern of the observed star. The one-dimensional vector pattern of the same observed star remains unchanged when the stellar image rotates, so the problem of star identification is simplified as the comparison of the two feature vectors. The one-dimensional vector pattern is adopted to build the feature vector of the star pattern, which makes it possible to identify the observed stars robustly. The characteristics of the feature vector and the proposed search strategy for the matching pattern make it possible to achieve the recognition result as quickly as possible. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition accuracy and robustness by the proposed algorithm are better than those by the pyramid algorithm, the modified grid algorithm, and the LPT algorithm. The theoretical analysis and experimental results show that the proposed algorithm outperforms the other three star identification algorithms.

  8. Enhanced probability-selection artificial bee colony algorithm for economic load dispatch: A comprehensive analysis

    NASA Astrophysics Data System (ADS)

    Ghani Abro, Abdul; Mohamad-Saleh, Junita

    2014-10-01

    The prime motive of economic load dispatch (ELD) is to optimize the production cost of electrical power generation through appropriate division of load demand among online generating units. Bio-inspired optimization algorithms have outperformed classical techniques for optimizing the production cost. Probability-selection artificial bee colony (PS-ABC) algorithm is a recently proposed variant of ABC optimization algorithm. PS-ABC generates optimal solutions using three different mutation equations simultaneously. The results show improved performance of PS-ABC over the ABC algorithm. Nevertheless, all the mutation equations of PS-ABC are excessively self-reinforced and, hence, PS-ABC is prone to premature convergence. Therefore, this research work has replaced the mutation equations and has improved the scout-bee stage of PS-ABC for enhancing the algorithm's performance. The proposed algorithm has been compared with many ABC variants and numerous other optimization algorithms on benchmark functions and ELD test cases. The adapted ELD test cases comprise of transmission losses, multiple-fuel effect, valve-point effect and toxic gases emission constraints. The results reveal that the proposed algorithm has the best capability to yield the optimal solution for the problem among the compared algorithms.

  9. Insomnia brings soldiers into mental health treatment, predicts treatment engagement, and outperforms other suicide-related symptoms as a predictor of major depressive episodes.

    PubMed

    Hom, Melanie A; Lim, Ingrid C; Stanley, Ian H; Chiurliza, Bruno; Podlogar, Matthew C; Michaels, Matthew S; Buchman-Schmitt, Jennifer M; Silva, Caroline; Ribeiro, Jessica D; Joiner, Thomas E

    2016-08-01

    Given the high rates of suicide among military personnel and the need to characterize suicide risk factors associated with mental health service use, this study aimed to identify suicide-relevant factors that predict: (1) treatment engagement and treatment adherence, and (2) suicide attempts, suicidal ideation, and major depressive episodes in a military sample. Army recruiters (N = 2596) completed a battery of self-report measures upon study enrollment. Eighteen months later, information regarding suicide attempts, suicidal ideation, major depressive episodes, and mental health visits were obtained from participants' military medical records. Suicide attempts and suicidal ideation were very rare in this sample; negative binomial regression analyses with robust estimation were used to assess correlates and predictors of mental health treatment visits and major depressive episodes. More severe insomnia and agitation were significantly associated with mental health visits at baseline and over the 18-month study period. In contrast, suicide-specific hopelessness was significantly associated with fewer mental health visits. Insomnia severity was the only significant predictor of major depressive episodes. Findings suggest that assessment of sleep problems might be useful in identifying at-risk military service members who may engage in mental health treatment. Additional research is warranted to examine the predictive validity of these suicide-related symptom measures in a more representative, higher suicide risk military sample.

  10. A replica exchange Monte Carlo algorithm for protein folding in the HP model

    PubMed Central

    Thachuk, Chris; Shmygelska, Alena; Hoos, Holger H

    2007-01-01

    Background The ab initio protein folding problem consists of predicting protein tertiary structure from a given amino acid sequence by minimizing an energy function; it is one of the most important and challenging problems in biochemistry, molecular biology and biophysics. The ab initio protein folding problem is computationally challenging and has been shown to be NP MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaat0uy0HwzTfgDPnwy1egaryqtHrhAL1wy0L2yHvdaiqaacqWFneVtcqqGqbauaaa@3961@-hard even when conformations are restricted to a lattice. In this work, we implement and evaluate the replica exchange Monte Carlo (REMC) method, which has already been applied very successfully to more complex protein models and other optimization problems with complex energy landscapes, in combination with the highly effective pull move neighbourhood in two widely studied Hydrophobic Polar (HP) lattice models. Results We demonstrate that REMC is highly effective for solving instances of the square (2D) and cubic (3D) HP protein folding problem. When using the pull move neighbourhood, REMC outperforms current state-of-the-art algorithms for most benchmark instances. Additionally, we show that this new algorithm provides a larger ensemble of ground-state structures than the existing state-of-the-art methods. Furthermore, it scales well with sequence length, and it finds significantly better conformations on long biological sequences and sequences with a provably unique ground-state structure, which is believed to be a characteristic of real proteins. We also present evidence that our REMC algorithm can fold sequences which exhibit significant interaction between termini in the hydrophobic core relatively easily. Conclusion We demonstrate that REMC utilizing the pull move neighbourhood

  11. Transient protein-protein interface prediction: datasets, features, algorithms, and the RAD-T predictor

    PubMed Central

    2014-01-01

    Background Transient protein-protein interactions (PPIs), which underly most biological processes, are a prime target for therapeutic development. Immense progress has been made towards computational prediction of PPIs using methods such as protein docking and sequence analysis. However, docking generally requires high resolution structures of both of the binding partners and sequence analysis requires that a significant number of recurrent patterns exist for the identification of a potential binding site. Researchers have turned to machine learning to overcome some of the other methods’ restrictions by generalising interface sites with sets of descriptive features. Best practices for dataset generation, features, and learning algorithms have not yet been identified or agreed upon, and an analysis of the overall efficacy of machine learning based PPI predictors is due, in order to highlight potential areas for improvement. Results The presence of unknown interaction sites as a result of limited knowledge about protein interactions in the testing set dramatically reduces prediction accuracy. Greater accuracy in labelling the data by enforcing higher interface site rates per domain resulted in an average 44% improvement across multiple machine learning algorithms. A set of 10 biologically unrelated proteins that were consistently predicted on with high accuracy emerged through our analysis. We identify seven features with the most predictive power over multiple datasets and machine learning algorithms. Through our analysis, we created a new predictor, RAD-T, that outperforms existing non-structurally specializing machine learning protein interface predictors, with an average 59% increase in MCC score on a dataset with a high number of interactions. Conclusion Current methods of evaluating machine-learning based PPI predictors tend to undervalue their performance, which may be artificially decreased by the presence of un-identified interaction sites. Changes to

  12. Efficient algorithms for future aircraft design: Contributions to aerodynamic shape optimization

    NASA Astrophysics Data System (ADS)

    Hicken, Jason Edward

    Advances in numerical optimization have raised the possibility that efficient and novel aircraft configurations may be "discovered" by an algorithm. To begin exploring this possibility, a fast and robust set of tools for aerodynamic shape optimization is developed. Parameterization and mesh-movement are integrated to accommodate large changes in the geometry. This integrated approach uses a coarse B-spline control grid to represent the geometry and move the computational mesh; consequently, the mesh-movement algorithm is two to three orders faster than a node-based linear elasticity approach, without compromising mesh quality. Aerodynamic analysis is performed using a flow solver for the Euler equations. The governing equations are discretized using summation-by-parts finite-difference operators and simultaneous approximation terms, which permit C0 mesh continuity at block interfaces. The discretization results in a set of nonlinear algebraic equations, which are solved using an efficient parallel Newton-Krylov-Schur strategy. A gradient-based optimization algorithm is adopted. The gradient is evaluated using adjoint variables for the flow and mesh equations in a sequential approach. The flow adjoint equations are solved using a novel variant of the Krylov solver GCROT. This variant of GCROT is flexible to take advantage of non-stationary preconditioners and is shown to outperform restarted flexible GMRES. The aerodynamic optimizer is applied to several studies of induced-drag minimization. An elliptical lift distribution is recovered by varying spanwise twist, thereby validating the algorithm. Planform optimization based on the Euler equations produces a nonelliptical lift distribution, in contrast with the predictions of lifting-line theory. A study of spanwise vertical shape optimization confirms that a winglet-up configuration is more efficient than a winglet-down configuration. A split-tip geometry is used to explore nonlinear wake-wing interactions: the

  13. Exact significance test for Markov order

    NASA Astrophysics Data System (ADS)

    Pethel, S. D.; Hahs, D. W.

    2014-02-01

    We describe an exact significance test of the null hypothesis that a Markov chain is nth order. The procedure utilizes surrogate data to yield an exact test statistic distribution valid for any sample size. Surrogate data are generated using a novel algorithm that guarantees, per shot, a uniform sampling from the set of sequences that exactly match the nth order properties of the observed data. Using the test, the Markov order of Tel Aviv rainfall data is examined.

  14. Evaluating Varied Label Designs for Use with Medical Devices: Optimized Labels Outperform Existing Labels in the Correct Selection of Devices and Time to Select

    PubMed Central

    Seo, Do Chan; Ladoni, Moslem; Brunk, Eric; Becker, Mark W.

    2016-01-01

    Purpose Effective standardization of medical device labels requires objective study of varied designs. Insufficient empirical evidence exists regarding how practitioners utilize and view labeling. Objective Measure the effect of graphic elements (boxing information, grouping information, symbol use and color-coding) to optimize a label for comparison with those typical of commercial medical devices. Design Participants viewed 54 trials on a computer screen. Trials were comprised of two labels that were identical with regard to graphics, but differed in one aspect of information (e.g., one had latex, the other did not). Participants were instructed to select the label along a given criteria (e.g., latex containing) as quickly as possible. Dependent variables were binary (correct selection) and continuous (time to correct selection). Participants Eighty-nine healthcare professionals were recruited at Association of Surgical Technologists (AST) conferences, and using a targeted e-mail of AST members. Results Symbol presence, color coding and grouping critical pieces of information all significantly improved selection rates and sped time to correct selection (α = 0.05). Conversely, when critical information was graphically boxed, probability of correct selection and time to selection were impaired (α = 0.05). Subsequently, responses from trials containing optimal treatments (color coded, critical information grouped with symbols) were compared to two labels created based on a review of those commercially available. Optimal labels yielded a significant positive benefit regarding the probability of correct choice ((P<0.0001) LSM; UCL, LCL: 97.3%; 98.4%, 95.5%)), as compared to the two labels we created based on commercial designs (92.0%; 94.7%, 87.9% and 89.8%; 93.0%, 85.3%) and time to selection. Conclusions Our study provides data regarding design factors, namely: color coding, symbol use and grouping of critical information that can be used to significantly enhance

  15. Support vector inductive logic programming outperforms the naive Bayes classifier and inductive logic programming for the classification of bioactive chemical compounds

    NASA Astrophysics Data System (ADS)

    Cannon, Edward O.; Amini, Ata; Bender, Andreas; Sternberg, Michael J. E.; Muggleton, Stephen H.; Glen, Robert C.; Mitchell, John B. O.

    2007-05-01

    We investigate the classification performance of circular fingerprints in combination with the Naive Bayes Classifier (MP2D), Inductive Logic Programming (ILP) and Support Vector Inductive Logic Programming (SVILP) on a standard molecular benchmark dataset comprising 11 activity classes and about 102,000 structures. The Naive Bayes Classifier treats features independently while ILP combines structural fragments, and then creates new features with higher predictive power. SVILP is a very recently presented method which adds a support vector machine after common ILP procedures. The performance of the methods is evaluated via a number of statistical measures, namely recall, specificity, precision, F-measure, Matthews Correlation Coefficient, area under the Receiver Operating Characteristic (ROC) curve and enrichment factor (EF). According to the F-measure, which takes both recall and precision into account, SVILP is for seven out of the 11 classes the superior method. The results show that the Bayes Classifier gives the best recall performance for eight of the 11 targets, but has a much lower precision, specificity and F-measure. The SVILP model on the other hand has the highest recall for only three of the 11 classes, but generally far superior specificity and precision. To evaluate the statistical significance of the SVILP superiority, we employ McNemar's test which shows that SVILP performs significantly ( p < 5%) better than both other methods for six out of 11 activity classes, while being superior with less significance for three of the remaining classes. While previously the Bayes Classifier was shown to perform very well in molecular classification studies, these results suggest that SVILP is able to extract additional knowledge from the data, thus improving classification results further.

  16. Does body mass index outperform body weight as a surrogate parameter in the calculation of size-specific dose estimates in adult body CT?

    PubMed Central

    Lanzman, Rotem S; Heusch, Philipp; Aissa, Joel; Schleich, Christoph; Thomas, Christoph; Sawicki, Lino M; Antoch, Gerald; Kröpil, Patric

    2016-01-01

    Objective: To assess the value of body mass index (BMI) in comparison with body weight as a surrogate parameter for the calculation of size-specific dose estimates (SSDEs) in thoracoabdominal CT. Methods: 401 CT examinations in 235 patients (196 chest, 205 abdomen; 95 females, 140 males; age 62.5 ± 15.0 years) were analysed in regard to weight, height and BMI (kg m−2). Effective diameter (Deff, cm) was assessed on axial CT images. The correlation between BMI, weight and Deff was calculated. SSDEs were calculated based on Deff, weight and BMI and lookup tables were developed. Results: Overall height, weight, BMI and Deff were 172.5 ± 9.9 cm, 79.5 ± 19.1 kg, 26.6 ± 5.6 kg m−2 and 30.1 ± 4.3 cm, respectively. There was a significant correlation between Deff and BMI as well as weight (r = 0.85 and r = 0.84; p < 0.05, respectively). Correlation was significantly better for BMI in abdominal CT (r = 0.89 vs r = 0.84; p < 0.05), whereas it was better for weight in chest CT (r = 0.87 vs r = 0.81; p < 0.05). Surrogated SSDEs did not differ significantly from the reference standard with a median absolute relative difference of 4.2% per patient (interquartile range 25–75: 3.1–7.89, range 0–25.3%). Conclusion: BMI and weight exhibit a significant correlation with Deff in adult patients and can be used as surrogates in the calculation of SSDEs. Using the herein-developed lookup charts, SSDEs can be calculated based on patients' weight and BMI. Advances in knowledge: In abdominal CT, BMI has a superior correlation with effective diameter compared with weight, whereas weight is superior in chest CT. Patients' BMI and weight can be used as surrogates in the calculation of SSDEs. PMID:26693878

  17. DNA genetic artificial fish swarm constant modulus blind equalization algorithm and its application in medical image processing.

    PubMed

    Guo, Y C; Wang, H; Zhang, B L

    2015-10-02

    This study proposes use of the DNA genetic artificial fish swarm constant modulus blind equalization algorithm (DNA-G-AFS-CMBEA) to overcome the local convergence of the CMBEA. In this proposed algorithm, after the fusion of the fast convergence of the AFS algorithm and the global search capability of the DNA-G algorithm to drastically optimize the position vector of the artificial fish, the global optimal position vector is obtained and used as the initial optimal weight vector of the CMBEA. The result of application of this improved method in medical image processing demonstrates that the proposed algorithm outperforms the CMBEA and the AFS-CMBEA in removing the noise in a medical image and improving the peak signal to noise ratio.

  18. Enhancing Artificial Bee Colony Algorithm with Self-Adaptive Searching Strategy and Artificial Immune Network Operators for Global Optimization

    PubMed Central

    Chen, Tinggui; Xiao, Renbin

    2014-01-01

    Artificial bee colony (ABC) algorithm, inspired by the intelligent foraging behavior of honey bees, was proposed by Karaboga. It has been shown to be superior to some conventional intelligent algorithms such as genetic algorithm (GA), artificial colony optimization (ACO), and particle swarm optimization (PSO). However, the ABC still has some limitations. For example, ABC can easily get trapped in the local optimum when handing in functions that have a narrow curving valley, a high eccentric ellipse, or complex multimodal functions. As a result, we proposed an enhanced ABC algorithm called EABC by introducing self-adaptive searching strategy and artificial immune network operators to improve the exploitation and exploration. The simulation results tested on a suite of unimodal or multimodal benchmark functions illustrate that the EABC algorithm outperforms ACO, PSO, and the basic ABC in most of the experiments. PMID:24772023

  19. Does the public sector outperform the nonprofit and for-profit sectors? Evidence from a national panel study on nursing home quality and access.

    PubMed

    Amirkhanyan, Anna A; Kim, Hyun Joon; Lambright, Kristina T

    2008-01-01

    Are public and private organizations fundamentally different? This question has been among the most enduring inquiries in public administration. Our study explores the impact of organizational ownership on two complementary aspects of performance: service quality and access to services for impoverished clients. Derived from public management research on performance determinants and nursing home care literature, our hypotheses stipulate that public, nonprofit, and for-profit nursing homes use different approaches to balance the strategic tradeoff between two aspects of performance. Panel data on 14,423 facilities were analyzed to compare measures of quality and access across three sectors using different estimation methods. Findings indicate that ownership status is associated with critical differences in both quality and access. Public and nonprofit organizations are similar in terms of quality, and both perform significantly better than their for-profit counterparts. When compared to nonprofit and, in some cases, for-profit facilities, public nursing homes have a significantly higher share of Medicaid recipients. The paper proposes strategies to address the identified long-term care divide.

  20. Heat-treated (in single aliquot or batch) colostrum outperforms non-heat-treated colostrum in terms of quality and transfer of immunoglobulin G in neonatal Jersey calves.

    PubMed

    Kryzer, A A; Godden, S M; Schell, R

    2015-03-01

    The objective of this randomized clinical trial was to describe the effect on colostrum characteristics and passive transfer of IgG in neonatal calves when using the Perfect Udder colostrum management system (single-aliquot treatment; Dairy Tech Inc., Greeley, CO) compared with a negative control (fresh refrigerated or fresh frozen colostrum) and a positive control (batch heat-treated colostrum). First-milking Jersey colostrum was pooled to achieve 31 unique batches with a minimum of 22.8 L per batch. The batch was then divided into 4 with 3.8 L allocated to each treatment group: (1) heat-treated in Perfect Udder bag at 60°C for 60 min and then stored at -20°C (PU); (2) heat-treated in a batch pasteurizer (Dairy Tech Inc.) at 60°C for 60 min and then stored at -20°C in Perfect Udder bag (DTB; positive control); (3) fresh frozen colostrum stored at -20°C in Perfect Udder bag (FF; negative control); and (4) fresh refrigerated colostrum stored at 4°C in Perfect Udder bag (FR; negative control). Colostrum from all treatments was sampled for analysis of IgG concentration and bacterial culture immediately after batch assembly, after processing, and before feeding. Newborn Jersey calves were randomly assigned to be fed 3.8 L of colostrum from 1 of the 4 treatment groups. A prefeeding, 0-h blood sample was collected, calves were fed by esophageal tube within 2 h of birth, and then a 24-h postfeeding blood sample was collected. Paired serum samples from 0- and 24-h blood samples were analyzed for IgG concentration (mg/mL) using radial immunodiffusion analysis. The overall mean IgG concentration in colostrum was 77.9 g/L and was not affected by treatment. Prefeeding total plate counts (log10 cfu/mL) were significantly different for all 4 treatments and were lower for heat-treated colostrum (PU=4.23, DTB=3.63) compared with fresh colostrum (FF=5.68, FR=6.53). Total coliform counts (log10 cfu/mL) were also significantly different for all 4 treatments and were lower for

  1. High performance genetic algorithm for VLSI circuit partitioning

    NASA Astrophysics Data System (ADS)

    Dinu, Simona

    2016-12-01

    Partitioning is one of the biggest challenges in computer-aided design for VLSI circuits (very large-scale integrated circuits). This work address the min-cut balanced circuit partitioning problem- dividing the graph that models the circuit into almost equal sized k sub-graphs while minimizing the number of edges cut i.e. minimizing the number of edges connecting the sub-graphs. The problem may be formulated as a combinatorial optimization problem. Experimental studies in the literature have shown the problem to be NP-hard and thus it is important to design an efficient heuristic algorithm to solve it. The approach proposed in this study is a parallel implementation of a genetic algorithm, namely an island model. The information exchange between the evolving subpopulations is modeled using a fuzzy controller, which determines an optimal balance between exploration and exploitation of the solution space. The results of simulations show that the proposed algorithm outperforms the standard sequential genetic algorithm both in terms of solution quality and convergence speed. As a direction for future study, this research can be further extended to incorporate local search operators which should include problem-specific knowledge. In addition, the adaptive configuration of mutation and crossover rates is another guidance for future research.

  2. Computations and algorithms in physical and biological problems

    NASA Astrophysics Data System (ADS)

    Qin, Yu

    This dissertation presents the applications of state-of-the-art computation techniques and data analysis algorithms in three physical and biological problems: assembling DNA pieces, optimizing self-assembly yield, and identifying correlations from large multivariate datasets. In the first topic, in-depth analysis of using Sequencing by Hybridization (SBH) to reconstruct target DNA sequences shows that a modified reconstruction algorithm can overcome the theoretical boundary without the need for different types of biochemical assays and is robust to error. In the second topic, consistent with theoretical predictions, simulations using Graphics Processing Unit (GPU) demonstrate how controlling the short-ranged interactions between particles and controlling the concentrations optimize the self-assembly yield of a desired structure, and nonequilibrium behavior when optimizing concentrations is also unveiled by leveraging the computation capacity of GPUs. In the last topic, a methodology to incorporate existing categorization information into the search process to efficiently reconstruct the optimal true correlation matrix for multivariate datasets is introduced. Simulations on both synthetic and real financial datasets show that the algorithm is able to detect signals below the Random Matrix Theory (RMT) threshold. These three problems are representatives of using massive computation techniques and data analysis algorithms to tackle optimization problems, and outperform theoretical boundary when incorporating prior information into the computation.

  3. A bottom-up algorithm of vertical assembling concept lattices.

    PubMed

    Zhang, Lei; Zhang, Hongli; Shen, Xiajiong; Yin, Lihua

    2013-01-01

    One of the challenges in microarray data analysis is to interpret observed changes in terms of biological properties and relationships from massive amounts of gene expression data. As a powerful clustering tool, formal concept analysis has been used for making associations of gene expression clusters. The method of formal concept analysis constructs a concept lattice from the experimental data together with additional biological information. However, the time taken for constructing a concept lattice will rise sharply when the numbers of both gene clusters and properties are very large. In this article, we present an algorithm for assembling concept lattices for the parallel constructing concept lattice. The process of assembling two lattices is as follows. By traversing the diagram graph in a bottom-up fashion, all concepts in one lattice are added incremental into another sub-lattice one by one. In the process of adding a concept, the algorithm uses the diagram graph to find the generator concepts. It works only with the new and updated concepts of the concept which is added in the last time. The test results show that this algorithm outperforms other similar algorithms found in related literatures.

  4. Improved dynamic-programming-based algorithms for segmentation of masses in mammograms

    SciTech Connect

    Dominguez, Alfonso Rojas; Nandi, Asoke K.

