Sample records for algorithm specifically designed

  1. A Library of Optimization Algorithms for Organizational Design

    DTIC Science & Technology

    2005-01-01

    N00014-98-1-0465 and #N00014-00-1-0101 A Library of Optimization Algorithms for Organizational Design Georgiy M. Levchuk Yuri N. Levchuk Jie Luo...E-mail: Krishna@engr.uconn.edu Abstract This paper presents a library of algorithms to solve a broad range of optimization problems arising in the...normative design of organizations to execute a specific mission. The use of specific optimization algorithms for different phases of the design process

  2. Population-based metaheuristic optimization in neutron optics and shielding design

    NASA Astrophysics Data System (ADS)

    DiJulio, D. D.; Björgvinsdóttir, H.; Zendler, C.; Bentley, P. M.

    2016-11-01

    Population-based metaheuristic algorithms are powerful tools in the design of neutron scattering instruments and the use of these types of algorithms for this purpose is becoming more and more commonplace. Today there exists a wide range of algorithms to choose from when designing an instrument and it is not always initially clear which may provide the best performance. Furthermore, due to the nature of these types of algorithms, the final solution found for a specific design scenario cannot always be guaranteed to be the global optimum. Therefore, to explore the potential benefits and differences between the varieties of these algorithms available, when applied to such design scenarios, we have carried out a detailed study of some commonly used algorithms. For this purpose, we have developed a new general optimization software package which combines a number of common metaheuristic algorithms within a single user interface and is designed specifically with neutronic calculations in mind. The algorithms included in the software are implementations of Particle-Swarm Optimization (PSO), Differential Evolution (DE), Artificial Bee Colony (ABC), and a Genetic Algorithm (GA). The software has been used to optimize the design of several problems in neutron optics and shielding, coupled with Monte-Carlo simulations, in order to evaluate the performance of the various algorithms. Generally, the performance of the algorithms depended on the specific scenarios, however it was found that DE provided the best average solutions in all scenarios investigated in this work.

  3. 17 CFR Appendix A to Part 38 - Guidance on Compliance With Designation Criteria

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...-matching algorithm and order entry procedures. An application involving a trade-matching algorithm that is... algorithm. (b) A designated contract market's specifications on initial and periodic objective testing and...

  4. 17 CFR Appendix A to Part 38 - Guidance on Compliance With Designation Criteria

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...-matching algorithm and order entry procedures. An application involving a trade-matching algorithm that is... algorithm. (b) A designated contract market's specifications on initial and periodic objective testing and...

  5. Efficient design of nanoplasmonic waveguide devices using the space mapping algorithm.

    PubMed

    Dastmalchi, Pouya; Veronis, Georgios

    2013-12-30

    We show that the space mapping algorithm, originally developed for microwave circuit optimization, can enable the efficient design of nanoplasmonic waveguide devices which satisfy a set of desired specifications. Space mapping utilizes a physics-based coarse model to approximate a fine model accurately describing a device. Here the fine model is a full-wave finite-difference frequency-domain (FDFD) simulation of the device, while the coarse model is based on transmission line theory. We demonstrate that simply optimizing the transmission line model of the device is not enough to obtain a device which satisfies all the required design specifications. On the other hand, when the iterative space mapping algorithm is used, it converges fast to a design which meets all the specifications. In addition, full-wave FDFD simulations of only a few candidate structures are required before the iterative process is terminated. Use of the space mapping algorithm therefore results in large reductions in the required computation time when compared to any direct optimization method of the fine FDFD model.

  6. Algorithme intelligent d'optimisation d'un design structurel de grande envergure

    NASA Astrophysics Data System (ADS)

    Dominique, Stephane

    The implementation of an automated decision support system in the field of design and structural optimisation can give a significant advantage to any industry working on mechanical designs. Indeed, by providing solution ideas to a designer or by upgrading existing design solutions while the designer is not at work, the system may reduce the project cycle time, or allow more time to produce a better design. This thesis presents a new approach to automate a design process based on Case-Based Reasoning (CBR), in combination with a new genetic algorithm named Genetic Algorithm with Territorial core Evolution (GATE). This approach was developed in order to reduce the operating cost of the process. However, as the system implementation cost is quite expensive, the approach is better suited for large scale design problem, and particularly for design problems that the designer plans to solve for many different specification sets. First, the CBR process uses a databank filled with every known solution to similar design problems. Then, the closest solutions to the current problem in term of specifications are selected. After this, during the adaptation phase, an artificial neural network (ANN) interpolates amongst known solutions to produce an additional solution to the current problem using the current specifications as inputs. Each solution produced and selected by the CBR is then used to initialize the population of an island of the genetic algorithm. The algorithm will optimise the solution further during the refinement phase. Using progressive refinement, the algorithm starts using only the most important variables for the problem. Then, as the optimisation progress, the remaining variables are gradually introduced, layer by layer. The genetic algorithm that is used is a new algorithm specifically created during this thesis to solve optimisation problems from the field of mechanical device structural design. The algorithm is named GATE, and is essentially a real number genetic algorithm that prevents new individuals to be born too close to previously evaluated solutions. The restricted area becomes smaller or larger during the optimisation to allow global or local search when necessary. Also, a new search operator named Substitution Operator is incorporated in GATE. This operator allows an ANN surrogate model to guide the algorithm toward the most promising areas of the design space. The suggested CBR approach and GATE were tested on several simple test problems, as well as on the industrial problem of designing a gas turbine engine rotor's disc. These results are compared to other results obtained for the same problems by many other popular optimisation algorithms, such as (depending of the problem) gradient algorithms, binary genetic algorithm, real number genetic algorithm, genetic algorithm using multiple parents crossovers, differential evolution genetic algorithm, Hookes & Jeeves generalized pattern search method and POINTER from the software I-SIGHT 3.5. Results show that GATE is quite competitive, giving the best results for 5 of the 6 constrained optimisation problem. GATE also provided the best results of all on problem produced by a Maximum Set Gaussian landscape generator. Finally, GATE provided a disc 4.3% lighter than the best other tested algorithm (POINTER) for the gas turbine engine rotor's disc problem. One drawback of GATE is a lesser efficiency for highly multimodal unconstrained problems, for which he gave quite poor results with respect to its implementation cost. To conclude, according to the preliminary results obtained during this thesis, the suggested CBR process, combined with GATE, seems to be a very good candidate to automate and accelerate the structural design of mechanical devices, potentially reducing significantly the cost of industrial preliminary design processes.

  7. An Overview of a Trajectory-Based Solution for En Route and Terminal Area Self-Spacing: Fourth Revision

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    2013-01-01

    This paper presents an overview of the fourth major revision to an algorithm specifically designed to support NASA's Airborne Precision Spacing concept. This airborne self-spacing concept is trajectory-based, allowing for spacing operations prior to the aircraft being on a common path. Because this algorithm is trajectory-based, it also has the inherent ability to support required-time-of-arrival (RTA) operations. This algorithm was also designed specifically to support a standalone, non-integrated implementation in the spacing aircraft. Revisions to this algorithm were based on a change to the expected operational environment.

  8. Mechanisms of Undersensing by a Noise Detection Algorithm That Utilizes Far-Field Electrograms With Near-Field Bandpass Filtering.

    PubMed

    Koneru, Jayanthi N; Swerdlow, Charles D; Ploux, Sylvain; Sharma, Parikshit S; Kaszala, Karoly; Tan, Alex Y; Huizar, Jose F; Vijayaraman, Pugazhendi; Kenigsberg, David; Ellenbogen, Kenneth A

    2017-02-01

    Implantable cardioverter defibrillators (ICDs) must establish a balance between delivering appropriate shocks for ventricular tachyarrhythmias and withholding inappropriate shocks for lead-related oversensing ("noise"). To improve the specificity of ICD therapy, manufacturers have developed proprietary algorithms that detect lead noise. The SecureSense TM RV Lead Noise discrimination (St. Jude Medical, St. Paul, MN, USA) algorithm is designed to differentiate oversensing due to lead failure from ventricular tachyarrhythmias and withhold therapies in the presence of sustained lead-related oversensing. We report 5 patients in whom appropriate ICD therapy was withheld due to the operation of the SecureSense algorithm and explain the mechanism for inhibition of therapy in each case. Limitations of algorithms designed to increase ICD therapy specificity, especially for the SecureSense algorithm, are analyzed. The SecureSense algorithm can withhold appropriate therapies for ventricular arrhythmias due to design and programming limitations. Electrophysiologists should have a thorough understanding of the SecureSense algorithm before routinely programming it and understand the implications for ventricular arrhythmia misclassification. © 2016 Wiley Periodicals, Inc.

  9. Discrete size optimization of steel trusses using a refined big bang-big crunch algorithm

    NASA Astrophysics Data System (ADS)

    Hasançebi, O.; Kazemzadeh Azad, S.

    2014-01-01

    This article presents a methodology that provides a method for design optimization of steel truss structures based on a refined big bang-big crunch (BB-BC) algorithm. It is shown that a standard formulation of the BB-BC algorithm occasionally falls short of producing acceptable solutions to problems from discrete size optimum design of steel trusses. A reformulation of the algorithm is proposed and implemented for design optimization of various discrete truss structures according to American Institute of Steel Construction Allowable Stress Design (AISC-ASD) specifications. Furthermore, the performance of the proposed BB-BC algorithm is compared to its standard version as well as other well-known metaheuristic techniques. The numerical results confirm the efficiency of the proposed algorithm in practical design optimization of truss structures.

  10. An Overview of a Trajectory-Based Solution for En Route and Terminal Area Self-Spacing: Third Revision

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    2012-01-01

    This paper presents an overview of the third major revision to an algorithm specifically designed to support NASA's Airborne Precision Spacing concept. This algorithm is referred to as the Airborne Spacing for Terminal Arrival Routes version 11 (ASTAR11). This airborne self-spacing concept is trajectory-based, allowing for spacing operations prior to the aircraft being on a common path. Because this algorithm is trajectory-based, it also has the inherent ability to support required time-of-arrival (RTA) operations. This algorithm was also designed specifically to support a standalone, non-integrated implementation in the spacing aircraft.

  11. Design of Protein Multi-specificity Using an Independent Sequence Search Reduces the Barrier to Low Energy Sequences

    PubMed Central

    Sevy, Alexander M.; Jacobs, Tim M.; Crowe, James E.; Meiler, Jens

    2015-01-01

    Computational protein design has found great success in engineering proteins for thermodynamic stability, binding specificity, or enzymatic activity in a ‘single state’ design (SSD) paradigm. Multi-specificity design (MSD), on the other hand, involves considering the stability of multiple protein states simultaneously. We have developed a novel MSD algorithm, which we refer to as REstrained CONvergence in multi-specificity design (RECON). The algorithm allows each state to adopt its own sequence throughout the design process rather than enforcing a single sequence on all states. Convergence to a single sequence is encouraged through an incrementally increasing convergence restraint for corresponding positions. Compared to MSD algorithms that enforce (constrain) an identical sequence on all states the energy landscape is simplified, which accelerates the search drastically. As a result, RECON can readily be used in simulations with a flexible protein backbone. We have benchmarked RECON on two design tasks. First, we designed antibodies derived from a common germline gene against their diverse targets to assess recovery of the germline, polyspecific sequence. Second, we design “promiscuous”, polyspecific proteins against all binding partners and measure recovery of the native sequence. We show that RECON is able to efficiently recover native-like, biologically relevant sequences in this diverse set of protein complexes. PMID:26147100

  12. Chance of Vulnerability Reduction in Application-Specific NoC through Distance Aware Mapping Algorithm

    NASA Astrophysics Data System (ADS)

    Janidarmian, Majid; Fekr, Atena Roshan; Bokharaei, Vahhab Samadi

    2011-08-01

    Mapping algorithm which means which core should be linked to which router is one of the key issues in the design flow of network-on-chip. To achieve an application-specific NoC design procedure that minimizes the communication cost and improves the fault tolerant property, first a heuristic mapping algorithm that produces a set of different mappings in a reasonable time is presented. This algorithm allows the designers to identify the set of most promising solutions in a large design space, which has low communication costs while yielding optimum communication costs in some cases. Another evaluated parameter, vulnerability index, is then considered as a principle of estimating the fault-tolerance property in all produced mappings. Finally, in order to yield a mapping which considers trade-offs between these two parameters, a linear function is defined and introduced. It is also observed that more flexibility to prioritize solutions within the design space is possible by adjusting a set of if-then rules in fuzzy logic.

  13. Teaching-learning-based Optimization Algorithm for Parameter Identification in the Design of IIR Filters

    NASA Astrophysics Data System (ADS)

    Singh, R.; Verma, H. K.

    2013-12-01

    This paper presents a teaching-learning-based optimization (TLBO) algorithm to solve parameter identification problems in the designing of digital infinite impulse response (IIR) filter. TLBO based filter modelling is applied to calculate the parameters of unknown plant in simulations. Unlike other heuristic search algorithms, TLBO algorithm is an algorithm-specific parameter-less algorithm. In this paper big bang-big crunch (BB-BC) optimization and PSO algorithms are also applied to filter design for comparison. Unknown filter parameters are considered as a vector to be optimized by these algorithms. MATLAB programming is used for implementation of proposed algorithms. Experimental results show that the TLBO is more accurate to estimate the filter parameters than the BB-BC optimization algorithm and has faster convergence rate when compared to PSO algorithm. TLBO is used where accuracy is more essential than the convergence speed.

  14. A computerized compensator design algorithm with launch vehicle applications

    NASA Technical Reports Server (NTRS)

    Mitchell, J. R.; Mcdaniel, W. L., Jr.

    1976-01-01

    This short paper presents a computerized algorithm for the design of compensators for large launch vehicles. The algorithm is applicable to the design of compensators for linear, time-invariant, control systems with a plant possessing a single control input and multioutputs. The achievement of frequency response specifications is cast into a strict constraint mathematical programming format. An improved solution algorithm for solving this type of problem is given, along with the mathematical necessities for application to systems of the above type. A computer program, compensator improvement program (CIP), has been developed and applied to a pragmatic space-industry-related example.

  15. A review of classification algorithms for EEG-based brain-computer interfaces.

    PubMed

    Lotte, F; Congedo, M; Lécuyer, A; Lamarche, F; Arnaldi, B

    2007-06-01

    In this paper we review classification algorithms used to design brain-computer interface (BCI) systems based on electroencephalography (EEG). We briefly present the commonly employed algorithms and describe their critical properties. Based on the literature, we compare them in terms of performance and provide guidelines to choose the suitable classification algorithm(s) for a specific BCI.

  16. cOSPREY: A Cloud-Based Distributed Algorithm for Large-Scale Computational Protein Design

    PubMed Central

    Pan, Yuchao; Dong, Yuxi; Zhou, Jingtian; Hallen, Mark; Donald, Bruce R.; Xu, Wei

    2016-01-01

    Abstract Finding the global minimum energy conformation (GMEC) of a huge combinatorial search space is the key challenge in computational protein design (CPD) problems. Traditional algorithms lack a scalable and efficient distributed design scheme, preventing researchers from taking full advantage of current cloud infrastructures. We design cloud OSPREY (cOSPREY), an extension to a widely used protein design software OSPREY, to allow the original design framework to scale to the commercial cloud infrastructures. We propose several novel designs to integrate both algorithm and system optimizations, such as GMEC-specific pruning, state search partitioning, asynchronous algorithm state sharing, and fault tolerance. We evaluate cOSPREY on three different cloud platforms using different technologies and show that it can solve a number of large-scale protein design problems that have not been possible with previous approaches. PMID:27154509

  17. Automatic Debugging Support for UML Designs

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Swanson, Keith (Technical Monitor)

    2001-01-01

    Design of large software systems requires rigorous application of software engineering methods covering all phases of the software process. Debugging during the early design phases is extremely important, because late bug-fixes are expensive. In this paper, we describe an approach which facilitates debugging of UML requirements and designs. The Unified Modeling Language (UML) is a set of notations for object-orient design of a software system. We have developed an algorithm which translates requirement specifications in the form of annotated sequence diagrams into structured statecharts. This algorithm detects conflicts between sequence diagrams and inconsistencies in the domain knowledge. After synthesizing statecharts from sequence diagrams, these statecharts usually are subject to manual modification and refinement. By using the "backward" direction of our synthesis algorithm. we are able to map modifications made to the statechart back into the requirements (sequence diagrams) and check for conflicts there. Fed back to the user conflicts detected by our algorithm are the basis for deductive-based debugging of requirements and domain theory in very early development stages. Our approach allows to generate explanations oil why there is a conflict and which parts of the specifications are affected.

  18. Designing HIV Testing Algorithms Based on 2015 WHO Guidelines Using Data from Six Sites in Sub-Saharan Africa

    PubMed Central

    Kosack, Cara S.; Shanks, Leslie; Beelaert, Greet; Benson, Tumwesigye; Savane, Aboubacar; Ng'ang'a, Anne; Bita, André; Zahinda, Jean-Paul B. N.; Fransen, Katrien

    2017-01-01

    ABSTRACT Our objective was to evaluate the performance of HIV testing algorithms based on WHO recommendations, using data from specimens collected at six HIV testing and counseling sites in sub-Saharan Africa (Conakry, Guinea; Kitgum and Arua, Uganda; Homa Bay, Kenya; Douala, Cameroon; Baraka, Democratic Republic of Congo). A total of 2,780 samples, including 1,306 HIV-positive samples, were included in the analysis. HIV testing algorithms were designed using Determine as a first test. Second and third rapid diagnostic tests (RDTs) were selected based on site-specific performance, adhering where possible to the WHO-recommended minimum requirements of ≥99% sensitivity and specificity. The threshold for specificity was reduced to 98% or 96% if necessary. We also simulated algorithms consisting of one RDT followed by a simple confirmatory assay. The positive predictive values (PPV) of the simulated algorithms ranged from 75.8% to 100% using strategies recommended for high-prevalence settings, 98.7% to 100% using strategies recommended for low-prevalence settings, and 98.1% to 100% using a rapid test followed by a simple confirmatory assay. Although we were able to design algorithms that met the recommended PPV of ≥99% in five of six sites using the applicable high-prevalence strategy, options were often very limited due to suboptimal performance of individual RDTs and to shared falsely reactive results. These results underscore the impact of the sequence of HIV tests and of shared false-reactivity data on algorithm performance. Where it is not possible to identify tests that meet WHO-recommended specifications, the low-prevalence strategy may be more suitable. PMID:28747371

  19. Informed Source Separation: A Bayesian Tutorial

    NASA Technical Reports Server (NTRS)

    Knuth, Kevin H.

    2005-01-01

    Source separation problems are ubiquitous in the physical sciences; any situation where signals are superimposed calls for source separation to estimate the original signals. In h s tutorial I will discuss the Bayesian approach to the source separation problem. This approach has a specific advantage in that it requires the designer to explicitly describe the signal model in addition to any other information or assumptions that go into the problem description. This leads naturally to the idea of informed source separation, where the algorithm design incorporates relevant information about the specific problem. This approach promises to enable researchers to design their own high-quality algorithms that are specifically tailored to the problem at hand.

  20. An Overview of a Trajectory-Based Solution for En Route and Terminal Area Self-Spacing: Fifth Edition

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    2015-01-01

    This paper presents an overview of the fifth revision to an algorithm specifically designed to support NASA's Airborne Precision Spacing concept. This algorithm is referred to as the Airborne Spacing for Terminal Arrival Routes version 12 (ASTAR12). This airborne self-spacing concept is trajectory-based, allowing for spacing operations prior to the aircraft being on a common path. Because this algorithm is trajectory-based, it also has the inherent ability to support required-time-of- arrival (RTA) operations. This algorithm was also designed specifically to support a standalone, non-integrated implementation in the spacing aircraft. This current revision to the algorithm includes a ground speed feedback term to compensate for slower than expected traffic aircraft speeds based on the accepted air traffic control tendency to slow aircraft below the nominal arrival speeds when they are farther from the airport.

  1. SSL: A software specification language

    NASA Technical Reports Server (NTRS)

    Austin, S. L.; Buckles, B. P.; Ryan, J. P.

    1976-01-01

    SSL (Software Specification Language) is a new formalism for the definition of specifications for software systems. The language provides a linear format for the representation of the information normally displayed in a two-dimensional module inter-dependency diagram. In comparing SSL to FORTRAN or ALGOL, it is found to be largely complementary to the algorithmic (procedural) languages. SSL is capable of representing explicitly module interconnections and global data flow, information which is deeply imbedded in the algorithmic languages. On the other hand, SSL is not designed to depict the control flow within modules. The SSL level of software design explicitly depicts intermodule data flow as a functional specification.

  2. An Overview of a Trajectory-Based Solution for En Route and Terminal Area Self-Spacing: Sixth Revision

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    2015-01-01

    This paper presents an overview of the sixth revision to an algorithm specifically designed to support NASA's Airborne Precision Spacing concept. This algorithm is referred to as the Airborne Spacing for Terminal Arrival Routes version 13 (ASTAR13). This airborne self-spacing concept contains both trajectory-based and state-based mechanisms for calculating the speeds required to achieve or maintain a precise spacing interval. The trajectory-based capability allows for spacing operations prior to the aircraft being on a common path. This algorithm was also designed specifically to support a standalone, non-integrated implementation in the spacing aircraft. This current revision to the algorithm adds the state-based capability in support of evolving industry standards relating to airborne self-spacing.

  3. An Adaptive Numeric Predictor-corrector Guidance Algorithm for Atmospheric Entry Vehicles. M.S. Thesis - MIT, Cambridge

    NASA Technical Reports Server (NTRS)

    Spratlin, Kenneth Milton

    1987-01-01

    An adaptive numeric predictor-corrector guidance is developed for atmospheric entry vehicles which utilize lift to achieve maximum footprint capability. Applicability of the guidance design to vehicles with a wide range of performance capabilities is desired so as to reduce the need for algorithm redesign with each new vehicle. Adaptability is desired to minimize mission-specific analysis and planning. The guidance algorithm motivation and design are presented. Performance is assessed for application of the algorithm to the NASA Entry Research Vehicle (ERV). The dispersions the guidance must be designed to handle are presented. The achievable operational footprint for expected worst-case dispersions is presented. The algorithm performs excellently for the expected dispersions and captures most of the achievable footprint.

  4. A firefly algorithm for optimum design of new-generation beams

    NASA Astrophysics Data System (ADS)

    Erdal, F.

    2017-06-01

    This research addresses the minimum weight design of new-generation steel beams with sinusoidal openings using a metaheuristic search technique, namely the firefly method. The proposed algorithm is also used to compare the optimum design results of sinusoidal web-expanded beams with steel castellated and cellular beams. Optimum design problems of all beams are formulated according to the design limitations stipulated by the Steel Construction Institute. The design methods adopted in these publications are consistent with BS 5950 specifications. The formulation of the design problem considering the above-mentioned limitations turns out to be a discrete programming problem. The design algorithms based on the technique select the optimum universal beam sections, dimensional properties of sinusoidal, hexagonal and circular holes, and the total number of openings along the beam as design variables. Furthermore, this selection is also carried out such that the behavioural limitations are satisfied. Numerical examples are presented, where the suggested algorithm is implemented to achieve the minimum weight design of these beams subjected to loading combinations.

  5. Automating software design system DESTA

    NASA Technical Reports Server (NTRS)

    Lovitsky, Vladimir A.; Pearce, Patricia D.

    1992-01-01

    'DESTA' is the acronym for the Dialogue Evolutionary Synthesizer of Turnkey Algorithms by means of a natural language (Russian or English) functional specification of algorithms or software being developed. DESTA represents the computer-aided and/or automatic artificial intelligence 'forgiving' system which provides users with software tools support for algorithm and/or structured program development. The DESTA system is intended to provide support for the higher levels and earlier stages of engineering design of software in contrast to conventional Computer Aided Design (CAD) systems which provide low level tools for use at a stage when the major planning and structuring decisions have already been taken. DESTA is a knowledge-intensive system. The main features of the knowledge are procedures, functions, modules, operating system commands, batch files, their natural language specifications, and their interlinks. The specific domain for the DESTA system is a high level programming language like Turbo Pascal 6.0. The DESTA system is operational and runs on an IBM PC computer.

  6. Ontological Problem-Solving Framework for Assigning Sensor Systems and Algorithms to High-Level Missions

    PubMed Central

    Qualls, Joseph; Russomanno, David J.

    2011-01-01

    The lack of knowledge models to represent sensor systems, algorithms, and missions makes opportunistically discovering a synthesis of systems and algorithms that can satisfy high-level mission specifications impractical. A novel ontological problem-solving framework has been designed that leverages knowledge models describing sensors, algorithms, and high-level missions to facilitate automated inference of assigning systems to subtasks that may satisfy a given mission specification. To demonstrate the efficacy of the ontological problem-solving architecture, a family of persistence surveillance sensor systems and algorithms has been instantiated in a prototype environment to demonstrate the assignment of systems to subtasks of high-level missions. PMID:22164081

  7. Pattern Recognition for a Flight Dynamics Monte Carlo Simulation

    NASA Technical Reports Server (NTRS)

    Restrepo, Carolina; Hurtado, John E.