    2007-11-15

    In this paper, two new boundary tracing algorithms for segmentation of breast masses are presented. These new algorithms are based on the dynamic programming-based boundary tracing (DPBT) algorithm proposed in Timp and Karssemeijer, [S. Timp and N. Karssemeijer, Med. Phys. 31, 958-971 (2004)] The DPBT algorithm contains two main steps: (1) construction of a local cost function, and (2) application of dynamic programming to the selection of the optimal boundary based on the local cost function. The validity of some assumptions used in the design of the DPBT algorithm is tested in this paper using a set of 349 mammographic images. Based on the results of the tests, modifications to the computation of the local cost function have been designed and have resulted in the Improved-DPBT (IDPBT) algorithm. A procedure for the dynamic selection of the strength of the components of the local cost function is presented that makes these parameters independent of the image dataset. Incorporation of this dynamic selection procedure has produced another new algorithm which we have called ID{sup 2}PBT. Methods for the determination of some other parameters of the DPBT algorithm that were not covered in the original paper are presented as well. The merits of the new IDPBT and ID{sup 2}PBT algorithms are demonstrated experimentally by comparison against the DPBT algorithm. The segmentation results are evaluated with base on the area overlap measure and other segmentation metrics. Both of the new algorithms outperform the original DPBT; the improvements in the algorithms performance are more noticeable around the values of the segmentation metrics corresponding to the highest segmentation accuracy, i.e., the new algorithms produce more optimally segmented regions, rather than a pronounced increase in the average quality of all the segmented regions.

  5. Optimizing Algorithm Choice for Metaproteomics: Comparing X!Tandem and Proteome Discoverer for Soil Proteomes

    NASA Astrophysics Data System (ADS)

    Diaz, K. S.; Kim, E. H.; Jones, R. M.; de Leon, K. C.; Woodcroft, B. J.; Tyson, G. W.; Rich, V. I.

    2014-12-01

    The growing field of metaproteomics links microbial communities to their expressed functions by using mass spectrometry methods to characterize community proteins. Comparison of mass spectrometry protein search algorithms and their biases is crucial for maximizing the quality and amount of protein identifications in mass spectral data. Available algorithms employ different approaches when mapping mass spectra to peptides against a database. We compared mass spectra from four microbial proteomes derived from high-organic content soils searched with two search algorithms: 1) Sequest HT as packaged within Proteome Discoverer (v.1.4) and 2) X!Tandem as packaged in TransProteomicPipeline (v.4.7.1). Searches used matched metagenomes, and results were filtered to allow identification of high probability proteins. There was little overlap in proteins identified by both algorithms, on average just ~24% of the total. However, when adjusted for spectral abundance, the overlap improved to ~70%. Proteome Discoverer generally outperformed X!Tandem, identifying an average of 12.5% more proteins than X!Tandem, with X!Tandem identifying more proteins only in the first two proteomes. For spectrally-adjusted results, the algorithms were similar, with X!Tandem marginally outperforming Proteome Discoverer by an average of ~4%. We then assessed differences in heat shock proteins (HSP) identification by the two algorithms by BLASTing identified proteins against the Heat Shock Protein Information Resource, because HSP hits typically account for the majority signal in proteomes, due to extraction protocols. Total HSP identifications for each of the 4 proteomes were approximately ~15%, ~11%, ~17%, and ~19%, with ~14% for total HSPs with redundancies removed. Of the ~15% average of proteins from the 4 proteomes identified as HSPs, ~10% of proteins and spectra were identified by both algorithms. On average, Proteome Discoverer identified ~9% more HSPs than X!Tandem.

  6. Iterative phase retrieval algorithms. I: optimization.

    PubMed

    Guo, Changliang; Liu, Shi; Sheridan, John T

    2015-05-20

    Two modified Gerchberg-Saxton (GS) iterative phase retrieval algorithms are proposed. The first we refer to as the spatial phase perturbation GS algorithm (SPP GSA). The second is a combined GS hybrid input-output algorithm (GS/HIOA). In this paper (Part I), it is demonstrated that the SPP GS and GS/HIO algorithms are both much better at avoiding stagnation during phase retrieval, allowing them to successfully locate superior solutions compared with either the GS or the HIO algorithms. The performances of the SPP GS and GS/HIO algorithms are also compared. Then, the error reduction (ER) algorithm is combined with the HIO algorithm (ER/HIOA) to retrieve the input object image and the phase, given only some knowledge of its extent and the amplitude in the Fourier domain. In Part II, the algorithms developed here are applied to carry out known plaintext and ciphertext attacks on amplitude encoding and phase encoding double random phase encryption systems. Significantly, ER/HIOA is then used to carry out a ciphertext-only attack on AE DRPE systems.

  7. Overview of an Algorithm Plugin Package (APP)

    NASA Astrophysics Data System (ADS)

    Linda, M.; Tilmes, C.; Fleig, A. J.

    2004-12-01

    Science software that runs operationally is fundamentally different than software that runs on a scientist's desktop. There are complexities in hosting software for automated production that are necessary and significant. Identifying common aspects of these complexities can simplify algorithm integration. We use NASA's MODIS and OMI data production systems as examples. An Algorithm Plugin Package (APP) is science software that is combined with algorithm-unique elements that permit the algorithm to interface with, and function within, the framework of a data processing system. The framework runs algorithms operationally against large quantities of data. The extra algorithm-unique items are constrained by the design of the data processing system. APPs often include infrastructure that is vastly similar. When the common elements in APPs are identified and abstracted, the cost of APP development, testing, and maintenance will be reduced. This paper is an overview of the extra algorithm-unique pieces that are shared between MODAPS and OMIDAPS APPs. Our exploration of APP structure will help builders of other production systems identify their common elements and reduce algorithm integration costs. Our goal is to complete the development of a library of functions and a menu of implementation choices that reflect common needs of APPs. The library and menu will reduce the time and energy required for science developers to integrate algorithms into production systems.

  8. A new frame-based registration algorithm

    NASA Technical Reports Server (NTRS)

    Yan, C. H.; Whalen, R. T.; Beaupre, G. S.; Sumanaweera, T. S.; Yen, S. Y.; Napel, S.

    1998-01-01

    This paper presents a new algorithm for frame registration. Our algorithm requires only that the frame be comprised of straight rods, as opposed to the N structures or an accurate frame model required by existing algorithms. The algorithm utilizes the full 3D information in the frame as well as a least squares weighting scheme to achieve highly accurate registration. We use simulated CT data to assess the accuracy of our algorithm. We compare the performance of the proposed algorithm to two commonly used algorithms. Simulation results show that the proposed algorithm is comparable to the best existing techniques with knowledge of the exact mathematical frame model. For CT data corrupted with an unknown in-plane rotation or translation, the proposed technique is also comparable to the best existing techniques. However, in situations where there is a discrepancy of more than 2 mm (0.7% of the frame dimension) between the frame and the mathematical model, the proposed technique is significantly better (p < or = 0.05) than the existing techniques. The proposed algorithm can be applied to any existing frame without modification. It provides better registration accuracy and is robust against model mis-match. It allows greater flexibility on the frame structure. Lastly, it reduces the frame construction cost as adherence to a concise model is not required.

  9. Fungi producing significant mycotoxins.

    PubMed

    2012-01-01

    Mycotoxins are secondary metabolites of microfungi that are known to cause sickness or death in humans or animals. Although many such toxic metabolites are known, it is generally agreed that only a few are significant in causing disease: aflatoxins, fumonisins, ochratoxin A, deoxynivalenol, zearalenone, and ergot alkaloids. These toxins are produced by just a few species from the common genera Aspergillus, Penicillium, Fusarium, and Claviceps. All Aspergillus and Penicillium species either are commensals, growing in crops without obvious signs of pathogenicity, or invade crops after harvest and produce toxins during drying and storage. In contrast, the important Fusarium and Claviceps species infect crops before harvest. The most important Aspergillus species, occurring in warmer climates, are A. flavus and A. parasiticus, which produce aflatoxins in maize, groundnuts, tree nuts, and, less frequently, other commodities. The main ochratoxin A producers, A. ochraceus and A. carbonarius, commonly occur in grapes, dried vine fruits, wine, and coffee. Penicillium verrucosum also produces ochratoxin A but occurs only in cool temperate climates, where it infects small grains. F. verticillioides is ubiquitous in maize, with an endophytic nature, and produces fumonisins, which are generally more prevalent when crops are under drought stress or suffer excessive insect damage. It has recently been shown that Aspergillus niger also produces fumonisins, and several commodities may be affected. F. graminearum, which is the major producer of deoxynivalenol and zearalenone, is pathogenic on maize, wheat, and barley and produces these toxins whenever it infects these grains before harvest. Also included is a short section on Claviceps purpurea, which produces sclerotia among the seeds in grasses, including wheat, barley, and triticale. The main thrust of the chapter contains information on the identification of these fungi and their morphological characteristics, as well as factors

  10. An Effective Hybrid Cuckoo Search Algorithm with Improved Shuffled Frog Leaping Algorithm for 0-1 Knapsack Problems

    PubMed Central

    Wang, Gai-Ge; Feng, Qingjiang; Zhao, Xiang-Jun

    2014-01-01

    An effective hybrid cuckoo search algorithm (CS) with improved shuffled frog-leaping algorithm (ISFLA) is put forward for solving 0-1 knapsack problem. First of all, with the framework of SFLA, an improved frog-leap operator is designed with the effect of the global optimal information on the frog leaping and information exchange between frog individuals combined with genetic mutation with a small probability. Subsequently, in order to improve the convergence speed and enhance the exploitation ability, a novel CS model is proposed with considering the specific advantages of Lévy flights and frog-leap operator. Furthermore, the greedy transform method is used to repair the infeasible solution and optimize the feasible solution. Finally, numerical simulations are carried out on six different types of 0-1 knapsack instances, and the comparative results have shown the effectiveness of the proposed algorithm and its ability to achieve good quality solutions, which outperforms the binary cuckoo search, the binary differential evolution, and the genetic algorithm. PMID:25404940

  11. An effective hybrid cuckoo search algorithm with improved shuffled frog leaping algorithm for 0-1 knapsack problems.

    PubMed

    Feng, Yanhong; Wang, Gai-Ge; Feng, Qingjiang; Zhao, Xiang-Jun

    2014-01-01

    An effective hybrid cuckoo search algorithm (CS) with improved shuffled frog-leaping algorithm (ISFLA) is put forward for solving 0-1 knapsack problem. First of all, with the framework of SFLA, an improved frog-leap operator is designed with the effect of the global optimal information on the frog leaping and information exchange between frog individuals combined with genetic mutation with a small probability. Subsequently, in order to improve the convergence speed and enhance the exploitation ability, a novel CS model is proposed with considering the specific advantages of Lévy flights and frog-leap operator. Furthermore, the greedy transform method is used to repair the infeasible solution and optimize the feasible solution. Finally, numerical simulations are carried out on six different types of 0-1 knapsack instances, and the comparative results have shown the effectiveness of the proposed algorithm and its ability to achieve good quality solutions, which outperforms the binary cuckoo search, the binary differential evolution, and the genetic algorithm.

  12. A novel algorithm for Bluetooth ECG.

    PubMed

    Pandya, Utpal T; Desai, Uday B

    2012-11-01

    In wireless transmission of ECG, data latency will be significant when battery power level and data transmission distance are not maintained. In applications like home monitoring or personalized care, to overcome the joint effect of previous issues of wireless transmission and other ECG measurement noises, a novel filtering strategy is required. Here, a novel algorithm, identified as peak rejection adaptive sampling modified moving average (PRASMMA) algorithm for wireless ECG is introduced. This algorithm first removes error in bit pattern of received data if occurred in wireless transmission and then removes baseline drift. Afterward, a modified moving average is implemented except in the region of each QRS complexes. The algorithm also sets its filtering parameters according to different sampling rate selected for acquisition of signals. To demonstrate the work, a prototyped Bluetooth-based ECG module is used to capture ECG with different sampling rate and in different position of patient. This module transmits ECG wirelessly to Bluetooth-enabled devices where the PRASMMA algorithm is applied on captured ECG. The performance of PRASMMA algorithm is compared with moving average and S-Golay algorithms visually as well as numerically. The results show that the PRASMMA algorithm can significantly improve the ECG reconstruction by efficiently removing the noise and its use can be extended to any parameters where peaks are importance for diagnostic purpose.

  13. Do Elite and Amateur Soccer Players Outperform Non-Athletes on Neurocognitive Functioning? A Study Among 8-12 Year Old Children

    PubMed Central

    Verburgh, Lot; Scherder, Erik J. A.; Van Lange, Paul A. M.; Oosterlaan, Jaap

    2016-01-01

    Aim Research suggested a positive association between physical fitness and neurocognitive functioning in children. Aim of the present study is to investigate possible dose-response relationships between diverse daily physical activities and a broad range of neurocognitive functions in preadolescent children. Furthermore, the relationship between several sedentary behaviours, including TV-watching, gaming and computer time, and neurocognitive functioning will be investigated in this group of children. Methods A total of 168 preadolescent boys, aged 8 to 12 years, were recruited from various locations, including primary schools, an amateur soccer club, and a professional soccer club, to increase variability in the amount of participation in sports. All children performed neurocognitive tasks measuring inhibition, short term memory, working memory, attention and information processing speed. Regression analyses examined the predictive power of a broad range of physical activities, including sports, active transport to school, physical education (PE), outdoor play, and sedentary behaviour such as TV-watching and gaming, for neurocognitive functioning. Results Time spent in sports significantly accounted for the variance in inhibition, short term memory, working memory and lapses of attention, where more time spent in sports was associated with better performance. Outdoor play was also positively associated with working memory. In contrast, time spent on the computer was negatively associated with inhibition. Conclusions Results of the current study suggest a positive relationship between participation in sports and several important neurocognitive functions. Interventions are recommended to increase sports participation and to reduce sedentary behaviour in preadolescent children. PMID:27906965

  14. A Parallel Attractor Finding Algorithm Based on Boolean Satisfiability for Genetic Regulatory Networks

    PubMed Central

    Guo, Wensheng; Yang, Guowu; Wu, Wei; He, Lei; Sun, Mingyu

    2014-01-01

    In biological systems, the dynamic analysis method has gained increasing attention in the past decade. The Boolean network is the most common model of a genetic regulatory network. The interactions of activation and inhibition in the genetic regulatory network are modeled as a set of functions of the Boolean network, while the state transitions in the Boolean network reflect the dynamic property of a genetic regulatory network. A difficult problem for state transition analysis is the finding of attractors. In this paper, we modeled the genetic regulatory network as a Boolean network and proposed a solving algorithm to tackle the attractor finding problem. In the proposed algorithm, we partitioned the Boolean network into several blocks consisting of the strongly connected components according to their gradients, and defined the connection between blocks as decision node. Based on the solutions calculated on the decision nodes and using a satisfiability solving algorithm, we identified the attractors in the state transition graph of each block. The proposed algorithm is benchmarked on a variety of genetic regulatory networks. Compared with existing algorithms, it achieved similar performance on small test cases, and outperformed it on larger and more complex ones, which happens to be the trend of the modern genetic regulatory network. Furthermore, while the existing satisfiability-based algorithms cannot be parallelized due to their inherent algorithm design, the proposed algorithm exhibits a good scalability on parallel computing architectures. PMID:24718686

  15. On the use of harmony search algorithm in the training of wavelet neural networks

    NASA Astrophysics Data System (ADS)

    Lai, Kee Huong; Zainuddin, Zarita; Ong, Pauline

    2015-10-01

    Wavelet neural networks (WNNs) are a class of feedforward neural networks that have been used in a wide range of industrial and engineering applications to model the complex relationships between the given inputs and outputs. The training of WNNs involves the configuration of the weight values between neurons. The backpropagation training algorithm, which is a gradient-descent method, can be used for this training purpose. Nonetheless, the solutions found by this algorithm often get trapped at local minima. In this paper, a harmony search-based algorithm is proposed for the training of WNNs. The training of WNNs, thus can be formulated as a continuous optimization problem, where the objective is to maximize the overall classification accuracy. Each candidate solution proposed by the harmony search algorithm represents a specific WNN architecture. In order to speed up the training process, the solution space is divided into disjoint partitions during the random initialization step of harmony search algorithm. The proposed training algorithm is tested onthree benchmark problems from the UCI machine learning repository, as well as one real life application, namely, the classification of electroencephalography signals in the task of epileptic seizure detection. The results obtained show that the proposed algorithm outperforms the traditional harmony search algorithm in terms of overall classification accuracy.

  16. Iterative optimization algorithm with parameter estimation for the ambulance location problem.

    PubMed

    Kim, Sun Hoon; Lee, Young Hoon

    2016-12-01

    The emergency vehicle location problem to determine the number of ambulance vehicles and their locations satisfying a required reliability level is investigated in this study. This is a complex nonlinear issue involving critical decision making that has inherent stochastic characteristics. This paper studies an iterative optimization algorithm with parameter estimation to solve the emergency vehicle location problem. In the suggested algorithm, a linear model determines the locations of ambulances, while a hypercube simulation is used to estimate and provide parameters regarding ambulance locations. First, we suggest an iterative hypercube optimization algorithm in which interaction parameters and rules for the hypercube and optimization are identified. The interaction rules employed in this study enable our algorithm to always find the locations of ambulances satisfying the reliability requirement. We also propose an iterative simulation optimization algorithm in which the hypercube method is replaced by a simulation, to achieve computational efficiency. The computational experiments show that the iterative simulation optimization algorithm performs equivalently to the iterative hypercube optimization. The suggested algorithms are found to outperform existing algorithms suggested in the literature.

  17. A parallel attractor-finding algorithm based on Boolean satisfiability for genetic regulatory networks.

    PubMed

    Guo, Wensheng; Yang, Guowu; Wu, Wei; He, Lei; Sun, Mingyu

    2014-01-01

    In biological systems, the dynamic analysis method has gained increasing attention in the past decade. The Boolean network is the most common model of a genetic regulatory network. The interactions of activation and inhibition in the genetic regulatory network are modeled as a set of functions of the Boolean network, while the state transitions in the Boolean network reflect the dynamic property of a genetic regulatory network. A difficult problem for state transition analysis is the finding of attractors. In this paper, we modeled the genetic regulatory network as a Boolean network and proposed a solving algorithm to tackle the attractor finding problem. In the proposed algorithm, we partitioned the Boolean network into several blocks consisting of the strongly connected components according to their gradients, and defined the connection between blocks as decision node. Based on the solutions calculated on the decision nodes and using a satisfiability solving algorithm, we identified the attractors in the state transition graph of each block. The proposed algorithm is benchmarked on a variety of genetic regulatory networks. Compared with existing algorithms, it achieved similar performance on small test cases, and outperformed it on larger and more complex ones, which happens to be the trend of the modern genetic regulatory network. Furthermore, while the existing satisfiability-based algorithms cannot be parallelized due to their inherent algorithm design, the proposed algorithm exhibits a good scalability on parallel computing architectures.

  18. LTI system order reduction approach based on asymptotical equivalence and the Co-operation of biology-related algorithms

    NASA Astrophysics Data System (ADS)

    Ryzhikov, I. S.; Semenkin, E. S.; Akhmedova, Sh A.

    2017-02-01

    A novel order reduction method for linear time invariant systems is described. The method is based on reducing the initial problem to an optimization one, using the proposed model representation, and solving the problem with an efficient optimization algorithm. The proposed method of determining the model allows all the parameters of the model with lower order to be identified and by definition, provides the model with the required steady-state. As a powerful optimization tool, the meta-heuristic Co-Operation of Biology-Related Algorithms was used. Experimental results proved that the proposed approach outperforms other approaches and that the reduced order model achieves a high level of accuracy.

  19. Reaching the limits of prognostication in non-small cell lung cancer: an optimized biomarker panel fails to outperform clinical parameters.

    PubMed

    Grinberg, Marianna; Djureinovic, Dijana; Brunnström, Hans Rr; Mattsson, Johanna Sm; Edlund, Karolina; Hengstler, Jan G; La Fleur, Linnea; Ekman, Simon; Koyi, Hirsh; Branden, Eva; Ståhle, Elisabeth; Jirström, Karin; Tracy, Derek K; Pontén, Fredrik; Botling, Johan; Rahnenführer, Jörg; Micke, Patrick

    2017-03-10

    Numerous protein biomarkers have been analyzed to improve prognostication in non-small cell lung cancer, but have not yet demonstrated sufficient value to be introduced into clinical practice. Here, we aimed to develop and validate a prognostic model for surgically resected non-small cell lung cancer. A biomarker panel was selected based on (1) prognostic association in published literature, (2) prognostic association in gene expression data sets, (3) availability of reliable antibodies, and (4) representation of diverse biological processes. The five selected proteins (MKI67, EZH2, SLC2A1, CADM1, and NKX2-1 alias TTF1) were analyzed by immunohistochemistry on tissue microarrays including tissue from 326 non-small cell lung cancer patients. One score was obtained for each tumor and each protein. The scores were combined, with or without the inclusion of clinical parameters, and the best prognostic model was defined according to the corresponding concordance index (C-index). The best-performing model was subsequently validated in an independent cohort consisting of tissue from 345 non-small cell lung cancer patients. The model based only on protein expression did not perform better compared to clinicopathological parameters, whereas combining protein expression with clinicopathological data resulted in a slightly better prognostic performance (C-index: all non-small cell lung cancer 0.63 vs 0.64; adenocarcinoma: 0.66 vs 0.70, squamous cell carcinoma: 0.57 vs 0.56). However, this modest effect did not translate into a significantly improved accuracy of survival prediction. The combination of a prognostic biomarker panel with clinicopathological parameters did not improve survival prediction in non-small cell lung cancer, questioning the potential of immunohistochemistry-based assessment of protein biomarkers for prognostication in clinical practice.Modern Pathology advance online publication, 10 March 2017; doi:10.1038/modpathol.2017.14.

  20. License plate detection algorithm

    NASA Astrophysics Data System (ADS)

    Broitman, Michael; Klopovsky, Yuri; Silinskis, Normunds

    2013-12-01

    A novel algorithm for vehicle license plates localization is proposed. The algorithm is based on pixel intensity transition gradient analysis. Near to 2500 natural-scene gray-level vehicle images of different backgrounds and ambient illumination was tested. The best set of algorithm's parameters produces detection rate up to 0.94. Taking into account abnormal camera location during our tests and therefore geometrical distortion and troubles from trees this result could be considered as passable. Correlation between source data, such as license Plate dimensions and texture, cameras location and others, and parameters of algorithm were also defined.

  1. Distributed Minimum Hop Algorithms

    DTIC Science & Technology

    1982-01-01

    acknowledgement), node d starts iteration i+1, and otherwise the algorithm terminates. A detailed description of the algorithm is given in pidgin algol...precise behavior of the algorithm under these circumstances is described by the pidgin algol program in the appendix which is executed by each node. The...l) < N!(2) for each neighbor j, and thus by induction,J -1 N!(2-1) < n-i + (Z-1) + N!(Z-1), completing the proof. Algorithm Dl in Pidgin Algol It is

  2. A fast non-local image denoising algorithm

    NASA Astrophysics Data System (ADS)

    Dauwe, A.; Goossens, B.; Luong, H. Q.; Philips, W.

    2008-02-01

    In this paper we propose several improvements to the original non-local means algorithm introduced by Buades et al. which obtains state-of-the-art denoising results. The strength of this algorithm is to exploit the repetitive character of the image in order to denoise the image unlike conventional denoising algorithms, which typically operate in a local neighbourhood. Due to the enormous amount of weight computations, the original algorithm has a high computational cost. An improvement of image quality towards the original algorithm is to ignore the contributions from dissimilar windows. Even though their weights are very small at first sight, the new estimated pixel value can be severely biased due to the many small contributions. This bad influence of dissimilar windows can be eliminated by setting their corresponding weights to zero. Using the preclassification based on the first three statistical moments, only contributions from similar neighborhoods are computed. To decide whether a window is similar or dissimilar, we will derive thresholds for images corrupted with additive white Gaussian noise. Our accelerated approach is further optimized by taking advantage of the symmetry in the weights, which roughly halves the computation time, and by using a lookup table to speed up the weight computations. Compared to the original algorithm, our proposed method produces images with increased PSNR and better visual performance in less computation time. Our proposed method even outperforms state-of-the-art wavelet denoising techniques in both visual quality and PSNR values for images containing a lot of repetitive structures such as textures: the denoised images are much sharper and contain less artifacts. The proposed optimizations can also be applied in other image processing tasks which employ the concept of repetitive structures such as intra-frame super-resolution or detection of digital image forgery.

  3. Dynamic Multiple-Threshold Call Admission Control Based on Optimized Genetic Algorithm in Wireless/Mobile Networks

    NASA Astrophysics Data System (ADS)

    Wang, Shengling; Cui, Yong; Koodli, Rajeev; Hou, Yibin; Huang, Zhangqin

    Due to the dynamics of topology and resources, Call Admission Control (CAC) plays a significant role for increasing resource utilization ratio and guaranteeing users' QoS requirements in wireless/mobile networks. In this paper, a dynamic multi-threshold CAC scheme is proposed to serve multi-class service in a wireless/mobile network. The thresholds are renewed at the beginning of each time interval to react to the changing mobility rate and network load. To find suitable thresholds, a reward-penalty model is designed, which provides different priorities between different service classes and call types through different reward/penalty policies according to network load and average call arrival rate. To speed up the running time of CAC, an Optimized Genetic Algorithm (OGA) is presented, whose components such as encoding, population initialization, fitness function and mutation etc., are all optimized in terms of the traits of the CAC problem. The simulation demonstrates that the proposed CAC scheme outperforms the similar schemes, which means the optimization is realized. Finally, the simulation shows the efficiency of OGA.

  4. Passive microwave algorithm development and evaluation

    NASA Technical Reports Server (NTRS)

    Petty, Grant W.

    1995-01-01

    The scientific objectives of this grant are: (1) thoroughly evaluate, both theoretically and empirically, all available Special Sensor Microwave Imager (SSM/I) retrieval algorithms for column water vapor, column liquid water, and surface wind speed; (2) where both appropriate and feasible, develop, validate, and document satellite passive microwave retrieval algorithms that offer significantly improved performance compared with currently available algorithms; and (3) refine and validate a novel physical inversion scheme for retrieving rain rate over the ocean. This report summarizes work accomplished or in progress during the first year of a three year grant. The emphasis during the first year has been on the validation and refinement of the rain rate algorithm published by Petty and on the analysis of independent data sets that can be used to help evaluate the performance of rain rate algorithms over remote areas of the ocean. Two articles in the area of global oceanic precipitation are attached.

  5. Algorithms for improved performance in cryptographic protocols.

    SciTech Connect

    Schroeppel, Richard Crabtree; Beaver, Cheryl Lynn

    2003-11-01

    Public key cryptographic algorithms provide data authentication and non-repudiation for electronic transmissions. The mathematical nature of the algorithms, however, means they require a significant amount of computation, and encrypted messages and digital signatures possess high bandwidth. Accordingly, there are many environments (e.g. wireless, ad-hoc, remote sensing networks) where public-key requirements are prohibitive and cannot be used. The use of elliptic curves in public-key computations has provided a means by which computations and bandwidth can be somewhat reduced. We report here on the research conducted in an LDRD aimed to find even more efficient algorithms and to make public-key cryptography available to a wider range of computing environments. We improved upon several algorithms, including one for which a patent has been applied. Further we discovered some new problems and relations on which future cryptographic algorithms may be based.

  6. Algorithms for radio networks with dynamic topology

    NASA Astrophysics Data System (ADS)

    Shacham, Nachum; Ogier, Richard; Rutenburg, Vladislav V.; Garcia-Luna-Aceves, Jose

    1991-08-01

    The objective of this project was the development of advanced algorithms and protocols that efficiently use network resources to provide optimal or nearly optimal performance in future communication networks with highly dynamic topologies and subject to frequent link failures. As reflected by this report, we have achieved our objective and have significantly advanced the state-of-the-art in this area. The research topics of the papers summarized include the following: efficient distributed algorithms for computing shortest pairs of disjoint paths; minimum-expected-delay alternate routing algorithms for highly dynamic unreliable networks; algorithms for loop-free routing; multipoint communication by hierarchically encoded data; efficient algorithms for extracting the maximum information from event-driven topology updates; methods for the neural network solution of link scheduling and other difficult problems arising in communication networks; and methods for robust routing in networks subject to sophisticated attacks.

  7. Complex generalized minimal residual algorithm for iterative solution of quantum-mechanical reactive scattering equations

    NASA Technical Reports Server (NTRS)

    Chatfield, David C.; Reeves, Melissa S.; Truhlar, Donald G.; Duneczky, Csilla; Schwenke, David W.

    1992-01-01

    Complex dense matrices corresponding to the D + H2 and O + HD reactions were solved using a complex generalized minimal residual (GMRes) algorithm described by Saad and Schultz (1986) and Saad (1990). To provide a test case with a different structure, the H + H2 system was also considered. It is shown that the computational effort for solutions with the GMRes algorithm depends on the dimension of the linear system, the total energy of the scattering problem, and the accuracy criterion. In several cases with dimensions in the range 1110-5632, the GMRes algorithm outperformed the LAPACK direct solver, with speedups for the linear equation solution as large as a factor of 23.

  8. Fringe pattern demodulation with a two-dimensional digital phase-locked loop algorithm.

    PubMed

    Gdeisat, Munther A; Burton, David R; Lalor, Michael J

    2002-09-10

    A novel technique called a two-dimensional digital phase-locked loop (DPLL) for fringe pattern demodulation is presented. This algorithm is more suitable for demodulation of fringe patterns with varying phase in two directions than the existing DPLL techniques that assume that the phase of the fringe patterns varies only in one direction. The two-dimensional DPLL technique assumes that the phase of a fringe pattern is continuous in both directions and takes advantage of the phase continuity; consequently, the algorithm has better noise performance than the existing DPLL schemes. The two-dimensional DPLL algorithm is also suitable for demodulation of fringe patterns with low sampling rates, and it outperforms the Fourier fringe analysis technique in this aspect.

  9. Fringe pattern demodulation with a two-frame digital phase-locked loop algorithm.

    PubMed

    Gdeisat, Munther A; Burton, David R; Lalor, Michael J

    2002-09-10

    A novel technique called a two-frame digital phase-locked loop for fringe pattern demodulation is presented. In this scheme, two fringe patterns with different spatial carrier frequencies are grabbed for an object. A digital phase-locked loop algorithm tracks and demodulates the phase difference between both fringe patterns by employing the wrapped phase components of one of the fringe patterns as a reference to demodulate the second fringe pattern. The desired phase information can be extracted from the demodulated phase difference. We tested the algorithm experimentally using real fringe patterns. The technique is shown to be suitable for noncontact measurement of objects with rapid surface variations, and it outperforms the Fourier fringe analysis technique in this aspect. Phase maps produced withthis algorithm are noisy in comparison with phase maps generated with the Fourier fringe analysis technique.

  10. A new machine learning algorithm for removal of salt and pepper noise

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Adhami, Reza; Fu, Jian

    2015-07-01

    Supervised machine learning algorithm has been extensively studied and applied to different fields of image processing in past decades. This paper proposes a new machine learning algorithm, called margin setting (MS), for restoring images that are corrupted by salt and pepper impulse noise. Margin setting generates decision surface to classify the noise pixels and non-noise pixels. After the noise pixels are detected, a modified ranked order mean (ROM) filter is used to replace the corrupted pixels for images reconstruction. Margin setting algorithm is tested with grayscale and color images for different noise densities. The experimental results are compared with those of the support vector machine (SVM) and standard median filter (SMF). The results show that margin setting outperforms these methods with higher Peak Signal-to-Noise Ratio (PSNR), lower mean square error (MSE), higher image enhancement factor (IEF) and higher Structural Similarity Index (SSIM).

  11. Neural network algorithm for image reconstruction using the "grid-friendly" projections.

    PubMed

    Cierniak, Robert

    2011-09-01

    The presented paper describes a development of original approach to the reconstruction problem using a recurrent neural network. Particularly, the "grid-friendly" angles of performed projections are selected according to the discrete Radon transform (DRT) concept to decrease the number of projections required. The methodology of our approach is consistent with analytical reconstruction algorithms. Reconstruction problem is reformulated in our approach to optimization problem. This problem is solved in present concept using method based on the maximum likelihood methodology. The reconstruction algorithm proposed in this work is consequently adapted for more practical discrete fan beam projections. Computer simulation results show that the neural network reconstruction algorithm designed to work in this way improves obtained results and outperforms conventional methods in reconstructed image quality.

  12. A consensus algorithm for approximate string matching and its application to QRS complex detection

    NASA Astrophysics Data System (ADS)

    Alba, Alfonso; Mendez, Martin O.; Rubio-Rincon, Miguel E.; Arce-Santana, Edgar R.

    2016-08-01

    In this paper, a novel algorithm for approximate string matching (ASM) is proposed. The novelty resides in the fact that, unlike most other methods, the proposed algorithm is not based on the Hamming or Levenshtein distances, but instead computes a score for each symbol in the search text based on a consensus measure. Those symbols with sufficiently high scores will likely correspond to approximate instances of the pattern string. To demonstrate the usefulness of the proposed method, it has been applied to the detection of QRS complexes in electrocardiographic signals with competitive results when compared against the classic Pan-Tompkins (PT) algorithm. The proposed method outperformed PT in 72% of the test cases, with no extra computational cost.

  13. A New Collaborative Recommendation Approach Based on Users Clustering Using Artificial Bee Colony Algorithm

    PubMed Central

    Ju, Chunhua

    2013-01-01

    Although there are many good collaborative recommendation methods, it is still a challenge to increase the accuracy and diversity of these methods to fulfill users' preferences. In this paper, we propose a novel collaborative filtering recommendation approach based on K-means clustering algorithm. In the process of clustering, we use artificial bee colony (ABC) algorithm to overcome the local optimal problem caused by K-means. After that we adopt the modified cosine similarity to compute the similarity between users in the same clusters. Finally, we generate recommendation results for the corresponding target users. Detailed numerical analysis on a benchmark dataset MovieLens and a real-world dataset indicates that our new collaborative filtering approach based on users clustering algorithm outperforms many other recommendation methods. PMID:24381525

  14. A genetic algorithm for solving supply chain network design model

    NASA Astrophysics Data System (ADS)

    Firoozi, Z.; Ismail, N.; Ariafar, S. H.; Tang, S. H.; Ariffin, M. K. M. A.

    2013-09-01

    Network design is by nature costly and optimization models play significant role in reducing the unnecessary cost components of a distribution network. This study proposes a genetic algorithm to solve a distribution network design model. The structure of the chromosome in the proposed algorithm is defined in a novel way that in addition to producing feasible solutions, it also reduces the computational complexity of the algorithm. Computational results are presented to show the algorithm performance.

  15. Combining ptychographical algorithms with the Hybrid Input-Output (HIO) algorithm.

    PubMed

    Konijnenberg, A P; Coene, W M J; Pereira, S F; Urbach, H P

    2016-12-01

    In this article we combine the well-known Ptychographical Iterative Engine (PIE) with the Hybrid Input-Output (HIO) algorithm. The important insight is that the HIO feedback function should be kept strictly separate from the reconstructed object, which is done by introducing a separate feedback function per probe position. We have also combined HIO with floating PIE (fPIE) and extended PIE (ePIE). Simulations indicate that the combined algorithm performs significantly better in many situations. Although we have limited our research to a combination with HIO, the same insight can be used to combine ptychographical algorithms with any phase retrieval algorithm that uses a feedback function.

  16. Optimized Laplacian image sharpening algorithm based on graphic processing unit

    NASA Astrophysics Data System (ADS)

    Ma, Tinghuai; Li, Lu; Ji, Sai; Wang, Xin; Tian, Yuan; Al-Dhelaan, Abdullah; Al-Rodhaan, Mznah

    2014-12-01

    In classical Laplacian image sharpening, all pixels are processed one by one, which leads to large amount of computation. Traditional Laplacian sharpening processed on CPU is considerably time-consuming especially for those large pictures. In this paper, we propose a parallel implementation of Laplacian sharpening based on Compute Unified Device Architecture (CUDA), which is a computing platform of Graphic Processing Units (GPU), and analyze the impact of picture size on performance and the relationship between the processing time of between data transfer time and parallel computing time. Further, according to different features of different memory, an improved scheme of our method is developed, which exploits shared memory in GPU instead of global memory and further increases the efficiency. Experimental results prove that two novel algorithms outperform traditional consequentially method based on OpenCV in the aspect of computing speed.

  17. Visual tracking method based on cuckoo search algorithm

    NASA Astrophysics Data System (ADS)

    Gao, Ming-Liang; Yin, Li-Ju; Zou, Guo-Feng; Li, Hai-Tao; Liu, Wei

    2015-07-01

    Cuckoo search (CS) is a new meta-heuristic optimization algorithm that is based on the obligate brood parasitic behavior of some cuckoo species in combination with the Lévy flight behavior of some birds and fruit flies. It has been found to be efficient in solving global optimization problems. An application of CS is presented to solve the visual tracking problem. The relationship between optimization and visual tracking is comparatively studied and the parameters' sensitivity and adjustment of CS in the tracking system are experimentally studied. To demonstrate the tracking ability of a CS-based tracker, a comparative study of tracking accuracy and speed of the CS-based tracker with six "state-of-art" trackers, namely, particle filter, meanshift, PSO, ensemble tracker, fragments tracker, and compressive tracker are presented. Comparative results show that the CS-based tracker outperforms the other trackers.

  18. Fast Parabola Detection Using Estimation of Distribution Algorithms

    PubMed Central

    Sierra-Hernandez, Juan Manuel; Avila-Garcia, Maria Susana; Rojas-Laguna, Roberto

    2017-01-01

    This paper presents a new method based on Estimation of Distribution Algorithms (EDAs) to detect parabolic shapes in synthetic and medical images. The method computes a virtual parabola using three random boundary pixels to calculate the constant values of the generic parabola equation. The resulting parabola is evaluated by matching it with the parabolic shape in the input image by using the Hadamard product as fitness function. This proposed method is evaluated in terms of computational time and compared with two implementations of the generalized Hough transform and RANSAC method for parabola detection. Experimental results show that the proposed method outperforms the comparative methods in terms of execution time about 93.61% on synthetic images and 89% on retinal fundus and human plantar arch images. In addition, experimental results have also shown that the proposed method can be highly suitable for different medical applications. PMID:28321264

  19. Fast Parabola Detection Using Estimation of Distribution Algorithms.

    PubMed

    Guerrero-Turrubiates, Jose de Jesus; Cruz-Aceves, Ivan; Ledesma, Sergio; Sierra-Hernandez, Juan Manuel; Velasco, Jonas; Avina-Cervantes, Juan Gabriel; Avila-Garcia, Maria Susana; Rostro-Gonzalez, Horacio; Rojas-Laguna, Roberto

    2017-01-01

    This paper presents a new method based on Estimation of Distribution Algorithms (EDAs) to detect parabolic shapes in synthetic and medical images. The method computes a virtual parabola using three random boundary pixels to calculate the constant values of the generic parabola equation. The resulting parabola is evaluated by matching it with the parabolic shape in the input image by using the Hadamard product as fitness function. This proposed method is evaluated in terms of computational time and compared with two implementations of the generalized Hough transform and RANSAC method for parabola detection. Experimental results show that the proposed method outperforms the comparative methods in terms of execution time about 93.61% on synthetic images and 89% on retinal fundus and human plantar arch images. In addition, experimental results have also shown that the proposed method can be highly suitable for different medical applications.

  20. Multiobjective Optimization of Rocket Engine Pumps Using Evolutionary Algorithm

    NASA Technical Reports Server (NTRS)

    Oyama, Akira; Liou, Meng-Sing

    2001-01-01

    A design optimization method for turbopumps of cryogenic rocket engines has been developed. Multiobjective Evolutionary Algorithm (MOEA) is used for multiobjective pump design optimizations. Performances of design candidates are evaluated by using the meanline pump flow modeling method based on the Euler turbine equation coupled with empirical correlations for rotor efficiency. To demonstrate the feasibility of the present approach, a single stage centrifugal pump design and multistage pump design optimizations are presented. In both cases, the present method obtains very reasonable Pareto-optimal solutions that include some designs outperforming the original design in total head while reducing input power by one percent. Detailed observation of the design results also reveals some important design criteria for turbopumps in cryogenic rocket engines. These results demonstrate the feasibility of the EA-based design optimization method in this field.

  1. An Automated Reference Frame Selection (ARFS) Algorithm for Cone Imaging with Adaptive Optics Scanning Light Ophthalmoscopy

    PubMed Central

    Salmon, Alexander E.; Cooper, Robert F.; Langlo, Christopher S.; Baghaie, Ahmadreza; Dubra, Alfredo; Carroll, Joseph

    2017-01-01

    Purpose To develop an automated reference frame selection (ARFS) algorithm to replace the subjective approach of manually selecting reference frames for processing adaptive optics scanning light ophthalmoscope (AOSLO) videos of cone photoreceptors. Methods Relative distortion was measured within individual frames before conducting image-based motion tracking and sorting of frames into distinct spatial clusters. AOSLO images from nine healthy subjects were processed using ARFS and human-derived reference frames, then aligned to undistorted AO-flood images by nonlinear registration and the registration transformations were compared. The frequency at which humans selected reference frames that were rejected by ARFS was calculated in 35 datasets from healthy subjects, and subjects with achromatopsia, albinism, or retinitis pigmentosa. The level of distortion in this set of human-derived reference frames was assessed. Results The average transformation vector magnitude required for registration of AOSLO images to AO-flood images was significantly reduced from 3.33 ± 1.61 pixels when using manual reference frame selection to 2.75 ± 1.60 pixels (mean ± SD) when using ARFS (P = 0.0016). Between 5.16% and 39.22% of human-derived frames were rejected by ARFS. Only 2.71% to 7.73% of human-derived frames were ranked in the top 5% of least distorted frames. Conclusion ARFS outperforms expert observers in selecting minimally distorted reference frames in AOSLO image sequences. The low success rate in human frame choice illustrates the difficulty in subjectively assessing image distortion. Translational Relevance Manual reference frame selection represented a significant barrier to a fully automated image-processing pipeline (including montaging, cone identification, and metric extraction). The approach presented here will aid in the clinical translation of AOSLO imaging. PMID:28392976

  2. Algorithm That Synthesizes Other Algorithms for Hashing

    NASA Technical Reports Server (NTRS)

    James, Mark

    2010-01-01

    An algorithm that includes a collection of several subalgorithms has been devised as a means of synthesizing still other algorithms (which could include computer code) that utilize hashing to determine whether an element (typically, a number or other datum) is a member of a set (typically, a list of numbers). Each subalgorithm synthesizes an algorithm (e.g., a block of code) that maps a static set of key hashes to a somewhat linear monotonically increasing sequence of integers. The goal in formulating this mapping is to cause the length of the sequence thus generated to be as close as practicable to the original length of the set and thus to minimize gaps between the elements. The advantage of the approach embodied in this algorithm is that it completely avoids the traditional approach of hash-key look-ups that involve either secondary hash generation and look-up or further searching of a hash table for a desired key in the event of collisions. This algorithm guarantees that it will never be necessary to perform a search or to generate a secondary key in order to determine whether an element is a member of a set. This algorithm further guarantees that any algorithm that it synthesizes can be executed in constant time. To enforce these guarantees, the subalgorithms are formulated to employ a set of techniques, each of which works very effectively covering a certain class of hash-key values. These subalgorithms are of two types, summarized as follows: Given a list of numbers, try to find one or more solutions in which, if each number is shifted to the right by a constant number of bits and then masked with a rotating mask that isolates a set of bits, a unique number is thereby generated. In a variant of the foregoing procedure, omit the masking. Try various combinations of shifting, masking, and/or offsets until the solutions are found. From the set of solutions, select the one that provides the greatest compression for the representation and is executable in the

  3. A tabu search evalutionary algorithm for multiobjective optimization: Application to a bi-criterion aircraft structural reliability problem

    NASA Astrophysics Data System (ADS)

    Long, Kim Chenming

    application of the proposed algorithm, TSEA, with several state-of-the-art multiobjective optimization algorithms reveals that TSEA outperforms these algorithms by providing retrofit solutions with greater reliability for the same costs (i.e., closer to the Pareto-optimal front) after the algorithms are executed for the same number of generations. This research also demonstrates that TSEA competes with and, in some situations, outperforms state-of-the-art multiobjective optimization algorithms such as NSGA II and SPEA 2 when applied to classic bicriteria test problems in the technical literature and other complex, sizable real-world applications. The successful implementation of TSEA contributes to the safety of aeronautical structures by providing a systematic way to guide aircraft structural retrofitting efforts, as well as a potentially useful algorithm for a wide range of multiobjective optimization problems in engineering and other fields.

  4. Social significance of community structure: Statistical view

    NASA Astrophysics Data System (ADS)

    Li, Hui-Jia; Daniels, Jasmine J.

    2015-01-01

    Community structure analysis is a powerful tool for social networks that can simplify their topological and functional analysis considerably. However, since community detection methods have random factors and real social networks obtained from complex systems always contain error edges, evaluating the significance of a partitioned community structure is an urgent and important question. In this paper, integrating the specific characteristics of real society, we present a framework to analyze the significance of a social community. The dynamics of social interactions are modeled by identifying social leaders and corresponding hierarchical structures. Instead of a direct comparison with the average outcome of a random model, we compute the similarity of a given node with the leader by the number of common neighbors. To determine the membership vector, an efficient community detection algorithm is proposed based on the position of the nodes and their corresponding leaders. Then, using a log-likelihood score, the tightness of the community can be derived. Based on the distribution of community tightness, we establish a connection between p -value theory and network analysis, and then we obtain a significance measure of statistical form . Finally, the framework is applied to both benchmark networks and real social networks. Experimental results show that our work can be used in many fields, such as determining the optimal number of communities, analyzing the social significance of a given community, comparing the performance among various algorithms, etc.

  5. Social significance of community structure: statistical view.

    PubMed

    Li, Hui-Jia; Daniels, Jasmine J

    2015-01-01

    Community structure analysis is a powerful tool for social networks that can simplify their topological and functional analysis considerably. However, since community detection methods have random factors and real social networks obtained from complex systems always contain error edges, evaluating the significance of a partitioned community structure is an urgent and important question. In this paper, integrating the specific characteristics of real society, we present a framework to analyze the significance of a social community. The dynamics of social interactions are modeled by identifying social leaders and corresponding hierarchical structures. Instead of a direct comparison with the average outcome of a random model, we compute the similarity of a given node with the leader by the number of common neighbors. To determine the membership vector, an efficient community detection algorithm is proposed based on the position of the nodes and their corresponding leaders. Then, using a log-likelihood score, the tightness of the community can be derived. Based on the distribution of community tightness, we establish a connection between p-value theory and network analysis, and then we obtain a significance measure of statistical form . Finally, the framework is applied to both benchmark networks and real social networks. Experimental results show that our work can be used in many fields, such as determining the optimal number of communities, analyzing the social significance of a given community, comparing the performance among various algorithms, etc.

  6. Evaluating and comparing algorithms for respiratory motion prediction

    NASA Astrophysics Data System (ADS)

    Ernst, F.; Dürichen, R.; Schlaefer, A.; Schweikard, A.