    2011-01-01

    The design, analysis, and verification and validation of a spacecraft relies heavily on Monte Carlo simulations. Modern computational techniques are able to generate large amounts of Monte Carlo data but flight dynamics engineers lack the time and resources to analyze it all. The growing amounts of data combined with the diminished available time of engineers motivates the need to automate the analysis process. Pattern recognition algorithms are an innovative way of analyzing flight dynamics data efficiently. They can search large data sets for specific patterns and highlight critical variables so analysts can focus their analysis efforts. This work combines a few tractable pattern recognition algorithms with basic flight dynamics concepts to build a practical analysis tool for Monte Carlo simulations. Current results show that this tool can quickly and automatically identify individual design parameters, and most importantly, specific combinations of parameters that should be avoided in order to prevent specific system failures. The current version uses a kernel density estimation algorithm and a sequential feature selection algorithm combined with a k-nearest neighbor classifier to find and rank important design parameters. This provides an increased level of confidence in the analysis and saves a significant amount of time.

  8. Investigations of quantum heuristics for optimization

    NASA Astrophysics Data System (ADS)

    Rieffel, Eleanor; Hadfield, Stuart; Jiang, Zhang; Mandra, Salvatore; Venturelli, Davide; Wang, Zhihui

    We explore the design of quantum heuristics for optimization, focusing on the quantum approximate optimization algorithm, a metaheuristic developed by Farhi, Goldstone, and Gutmann. We develop specific instantiations of the of quantum approximate optimization algorithm for a variety of challenging combinatorial optimization problems. Through theoretical analyses and numeric investigations of select problems, we provide insight into parameter setting and Hamiltonian design for quantum approximate optimization algorithms and related quantum heuristics, and into their implementation on hardware realizable in the near term.

  9. An Overview of a Trajectory-Based Solution for En Route and Terminal Area Self-Spacing: Seventh Revision

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    2015-01-01

    This paper presents an overview of the seventh revision to an algorithm specifically designed to support NASA's Airborne Precision Spacing concept. This paper supersedes the previous documentation and presents a modification to the algorithm referred to as the Airborne Spacing for Terminal Arrival Routes version 13 (ASTAR13). This airborne self-spacing concept contains both trajectory-based and state-based mechanisms for calculating the speeds required to achieve or maintain a precise spacing interval. The trajectory-based capability allows for spacing operations prior to the aircraft being on a common path. This algorithm was also designed specifically to support a standalone, non-integrated implementation in the spacing aircraft. This current revision to the algorithm adds the state-based capability in support of evolving industry standards relating to airborne self-spacing.

  10. An Overview of a Trajectory-Based Solution for En Route and Terminal Area Self-Spacing: Eighth Revision

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.; Swieringa, Kurt S.

    2017-01-01

    This paper presents an overview of the eighth revision to an algorithm specifically designed to support NASA's Airborne Precision Spacing concept. This paper supersedes the previous documentation and presents a modification to the algorithm referred to as the Airborne Spacing for Terminal Arrival Routes version 13 (ASTAR13). This airborne self-spacing concept contains both trajectory-based and state-based mechanisms for calculating the speeds required to achieve or maintain a precise spacing interval with another aircraft. The trajectory-based capability allows for spacing operations prior to the aircraft being on a common path. This algorithm was also designed specifically to support a standalone, non-integrated implementation in the spacing aircraft. This current revision to the algorithm supports the evolving industry standards relating to airborne self-spacing.

  11. Survivable algorithms and redundancy management in NASA's distributed computing systems

    NASA Technical Reports Server (NTRS)

    Malek, Miroslaw

    1992-01-01

    The design of survivable algorithms requires a solid foundation for executing them. While hardware techniques for fault-tolerant computing are relatively well understood, fault-tolerant operating systems, as well as fault-tolerant applications (survivable algorithms), are, by contrast, little understood, and much more work in this field is required. We outline some of our work that contributes to the foundation of ultrareliable operating systems and fault-tolerant algorithm design. We introduce our consensus-based framework for fault-tolerant system design. This is followed by a description of a hierarchical partitioning method for efficient consensus. A scheduler for redundancy management is introduced, and application-specific fault tolerance is described. We give an overview of our hybrid algorithm technique, which is an alternative to the formal approach given.

  12. DCL System Research Using Advanced Approaches for Land-based or Ship-based Real-Time Recognition and Localization of Marine Mammals

    DTIC Science & Technology

    2012-09-30

    recognition. Algorithm design and statistical analysis and feature analysis. Post -Doctoral Associate, Cornell University, Bioacoustics Research...short. The HPC-ADA was designed based on fielded systems [1-4, 6] that offer a variety of desirable attributes, specifically dynamic resource...The software package was designed to utilize parallel and distributed processing for running recognition and other advanced algorithms. DeLMA

  13. A Survey on Sentiment Classification in Face Recognition

    NASA Astrophysics Data System (ADS)

    Qian, Jingyu

    2018-01-01

    Face recognition has been an important topic for both industry and academia for a long time. K-means clustering, autoencoder, and convolutional neural network, each representing a design idea for face recognition method, are three popular algorithms to deal with face recognition problems. It is worthwhile to summarize and compare these three different algorithms. This paper will focus on one specific face recognition problem-sentiment classification from images. Three different algorithms for sentiment classification problems will be summarized, including k-means clustering, autoencoder, and convolutional neural network. An experiment with the application of these algorithms on a specific dataset of human faces will be conducted to illustrate how these algorithms are applied and their accuracy. Finally, the three algorithms are compared based on the accuracy result.

  14. Design of recursive digital filters having specified phase and magnitude characteristics

    NASA Technical Reports Server (NTRS)

    King, R. E.; Condon, G. W.

    1972-01-01

    A method for a computer-aided design of a class of optimum filters, having specifications in the frequency domain of both magnitude and phase, is described. The method, an extension to the work of Steiglitz, uses the Fletcher-Powell algorithm to minimize a weighted squared magnitude and phase criterion. Results using the algorithm for the design of filters having specified phase as well as specified magnitude and phase compromise are presented.

  15. An intelligent case-adjustment algorithm for the automated design of population-based quality auditing protocols.

    PubMed

    Advani, Aneel; Jones, Neil; Shahar, Yuval; Goldstein, Mary K; Musen, Mark A

    2004-01-01

    We develop a method and algorithm for deciding the optimal approach to creating quality-auditing protocols for guideline-based clinical performance measures. An important element of the audit protocol design problem is deciding which guide-line elements to audit. Specifically, the problem is how and when to aggregate individual patient case-specific guideline elements into population-based quality measures. The key statistical issue involved is the trade-off between increased reliability with more general population-based quality measures versus increased validity from individually case-adjusted but more restricted measures done at a greater audit cost. Our intelligent algorithm for auditing protocol design is based on hierarchically modeling incrementally case-adjusted quality constraints. We select quality constraints to measure using an optimization criterion based on statistical generalizability coefficients. We present results of the approach from a deployed decision support system for a hypertension guideline.

  16. Molecular beacon sequence design algorithm.

    PubMed

    Monroe, W Todd; Haselton, Frederick R

    2003-01-01

    A method based on Web-based tools is presented to design optimally functioning molecular beacons. Molecular beacons, fluorogenic hybridization probes, are a powerful tool for the rapid and specific detection of a particular nucleic acid sequence. However, their synthesis costs can be considerable. Since molecular beacon performance is based on its sequence, it is imperative to rationally design an optimal sequence before synthesis. The algorithm presented here uses simple Microsoft Excel formulas and macros to rank candidate sequences. This analysis is carried out using mfold structural predictions along with other free Web-based tools. For smaller laboratories where molecular beacons are not the focus of research, the public domain algorithm described here may be usefully employed to aid in molecular beacon design.

  17. Wideband dichroic-filter design for LED-phosphor beam-combining

    DOEpatents

    Falicoff, Waqidi

    2010-12-28

    A general method is disclosed of designing two-component dichroic short-pass filters operable for incidence angle distributions over the 0-30.degree. range, and specific preferred embodiments are listed. The method is based on computer optimization algorithms for an N-layer design, specifically the N-dimensional conjugate-gradient minimization of a merit function based on difference from a target transmission spectrum, as well as subsequent cycles of needle synthesis for increasing N. A key feature of the method is the initial filter design, upon which the algorithm proceeds to iterate successive design candidates with smaller merit functions. This initial design, with high-index material H and low-index L, is (0.75 H, 0.5 L, 0.75 H)^m, denoting m (20-30) repetitions of a three-layer motif, giving rise to a filter with N=2 m+1.

  18. Design of Neural Networks for Fast Convergence and Accuracy

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Sparks, Dean W., Jr.

    1998-01-01

    A novel procedure for the design and training of artificial neural networks, used for rapid and efficient controls and dynamics design and analysis for flexible space systems, has been developed. Artificial neural networks are employed to provide a means of evaluating the impact of design changes rapidly. Specifically, two-layer feedforward neural networks are designed to approximate the functional relationship between the component spacecraft design changes and measures of its performance. A training algorithm, based on statistical sampling theory, is presented, which guarantees that the trained networks provide a designer-specified degree of accuracy in mapping the functional relationship. Within each iteration of this statistical-based algorithm, a sequential design algorithm is used for the design and training of the feedforward network to provide rapid convergence to the network goals. Here, at each sequence a new network is trained to minimize the error of previous network. The design algorithm attempts to avoid the local minima phenomenon that hampers the traditional network training. A numerical example is performed on a spacecraft application in order to demonstrate the feasibility of the proposed approach.

  19. 40 CFR 86.004-16 - Prohibition of defeat devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... information which the Administrator may request to be submitted) regarding test programs, engineering evaluations, design specifications, calibrations, on-board computer algorithms, and design strategies...

  20. 40 CFR 86.004-16 - Prohibition of defeat devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... information which the Administrator may request to be submitted) regarding test programs, engineering evaluations, design specifications, calibrations, on-board computer algorithms, and design strategies...

  1. 40 CFR 86.004-16 - Prohibition of defeat devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... information which the Administrator may request to be submitted) regarding test programs, engineering evaluations, design specifications, calibrations, on-board computer algorithms, and design strategies...

  2. Parameterized Algorithmics for Finding Exact Solutions of NP-Hard Biological Problems.

    PubMed

    Hüffner, Falk; Komusiewicz, Christian; Niedermeier, Rolf; Wernicke, Sebastian

    2017-01-01

    Fixed-parameter algorithms are designed to efficiently find optimal solutions to some computationally hard (NP-hard) problems by identifying and exploiting "small" problem-specific parameters. We survey practical techniques to develop such algorithms. Each technique is introduced and supported by case studies of applications to biological problems, with additional pointers to experimental results.

  3. Investigation of practical applications of H infinity control theory to the design of control systems for large space structures

    NASA Technical Reports Server (NTRS)

    Irwin, R. Dennis

    1988-01-01

    The applicability of H infinity control theory to the problems of large space structures (LSS) control was investigated. A complete evaluation to any technique as a candidate for large space structure control involves analytical evaluation, algorithmic evaluation, evaluation via simulation studies, and experimental evaluation. The results of analytical and algorithmic evaluations are documented. The analytical evaluation involves the determination of the appropriateness of the underlying assumptions inherent in the H infinity theory, the determination of the capability of the H infinity theory to achieve the design goals likely to be imposed on an LSS control design, and the identification of any LSS specific simplifications or complications of the theory. The resuls of the analytical evaluation are presented in the form of a tutorial on the subject of H infinity control theory with the LSS control designer in mind. The algorthmic evaluation of H infinity for LSS control pertains to the identification of general, high level algorithms for effecting the application of H infinity to LSS control problems, the identification of specific, numerically reliable algorithms necessary for a computer implementation of the general algorithms, the recommendation of a flexible software system for implementing the H infinity design steps, and ultimately the actual development of the necessary computer codes. Finally, the state of the art in H infinity applications is summarized with a brief outline of the most promising areas of current research.

  4. A software methodology for compiling quantum programs

    NASA Astrophysics Data System (ADS)

    Häner, Thomas; Steiger, Damian S.; Svore, Krysta; Troyer, Matthias

    2018-04-01

    Quantum computers promise to transform our notions of computation by offering a completely new paradigm. To achieve scalable quantum computation, optimizing compilers and a corresponding software design flow will be essential. We present a software architecture for compiling quantum programs from a high-level language program to hardware-specific instructions. We describe the necessary layers of abstraction and their differences and similarities to classical layers of a computer-aided design flow. For each layer of the stack, we discuss the underlying methods for compilation and optimization. Our software methodology facilitates more rapid innovation among quantum algorithm designers, quantum hardware engineers, and experimentalists. It enables scalable compilation of complex quantum algorithms and can be targeted to any specific quantum hardware implementation.

  5. Design of a clinical notification system.

    PubMed

    Wagner, M M; Tsui, F C; Pike, J; Pike, L

    1999-01-01

    We describe the requirements and design of an enterprise-wide notification system. From published descriptions of notification schemes, our own experience, and use cases provided by diverse users in our institution, we developed a set of functional requirements. The resulting design supports multiple communication channels, third party mappings (algorithms) from message to recipient and/or channel of delivery, and escalation algorithms. A requirement for multiple message formats is addressed by a document specification. We implemented this system in Java as a CORBA object. This paper describes the design and current implementation of our notification system.

  6. A reliable algorithm for optimal control synthesis

    NASA Technical Reports Server (NTRS)

    Vansteenwyk, Brett; Ly, Uy-Loi

    1992-01-01

    In recent years, powerful design tools for linear time-invariant multivariable control systems have been developed based on direct parameter optimization. In this report, an algorithm for reliable optimal control synthesis using parameter optimization is presented. Specifically, a robust numerical algorithm is developed for the evaluation of the H(sup 2)-like cost functional and its gradients with respect to the controller design parameters. The method is specifically designed to handle defective degenerate systems and is based on the well-known Pade series approximation of the matrix exponential. Numerical test problems in control synthesis for simple mechanical systems and for a flexible structure with densely packed modes illustrate positively the reliability of this method when compared to a method based on diagonalization. Several types of cost functions have been considered: a cost function for robust control consisting of a linear combination of quadratic objectives for deterministic and random disturbances, and one representing an upper bound on the quadratic objective for worst case initial conditions. Finally, a framework for multivariable control synthesis has been developed combining the concept of closed-loop transfer recovery with numerical parameter optimization. The procedure enables designers to synthesize not only observer-based controllers but also controllers of arbitrary order and structure. Numerical design solutions rely heavily on the robust algorithm due to the high order of the synthesis model and the presence of near-overlapping modes. The design approach is successfully applied to the design of a high-bandwidth control system for a rotorcraft.

  7. We get the algorithms of our ground truths: Designing referential databases in digital image processing

    PubMed Central

    Jaton, Florian

    2017-01-01

    This article documents the practical efforts of a group of scientists designing an image-processing algorithm for saliency detection. By following the actors of this computer science project, the article shows that the problems often considered to be the starting points of computational models are in fact provisional results of time-consuming, collective and highly material processes that engage habits, desires, skills and values. In the project being studied, problematization processes lead to the constitution of referential databases called ‘ground truths’ that enable both the effective shaping of algorithms and the evaluation of their performances. Working as important common touchstones for research communities in image processing, the ground truths are inherited from prior problematization processes and may be imparted to subsequent ones. The ethnographic results of this study suggest two complementary analytical perspectives on algorithms: (1) an ‘axiomatic’ perspective that understands algorithms as sets of instructions designed to solve given problems computationally in the best possible way, and (2) a ‘problem-oriented’ perspective that understands algorithms as sets of instructions designed to computationally retrieve outputs designed and designated during specific problematization processes. If the axiomatic perspective on algorithms puts the emphasis on the numerical transformations of inputs into outputs, the problem-oriented perspective puts the emphasis on the definition of both inputs and outputs. PMID:28950802

  8. Ontological Problem-Solving Framework for Dynamically Configuring Sensor Systems and Algorithms

    PubMed Central

    Qualls, Joseph; Russomanno, David J.

    2011-01-01

    The deployment of ubiquitous sensor systems and algorithms has led to many challenges, such as matching sensor systems to compatible algorithms which are capable of satisfying a task. Compounding the challenges is the lack of the requisite knowledge models needed to discover sensors and algorithms and to subsequently integrate their capabilities to satisfy a specific task. A novel ontological problem-solving framework has been designed to match sensors to compatible algorithms to form synthesized systems, which are capable of satisfying a task and then assigning the synthesized systems to high-level missions. The approach designed for the ontological problem-solving framework has been instantiated in the context of a persistence surveillance prototype environment, which includes profiling sensor systems and algorithms to demonstrate proof-of-concept principles. Even though the problem-solving approach was instantiated with profiling sensor systems and algorithms, the ontological framework may be useful with other heterogeneous sensing-system environments. PMID:22163793

  9. Numeric Design and Performance Analysis of Solid Oxide Fuel Cell -- Gas Turbine Hybrids on Aircraft

    NASA Astrophysics Data System (ADS)

    Hovakimyan, Gevorg

    The aircraft industry benefits greatly from small improvements in aircraft component design. One possible area of improvement is in the Auxiliary Power Unit (APU). Modern aircraft APUs are gas turbines located in the tail section of the aircraft that generate additional power when needed. Unfortunately the efficiency of modern aircraft APUs is low. Solid Oxide Fuel Cell/Gas Turbine (SOFC/GT) hybrids are one possible alternative for replacing modern gas turbine APUs. This thesis investigates the feasibility of replacing conventional gas turbine APUs with SOFC/GT APUs on aircraft. An SOFC/GT design algorithm was created in order to determine the specifications of an SOFC/GT APU. The design algorithm is comprised of several integrated modules which together model the characteristics of each component of the SOFC/GT system. Given certain overall inputs, through numerical analysis, the algorithm produces an SOFC/GT APU, optimized for specific power and efficiency, capable of performing to the required specifications. The SOFC/GT design is then input into a previously developed quasi-dynamic SOFC/GT model to determine its load following capabilities over an aircraft flight cycle. Finally an aircraft range study is conducted to determine the feasibility of the SOFC/GT APU as a replacement for the conventional gas turbine APU. The design results show that SOFC/GT APUs have lower specific power than GT systems, but have much higher efficiencies. Moreover, the dynamic simulation results show that SOFC/GT APUs are capable of following modern flight loads. Finally, the range study determined that SOFC/GT APUs are more attractive over conventional APUs for longer range aircraft.

  10. Structures vibration control via Tuned Mass Dampers using a co-evolution Coral Reefs Optimization algorithm

    NASA Astrophysics Data System (ADS)

    Salcedo-Sanz, S.; Camacho-Gómez, C.; Magdaleno, A.; Pereira, E.; Lorenzana, A.

    2017-04-01

    In this paper we tackle a problem of optimal design and location of Tuned Mass Dampers (TMDs) for structures subjected to earthquake ground motions, using a novel meta-heuristic algorithm. Specifically, the Coral Reefs Optimization (CRO) with Substrate Layer (CRO-SL) is proposed as a competitive co-evolution algorithm with different exploration procedures within a single population of solutions. The proposed approach is able to solve the TMD design and location problem, by exploiting the combination of different types of searching mechanisms. This promotes a powerful evolutionary-like algorithm for optimization problems, which is shown to be very effective in this particular problem of TMDs tuning. The proposed algorithm's performance has been evaluated and compared with several reference algorithms in two building models with two and four floors, respectively.

  11. Real-time robot deliberation by compilation and monitoring of anytime algorithms

    NASA Technical Reports Server (NTRS)

    Zilberstein, Shlomo

    1994-01-01

    Anytime algorithms are algorithms whose quality of results improves gradually as computation time increases. Certainty, accuracy, and specificity are metrics useful in anytime algorighm construction. It is widely accepted that a successful robotic system must trade off between decision quality and the computational resources used to produce it. Anytime algorithms were designed to offer such a trade off. A model of compilation and monitoring mechanisms needed to build robots that can efficiently control their deliberation time is presented. This approach simplifies the design and implementation of complex intelligent robots, mechanizes the composition and monitoring processes, and provides independent real time robotic systems that automatically adjust resource allocation to yield optimum performance.

  12. Design Approach and Implementation of Application Specific Instruction Set Processor for SHA-3 BLAKE Algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Yuli; Han, Jun; Weng, Xinqian; He, Zhongzhu; Zeng, Xiaoyang

    This paper presents an Application Specific Instruction-set Processor (ASIP) for the SHA-3 BLAKE algorithm family by instruction set extensions (ISE) from an RISC (reduced instruction set computer) processor. With a design space exploration for this ASIP to increase the performance and reduce the area cost, we accomplish an efficient hardware and software implementation of BLAKE algorithm. The special instructions and their well-matched hardware function unit improve the calculation of the key section of the algorithm, namely G-functions. Also, relaxing the time constraint of the special function unit can decrease its hardware cost, while keeping the high data throughput of the processor. Evaluation results reveal the ASIP achieves 335Mbps and 176Mbps for BLAKE-256 and BLAKE-512. The extra area cost is only 8.06k equivalent gates. The proposed ASIP outperforms several software approaches on various platforms in cycle per byte. In fact, both high throughput and low hardware cost achieved by this programmable processor are comparable to that of ASIC implementations.

  13. Isolating specific cell and tissue compartments from 3D images for quantitative regional distribution analysis using novel computer algorithms.

    PubMed

    Fenrich, Keith K; Zhao, Ethan Y; Wei, Yuan; Garg, Anirudh; Rose, P Ken

    2014-04-15

    Isolating specific cellular and tissue compartments from 3D image stacks for quantitative distribution analysis is crucial for understanding cellular and tissue physiology under normal and pathological conditions. Current approaches are limited because they are designed to map the distributions of synapses onto the dendrites of stained neurons and/or require specific proprietary software packages for their implementation. To overcome these obstacles, we developed algorithms to Grow and Shrink Volumes of Interest (GSVI) to isolate specific cellular and tissue compartments from 3D image stacks for quantitative analysis and incorporated these algorithms into a user-friendly computer program that is open source and downloadable at no cost. The GSVI algorithm was used to isolate perivascular regions in the cortex of live animals and cell membrane regions of stained spinal motoneurons in histological sections. We tracked the real-time, intravital biodistribution of injected fluorophores with sub-cellular resolution from the vascular lumen to the perivascular and parenchymal space following a vascular microlesion, and mapped the precise distributions of membrane-associated KCC2 and gephyrin immunolabeling in dendritic and somatic regions of spinal motoneurons. Compared to existing approaches, the GSVI approach is specifically designed for isolating perivascular regions and membrane-associated regions for quantitative analysis, is user-friendly, and free. The GSVI algorithm is useful to quantify regional differences of stained biomarkers (e.g., cell membrane-associated channels) in relation to cell functions, and the effects of therapeutic strategies on the redistributions of biomolecules, drugs, and cells in diseased or injured tissues. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Specification-based Error Recovery: Theory, Algorithms, and Usability

    DTIC Science & Technology

    2013-02-01

    transmuting the specification to an implementation at run-time and reducing the performance overhead. A suite of techniques and tools were designed...in the specification, thereby transmuting the specification to an implementation at run-time and reducing the perfor- mance overhead. A suite of

  15. Genetic algorithm in the structural design of Cooke triplet lenses

    NASA Astrophysics Data System (ADS)

    Hazra, Lakshminarayan; Banerjee, Saswatee

    1999-08-01

    This paper is in tune with our efforts to develop a systematic method for multicomponent lens design. Our aim is to find a suitable starting point in the final configuration space, so that popular local search methods like damped least squares (DLS) may directly lead to a useful solution. For 'ab initio' design problems, a thin lens layout specifying the powers of the individual components and the intercomponent separations are worked out analytically. Requirements of central aberration targets for the individual components in order to satisfy the prespecified primary aberration targets for the overall system are then determined by nonlinear optimization. The next step involves structural design of the individual components by optimization techniques. This general method may be adapted for the design of triplets and their derivatives. However, for the thin lens design of a Cooke triplet composed of three airspaced singlets, the two steps of optimization mentioned above may be combined into a single optimization procedure. The optimum configuration for each of the single set, catering to the required Gaussian specification and primary aberration targets for the Cooke triplet, are determined by an application of genetic algorithm (GA). Our implementation of this algorithm is based on simulations of some complex tools of natural evolution, like selection, crossover and mutation. Our version of GA may or may not converge to a unique optimum, depending on some of the algorithm specific parameter values. With our algorithm, practically useful solutions are always available, although convergence to a global optimum can not be guaranteed. This is perfectly in keeping with our need to allow 'floating' of aberration targets in the subproblem level. Some numerical results dealing with our preliminary investigations on this problem are presented.

  16. Experiences with the hydraulic design of the high specific speed Francis turbine

    NASA Astrophysics Data System (ADS)

    Obrovsky, J.; Zouhar, J.

    2014-03-01

    The high specific speed Francis turbine is still suitable alternative for refurbishment of older hydro power plants with lower heads and worse cavitation conditions. In the paper the design process of such kind of turbine together with the results comparison of homological model tests performed in hydraulic laboratory of ČKD Blansko Engineering is introduced. The turbine runner was designed using the optimization algorithm and considering the high specific speed hydraulic profile. It means that hydraulic profiles of the spiral case, the distributor and the draft tube were used from a Kaplan turbine. The optimization was done as the automatic cycle and was based on a simplex optimization method as well as on a genetic algorithm. The number of blades is shown as the parameter which changes the resulting specific speed of the turbine between ns=425 to 455 together with the cavitation characteristics. Minimizing of cavitation on the blade surface as well as on the inlet edge of the runner blade was taken into account during the design process. The results of CFD analyses as well as the model tests are mentioned in the paper.