    2013-06-01

    In robotic radiosurgery, it is necessary to compensate for systematic latencies arising from target tracking and mechanical constraints. This compensation is usually achieved by means of an algorithm which computes the future target position. In most scientific works on respiratory motion prediction, only one or two algorithms are evaluated on a limited amount of very short motion traces. The purpose of this work is to gain more insight into the real world capabilities of respiratory motion prediction methods by evaluating many algorithms on an unprecedented amount of data. We have evaluated six algorithms, the normalized least mean squares (nLMS), recursive least squares (RLS), multi-step linear methods (MULIN), wavelet-based multiscale autoregression (wLMS), extended Kalman filtering, and ε-support vector regression (SVRpred) methods, on an extensive database of 304 respiratory motion traces. The traces were collected during treatment with the CyberKnife (Accuray, Inc., Sunnyvale, CA, USA) and feature an average length of 71 min. Evaluation was done using a graphical prediction toolkit, which is available to the general public, as is the data we used. The experiments show that the nLMS algorithm—which is one of the algorithms currently used in the CyberKnife—is outperformed by all other methods. This is especially true in the case of the wLMS, the SVRpred, and the MULIN algorithms, which perform much better. The nLMS algorithm produces a relative root mean square (RMS) error of 75% or less (i.e., a reduction in error of 25% or more when compared to not doing prediction) in only 38% of the test cases, whereas the MULIN and SVRpred methods reach this level in more than 77%, the wLMS algorithm in more than 84% of the test cases. Our work shows that the wLMS algorithm is the most accurate algorithm and does not require parameter tuning, making it an ideal candidate for clinical implementation. Additionally, we have seen that the structure of a patient

  7. Transitional Division Algorithms.

    ERIC Educational Resources Information Center

    Laing, Robert A.; Meyer, Ruth Ann

    1982-01-01

    A survey of general mathematics students whose teachers were taking an inservice workshop revealed that they had not yet mastered division. More direct introduction of the standard division algorithm is favored in elementary grades, with instruction of transitional processes curtailed. Weaknesses in transitional algorithms appear to outweigh…

  8. Ultrametric Hierarchical Clustering Algorithms.

    ERIC Educational Resources Information Center

    Milligan, Glenn W.

    1979-01-01

    Johnson has shown that the single linkage and complete linkage hierarchical clustering algorithms induce a metric on the data known as the ultrametric. Johnson's proof is extended to four other common clustering algorithms. Two additional methods also produce hierarchical structures which can violate the ultrametric inequality. (Author/CTM)

  9. The Training Effectiveness Algorithm.

    ERIC Educational Resources Information Center

    Cantor, Jeffrey A.

    1988-01-01

    Describes the Training Effectiveness Algorithm, a systematic procedure for identifying the cause of reported training problems which was developed for use in the U.S. Navy. A two-step review by subject matter experts is explained, and applications of the algorithm to other organizations and training systems are discussed. (Author/LRW)

  10. Faster Algorithms on Branch and Clique Decompositions

    NASA Astrophysics Data System (ADS)

    Bodlaender, Hans L.; van Leeuwen, Erik Jan; van Rooij, Johan M. M.; Vatshelle, Martin

    We combine two techniques recently introduced to obtain faster dynamic programming algorithms for optimization problems on graph decompositions. The unification of generalized fast subset convolution and fast matrix multiplication yields significant improvements to the running time of previous algorithms for several optimization problems. As an example, we give an O^{*}(3^{ω/2k}) time algorithm for Minimum Dominating Set on graphs of branchwidth k, improving on the previous O *(4 k ) algorithm. Here ω is the exponent in the running time of the best matrix multiplication algorithm (currently ω< 2.376). For graphs of cliquewidth k, we improve from O *(8 k ) to O *(4 k ). We also obtain an algorithm for counting the number of perfect matchings of a graph, given a branch decomposition of width k, that runs in time O^{*}(2^{ω/2k}). Generalizing these approaches, we obtain faster algorithms for all so-called [ρ,σ]-domination problems on branch decompositions if ρ and σ are finite or cofinite. The algorithms presented in this paper either attain or are very close to natural lower bounds for these problems.

  11. Totally parallel multilevel algorithms

    NASA Technical Reports Server (NTRS)

    Frederickson, Paul O.

    1988-01-01

    Four totally parallel algorithms for the solution of a sparse linear system have common characteristics which become quite apparent when they are implemented on a highly parallel hypercube such as the CM2. These four algorithms are Parallel Superconvergent Multigrid (PSMG) of Frederickson and McBryan, Robust Multigrid (RMG) of Hackbusch, the FFT based Spectral Algorithm, and Parallel Cyclic Reduction. In fact, all four can be formulated as particular cases of the same totally parallel multilevel algorithm, which are referred to as TPMA. In certain cases the spectral radius of TPMA is zero, and it is recognized to be a direct algorithm. In many other cases the spectral radius, although not zero, is small enough that a single iteration per timestep keeps the local error within the required tolerance.

  12. Molecular Motors: Power Strokes Outperform Brownian Ratchets.

    PubMed

    Wagoner, Jason A; Dill, Ken A

    2016-07-07

    Molecular motors convert chemical energy (typically from ATP hydrolysis) to directed motion and mechanical work. Their actions are often described in terms of "Power Stroke" (PS) and "Brownian Ratchet" (BR) mechanisms. Here, we use a transition-state model and stochastic thermodynamics to describe a range of mechanisms ranging from PS to BR. We incorporate this model into Hill's diagrammatic method to develop a comprehensive model of motor processivity that is simple but sufficiently general to capture the full range of behavior observed for molecular motors. We demonstrate that, under all conditions, PS motors are faster, more powerful, and more efficient at constant velocity than BR motors. We show that these differences are very large for simple motors but become inconsequential for complex motors with additional kinetic barrier steps.

  13. High-quality image magnification applying Gerchberg-Papoulis iterative algorithm with discrete cosine transform

    NASA Astrophysics Data System (ADS)

    Shinbori, Eiji; Takagi, Mikio

    1992-11-01

    A new image magnification method, called 'IM-GPDCT' (image magnification applying the Gerchberg-Papoulis (GP) iterative algorithm with discrete cosine transform (DCT)), is described and its performance evaluated. This method markedly improves image quality of a magnified image using a concept which restores the spatial high frequencies which are conventionally lost due to use of a low pass filter. These frequencies are restored using two known constraints applied during iterative DCT: (1) correct information in a passband is known and (2) the spatial extent of an image is finite. Simulation results show that the IM- GPDCT outperforms three conventional interpolation methods from both a restoration error and image quality standpoint.

  14. A heuristic approach based on Clarke-Wright algorithm for open vehicle routing problem.

    PubMed

    Pichpibul, Tantikorn; Kawtummachai, Ruengsak

    2013-01-01

    We propose a heuristic approach based on the Clarke-Wright algorithm (CW) to solve the open version of the well-known capacitated vehicle routing problem in which vehicles are not required to return to the depot after completing service. The proposed CW has been presented in four procedures composed of Clarke-Wright formula modification, open-route construction, two-phase selection, and route postimprovement. Computational results show that the proposed CW is competitive and outperforms classical CW in all directions. Moreover, the best known solution is also obtained in 97% of tested instances (60 out of 62).

  15. A Heuristic Approach Based on Clarke-Wright Algorithm for Open Vehicle Routing Problem

    PubMed Central

    2013-01-01

    We propose a heuristic approach based on the Clarke-Wright algorithm (CW) to solve the open version of the well-known capacitated vehicle routing problem in which vehicles are not required to return to the depot after completing service. The proposed CW has been presented in four procedures composed of Clarke-Wright formula modification, open-route construction, two-phase selection, and route postimprovement. Computational results show that the proposed CW is competitive and outperforms classical CW in all directions. Moreover, the best known solution is also obtained in 97% of tested instances (60 out of 62). PMID:24382948

  16. Algorithms for optimal dyadic decision trees

    SciTech Connect

    Hush, Don; Porter, Reid

    2009-01-01

    A new algorithm for constructing optimal dyadic decision trees was recently introduced, analyzed, and shown to be very effective for low dimensional data sets. This paper enhances and extends this algorithm by: introducing an adaptive grid search for the regularization parameter that guarantees optimal solutions for all relevant trees sizes, revising the core tree-building algorithm so that its run time is substantially smaller for most regularization parameter values on the grid, and incorporating new data structures and data pre-processing steps that provide significant run time enhancement in practice.

  17. Advanced Imaging Algorithms for Radiation Imaging Systems

    SciTech Connect

    Marleau, Peter

    2015-10-01

    The intent of the proposed work, in collaboration with University of Michigan, is to develop the algorithms that will bring the analysis from qualitative images to quantitative attributes of objects containing SNM. The first step to achieving this is to develop an indepth understanding of the intrinsic errors associated with the deconvolution and MLEM algorithms. A significant new effort will be undertaken to relate the image data to a posited three-dimensional model of geometric primitives that can be adjusted to get the best fit. In this way, parameters of the model such as sizes, shapes, and masses can be extracted for both radioactive and non-radioactive materials. This model-based algorithm will need the integrated response of a hypothesized configuration of material to be calculated many times. As such, both the MLEM and the model-based algorithm require significant increases in calculation speed in order to converge to solutions in practical amounts of time.

  18. Cryptanalysis of optical security systems with significant output images.

    PubMed

    Situ, Guohai; Gopinathan, Unnikrishnan; Monaghan, David S; Sheridan, John T

    2007-08-01

    The security of the encryption and verification techniques with significant output images is examined by a known-plaintext attack. We introduce an iterative phase-retrieval algorithm based on multiple intensity measurements to heuristically estimate the phase key in the Fourier domain by several plaintext-cyphertext pairs. We obtain correlation output images with very low error by correlating the estimated key with corresponding random phase masks. Our studies show that the convergence behavior of this algorithm sensitively depends on the starting point. We also demonstrate that this algorithm can be used to attack the double random phase encoding technique.

  19. Performance Comparison of Attribute Set Reduction Algorithms in Stock Price Prediction - A Case Study on Indian Stock Data

    NASA Astrophysics Data System (ADS)

    Sivakumar, P. Bagavathi; Mohandas, V. P.

    Stock price prediction and stock trend prediction are the two major research problems of financial time series analysis. In this work, performance comparison of various attribute set reduction algorithms were made for short term stock price prediction. Forward selection, backward elimination, optimized selection, optimized selection based on brute force, weight guided and optimized selection based on the evolutionary principle and strategy was used. Different selection schemes and cross over types were explored. To supplement learning and modeling, support vector machine was also used in combination. The algorithms were applied on a real time Indian stock data namely CNX Nifty. The experimental study was conducted using the open source data mining tool Rapidminer. The performance was compared in terms of root mean squared error, squared error and execution time. The obtained results indicates the superiority of evolutionary algorithms and the optimize selection algorithm based on evolutionary principles outperforms others.

  20. A junction-tree based learning algorithm to optimize network wide traffic control: A coordinated multi-agent framework

    DOE PAGES

    Zhu, Feng; Aziz, H. M. Abdul; Qian, Xinwu; ...

    2015-01-31

    Our study develops a novel reinforcement learning algorithm for the challenging coordinated signal control problem. Traffic signals are modeled as intelligent agents interacting with the stochastic traffic environment. The model is built on the framework of coordinated reinforcement learning. The Junction Tree Algorithm (JTA) based reinforcement learning is proposed to obtain an exact inference of the best joint actions for all the coordinated intersections. Moreover, the algorithm is implemented and tested with a network containing 18 signalized intersections in VISSIM. Finally, our results show that the JTA based algorithm outperforms independent learning (Q-learning), real-time adaptive learning, and fixed timing plansmore » in terms of average delay, number of stops, and vehicular emissions at the network level.« less

  1. A junction-tree based learning algorithm to optimize network wide traffic control: A coordinated multi-agent framework

    SciTech Connect

    Zhu, Feng; Aziz, H. M. Abdul; Qian, Xinwu; Ukkusuri, Satish V.

    2015-01-31

    Our study develops a novel reinforcement learning algorithm for the challenging coordinated signal control problem. Traffic signals are modeled as intelligent agents interacting with the stochastic traffic environment. The model is built on the framework of coordinated reinforcement learning. The Junction Tree Algorithm (JTA) based reinforcement learning is proposed to obtain an exact inference of the best joint actions for all the coordinated intersections. Moreover, the algorithm is implemented and tested with a network containing 18 signalized intersections in VISSIM. Finally, our results show that the JTA based algorithm outperforms independent learning (Q-learning), real-time adaptive learning, and fixed timing plans in terms of average delay, number of stops, and vehicular emissions at the network level.

  2. Gravitation field algorithm and its application in gene cluster

    PubMed Central

    2010-01-01

    Background Searching optima is one of the most challenging tasks in clustering genes from available experimental data or given functions. SA, GA, PSO and other similar efficient global optimization methods are used by biotechnologists. All these algorithms are based on the imitation of natural phenomena. Results This paper proposes a novel searching optimization algorithm called Gravitation Field Algorithm (GFA) which is derived from the famous astronomy theory Solar Nebular Disk Model (SNDM) of planetary formation. GFA simulates the Gravitation field and outperforms GA and SA in some multimodal functions optimization problem. And GFA also can be used in the forms of unimodal functions. GFA clusters the dataset well from the Gene Expression Omnibus. Conclusions The mathematical proof demonstrates that GFA could be convergent in the global optimum by probability 1 in three conditions for one independent variable mass functions. In addition to these results, the fundamental optimization concept in this paper is used to analyze how SA and GA affect the global search and the inherent defects in SA and GA. Some results and source code (in Matlab) are publicly available at http://ccst.jlu.edu.cn/CSBG/GFA. PMID:20854683

  3. Global search algorithms in surface structure determination using photoelectron diffraction

    NASA Astrophysics Data System (ADS)

    Duncan, D. A.; Choi, J. I. J.; Woodruff, D. P.

    2012-02-01

    Three different algorithms to effect global searches of the variable-parameter hyperspace are compared for application to the determination of surface structure using the technique of scanned-energy mode photoelectron diffraction (PhD). Specifically, a new method not previously used in any surface science methods, the swarm-intelligence-based particle swarm optimisation (PSO) method, is presented and its results compared with implementations of fast simulated annealing (FSA) and a genetic algorithm (GA). These three techniques have been applied to experimental data from three adsorption structures that had previously been solved by standard trial-and-error methods, namely H2O on TiO2(110), SO2 on Ni(111) and CN on Cu(111). The performance of the three algorithms is compared to the results of a purely random sampling of the structural parameter hyperspace. For all three adsorbate systems, the PSO out-performs the other techniques as a fitting routine, although for two of the three systems studied the advantage relative to the GA and random sampling approaches is modest. The implementation of FSA failed to achieve acceptable fits in these tests.

  4. BranchClust: a phylogenetic algorithm for selecting gene families

    PubMed Central

    Poptsova, Maria S; Gogarten, J Peter

    2007-01-01

    Background Automated methods for assembling families of orthologous genes include those based on sequence similarity scores and those based on phylogenetic approaches. The first are easy to automate but usually they do not distinguish between paralogs and orthologs or have restriction on the number of taxa. Phylogenetic methods often are based on reconciliation of a gene tree with a known rooted species tree; a limitation of this approach, especially in case of prokaryotes, is that the species tree is often unknown, and that from the analyses of single gene families the branching order between related organisms frequently is unresolved. Results Here we describe an algorithm for the automated selection of orthologous genes that recognizes orthologous genes from different species in a phylogenetic tree for any number of taxa. The algorithm is capable of distinguishing complete (containing all taxa) and incomplete (not containing all taxa) families and recognizes in- and outparalogs. The BranchClust algorithm is implemented in Perl with the use of the BioPerl module for parsing trees and is freely available at . Conclusion BranchClust outperforms the Reciprocal Best Blast hit method in selecting more sets of putatively orthologous genes. In the test cases examined, the correctness of the selected families and of the identified in- and outparalogs was confirmed by inspection of the pertinent phylogenetic trees. PMID:17425803

  5. A statistical algorithm for estimating chlorophyll concentration from MODIS data

    NASA Astrophysics Data System (ADS)

    Wattelez, Guillaume; Dupouy, Cécile; Mangeas, Morgan; Lèfevre, Jérôme; Touraivane, T.; Frouin, Robert J.

    2014-11-01

    We propose a statistical algorithm to assess chlorophyll-a concentration ([chl-a]) using remote sensing reflectance (Rrs) derived from MODerate Resolution Imaging Spectroradiometer (MODIS) data. This algorithm is a combination of two models: one for low [chl-a] (oligotrophic waters) and one for high [chl-a]. A satellite pixel is classified as low or high [chla] according to the Rrs ratio (488 and 555 nm channels). If a pixel is considered as a low [chl-a] pixel, a log-linear model is applied; otherwise, a more sophisticated model (Support Vector Machine) is applied. The log-linear model was developed thanks to supervised learning on Rrs and [chl-a] data from SeaBASS and more than 15 campaigns accomplished from 2002 to 2010 around New Caledonia. Several models to assess high [chl-a] were also tested with statistical methods. This novel approach outperforms the standard reflectance ratio approach. Compared with algorithms such as the current NASA OC3, Root Mean Square Error is 30% lower in New Caledonian waters.

  6. Using animation to help students learn computer algorithms.

    PubMed

    Catrambone, Richard; Seay, A Fleming

    2002-01-01

    This paper compares the effects of graphical study aids and animation on the problem-solving performance of students learning computer algorithms. Prior research has found inconsistent effects of animation on learning, and we believe this is partly attributable to animations not being designed to convey key information to learners. We performed an instructional analysis of the to-be-learned algorithms and designed the teaching materials based on that analysis. Participants studied stronger or weaker text-based information about the algorithm, and then some participants additionally studied still frames or an animation. Across 2 studies, learners who studied materials based on the instructional analysis tended to outperform other participants on both near and far transfer tasks. Animation also aided performance, particularly for participants who initially read the weaker text. These results suggest that animation might be added to curricula as a way of improving learning without needing revisions of existing texts and materials. Actual or potential applications of this research include the development of animations for learning complex systems as well as guidelines for determining when animations can aid learning.

  7. Vavien: An Algorithm for Prioritizing Candidate Disease Genes Based on Topological Similarity of Proteins in Interaction Networks

    PubMed Central

    Bebek, Gurkan; Koyutürk, Mehmet

    2011-01-01

    Abstract Genome-wide linkage and association studies have demonstrated promise in identifying genetic factors that influence health and disease. An important challenge is to narrow down the set of candidate genes that are implicated by these analyses. Protein-protein interaction (PPI) networks are useful in extracting the functional relationships between known disease and candidate genes, based on the principle that products of genes implicated in similar diseases are likely to exhibit significant connectivity/proximity. Information flow–based methods are shown to be very effective in prioritizing candidate disease genes. In this article, we utilize the topology of PPI networks to infer functional information in the context of disease association. Our approach is based on the assumption that PPI networks are organized into recurrent schemes that underlie the mechanisms of cooperation among different proteins. We hypothesize that proteins associated with similar diseases would exhibit similar topological characteristics in PPI networks. Utilizing the location of a protein in the network with respect to other proteins (i.e., the “topological profile” of the proteins), we develop a novel measure to assess the topological similarity of proteins in a PPI network. We then use this measure to prioritize candidate disease genes based on the topological similarity of their products and the products of known disease genes. We test the resulting algorithm, Vavien, via systematic experimental studies using an integrated human PPI network and the Online Mendelian Inheritance in Man (OMIM) database. Vavien outperforms other network-based prioritization algorithms as shown in the results and is available at www.diseasegenes.org. PMID:22035267

  8. Effects of deformable registration algorithms on the creation of statistical maps for preoperative targeting in deep brain stimulation procedures

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; D'Haese, Pierre-Francois; Dawant, Benoit M.

    2014-03-01

    Deep brain stimulation, which is used to treat various neurological disorders, involves implanting a permanent electrode into precise targets deep in the brain. Accurate pre-operative localization of the targets on pre-operative MRI sequence is challenging as these are typically located in homogenous regions with poor contrast. Population-based statistical atlases can assist with this process. Such atlases are created by acquiring the location of efficacious regions from numerous subjects and projecting them onto a common reference image volume using some normalization method. In previous work, we presented results concluding that non-rigid registration provided the best result for such normalization. However, this process could be biased by the choice of the reference image and/or registration approach. In this paper, we have qualitatively and quantitatively compared the performance of six recognized deformable registration methods at normalizing such data in poor contrasted regions onto three different reference volumes using a unique set of data from 100 patients. We study various metrics designed to measure the centroid, spread, and shape of the normalized data. This study leads to a total of 1800 deformable registrations and results show that statistical atlases constructed using different deformable registration methods share comparable centroids and spreads with marginal differences in their shape. Among the six methods being studied, Diffeomorphic Demons produces the largest spreads and centroids that are the furthest apart from the others in general. Among the three atlases, one atlas consistently outperforms the other two with smaller spreads for each algorithm. However, none of the differences in the spreads were found to be statistically significant, across different algorithms or across different atlases.

  9. A finite rate of innovation algorithm for fast and accurate spike detection from two-photon calcium imaging

    NASA Astrophysics Data System (ADS)

    Oñativia, Jon; Schultz, Simon R.; Dragotti, Pier Luigi

    2013-08-01

    Objective. Inferring the times of sequences of action potentials (APs) (spike trains) from neurophysiological data is a key problem in computational neuroscience. The detection of APs from two-photon imaging of calcium signals offers certain advantages over traditional electrophysiological approaches, as up to thousands of spatially and immunohistochemically defined neurons can be recorded simultaneously. However, due to noise, dye buffering and the limited sampling rates in common microscopy configurations, accurate detection of APs from calcium time series has proved to be a difficult problem. Approach. Here we introduce a novel approach to the problem making use of finite rate of innovation (FRI) theory (Vetterli et al 2002 IEEE Trans. Signal Process. 50 1417-28). For calcium transients well fit by a single exponential, the problem is reduced to reconstructing a stream of decaying exponentials. Signals made of a combination of exponentially decaying functions with different onset times are a subclass of FRI signals, for which much theory has recently been developed by the signal processing community. Main results. We demonstrate for the first time the use of FRI theory to retrieve the timing of APs from calcium transient time series. The final algorithm is fast, non-iterative and parallelizable. Spike inference can be performed in real-time for a population of neurons and does not require any training phase or learning to initialize parameters. Significance. The algorithm has been tested with both real data (obtained by simultaneous electrophysiology and multiphoton imaging of calcium signals in cerebellar Purkinje cell dendrites), and surrogate data, and outperforms several recently proposed methods for spike train inference from calcium imaging data.

  10. Algorithm for in-flight gyroscope calibration

    NASA Technical Reports Server (NTRS)

    Davenport, P. B.; Welter, G. L.

    1988-01-01

    An optimal algorithm for the in-flight calibration of spacecraft gyroscope systems is presented. Special consideration is given to the selection of the loss function weight matrix in situations in which the spacecraft attitude sensors provide significantly more accurate information in pitch and yaw than in roll, such as will be the case in the Hubble Space Telescope mission. The results of numerical tests that verify the accuracy of the algorithm are discussed.

  11. Numerical linear algebra algorithms and software

    NASA Astrophysics Data System (ADS)

    Dongarra, Jack J.; Eijkhout, Victor

    2000-11-01

    The increasing availability of advanced-architecture computers has a significant effect on all spheres of scientific computation, including algorithm research and software development in numerical linear algebra. Linear algebra - in particular, the solution of linear systems of equations - lies at the heart of most calculations in scientific computing. This paper discusses some of the recent developments in linear algebra designed to exploit these advanced-architecture computers. We discuss two broad classes of algorithms: those for dense, and those for sparse matrices.

  12. An enhanced mode shape identification algorithm

    NASA Technical Reports Server (NTRS)

    Roemer, Michael J.; Mook, D. Joseph

    1989-01-01

    A mode shape identification algorithm is developed which is characterized by a low sensitivity to measurement noise and a high accuracy of mode identification. The algorithm proposed here is also capable of identifying the mode shapes of structures with significant damping. The combined results indicate that mode shape identification is much more dependent on measurement noise than identification of natural frequencies. Accurate detection of modal parameters and mode shapes is demonstrated for modes with damping ratios exceeding 15 percent.

  13. Self-organization and clustering algorithms

    NASA Technical Reports Server (NTRS)

    Bezdek, James C.

    1991-01-01

    Kohonen's feature maps approach to clustering is often likened to the k or c-means clustering algorithms. Here, the author identifies some similarities and differences between the hard and fuzzy c-Means (HCM/FCM) or ISODATA algorithms and Kohonen's self-organizing approach. The author concludes that some differences are significant, but at the same time there may be some important unknown relationships between the two methodologies. Several avenues of research are proposed.

  14. Ouroboros: A Tool for Building Generic, Hybrid, Divide& Conquer Algorithms

    SciTech Connect

    Johnson, J R; Foster, I

    2003-05-01

    A hybrid divide and conquer algorithm is one that switches from a divide and conquer to an iterative strategy at a specified problem size. Such algorithms can provide significant performance improvements relative to alternatives that use a single strategy. However, the identification of the optimal problem size at which to switch for a particular algorithm and platform can be challenging. We describe an automated approach to this problem that first conducts experiments to explore the performance space on a particular platform and then uses the resulting performance data to construct an optimal hybrid algorithm on that platform. We implement this technique in a tool, ''Ouroboros'', that automatically constructs a high-performance hybrid algorithm from a set of registered algorithms. We present results obtained with this tool for several classical divide and conquer algorithms, including matrix multiply and sorting, and report speedups of up to six times achieved over non-hybrid algorithms.

  15. [An Algorithm for Correcting Fetal Heart Rate Baseline].

    PubMed

    Li, Xiaodong; Lu, Yaosheng

    2015-10-01

    Fetal heart rate (FHR) baseline estimation is of significance for the computerized analysis of fetal heart rate and the assessment of fetal state. In our work, a fetal heart rate baseline correction algorithm was presented to make the existing baseline more accurate and fit to the tracings. Firstly, the deviation of the existing FHR baseline was found and corrected. And then a new baseline was obtained finally after treatment with some smoothing methods. To assess the performance of FHR baseline correction algorithm, a new FHR baseline estimation algorithm that combined baseline estimation algorithm and the baseline correction algorithm was compared with two existing FHR baseline estimation algorithms. The results showed that the new FHR baseline estimation algorithm did well in both accuracy and efficiency. And the results also proved the effectiveness of the FHR baseline correction algorithm.

  16. Systematic identification of statistically significant network measures

    NASA Astrophysics Data System (ADS)

    Ziv, Etay; Koytcheff, Robin; Middendorf, Manuel; Wiggins, Chris

    2005-01-01

    We present a graph embedding space (i.e., a set of measures on graphs) for performing statistical analyses of networks. Key improvements over existing approaches include discovery of “motif hubs” (multiple overlapping significant subgraphs), computational efficiency relative to subgraph census, and flexibility (the method is easily generalizable to weighted and signed graphs). The embedding space is based on scalars, functionals of the adjacency matrix representing the network. Scalars are global, involving all nodes; although they can be related to subgraph enumeration, there is not a one-to-one mapping between scalars and subgraphs. Improvements in network randomization and significance testing—we learn the distribution rather than assuming Gaussianity—are also presented. The resulting algorithm establishes a systematic approach to the identification of the most significant scalars and suggests machine-learning techniques for network classification.

  17. Classification of urban vegetation patterns from hyperspectral imagery: hybrid algorithm based on genetic algorithm tuned fuzzy support vector machine

    NASA Astrophysics Data System (ADS)

    Zhou, Mandi; Shu, Jiong; Chen, Zhigang; Ji, Minhe

    2012-11-01

    Hyperspectral imagery has been widely used in terrain classification for its high resolution. Urban vegetation, known as an essential part of the urban ecosystem, can be difficult to discern due to high similarity of spectral signatures among some land-cover classes. In this paper, we investigate a hybrid approach of the genetic-algorithm tuned fuzzy support vector machine (GA-FSVM) technique and apply it to urban vegetation classification from aerial hyperspectral urban imagery. The approach adopts the genetic algorithm to optimize parameters of support vector machine, and employs the K-nearest neighbor algorithm to calculate the membership function for each fuzzy parameter, aiming to reduce the effects of the isolated and noisy samples. Test data come from push-broom hyperspectral imager (PHI) hyperspectral remote sensing image which partially covers a corner of the Shanghai World Exposition Park, while PHI is a hyper-spectral sensor developed by Shanghai Institute of Technical Physics. Experimental results show the GA-FSVM model generates overall accuracy of 71.2%, outperforming the maximum likelihood classifier with 49.4% accuracy and the artificial neural network method with 60.8% accuracy. It indicates GA-FSVM is a promising model for vegetation classification from hyperspectral urban data, and has good advantage in the application of classification involving abundant mixed pixels and small samples problem.

  18. The Algorithm Selection Problem

    NASA Technical Reports Server (NTRS)

    Minton, Steve; Allen, John; Deiss, Ron (Technical Monitor)

    1994-01-01

    Work on NP-hard problems has shown that many instances of these theoretically computationally difficult problems are quite easy. The field has also shown that choosing the right algorithm for the problem can have a profound effect on the time needed to find a solution. However, to date there has been little work showing how to select the right algorithm for solving any particular problem. The paper refers to this as the algorithm selection problem. It describes some of the aspects that make this problem difficult, as well as proposes a technique for addressing it.

  19. An Exact Algorithm to Compute the Double-Cut-and-Join Distance for Genomes with Duplicate Genes.

    PubMed

    Shao, Mingfu; Lin, Yu; Moret, Bernard M E

    2015-05-01

    Computing the edit distance between two genomes is a basic problem in the study of genome evolution. The double-cut-and-join (DCJ) model has formed the basis for most algorithmic research on rearrangements over the last few years. The edit distance under the DCJ model can be computed in linear time for genomes without duplicate genes, while the problem becomes NP-hard in the presence of duplicate genes. In this article, we propose an integer linear programming (ILP) formulation to compute the DCJ distance between two genomes with duplicate genes. We also provide an efficient preprocessing approach to simplify the ILP formulation while preserving optimality. Comparison on simulated genomes demonstrates that our method outperforms MSOAR in computing the edit distance, especially when the genomes contain long duplicated segments. We also apply our method to assign orthologous gene pairs among human, mouse, and rat genomes, where once again our method outperforms MSOAR.

  20. A Monte Carlo Evaluation of Weighted Community Detection Algorithms

    PubMed Central

    Gates, Kathleen M.; Henry, Teague; Steinley, Doug; Fair, Damien A.

    2016-01-01

    The past decade has been marked with a proliferation of community detection algorithms that aim to organize nodes (e.g., individuals, brain regions, variables) into modular structures that indicate subgroups, clusters, or communities. Motivated by the emergence of big data across many fields of inquiry, these methodological developments have primarily focused on the detection of communities of nodes from matrices that are very large. However, it remains unknown if the algorithms can reliably detect communities in smaller graph sizes (i.e., 1000 nodes and fewer) which are commonly used in brain research. More importantly, these algorithms have predominantly been tested only on binary or sparse count matrices and it remains unclear the degree to which the algorithms can recover community structure for different types of matrices, such as the often used cross-correlation matrices representing functional connectivity across predefined brain regions. Of the publicly available approaches for weighted graphs that can detect communities in graph sizes of at least 1000, prior research has demonstrated that Newman's spectral approach (i.e., Leading Eigenvalue), Walktrap, Fast Modularity, the Louvain method (i.e., multilevel community method), Label Propagation, and Infomap all recover communities exceptionally well in certain circumstances. The purpose of the present Monte Carlo simulation study is to test these methods across a large number of conditions, including varied graph sizes and types of matrix (sparse count, correlation, and reflected Euclidean distance), to identify which algorithm is optimal for specific types of data matrices. The results indicate that when the data are in the form of sparse count networks (such as those seen in diffusion tensor imaging), Label Propagation and Walktrap surfaced as the most reliable methods for community detection. For dense, weighted networks such as correlation matrices capturing functional connectivity, Walktrap consistently

  1. Interpreting the flock algorithm from a statistical perspective.

    PubMed

    Anderson, Eric C; Barry, Patrick D

    2015-09-01

    We show that the algorithm in the program flock (Duchesne & Turgeon 2009) can be interpreted as an estimation procedure based on a model essentially identical to the structure (Pritchard et al. 2000) model with no admixture and without correlated allele frequency priors. Rather than using MCMC, the flock algorithm searches for the maximum a posteriori estimate of this structure model via a simulated annealing algorithm with a rapid cooling schedule (namely, the exponent on the objective function →∞). We demonstrate the similarities between the two programs in a two-step approach. First, to enable rapid batch processing of many simulated data sets, we modified the source code of structure to use the flock algorithm, producing the program flockture. With simulated data, we confirmed that results obtained with flock and flockture are very similar (though flockture is some 200 times faster). Second, we simulated multiple large data sets under varying levels of population differentiation for both microsatellite and SNP genotypes. We analysed them with flockture and structure and assessed each program on its ability to cluster individuals to their correct subpopulation. We show that flockture yields results similar to structure albeit with greater variability from run to run. flockture did perform better than structure when genotypes were composed of SNPs and differentiation was moderate (FST= 0.022-0.032). When differentiation was low, structure outperformed flockture for both marker types. On large data sets like those we simulated, it appears that flock's reliance on inference rules regarding its 'plateau record' is not helpful. Interpreting flock's algorithm as a special case of the model in structure should aid in understanding the program's output and behaviour.

  2. Diagnostic Algorithm Benchmarking

    NASA Technical Reports Server (NTRS)

    Poll, Scott

    2011-01-01

    A poster for the NASA Aviation Safety Program Annual Technical Meeting. It describes empirical benchmarking on diagnostic algorithms using data from the ADAPT Electrical Power System testbed and a diagnostic software framework.

  3. Inclusive Flavour Tagging Algorithm

    NASA Astrophysics Data System (ADS)

    Likhomanenko, Tatiana; Derkach, Denis; Rogozhnikov, Alex

    2016-10-01

    Identifying the flavour of neutral B mesons production is one of the most important components needed in the study of time-dependent CP violation. The harsh environment of the Large Hadron Collider makes it particularly hard to succeed in this task. We present an inclusive flavour-tagging algorithm as an upgrade of the algorithms currently used by the LHCb experiment. Specifically, a probabilistic model which efficiently combines information from reconstructed vertices and tracks using machine learning is proposed. The algorithm does not use information about underlying physics process. It reduces the dependence on the performance of lower level identification capacities and thus increases the overall performance. The proposed inclusive flavour-tagging algorithm is applicable to tag the flavour of B mesons in any proton-proton experiment.

  4. OpenEIS Algorithms

    SciTech Connect

    2013-07-29

    The OpenEIS Algorithm package seeks to provide a low-risk path for building owners, service providers and managers to explore analytical methods for improving building control and operational efficiency. Users of this software can analyze building data, and learn how commercial implementations would provide long-term value. The code also serves as a reference implementation for developers who wish to adapt the algorithms for use in commercial tools or service offerings.

  5. Implementation of Parallel Algorithms

    DTIC Science & Technology

    1993-06-30

    their socia ’ relations or to achieve some goals. For example, we define a pair-wise force law of i epulsion and attraction for a group of identical...quantization based compression schemes. Photo-refractive crystals, which provide high density recording in real time, are used as our holographic media . The...of Parallel Algorithms (J. Reif, ed.). Kluwer Academic Pu’ ishers, 1993. (4) "A Dynamic Separator Algorithm", D. Armon and J. Reif. To appear in

  6. Parallel Wolff Cluster Algorithms

    NASA Astrophysics Data System (ADS)

    Bae, S.; Ko, S. H.; Coddington, P. D.

    The Wolff single-cluster algorithm is the most efficient method known for Monte Carlo simulation of many spin models. Due to the irregular size, shape and position of the Wolff clusters, this method does not easily lend itself to efficient parallel implementation, so that simulations using this method have thus far been confined to workstations and vector machines. Here we present two parallel implementations of this algorithm, and show that one gives fairly good performance on a MIMD parallel computer.

  7. A new adaptive algorithm for image denoising based on curvelet transform

    NASA Astrophysics Data System (ADS)

    Chen, Musheng; Cai, Zhishan

    2013-10-01

    The purpose of this paper is to study a method of denoising images corrupted with additive white Gaussian noise. In this paper, the application of the time invariant discrete curvelet transform for noise reduction is considered. In curvelet transform, the frame elements are indexed by scale, orientation and location parameters. It is designed to represent edges and the singularities along curved paths more efficiently than the wavelet transform. Therefore, curvelet transform can get better results than wavelet method in image denoising. In general, image denoising imposes a compromise between noise reduction and preserving significant image details. To achieve a good performance in this respect, an efficient and adaptive image denoising method based on curvelet transform is presented in this paper. Firstly, the noisy image is decomposed into many levels to obtain different frequency sub-bands by curvelet transform. Secondly, efficient and adaptive threshold estimation based on generalized Gaussian distribution modeling of sub-band coefficients is used to remove the noisy coefficients. The choice of the threshold estimation is carried out by analyzing the standard deviation and threshold. Ultimately, invert the multi-scale decomposition to reconstruct the denoised image. Here, to prove the performance of the proposed method, the results are compared with other existent algorithms such as hard and soft threshold based on wavelet. The simulation results on several testing images indicate that the proposed method outperforms the other methods in peak signal to noise ratio and keeps better visual in edges information reservation as well. The results also suggest that curvelet transform can achieve a better performance than the wavelet transform in image denoising.

  8. A novel coupling of noise reduction algorithms for particle flow simulations

    NASA Astrophysics Data System (ADS)

    Zimoń, M. J.; Reese, J. M.; Emerson, D. R.

    2016-09-01

    Proper orthogonal decomposition (POD) and its extension based on time-windows have been shown to greatly improve the effectiveness of recovering smooth ensemble solutions from noisy particle data. However, to successfully de-noise any molecular system, a large number of measurements still need to be provided. In order to achieve a better efficiency in processing time-dependent fields, we have combined POD with a well-established signal processing technique, wavelet-based thresholding. In this novel hybrid procedure, the wavelet filtering is applied within the POD domain and referred to as WAVinPOD. The algorithm exhibits promising results when applied to both synthetically generated signals and particle data. In this work, the simulations compare the performance of our new approach with standard POD or wavelet analysis in extracting smooth profiles from noisy velocity and density fields. Numerical examples include molecular dynamics and dissipative particle dynamics simulations of unsteady force- and shear-driven liquid flows, as well as phase separation phenomenon. Simulation results confirm that WAVinPOD preserves the dimensionality reduction obtained using POD, while improving its filtering properties through the sparse representation of data in wavelet basis. This paper shows that WAVinPOD outperforms the other estimators for both synthetically generated signals and particle-based measurements, achieving a higher signal-to-noise ratio from a smaller number of samples. The new filtering methodology offers significant computational savings, particularly for multi-scale applications seeking to couple continuum informations with atomistic models. It is the first time that a rigorous analysis has compared de-noising techniques for particle-based fluid simulations.

  9. A novel coupling of noise reduction algorithms for particle flow simulations

    SciTech Connect

    Zimoń, M.J.; Reese, J.M.; Emerson, D.R.

    2016-09-15

    Proper orthogonal decomposition (POD) and its extension based on time-windows have been shown to greatly improve the effectiveness of recovering smooth ensemble solutions from noisy particle data. However, to successfully de-noise any molecular system, a large number of measurements still need to be provided. In order to achieve a better efficiency in processing time-dependent fields, we have combined POD with a well-established signal processing technique, wavelet-based thresholding. In this novel hybrid procedure, the wavelet filtering is applied within the POD domain and referred to as WAVinPOD. The algorithm exhibits promising results when applied to both synthetically generated signals and particle data. In this work, the simulations compare the performance of our new approach with standard POD or wavelet analysis in extracting smooth profiles from noisy velocity and density fields. Numerical examples include molecular dynamics and dissipative particle dynamics simulations of unsteady force- and shear-driven liquid flows, as well as phase separation phenomenon. Simulation results confirm that WAVinPOD preserves the dimensionality reduction obtained using POD, while improving its filtering properties through the sparse representation of data in wavelet basis. This paper shows that WAVinPOD outperforms the other estimators for both synthetically generated signals and particle-based measurements, achieving a higher signal-to-noise ratio from a smaller number of samples. The new filtering methodology offers significant computational savings, particularly for multi-scale applications seeking to couple continuum informations with atomistic models. It is the first time that a rigorous analysis has compared de-noising techniques for particle-based fluid simulations.

  10. SPEQTACLE: An automated generalized fuzzy C-means algorithm for tumor delineation in PET

    SciTech Connect

    Lapuyade-Lahorgue, Jérôme; Visvikis, Dimitris; Hatt, Mathieu; Pradier, Olivier; Cheze Le Rest, Catherine

    2015-10-15

    Purpose: Accurate tumor delineation in positron emission tomography (PET) images is crucial in oncology. Although recent methods achieved good results, there is still room for improvement regarding tumors with complex shapes, low signal-to-noise ratio, and high levels of uptake heterogeneity. Methods: The authors developed and evaluated an original clustering-based method called spatial positron emission quantification of tumor—Automatic Lp-norm estimation (SPEQTACLE), based on the fuzzy C-means (FCM) algorithm with a generalization exploiting a Hilbertian norm to more accurately account for the fuzzy and non-Gaussian distributions of PET images. An automatic and reproducible estimation scheme of the norm on an image-by-image basis was developed. Robustness was assessed by studying the consistency of results obtained on multiple acquisitions of the NEMA phantom on three different scanners with varying acquisition parameters. Accuracy was evaluated using classification errors (CEs) on simulated and clinical images. SPEQTACLE was compared to another FCM implementation, fuzzy local information C-means (FLICM) and fuzzy locally adaptive Bayesian (FLAB). Results: SPEQTACLE demonstrated a level of robustness similar to FLAB (variability of 14% ± 9% vs 14% ± 7%, p = 0.15) and higher than FLICM (45% ± 18%, p < 0.0001), and improved accuracy with lower CE (14% ± 11%) over both FLICM (29% ± 29%) and FLAB (22% ± 20%) on simulated images. Improvement was significant for the more challenging cases with CE of 17% ± 11% for SPEQTACLE vs 28% ± 22% for FLAB (p = 0.009) and 40% ± 35% for FLICM (p < 0.0001). For the clinical cases, SPEQTACLE outperformed FLAB and FLICM (15% ± 6% vs 37% ± 14% and 30% ± 17%, p < 0.004). Conclusions: SPEQTACLE benefitted from the fully automatic estimation of the norm on a case-by-case basis. This promising approach will be extended to multimodal images and multiclass estimation in future developments.

  11. Inference from matrix products: a heuristic spin glass algorithm

    SciTech Connect

    Hastings, Matthew B

    2008-01-01

    We present an algorithm for finding ground states of two-dimensional spin-glass systems based on ideas from matrix product states in quantum information theory. The algorithm works directly at zero temperature and defines an approximation to the energy whose accuracy depends on a parameter k. We test the algorithm against exact methods on random field and random bond Ising models, and we find that accurate results require a k which scales roughly polynomially with the system size. The algorithm also performs well when tested on small systems with arbitrary interactions, where no fast, exact algorithms exist. The time required is significantly less than Monte Carlo schemes.

  12. Versatility of the CFR algorithm for limited angle reconstruction

    SciTech Connect

    Fujieda, I.; Heiskanen, K.; Perez-Mendez, V. )

    1990-04-01

    The constrained Fourier reconstruction (CFR) algorithm and the iterative reconstruction-reprojection (IRR) algorithm are evaluated based on their accuracy for three types of limited angle reconstruction problems. The cFR algorithm performs better for problems such as Xray CT imaging of a nuclear reactor core with one large data gap due to structural blocking of the source and detector pair. For gated heart imaging by Xray CT, radioisotope distribution imaging by PET or SPECT, using a polygonal array of gamma cameras with insensitive gaps between camera boundaries, the IRR algorithm has a slight advantage over the CFR algorithm but the difference is not significant.

  13. Incrementing data quality of multi-frequency echograms using the Adaptive Wiener Filter (AWF) denoising algorithm

    NASA Astrophysics Data System (ADS)

    Peña, M.

    2016-10-01

    Achieving acceptable signal-to-noise ratio (SNR) can be difficult when working in sparsely populated waters and/or when species have low scattering such as fluid filled animals. The increasing use of higher frequencies and the study of deeper depths in fisheries acoustics, as well as the use of commercial vessels, is raising the need to employ good denoising algorithms. The use of a lower Sv threshold to remove noise or unwanted targets is not suitable in many cases and increases the relative background noise component in the echogram, demanding more effectiveness from denoising algorithms. The Adaptive Wiener Filter (AWF) denoising algorithm is presented in this study. The technique is based on the AWF commonly used in digital photography and video enhancement. The algorithm firstly increments the quality of the data with a variance-dependent smoothing, before estimating the noise level as the envelope of the Sv minima. The AWF denoising algorithm outperforms existing algorithms in the presence of gaussian, speckle and salt & pepper noise, although impulse noise needs to be previously removed. Cleaned echograms present homogenous echotraces with outlined edges.

  14. ASMiGA: an archive-based steady-state micro genetic algorithm.

    PubMed

    Nag, Kaustuv; Pal, Tandra; Pal, Nikhil R

    2015-01-01

    We propose a new archive-based steady-state micro genetic algorithm (ASMiGA). In this context, a new archive maintenance strategy is proposed, which maintains a set of nondominated solutions in the archive unless the archive size falls below a minimum allowable size. It makes the archive size adaptive and dynamic. We have proposed a new environmental selection strategy and a new mating selection strategy. The environmental selection strategy reduces the exploration in less probable objective spaces. The mating selection increases searching in more probable search regions by enhancing the exploitation of existing solutions. A new crossover strategy DE-3 is proposed here. ASMiGA is compared with five well-known multiobjective optimization algorithms of different types-generational evolutionary algorithms (SPEA2 and NSGA-II), archive-based hybrid scatter search, decomposition-based evolutionary approach, and archive-based micro genetic algorithm. For comparison purposes, four performance measures (HV, GD, IGD, and GS) are used on 33 test problems, of which seven problems are constrained. The proposed algorithm outperforms the other five algorithms.

  15. Feature weighted naïve Bayes algorithm for information retrieval of enterprise systems

    NASA Astrophysics Data System (ADS)

    Wang, Li; Ji, Ping; Qi, Jing; Shan, Siqing; Bi, Zhuming; Deng, Weiguo; Zhang, Naijing

    2014-01-01

    Automated information retrieval is critical for enterprise information systems to acquire knowledge from the vast amount of data sets. One challenge in information retrieval is text classification. Current practices rely heavily on the classical naïve Bayes algorithm due to its simplicity and robustness. However, results from this algorithm are not always satisfactory. In this article, the limitations of the naïve Bayes algorithm are discussed, and it is found that the assumption on the independence of terms is the main reason for an unsatisfactory classification in many real-world applications. To overcome the limitations, the dependent factors are considered by integrating a term frequency-inverse document frequency (TF-IDF) weighting algorithm in the naïve Bayes classification. Moreover, the TF-IDF algorithm itself is improved so that both frequencies and distribution information are taken into consideration. To illustrate the effectiveness of the proposed method, two simulation experiments were conducted, and the comparisons with other classification methods have shown that the proposed method has outperformed other existing algorithms in terms of precision and index recall rate.