  17. Optimization of High-Dimensional Functions through Hypercube Evaluation

    PubMed Central

    Abiyev, Rahib H.; Tunay, Mustafa

    2015-01-01

    A novel learning algorithm for solving global numerical optimization problems is proposed. The proposed learning algorithm is intense stochastic search method which is based on evaluation and optimization of a hypercube and is called the hypercube optimization (HO) algorithm. The HO algorithm comprises the initialization and evaluation process, displacement-shrink process, and searching space process. The initialization and evaluation process initializes initial solution and evaluates the solutions in given hypercube. The displacement-shrink process determines displacement and evaluates objective functions using new points, and the search area process determines next hypercube using certain rules and evaluates the new solutions. The algorithms for these processes have been designed and presented in the paper. The designed HO algorithm is tested on specific benchmark functions. The simulations of HO algorithm have been performed for optimization of functions of 1000-, 5000-, or even 10000 dimensions. The comparative simulation results with other approaches demonstrate that the proposed algorithm is a potential candidate for optimization of both low and high dimensional functions. PMID:26339237

  18. Rapid Assessment of Aircraft Structural Topologies for Multidisciplinary Optimization and Weight Estimation

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.; Sensmeier, mark D.; Stewart, Bret A.

    2006-01-01

    Algorithms for rapid generation of moderate-fidelity structural finite element models of air vehicle structures to allow more accurate weight estimation earlier in the vehicle design process have been developed. Application of these algorithms should help to rapidly assess many structural layouts before the start of the preliminary design phase and eliminate weight penalties imposed when actual structure weights exceed those estimated during conceptual design. By defining the structural topology in a fully parametric manner, the structure can be mapped to arbitrary vehicle configurations being considered during conceptual design optimization. Recent enhancements to this approach include the porting of the algorithms to a platform-independent software language Python, and modifications to specifically consider morphing aircraft-type configurations. Two sample cases which illustrate these recent developments are presented.

  19. 40 CFR 86.004-16 - Prohibition of defeat devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... exceptions set forth in the definition of “defeat device” in § 86.004-2 has been met. (2) Information... evaluations, design specifications, calibrations, on-board computer algorithms, and design strategies...

  20. 40 CFR 86.004-16 - Prohibition of defeat devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... exceptions set forth in the definition of “defeat device” in § 86.004-2 has been met. (2) Information... evaluations, design specifications, calibrations, on-board computer algorithms, and design strategies...

  1. Automating the design of scientific computing software

    NASA Technical Reports Server (NTRS)

    Kant, Elaine

    1992-01-01

    SINAPSE is a domain-specific software design system that generates code from specifications of equations and algorithm methods. This paper describes the system's design techniques (planning in a space of knowledge-based refinement and optimization rules), user interaction style (user has option to control decision making), and representation of knowledge (rules and objects). It also summarizes how the system knowledge has evolved over time and suggests some issues in building software design systems to facilitate reuse.

  2. 40 CFR 1068.110 - What other provisions apply to engines/equipment in service?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... information regarding test programs, engineering evaluations, design specifications, calibrations, on-board computer algorithms, and design strategies. It is a violation of the Clean Air Act for anyone to make...

  3. 40 CFR 1068.110 - What other provisions apply to engines/equipment in service?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... information regarding test programs, engineering evaluations, design specifications, calibrations, on-board computer algorithms, and design strategies. It is a violation of the Clean Air Act for anyone to make...

  4. 40 CFR 1068.110 - What other provisions apply to engines/equipment in service?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... information regarding test programs, engineering evaluations, design specifications, calibrations, on-board computer algorithms, and design strategies. It is a violation of the Clean Air Act for anyone to make...

  5. Design and Optimization of Low-thrust Orbit Transfers Using Q-law and Evolutionary Algorithms

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; vonAllmen, Paul; Fink, Wolfgang; Petropoulos, Anastassios; Terrile, Richard

    2005-01-01

    Future space missions will depend more on low-thrust propulsion (such as ion engines) thanks to its high specific impulse. Yet, the design of low-thrust trajectories is complex and challenging. Third-body perturbations often dominate the thrust, and a significant change to the orbit requires a long duration of thrust. In order to guide the early design phases, we have developed an efficient and efficacious method to obtain approximate propellant and flight-time requirements (i.e., the Pareto front) for orbit transfers. A search for the Pareto-optimal trajectories is done in two levels: optimal thrust angles and locations are determined by Q-law, while the Q-law is optimized with two evolutionary algorithms: a genetic algorithm and a simulated-annealing-related algorithm. The examples considered are several types of orbit transfers around the Earth and the asteroid Vesta.

  6. Specification and Design Methodologies for High-Speed Fault-Tolerant Array Algorithms and Structures for VLSI.

    DTIC Science & Technology

    1987-06-01

    evaluation and chip layout planning for VLSI digital systems. A high-level applicative (functional) language, implemented at UCLA, allows combining of...operating system. 2.1 Introduction The complexity of VLSI requires the application of CAD tools at all levels of the design process. In order to be...effective, these tools must be adaptive to the specific design. In this project we studied a design method based on the use of applicative languages

  7. A new chaotic multi-verse optimization algorithm for solving engineering optimization problems

    NASA Astrophysics Data System (ADS)

    Sayed, Gehad Ismail; Darwish, Ashraf; Hassanien, Aboul Ella

    2018-03-01

    Multi-verse optimization algorithm (MVO) is one of the recent meta-heuristic optimization algorithms. The main inspiration of this algorithm came from multi-verse theory in physics. However, MVO like most optimization algorithms suffers from low convergence rate and entrapment in local optima. In this paper, a new chaotic multi-verse optimization algorithm (CMVO) is proposed to overcome these problems. The proposed CMVO is applied on 13 benchmark functions and 7 well-known design problems in the engineering and mechanical field; namely, three-bar trust, speed reduce design, pressure vessel problem, spring design, welded beam, rolling element-bearing and multiple disc clutch brake. In the current study, a modified feasible-based mechanism is employed to handle constraints. In this mechanism, four rules were used to handle the specific constraint problem through maintaining a balance between feasible and infeasible solutions. Moreover, 10 well-known chaotic maps are used to improve the performance of MVO. The experimental results showed that CMVO outperforms other meta-heuristic optimization algorithms on most of the optimization problems. Also, the results reveal that sine chaotic map is the most appropriate map to significantly boost MVO's performance.

  8. Biological engineering applications of feedforward neural networks designed and parameterized by genetic algorithms.

    PubMed

    Ferentinos, Konstantinos P

    2005-09-01

    Two neural network (NN) applications in the field of biological engineering are developed, designed and parameterized by an evolutionary method based on the evolutionary process of genetic algorithms. The developed systems are a fault detection NN model and a predictive modeling NN system. An indirect or 'weak specification' representation was used for the encoding of NN topologies and training parameters into genes of the genetic algorithm (GA). Some a priori knowledge of the demands in network topology for specific application cases is required by this approach, so that the infinite search space of the problem is limited to some reasonable degree. Both one-hidden-layer and two-hidden-layer network architectures were explored by the GA. Except for the network architecture, each gene of the GA also encoded the type of activation functions in both hidden and output nodes of the NN and the type of minimization algorithm that was used by the backpropagation algorithm for the training of the NN. Both models achieved satisfactory performance, while the GA system proved to be a powerful tool that can successfully replace the problematic trial-and-error approach that is usually used for these tasks.

  9. URPD: a specific product primer design tool

    PubMed Central

    2012-01-01

    Background Polymerase chain reaction (PCR) plays an important role in molecular biology. Primer design fundamentally determines its results. Here, we present a currently available software that is not located in analyzing large sequence but used for a rather straight-forward way of visualizing the primer design process for infrequent users. Findings URPD (yoUR Primer Design), a web-based specific product primer design tool, combines the NCBI Reference Sequences (RefSeq), UCSC In-Silico PCR, memetic algorithm (MA) and genetic algorithm (GA) primer design methods to obtain specific primer sets. A friendly user interface is accomplished by built-in parameter settings. The incorporated smooth pipeline operations effectively guide both occasional and advanced users. URPD contains an automated process, which produces feasible primer pairs that satisfy the specific needs of the experimental design with practical PCR amplifications. Visual virtual gel electrophoresis and in silico PCR provide a simulated PCR environment. The comparison of Practical gel electrophoresis comparison to virtual gel electrophoresis facilitates and verifies the PCR experiment. Wet-laboratory validation proved that the system provides feasible primers. Conclusions URPD is a user-friendly tool that provides specific primer design results. The pipeline design path makes it easy to operate for beginners. URPD also provides a high throughput primer design function. Moreover, the advanced parameter settings assist sophisticated researchers in performing experiential PCR. Several novel functions, such as a nucleotide accession number template sequence input, local and global specificity estimation, primer pair redesign, user-interactive sequence scale selection, and virtual and practical PCR gel electrophoresis discrepancies have been developed and integrated into URPD. The URPD program is implemented in JAVA and freely available at http://bio.kuas.edu.tw/urpd/. PMID:22713312

  10. URPD: a specific product primer design tool.

    PubMed

    Chuang, Li-Yeh; Cheng, Yu-Huei; Yang, Cheng-Hong

    2012-06-19

    Polymerase chain reaction (PCR) plays an important role in molecular biology. Primer design fundamentally determines its results. Here, we present a currently available software that is not located in analyzing large sequence but used for a rather straight-forward way of visualizing the primer design process for infrequent users. URPD (yoUR Primer Design), a web-based specific product primer design tool, combines the NCBI Reference Sequences (RefSeq), UCSC In-Silico PCR, memetic algorithm (MA) and genetic algorithm (GA) primer design methods to obtain specific primer sets. A friendly user interface is accomplished by built-in parameter settings. The incorporated smooth pipeline operations effectively guide both occasional and advanced users. URPD contains an automated process, which produces feasible primer pairs that satisfy the specific needs of the experimental design with practical PCR amplifications. Visual virtual gel electrophoresis and in silico PCR provide a simulated PCR environment. The comparison of Practical gel electrophoresis comparison to virtual gel electrophoresis facilitates and verifies the PCR experiment. Wet-laboratory validation proved that the system provides feasible primers. URPD is a user-friendly tool that provides specific primer design results. The pipeline design path makes it easy to operate for beginners. URPD also provides a high throughput primer design function. Moreover, the advanced parameter settings assist sophisticated researchers in performing experiential PCR. Several novel functions, such as a nucleotide accession number template sequence input, local and global specificity estimation, primer pair redesign, user-interactive sequence scale selection, and virtual and practical PCR gel electrophoresis discrepancies have been developed and integrated into URPD. The URPD program is implemented in JAVA and freely available at http://bio.kuas.edu.tw/urpd/.

  11. 40 CFR 86.1809-12 - Prohibition of defeat devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... manufacturer must provide an explanation containing detailed information regarding test programs, engineering evaluations, design specifications, calibrations, on-board computer algorithms, and design strategies..., with the Part II certification application, an engineering evaluation demonstrating to the satisfaction...

  12. Modified method to improve the design of Petlyuk distillation columns.

    PubMed

    Zapiain-Salinas, Javier G; Barajas-Fernández, Juan; González-García, Raúl

    2014-01-01

    A response surface analysis was performed to study the effect of the composition and feeding thermal conditions of ternary mixtures on the number of theoretical stages and the energy consumption of Petlyuk columns. A modification of the pre-design algorithm was necessary for this purpose. The modified algorithm provided feasible results in 100% of the studied cases, compared with only 8.89% for the current algorithm. The proposed algorithm allowed us to attain the desired separations, despite the type of mixture and the operating conditions in the feed stream, something that was not possible with the traditional pre-design method. The results showed that the type of mixture had great influence on the number of stages and on energy consumption. A higher number of stages and a lower consumption of energy were attained with mixtures rich in the light component, while higher energy consumption occurred when the mixture was rich in the heavy component. The proposed strategy expands the search of an optimal design of Petlyuk columns within a feasible region, which allow us to find a feasible design that meets output specifications and low thermal loads.

  13. Algorithms for optimizing the treatment of depression: making the right decision at the right time.

    PubMed

    Adli, M; Rush, A J; Möller, H-J; Bauer, M

    2003-11-01

    Medication algorithms for the treatment of depression are designed to optimize both treatment implementation and the appropriateness of treatment strategies. Thus, they are essential tools for treating and avoiding refractory depression. Treatment algorithms are explicit treatment protocols that provide specific therapeutic pathways and decision-making tools at critical decision points throughout the treatment process. The present article provides an overview of major projects of algorithm research in the field of antidepressant therapy. The Berlin Algorithm Project and the Texas Medication Algorithm Project (TMAP) compare algorithm-guided treatments with treatment as usual. The Sequenced Treatment Alternatives to Relieve Depression Project (STAR*D) compares different treatment strategies in treatment-resistant patients.

  14. Principles for Predicting RNA Secondary Structure Design Difficulty.

    PubMed

    Anderson-Lee, Jeff; Fisker, Eli; Kosaraju, Vineet; Wu, Michelle; Kong, Justin; Lee, Jeehyung; Lee, Minjae; Zada, Mathew; Treuille, Adrien; Das, Rhiju

    2016-02-27

    Designing RNAs that form specific secondary structures is enabling better understanding and control of living systems through RNA-guided silencing, genome editing and protein organization. Little is known, however, about which RNA secondary structures might be tractable for downstream sequence design, increasing the time and expense of design efforts due to inefficient secondary structure choices. Here, we present insights into specific structural features that increase the difficulty of finding sequences that fold into a target RNA secondary structure, summarizing the design efforts of tens of thousands of human participants and three automated algorithms (RNAInverse, INFO-RNA and RNA-SSD) in the Eterna massive open laboratory. Subsequent tests through three independent RNA design algorithms (NUPACK, DSS-Opt and MODENA) confirmed the hypothesized importance of several features in determining design difficulty, including sequence length, mean stem length, symmetry and specific difficult-to-design motifs such as zigzags. Based on these results, we have compiled an Eterna100 benchmark of 100 secondary structure design challenges that span a large range in design difficulty to help test future efforts. Our in silico results suggest new routes for improving computational RNA design methods and for extending these insights to assess "designability" of single RNA structures, as well as of switches for in vitro and in vivo applications. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Swarm intelligence-based approach for optimal design of CMOS differential amplifier and comparator circuit using a hybrid salp swarm algorithm

    NASA Astrophysics Data System (ADS)

    Asaithambi, Sasikumar; Rajappa, Muthaiah

    2018-05-01

    In this paper, an automatic design method based on a swarm intelligence approach for CMOS analog integrated circuit (IC) design is presented. The hybrid meta-heuristics optimization technique, namely, the salp swarm algorithm (SSA), is applied to the optimal sizing of a CMOS differential amplifier and the comparator circuit. SSA is a nature-inspired optimization algorithm which mimics the navigating and hunting behavior of salp. The hybrid SSA is applied to optimize the circuit design parameters and to minimize the MOS transistor sizes. The proposed swarm intelligence approach was successfully implemented for an automatic design and optimization of CMOS analog ICs using Generic Process Design Kit (GPDK) 180 nm technology. The circuit design parameters and design specifications are validated through a simulation program for integrated circuit emphasis simulator. To investigate the efficiency of the proposed approach, comparisons have been carried out with other simulation-based circuit design methods. The performances of hybrid SSA based CMOS analog IC designs are better than the previously reported studies.

  16. Swarm intelligence-based approach for optimal design of CMOS differential amplifier and comparator circuit using a hybrid salp swarm algorithm.

    PubMed

    Asaithambi, Sasikumar; Rajappa, Muthaiah

    2018-05-01

    In this paper, an automatic design method based on a swarm intelligence approach for CMOS analog integrated circuit (IC) design is presented. The hybrid meta-heuristics optimization technique, namely, the salp swarm algorithm (SSA), is applied to the optimal sizing of a CMOS differential amplifier and the comparator circuit. SSA is a nature-inspired optimization algorithm which mimics the navigating and hunting behavior of salp. The hybrid SSA is applied to optimize the circuit design parameters and to minimize the MOS transistor sizes. The proposed swarm intelligence approach was successfully implemented for an automatic design and optimization of CMOS analog ICs using Generic Process Design Kit (GPDK) 180 nm technology. The circuit design parameters and design specifications are validated through a simulation program for integrated circuit emphasis simulator. To investigate the efficiency of the proposed approach, comparisons have been carried out with other simulation-based circuit design methods. The performances of hybrid SSA based CMOS analog IC designs are better than the previously reported studies.

  17. Enforcing Memory Policy Specifications in Reconfigurable Hardware

    DTIC Science & Technology

    2008-10-01

    we explain the algorithms behind our reference monitor design flow. In Section 4, we describe our access policy language including several example...NFA from this regular expression using Thompson’s Algorithm [1] as implemented by Gerzic [19]. Figure 4 shows the NFA for our policy. Notice that the... Algorithm [1] as implemented by Grail [49] to minimize the DFA. Figure 5 shows the minimized DFA for our policy. Processing the Ranges Before we can

  18. Parallel language constructs for tensor product computations on loosely coupled architectures

    NASA Technical Reports Server (NTRS)

    Mehrotra, Piyush; Van Rosendale, John

    1989-01-01

    A set of language primitives designed to allow the specification of parallel numerical algorithms at a higher level is described. The authors focus on tensor product array computations, a simple but important class of numerical algorithms. They consider first the problem of programming one-dimensional kernel routines, such as parallel tridiagonal solvers, and then look at how such parallel kernels can be combined to form parallel tensor product algorithms.

  19. Optimization of scaffold design for bone tissue engineering: A computational and experimental study.

    PubMed

    Dias, Marta R; Guedes, José M; Flanagan, Colleen L; Hollister, Scott J; Fernandes, Paulo R

    2014-04-01

    In bone tissue engineering, the scaffold has not only to allow the diffusion of cells, nutrients and oxygen but also provide adequate mechanical support. One way to ensure the scaffold has the right properties is to use computational tools to design such a scaffold coupled with additive manufacturing to build the scaffolds to the resulting optimized design specifications. In this study a topology optimization algorithm is proposed as a technique to design scaffolds that meet specific requirements for mass transport and mechanical load bearing. Several micro-structures obtained computationally are presented. Designed scaffolds were then built using selective laser sintering and the actual features of the fabricated scaffolds were measured and compared to the designed values. It was possible to obtain scaffolds with an internal geometry that reasonably matched the computational design (within 14% of porosity target, 40% for strut size and 55% for throat size in the building direction and 15% for strut size and 17% for throat size perpendicular to the building direction). These results support the use of these kind of computational algorithms to design optimized scaffolds with specific target properties and confirm the value of these techniques for bone tissue engineering. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  20. Simulation Modeling to Compare High-Throughput, Low-Iteration Optimization Strategies for Metabolic Engineering

    PubMed Central

    Heinsch, Stephen C.; Das, Siba R.; Smanski, Michael J.

    2018-01-01

    Increasing the final titer of a multi-gene metabolic pathway can be viewed as a multivariate optimization problem. While numerous multivariate optimization algorithms exist, few are specifically designed to accommodate the constraints posed by genetic engineering workflows. We present a strategy for optimizing expression levels across an arbitrary number of genes that requires few design-build-test iterations. We compare the performance of several optimization algorithms on a series of simulated expression landscapes. We show that optimal experimental design parameters depend on the degree of landscape ruggedness. This work provides a theoretical framework for designing and executing numerical optimization on multi-gene systems. PMID:29535690

  1. Reliable fusion of control and sensing in intelligent machines. Thesis

    NASA Technical Reports Server (NTRS)

    Mcinroy, John E.

    1991-01-01

    Although robotics research has produced a wealth of sophisticated control and sensing algorithms, very little research has been aimed at reliably combining these control and sensing strategies so that a specific task can be executed. To improve the reliability of robotic systems, analytic techniques are developed for calculating the probability that a particular combination of control and sensing algorithms will satisfy the required specifications. The probability can then be used to assess the reliability of the design. An entropy formulation is first used to quickly eliminate designs not capable of meeting the specifications. Next, a framework for analyzing reliability based on the first order second moment methods of structural engineering is proposed. To ensure performance over an interval of time, lower bounds on the reliability of meeting a set of quadratic specifications with a Gaussian discrete time invariant control system are derived. A case study analyzing visual positioning in robotic system is considered. The reliability of meeting timing and positioning specifications in the presence of camera pixel truncation, forward and inverse kinematic errors, and Gaussian joint measurement noise is determined. This information is used to select a visual sensing strategy, a kinematic algorithm, and a discrete compensator capable of accomplishing the desired task. Simulation results using PUMA 560 kinematic and dynamic characteristics are presented.

  2. 40 CFR 86.1809-10 - Prohibition of defeat devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... detailed information regarding test programs, engineering evaluations, design specifications, calibrations, on-board computer algorithms, and design strategies incorporated for operation both during and... HLDT/MDPVs the manufacturer must submit, with the Part II certification application, an engineering...

  3. Algorithm Engineering: Concepts and Practice

    NASA Astrophysics Data System (ADS)

    Chimani, Markus; Klein, Karsten

    Over the last years the term algorithm engineering has become wide spread synonym for experimental evaluation in the context of algorithm development. Yet it implies even more. We discuss the major weaknesses of traditional "pen and paper" algorithmics and the ever-growing gap between theory and practice in the context of modern computer hardware and real-world problem instances. We present the key ideas and concepts of the central algorithm engineering cycle that is based on a full feedback loop: It starts with the design of the algorithm, followed by the analysis, implementation, and experimental evaluation. The results of the latter can then be reused for modifications to the algorithmic design, stronger or input-specific theoretic performance guarantees, etc. We describe the individual steps of the cycle, explaining the rationale behind them and giving examples of how to conduct these steps thoughtfully. Thereby we give an introduction to current algorithmic key issues like I/O-efficient or parallel algorithms, succinct data structures, hardware-aware implementations, and others. We conclude with two especially insightful success stories—shortest path problems and text search—where the application of algorithm engineering techniques led to tremendous performance improvements compared with previous state-of-the-art approaches.

  4. Engineering applications of metaheuristics: an introduction

    NASA Astrophysics Data System (ADS)

    Oliva, Diego; Hinojosa, Salvador; Demeshko, M. V.

    2017-01-01

    Metaheuristic algorithms are important tools that in recent years have been used extensively in several fields. In engineering, there is a big amount of problems that can be solved from an optimization point of view. This paper is an introduction of how metaheuristics can be used to solve complex problems of engineering. Their use produces accurate results in problems that are computationally expensive. Experimental results support the performance obtained by the selected algorithms in such specific problems as digital filter design, image processing and solar cells design.

  5. An improved NSGA - II algorithm for mixed model assembly line balancing

    NASA Astrophysics Data System (ADS)

    Wu, Yongming; Xu, Yanxia; Luo, Lifei; Zhang, Han; Zhao, Xudong

    2018-05-01

    Aiming at the problems of assembly line balancing and path optimization for material vehicles in mixed model manufacturing system, a multi-objective mixed model assembly line (MMAL), which is based on optimization objectives, influencing factors and constraints, is established. According to the specific situation, an improved NSGA-II algorithm based on ecological evolution strategy is designed. An environment self-detecting operator, which is used to detect whether the environment changes, is adopted in the algorithm. Finally, the effectiveness of proposed model and algorithm is verified by examples in a concrete mixing system.

  6. Evolving aerodynamic airfoils for wind turbines through a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Hernández, J. J.; Gómez, E.; Grageda, J. I.; Couder, C.; Solís, A.; Hanotel, C. L.; Ledesma, JI

    2017-01-01

    Nowadays, genetic algorithms stand out for airfoil optimisation, due to the virtues of mutation and crossing-over techniques. In this work we propose a genetic algorithm with arithmetic crossover rules. The optimisation criteria are taken to be the maximisation of both aerodynamic efficiency and lift coefficient, while minimising drag coefficient. Such algorithm shows greatly improvements in computational costs, as well as a high performance by obtaining optimised airfoils for Mexico City's specific wind conditions from generic wind turbines designed for higher Reynolds numbers, in few iterations.

  7. Image-algebraic design of multispectral target recognition algorithms

    NASA Astrophysics Data System (ADS)

    Schmalz, Mark S.; Ritter, Gerhard X.

    1994-06-01

    In this paper, we discuss methods for multispectral ATR (Automated Target Recognition) of small targets that are sensed under suboptimal conditions, such as haze, smoke, and low light levels. In particular, we discuss our ongoing development of algorithms and software that effect intelligent object recognition by selecting ATR filter parameters according to ambient conditions. Our algorithms are expressed in terms of IA (image algebra), a concise, rigorous notation that unifies linear and nonlinear mathematics in the image processing domain. IA has been implemented on a variety of parallel computers, with preprocessors available for the Ada and FORTRAN languages. An image algebra C++ class library has recently been made available. Thus, our algorithms are both feasible implementationally and portable to numerous machines. Analyses emphasize the aspects of image algebra that aid the design of multispectral vision algorithms, such as parameterized templates that facilitate the flexible specification of ATR filters.