  16. Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaoqian; Guo, Qinghua; Su, Yanjun; Xue, Baolin

    2016-07-01

    Filtering of light detection and ranging (LiDAR) data into the ground and non-ground points is a fundamental step in processing raw airborne LiDAR data. This paper proposes an improved progressive triangulated irregular network (TIN) densification (IPTD) filtering algorithm that can cope with a variety of forested landscapes, particularly both topographically and environmentally complex regions. The IPTD filtering algorithm consists of three steps: (1) acquiring potential ground seed points using the morphological method; (2) obtaining accurate ground seed points; and (3) building a TIN-based model and iteratively densifying TIN. The IPTD filtering algorithm was tested in 15 forested sites with various terrains (i.e., elevation and slope) and vegetation conditions (i.e., canopy cover and tree height), and was compared with seven other commonly used filtering algorithms (including morphology-based, slope-based, and interpolation-based filtering algorithms). Results show that the IPTD achieves the highest filtering accuracy for nine of the 15 sites. In general, it outperforms the other filtering algorithms, yielding the lowest average total error of 3.15% and the highest average kappa coefficient of 89.53%.

  17. An Enhanced Artificial Bee Colony Algorithm with Solution Acceptance Rule and Probabilistic Multisearch.

    PubMed

    Yurtkuran, Alkın; Emel, Erdal

    2016-01-01

    The artificial bee colony (ABC) algorithm is a popular swarm based technique, which is inspired from the intelligent foraging behavior of honeybee swarms. This paper proposes a new variant of ABC algorithm, namely, enhanced ABC with solution acceptance rule and probabilistic multisearch (ABC-SA) to address global optimization problems. A new solution acceptance rule is proposed where, instead of greedy selection between old solution and new candidate solution, worse candidate solutions have a probability to be accepted. Additionally, the acceptance probability of worse candidates is nonlinearly decreased throughout the search process adaptively. Moreover, in order to improve the performance of the ABC and balance the intensification and diversification, a probabilistic multisearch strategy is presented. Three different search equations with distinctive characters are employed using predetermined search probabilities. By implementing a new solution acceptance rule and a probabilistic multisearch approach, the intensification and diversification performance of the ABC algorithm is improved. The proposed algorithm has been tested on well-known benchmark functions of varying dimensions by comparing against novel ABC variants, as well as several recent state-of-the-art algorithms. Computational results show that the proposed ABC-SA outperforms other ABC variants and is superior to state-of-the-art algorithms proposed in the literature.

  18. Improved direct cover heuristic algorithms for synthesis of multiple-valued logic functions

    NASA Astrophysics Data System (ADS)

    Abd-El-Barr, Mostafa I.; Khan, Esam A.

    2014-02-01

    Multiple-valued logic (MVL) circuits using complementary metal-oxide semiconductor (CMOS) technology have been successfully used in implementing a number of digital signal processing (DSP) applications. Heuristic algorithms using the direct cover (DC) approach have been widely used in synthesising (near) minimal two-level realisation of MVL functions. This article presents three improved DC-based algorithms: weighted direct-cover (WDC), ordered direct-cover (ODC) and fuzzy direct-cover (FDC). In the WDC, a weighted-sum scheme for combining a number of different criteria for minterm and implicant selection was applied. In the ODC, a set of criteria for the selection of appropriate minterm and implicant was applied in a specific order. In the FDC, a fuzzy-based algorithm for minterm and implicant selection was introduced. The proposed heuristic algorithms were tested using two sets of benchmarks. The first consists of 50,000 2-variable 4-valued randomly generated functions and the second consists of 50,000 2-variable 5-valued randomly generated functions. The results obtained using the three heuristic algorithms were compared to those obtained using three existing DC-based techniques. It is shown that the heuristic algorithms outperform existing DC-based approaches in terms of the average number of product terms (a measure of the chip area consumed) required to realise a given MVL function.

  19. Lossy to lossless compressions of hyperspectral images using three-dimensional set partitioning algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Jiaji; Wu, Zhensen; Wu, Chengke

    2006-02-01

    We present a three-dimensional (3-D) hyperspectral image compression algorithm based on zero-block coding and wavelet transforms. An efficient asymmetric 3-D wavelet transform (AT) based on the lifting technique and packet transform is used to reduce redundancies in both the spectral and spatial dimensions. The implementation via 3-D integer lifting scheme enables us to map integer-to-integer values, enabling lossy and lossless decompression from the same bit stream. To encode these coefficients after the AT, a modified 3DSPECK algorithm-asymmetric transform 3-D set-partitioning embedded block (AT-3DSPECK) is proposed. According to the distribution of energy of the transformed coefficients, the 3DSPECK's 3-D set partitioning block algorithm and the 3-D octave band partitioning scheme are efficiently combined in the proposed AT-3DSPECK algorithm. Several AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) images are used to evaluate the compression performance. Compared with the JPEG2000, AT-3DSPIHT, and 3DSPECK lossless compression techniques, the AT-3DSPECK achieves the best lossless performance. In lossy mode, the AT-3DSPECK algorithm outperforms AT-3DSPIHT and 3DSPECK at all rates. Besides the high compression performance, AT-3DSPECK supports progressive transmission. Clearly, the proposed AT-3DSPECK algorithm is a better candidate than several conventional methods.

  20. Lossy to lossless compressions of hyperspectral images using three-dimensional set partitioning algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Jiaji; Wu, Zhensen; Wu, Chengke

    2005-02-01

    In this paper, we present a three-dimensional (3D) hyperspectral image compression algorithm based on zeroblock coding and wavelet transforms. An efficient Asymmetric 3D wavelet Transform (AT) based on the lifting technique and packet transform is used to reduce redundancies in both the spectral and spatial dimensions. The implementation via 3D integer lifting scheme allows to map integer-to-integer values, enabling lossy and lossless decompression from the same bit stream. To encode these coefficients after Asymmetric 3D wavelet transform, a modified 3DSPECK algorithm - Asymmetric Transform 3D Set Partitioning Embedded bloCK (AT-3DSPECK) is proposed. According to the distribution of energy of the transformed coefficients, the 3DSPECK's 3D set partitioning block algorithm and the 3D octave band partitioning scheme are efficiently combined in the proposed AT-3DSPECK algorithm. Several AVIRIS images are used to evaluate the compression performance. Compared with the JPEG2000, AT-3DSPIHT and 3DSPECK lossless compression techniques, the AT-3DSPECK achieves the best lossless performance. In lossy mode, the AT-3DSPECK algorithm outperforms AT-3DSPIHT and 3DSPECK at all rates. Besides the high compression performance, AT-3DSPECK supports progressive transmission. Clearly, the proposed AT-3DSPECK algorithm is a better candidate than several conventional methods.

  1. Use of Algorithm of Changes for Optimal Design of Heat Exchanger

    NASA Astrophysics Data System (ADS)

    Tam, S. C.; Tam, H. K.; Chio, C. H.; Tam, L. M.

    2010-05-01

    For economic reasons, the optimal design of heat exchanger is required. Design of heat exchanger is usually based on the iterative process. The design conditions, equipment geometries, the heat transfer and friction factor correlations are totally involved in the process. Using the traditional iterative method, many trials are needed for satisfying the compromise between the heat exchange performance and the cost consideration. The process is cumbersome and the optimal design is often depending on the design engineer's experience. Therefore, in the recent studies, many researchers, reviewed in [1], applied the genetic algorithm (GA) [2] for designing the heat exchanger. The results outperformed the traditional method. In this study, the alternative approach, algorithm of changes, is proposed for optimal design of shell-tube heat exchanger [3]. This new method, algorithm of changes based on I Ching (???), is developed originality by the author. In the algorithms, the hexagram operations in I Ching has been generalized to binary string case and the iterative procedure which imitates the I Ching inference is also defined. On the basis of [3], the shell inside diameter, tube outside diameter, and baffles spacing were treated as the design (or optimized) variables. The cost of the heat exchanger was arranged as the objective function. Through the case study, the results show that the algorithm of changes is comparable to the GA method. Both of method can find the optimal solution in a short time. However, without interchanging information between binary strings, the algorithm of changes has advantage on parallel computation over GA.

  2. A Hybrid Algorithm for Missing Data Imputation and Its Application to Electrical Data Loggers

    PubMed Central

    Turrado, Concepción Crespo; Sánchez Lasheras, Fernando; Calvo-Rollé, José Luis; Piñón-Pazos, Andrés-José; Melero, Manuel G.; de Cos Juez, Francisco Javier

    2016-01-01

    The storage of data is a key process in the study of electrical power networks related to the search for harmonics and the finding of a lack of balance among phases. The presence of missing data of any of the main electrical variables (phase-to-neutral voltage, phase-to-phase voltage, current in each phase and power factor) affects any time series study in a negative way that has to be addressed. When this occurs, missing data imputation algorithms are required. These algorithms are able to substitute the data that are missing for estimated values. This research presents a new algorithm for the missing data imputation method based on Self-Organized Maps Neural Networks and Mahalanobis distances and compares it not only with a well-known technique called Multivariate Imputation by Chained Equations (MICE) but also with an algorithm previously proposed by the authors called Adaptive Assignation Algorithm (AAA). The results obtained demonstrate how the proposed method outperforms both algorithms. PMID:27626419

  3. A hybrid algorithm for robust acoustic source localization in noisy and reverberant environments

    NASA Astrophysics Data System (ADS)

    Rajagopalan, Ramesh; Dessonville, Timothy

    2014-09-01

    Acoustic source localization using microphone arrays is widely used in videoconferencing and surveillance systems. However, it still remains a challenging task to develop efficient algorithms for accurate estimation of source location using distributed data processing. In this work, we propose a new algorithm for efficient localization of a speaker in noisy and reverberant environments such as videoconferencing. We propose a hybrid algorithm that combines generalized cross correlation based phase transform method (GCC-PHAT) and Tabu search to obtain a robust and accurate estimate of the speaker location. The Tabu Search algorithm iteratively improves the time difference of arrival (TDOA) estimate of GCC-PHAT by examining the neighboring solutions until a convergence in the TDOA value is obtained. Experiments were performed based on real world data recorded from a meeting room in the presence of noise such as computer and fans. Our results demonstrate that the proposed hybrid algorithm outperforms GCC-PHAT especially when the noise level is high. This shows the robustness of the proposed algorithm in noisy and realistic videoconferencing systems.

  4. A segmentation algorithm for noisy images

    SciTech Connect

    Xu, Y.; Olman, V.; Uberbacher, E.C.

    1996-12-31

    This paper presents a 2-D image segmentation algorithm and addresses issues related to its performance on noisy images. The algorithm segments an image by first constructing a minimum spanning tree representation of the image and then partitioning the spanning tree into sub-trees representing different homogeneous regions. The spanning tree is partitioned in such a way that the sum of gray-level variations over all partitioned subtrees is minimized under the constraints that each subtree has at least a specified number of pixels and two adjacent subtrees have significantly different ``average`` gray-levels. Two types of noise, transmission errors and Gaussian additive noise. are considered and their effects on the segmentation algorithm are studied. Evaluation results have shown that the segmentation algorithm is robust in the presence of these two types of noise.

  5. A Comprehensive Review of Swarm Optimization Algorithms

    PubMed Central

    2015-01-01

    Many swarm optimization algorithms have been introduced since the early 60’s, Evolutionary Programming to the most recent, Grey Wolf Optimization. All of these algorithms have demonstrated their potential to solve many optimization problems. This paper provides an in-depth survey of well-known optimization algorithms. Selected algorithms are briefly explained and compared with each other comprehensively through experiments conducted using thirty well-known benchmark functions. Their advantages and disadvantages are also discussed. A number of statistical tests are then carried out to determine the significant performances. The results indicate the overall advantage of Differential Evolution (DE) and is closely followed by Particle Swarm Optimization (PSO), compared with other considered approaches. PMID:25992655

  6. A comprehensive review of swarm optimization algorithms.

    PubMed

    Ab Wahab, Mohd Nadhir; Nefti-Meziani, Samia; Atyabi, Adham

    2015-01-01

    Many swarm optimization algorithms have been introduced since the early 60's, Evolutionary Programming to the most recent, Grey Wolf Optimization. All of these algorithms have demonstrated their potential to solve many optimization problems. This paper provides an in-depth survey of well-known optimization algorithms. Selected algorithms are briefly explained and compared with each other comprehensively through experiments conducted using thirty well-known benchmark functions. Their advantages and disadvantages are also discussed. A number of statistical tests are then carried out to determine the significant performances. The results indicate the overall advantage of Differential Evolution (DE) and is closely followed by Particle Swarm Optimization (PSO), compared with other considered approaches.

  7. Sampling Within k-Means Algorithm to Cluster Large Datasets

    SciTech Connect

    Bejarano, Jeremy; Bose, Koushiki; Brannan, Tyler; Thomas, Anita; Adragni, Kofi; Neerchal, Nagaraj; Ostrouchov, George

    2011-08-01

    Due to current data collection technology, our ability to gather data has surpassed our ability to analyze it. In particular, k-means, one of the simplest and fastest clustering algorithms, is ill-equipped to handle extremely large datasets on even the most powerful machines. Our new algorithm uses a sample from a dataset to decrease runtime by reducing the amount of data analyzed. We perform a simulation study to compare our sampling based k-means to the standard k-means algorithm by analyzing both the speed and accuracy of the two methods. Results show that our algorithm is significantly more efficient than the existing algorithm with comparable accuracy. Further work on this project might include a more comprehensive study both on more varied test datasets as well as on real weather datasets. This is especially important considering that this preliminary study was performed on rather tame datasets. Also, these datasets should analyze the performance of the algorithm on varied values of k. Lastly, this paper showed that the algorithm was accurate for relatively low sample sizes. We would like to analyze this further to see how accurate the algorithm is for even lower sample sizes. We could find the lowest sample sizes, by manipulating width and confidence level, for which the algorithm would be acceptably accurate. In order for our algorithm to be a success, it needs to meet two benchmarks: match the accuracy of the standard k-means algorithm and significantly reduce runtime. Both goals are accomplished for all six datasets analyzed. However, on datasets of three and four dimension, as the data becomes more difficult to cluster, both algorithms fail to obtain the correct classifications on some trials. Nevertheless, our algorithm consistently matches the performance of the standard algorithm while becoming remarkably more efficient with time. Therefore, we conclude that analysts can use our algorithm, expecting accurate results in considerably less time.

  8. Barzilai-Borwein method in graph drawing algorithm based on Kamada-Kawai algorithm

    NASA Astrophysics Data System (ADS)

    Hasal, Martin; Pospisil, Lukas; Nowakova, Jana

    2016-06-01

    Extension of Kamada-Kawai algorithm, which was designed for calculating layouts of simple undirected graphs, is presented in this paper. Graphs drawn by Kamada-Kawai algorithm exhibit symmetries, tend to produce aesthetically pleasing and crossing-free layouts for planar graphs. Minimization of Kamada-Kawai algorithm is based on Newton-Raphson method, which needs Hessian matrix of second derivatives of minimized node. Disadvantage of Kamada-Kawai embedder algorithm is computational requirements. This is caused by searching of minimal potential energy of the whole system, which is minimized node by node. The node with highest energy is minimized against all nodes till the local equilibrium state is reached. In this paper with Barzilai-Borwein (BB) minimization algorithm, which needs only gradient for minimum searching, instead of Newton-Raphson method, is worked. It significantly improves the computational time and requirements.

  9. A survey of DNA motif finding algorithms

    PubMed Central

    Das, Modan K; Dai, Ho-Kwok

    2007-01-01

    Background Unraveling the mechanisms that regulate gene expression is a major challenge in biology. An important task in this challenge is to identify regulatory elements, especially the binding sites in deoxyribonucleic acid (DNA) for transcription factors. These binding sites are short DNA segments that are called motifs. Recent advances in genome sequence availability and in high-throughput gene expression analysis technologies have allowed for the development of computational methods for motif finding. As a result, a large number of motif finding algorithms have been implemented and applied to various motif models over the past decade. This survey reviews the latest developments in DNA motif finding algorithms. Results Earlier algorithms use promoter sequences of coregulated genes from single genome and search for statistically overrepresented motifs. Recent algorithms are designed to use phylogenetic footprinting or orthologous sequences and also an integrated approach where promoter sequences of coregulated genes and phylogenetic footprinting are used. All the algorithms studied have been reported to correctly detect the motifs that have been previously detected by laboratory experimental approaches, and some algorithms were able to find novel motifs. However, most of these motif finding algorithms have been shown to work successfully in yeast and other lower organisms, but perform significantly worse in higher organisms. Conclusion Despite considerable efforts to date, DNA motif finding remains a complex challenge for biologists and computer scientists. Researchers have taken many different approaches in developing motif discovery tools and the progress made in this area of research is very encouraging. Performance comparison of different motif finding tools and identification of the best tools have proven to be a difficult task because tools are designed based on algorithms and motif models that are diverse and complex and our incomplete understanding of

  10. Sensor network algorithms and applications.

    PubMed

    Trigoni, Niki; Krishnamachari, Bhaskar

    2012-01-13

    A sensor network is a collection of nodes with processing, communication and sensing capabilities deployed in an area of interest to perform a monitoring task. There has now been about a decade of very active research in the area of sensor networks, with significant accomplishments made in terms of both designing novel algorithms and building exciting new sensing applications. This Theme Issue provides a broad sampling of the central challenges and the contributions that have been made towards addressing these challenges in the field, and illustrates the pervasive and central role of sensor networks in monitoring human activities and the environment.

  11. Optimisation of nonlinear motion cueing algorithm based on genetic algorithm

    NASA Astrophysics Data System (ADS)

    Asadi, Houshyar; Mohamed, Shady; Rahim Zadeh, Delpak; Nahavandi, Saeid

    2015-04-01

    Motion cueing algorithms (MCAs) are playing a significant role in driving simulators, aiming to deliver the most accurate human sensation to the simulator drivers compared with a real vehicle driver, without exceeding the physical limitations of the simulator. This paper provides the optimisation design of an MCA for a vehicle simulator, in order to find the most suitable washout algorithm parameters, while respecting all motion platform physical limitations, and minimising human perception error between real and simulator driver. One of the main limitations of the classical washout filters is that it is attuned by the worst-case scenario tuning method. This is based on trial and error, and is effected by driving and programmers experience, making this the most significant obstacle to full motion platform utilisation. This leads to inflexibility of the structure, production of false cues and makes the resulting simulator fail to suit all circumstances. In addition, the classical method does not take minimisation of human perception error and physical constraints into account. Production of motion cues and the impact of different parameters of classical washout filters on motion cues remain inaccessible for designers for this reason. The aim of this paper is to provide an optimisation method for tuning the MCA parameters, based on nonlinear filtering and genetic algorithms. This is done by taking vestibular sensation error into account between real and simulated cases, as well as main dynamic limitations, tilt coordination and correlation coefficient. Three additional compensatory linear blocks are integrated into the MCA, to be tuned in order to modify the performance of the filters successfully. The proposed optimised MCA is implemented in MATLAB/Simulink software packages. The results generated using the proposed method show increased performance in terms of human sensation, reference shape tracking and exploiting the platform more efficiently without reaching

  12. Evolutionary pattern search algorithms

    SciTech Connect

    Hart, W.E.

    1995-09-19

    This paper defines a class of evolutionary algorithms called evolutionary pattern search algorithms (EPSAs) and analyzes their convergence properties. This class of algorithms is closely related to evolutionary programming, evolutionary strategie and real-coded genetic algorithms. EPSAs are self-adapting systems that modify the step size of the mutation operator in response to the success of previous optimization steps. The rule used to adapt the step size can be used to provide a stationary point convergence theory for EPSAs on any continuous function. This convergence theory is based on an extension of the convergence theory for generalized pattern search methods. An experimental analysis of the performance of EPSAs demonstrates that these algorithms can perform a level of global search that is comparable to that of canonical EAs. We also describe a stopping rule for EPSAs, which reliably terminated near stationary points in our experiments. This is the first stopping rule for any class of EAs that can terminate at a given distance from stationary points.

  13. Algorithms and Libraries

    NASA Technical Reports Server (NTRS)

    Dongarra, Jack

    1998-01-01

    This exploratory study initiated our inquiry into algorithms and applications that would benefit by latency tolerant approach to algorithm building, including the construction of new algorithms where appropriate. In a multithreaded execution, when a processor reaches a point where remote memory access is necessary, the request is sent out on the network and a context--switch occurs to a new thread of computation. This effectively masks a long and unpredictable latency due to remote loads, thereby providing tolerance to remote access latency. We began to develop standards to profile various algorithm and application parameters, such as the degree of parallelism, granularity, precision, instruction set mix, interprocessor communication, latency etc. These tools will continue to develop and evolve as the Information Power Grid environment matures. To provide a richer context for this research, the project also focused on issues of fault-tolerance and computation migration of numerical algorithms and software. During the initial phase we tried to increase our understanding of the bottlenecks in single processor performance. Our work began by developing an approach for the automatic generation and optimization of numerical software for processors with deep memory hierarchies and pipelined functional units. Based on the results we achieved in this study we are planning to study other architectures of interest, including development of cost models, and developing code generators appropriate to these architectures.

  14. Algorithmization in Learning and Instruction.

    ERIC Educational Resources Information Center

    Landa, L. N.

    An introduction to the theory of algorithms reviews the theoretical issues of teaching algorithms, the logical and psychological problems of devising algorithms of identification, and the selection of efficient algorithms; and then relates all of these to the classroom teaching process. It also descirbes some major research on the effectiveness of…

  15. The infrared moving object detection and security detection related algorithms based on W4 and frame difference

    NASA Astrophysics Data System (ADS)

    Yin, Jiale; Liu, Lei; Li, He; Liu, Qiankun

    2016-07-01

    This paper presents the infrared moving object detection and security detection related algorithms in video surveillance based on the classical W4 and frame difference algorithm. Classical W4 algorithm is one of the powerful background subtraction algorithms applying to infrared images which can accurately, integrally and quickly detect moving object. However, the classical W4 algorithm can only overcome the deficiency in the slight movement of background. The error will become bigger and bigger for long-term surveillance system since the background model is unchanged once established. In this paper, we present the detection algorithm based on the classical W4 and frame difference. It cannot only overcome the shortcoming of falsely detecting because of state mutations from background, but also eliminate holes caused by frame difference. Based on these we further design various security detection related algorithms such as illegal intrusion alarm, illegal persistence alarm and illegal displacement alarm. We compare our method with the classical W4, frame difference, and other state-of-the-art methods. Experiments detailed in this paper show the method proposed in this paper outperforms the classical W4 and frame difference and serves well for the security detection related algorithms.

  16. A Multi-Class Proportional Myocontrol Algorithm for Upper Limb Prosthesis Control: Validation in Real-Life Scenarios on Amputees.

    PubMed

    Amsuess, Sebastian; Goebel, Peter; Graimann, Bernhard; Farina, Dario

    2015-09-01

    Functional replacement of upper limbs by means of dexterous prosthetic devices remains a technological challenge. While the mechanical design of prosthetic hands has advanced rapidly, the human-machine interfacing and the control strategies needed for the activation of multiple degrees of freedom are not reliable enough for restoring hand function successfully. Machine learning methods capable of inferring the user intent from EMG signals generated by the activation of the remnant muscles are regarded as a promising solution to this problem. However, the lack of robustness of the current methods impedes their routine clinical application. In this study, we propose a novel algorithm for controlling multiple degrees of freedom sequentially, inherently proportionally and with high robustness, allowing a good level of prosthetic hand function. The control algorithm is based on the spatial linear combinations of amplitude-related EMG signal features. The weighting coefficients in this combination are derived from the optimization criterion of the common spatial patterns filters which allow for maximal discriminability between movements. An important component of the study is the validation of the method which was performed on both able-bodied and amputee subjects who used physical prostheses with customized sockets and performed three standardized functional tests mimicking daily-life activities of varying difficulty. Moreover, the new method was compared in the same conditions with one clinical/industrial and one academic state-of-the-art method. The novel algorithm outperformed significantly the state-of-the-art techniques in both subject groups for tests that required the activation of more than one degree of freedom. Because of the evaluation in real time control on both able-bodied subjects and final users (amputees) wearing physical prostheses, the results obtained allow for the direct extrapolation of the benefits of the proposed method for the end users. In

  17. A fast algorithm to compute precise type-2 centroids for real-time control applications.

    PubMed

    Chakraborty, Sumantra; Konar, Amit; Ralescu, Anca; Pal, Nikhil R

    2015-02-01

    An interval type-2 fuzzy set (IT2 FS) is characterized by its upper and lower membership functions containing all possible embedded fuzzy sets, which together is referred to as the footprint of uncertainty (FOU). The FOU results in a span of uncertainty measured in the defuzzified space and is determined by the positional difference of the centroids of all the embedded fuzzy sets taken together. This paper provides a closed-form formula to evaluate the span of uncertainty of an IT2 FS. The closed-form formula offers a precise measurement of the degree of uncertainty in an IT2 FS with a runtime complexity less than that of the classical iterative Karnik-Mendel algorithm and other formulations employing the iterative Newton-Raphson algorithm. This paper also demonstrates a real-time control application using the proposed closed-form formula of centroids with reduced root mean square error and computational overhead than those of the existing methods. Computer simulations for this real-time control application indicate that parallel realization of the IT2 defuzzification outperforms its competitors with respect to maximum overshoot even at high sampling rates. Furthermore, in the presence of measurement noise in system (plant) states, the proposed IT2 FS based scheme outperforms its type-1 counterpart with respect to peak overshoot and root mean square error in plant response.

  18. An Image Encryption Algorithm Based on Information Hiding

    NASA Astrophysics Data System (ADS)

    Ge, Xin; Lu, Bin; Liu, Fenlin; Gong, Daofu

    Aiming at resolving the conflict between security and efficiency in the design of chaotic image encryption algorithms, an image encryption algorithm based on information hiding is proposed based on the “one-time pad” idea. A random parameter is introduced to ensure a different keystream for each encryption, which has the characteristics of “one-time pad”, improving the security of the algorithm rapidly without significant increase in algorithm complexity. The random parameter is embedded into the ciphered image with information hiding technology, which avoids negotiation for its transport and makes the application of the algorithm easier. Algorithm analysis and experiments show that the algorithm is secure against chosen plaintext attack, differential attack and divide-and-conquer attack, and has good statistical properties in ciphered images.

  19. Power spectral estimation algorithms

    NASA Technical Reports Server (NTRS)

    Bhatia, Manjit S.

    1989-01-01

    Algorithms to estimate the power spectrum using Maximum Entropy Methods were developed. These algorithms were coded in FORTRAN 77 and were implemented on the VAX 780. The important considerations in this analysis are: (1) resolution, i.e., how close in frequency two spectral components can be spaced and still be identified; (2) dynamic range, i.e., how small a spectral peak can be, relative to the largest, and still be observed in the spectra; and (3) variance, i.e., how accurate the estimate of the spectra is to the actual spectra. The application of the algorithms based on Maximum Entropy Methods to a variety of data shows that these criteria are met quite well. Additional work in this direction would help confirm the findings. All of the software developed was turned over to the technical monitor. A copy of a typical program is included. Some of the actual data and graphs used on this data are also included.

  20. Optical rate sensor algorithms

    NASA Technical Reports Server (NTRS)

    Uhde-Lacovara, Jo A.

    1989-01-01

    Optical sensors, in particular Charge Coupled Device (CCD) arrays, will be used on Space Station to track stars in order to provide inertial attitude reference. Algorithms are presented to derive attitude rate from the optical sensors. The first algorithm is a recursive differentiator. A variance reduction factor (VRF) of 0.0228 was achieved with a rise time of 10 samples. A VRF of 0.2522 gives a rise time of 4 samples. The second algorithm is based on the direct manipulation of the pixel intensity outputs of the sensor. In 1-dimensional simulations, the derived rate was with 0.07 percent of the actual rate in the presence of additive Gaussian noise with a signal to noise ratio of 60 dB.

  1. Kernel Affine Projection Algorithms

    NASA Astrophysics Data System (ADS)

    Liu, Weifeng; Príncipe, José C.

    2008-12-01

    The combination of the famed kernel trick and affine projection algorithms (APAs) yields powerful nonlinear extensions, named collectively here, KAPA. This paper is a follow-up study of the recently introduced kernel least-mean-square algorithm (KLMS). KAPA inherits the simplicity and online nature of KLMS while reducing its gradient noise, boosting performance. More interestingly, it provides a unifying model for several neural network techniques, including kernel least-mean-square algorithms, kernel adaline, sliding-window kernel recursive-least squares (KRLS), and regularization networks. Therefore, many insights can be gained into the basic relations among them and the tradeoff between computation complexity and performance. Several simulations illustrate its wide applicability.

  2. Variational Bayesian Inference Algorithms for Infinite Relational Model of Network Data.

    PubMed

    Konishi, Takuya; Kubo, Takatomi; Watanabe, Kazuho; Ikeda, Kazushi

    2015-09-01

    Network data show the relationship among one kind of objects, such as social networks and hyperlinks on the Web. Many statistical models have been proposed for analyzing these data. For modeling cluster structures of networks, the infinite relational model (IRM) was proposed as a Bayesian nonparametric extension of the stochastic block model. In this brief, we derive the inference algorithms for the IRM of network data based on the variational Bayesian (VB) inference methods. After showing the standard VB inference, we derive the collapsed VB (CVB) inference and its variant called the zeroth-order CVB inference. We compared the performances of the inference algorithms using six real network datasets. The CVB inference outperformed the VB inference in most of the datasets, and the differences were especially larger in dense networks.

  3. Improved evolutionary algorithm for the global optimization of clusters with competing attractive and repulsive interactions

    NASA Astrophysics Data System (ADS)

    Cruz, S. M. A.; Marques, J. M. C.; Pereira, F. B.

    2016-10-01

    We propose improvements to our evolutionary algorithm (EA) [J. M. C. Marques and F. B. Pereira, J. Mol. Liq. 210, 51 (2015)] in order to avoid dissociative solutions in the global optimization of clusters with competing attractive and repulsive interactions. The improved EA outperforms the original version of the method for charged colloidal clusters in the size range 3 ≤ N ≤ 25, which is a very stringent test for global optimization algorithms. While the Bernal spiral is the global minimum for clusters in the interval 13 ≤ N ≤ 18, the lowest-energy structure is a peculiar, so-called beaded-necklace, motif for 19 ≤ N ≤ 25. We have also applied the method for larger sizes and unusual quasi-linear and branched clusters arise as low-energy structures.

  4. An ensemble of k-nearest neighbours algorithm for detection of Parkinson's disease

    NASA Astrophysics Data System (ADS)

    Gök, Murat

    2015-04-01

    Parkinson's disease is a disease of the central nervous system that leads to severe difficulties in motor functions. Developing computational tools for recognition of Parkinson's disease at the early stages is very desirable for alleviating the symptoms. In this paper, we developed a discriminative model based on a selected feature subset and applied several classifier algorithms in the context of disease detection. All classifier performances from the point of both stand-alone and rotation-forest ensemble approach were evaluated on a Parkinson's disease data-set according to a blind testing protocol. The new method compared to hitherto methods outperforms the state-of-the-art in terms of both predictions of accuracy (98.46%) and area under receiver operating characteristic curve (0.99) scores applying rotation-forest ensemble k-nearest neighbour classifier algorithm.

  5. Multiobjective Vehicle Routing Problems With Simultaneous Delivery and Pickup and Time Windows: Formulation, Instances, and Algorithms.

    PubMed

    Wang, Jiahai; Zhou, Ying; Wang, Yong; Zhang, Jun; Chen, C L Philip; Zheng, Zibin

    2016-03-01

    This paper investigates a practical variant of the vehicle routing problem (VRP), called VRP with simultaneous delivery and pickup and time windows (VRPSDPTW), in the logistics industry. VRPSDPTW is an important logistics problem in closed-loop supply chain network optimization. VRPSDPTW exhibits multiobjective properties in real-world applications. In this paper, a general multiobjective VRPSDPTW (MO-VRPSDPTW) with five objectives is first defined, and then a set of MO-VRPSDPTW instances based on data from the real-world are introduced. These instances represent more realistic multiobjective nature and more challenging MO-VRPSDPTW cases. Finally, two algorithms, multiobjective local search (MOLS) and multiobjective memetic algorithm (MOMA), are designed, implemented and compared for solving MO-VRPSDPTW. The simulation results on the proposed real-world instances and traditional instances show that MOLS outperforms MOMA in most of instances. However, the superiority of MOLS over MOMA in real-world instances is not so obvious as in traditional instances.

  6. A multi-split mapping algorithm for circular RNA, splicing, trans-splicing and fusion detection.

    PubMed

    Hoffmann, Steve; Otto, Christian; Doose, Gero; Tanzer, Andrea; Langenberger, David; Christ, Sabina; Kunz, Manfred; Holdt, Lesca M; Teupser, Daniel; Hackermüller, Jörg; Stadler, Peter F

    2014-02-10

    Numerous high-throughput sequencing studies have focused on detecting conventionally spliced mRNAs in RNA-seq data. However, non-standard RNAs arising through gene fusion, circularization or trans-splicing are often neglected. We introduce a novel, unbiased algorithm to detect splice junctions from single-end cDNA sequences. In contrast to other methods, our approach accommodates multi-junction structures. Our method compares favorably with competing tools for conventionally spliced mRNAs and, with a gain of up to 40% of recall, systematically outperforms them on reads with multiple splits, trans-splicing and circular products. The algorithm is integrated into our mapping tool segemehl (http://www.bioinf.uni-leipzig.de/Software/segemehl/).

  7. Comparison of fractal dimension estimation algorithms for epileptic seizure onset detection

    NASA Astrophysics Data System (ADS)

    Polychronaki, G. E.; Ktonas, P. Y.; Gatzonis, S.; Siatouni, A.; Asvestas, P. A.; Tsekou, H.; Sakas, D.; Nikita, K. S.

    2010-08-01

    Fractal dimension (FD) is a natural measure of the irregularity of a curve. In this study the performances of three waveform FD estimation algorithms (i.e. Katz's, Higuchi's and the k-nearest neighbour (k-NN) algorithm) were compared in terms of their ability to detect the onset of epileptic seizures in scalp electroencephalogram (EEG). The selection of parameters involved in FD estimation, evaluation of the accuracy of the different algorithms and assessment of their robustness in the presence of noise were performed based on synthetic signals of known FD. When applied to scalp EEG data, Katz's and Higuchi's algorithms were found to be incapable of producing consistent changes of a single type (either a drop or an increase) during seizures. On the other hand, the k-NN algorithm produced a drop, starting close to the seizure onset, in most seizures of all patients. The k-NN algorithm outperformed both Katz's and Higuchi's algorithms in terms of robustness in the presence of noise and seizure onset detection ability. The seizure detection methodology, based on the k-NN algorithm, yielded in the training data set a sensitivity of 100% with 10.10 s mean detection delay and a false positive rate of 0.27 h-1, while the corresponding values in the testing data set were 100%, 8.82 s and 0.42 h-1, respectively. The above detection results compare favourably to those of other seizure onset detection methodologies applied to scalp EEG in the literature. The methodology described, based on the k-NN algorithm, appears to be promising for the detection of the onset of epileptic seizures based on scalp EEG.

  8. Comparison of fractal dimension estimation algorithms for epileptic seizure onset detection.

    PubMed

    Polychronaki, G E; Ktonas, P Y; Gatzonis, S; Siatouni, A; Asvestas, P A; Tsekou, H; Sakas, D; Nikita, K S

    2010-08-01

    Fractal dimension (FD) is a natural measure of the irregularity of a curve. In this study the performances of three waveform FD estimation algorithms (i.e. Katz's, Higuchi's and the k-nearest neighbour (k-NN) algorithm) were compared in terms of their ability to detect the onset of epileptic seizures in scalp electroencephalogram (EEG). The selection of parameters involved in FD estimation, evaluation of the accuracy of the different algorithms and assessment of their robustness in the presence of noise were performed based on synthetic signals of known FD. When applied to scalp EEG data, Katz's and Higuchi's algorithms were found to be incapable of producing consistent changes of a single type (either a drop or an increase) during seizures. On the other hand, the k-NN algorithm produced a drop, starting close to the seizure onset, in most seizures of all patients. The k-NN algorithm outperformed both Katz's and Higuchi's algorithms in terms of robustness in the presence of noise and seizure onset detection ability. The seizure detection methodology, based on the k-NN algorithm, yielded in the training data set a sensitivity of 100% with 10.10 s mean detection delay and a false positive rate of 0.27 h(-1), while the corresponding values in the testing data set were 100%, 8.82 s and 0.42 h(-1), respectively. The above detection results compare favourably to those of other seizure onset detection methodologies applied to scalp EEG in the literature. The methodology described, based on the k-NN algorithm, appears to be promising for the detection of the onset of epileptic seizures based on scalp EEG.

  9. Static conductivity imaging using variational gradient Bz algorithm in magnetic resonance electrical impedance tomography.

    PubMed

    Park, Chunjae; Park, Eun-Jae; Woo, Eung Je; Kwon, Ohin; Seo, Jin Keun

    2004-02-01

    A new image reconstruction algorithm is proposed to visualize static conductivity images of a subject in magnetic resonance electrical impedance tomography (MREIT). Injecting electrical current into the subject through surface electrodes, we can measure the induced internal magnetic flux density B = (Bx, By, Bz) using an MRI scanner. In this paper, we assume that only the z-component Bz is measurable due to a practical limitation of the measurement technique in MREIT. Under this circumstance, a constructive MREIT imaging technique called the harmonic Bz algorithm was recently developed to produce high-resolution conductivity images. The algorithm is based on the relation between inverted delta2Bz and the conductivity requiring the computation of inverted delta2Bz. Since twice differentiations of noisy Bz data tend to amplify the noise, the performance of the harmonic Bz algorithm is deteriorated when the signal-to-noise ratio in measured Bz data is not high enough. Therefore, it is highly desirable to develop a new algorithm reducing the number of differentiations. In this work, we propose the variational gradient Bz algorithm where Bz is differentiated only once. Numerical simulations with added random noise confirmed its ability to reconstruct static conductivity images in MREIT. We also found that it outperforms the harmonic Bz algorithm in terms of noise tolerance. From a careful analysis of the performance of the variational gradient Bz algorithm, we suggest several methods to further improve the image quality including a better choice of basis functions, regularization technique and multilevel approach. The proposed variational framework utilizing only Bz will lead to different versions of improved algorithms.

  10. Parallel Algorithms and Patterns

    SciTech Connect

    Robey, Robert W.

    2016-06-16

    This is a powerpoint presentation on parallel algorithms and patterns. A parallel algorithm is a well-defined, step-by-step computational procedure that emphasizes concurrency to solve a problem. Examples of problems include: Sorting, searching, optimization, matrix operations. A parallel pattern is a computational step in a sequence of independent, potentially concurrent operations that occurs in diverse scenarios with some frequency. Examples are: Reductions, prefix scans, ghost cell updates. We only touch on parallel patterns in this presentation. It really deserves its own detailed discussion which Gabe Rockefeller would like to develop.

  11. Improved Chaff Solution Algorithm

    DTIC Science & Technology

    2009-03-01

    Programme de démonstration de technologies (PDT) sur l’intégration de capteurs et de systèmes d’armes embarqués (SISWS), un algorithme a été élaboré...technologies (PDT) sur l’intégration de capteurs et de systèmes d’armes embarqués (SISWS), un algorithme a été élaboré pour déterminer automatiquement...0Z4 2. SECURITY CLASSIFICATION (Overall security classification of the document including special warning terms if applicable .) UNCLASSIFIED

  12. Finding Statistically Significant Communities in Networks

    PubMed Central

    Lancichinetti, Andrea; Radicchi, Filippo; Ramasco, José J.; Fortunato, Santo

    2011-01-01

    Community structure is one of the main structural features of networks, revealing both their internal organization and the similarity of their elementary units. Despite the large variety of methods proposed to detect communities in graphs, there is a big need for multi-purpose techniques, able to handle different types of datasets and the subtleties of community structure. In this paper we present OSLOM (Order Statistics Local Optimization Method), the first method capable to detect clusters in networks accounting for edge directions, edge weights, overlapping communities, hierarchies and community dynamics. It is based on the local optimization of a fitness function expressing the statistical significance of clusters with respect to random fluctuations, which is estimated with tools of Extreme and Order Statistics. OSLOM can be used alone or as a refinement procedure of partitions/covers delivered by other techniques. We have also implemented sequential algorithms combining OSLOM with other fast techniques, so that the community structure of very large networks can be uncovered. Our method has a comparable performance as the best existing algorithms on artificial benchmark graphs. Several applications on real networks are shown as well. OSLOM is implemented in a freely available software (http://www.oslom.org), and we believe it will be a valuable tool in the analysis of networks. PMID:21559480

  13. Efficient Homotopy Continuation Algorithms with Application to Computational Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Brown, David A.

    New homotopy continuation algorithms are developed and applied to a parallel implicit finite-difference Newton-Krylov-Schur external aerodynamic flow solver for the compressible Euler, Navier-Stokes, and Reynolds-averaged Navier-Stokes equations with the Spalart-Allmaras one-equation turbulence model. Many new analysis tools, calculations, and numerical algorithms are presented for the study and design of efficient and robust homotopy continuation algorithms applicable to solving very large and sparse nonlinear systems of equations. Several specific homotopies are presented and studied and a methodology is presented for assessing the suitability of specific homotopies for homotopy continuation. . A new class of homotopy continuation algorithms, referred to as monolithic homotopy continuation algorithms, is developed. These algorithms differ from classical predictor-corrector algorithms by combining the predictor and corrector stages into a single update, significantly reducing the amount of computation and avoiding wasted computational effort resulting from over-solving in the corrector phase. The new algorithms are also simpler from a user perspective, with fewer input parameters, which also improves the user's ability to choose effective parameters on the first flow solve attempt. Conditional convergence is proved analytically and studied numerically for the new algorithms. The performance of a fully-implicit monolithic homotopy continuation algorithm is evaluated for several inviscid, laminar, and turbulent flows over NACA 0012 airfoils and ONERA M6 wings. The monolithic algorithm is demonstrated to be more efficient than the predictor-corrector algorithm for all applications investigated. It is also demonstrated to be more efficient than the widely-used pseudo-transient continuation algorithm for all inviscid and laminar cases investigated, and good performance scaling with grid refinement is demonstrated for the inviscid cases. Performance is also demonstrated

  14. Performance Trend of Different Algorithms for Structural Design Optimization

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Coroneos, Rula M.; Guptill, James D.; Hopkins, Dale A.

    1996-01-01

    Nonlinear programming algorithms play an important role in structural design optimization. Fortunately, several algorithms with computer codes are available. At NASA Lewis Research Center, a project was initiated to assess performance of different optimizers through the development of a computer code CometBoards. This paper summarizes the conclusions of that research. CometBoards was employed to solve sets of small, medium and large structural problems, using different optimizers on a Cray-YMP8E/8128 computer. The reliability and efficiency of the optimizers were determined from the performance of these problems. For small problems, the performance of most of the optimizers could be considered adequate. For large problems however, three optimizers (two sequential quadratic programming routines, DNCONG of IMSL and SQP of IDESIGN, along with the sequential unconstrained minimizations technique SUMT) outperformed others. At optimum, most optimizers captured an identical number of active displacement and frequency constraints but the number of active stress constraints differed among the optimizers. This discrepancy can be attributed to singularity conditions in the optimization and the alleviation of this discrepancy can improve the efficiency of optimizers.

  15. Partial AUC maximization for essential gene prediction using genetic algorithms.

    PubMed

    Hwang, Kyu-Baek; Ha, Beom-Yong; Ju, Sanghun; Kim, Sangsoo

    2013-01-01

    Identifying genes indispensable for an organism's life and their characteristics is one of the central questions in current biological research, and hence it would be helpful to develop computational approaches towards the prediction of essential genes. The performance of a predictor is usually measured by the area under the receiver operating characteristic curve (AUC). We propose a novel method by implementing genetic algorithms to maximize the partial AUC that is restricted to a specific interval of lower false positive rate (FPR), the region relevant to follow-up experimental validation. Our predictor uses various features based on sequence information, protein-protein interaction network topology, and gene expression profiles. A feature selection wrapper was developed to alleviate the over-fitting problem and to weigh each feature's relevance to prediction. We evaluated our method using the proteome of budding yeast. Our implementation of genetic algorithms maximizing the partial AUC below 0.05 or 0.10 of FPR outperformed other popular classification methods.

  16. Mitigate Cascading Failures on Networks using a Memetic Algorithm

    PubMed Central

    Tang, Xianglong; Liu, Jing; Hao, Xingxing

    2016-01-01

    Research concerning cascading failures in complex networks has become a hot topic. However, most of the existing studies have focused on modelling the cascading phenomenon on networks and analysing network robustness from a theoretical point of view, which considers only the damage incurred by the failure of one or several nodes. However, such a theoretical approach may not be useful in practical situation. Thus, we first design a much more practical measure to evaluate the robustness of networks against cascading failures, termed Rcf. Then, adopting Rcf as the objective function, we propose a new memetic algorithm (MA) named MA-Rcf to enhance network the robustness against cascading failures. Moreover, we design a new local search operator that considers the characteristics of cascading failures and operates by connecting nodes with a high probability of having similar loads. In experiments, both synthetic scale-free networks and real-world networks are used to test the efficiency and effectiveness of the MA-Rcf. We systematically investigate the effects of parameters on the performance of the MA-Rcf and validate the performance of the newly designed local search operator. The results show that the local search operator is effective, that MA-Rcf can enhance network robustness against cascading failures efficiently, and that it outperforms existing algorithms. PMID:27934964

  17. Mitigate Cascading Failures on Networks using a Memetic Algorithm.

    PubMed

    Tang, Xianglong; Liu, Jing; Hao, Xingxing

    2016-12-09

    Research concerning cascading failures in complex networks has become a hot topic. However, most of the existing studies have focused on modelling the cascading phenomenon on networks and analysing network robustness from a theoretical point of view, which considers only the damage incurred by the failure of one or several nodes. However, such a theoretical approach may not be useful in practical situation. Thus, we first design a much more practical measure to evaluate the robustness of networks against cascading failures, termed Rcf. Then, adopting Rcf as the objective function, we propose a new memetic algorithm (MA) named MA-Rcf to enhance network the robustness against cascading failures. Moreover, we design a new local search operator that considers the characteristics of cascading failures and operates by connecting nodes with a high probability of having similar loads. In experiments, both synthetic scale-free networks and real-world networks are used to test the efficiency and effectiveness of the MA-Rcf. We systematically investigate the effects of parameters on the performance of the MA-Rcf and validate the performance of the newly designed local search operator. The results show that the local search operator is effective, that MA-Rcf can enhance network robustness against cascading failures efficiently, and that it outperforms existing algorithms.