  8. Genetic algorithm to optimize the design of main combustor and gas generator in liquid rocket engines

    NASA Astrophysics Data System (ADS)

    Son, Min; Ko, Sangho; Koo, Jaye

    2014-06-01

    A genetic algorithm was used to develop optimal design methods for the regenerative cooled combustor and fuel-rich gas generator of a liquid rocket engine. For the combustor design, a chemical equilibrium analysis was applied, and the profile was calculated using Rao's method. One-dimensional heat transfer was assumed along the profile, and cooling channels were designed. For the gas-generator design, non-equilibrium properties were derived from a counterflow analysis, and a vaporization model for the fuel droplet was adopted to calculate residence time. Finally, a genetic algorithm was adopted to optimize the designs. The combustor and gas generator were optimally designed for 30-tonf, 75-tonf, and 150-tonf engines. The optimized combustors demonstrated superior design characteristics when compared with previous non-optimized results. Wall temperatures at the nozzle throat were optimized to satisfy the requirement of 800 K, and specific impulses were maximized. In addition, the target turbine power and a burned-gas temperature of 1000 K were obtained from the optimized gas-generator design.

  9. Topology design and performance analysis of an integrated communication network

    NASA Technical Reports Server (NTRS)

    Li, V. O. K.; Lam, Y. F.; Hou, T. C.; Yuen, J. H.

    1985-01-01

    A research study on the topology design and performance analysis for the Space Station Information System (SSIS) network is conducted. It is begun with a survey of existing research efforts in network topology design. Then a new approach for topology design is presented. It uses an efficient algorithm to generate candidate network designs (consisting of subsets of the set of all network components) in increasing order of their total costs, and checks each design to see if it forms an acceptable network. This technique gives the true cost-optimal network, and is particularly useful when the network has many constraints and not too many components. The algorithm for generating subsets is described in detail, and various aspects of the overall design procedure are discussed. Two more efficient versions of this algorithm (applicable in specific situations) are also given. Next, two important aspects of network performance analysis: network reliability and message delays are discussed. A new model is introduced to study the reliability of a network with dependent failures. For message delays, a collection of formulas from existing research results is given to compute or estimate the delays of messages in a communication network without making the independence assumption. The design algorithm coded in PASCAL is included as an appendix.

  10. PhylArray: phylogenetic probe design algorithm for microarray.

    PubMed

    Militon, Cécile; Rimour, Sébastien; Missaoui, Mohieddine; Biderre, Corinne; Barra, Vincent; Hill, David; Moné, Anne; Gagne, Geneviève; Meier, Harald; Peyretaillade, Eric; Peyret, Pierre

    2007-10-01

    Microbial diversity is still largely unknown in most environments, such as soils. In order to get access to this microbial 'black-box', the development of powerful tools such as microarrays are necessary. However, the reliability of this approach relies on probe efficiency, in particular sensitivity, specificity and explorative power, in order to obtain an image of the microbial communities that is close to reality. We propose a new probe design algorithm that is able to select microarray probes targeting SSU rRNA at any phylogenetic level. This original approach, implemented in a program called 'PhylArray', designs a combination of degenerate and non-degenerate probes for each target taxon. Comparative experimental evaluations indicate that probes designed with PhylArray yield a higher sensitivity and specificity than those designed by conventional approaches. Applying the combined PhyArray/GoArrays strategy helps to optimize the hybridization performance of short probes. Finally, hybridizations with environmental targets have shown that the use of the PhylArray strategy can draw attention to even previously unknown bacteria.

  11. CMOS analogue amplifier circuits optimisation using hybrid backtracking search algorithm with differential evolution

    NASA Astrophysics Data System (ADS)

    Mallick, S.; Kar, R.; Mandal, D.; Ghoshal, S. P.

    2016-07-01

    This paper proposes a novel hybrid optimisation algorithm which combines the recently proposed evolutionary algorithm Backtracking Search Algorithm (BSA) with another widely accepted evolutionary algorithm, namely, Differential Evolution (DE). The proposed algorithm called BSA-DE is employed for the optimal designs of two commonly used analogue circuits, namely Complementary Metal Oxide Semiconductor (CMOS) differential amplifier circuit with current mirror load and CMOS two-stage operational amplifier (op-amp) circuit. BSA has a simple structure that is effective, fast and capable of solving multimodal problems. DE is a stochastic, population-based heuristic approach, having the capability to solve global optimisation problems. In this paper, the transistors' sizes are optimised using the proposed BSA-DE to minimise the areas occupied by the circuits and to improve the performances of the circuits. The simulation results justify the superiority of BSA-DE in global convergence properties and fine tuning ability, and prove it to be a promising candidate for the optimal design of the analogue CMOS amplifier circuits. The simulation results obtained for both the amplifier circuits prove the effectiveness of the proposed BSA-DE-based approach over DE, harmony search (HS), artificial bee colony (ABC) and PSO in terms of convergence speed, design specifications and design parameters of the optimal design of the analogue CMOS amplifier circuits. It is shown that BSA-DE-based design technique for each amplifier circuit yields the least MOS transistor area, and each designed circuit is shown to have the best performance parameters such as gain, power dissipation, etc., as compared with those of other recently reported literature.

  12. Design of a Synthetic Aperture Array to Support Experiments in Active Control of Scattering

    DTIC Science & Technology

    1990-06-01

    becomes necessary to validate the theory and test the control system algorithms . While experiments in open water would be most like the anticipated...mathematical development of the beamforming algorithms used as well as an estimate of their applicability to the specifics of beamforming in a reverberant...Chebyshev array have been proposed. The method used in ARRAY, a nested product algorithm , proposed by Bresler [21] is recommended by Pozar [19] and

  13. Specificity and Sensitivity of Claims-Based Algorithms for Identifying Members of Medicare+Choice Health Plans That Have Chronic Medical Conditions

    PubMed Central

    Rector, Thomas S; Wickstrom, Steven L; Shah, Mona; Thomas Greeenlee, N; Rheault, Paula; Rogowski, Jeannette; Freedman, Vicki; Adams, John; Escarce, José J

    2004-01-01

    Objective To examine the effects of varying diagnostic and pharmaceutical criteria on the performance of claims-based algorithms for identifying beneficiaries with hypertension, heart failure, chronic lung disease, arthritis, glaucoma, and diabetes. Study Setting Secondary 1999–2000 data from two Medicare+Choice health plans. Study Design Retrospective analysis of algorithm specificity and sensitivity. Data Collection Physician, facility, and pharmacy claims data were extracted from electronic records for a sample of 3,633 continuously enrolled beneficiaries who responded to an independent survey that included questions about chronic diseases. Principal Findings Compared to an algorithm that required a single medical claim in a one-year period that listed the diagnosis, either requiring that the diagnosis be listed on two separate claims or that the diagnosis to be listed on one claim for a face-to-face encounter with a health care provider significantly increased specificity for the conditions studied by 0.03 to 0.11. Specificity of algorithms was significantly improved by 0.03 to 0.17 when both a medical claim with a diagnosis and a pharmacy claim for a medication commonly used to treat the condition were required. Sensitivity improved significantly by 0.01 to 0.20 when the algorithm relied on a medical claim with a diagnosis or a pharmacy claim, and by 0.05 to 0.17 when two years rather than one year of claims data were analyzed. Algorithms that had specificity more than 0.95 were found for all six conditions. Sensitivity above 0.90 was not achieved all conditions. Conclusions Varying claims criteria improved the performance of case-finding algorithms for six chronic conditions. Highly specific, and sometimes sensitive, algorithms for identifying members of health plans with several chronic conditions can be developed using claims data. PMID:15533190

  14. Scheduling Algorithm for Mission Planning and Logistics Evaluation (SAMPLE). Volume 3: The GREEDY algorithm

    NASA Technical Reports Server (NTRS)

    Dupnick, E.; Wiggins, D.

    1980-01-01

    The functional specifications, functional design and flow, and the program logic of the GREEDY computer program are described. The GREEDY program is a submodule of the Scheduling Algorithm for Mission Planning and Logistics Evaluation (SAMPLE) program and has been designed as a continuation of the shuttle Mission Payloads (MPLS) program. The MPLS uses input payload data to form a set of feasible payload combinations; from these, GREEDY selects a subset of combinations (a traffic model) so all payloads can be included without redundancy. The program also provides the user a tutorial option so that he can choose an alternate traffic model in case a particular traffic model is unacceptable.

  15. Direct methanol fuel cells: A database-driven design procedure

    NASA Astrophysics Data System (ADS)

    Flipsen, S. F. J.; Spitas, C.

    2011-10-01

    To test the feasibility of DMFC systems in preliminary stages of the design process the design engineer can make use of heuristic models identifying the opportunity of DMFC systems in a specific application. In general these models are to generic and have a low accuracy. To improve the accuracy a second-order model is proposed in this paper. The second-order model consists of an evolutionary algorithm written in Mathematica, which selects a component-set satisfying the fuel-cell systems' performance requirements, places the components in 3D space and optimizes for volume. The results are presented as a 3D draft proposal together with a feasibility metric. To test the algorithm the design of DMFC system applied in the MP3 player is evaluated. The results show that volume and costs are an issue for the feasibility of the fuel-cell power-system applied in the MP3 player. The generated designs and the algorithm are evaluated and recommendations are given.

  16. Optimizing Design Parameters for Sets of Concentric Tube Robots using Sampling-based Motion Planning

    PubMed Central

    Baykal, Cenk; Torres, Luis G.; Alterovitz, Ron

    2015-01-01

    Concentric tube robots are tentacle-like medical robots that can bend around anatomical obstacles to access hard-to-reach clinical targets. The component tubes of these robots can be swapped prior to performing a task in order to customize the robot’s behavior and reachable workspace. Optimizing a robot’s design by appropriately selecting tube parameters can improve the robot’s effectiveness on a procedure-and patient-specific basis. In this paper, we present an algorithm that generates sets of concentric tube robot designs that can collectively maximize the reachable percentage of a given goal region in the human body. Our algorithm combines a search in the design space of a concentric tube robot using a global optimization method with a sampling-based motion planner in the robot’s configuration space in order to find sets of designs that enable motions to goal regions while avoiding contact with anatomical obstacles. We demonstrate the effectiveness of our algorithm in a simulated scenario based on lung anatomy. PMID:26951790

  17. Optimizing Design Parameters for Sets of Concentric Tube Robots using Sampling-based Motion Planning.

    PubMed

    Baykal, Cenk; Torres, Luis G; Alterovitz, Ron

    2015-09-28

    Concentric tube robots are tentacle-like medical robots that can bend around anatomical obstacles to access hard-to-reach clinical targets. The component tubes of these robots can be swapped prior to performing a task in order to customize the robot's behavior and reachable workspace. Optimizing a robot's design by appropriately selecting tube parameters can improve the robot's effectiveness on a procedure-and patient-specific basis. In this paper, we present an algorithm that generates sets of concentric tube robot designs that can collectively maximize the reachable percentage of a given goal region in the human body. Our algorithm combines a search in the design space of a concentric tube robot using a global optimization method with a sampling-based motion planner in the robot's configuration space in order to find sets of designs that enable motions to goal regions while avoiding contact with anatomical obstacles. We demonstrate the effectiveness of our algorithm in a simulated scenario based on lung anatomy.

  18. Modified method to improve the design of Petlyuk distillation columns

    PubMed Central

    2014-01-01

    Background A response surface analysis was performed to study the effect of the composition and feeding thermal conditions of ternary mixtures on the number of theoretical stages and the energy consumption of Petlyuk columns. A modification of the pre-design algorithm was necessary for this purpose. Results The modified algorithm provided feasible results in 100% of the studied cases, compared with only 8.89% for the current algorithm. The proposed algorithm allowed us to attain the desired separations, despite the type of mixture and the operating conditions in the feed stream, something that was not possible with the traditional pre-design method. The results showed that the type of mixture had great influence on the number of stages and on energy consumption. A higher number of stages and a lower consumption of energy were attained with mixtures rich in the light component, while higher energy consumption occurred when the mixture was rich in the heavy component. Conclusions The proposed strategy expands the search of an optimal design of Petlyuk columns within a feasible region, which allow us to find a feasible design that meets output specifications and low thermal loads. PMID:25061476

  19. Sum-of-squares-based fuzzy controller design using quantum-inspired evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Gwo-Ruey; Huang, Yu-Chia; Cheng, Chih-Yung

    2016-07-01

    In the field of fuzzy control, control gains are obtained by solving stabilisation conditions in linear-matrix-inequality-based Takagi-Sugeno fuzzy control method and sum-of-squares-based polynomial fuzzy control method. However, the optimal performance requirements are not considered under those stabilisation conditions. In order to handle specific performance problems, this paper proposes a novel design procedure with regard to polynomial fuzzy controllers using quantum-inspired evolutionary algorithms. The first contribution of this paper is a combination of polynomial fuzzy control and quantum-inspired evolutionary algorithms to undertake an optimal performance controller design. The second contribution is the proposed stability condition derived from the polynomial Lyapunov function. The proposed design approach is dissimilar to the traditional approach, in which control gains are obtained by solving the stabilisation conditions. The first step of the controller design uses the quantum-inspired evolutionary algorithms to determine the control gains with the best performance. Then, the stability of the closed-loop system is analysed under the proposed stability conditions. To illustrate effectiveness and validity, the problem of balancing and the up-swing of an inverted pendulum on a cart is used.

  20. Design of thrust vectoring exhaust nozzles for real-time applications using neural networks

    NASA Technical Reports Server (NTRS)

    Prasanth, Ravi K.; Markin, Robert E.; Whitaker, Kevin W.

    1991-01-01

    Thrust vectoring continues to be an important issue in military aircraft system designs. A recently developed concept of vectoring aircraft thrust makes use of flexible exhaust nozzles. Subtle modifications in the nozzle wall contours produce a non-uniform flow field containing a complex pattern of shock and expansion waves. The end result, due to the asymmetric velocity and pressure distributions, is vectored thrust. Specification of the nozzle contours required for a desired thrust vector angle (an inverse design problem) has been achieved with genetic algorithms. This approach is computationally intensive and prevents the nozzles from being designed in real-time, which is necessary for an operational aircraft system. An investigation was conducted into using genetic algorithms to train a neural network in an attempt to obtain, in real-time, two-dimensional nozzle contours. Results show that genetic algorithm trained neural networks provide a viable, real-time alternative for designing thrust vectoring nozzles contours. Thrust vector angles up to 20 deg were obtained within an average error of 0.0914 deg. The error surfaces encountered were highly degenerate and thus the robustness of genetic algorithms was well suited for minimizing global errors.

  1. Energy design for protein-protein interactions

    PubMed Central

    Ravikant, D. V. S.; Elber, Ron

    2011-01-01

    Proteins bind to other proteins efficiently and specifically to carry on many cell functions such as signaling, activation, transport, enzymatic reactions, and more. To determine the geometry and strength of binding of a protein pair, an energy function is required. An algorithm to design an optimal energy function, based on empirical data of protein complexes, is proposed and applied. Emphasis is made on negative design in which incorrect geometries are presented to the algorithm that learns to avoid them. For the docking problem the search for plausible geometries can be performed exhaustively. The possible geometries of the complex are generated on a grid with the help of a fast Fourier transform algorithm. A novel formulation of negative design makes it possible to investigate iteratively hundreds of millions of negative examples while monotonically improving the quality of the potential. Experimental structures for 640 protein complexes are used to generate positive and negative examples for learning parameters. The algorithm designed in this work finds the correct binding structure as the lowest energy minimum in 318 cases of the 640 examples. Further benchmarks on independent sets confirm the significant capacity of the scoring function to recognize correct modes of interactions. PMID:21842951

  2. Design of bearings for rotor systems based on stability

    NASA Technical Reports Server (NTRS)

    Dhar, D.; Barrett, L. E.; Knospe, C. R.

    1992-01-01

    Design of rotor systems incorporating stable behavior is of great importance to manufacturers of high speed centrifugal machinery since destabilizing mechanisms (from bearings, seals, aerodynamic cross coupling, noncolocation effects from magnetic bearings, etc.) increase with machine efficiency and power density. A new method of designing bearing parameters (stiffness and damping coefficients or coefficients of the controller transfer function) is proposed, based on a numerical search in the parameter space. The feedback control law is based on a decentralized low order controller structure, and the various design requirements are specified as constraints in the specification and parameter spaces. An algorithm is proposed for solving the problem as a sequence of constrained 'minimax' problems, with more and more eigenvalues into an acceptable region in the complex plane. The algorithm uses the method of feasible directions to solve the nonlinear constrained minimization problem at each stage. This methodology emphasizes the designer's interaction with the algorithm to generate acceptable designs by relaxing various constraints and changing initial guesses interactively. A design oriented user interface is proposed to facilitate the interaction.

  3. An Interferometry Imaging Beauty Contest

    NASA Technical Reports Server (NTRS)

    Lawson, Peter R.; Cotton, William D.; Hummel, Christian A.; Monnier, John D.; Zhaod, Ming; Young, John S.; Thorsteinsson, Hrobjartur; Meimon, Serge C.; Mugnier, Laurent; LeBesnerais, Guy; hide

    2004-01-01

    We present a formal comparison of the performance of algorithms used for synthesis imaging with optical/infrared long-baseline interferometers. Six different algorithms are evaluated based on their performance with simulated test data. Each set of test data is formated in the interferometry Data Exchange Standard and is designed to simulate a specific problem relevant to long-baseline imaging. The data are calibrated power spectra and bispectra measured with a ctitious array, intended to be typical of existing imaging interferometers. The strengths and limitations of each algorithm are discussed.

  4. Analytical redundancy management mechanization and flight data analysis for the F-8 digital fly-by-wire aircraft flight control sensors

    NASA Technical Reports Server (NTRS)

    Deckert, J. C.

    1983-01-01

    The details are presented of an onboard digital computer algorithm designed to reliably detect and isolate the first failure in a duplex set of flight control sensors aboard the NASA F-8 digital fly-by-wire aircraft. The algorithm's successful flight test program is summarized, and specific examples are presented of algorithm behavior in response to software-induced signal faults, both with and without aircraft parameter modeling errors.

  5. Control system design for flexible structures using data models

    NASA Technical Reports Server (NTRS)

    Irwin, R. Dennis; Frazier, W. Garth; Mitchell, Jerrel R.; Medina, Enrique A.; Bukley, Angelia P.

    1993-01-01

    The dynamics and control of flexible aerospace structures exercises many of the engineering disciplines. In recent years there has been considerable research in the developing and tailoring of control system design techniques for these structures. This problem involves designing a control system for a multi-input, multi-output (MIMO) system that satisfies various performance criteria, such as vibration suppression, disturbance and noise rejection, attitude control and slewing control. Considerable progress has been made and demonstrated in control system design techniques for these structures. The key to designing control systems for these structures that meet stringent performance requirements is an accurate model. It has become apparent that theoretically and finite-element generated models do not provide the needed accuracy; almost all successful demonstrations of control system design techniques have involved using test results for fine-tuning a model or for extracting a model using system ID techniques. This paper describes past and ongoing efforts at Ohio University and NASA MSFC to design controllers using 'data models.' The basic philosophy of this approach is to start with a stabilizing controller and frequency response data that describes the plant; then, iteratively vary the free parameters of the controller so that performance measures become closer to satisfying design specifications. The frequency response data can be either experimentally derived or analytically derived. One 'design-with-data' algorithm presented in this paper is called the Compensator Improvement Program (CIP). The current CIP designs controllers for MIMO systems so that classical gain, phase, and attenuation margins are achieved. The center-piece of the CIP algorithm is the constraint improvement technique which is used to calculate a parameter change vector that guarantees an improvement in all unsatisfied, feasible performance metrics from iteration to iteration. The paper also presents a recently demonstrated CIP-type algorithm, called the Model and Data Oriented Computer-Aided Design System (MADCADS), developed for achieving H(sub infinity) type design specifications using data models. Control system design for the NASA/MSFC Single Structure Control Facility are demonstrated for both CIP and MADCADS. Advantages of design-with-data algorithms over techniques that require analytical plant models are also presented.

  6. Protein Structure Prediction with Evolutionary Algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, W.E.; Krasnogor, N.; Pelta, D.A.

    1999-02-08

    Evolutionary algorithms have been successfully applied to a variety of molecular structure prediction problems. In this paper we reconsider the design of genetic algorithms that have been applied to a simple protein structure prediction problem. Our analysis considers the impact of several algorithmic factors for this problem: the confirmational representation, the energy formulation and the way in which infeasible conformations are penalized, Further we empirically evaluated the impact of these factors on a small set of polymer sequences. Our analysis leads to specific recommendations for both GAs as well as other heuristic methods for solving PSP on the HP model.

  7. Improved genome-scale multi-target virtual screening via a novel collaborative filtering approach to cold-start problem

    PubMed Central

    Lim, Hansaim; Gray, Paul; Xie, Lei; Poleksic, Aleksandar

    2016-01-01

    Conventional one-drug-one-gene approach has been of limited success in modern drug discovery. Polypharmacology, which focuses on searching for multi-targeted drugs to perturb disease-causing networks instead of designing selective ligands to target individual proteins, has emerged as a new drug discovery paradigm. Although many methods for single-target virtual screening have been developed to improve the efficiency of drug discovery, few of these algorithms are designed for polypharmacology. Here, we present a novel theoretical framework and a corresponding algorithm for genome-scale multi-target virtual screening based on the one-class collaborative filtering technique. Our method overcomes the sparseness of the protein-chemical interaction data by means of interaction matrix weighting and dual regularization from both chemicals and proteins. While the statistical foundation behind our method is general enough to encompass genome-wide drug off-target prediction, the program is specifically tailored to find protein targets for new chemicals with little to no available interaction data. We extensively evaluate our method using a number of the most widely accepted gene-specific and cross-gene family benchmarks and demonstrate that our method outperforms other state-of-the-art algorithms for predicting the interaction of new chemicals with multiple proteins. Thus, the proposed algorithm may provide a powerful tool for multi-target drug design. PMID:27958331

  8. Improved genome-scale multi-target virtual screening via a novel collaborative filtering approach to cold-start problem.

    PubMed

    Lim, Hansaim; Gray, Paul; Xie, Lei; Poleksic, Aleksandar

    2016-12-13

    Conventional one-drug-one-gene approach has been of limited success in modern drug discovery. Polypharmacology, which focuses on searching for multi-targeted drugs to perturb disease-causing networks instead of designing selective ligands to target individual proteins, has emerged as a new drug discovery paradigm. Although many methods for single-target virtual screening have been developed to improve the efficiency of drug discovery, few of these algorithms are designed for polypharmacology. Here, we present a novel theoretical framework and a corresponding algorithm for genome-scale multi-target virtual screening based on the one-class collaborative filtering technique. Our method overcomes the sparseness of the protein-chemical interaction data by means of interaction matrix weighting and dual regularization from both chemicals and proteins. While the statistical foundation behind our method is general enough to encompass genome-wide drug off-target prediction, the program is specifically tailored to find protein targets for new chemicals with little to no available interaction data. We extensively evaluate our method using a number of the most widely accepted gene-specific and cross-gene family benchmarks and demonstrate that our method outperforms other state-of-the-art algorithms for predicting the interaction of new chemicals with multiple proteins. Thus, the proposed algorithm may provide a powerful tool for multi-target drug design.

  9. Cost and benefits design optimization model for fault tolerant flight control systems

    NASA Technical Reports Server (NTRS)

    Rose, J.

    1982-01-01

    Requirements and specifications for a method of optimizing the design of fault-tolerant flight control systems are provided. Algorithms that could be used for developing new and modifying existing computer programs are also provided, with recommendations for follow-on work.

  10. Freight Advanced Traveler Information System (FRATIS) – Dallas-Fort Worth : as-built system architecture and design.

    DOT National Transportation Integrated Search

    2015-03-01

    This document describes the As-Built System Architecture and Design for the FRATIS Dallas-Fort Worth DFW prototype system. The FRATIS prototype in DFW consisted of the following components: optimization algorithm, terminal wait time, route specific n...

  11. Termination Criteria for Computerized Classification Testing

    ERIC Educational Resources Information Center

    Thompson, Nathan A.

    2011-01-01

    Computerized classification testing (CCT) is an approach to designing tests with intelligent algorithms, similar to adaptive testing, but specifically designed for the purpose of classifying examinees into categories such as "pass" and "fail." Like adaptive testing for point estimation of ability, the key component is the…

  12. Pre-Launch Algorithm and Data Format for the Level 1 Calibration Products for the EOS AM-1 Moderate Resolution Imaging Spectroradiometer (MODIS)

    NASA Technical Reports Server (NTRS)

    Guenther, Bruce W.; Godden, Gerald D.; Xiong, Xiao-Xiong; Knight, Edward J.; Qiu, Shi-Yue; Montgomery, Harry; Hopkins, M. M.; Khayat, Mohammad G.; Hao, Zhi-Dong; Smith, David E. (Technical Monitor)

    2000-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) radiometric calibration product is described for the thermal emissive and the reflective solar bands. Specific sensor design characteristics are identified to assist in understanding how the calibration algorithm software product is designed. The reflected solar band software products of radiance and reflectance factor both are described. The product file format is summarized and the MODIS Characterization Support Team (MCST) Homepage location for the current file format is provided.

  13. Value Addition to Cartosat-I Imagery

    NASA Astrophysics Data System (ADS)

    Mohan, M.

    2014-11-01

    In the sector of remote sensing applications, the use of stereo data is on the steady rise. An attempt is hereby made to develop a software suite specifically for exploitation of Cartosat-I data. A few algorithms to enhance the quality of basic Cartosat-I products will be presented. The algorithms heavily exploit the Rational Function Coefficients (RPCs) that are associated with the image. The algorithms include improving the geometric positioning through Bundle Block Adjustment and producing refined RPCs; generating portable stereo views using raw / refined RPCs autonomously; orthorectification and mosaicing; registering a monoscopic image rapidly with a single seed point. The outputs of these modules (including the refined RPCs) are in standard formats for further exploitation in 3rd party software. The design focus has been on minimizing the user-interaction and to customize heavily to suit the Indian context. The core libraries are in C/C++ and some of the applications come with user-friendly GUI. Further customization to suit a specific workflow is feasible as the requisite photogrammetric tools are in place and are continuously upgraded. The paper discusses the algorithms and the design considerations of developing the tools. The value-added products so produced using these tools will also be presented.

  14. Evolving spiking neural networks: a novel growth algorithm exhibits unintelligent design

    NASA Astrophysics Data System (ADS)

    Schaffer, J. David

    2015-06-01

    Spiking neural networks (SNNs) have drawn considerable excitement because of their computational properties, believed to be superior to conventional von Neumann machines, and sharing properties with living brains. Yet progress building these systems has been limited because we lack a design methodology. We present a gene-driven network growth algorithm that enables a genetic algorithm (evolutionary computation) to generate and test SNNs. The genome for this algorithm grows O(n) where n is the number of neurons; n is also evolved. The genome not only specifies the network topology, but all its parameters as well. Experiments show the algorithm producing SNNs that effectively produce a robust spike bursting behavior given tonic inputs, an application suitable for central pattern generators. Even though evolution did not include perturbations of the input spike trains, the evolved networks showed remarkable robustness to such perturbations. In addition, the output spike patterns retain evidence of the specific perturbation of the inputs, a feature that could be exploited by network additions that could use this information for refined decision making if required. On a second task, a sequence detector, a discriminating design was found that might be considered an example of "unintelligent design"; extra non-functional neurons were included that, while inefficient, did not hamper its proper functioning.

  15. Dedicated hardware processor and corresponding system-on-chip design for real-time laser speckle imaging.

    PubMed

    Jiang, Chao; Zhang, Hongyan; Wang, Jia; Wang, Yaru; He, Heng; Liu, Rui; Zhou, Fangyuan; Deng, Jialiang; Li, Pengcheng; Luo, Qingming

    2011-11-01

    Laser speckle imaging (LSI) is a noninvasive and full-field optical imaging technique which produces two-dimensional blood flow maps of tissues from the raw laser speckle images captured by a CCD camera without scanning. We present a hardware-friendly algorithm for the real-time processing of laser speckle imaging. The algorithm is developed and optimized specifically for LSI processing in the field programmable gate array (FPGA). Based on this algorithm, we designed a dedicated hardware processor for real-time LSI in FPGA. The pipeline processing scheme and parallel computing architecture are introduced into the design of this LSI hardware processor. When the LSI hardware processor is implemented in the FPGA running at the maximum frequency of 130 MHz, up to 85 raw images with the resolution of 640×480 pixels can be processed per second. Meanwhile, we also present a system on chip (SOC) solution for LSI processing by integrating the CCD controller, memory controller, LSI hardware processor, and LCD display controller into a single FPGA chip. This SOC solution also can be used to produce an application specific integrated circuit for LSI processing.

  16. Runtime verification of embedded real-time systems.

    PubMed

    Reinbacher, Thomas; Függer, Matthias; Brauer, Jörg

    We present a runtime verification framework that allows on-line monitoring of past-time Metric Temporal Logic (ptMTL) specifications in a discrete time setting. We design observer algorithms for the time-bounded modalities of ptMTL, which take advantage of the highly parallel nature of hardware designs. The algorithms can be translated into efficient hardware blocks, which are designed for reconfigurability, thus, facilitate applications of the framework in both a prototyping and a post-deployment phase of embedded real-time systems. We provide formal correctness proofs for all presented observer algorithms and analyze their time and space complexity. For example, for the most general operator considered, the time-bounded Since operator, we obtain a time complexity that is doubly logarithmic both in the point in time the operator is executed and the operator's time bounds. This result is promising with respect to a self-contained, non-interfering monitoring approach that evaluates real-time specifications in parallel to the system-under-test. We implement our framework on a Field Programmable Gate Array platform and use extensive simulation and logic synthesis runs to assess the benefits of the approach in terms of resource usage and operating frequency.

  17. Quantitative Comparison of Minimum Inductance and Minimum Power Algorithms for the Design of Shim Coils for Small Animal Imaging

    PubMed Central

    HUDSON, PARISA; HUDSON, STEPHEN D.; HANDLER, WILLIAM B.; SCHOLL, TIMOTHY J.; CHRONIK, BLAINE A.

    2010-01-01

    High-performance shim coils are required for high-field magnetic resonance imaging and spectroscopy. Complete sets of high-power and high-performance shim coils were designed using two different methods: the minimum inductance and the minimum power target field methods. A quantitative comparison of shim performance in terms of merit of inductance (ML) and merit of resistance (MR) was made for shim coils designed using the minimum inductance and the minimum power design algorithms. In each design case, the difference in ML and the difference in MR given by the two design methods was <15%. Comparison of wire patterns obtained using the two design algorithms show that minimum inductance designs tend to feature oscillations within the current density; while minimum power designs tend to feature less rapidly varying current densities and lower power dissipation. Overall, the differences in coil performance obtained by the two methods are relatively small. For the specific case of shim systems customized for small animal imaging, the reduced power dissipation obtained when using the minimum power method is judged to be more significant than the improvements in switching speed obtained from the minimum inductance method. PMID:20411157

  18. Design of Neural Networks for Fast Convergence and Accuracy: Dynamics and Control

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Sparks, Dean W., Jr.

    1997-01-01

    A procedure for the design and training of artificial neural networks, used for rapid and efficient controls and dynamics design and analysis for flexible space systems, has been developed. Artificial neural networks are employed, such that once properly trained, they provide a means of evaluating the impact of design changes rapidly. Specifically, two-layer feedforward neural networks are designed to approximate the functional relationship between the component/spacecraft design changes and measures of its performance or nonlinear dynamics of the system/components. A training algorithm, based on statistical sampling theory, is presented, which guarantees that the trained networks provide a designer-specified degree of accuracy in mapping the functional relationship. Within each iteration of this statistical-based algorithm, a sequential design algorithm is used for the design and training of the feedforward network to provide rapid convergence to the network goals. Here, at each sequence a new network is trained to minimize the error of previous network. The proposed method should work for applications wherein an arbitrary large source of training data can be generated. Two numerical examples are performed on a spacecraft application in order to demonstrate the feasibility of the proposed approach.

  19. Design of neural networks for fast convergence and accuracy: dynamics and control.

    PubMed

    Maghami, P G; Sparks, D R

    2000-01-01

    A procedure for the design and training of artificial neural networks, used for rapid and efficient controls and dynamics design and analysis for flexible space systems, has been developed. Artificial neural networks are employed, such that once properly trained, they provide a means of evaluating the impact of design changes rapidly. Specifically, two-layer feedforward neural networks are designed to approximate the functional relationship between the component/spacecraft design changes and measures of its performance or nonlinear dynamics of the system/components. A training algorithm, based on statistical sampling theory, is presented, which guarantees that the trained networks provide a designer-specified degree of accuracy in mapping the functional relationship. Within each iteration of this statistical-based algorithm, a sequential design algorithm is used for the design and training of the feedforward network to provide rapid convergence to the network goals. Here, at each sequence a new network is trained to minimize the error of previous network. The proposed method should work for applications wherein an arbitrary large source of training data can be generated. Two numerical examples are performed on a spacecraft application in order to demonstrate the feasibility of the proposed approach.

  20. Applications and development of communication models for the touchstone GAMMA and DELTA prototypes

    NASA Technical Reports Server (NTRS)

    Seidel, Steven R.

    1993-01-01

    The goal of this project was to develop models of the interconnection networks of the Intel iPSC/860 and DELTA multicomputers to guide the design of efficient algorithms for interprocessor communication in problems that commonly occur in CFD codes and other applications. Interprocessor communication costs of codes for message-passing architectures such as the iPSC/860 and DELTA significantly affect the level of performance that can be obtained from those machines. This project addressed several specific problems in the achievement of efficient communication on the Intel iPSC/860 hypercube and DELTA mesh. In particular, an efficient global processor synchronization algorithm was developed for the iPSC/860 and numerous broadcast algorithms were designed for the DELTA.

  1. An Efficient Randomized Algorithm for Real-Time Process Scheduling in PicOS Operating System

    NASA Astrophysics Data System (ADS)

    Helmy*, Tarek; Fatai, Anifowose; Sallam, El-Sayed

    PicOS is an event-driven operating environment designed for use with embedded networked sensors. More specifically, it is designed to support the concurrency in intensive operations required by networked sensors with minimal hardware requirements. Existing process scheduling algorithms of PicOS; a commercial tiny, low-footprint, real-time operating system; have their associated drawbacks. An efficient, alternative algorithm, based on a randomized selection policy, has been proposed, demonstrated, confirmed for efficiency and fairness, on the average, and has been recommended for implementation in PicOS. Simulations were carried out and performance measures such as Average Waiting Time (AWT) and Average Turn-around Time (ATT) were used to assess the efficiency of the proposed randomized version over the existing ones. The results prove that Randomized algorithm is the best and most attractive for implementation in PicOS, since it is most fair and has the least AWT and ATT on average over the other non-preemptive scheduling algorithms implemented in this paper.

  2. Compression of next-generation sequencing quality scores using memetic algorithm

    PubMed Central

    2014-01-01

    Background The exponential growth of next-generation sequencing (NGS) derived DNA data poses great challenges to data storage and transmission. Although many compression algorithms have been proposed for DNA reads in NGS data, few methods are designed specifically to handle the quality scores. Results In this paper we present a memetic algorithm (MA) based NGS quality score data compressor, namely MMQSC. The algorithm extracts raw quality score sequences from FASTQ formatted files, and designs compression codebook using MA based multimodal optimization. The input data is then compressed in a substitutional manner. Experimental results on five representative NGS data sets show that MMQSC obtains higher compression ratio than the other state-of-the-art methods. Particularly, MMQSC is a lossless reference-free compression algorithm, yet obtains an average compression ratio of 22.82% on the experimental data sets. Conclusions The proposed MMQSC compresses NGS quality score data effectively. It can be utilized to improve the overall compression ratio on FASTQ formatted files. PMID:25474747

  3. Optimization in optical systems revisited: Beyond genetic algorithms

    NASA Astrophysics Data System (ADS)

    Gagnon, Denis; Dumont, Joey; Dubé, Louis

    2013-05-01

    Designing integrated photonic devices such as waveguides, beam-splitters and beam-shapers often requires optimization of a cost function over a large solution space. Metaheuristics - algorithms based on empirical rules for exploring the solution space - are specifically tailored to those problems. One of the most widely used metaheuristics is the standard genetic algorithm (SGA), based on the evolution of a population of candidate solutions. However, the stochastic nature of the SGA sometimes prevents access to the optimal solution. Our goal is to show that a parallel tabu search (PTS) algorithm is more suited to optimization problems in general, and to photonics in particular. PTS is based on several search processes using a pool of diversified initial solutions. To assess the performance of both algorithms (SGA and PTS), we consider an integrated photonics design problem, the generation of arbitrary beam profiles using a two-dimensional waveguide-based dielectric structure. The authors acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC).

  4. Design optimization of single mixed refrigerant LNG process using a hybrid modified coordinate descent algorithm

    NASA Astrophysics Data System (ADS)

    Qyyum, Muhammad Abdul; Long, Nguyen Van Duc; Minh, Le Quang; Lee, Moonyong

    2018-01-01

    Design optimization of the single mixed refrigerant (SMR) natural gas liquefaction (LNG) process involves highly non-linear interactions between decision variables, constraints, and the objective function. These non-linear interactions lead to an irreversibility, which deteriorates the energy efficiency of the LNG process. In this study, a simple and highly efficient hybrid modified coordinate descent (HMCD) algorithm was proposed to cope with the optimization of the natural gas liquefaction process. The single mixed refrigerant process was modeled in Aspen Hysys® and then connected to a Microsoft Visual Studio environment. The proposed optimization algorithm provided an improved result compared to the other existing methodologies to find the optimal condition of the complex mixed refrigerant natural gas liquefaction process. By applying the proposed optimization algorithm, the SMR process can be designed with the 0.2555 kW specific compression power which is equivalent to 44.3% energy saving as compared to the base case. Furthermore, in terms of coefficient of performance (COP), it can be enhanced up to 34.7% as compared to the base case. The proposed optimization algorithm provides a deep understanding of the optimization of the liquefaction process in both technical and numerical perspectives. In addition, the HMCD algorithm can be employed to any mixed refrigerant based liquefaction process in the natural gas industry.

  5. Improvements on a privacy-protection algorithm for DNA sequences with generalization lattices.

    PubMed

    Li, Guang; Wang, Yadong; Su, Xiaohong

    2012-10-01

    When developing personal DNA databases, there must be an appropriate guarantee of anonymity, which means that the data cannot be related back to individuals. DNA lattice anonymization (DNALA) is a successful method for making personal DNA sequences anonymous. However, it uses time-consuming multiple sequence alignment and a low-accuracy greedy clustering algorithm. Furthermore, DNALA is not an online algorithm, and so it cannot quickly return results when the database is updated. This study improves the DNALA method. Specifically, we replaced the multiple sequence alignment in DNALA with global pairwise sequence alignment to save time, and we designed a hybrid clustering algorithm comprised of a maximum weight matching (MWM)-based algorithm and an online algorithm. The MWM-based algorithm is more accurate than the greedy algorithm in DNALA and has the same time complexity. The online algorithm can process data quickly when the database is updated. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  6. Onboard FPGA-based SAR processing for future spaceborne systems

    NASA Technical Reports Server (NTRS)

    Le, Charles; Chan, Samuel; Cheng, Frank; Fang, Winston; Fischman, Mark; Hensley, Scott; Johnson, Robert; Jourdan, Michael; Marina, Miguel; Parham, Bruce; hide

    2004-01-01

    We present a real-time high-performance and fault-tolerant FPGA-based hardware architecture for the processing of synthetic aperture radar (SAR) images in future spaceborne system. In particular, we will discuss the integrated design approach, from top-level algorithm specifications and system requirements, design methodology, functional verification and performance validation, down to hardware design and implementation.

  7. Applying MDA to SDR for Space to Model Real-time Issues

    NASA Technical Reports Server (NTRS)

    Blaser, Tammy M.

    2007-01-01

    NASA space communications systems have the challenge of designing SDRs with highly-constrained Size, Weight and Power (SWaP) resources. A study is being conducted to assess the effectiveness of applying the MDA Platform-Independent Model (PIM) and one or more Platform-Specific Models (PSM) specifically to address NASA space domain real-time issues. This paper will summarize our experiences with applying MDA to SDR for Space to model real-time issues. Real-time issues to be examined, measured, and analyzed are: meeting waveform timing requirements and efficiently applying Real-time Operating System (RTOS) scheduling algorithms, applying safety control measures, and SWaP verification. Real-time waveform algorithms benchmarked with the worst case environment conditions under the heaviest workload will drive the SDR for Space real-time PSM design.

  8. Adaptive thresholding with inverted triangular area for real-time detection of the heart rate from photoplethysmogram traces on a smartphone.

    PubMed

    Jiang, Wen Jun; Wittek, Peter; Zhao, Li; Gao, Shi Chao

    2014-01-01

    Photoplethysmogram (PPG) signals acquired by smartphone cameras are weaker than those acquired by dedicated pulse oximeters. Furthermore, the signals have lower sampling rates, have notches in the waveform and are more severely affected by baseline drift, leading to specific morphological characteristics. This paper introduces a new feature, the inverted triangular area, to address these specific characteristics. The new feature enables real-time adaptive waveform detection using an algorithm of linear time complexity. It can also recognize notches in the waveform and it is inherently robust to baseline drift. An implementation of the algorithm on Android is available for free download. We collected data from 24 volunteers and compared our algorithm in peak detection with two competing algorithms designed for PPG signals, Incremental-Merge Segmentation (IMS) and Adaptive Thresholding (ADT). A sensitivity of 98.0% and a positive predictive value of 98.8% were obtained, which were 7.7% higher than the IMS algorithm in sensitivity, and 8.3% higher than the ADT algorithm in positive predictive value. The experimental results confirmed the applicability of the proposed method.

  9. Evaluation of an automated spike-and-wave complex detection algorithm in the EEG from a rat model of absence epilepsy.

    PubMed

    Bauquier, Sebastien H; Lai, Alan; Jiang, Jonathan L; Sui, Yi; Cook, Mark J

    2015-10-01

    The aim of this prospective blinded study was to evaluate an automated algorithm for spike-and-wave discharge (SWD) detection applied to EEGs from genetic absence epilepsy rats from Strasbourg (GAERS). Five GAERS underwent four sessions of 20-min EEG recording. Each EEG was manually analyzed for SWDs longer than one second by two investigators and automatically using an algorithm developed in MATLAB®. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated for the manual (reference) versus the automatic (test) methods. The results showed that the algorithm had specificity, sensitivity, PPV and NPV >94%, comparable to published methods that are based on analyzing EEG changes in the frequency domain. This provides a good alternative as a method designed to mimic human manual marking in the time domain.

  10. Acceleration of block-matching algorithms using a custom instruction-based paradigm on a Nios II microprocessor

    NASA Astrophysics Data System (ADS)

    González, Diego; Botella, Guillermo; García, Carlos; Prieto, Manuel; Tirado, Francisco

    2013-12-01

    This contribution focuses on the optimization of matching-based motion estimation algorithms widely used for video coding standards using an Altera custom instruction-based paradigm and a combination of synchronous dynamic random access memory (SDRAM) with on-chip memory in Nios II processors. A complete profile of the algorithms is achieved before the optimization, which locates code leaks, and afterward, creates a custom instruction set, which is then added to the specific design, enhancing the original system. As well, every possible memory combination between on-chip memory and SDRAM has been tested to achieve the best performance. The final throughput of the complete designs are shown. This manuscript outlines a low-cost system, mapped using very large scale integration technology, which accelerates software algorithms by converting them into custom hardware logic blocks and showing the best combination between on-chip memory and SDRAM for the Nios II processor.

  11. Launch flexibility using NLP guidance and remote wind sensing

    NASA Technical Reports Server (NTRS)

    Cramer, Evin J.; Bradt, Jerre E.; Hardtla, John W.

    1990-01-01

    This paper examines the use of lidar wind measurements in the implementation of a guidance strategy for a nonlinear programming (NLP) launch guidance algorithm. The NLP algorithm uses B-spline command function representation for flexibility in the design of the guidance steering commands. Using this algorithm, the guidance system solves a two-point boundary value problem at each guidance update. The specification of different boundary value problems at each guidance update provides flexibility that can be used in the design of the guidance strategy. The algorithm can use lidar wind measurements for on pad guidance retargeting and for load limiting guidance steering commands. Examples presented in the paper use simulated wind updates to correct wind induced final orbit errors and to adjust the guidance steering commands to limit the product of the dynamic pressure and angle-of-attack for launch vehicle load alleviation.

  12. Radiofrequency pulse design using nonlinear gradient magnetic fields.

    PubMed

    Kopanoglu, Emre; Constable, R Todd

    2015-09-01

    An iterative k-space trajectory and radiofrequency (RF) pulse design method is proposed for excitation using nonlinear gradient magnetic fields. The spatial encoding functions (SEFs) generated by nonlinear gradient fields are linearly dependent in Cartesian coordinates. Left uncorrected, this may lead to flip angle variations in excitation profiles. In the proposed method, SEFs (k-space samples) are selected using a matching pursuit algorithm, and the RF pulse is designed using a conjugate gradient algorithm. Three variants of the proposed approach are given: the full algorithm, a computationally cheaper version, and a third version for designing spoke-based trajectories. The method is demonstrated for various target excitation profiles using simulations and phantom experiments. The method is compared with other iterative (matching pursuit and conjugate gradient) and noniterative (coordinate-transformation and Jacobian-based) pulse design methods as well as uniform density spiral and EPI trajectories. The results show that the proposed method can increase excitation fidelity. An iterative method for designing k-space trajectories and RF pulses using nonlinear gradient fields is proposed. The method can either be used for selecting the SEFs individually to guide trajectory design, or can be adapted to design and optimize specific trajectories of interest. © 2014 Wiley Periodicals, Inc.

  13. A novel method for finding the initial structure parameters of optical systems via a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Jun, LIU; Huang, Wei; Hongjie, Fan

    2016-02-01

    A novel method for finding the initial structure parameters of an optical system via the genetic algorithm (GA) is proposed in this research. Usually, optical designers start their designs from the commonly used structures from a patent database; however, it is time consuming to modify the patented structures to meet the specification. A high-performance design result largely depends on the choice of the starting point. Accordingly, it would be highly desirable to be able to calculate the initial structure parameters automatically. In this paper, a method that combines a genetic algorithm and aberration analysis is used to determine an appropriate initial structure of an optical system. We use a three-mirror system as an example to demonstrate the validity and reliability of this method. On-axis and off-axis telecentric three-mirror systems are obtained based on this method.

  14. Parallel digital forensics infrastructure.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liebrock, Lorie M.; Duggan, David Patrick

    2009-10-01

    This report documents the architecture and implementation of a Parallel Digital Forensics infrastructure. This infrastructure is necessary for supporting the design, implementation, and testing of new classes of parallel digital forensics tools. Digital Forensics has become extremely difficult with data sets of one terabyte and larger. The only way to overcome the processing time of these large sets is to identify and develop new parallel algorithms for performing the analysis. To support algorithm research, a flexible base infrastructure is required. A candidate architecture for this base infrastructure was designed, instantiated, and tested by this project, in collaboration with New Mexicomore » Tech. Previous infrastructures were not designed and built specifically for the development and testing of parallel algorithms. With the size of forensics data sets only expected to increase significantly, this type of infrastructure support is necessary for continued research in parallel digital forensics. This report documents the implementation of the parallel digital forensics (PDF) infrastructure architecture and implementation.« less

  15. ATLAS, an integrated structural analysis and design system. Volume 6: Design module theory

    NASA Technical Reports Server (NTRS)

    Backman, B. F.

    1979-01-01

    The automated design theory underlying the operation of the ATLAS Design Module is decribed. The methods, applications and limitations associated with the fully stressed design, the thermal fully stressed design and a regional optimization algorithm are presented. A discussion of the convergence characteristics of the fully stressed design is also included. Derivations and concepts specific to the ATLAS design theory are shown, while conventional terminology and established methods are identified by references.

  16. Multidisciplinary Multiobjective Optimal Design for Turbomachinery Using Evolutionary Algorithm

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This report summarizes Dr. Lian s efforts toward developing a robust and efficient tool for multidisciplinary and multi-objective optimal design for turbomachinery using evolutionary algorithms. This work consisted of two stages. The first stage (from July 2003 to June 2004) Dr. Lian focused on building essential capabilities required for the project. More specifically, Dr. Lian worked on two subjects: an enhanced genetic algorithm (GA) and an integrated optimization system with a GA and a surrogate model. The second stage (from July 2004 to February 2005) Dr. Lian formulated aerodynamic optimization and structural optimization into a multi-objective optimization problem and performed multidisciplinary and multi-objective optimizations on a transonic compressor blade based on the proposed model. Dr. Lian s numerical results showed that the proposed approach can effectively reduce the blade weight and increase the stage pressure ratio in an efficient manner. In addition, the new design was structurally safer than the original design. Five conference papers and three journal papers were published on this topic by Dr. Lian.

  17. Development of an algorithm to provide awareness in choosing study designs for inclusion in systematic reviews of healthcare interventions: a method study

    PubMed Central

    Peinemann, Frank; Kleijnen, Jos

    2015-01-01

    Objectives To develop an algorithm that aims to provide guidance and awareness for choosing multiple study designs in systematic reviews of healthcare interventions. Design Method study: (1) To summarise the literature base on the topic. (2) To apply the integration of various study types in systematic reviews. (3) To devise decision points and outline a pragmatic decision tree. (4) To check the plausibility of the algorithm by backtracking its pathways in four systematic reviews. Results (1) The results of our systematic review of the published literature have already been published. (2) We recaptured the experience from our four previously conducted systematic reviews that required the integration of various study types. (3) We chose length of follow-up (long, short), frequency of events (rare, frequent) and types of outcome as decision points (death, disease, discomfort, disability, dissatisfaction) and aligned the study design labels according to the Cochrane Handbook. We also considered practical or ethical concerns, and the problem of unavailable high-quality evidence. While applying the algorithm, disease-specific circumstances and aims of interventions should be considered. (4) We confirmed the plausibility of the pathways of the algorithm. Conclusions We propose that the algorithm can assist to bring seminal features of a systematic review with multiple study designs to the attention of anyone who is planning to conduct a systematic review. It aims to increase awareness and we think that it may reduce the time burden on review authors and may contribute to the production of a higher quality review. PMID:26289450

  18. An information adaptive system study report and development plan

    NASA Technical Reports Server (NTRS)

    Ataras, W. S.; Eng, K.; Morone, J. J.; Beaudet, P. R.; Chin, R.

    1980-01-01

    The purpose of the information adaptive system (IAS) study was to determine how some selected Earth resource applications may be processed onboard a spacecraft and to provide a detailed preliminary IAS design for these applications. Detailed investigations of a number of applications were conducted with regard to IAS and three were selected for further analysis. Areas of future research and development include algorithmic specifications, system design specifications, and IAS recommended time lines.