  18. Mitigate Cascading Failures on Networks using a Memetic Algorithm

    NASA Astrophysics Data System (ADS)

    Tang, Xianglong; Liu, Jing; Hao, Xingxing

    2016-12-01

    Research concerning cascading failures in complex networks has become a hot topic. However, most of the existing studies have focused on modelling the cascading phenomenon on networks and analysing network robustness from a theoretical point of view, which considers only the damage incurred by the failure of one or several nodes. However, such a theoretical approach may not be useful in practical situation. Thus, we first design a much more practical measure to evaluate the robustness of networks against cascading failures, termed Rcf. Then, adopting Rcf as the objective function, we propose a new memetic algorithm (MA) named MA-Rcf to enhance network the robustness against cascading failures. Moreover, we design a new local search operator that considers the characteristics of cascading failures and operates by connecting nodes with a high probability of having similar loads. In experiments, both synthetic scale-free networks and real-world networks are used to test the efficiency and effectiveness of the MA-Rcf. We systematically investigate the effects of parameters on the performance of the MA-Rcf and validate the performance of the newly designed local search operator. The results show that the local search operator is effective, that MA-Rcf can enhance network robustness against cascading failures efficiently, and that it outperforms existing algorithms.

  19. Comparative Evaluation of Different Optimization Algorithms for Structural Design Applications

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Coroneos, Rula M.; Guptill, James D.; Hopkins, Dale A.

    1996-01-01

    Non-linear programming algorithms play an important role in structural design optimization. Fortunately, several algorithms with computer codes are available. At NASA Lewis Research Centre, a project was initiated to assess the performance of eight different optimizers through the development of a computer code CometBoards. This paper summarizes the conclusions of that research. CometBoards was employed to solve sets of small, medium and large structural problems, using the eight different optimizers on a Cray-YMP8E/8128 computer. The reliability and efficiency of the optimizers were determined from the performance of these problems. For small problems, the performance of most of the optimizers could be considered adequate. For large problems, however, three optimizers (two sequential quadratic programming routines, DNCONG of IMSL and SQP of IDESIGN, along with Sequential Unconstrained Minimizations Technique SUMT) outperformed others. At optimum, most optimizers captured an identical number of active displacement and frequency constraints but the number of active stress constraints differed among the optimizers. This discrepancy can be attributed to singularity conditions in the optimization and the alleviation of this discrepancy can improve the efficiency of optimizers.

  20. A hierarchical exact accelerated stochastic simulation algorithm

    NASA Astrophysics Data System (ADS)

    Orendorff, David; Mjolsness, Eric

    2012-12-01

    A new algorithm, "HiER-leap" (hierarchical exact reaction-leaping), is derived which improves on the computational properties of the ER-leap algorithm for exact accelerated simulation of stochastic chemical kinetics. Unlike ER-leap, HiER-leap utilizes a hierarchical or divide-and-conquer organization of reaction channels into tightly coupled "blocks" and is thereby able to speed up systems with many reaction channels. Like ER-leap, HiER-leap is based on the use of upper and lower bounds on the reaction propensities to define a rejection sampling algorithm with inexpensive early rejection and acceptance steps. But in HiER-leap, large portions of intra-block sampling may be done in parallel. An accept/reject step is used to synchronize across blocks. This method scales well when many reaction channels are present and has desirable asymptotic properties. The algorithm is exact, parallelizable and achieves a significant speedup over the stochastic simulation algorithm and ER-leap on certain problems. This algorithm offers a potentially important step towards efficient in silico modeling of entire organisms.

  1. TrackEye tracking algorithm characterization

    NASA Astrophysics Data System (ADS)

    Valley, Michael T.; Shields, Robert W.; Reed, Jack M.

    2004-10-01

    TrackEye is a film digitization and target tracking system that offers the potential for quantitatively measuring the dynamic state variables (e.g., absolute and relative position, orientation, linear and angular velocity/acceleration, spin rate, trajectory, angle of attack, etc.) for moving objects using captured single or dual view image sequences. At the heart of the system is a set of tracking algorithms that automatically find and quantify the location of user selected image details such as natural test article features or passive fiducials that have been applied to cooperative test articles. This image position data is converted into real world coordinates and rates with user specified information such as the image scale and frame rate. Though tracking methods such as correlation algorithms are typically robust by nature, the accuracy and suitability of each TrackEye tracking algorithm is in general unknown even under good imaging conditions. The challenges of optimal algorithm selection and algorithm performance/measurement uncertainty are even more significant for long range tracking of high-speed targets where temporally varying atmospheric effects degrade the imagery. This paper will present the preliminary results from a controlled test sequence used to characterize the performance of the TrackEye tracking algorithm suite.

  2. TrackEye tracking algorithm characterization.

    SciTech Connect

    Reed, Jack W.; Shields, Rob W; Valley, Michael T.

    2004-08-01

    TrackEye is a film digitization and target tracking system that offers the potential for quantitatively measuring the dynamic state variables (e.g., absolute and relative position, orientation, linear and angular velocity/acceleration, spin rate, trajectory, angle of attack, etc.) for moving objects using captured single or dual view image sequences. At the heart of the system is a set of tracking algorithms that automatically find and quantify the location of user selected image details such as natural test article features or passive fiducials that have been applied to cooperative test articles. This image position data is converted into real world coordinates and rates with user specified information such as the image scale and frame rate. Though tracking methods such as correlation algorithms are typically robust by nature, the accuracy and suitability of each TrackEye tracking algorithm is in general unknown even under good imaging conditions. The challenges of optimal algorithm selection and algorithm performance/measurement uncertainty are even more significant for long range tracking of high-speed targets where temporally varying atmospheric effects degrade the imagery. This paper will present the preliminary results from a controlled test sequence used to characterize the performance of the TrackEye tracking algorithm suite.

  3. SeqCompress: an algorithm for biological sequence compression.

    PubMed

    Sardaraz, Muhammad; Tahir, Muhammad; Ikram, Ataul Aziz; Bajwa, Hassan

    2014-10-01

    The growth of Next Generation Sequencing technologies presents significant research challenges, specifically to design bioinformatics tools that handle massive amount of data efficiently. Biological sequence data storage cost has become a noticeable proportion of total cost in the generation and analysis. Particularly increase in DNA sequencing rate is significantly outstripping the rate of increase in disk storage capacity, which may go beyond the limit of storage capacity. It is essential to develop algorithms that handle large data sets via better memory management. This article presents a DNA sequence compression algorithm SeqCompress that copes with the space complexity of biological sequences. The algorithm is based on lossless data compression and uses statistical model as well as arithmetic coding to compress DNA sequences. The proposed algorithm is compared with recent specialized compression tools for biological sequences. Experimental results show that proposed algorithm has better compression gain as compared to other existing algorithms.

  4. Evaluation of multilayer perceptron algorithms for an analysis of network flow data

    NASA Astrophysics Data System (ADS)

    Bieniasz, Jedrzej; Rawski, Mariusz; Skowron, Krzysztof; Trzepiński, Mateusz

    2016-09-01

    The volume of exchanged information through IP networks is larger than ever and still growing. It creates a space for both benign and malicious activities. The second one raises awareness on security network devices, as well as network infrastructure and a system as a whole. One of the basic tools to prevent cyber attacks is Network Instrusion Detection System (NIDS). NIDS could be realized as a signature-based detector or an anomaly-based one. In the last few years the emphasis has been placed on the latter type, because of the possibility of applying smart and intelligent solutions. An ideal NIDS of next generation should be composed of self-learning algorithms that could react on known and unknown malicious network activities respectively. In this paper we evaluated a machine learning approach for detection of anomalies in IP network data represented as NetFlow records. We considered Multilayer Perceptron (MLP) as the classifier and we used two types of learning algorithms - Backpropagation (BP) and Particle Swarm Optimization (PSO). This paper includes a comprehensive survey on determining the most optimal MLP learning algorithm for the classification problem in application to network flow data. The performance, training time and convergence of BP and PSO methods were compared. The results show that PSO algorithm implemented by the authors outperformed other solutions if accuracy of classifications is considered. The major disadvantage of PSO is training time, which could be not acceptable for larger data sets or in real network applications. At the end we compared some key findings with the results from the other papers to show that in all cases results from this study outperformed them.

  5. A novel kernel extreme learning machine algorithm based on self-adaptive artificial bee colony optimisation strategy

    NASA Astrophysics Data System (ADS)

    Ma, Chao; Ouyang, Jihong; Chen, Hui-Ling; Ji, Jin-Chao

    2016-04-01

    In this paper, we propose a novel learning algorithm, named SABC-MKELM, based on a kernel extreme learning machine (KELM) method for single-hidden-layer feedforward networks. In SABC-MKELM, the combination of Gaussian kernels is used as the activate function of KELM instead of simple fixed kernel learning, where the related parameters of kernels and the weights of kernels can be optimised by a novel self-adaptive artificial bee colony (SABC) approach simultaneously. SABC-MKELM outperforms six other state-of-the-art approaches in general, as it could effectively determine solution updating strategies and suitable parameters to produce a flexible kernel function involved in SABC. Simulations have demonstrated that the proposed algorithm not only self-adaptively determines suitable parameters and solution updating strategies learning from the previous experiences, but also achieves better generalisation performances than several related methods, and the results show good stability of the proposed algorithm.

  6. An iterated greedy algorithm for the single-machine total weighted tardiness problem with sequence-dependent setup times

    NASA Astrophysics Data System (ADS)

    Deng, Guanlong; Gu, Xingsheng

    2014-03-01

    This article presents an enhanced iterated greedy (EIG) algorithm that searches both insert and swap neighbourhoods for the single-machine total weighted tardiness problem with sequence-dependent setup times. Novel elimination rules and speed-ups are proposed for the swap move to make the employment of swap neighbourhood worthwhile due to its reduced computational expense. Moreover, a perturbation operator is newly designed as a substitute for the existing destruction and construction procedures to prevent the search from being attracted to local optima. To validate the proposed algorithm, computational experiments are conducted on a benchmark set from the literature. The results show that the EIG outperforms the existing state-of-the-art algorithms for the considered problem.

  7. 3-D Ultrasound Segmentation of the Placenta Using the Random Walker Algorithm: Reliability and Agreement.

    PubMed

    Stevenson, Gordon N; Collins, Sally L; Ding, Jane; Impey, Lawrence; Noble, J Alison

    2015-12-01

    Volumetric segmentation of the placenta using 3-D ultrasound is currently performed clinically to investigate correlation between organ volume and fetal outcome or pathology. Previously, interpolative or semi-automatic contour-based methodologies were used to provide volumetric results. We describe the validation of an original random walker (RW)-based algorithm against manual segmentation and an existing semi-automated method, virtual organ computer-aided analysis (VOCAL), using initialization time, inter- and intra-observer variability of volumetric measurements and quantification accuracy (with respect to manual segmentation) as metrics of success. Both semi-automatic methods require initialization. Therefore, the first experiment compared initialization times. Initialization was timed by one observer using 20 subjects. This revealed significant differences (p < 0.001) in time taken to initialize the VOCAL method compared with the RW method. In the second experiment, 10 subjects were used to analyze intra-/inter-observer variability between two observers. Bland-Altman plots were used to analyze variability combined with intra- and inter-observer variability measured by intra-class correlation coefficients, which were reported for all three methods. Intra-class correlation coefficient values for intra-observer variability were higher for the RW method than for VOCAL, and both were similar to manual segmentation. Inter-observer variability was 0.94 (0.88, 0.97), 0.91 (0.81, 0.95) and 0.80 (0.61, 0.90) for manual, RW and VOCAL, respectively. Finally, a third observer with no prior ultrasound experience was introduced and volumetric differences from manual segmentation were reported. Dice similarity coefficients for observers 1, 2 and 3 were respectively 0.84 ± 0.12, 0.94 ± 0.08 and 0.84 ± 0.11, and the mean was 0.87 ± 0.13. The RW algorithm was found to provide results concordant with those for manual segmentation and to outperform VOCAL in aspects of observer

  8. The evaluation of the OSGLR algorithm for restructurable controls

    NASA Technical Reports Server (NTRS)

    Bonnice, W. F.; Wagner, E.; Hall, S. R.; Motyka, P.

    1986-01-01

    The detection and isolation of commercial aircraft control surface and actuator failures using the orthogonal series generalized likelihood ratio (OSGLR) test was evaluated. The OSGLR algorithm was chosen as the most promising algorithm based on a preliminary evaluation of three failure detection and isolation (FDI) algorithms (the detection filter, the generalized likelihood ratio test, and the OSGLR test) and a survey of the literature. One difficulty of analytic FDI techniques and the OSGLR algorithm in particular is their sensitivity to modeling errors. Therefore, methods of improving the robustness of the algorithm were examined with the incorporation of age-weighting into the algorithm being the most effective approach, significantly reducing the sensitivity of the algorithm to modeling errors. The steady-state implementation of the algorithm based on a single cruise linear model was evaluated using a nonlinear simulation of a C-130 aircraft. A number of off-nominal no-failure flight conditions including maneuvers, nonzero flap deflections, different turbulence levels and steady winds were tested. Based on the no-failure decision functions produced by off-nominal flight conditions, the failure detection performance at the nominal flight condition was determined. The extension of the algorithm to a wider flight envelope by scheduling the linear models used by the algorithm on dynamic pressure and flap deflection was also considered. Since simply scheduling the linear models over the entire flight envelope is unlikely to be adequate, scheduling of the steady-state implentation of the algorithm was briefly investigated.

  9. PSC algorithm description

    NASA Technical Reports Server (NTRS)

    Nobbs, Steven G.

    1995-01-01

    An overview of the performance seeking control (PSC) algorithm and details of the important components of the algorithm are given. The onboard propulsion system models, the linear programming optimization, and engine control interface are described. The PSC algorithm receives input from various computers on the aircraft including the digital flight computer, digital engine control, and electronic inlet control. The PSC algorithm contains compact models of the propulsion system including the inlet, engine, and nozzle. The models compute propulsion system parameters, such as inlet drag and fan stall margin, which are not directly measurable in flight. The compact models also compute sensitivities of the propulsion system parameters to change in control variables. The engine model consists of a linear steady state variable model (SSVM) and a nonlinear model. The SSVM is updated with efficiency factors calculated in the engine model update logic, or Kalman filter. The efficiency factors are used to adjust the SSVM to match the actual engine. The propulsion system models are mathematically integrated to form an overall propulsion system model. The propulsion system model is then optimized using a linear programming optimization scheme. The goal of the optimization is determined from the selected PSC mode of operation. The resulting trims are used to compute a new operating point about which the optimization process is repeated. This process is continued until an overall (global) optimum is reached before applying the trims to the controllers.

  10. Comprehensive eye evaluation algorithm

    NASA Astrophysics Data System (ADS)

    Agurto, C.; Nemeth, S.; Zamora, G.; Vahtel, M.; Soliz, P.; Barriga, S.

    2016-03-01

    In recent years, several research groups have developed automatic algorithms to detect diabetic retinopathy (DR) in individuals with diabetes (DM), using digital retinal images. Studies have indicated that diabetics have 1.5 times the annual risk of developing primary open angle glaucoma (POAG) as do people without DM. Moreover, DM patients have 1.8 times the risk for age-related macular degeneration (AMD). Although numerous investigators are developing automatic DR detection algorithms, there have been few successful efforts to create an automatic algorithm that can detect other ocular diseases, such as POAG and AMD. Consequently, our aim in the current study was to develop a comprehensive eye evaluation algorithm that not only detects DR in retinal images, but also automatically identifies glaucoma suspects and AMD by integrating other personal medical information with the retinal features. The proposed system is fully automatic and provides the likelihood of each of the three eye disease. The system was evaluated in two datasets of 104 and 88 diabetic cases. For each eye, we used two non-mydriatic digital color fundus photographs (macula and optic disc centered) and, when available, information about age, duration of diabetes, cataracts, hypertension, gender, and laboratory data. Our results show that the combination of multimodal features can increase the AUC by up to 5%, 7%, and 8% in the detection of AMD, DR, and glaucoma respectively. Marked improvement was achieved when laboratory results were combined with retinal image features.

  11. Quantum gate decomposition algorithms.

    SciTech Connect

    Slepoy, Alexander

    2006-07-01

    Quantum computing algorithms can be conveniently expressed in a format of a quantum logical circuits. Such circuits consist of sequential coupled operations, termed ''quantum gates'', or quantum analogs of bits called qubits. We review a recently proposed method [1] for constructing general ''quantum gates'' operating on an qubits, as composed of a sequence of generic elementary ''gates''.

  12. The Xmath Integration Algorithm

    ERIC Educational Resources Information Center

    Bringslid, Odd

    2009-01-01

    The projects Xmath (Bringslid and Canessa, 2002) and dMath (Bringslid, de la Villa and Rodriguez, 2007) were supported by the European Commission in the so called Minerva Action (Xmath) and The Leonardo da Vinci programme (dMath). The Xmath eBook (Bringslid, 2006) includes algorithms into a wide range of undergraduate mathematical issues embedded…

  13. Algorithm for reaction classification.

    PubMed

    Kraut, Hans; Eiblmaier, Josef; Grethe, Guenter; Löw, Peter; Matuszczyk, Heinz; Saller, Heinz

    2013-11-25

    Reaction classification has important applications, and many approaches to classification have been applied. Our own algorithm tests all maximum common substructures (MCS) between all reactant and product molecules in order to find an atom mapping containing the minimum chemical distance (MCD). Recent publications have concluded that new MCS algorithms need to be compared with existing methods in a reproducible environment, preferably on a generalized test set, yet the number of test sets available is small, and they are not truly representative of the range of reactions that occur in real reaction databases. We have designed a challenging test set of reactions and are making it publicly available and usable with InfoChem's software or other classification algorithms. We supply a representative set of example reactions, grouped into different levels of difficulty, from a large number of reaction databases that chemists actually encounter in practice, in order to demonstrate the basic requirements for a mapping algorithm to detect the reaction centers in a consistent way. We invite the scientific community to contribute to the future extension and improvement of this data set, to achieve the goal of a common standard.

  14. Robotic Follow Algorithm

    SciTech Connect

    2005-03-30

    The Robotic Follow Algorithm enables allows any robotic vehicle to follow a moving target while reactively choosing a route around nearby obstacles. The robotic follow behavior can be used with different camera systems and can be used with thermal or visual tracking as well as other tracking methods such as radio frequency tags.

  15. Boundary-detection algorithm for locating edges in digital imagery

    NASA Technical Reports Server (NTRS)

    Myers, V. I. (Principal Investigator); Russell, M. J.; Moore, D. G.; Nelson, G. D.

    1975-01-01

    The author has identified the following significant results. Initial development of a computer program which implements a boundary detection algorithm to detect edges in digital images is described. An evaluation of the boundary detection algorithm was conducted to locate boundaries of lakes from LANDSAT-1 imagery. The accuracy of the boundary detection algorithm was determined by comparing the area within boundaries of lakes located using digitized LANDSAT imagery with the area of the same lakes planimetered from imagery collected from an aircraft platform.

  16. Sanitary Surveys & Significant Deficiencies Presentation

    EPA Pesticide Factsheets

    The Sanitary Surveys & Significant Deficiencies Presentation highlights some of the things EPA looks for during drinking water system site visits, how to avoid significant deficiencies and what to do if you receive one.

  17. Fast autodidactic adaptive equalization algorithms

    NASA Astrophysics Data System (ADS)

    Hilal, Katia

    Autodidactic equalization by adaptive filtering is addressed in a mobile radio communication context. A general method, using an adaptive stochastic gradient Bussgang type algorithm, to deduce two low cost computation algorithms is given: one equivalent to the initial algorithm and the other having improved convergence properties thanks to a block criteria minimization. Two start algorithms are reworked: the Godard algorithm and the decision controlled algorithm. Using a normalization procedure, and block normalization, the performances are improved, and their common points are evaluated. These common points are used to propose an algorithm retaining the advantages of the two initial algorithms. This thus inherits the robustness of the Godard algorithm and the precision and phase correction of the decision control algorithm. The work is completed by a study of the stable states of Bussgang type algorithms and of the stability of the Godard algorithms, initial and normalized. The simulation of these algorithms, carried out in a mobile radio communications context, and under severe conditions on the propagation channel, gave a 75% reduction in the number of samples required for the processing in relation with the initial algorithms. The improvement of the residual error was of a much lower return. These performances are close to making possible the use of autodidactic equalization in the mobile radio system.

  18. Robust Multi-Frame Adaptive Optics Image Restoration Algorithm Using Maximum Likelihood Estimation with Poisson Statistics.

    PubMed

    Li, Dongming; Sun, Changming; Yang, Jinhua; Liu, Huan; Peng, Jiaqi; Zhang, Lijuan

    2017-04-06

    An adaptive optics (AO) system provides real-time compensation for atmospheric turbulence. However, an AO image is usually of poor contrast because of the nature of the imaging process, meaning that the image contains information coming from both out-of-focus and in-focus planes of the object, which also brings about a loss in quality. In this paper, we present a robust multi-frame adaptive optics image restoration algorithm via maximum likelihood estimation. Our proposed algorithm uses a maximum likelihood method with image regularization as the basic principle, and constructs the joint log likelihood function for multi-frame AO images based on a Poisson distribution model. To begin with, a frame selection method based on image variance is applied to the observed multi-frame AO images to select images with better quality to improve the convergence of a blind deconvolution algorithm. Then, by combining the imaging conditions and the AO system properties, a point spread function estimation model is built. Finally, we develop our iterative solutions for AO image restoration addressing the joint deconvolution issue. We conduct a number of experiments to evaluate the performances of our proposed algorithm. Experimental results show that our algorithm produces accurate AO image restoration results and outperforms the current state-of-the-art blind deconvolution methods.

  19. Improved optimization algorithm for proximal point-based dictionary updating methods

    NASA Astrophysics Data System (ADS)

    Zhao, Changchen; Hwang, Wen-Liang; Lin, Chun-Liang; Chen, Weihai

    2016-09-01

    Proximal K-singular value decomposition (PK-SVD) is a dictionary updating algorithm that incorporates proximal point method into K-SVD. The attempt of combining proximal method and K-SVD has achieved promising result in such areas as sparse approximation, image denoising, and image compression. However, the optimization procedure of PK-SVD is complicated and, therefore, limits the algorithm in both theoretical analysis and practical use. This article proposes a simple but effective optimization approach to the formulation of PK-SVD. We cast this formulation as a fitting problem and relax the constraint on the direction of the k'th row in the sparse coefficient matrix. This relaxation strengthens the regularization effect of the proximal point. The proposed algorithm needs fewer steps to implement and further boost the performance of PK-SVD while maintaining the same computational complexity. Experimental results demonstrate that the proposed algorithm outperforms conventional algorithms in reconstruction error, recovery rate, and convergence speed for sparse approximation and achieves better results in image denoising.

  20. A novel impact identification algorithm based on a linear approximation with maximum entropy

    NASA Astrophysics Data System (ADS)

    Sanchez, N.; Meruane, V.; Ortiz-Bernardin, A.

    2016-09-01

    This article presents a novel impact identification algorithm that uses a linear approximation handled by a statistical inference model based on the maximum-entropy principle, termed linear approximation with maximum entropy (LME). Unlike other regression algorithms as artificial neural networks (ANNs) and support vector machines, the proposed algorithm requires only parameter to be selected and the impact is identified after solving a convex optimization problem that has a unique solution. In addition, with LME data is processed in a period of time that is comparable to the one of other algorithms. The performance of the proposed methodology is validated by considering an experimental aluminum plate. Time varying strain data is measured using four piezoceramic sensors bonded to the plate. To demonstrate the potential of the proposed approach over existing ones, results obtained via LME are compared with those of ANN and least square support vector machines. The results demonstrate that with a low number of sensors it is possible to accurately locate and quantify impacts on a structure and that LME outperforms other impact identification algorithms.