  19. An Automated Pipeline for Engineering Many-Enzyme Pathways: Computational Sequence Design, Pathway Expression-Flux Mapping, and Scalable Pathway Optimization.

    PubMed

    Halper, Sean M; Cetnar, Daniel P; Salis, Howard M

    2018-01-01

    Engineering many-enzyme metabolic pathways suffers from the design curse of dimensionality. There are an astronomical number of synonymous DNA sequence choices, though relatively few will express an evolutionary robust, maximally productive pathway without metabolic bottlenecks. To solve this challenge, we have developed an integrated, automated computational-experimental pipeline that identifies a pathway's optimal DNA sequence without high-throughput screening or many cycles of design-build-test. The first step applies our Operon Calculator algorithm to design a host-specific evolutionary robust bacterial operon sequence with maximally tunable enzyme expression levels. The second step applies our RBS Library Calculator algorithm to systematically vary enzyme expression levels with the smallest-sized library. After characterizing a small number of constructed pathway variants, measurements are supplied to our Pathway Map Calculator algorithm, which then parameterizes a kinetic metabolic model that ultimately predicts the pathway's optimal enzyme expression levels and DNA sequences. Altogether, our algorithms provide the ability to efficiently map the pathway's sequence-expression-activity space and predict DNA sequences with desired metabolic fluxes. Here, we provide a step-by-step guide to applying the Pathway Optimization Pipeline on a desired multi-enzyme pathway in a bacterial host.

  20. A hardware-algorithm co-design approach to optimize seizure detection algorithms for implantable applications.

    PubMed

    Raghunathan, Shriram; Gupta, Sumeet K; Markandeya, Himanshu S; Roy, Kaushik; Irazoqui, Pedro P

    2010-10-30

    Implantable neural prostheses that deliver focal electrical stimulation upon demand are rapidly emerging as an alternate therapy for roughly a third of the epileptic patient population that is medically refractory. Seizure detection algorithms enable feedback mechanisms to provide focally and temporally specific intervention. Real-time feasibility and computational complexity often limit most reported detection algorithms to implementations using computers for bedside monitoring or external devices communicating with the implanted electrodes. A comparison of algorithms based on detection efficacy does not present a complete picture of the feasibility of the algorithm with limited computational power, as is the case with most battery-powered applications. We present a two-dimensional design optimization approach that takes into account both detection efficacy and hardware cost in evaluating algorithms for their feasibility in an implantable application. Detection features are first compared for their ability to detect electrographic seizures from micro-electrode data recorded from kainate-treated rats. Circuit models are then used to estimate the dynamic and leakage power consumption of the compared features. A score is assigned based on detection efficacy and the hardware cost for each of the features, then plotted on a two-dimensional design space. An optimal combination of compared features is used to construct an algorithm that provides maximal detection efficacy per unit hardware cost. The methods presented in this paper would facilitate the development of a common platform to benchmark seizure detection algorithms for comparison and feasibility analysis in the next generation of implantable neuroprosthetic devices to treat epilepsy. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. DNA-binding specificity prediction with FoldX.

    PubMed

    Nadra, Alejandro D; Serrano, Luis; Alibés, Andreu

    2011-01-01

    With the advent of Synthetic Biology, a field between basic science and applied engineering, new computational tools are needed to help scientists reach their goal, their design, optimizing resources. In this chapter, we present a simple and powerful method to either know the DNA specificity of a wild-type protein or design new specificities by using the protein design algorithm FoldX. The only basic requirement is having a good resolution structure of the complex. Protein-DNA interaction design may aid the development of new parts designed to be orthogonal, decoupled, and precise in its target. Further, it could help to fine-tune the systems in terms of specificity, discrimination, and binding constants. In the age of newly developed devices and invented systems, computer-aided engineering promises to be an invaluable tool. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. The coral reefs optimization algorithm: a novel metaheuristic for efficiently solving optimization problems.

    PubMed

    Salcedo-Sanz, S; Del Ser, J; Landa-Torres, I; Gil-López, S; Portilla-Figueras, J A

    2014-01-01

    This paper presents a novel bioinspired algorithm to tackle complex optimization problems: the coral reefs optimization (CRO) algorithm. The CRO algorithm artificially simulates a coral reef, where different corals (namely, solutions to the optimization problem considered) grow and reproduce in coral colonies, fighting by choking out other corals for space in the reef. This fight for space, along with the specific characteristics of the corals' reproduction, produces a robust metaheuristic algorithm shown to be powerful for solving hard optimization problems. In this research the CRO algorithm is tested in several continuous and discrete benchmark problems, as well as in practical application scenarios (i.e., optimum mobile network deployment and off-shore wind farm design). The obtained results confirm the excellent performance of the proposed algorithm and open line of research for further application of the algorithm to real-world problems.

  3. The Coral Reefs Optimization Algorithm: A Novel Metaheuristic for Efficiently Solving Optimization Problems

    PubMed Central

    Salcedo-Sanz, S.; Del Ser, J.; Landa-Torres, I.; Gil-López, S.; Portilla-Figueras, J. A.

    2014-01-01

    This paper presents a novel bioinspired algorithm to tackle complex optimization problems: the coral reefs optimization (CRO) algorithm. The CRO algorithm artificially simulates a coral reef, where different corals (namely, solutions to the optimization problem considered) grow and reproduce in coral colonies, fighting by choking out other corals for space in the reef. This fight for space, along with the specific characteristics of the corals' reproduction, produces a robust metaheuristic algorithm shown to be powerful for solving hard optimization problems. In this research the CRO algorithm is tested in several continuous and discrete benchmark problems, as well as in practical application scenarios (i.e., optimum mobile network deployment and off-shore wind farm design). The obtained results confirm the excellent performance of the proposed algorithm and open line of research for further application of the algorithm to real-world problems. PMID:25147860

  4. Content addressable memory project

    NASA Technical Reports Server (NTRS)

    Hall, Josh; Levy, Saul; Smith, D.; Wei, S.; Miyake, K.; Murdocca, M.

    1991-01-01

    The progress on the Rutgers CAM (Content Addressable Memory) Project is described. The overall design of the system is completed at the architectural level and described. The machine is composed of two kinds of cells: (1) the CAM cells which include both memory and processor, and support local processing within each cell; and (2) the tree cells, which have smaller instruction set, and provide global processing over the CAM cells. A parameterized design of the basic CAM cell is completed. Progress was made on the final specification of the CPS. The machine architecture was driven by the design of algorithms whose requirements are reflected in the resulted instruction set(s). A few of these algorithms are described.

  5. Process Materialization Using Templates and Rules to Design Flexible Process Models

    NASA Astrophysics Data System (ADS)

    Kumar, Akhil; Yao, Wen

    The main idea in this paper is to show how flexible processes can be designed by combining generic process templates and business rules. We instantiate a process by applying rules to specific case data, and running a materialization algorithm. The customized process instance is then executed in an existing workflow engine. We present an architecture and also give an algorithm for process materialization. The rules are written in a logic-based language like Prolog. Our focus is on capturing deeper process knowledge and achieving a holistic approach to robust process design that encompasses control flow, resources and data, as well as makes it easier to accommodate changes to business policy.

  6. Development and evaluation of task-specific NLP framework in China.

    PubMed

    Ge, Caixia; Zhang, Yinsheng; Huang, Zhenzhen; Jia, Zheng; Ju, Meizhi; Duan, Huilong; Li, Haomin

    2015-01-01

    Natural language processing (NLP) has been designed to convert narrative text into structured data. Although some general NLP architectures have been developed, a task-specific NLP framework to facilitate the effective use of data is still a challenge in lexical resource limited regions, such as China. The purpose of this study is to design and develop a task-specific NLP framework to extract targeted information from particular documents by adopting dedicated algorithms on current limited lexical resources. In this framework, a shared and evolving ontology mechanism was designed. The result has shown that such a free text driven platform will accelerate the NLP technology acceptance in China.

  7. A new scanning device in CT with dose reduction potential

    NASA Astrophysics Data System (ADS)

    Tischenko, Oleg; Xu, Yuan; Hoeschen, Christoph

    2006-03-01

    The amount of x-ray radiation currently applied in CT practice is not utilized optimally. A portion of radiation traversing the patient is either not detected at all or is used ineffectively. The reason lies partly in the reconstruction algorithms and partly in the geometry of the CT scanners designed specifically for these algorithms. In fact, the reconstruction methods widely used in CT are intended to invert the data that correspond to ideal straight lines. However, the collection of such data is often not accurate due to likely movement of the source/detector system of the scanner in the time interval during which all the detectors are read. In this paper, a new design of the scanner geometry is proposed that is immune to the movement of the CT system and will collect all radiation traversing the patient. The proposed scanning design has a potential to reduce the patient dose by a factor of two. Furthermore, it can be used with the existing reconstruction algorithm and it is particularly suitable for OPED, a new robust reconstruction algorithm.

  8. Structured output-feedback controller synthesis with design specifications

    NASA Astrophysics Data System (ADS)

    Hao, Yuqing; Duan, Zhisheng

    2017-03-01

    This paper considers the problem of structured output-feedback controller synthesis with finite frequency specifications. Based on the orthogonal space information of input matrix, an improved parameter-dependent Lyapunov function method is first proposed. Then, a two-stage construction method is designed, which depends on an initial centralised controller. Corresponding design conditions for three types of output-feedback controllers are presented in terms of unified representations. Moreover, heuristic algorithms are provided to explore the desirable controllers. Finally, the effectiveness of these proposed methods is illustrated via some practical examples.

  9. An Analysis of Fixed Wing Tactical Airlifter Characteristics Using an Intra-Theater Airlift Computer Model

    DTIC Science & Technology

    1991-09-01

    an Experimental Design ...... 31 Selection of Variables .................... ... 34 Defining Measures of Effectiveness ....... 37 Specification of...Required Number of Replications 44 Modification of Scenario Files ......... ... 46 Analysis of the Main Effects of a Two Level Factorial Design ...48 Analysis of the Interaction Effects of a *Two Level Factorial Design .. ............. ... 49 Yate’s Algorithm ......... ................ 50

  10. Application of ant colony Algorithm and particle swarm optimization in architectural design

    NASA Astrophysics Data System (ADS)

    Song, Ziyi; Wu, Yunfa; Song, Jianhua

    2018-02-01

    By studying the development of ant colony algorithm and particle swarm algorithm, this paper expounds the core idea of the algorithm, explores the combination of algorithm and architectural design, sums up the application rules of intelligent algorithm in architectural design, and combines the characteristics of the two algorithms, obtains the research route and realization way of intelligent algorithm in architecture design. To establish algorithm rules to assist architectural design. Taking intelligent algorithm as the beginning of architectural design research, the authors provide the theory foundation of ant colony Algorithm and particle swarm algorithm in architectural design, popularize the application range of intelligent algorithm in architectural design, and provide a new idea for the architects.

  11. A spatial operator algebra for manipulator modeling and control

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Kreutz, K.; Jain, A.

    1989-01-01

    A spatial operator algebra for modeling the control and trajectory design of manipulation is discussed, with emphasis on its analytical formulation and implementation in the Ada programming language. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of the manipulator. Inversion is obtained using techniques of recursive filtering and smoothing. The operator alegbra provides a high-level framework for describing the dynamic and kinematic behavior of a manipulator and control and trajectory design algorithms. Implementable recursive algorithms can be immediately derived from the abstract operator expressions by inspection, thus greatly simplifying the transition from an abstract problem formulation and solution to the detailed mechanization of a specific algorithm.

  12. Adaptive Augmenting Control Flight Characterization Experiment on an F/A-18

    NASA Technical Reports Server (NTRS)

    VanZwieten, Tannen S.; Gilligan, Eric T.; Wall, John H.; Orr, Jeb S.; Miller, Christopher J.; Hanson, Curtis E.

    2014-01-01

    The NASA Marshall Space Flight Center (MSFC) Flight Mechanics and Analysis Division developed an Adaptive Augmenting Control (AAC) algorithm for launch vehicles that improves robustness and performance by adapting an otherwise welltuned classical control algorithm to unexpected environments or variations in vehicle dynamics. This AAC algorithm is currently part of the baseline design for the SLS Flight Control System (FCS), but prior to this series of research flights it was the only component of the autopilot design that had not been flight tested. The Space Launch System (SLS) flight software prototype, including the adaptive component, was recently tested on a piloted aircraft at Dryden Flight Research Center (DFRC) which has the capability to achieve a high level of dynamic similarity to a launch vehicle. Scenarios for the flight test campaign were designed specifically to evaluate the AAC algorithm to ensure that it is able to achieve the expected performance improvements with no adverse impacts in nominal or nearnominal scenarios. Having completed the recent series of flight characterization experiments on DFRC's F/A-18, the AAC algorithm's capability, robustness, and reproducibility, have been successfully demonstrated. Thus, the entire SLS control architecture has been successfully flight tested in a relevant environment. This has increased NASA's confidence that the autopilot design is ready to fly on the SLS Block I vehicle and will exceed the performance of previous architectures.

  13. Structural health monitoring feature design by genetic programming

    NASA Astrophysics Data System (ADS)

    Harvey, Dustin Y.; Todd, Michael D.

    2014-09-01

    Structural health monitoring (SHM) systems provide real-time damage and performance information for civil, aerospace, and other high-capital or life-safety critical structures. Conventional data processing involves pre-processing and extraction of low-dimensional features from in situ time series measurements. The features are then input to a statistical pattern recognition algorithm to perform the relevant classification or regression task necessary to facilitate decisions by the SHM system. Traditional design of signal processing and feature extraction algorithms can be an expensive and time-consuming process requiring extensive system knowledge and domain expertise. Genetic programming, a heuristic program search method from evolutionary computation, was recently adapted by the authors to perform automated, data-driven design of signal processing and feature extraction algorithms for statistical pattern recognition applications. The proposed method, called Autofead, is particularly suitable to handle the challenges inherent in algorithm design for SHM problems where the manifestation of damage in structural response measurements is often unclear or unknown. Autofead mines a training database of response measurements to discover information-rich features specific to the problem at hand. This study provides experimental validation on three SHM applications including ultrasonic damage detection, bearing damage classification for rotating machinery, and vibration-based structural health monitoring. Performance comparisons with common feature choices for each problem area are provided demonstrating the versatility of Autofead to produce significant algorithm improvements on a wide range of problems.

  14. Development of an above-knee prosthesis equipped with a microcomputer-controlled knee joint: first test results.

    PubMed

    Aeyels, B; Peeraer, L; Vander Sloten, J; Van der Perre, G

    1992-05-01

    The shortcomings of conventional above-knee prostheses are due to their lack of adaptive control. Implementation of a microcomputer controlling the knee joint in a passive way has been suggested to enhance the patient's gait comfort, safety and cosmesis. This approach was used in the design of a new prosthetic system for the above-knee amputee, and tested on one patient. The knee joint of a conventional, modular prosthesis was replaced by a knee joint mechanism, equipped with a controllable brake on the knee joint axis. Sensors and a microcomputer were added, keeping the system self-contained. The modularity of the design permits the use of an alternative, external, PC-based control unit, emulating the self-contained one, and offering extended data monitoring and storage facilities. For both units an operating environment was written, including sensor/actuator interfacing and the implementation of a real-time interrupt, executing the control algorithm. A double finite state approach was used in the design of the control algorithm. On a higher level, the mode identification algorithm reveals the patient's intent. Within a specific mode (lower level), the relevant mode control algorithm looks for the current phase within the gait cycle. Within a particular phase, a specific simple control action with the brake replaces normal knee muscle activity. Tests were carried out with one prosthetic patient using a basic control algorithm for level walking, allowing controlled knee flexion during stance phase. The technical feasibility of such a concept is illustrated by the test results, even though only flexion during early stance phase was controlled during the trials.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Using qualitative research to inform development of a diagnostic algorithm for UTI in children.

    PubMed

    de Salis, Isabel; Whiting, Penny; Sterne, Jonathan A C; Hay, Alastair D

    2013-06-01

    Diagnostic and prognostic algorithms can help reduce clinical uncertainty. The selection of candidate symptoms and signs to be measured in case report forms (CRFs) for potential inclusion in diagnostic algorithms needs to be comprehensive, clearly formulated and relevant for end users. To investigate whether qualitative methods could assist in designing CRFs in research developing diagnostic algorithms. Specifically, the study sought to establish whether qualitative methods could have assisted in designing the CRF for the Health Technology Association funded Diagnosis of Urinary Tract infection in Young children (DUTY) study, which will develop a diagnostic algorithm to improve recognition of urinary tract infection (UTI) in children aged <5 years presenting acutely unwell to primary care. Qualitative methods were applied using semi-structured interviews of 30 UK doctors and nurses working with young children in primary care and a Children's Emergency Department. We elicited features that clinicians believed useful in diagnosing UTI and compared these for presence or absence and terminology with the DUTY CRF. Despite much agreement between clinicians' accounts and the DUTY CRFs, we identified a small number of potentially important symptoms and signs not included in the CRF and some included items that could have been reworded to improve understanding and final data analysis. This study uniquely demonstrates the role of qualitative methods in the design and content of CRFs used for developing diagnostic (and prognostic) algorithms. Research groups developing such algorithms should consider using qualitative methods to inform the selection and wording of candidate symptoms and signs.

  16. Systematic design methodology for robust genetic transistors based on I/O specifications via promoter-RBS libraries.

    PubMed

    Lee, Yi-Ying; Hsu, Chih-Yuan; Lin, Ling-Jiun; Chang, Chih-Chun; Cheng, Hsiao-Chun; Yeh, Tsung-Hsien; Hu, Rei-Hsing; Lin, Che; Xie, Zhen; Chen, Bor-Sen

    2013-10-27

    Synthetic genetic transistors are vital for signal amplification and switching in genetic circuits. However, it is still problematic to efficiently select the adequate promoters, Ribosome Binding Sides (RBSs) and inducer concentrations to construct a genetic transistor with the desired linear amplification or switching in the Input/Output (I/O) characteristics for practical applications. Three kinds of promoter-RBS libraries, i.e., a constitutive promoter-RBS library, a repressor-regulated promoter-RBS library and an activator-regulated promoter-RBS library, are constructed for systematic genetic circuit design using the identified kinetic strengths of their promoter-RBS components.According to the dynamic model of genetic transistors, a design methodology for genetic transistors via a Genetic Algorithm (GA)-based searching algorithm is developed to search for a set of promoter-RBS components and adequate concentrations of inducers to achieve the prescribed I/O characteristics of a genetic transistor. Furthermore, according to design specifications for different types of genetic transistors, a look-up table is built for genetic transistor design, from which we could easily select an adequate set of promoter-RBS components and adequate concentrations of external inducers for a specific genetic transistor. This systematic design method will reduce the time spent using trial-and-error methods in the experimental procedure for a genetic transistor with a desired I/O characteristic. We demonstrate the applicability of our design methodology to genetic transistors that have desirable linear amplification or switching by employing promoter-RBS library searching.

  17. Systematic design methodology for robust genetic transistors based on I/O specifications via promoter-RBS libraries

    PubMed Central

    2013-01-01

    Background Synthetic genetic transistors are vital for signal amplification and switching in genetic circuits. However, it is still problematic to efficiently select the adequate promoters, Ribosome Binding Sides (RBSs) and inducer concentrations to construct a genetic transistor with the desired linear amplification or switching in the Input/Output (I/O) characteristics for practical applications. Results Three kinds of promoter-RBS libraries, i.e., a constitutive promoter-RBS library, a repressor-regulated promoter-RBS library and an activator-regulated promoter-RBS library, are constructed for systematic genetic circuit design using the identified kinetic strengths of their promoter-RBS components. According to the dynamic model of genetic transistors, a design methodology for genetic transistors via a Genetic Algorithm (GA)-based searching algorithm is developed to search for a set of promoter-RBS components and adequate concentrations of inducers to achieve the prescribed I/O characteristics of a genetic transistor. Furthermore, according to design specifications for different types of genetic transistors, a look-up table is built for genetic transistor design, from which we could easily select an adequate set of promoter-RBS components and adequate concentrations of external inducers for a specific genetic transistor. Conclusion This systematic design method will reduce the time spent using trial-and-error methods in the experimental procedure for a genetic transistor with a desired I/O characteristic. We demonstrate the applicability of our design methodology to genetic transistors that have desirable linear amplification or switching by employing promoter-RBS library searching. PMID:24160305

  18. Parametric geometric model and hydrodynamic shape optimization of a flying-wing structure underwater glider

    NASA Astrophysics Data System (ADS)

    Wang, Zhen-yu; Yu, Jian-cheng; Zhang, Ai-qun; Wang, Ya-xing; Zhao, Wen-tao

    2017-12-01

    Combining high precision numerical analysis methods with optimization algorithms to make a systematic exploration of a design space has become an important topic in the modern design methods. During the design process of an underwater glider's flying-wing structure, a surrogate model is introduced to decrease the computation time for a high precision analysis. By these means, the contradiction between precision and efficiency is solved effectively. Based on the parametric geometry modeling, mesh generation and computational fluid dynamics analysis, a surrogate model is constructed by adopting the design of experiment (DOE) theory to solve the multi-objects design optimization problem of the underwater glider. The procedure of a surrogate model construction is presented, and the Gaussian kernel function is specifically discussed. The Particle Swarm Optimization (PSO) algorithm is applied to hydrodynamic design optimization. The hydrodynamic performance of the optimized flying-wing structure underwater glider increases by 9.1%.

  19. Stride search: A general algorithm for storm detection in high resolution climate data

    DOE PAGES

    Bosler, Peter Andrew; Roesler, Erika Louise; Taylor, Mark A.; ...

    2015-09-08

    This article discusses the problem of identifying extreme climate events such as intense storms within large climate data sets. The basic storm detection algorithm is reviewed, which splits the problem into two parts: a spatial search followed by a temporal correlation problem. Two specific implementations of the spatial search algorithm are compared. The commonly used grid point search algorithm is reviewed, and a new algorithm called Stride Search is introduced. Stride Search is designed to work at all latitudes, while grid point searches may fail in polar regions. Results from the two algorithms are compared for the application of tropicalmore » cyclone detection, and shown to produce similar results for the same set of storm identification criteria. The time required for both algorithms to search the same data set is compared. Furthermore, Stride Search's ability to search extreme latitudes is demonstrated for the case of polar low detection.« less

  20. SeqCompress: an algorithm for biological sequence compression.

    PubMed

    Sardaraz, Muhammad; Tahir, Muhammad; Ikram, Ataul Aziz; Bajwa, Hassan

    2014-10-01

    The growth of Next Generation Sequencing technologies presents significant research challenges, specifically to design bioinformatics tools that handle massive amount of data efficiently. Biological sequence data storage cost has become a noticeable proportion of total cost in the generation and analysis. Particularly increase in DNA sequencing rate is significantly outstripping the rate of increase in disk storage capacity, which may go beyond the limit of storage capacity. It is essential to develop algorithms that handle large data sets via better memory management. This article presents a DNA sequence compression algorithm SeqCompress that copes with the space complexity of biological sequences. The algorithm is based on lossless data compression and uses statistical model as well as arithmetic coding to compress DNA sequences. The proposed algorithm is compared with recent specialized compression tools for biological sequences. Experimental results show that proposed algorithm has better compression gain as compared to other existing algorithms. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Particle Swarm Optimization Toolbox

    NASA Technical Reports Server (NTRS)

    Grant, Michael J.

    2010-01-01

    The Particle Swarm Optimization Toolbox is a library of evolutionary optimization tools developed in the MATLAB environment. The algorithms contained in the library include a genetic algorithm (GA), a single-objective particle swarm optimizer (SOPSO), and a multi-objective particle swarm optimizer (MOPSO). Development focused on both the SOPSO and MOPSO. A GA was included mainly for comparison purposes, and the particle swarm optimizers appeared to perform better for a wide variety of optimization problems. All algorithms are capable of performing unconstrained and constrained optimization. The particle swarm optimizers are capable of performing single and multi-objective optimization. The SOPSO and MOPSO algorithms are based on swarming theory and bird-flocking patterns to search the trade space for the optimal solution or optimal trade in competing objectives. The MOPSO generates Pareto fronts for objectives that are in competition. A GA, based on Darwin evolutionary theory, is also included in the library. The GA consists of individuals that form a population in the design space. The population mates to form offspring at new locations in the design space. These offspring contain traits from both of the parents. The algorithm is based on this combination of traits from parents to hopefully provide an improved solution than either of the original parents. As the algorithm progresses, individuals that hold these optimal traits will emerge as the optimal solutions. Due to the generic design of all optimization algorithms, each algorithm interfaces with a user-supplied objective function. This function serves as a "black-box" to the optimizers in which the only purpose of this function is to evaluate solutions provided by the optimizers. Hence, the user-supplied function can be numerical simulations, analytical functions, etc., since the specific detail of this function is of no concern to the optimizer. These algorithms were originally developed to support entry trajectory and guidance design for the Mars Science Laboratory mission but may be applied to any optimization problem.

  2. CRISPR-FOCUS: A web server for designing focused CRISPR screening experiments.

    PubMed

    Cao, Qingyi; Ma, Jian; Chen, Chen-Hao; Xu, Han; Chen, Zhi; Li, Wei; Liu, X Shirley

    2017-01-01

    The recently developed CRISPR screen technology, based on the CRISPR/Cas9 genome editing system, enables genome-wide interrogation of gene functions in an efficient and cost-effective manner. Although many computational algorithms and web servers have been developed to design single-guide RNAs (sgRNAs) with high specificity and efficiency, algorithms specifically designed for conducting CRISPR screens are still lacking. Here we present CRISPR-FOCUS, a web-based platform to search and prioritize sgRNAs for CRISPR screen experiments. With official gene symbols or RefSeq IDs as the only mandatory input, CRISPR-FOCUS filters and prioritizes sgRNAs based on multiple criteria, including efficiency, specificity, sequence conservation, isoform structure, as well as genomic variations including Single Nucleotide Polymorphisms and cancer somatic mutations. CRISPR-FOCUS also provides pre-defined positive and negative control sgRNAs, as well as other necessary sequences in the construct (e.g., U6 promoters to drive sgRNA transcription and RNA scaffolds of the CRISPR/Cas9). These features allow users to synthesize oligonucleotides directly based on the output of CRISPR-FOCUS. Overall, CRISPR-FOCUS provides a rational and high-throughput approach for sgRNA library design that enables users to efficiently conduct a focused screen experiment targeting up to thousands of genes. (CRISPR-FOCUS is freely available at http://cistrome.org/crispr-focus/).

  3. The Pandora multi-algorithm approach to automated pattern recognition in LAr TPC detectors

    NASA Astrophysics Data System (ADS)

    Marshall, J. S.; Blake, A. S. T.; Thomson, M. A.; Escudero, L.; de Vries, J.; Weston, J.; MicroBooNE Collaboration

    2017-09-01

    The development and operation of Liquid Argon Time Projection Chambers (LAr TPCs) for neutrino physics has created a need for new approaches to pattern recognition, in order to fully exploit the superb imaging capabilities offered by this technology. The Pandora Software Development Kit provides functionality to aid the process of designing, implementing and running pattern recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition: individual algorithms each address a specific task in a particular topology; a series of many tens of algorithms then carefully builds-up a picture of the event. The input to the Pandora pattern recognition is a list of 2D Hits. The output from the chain of over 70 algorithms is a hierarchy of reconstructed 3D Particles, each with an identified particle type, vertex and direction.

  4. Linear feature detection algorithm for astronomical surveys - I. Algorithm description

    NASA Astrophysics Data System (ADS)

    Bektešević, Dino; Vinković, Dejan

    2017-11-01

    Computer vision algorithms are powerful tools in astronomical image analyses, especially when automation of object detection and extraction is required. Modern object detection algorithms in astronomy are oriented towards detection of stars and galaxies, ignoring completely the detection of existing linear features. With the emergence of wide-field sky surveys, linear features attract scientific interest as possible trails of fast flybys of near-Earth asteroids and meteors. In this work, we describe a new linear feature detection algorithm designed specifically for implementation in big data astronomy. The algorithm combines a series of algorithmic steps that first remove other objects (stars and galaxies) from the image and then enhance the line to enable more efficient line detection with the Hough algorithm. The rate of false positives is greatly reduced thanks to a step that replaces possible line segments with rectangles and then compares lines fitted to the rectangles with the lines obtained directly from the image. The speed of the algorithm and its applicability in astronomical surveys are also discussed.

  5. An historical survey of computational methods in optimal control.

    NASA Technical Reports Server (NTRS)

    Polak, E.

    1973-01-01

    Review of some of the salient theoretical developments in the specific area of optimal control algorithms. The first algorithms for optimal control were aimed at unconstrained problems and were derived by using first- and second-variation methods of the calculus of variations. These methods have subsequently been recognized as gradient, Newton-Raphson, or Gauss-Newton methods in function space. A much more recent addition to the arsenal of unconstrained optimal control algorithms are several variations of conjugate-gradient methods. At first, constrained optimal control problems could only be solved by exterior penalty function methods. Later algorithms specifically designed for constrained problems have appeared. Among these are methods for solving the unconstrained linear quadratic regulator problem, as well as certain constrained minimum-time and minimum-energy problems. Differential-dynamic programming was developed from dynamic programming considerations. The conditional-gradient method, the gradient-projection method, and a couple of feasible directions methods were obtained as extensions or adaptations of related algorithms for finite-dimensional problems. Finally, the so-called epsilon-methods combine the Ritz method with penalty function techniques.

  6. MDTri: robust and efficient global mixed integer search of spaces of multiple ternary alloys: A DIRECT-inspired optimization algorithm for experimentally accessible computational material design

    DOE PAGES

    Graf, Peter A.; Billups, Stephen

    2017-07-24

    Computational materials design has suffered from a lack of algorithms formulated in terms of experimentally accessible variables. Here we formulate the problem of (ternary) alloy optimization at the level of choice of atoms and their composition that is normal for synthesists. Mathematically, this is a mixed integer problem where a candidate solution consists of a choice of three elements, and how much of each of them to use. This space has the natural structure of a set of equilateral triangles. We solve this problem by introducing a novel version of the DIRECT algorithm that (1) operates on equilateral triangles insteadmore » of rectangles and (2) works across multiple triangles. We demonstrate on a test case that the algorithm is both robust and efficient. Lastly, we offer an explanation of the efficacy of DIRECT -- specifically, its balance of global and local search -- by showing that 'potentially optimal rectangles' of the original algorithm are akin to the Pareto front of the 'multi-component optimization' of global and local search.« less

  7. Design of interpolation functions for subpixel-accuracy stereo-vision systems.

    PubMed

    Haller, Istvan; Nedevschi, Sergiu

    2012-02-01

    Traditionally, subpixel interpolation in stereo-vision systems was designed for the block-matching algorithm. During the evaluation of different interpolation strategies, a strong correlation was observed between the type of the stereo algorithm and the subpixel accuracy of the different solutions. Subpixel interpolation should be adapted to each stereo algorithm to achieve maximum accuracy. In consequence, it is more important to propose methodologies for interpolation function generation than specific function shapes. We propose two such methodologies based on data generated by the stereo algorithms. The first proposal uses a histogram to model the environment and applies histogram equalization to an existing solution adapting it to the data. The second proposal employs synthetic images of a known environment and applies function fitting to the resulted data. The resulting function matches the algorithm and the data as best as possible. An extensive evaluation set is used to validate the findings. Both real and synthetic test cases were employed in different scenarios. The test results are consistent and show significant improvements compared with traditional solutions. © 2011 IEEE

  8. MDTri: robust and efficient global mixed integer search of spaces of multiple ternary alloys: A DIRECT-inspired optimization algorithm for experimentally accessible computational material design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graf, Peter A.; Billups, Stephen

    Computational materials design has suffered from a lack of algorithms formulated in terms of experimentally accessible variables. Here we formulate the problem of (ternary) alloy optimization at the level of choice of atoms and their composition that is normal for synthesists. Mathematically, this is a mixed integer problem where a candidate solution consists of a choice of three elements, and how much of each of them to use. This space has the natural structure of a set of equilateral triangles. We solve this problem by introducing a novel version of the DIRECT algorithm that (1) operates on equilateral triangles insteadmore » of rectangles and (2) works across multiple triangles. We demonstrate on a test case that the algorithm is both robust and efficient. Lastly, we offer an explanation of the efficacy of DIRECT -- specifically, its balance of global and local search -- by showing that 'potentially optimal rectangles' of the original algorithm are akin to the Pareto front of the 'multi-component optimization' of global and local search.« less

  9. Variable threshold algorithm for division of labor analyzed as a dynamical system.

    PubMed

    Castillo-Cagigal, Manuel; Matallanas, Eduardo; Navarro, Iñaki; Caamaño-Martín, Estefanía; Monasterio-Huelin, Félix; Gutiérrez, Álvaro

    2014-12-01

    Division of labor is a widely studied aspect of colony behavior of social insects. Division of labor models indicate how individuals distribute themselves in order to perform different tasks simultaneously. However, models that study division of labor from a dynamical system point of view cannot be found in the literature. In this paper, we define a division of labor model as a discrete-time dynamical system, in order to study the equilibrium points and their properties related to convergence and stability. By making use of this analytical model, an adaptive algorithm based on division of labor can be designed to satisfy dynamic criteria. In this way, we have designed and tested an algorithm that varies the response thresholds in order to modify the dynamic behavior of the system. This behavior modification allows the system to adapt to specific environmental and collective situations, making the algorithm a good candidate for distributed control applications. The variable threshold algorithm is based on specialization mechanisms. It is able to achieve an asymptotically stable behavior of the system in different environments and independently of the number of individuals. The algorithm has been successfully tested under several initial conditions and number of individuals.

  10. RF Pulse Design using Nonlinear Gradient Magnetic Fields

    PubMed Central

    Kopanoglu, Emre; Constable, R. Todd

    2014-01-01

    Purpose An iterative k-space trajectory and radio-frequency (RF) pulse design method is proposed for Excitation using Nonlinear Gradient Magnetic fields (ENiGMa). Theory and Methods The spatial encoding functions (SEFs) generated by nonlinear gradient fields (NLGFs) are linearly dependent in Cartesian-coordinates. Left uncorrected, this may lead to flip-angle variations in excitation profiles. In the proposed method, SEFs (k-space samples) are selected using a Matching-Pursuit algorithm, and the RF pulse is designed using a Conjugate-Gradient algorithm. Three variants of the proposed approach are given: the full-algorithm, a computationally-cheaper version, and a third version for designing spoke-based trajectories. The method is demonstrated for various target excitation profiles using simulations and phantom experiments. Results The method is compared to other iterative (Matching-Pursuit and Conjugate Gradient) and non-iterative (coordinate-transformation and Jacobian-based) pulse design methods as well as uniform density spiral and EPI trajectories. The results show that the proposed method can increase excitation fidelity significantly. Conclusion An iterative method for designing k-space trajectories and RF pulses using nonlinear gradient fields is proposed. The method can either be used for selecting the SEFs individually to guide trajectory design, or can be adapted to design and optimize specific trajectories of interest. PMID:25203286

  11. Formal Specification and Validation of a Hybrid Connectivity Restoration Algorithm for Wireless Sensor and Actor Networks †

    PubMed Central

    Imran, Muhammad; Zafar, Nazir Ahmad

    2012-01-01

    Maintaining inter-actor connectivity is extremely crucial in mission-critical applications of Wireless Sensor and Actor Networks (WSANs), as actors have to quickly plan optimal coordinated responses to detected events. Failure of a critical actor partitions the inter-actor network into disjoint segments besides leaving a coverage hole, and thus hinders the network operation. This paper presents a Partitioning detection and Connectivity Restoration (PCR) algorithm to tolerate critical actor failure. As part of pre-failure planning, PCR determines critical/non-critical actors based on localized information and designates each critical node with an appropriate backup (preferably non-critical). The pre-designated backup detects the failure of its primary actor and initiates a post-failure recovery process that may involve coordinated multi-actor relocation. To prove the correctness, we construct a formal specification of PCR using Z notation. We model WSAN topology as a dynamic graph and transform PCR to corresponding formal specification using Z notation. Formal specification is analyzed and validated using the Z Eves tool. Moreover, we simulate the specification to quantitatively analyze the efficiency of PCR. Simulation results confirm the effectiveness of PCR and the results shown that it outperforms contemporary schemes found in the literature.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marathe, Aniruddha P.; Harris, Rachel A.; Lowenthal, David K.

    The use of clouds to execute high-performance computing (HPC) applications has greatly increased recently. Clouds provide several potential advantages over traditional supercomputers and in-house clusters. The most popular cloud is currently Amazon EC2, which provides fixed-cost and variable-cost, auction-based options. The auction market trades lower cost for potential interruptions that necessitate checkpointing; if the market price exceeds the bid price, a node is taken away from the user without warning. We explore techniques to maximize performance per dollar given a time constraint within which an application must complete. Specifically, we design and implement multiple techniques to reduce expected cost bymore » exploiting redundancy in the EC2 auction market. We then design an adaptive algorithm that selects a scheduling algorithm and determines the bid price. We show that our adaptive algorithm executes programs up to seven times cheaper than using the on-demand market and up to 44 percent cheaper than the best non-redundant, auction-market algorithm. We extend our adaptive algorithm to incorporate application scalability characteristics for further cost savings. In conclusion, we show that the adaptive algorithm informed with scalability characteristics of applications achieves up to 56 percent cost savings compared to the expected cost for the base adaptive algorithm run at a fixed, user-defined scale.« less

  13. Performance characterization of a combined material identification and screening algorithm

    NASA Astrophysics Data System (ADS)

    Green, Robert L.; Hargreaves, Michael D.; Gardner, Craig M.

    2013-05-01

    Portable analytical devices based on a gamut of technologies (Infrared, Raman, X-Ray Fluorescence, Mass Spectrometry, etc.) are now widely available. These tools have seen increasing adoption for field-based assessment by diverse users including military, emergency response, and law enforcement. Frequently, end-users of portable devices are non-scientists who rely on embedded software and the associated algorithms to convert collected data into actionable information. Two classes of problems commonly encountered in field applications are identification and screening. Identification algorithms are designed to scour a library of known materials and determine whether the unknown measurement is consistent with a stored response (or combination of stored responses). Such algorithms can be used to identify a material from many thousands of possible candidates. Screening algorithms evaluate whether at least a subset of features in an unknown measurement correspond to one or more specific substances of interest and are typically configured to detect from a small list potential target analytes. Thus, screening algorithms are much less broadly applicable than identification algorithms; however, they typically provide higher detection rates which makes them attractive for specific applications such as chemical warfare agent or narcotics detection. This paper will present an overview and performance characterization of a combined identification/screening algorithm that has recently been developed. It will be shown that the combined algorithm provides enhanced detection capability more typical of screening algorithms while maintaining a broad identification capability. Additionally, we will highlight how this approach can enable users to incorporate situational awareness during a response.

  14. Preliminary flight evaluation of an engine performance optimization algorithm

    NASA Technical Reports Server (NTRS)

    Lambert, H. H.; Gilyard, G. B.; Chisholm, J. D.; Kerr, L. J.

    1991-01-01

    A performance seeking control (PSC) algorithm has undergone initial flight test evaluation in subsonic operation of a PW 1128 engined F-15. This algorithm is designed to optimize the quasi-steady performance of an engine for three primary modes: (1) minimum fuel consumption; (2) minimum fan turbine inlet temperature (FTIT); and (3) maximum thrust. The flight test results have verified a thrust specific fuel consumption reduction of 1 pct., up to 100 R decreases in FTIT, and increases of as much as 12 pct. in maximum thrust. PSC technology promises to be of value in next generation tactical and transport aircraft.

  15. Numerical Algorithms Based on Biorthogonal Wavelets

    NASA Technical Reports Server (NTRS)

    Ponenti, Pj.; Liandrat, J.

    1996-01-01

    Wavelet bases are used to generate spaces of approximation for the resolution of bidimensional elliptic and parabolic problems. Under some specific hypotheses relating the properties of the wavelets to the order of the involved operators, it is shown that an approximate solution can be built. This approximation is then stable and converges towards the exact solution. It is designed such that fast algorithms involving biorthogonal multi resolution analyses can be used to resolve the corresponding numerical problems. Detailed algorithms are provided as well as the results of numerical tests on partial differential equations defined on the bidimensional torus.

  16. A simulation of remote sensor systems and data processing algorithms for spectral feature classification

    NASA Technical Reports Server (NTRS)

    Arduini, R. F.; Aherron, R. M.; Samms, R. W.

    1984-01-01

    A computational model of the deterministic and stochastic processes involved in multispectral remote sensing was designed to evaluate the performance of sensor systems and data processing algorithms for spectral feature classification. Accuracy in distinguishing between categories of surfaces or between specific types is developed as a means to compare sensor systems and data processing algorithms. The model allows studies to be made of the effects of variability of the atmosphere and of surface reflectance, as well as the effects of channel selection and sensor noise. Examples of these effects are shown.

  17. MHOST version 4.2. Volume 1: Users' manual

    NASA Technical Reports Server (NTRS)

    Nakazawa, Shohei

    1989-01-01

    This manual describes the user options available for running the MHOST finite element analysis package. MHOST is a solid and structural analysis program based on mixed finite element technology, and is specifically designed for three-dimensional inelastic analysis. A family of two- and three-dimensional continuum elements along with beam and shell structural elements can be utilized. Many options are available in the constitutive equation library, the solution algorithms and the analysis capabilities. An overview of the algorithms, a general description of the input data formats, and a discussion of input data for selecting solution algorithms are given.

  18. Algorithm and Architecture Independent Benchmarking with SEAK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tallent, Nathan R.; Manzano Franco, Joseph B.; Gawande, Nitin A.

    2016-05-23

    Many applications of high performance embedded computing are limited by performance or power bottlenecks. We have designed the Suite for Embedded Applications & Kernels (SEAK), a new benchmark suite, (a) to capture these bottlenecks in a way that encourages creative solutions; and (b) to facilitate rigorous, objective, end-user evaluation for their solutions. To avoid biasing solutions toward existing algorithms, SEAK benchmarks use a mission-centric (abstracted from a particular algorithm) and goal-oriented (functional) specification. To encourage solutions that are any combination of software or hardware, we use an end-user black-box evaluation that can capture tradeoffs between performance, power, accuracy, size, andmore » weight. The tradeoffs are especially informative for procurement decisions. We call our benchmarks future proof because each mission-centric interface and evaluation remains useful despite shifting algorithmic preferences. It is challenging to create both concise and precise goal-oriented specifications for mission-centric problems. This paper describes the SEAK benchmark suite and presents an evaluation of sample solutions that highlights power and performance tradeoffs.« less

  19. Taming the Wild: A Unified Analysis of Hogwild!-Style Algorithms.

    PubMed

    De Sa, Christopher; Zhang, Ce; Olukotun, Kunle; Ré, Christopher

    2015-12-01

    Stochastic gradient descent (SGD) is a ubiquitous algorithm for a variety of machine learning problems. Researchers and industry have developed several techniques to optimize SGD's runtime performance, including asynchronous execution and reduced precision. Our main result is a martingale-based analysis that enables us to capture the rich noise models that may arise from such techniques. Specifically, we use our new analysis in three ways: (1) we derive convergence rates for the convex case (Hogwild!) with relaxed assumptions on the sparsity of the problem; (2) we analyze asynchronous SGD algorithms for non-convex matrix problems including matrix completion; and (3) we design and analyze an asynchronous SGD algorithm, called Buckwild!, that uses lower-precision arithmetic. We show experimentally that our algorithms run efficiently for a variety of problems on modern hardware.

  20. SPITZER IRAC PHOTOMETRY FOR TIME SERIES IN CROWDED FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novati, S. Calchi; Beichman, C.; Gould, A.

    We develop a new photometry algorithm that is optimized for the Infrared Array Camera (IRAC) Spitzer time series in crowded fields and that is particularly adapted to faint or heavily blended targets. We apply this to the 170 targets from the 2015 Spitzer microlensing campaign and present the results of three variants of this algorithm in an online catalog. We present detailed accounts of the application of this algorithm to two difficult cases, one very faint and the other very crowded. Several of Spitzer's instrumental characteristics that drive the specific features of this algorithm are shared by Kepler and WFIRST,more » implying that these features may prove to be a useful starting point for algorithms designed for microlensing campaigns by these other missions.« less

  1. Design specification of an acousto-optic spectrum analyzer that could be used as an auxiliary receiver for CANEWS

    NASA Astrophysics Data System (ADS)

    Studenny, John; Johnstone, Eric

    1991-01-01

    The acousto-optic spectrum analyzer has undergone a theoretical design review and a basic parameter tradeoff analysis has been performed. The main conclusion is that for the given scenario of a 55 dB dynamic range and for a one-second temporal resolution, a 3.9 MHz resolution is a reasonable compromise with respect to current technology. Additional configurations are suggested. Noise testing of the signal detection processor algorithm was conducted. Additive white Gaussian noise was introduced to pure data. As expected, the tradeoff was between algorithm sensitivity and false alarms. No additional algorithm improvements could be made. The algorithm was observed to be robust, provided that the noise floor was set at a proper level. The digitization scheme was mainly driven by hardware constraints. To implement an analog to digital conversion scheme that linearly covers a 55 dB dynamic range would require a minimum of 17 bits. The general consensus was that 17 bits would be untenable for very large scale integration.

  2. Anomaly detection using temporal data mining in a smart home environment.

    PubMed

    Jakkula, V; Cook, D J

    2008-01-01

    To many people, home is a sanctuary. With the maturing of smart home technologies, many people with cognitive and physical disabilities can lead independent lives in their own homes for extended periods of time. In this paper, we investigate the design of machine learning algorithms that support this goal. We hypothesize that machine learning algorithms can be designed to automatically learn models of resident behavior in a smart home, and that the results can be used to perform automated health monitoring and to detect anomalies. Specifically, our algorithms draw upon the temporal nature of sensor data collected in a smart home to build a model of expected activities and to detect unexpected, and possibly health-critical, events in the home. We validate our algorithms using synthetic data and real activity data collected from volunteers in an automated smart environment. The results from our experiments support our hypothesis that a model can be learned from observed smart home data and used to report anomalies, as they occur, in a smart home.

  3. Implementation of a combined algorithm designed to increase the reliability of information systems: simulation modeling

    NASA Astrophysics Data System (ADS)

    Popov, A.; Zolotarev, V.; Bychkov, S.

    2016-11-01

    This paper examines the results of experimental studies of a previously submitted combined algorithm designed to increase the reliability of information systems. The data that illustrates the organization and conduct of the studies is provided. Within the framework of a comparison of As a part of the study conducted, the comparison of the experimental data of simulation modeling and the data of the functioning of the real information system was made. The hypothesis of the homogeneity of the logical structure of the information systems was formulated, thus enabling to reconfigure the algorithm presented, - more specifically, to transform it into the model for the analysis and prediction of arbitrary information systems. The results presented can be used for further research in this direction. The data of the opportunity to predict the functioning of the information systems can be used for strategic and economic planning. The algorithm can be used as a means for providing information security.

  4. Healthwatch-2 System Overview

    NASA Technical Reports Server (NTRS)

    Barszcz, Eric; Mosher, Marianne; Huff, Edward M.

    2004-01-01

    Healthwatch-2 (HW-2) is a research tool designed to facilitate the development and testing of in-flight health monitoring algorithms. HW-2 software is written in C/C++ and executes on an x86-based computer running the Linux operating system. The executive module has interfaces for collecting various signal data, such as vibration, torque, tachometer, and GPS. It is designed to perform in-flight time or frequency averaging based on specifications defined in a user-supplied configuration file. Averaged data are then passed to a user-supplied algorithm written as a Matlab function. This allows researchers a convenient method for testing in-flight algorithms. In addition to its in-flight capabilities, HW-2 software is also capable of reading archived flight data and processing it as if collected in-flight. This allows algorithms to be developed and tested in the laboratory before being flown. Currently HW-2 has passed its checkout phase and is collecting data on a Bell OH-58C helicopter operated by the U.S. Army at NASA Ames Research Center.

  5. Optimization of coronagraph design for segmented aperture telescopes

    NASA Astrophysics Data System (ADS)

    Jewell, Jeffrey; Ruane, Garreth; Shaklan, Stuart; Mawet, Dimitri; Redding, Dave

    2017-09-01

    The goal of directly imaging Earth-like planets in the habitable zone of other stars has motivated the design of coronagraphs for use with large segmented aperture space telescopes. In order to achieve an optimal trade-off between planet light throughput and diffracted starlight suppression, we consider coronagraphs comprised of a stage of phase control implemented with deformable mirrors (or other optical elements), pupil plane apodization masks (gray scale or complex valued), and focal plane masks (either amplitude only or complex-valued, including phase only such as the vector vortex coronagraph). The optimization of these optical elements, with the goal of achieving 10 or more orders of magnitude in the suppression of on-axis (starlight) diffracted light, represents a challenging non-convex optimization problem with a nonlinear dependence on control degrees of freedom. We develop a new algorithmic approach to the design optimization problem, which we call the "Auxiliary Field Optimization" (AFO) algorithm. The central idea of the algorithm is to embed the original optimization problem, for either phase or amplitude (apodization) in various planes of the coronagraph, into a problem containing additional degrees of freedom, specifically fictitious "auxiliary" electric fields which serve as targets to inform the variation of our phase or amplitude parameters leading to good feasible designs. We present the algorithm, discuss details of its numerical implementation, and prove convergence to local minima of the objective function (here taken to be the intensity of the on-axis source in a "dark hole" region in the science focal plane). Finally, we present results showing application of the algorithm to both unobscured off-axis and obscured on-axis segmented telescope aperture designs. The application of the AFO algorithm to the coronagraph design problem has produced solutions which are capable of directly imaging planets in the habitable zone, provided end-to-end telescope system stability requirements can be met. Ongoing work includes advances of the AFO algorithm reported here to design in additional robustness to a resolved star, and other phase or amplitude aberrations to be encountered in a real segmented aperture space telescope.

  6. [System design of small intellectualized ultrasound hyperthermia instrument in the LabVIEW environment].

    PubMed

    Jiang, Feng; Bai, Jingfeng; Chen, Yazhu

    2005-08-01

    Small-scale intellectualized medical instrument has attracted great attention in the field of biomedical engineering, and LabVIEW (Laboratory Virtual Instrument Engineering Workbench) provides a convenient environment for this application due to its inherent advantages. The principle and system structure of the hyperthermia instrument are presented. Type T thermocouples are employed as thermotransducers, whose amplifier consists of two stages, providing built-in ice point compensation and thus improving work stability over temperature. Control signals produced by specially designed circuit drive the programmable counter/timer 8254 chip to generate PWM (Pulse width modulation) wave, which is used as ultrasound radiation energy control signal. Subroutine design topics such as inner-tissue real time feedback temperature control algorithm, water temperature control in the ultrasound applicator are also described. In the cancer tissue temperature control subroutine, the authors exert new improvments to PID (Proportional Integral Differential) algorithm according to the specific demands of the system and achieve strict temperature control to the target tissue region. The system design and PID algorithm improvement have experimentally proved to be reliable and excellent, meeting the requirements of the hyperthermia system.

  7. Emerging CFD technologies and aerospace vehicle design

    NASA Technical Reports Server (NTRS)

    Aftosmis, Michael J.

    1995-01-01

    With the recent focus on the needs of design and applications CFD, research groups have begun to address the traditional bottlenecks of grid generation and surface modeling. Now, a host of emerging technologies promise to shortcut or dramatically simplify the simulation process. This paper discusses the current status of these emerging technologies. It will argue that some tools are already available which can have positive impact on portions of the design cycle. However, in most cases, these tools need to be integrated into specific engineering systems and process cycles to be used effectively. The rapidly maturing status of unstructured and Cartesian approaches for inviscid simulations makes suggests the possibility of highly automated Euler-boundary layer simulations with application to loads estimation and even preliminary design. Similarly, technology is available to link block structured mesh generation algorithms with topology libraries to avoid tedious re-meshing of topologically similar configurations. Work in algorithmic based auto-blocking suggests that domain decomposition and point placement operations in multi-block mesh generation may be properly posed as problems in Computational Geometry, and following this approach may lead to robust algorithmic processes for automatic mesh generation.

  8. A Simulation and Modeling Framework for Space Situational Awareness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olivier, S S

    This paper describes the development and initial demonstration of a new, integrated modeling and simulation framework, encompassing the space situational awareness enterprise, for quantitatively assessing the benefit of specific sensor systems, technologies and data analysis techniques. The framework is based on a flexible, scalable architecture to enable efficient, physics-based simulation of the current SSA enterprise, and to accommodate future advancements in SSA systems. In particular, the code is designed to take advantage of massively parallel computer systems available, for example, at Lawrence Livermore National Laboratory. The details of the modeling and simulation framework are described, including hydrodynamic models of satellitemore » intercept and debris generation, orbital propagation algorithms, radar cross section calculations, optical brightness calculations, generic radar system models, generic optical system models, specific Space Surveillance Network models, object detection algorithms, orbit determination algorithms, and visualization tools. The use of this integrated simulation and modeling framework on a specific scenario involving space debris is demonstrated.« less

  9. Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)

    NASA Technical Reports Server (NTRS)

    Niewoehner, Kevin R.; Carter, John (Technical Monitor)

    2001-01-01

    The research accomplishments for the cooperative agreement 'Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)' include the following: (1) previous IFC program data collection and analysis; (2) IFC program support site (configured IFC systems support network, configured Tornado/VxWorks OS development system, made Configuration and Documentation Management Systems Internet accessible); (3) Airborne Research Test Systems (ARTS) II Hardware (developed hardware requirements specification, developing environmental testing requirements, hardware design, and hardware design development); (4) ARTS II software development laboratory unit (procurement of lab style hardware, configured lab style hardware, and designed interface module equivalent to ARTS II faceplate); (5) program support documentation (developed software development plan, configuration management plan, and software verification and validation plan); (6) LWR algorithm analysis (performed timing and profiling on algorithm); (7) pre-trained neural network analysis; (8) Dynamic Cell Structures (DCS) Neural Network Analysis (performing timing and profiling on algorithm); and (9) conducted technical interchange and quarterly meetings to define IFC research goals.

  10. Practical calibration of design data to technical capabilities of horizontal directional drilling rig

    NASA Astrophysics Data System (ADS)

    Toropov, S. Yu; Toropov, V. S.

    2018-05-01

    In order to design more accurately trenchless pipeline passages, a technique has been developed for calculating the passage profile, based on specific parameters of the horizontal directional drilling rig, including the range of possible drilling angles and a list of compatible drill pipe sets. The algorithm for calculating the parameters of the trenchless passage profile is shown in the paper. This algorithm is based on taking into account the features of HDD technology, namely, three different stages of production. The authors take into account that the passage profile is formed at the first stage of passage construction, that is, when drilling a pilot well. The algorithm involves calculating the profile by taking into account parameters of the drill pipes used and angles of their deviation relative to each other during the pilot drilling. This approach allows us to unambiguously calibrate the designed profile for the HDD rig capabilities and the auxiliary and navigation equipment used in the construction process.

  11. Optimal sensor placement for modal testing on wind turbines

    NASA Astrophysics Data System (ADS)

    Schulze, Andreas; Zierath, János; Rosenow, Sven-Erik; Bockhahn, Reik; Rachholz, Roman; Woernle, Christoph

    2016-09-01

    The mechanical design of wind turbines requires a profound understanding of the dynamic behaviour. Even though highly detailed simulation models are already in use to support wind turbine design, modal testing on a real prototype is irreplaceable to identify site-specific conditions such as the stiffness of the tower foundation. Correct identification of the mode shapes of a complex mechanical structure much depends on the placement of the sensors. For operational modal analysis of a 3 MW wind turbine with a 120 m rotor on a 100 m tower developed by W2E Wind to Energy, algorithms for optimal placement of acceleration sensors are applied. The mode shapes used for the optimisation are calculated by means of a detailed flexible multibody model of the wind turbine. Among the three algorithms in this study, the genetic algorithm with weighted off-diagonal criterion yields the sensor configuration with the highest quality. The ongoing measurements on the prototype will be the basis for the development of optimised wind turbine designs.

  12. Diderot: a Domain-Specific Language for Portable Parallel Scientific Visualization and Image Analysis.

    PubMed

    Kindlmann, Gordon; Chiw, Charisee; Seltzer, Nicholas; Samuels, Lamont; Reppy, John

    2016-01-01

    Many algorithms for scientific visualization and image analysis are rooted in the world of continuous scalar, vector, and tensor fields, but are programmed in low-level languages and libraries that obscure their mathematical foundations. Diderot is a parallel domain-specific language that is designed to bridge this semantic gap by providing the programmer with a high-level, mathematical programming notation that allows direct expression of mathematical concepts in code. Furthermore, Diderot provides parallel performance that takes advantage of modern multicore processors and GPUs. The high-level notation allows a concise and natural expression of the algorithms and the parallelism allows efficient execution on real-world datasets.

  13. Automatic detection of ECG cable interchange by analyzing both morphology and interlead relations.

    PubMed

    Han, Chengzong; Gregg, Richard E; Feild, Dirk Q; Babaeizadeh, Saeed

    2014-01-01

    ECG cable interchange can generate erroneous diagnoses. For algorithms detecting ECG cable interchange, high specificity is required to maintain a low total false positive rate because the prevalence of interchange is low. In this study, we propose and evaluate an improved algorithm for automatic detection and classification of ECG cable interchange. The algorithm was developed by using both ECG morphology information and redundancy information. ECG morphology features included QRS-T and P-wave amplitude, frontal axis and clockwise vector loop rotation. The redundancy features were derived based on the EASI™ lead system transformation. The classification was implemented using linear support vector machine. The development database came from multiple sources including both normal subjects and cardiac patients. An independent database was used to test the algorithm performance. Common cable interchanges were simulated by swapping either limb cables or precordial cables. For the whole validation database, the overall sensitivity and specificity for detecting precordial cable interchange were 56.5% and 99.9%, and the sensitivity and specificity for detecting limb cable interchange (excluding left arm-left leg interchange) were 93.8% and 99.9%. Defining precordial cable interchange or limb cable interchange as a single positive event, the total false positive rate was 0.7%. When the algorithm was designed for higher sensitivity, the sensitivity for detecting precordial cable interchange increased to 74.6% and the total false positive rate increased to 2.7%, while the sensitivity for detecting limb cable interchange was maintained at 93.8%. The low total false positive rate was maintained at 0.6% for the more abnormal subset of the validation database including only hypertrophy and infarction patients. The proposed algorithm can detect and classify ECG cable interchanges with high specificity and low total false positive rate, at the cost of decreased sensitivity for certain precordial cable interchanges. The algorithm could also be configured for higher sensitivity for different applications where a lower specificity can be tolerated. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Ambulance Clinical Triage for Acute Stroke Treatment: Paramedic Triage Algorithm for Large Vessel Occlusion.

    PubMed

    Zhao, Henry; Pesavento, Lauren; Coote, Skye; Rodrigues, Edrich; Salvaris, Patrick; Smith, Karen; Bernard, Stephen; Stephenson, Michael; Churilov, Leonid; Yassi, Nawaf; Davis, Stephen M; Campbell, Bruce C V

    2018-04-01

    Clinical triage scales for prehospital recognition of large vessel occlusion (LVO) are limited by low specificity when applied by paramedics. We created the 3-step ambulance clinical triage for acute stroke treatment (ACT-FAST) as the first algorithmic LVO identification tool, designed to improve specificity by recognizing only severe clinical syndromes and optimizing paramedic usability and reliability. The ACT-FAST algorithm consists of (1) unilateral arm drift to stretcher <10 seconds, (2) severe language deficit (if right arm is weak) or gaze deviation/hemineglect assessed by simple shoulder tap test (if left arm is weak), and (3) eligibility and stroke mimic screen. ACT-FAST examination steps were retrospectively validated, and then prospectively validated by paramedics transporting culturally and linguistically diverse patients with suspected stroke in the emergency department, for the identification of internal carotid or proximal middle cerebral artery occlusion. The diagnostic performance of the full ACT-FAST algorithm was then validated for patients accepted for thrombectomy. In retrospective (n=565) and prospective paramedic (n=104) validation, ACT-FAST displayed higher overall accuracy and specificity, when compared with existing LVO triage scales. Agreement of ACT-FAST between paramedics and doctors was excellent (κ=0.91; 95% confidence interval, 0.79-1.0). The full ACT-FAST algorithm (n=60) assessed by paramedics showed high overall accuracy (91.7%), sensitivity (85.7%), specificity (93.5%), and positive predictive value (80%) for recognition of endovascular-eligible LVO. The 3-step ACT-FAST algorithm shows higher specificity and reliability than existing scales for clinical LVO recognition, despite requiring just 2 examination steps. The inclusion of an eligibility step allowed recognition of endovascular-eligible patients with high accuracy. Using a sequential algorithmic approach eliminates scoring confusion and reduces assessment time. Future studies will test whether field application of ACT-FAST by paramedics to bypass suspected patients with LVO directly to endovascular-capable centers can reduce delays to endovascular thrombectomy. © 2018 American Heart Association, Inc.

  15. Techniques in processing multi-frequency multi-polarization spaceborne SAR data

    NASA Technical Reports Server (NTRS)

    Curlander, John C.; Chang, C. Y.

    1991-01-01

    This paper presents the algorithm design of the SIR-C ground data processor, with emphasis on the unique elements involved in the production of registered multifrequency polarimetric data products. A quick-look processing algorithm used for generation of low-resolution browse image products and estimation of echo signal parameters is also presented. Specifically the discussion covers: (1) azimuth reference function generation to produce registered polarimetric imagery; (2) geometric rectification to accommondate cross-track and along-track Doppler drifts; (3) multilook filtering designed to generate output imagery with a uniform resolution; and (4) efficient coding to compress the polarimetric image data for distribution.

  16. Optimal Design of a Planar Textile Antenna for Industrial Scientific Medical (ISM) 2.4 GHz Wireless Body Area Networks (WBAN) with the CRO-SL Algorithm.

    PubMed

    Sánchez-Montero, Rocío; Camacho-Gómez, Carlos; López-Espí, Pablo-Luís; Salcedo-Sanz, Sancho

    2018-06-21

    This paper proposes a low-profile textile-modified meander line Inverted-F Antenna (IFA) with variable width and spacing meanders, for Industrial Scientific Medical (ISM) 2.4-GHz Wireless Body Area Networks (WBAN), optimized with a novel metaheuristic algorithm. Specifically, a metaheuristic known as Coral Reefs Optimization with Substrate Layer (CRO-SL) is used to obtain an optimal antenna for sensor systems, which allows covering properly and resiliently the 2.4⁻2.45-GHz industrial scientific medical bandwidth. Flexible pad foam has been used to make the designed prototype with a 1.1-mm thickness. We have used a version of the algorithm that is able to combine different searching operators within a single population of solutions. This approach is ideal to deal with hard optimization problems, such as the design of the proposed meander line IFA. During the optimization phase with the CRO-SL, the proposed antenna has been simulated using CST Microwave Studio software, linked to the CRO-SL by means of MATLAB implementation and Visual Basic Applications (VBA) code. We fully describe the antenna design process, the adaptation of the CRO-SL approach to this problem and several practical aspects of the optimization and details on the algorithm’s performance. To validate the simulation results, we have constructed and measured two prototypes of the antenna, designed with the proposed algorithm. Several practical aspects such as sensitivity during the antenna manufacturing or the agreement between the simulated and constructed antenna are also detailed in the paper.

  17. Hardware Acceleration of Adaptive Neural Algorithms.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, Conrad D.

    As tradit ional numerical computing has faced challenges, researchers have turned towards alternative computing approaches to reduce power - per - computation metrics and improve algorithm performance. Here, we describe an approach towards non - conventional computing that strengthens the connection between machine learning and neuroscience concepts. The Hardware Acceleration of Adaptive Neural Algorithms (HAANA) project ha s develop ed neural machine learning algorithms and hardware for applications in image processing and cybersecurity. While machine learning methods are effective at extracting relevant features from many types of data, the effectiveness of these algorithms degrades when subjected to real - worldmore » conditions. Our team has generated novel neural - inspired approa ches to improve the resiliency and adaptability of machine learning algorithms. In addition, we have also designed and fabricated hardware architectures and microelectronic devices specifically tuned towards the training and inference operations of neural - inspired algorithms. Finally, our multi - scale simulation framework allows us to assess the impact of microelectronic device properties on algorithm performance.« less

  18. RandSpg: An open-source program for generating atomistic crystal structures with specific spacegroups

    NASA Astrophysics Data System (ADS)

    Avery, Patrick; Zurek, Eva

    2017-04-01

    A new algorithm, RANDSPG, that can be used to generate trial crystal structures with specific space groups and compositions is described. The program has been designed for systems where the atoms are independent of one another, and it is therefore primarily suited towards inorganic systems. The structures that are generated adhere to user-defined constraints such as: the lattice shape and size, stoichiometry, set of space groups to be generated, and factors that influence the minimum interatomic separations. In addition, the user can optionally specify if the most general Wyckoff position is to be occupied or constrain select atoms to specific Wyckoff positions. Extensive testing indicates that the algorithm is efficient and reliable. The library is lightweight, portable, dependency-free and is published under a license recognized by the Open Source Initiative. A web interface for the algorithm is publicly accessible at http://xtalopt.openmolecules.net/randSpg/randSpg.html. RANDSPG has also been interfaced with the XTALOPT evolutionary algorithm for crystal structure prediction, and it is illustrated that the use of symmetric lattices in the first generation of randomly created individuals decreases the number of structures that need to be optimized to find the global energy minimum.

  19. The design and development of a long-term fall detection system incorporated into a custom vest for the elderly.

    PubMed

    Bourke, Alan K; van de Ven, Pepijn W J; Chaya, Amy E; OLaighin, Gearóid M; Nelson, John

    2008-01-01

    A fall detection system and algorithm, incorporated into a custom designed garment has been developed. The developed fall detection system uses a tri-axial accelerometer, microcontroller, battery and Bluetooth module. This sensor is attached to a custom designed vest, designed to be worn by the elderly person under clothing. The fall detection algorithm was developed and incorporates both impact and posture detection capability. The vest and fall algorithm was tested on young healthy subjects performing normal activities of daily living (ADL) and falls onto crash mats, while wearing the best and sensor. Results show that falls can de distinguished from normal activities with a sensitivity >90% and a specificity of >99%, from a total data set of 264 falls and 165 normal ADL. By incorporating the fall-detection sensor into a custom designed garment it is anticipated that greater compliance when wearing a fall-detection system can be achieved and will help reduce the incidence of the long-lie, when falls occur in the elderly population. However further long-term testing using elderly subjects is required to validate the systems performance.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumuluru, Jaya Shankar; McCulloch, Richard Chet James

    In this work a new hybrid genetic algorithm was developed which combines a rudimentary adaptive steepest ascent hill climbing algorithm with a sophisticated evolutionary algorithm in order to optimize complex multivariate design problems. By combining a highly stochastic algorithm (evolutionary) with a simple deterministic optimization algorithm (adaptive steepest ascent) computational resources are conserved and the solution converges rapidly when compared to either algorithm alone. In genetic algorithms natural selection is mimicked by random events such as breeding and mutation. In the adaptive steepest ascent algorithm each variable is perturbed by a small amount and the variable that caused the mostmore » improvement is incremented by a small step. If the direction of most benefit is exactly opposite of the previous direction with the most benefit then the step size is reduced by a factor of 2, thus the step size adapts to the terrain. A graphical user interface was created in MATLAB to provide an interface between the hybrid genetic algorithm and the user. Additional features such as bounding the solution space and weighting the objective functions individually are also built into the interface. The algorithm developed was tested to optimize the functions developed for a wood pelleting process. Using process variables (such as feedstock moisture content, die speed, and preheating temperature) pellet properties were appropriately optimized. Specifically, variables were found which maximized unit density, bulk density, tapped density, and durability while minimizing pellet moisture content and specific energy consumption. The time and computational resources required for the optimization were dramatically decreased using the hybrid genetic algorithm when compared to MATLAB's native evolutionary optimization tool.« less

  1. A sample implementation for parallelizing Divide-and-Conquer algorithms on the GPU.

    PubMed

    Mei, Gang; Zhang, Jiayin; Xu, Nengxiong; Zhao, Kunyang

    2018-01-01

    The strategy of Divide-and-Conquer (D&C) is one of the frequently used programming patterns to design efficient algorithms in computer science, which has been parallelized on shared memory systems and distributed memory systems. Tzeng and Owens specifically developed a generic paradigm for parallelizing D&C algorithms on modern Graphics Processing Units (GPUs). In this paper, by following the generic paradigm proposed by Tzeng and Owens, we provide a new and publicly available GPU implementation of the famous D&C algorithm, QuickHull, to give a sample and guide for parallelizing D&C algorithms on the GPU. The experimental results demonstrate the practicality of our sample GPU implementation. Our research objective in this paper is to present a sample GPU implementation of a classical D&C algorithm to help interested readers to develop their own efficient GPU implementations with fewer efforts.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bosler, Peter Andrew; Roesler, Erika Louise; Taylor, Mark A.

    This article discusses the problem of identifying extreme climate events such as intense storms within large climate data sets. The basic storm detection algorithm is reviewed, which splits the problem into two parts: a spatial search followed by a temporal correlation problem. Two specific implementations of the spatial search algorithm are compared. The commonly used grid point search algorithm is reviewed, and a new algorithm called Stride Search is introduced. Stride Search is designed to work at all latitudes, while grid point searches may fail in polar regions. Results from the two algorithms are compared for the application of tropicalmore » cyclone detection, and shown to produce similar results for the same set of storm identification criteria. The time required for both algorithms to search the same data set is compared. Furthermore, Stride Search's ability to search extreme latitudes is demonstrated for the case of polar low detection.« less

  3. An experimental comparison of online object-tracking algorithms

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Chen, Feng; Xu, Wenli; Yang, Ming-Hsuan

    2011-09-01

    This paper reviews and evaluates several state-of-the-art online object tracking algorithms. Notwithstanding decades of efforts, object tracking remains a challenging problem due to factors such as illumination, pose, scale, deformation, motion blur, noise, and occlusion. To account for appearance change, most recent tracking algorithms focus on robust object representations and effective state prediction. In this paper, we analyze the components of each tracking method and identify their key roles in dealing with specific challenges, thereby shedding light on how to choose and design algorithms for different situations. We compare state-of-the-art online tracking methods including the IVT,1 VRT,2 FragT,3 BoostT,4 SemiT,5 BeSemiT,6 L1T,7 MILT,8 VTD9 and TLD10 algorithms on numerous challenging sequences, and evaluate them with different performance metrics. The qualitative and quantitative comparative results demonstrate the strength and weakness of these algorithms.

  4. Tailored Algorithm for Sensitivity Enhancement of Gas Concentration Sensors Based on Tunable Laser Absorption Spectroscopy.

    PubMed

    Vargas-Rodriguez, Everardo; Guzman-Chavez, Ana Dinora; Baeza-Serrato, Roberto

    2018-06-04

    In this work, a novel tailored algorithm to enhance the overall sensitivity of gas concentration sensors based on the Direct Absorption Tunable Laser Absorption Spectroscopy (DA-ATLAS) method is presented. By using this algorithm, the sensor sensitivity can be custom-designed to be quasi constant over a much larger dynamic range compared with that obtained by typical methods based on a single statistics feature of the sensor signal output (peak amplitude, area under the curve, mean or RMS). Additionally, it is shown that with our algorithm, an optimal function can be tailored to get a quasi linear relationship between the concentration and some specific statistics features over a wider dynamic range. In order to test the viability of our algorithm, a basic C 2 H 2 sensor based on DA-ATLAS was implemented, and its experimental measurements support the simulated results provided by our algorithm.

  5. Ultra-Low-Power MEMS Selective Gas Sensors

    NASA Technical Reports Server (NTRS)

    Stetter, Joseph

    2012-01-01

    This innovation is a system for gas sensing that includes an ultra-low-power MEMS (microelectromechanical system) gas sensor, combined with unique electronic circuitry and a proprietary algorithm for operating the sensor. The electronics were created from scratch, and represent a novel design capable of low-power operation of the proprietary MEMS gas sensor platform. The algorithm is used to identify a specific target gas in a gas mixture, making the sensor selective to that target gas.

  6. Particle Tracking Model Transport Process Verification: Diffusion Algorithm

    DTIC Science & Technology

    2015-07-01

    sediment densities in space and time along with final particle fates (Demirbilek et al. 2004; Davies et al. 2005; McDonald et al. 2006; Lackey and... McDonald 2007). Although a versatile model currently utilized in various coastal, estuarine, and riverine applications, PTM is specifically designed to...Algorithm 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7

  7. A constrained joint source/channel coder design and vector quantization of nonstationary sources

    NASA Technical Reports Server (NTRS)

    Sayood, Khalid; Chen, Y. C.; Nori, S.; Araj, A.

    1993-01-01

    The emergence of broadband ISDN as the network for the future brings with it the promise of integration of all proposed services in a flexible environment. In order to achieve this flexibility, asynchronous transfer mode (ATM) has been proposed as the transfer technique. During this period a study was conducted on the bridging of network transmission performance and video coding. The successful transmission of variable bit rate video over ATM networks relies on the interaction between the video coding algorithm and the ATM networks. Two aspects of networks that determine the efficiency of video transmission are the resource allocation algorithm and the congestion control algorithm. These are explained in this report. Vector quantization (VQ) is one of the more popular compression techniques to appear in the last twenty years. Numerous compression techniques, which incorporate VQ, have been proposed. While the LBG VQ provides excellent compression, there are also several drawbacks to the use of the LBG quantizers including search complexity and memory requirements, and a mismatch between the codebook and the inputs. The latter mainly stems from the fact that the VQ is generally designed for a specific rate and a specific class of inputs. In this work, an adaptive technique is proposed for vector quantization of images and video sequences. This technique is an extension of the recursively indexed scalar quantization (RISQ) algorithm.

  8. A comprehensive literature review of haplotyping software and methods for use with unrelated individuals.

    PubMed

    Salem, Rany M; Wessel, Jennifer; Schork, Nicholas J

    2005-03-01

    Interest in the assignment and frequency analysis of haplotypes in samples of unrelated individuals has increased immeasurably as a result of the emphasis placed on haplotype analyses by, for example, the International HapMap Project and related initiatives. Although there are many available computer programs for haplotype analysis applicable to samples of unrelated individuals, many of these programs have limitations and/or very specific uses. In this paper, the key features of available haplotype analysis software for use with unrelated individuals, as well as pooled DNA samples from unrelated individuals, are summarised. Programs for haplotype analysis were identified through keyword searches on PUBMED and various internet search engines, a review of citations from retrieved papers and personal communications, up to June 2004. Priority was given to functioning computer programs, rather than theoretical models and methods. The available software was considered in light of a number of factors: the algorithm(s) used, algorithm accuracy, assumptions, the accommodation of genotyping error, implementation of hypothesis testing, handling of missing data, software characteristics and web-based implementations. Review papers comparing specific methods and programs are also summarised. Forty-six haplotyping programs were identified and reviewed. The programs were divided into two groups: those designed for individual genotype data (a total of 43 programs) and those designed for use with pooled DNA samples (a total of three programs). The accuracy of programs using various criteria are assessed and the programs are categorised and discussed in light of: algorithm and method, accuracy, assumptions, genotyping error, hypothesis testing, missing data, software characteristics and web implementation. Many available programs have limitations (eg some cannot accommodate missing data) and/or are designed with specific tasks in mind (eg estimating haplotype frequencies rather than assigning most likely haplotypes to individuals). It is concluded that the selection of an appropriate haplotyping program for analysis purposes should be guided by what is known about the accuracy of estimation, as well as by the limitations and assumptions built into a program.

  9. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction

    PubMed Central

    2012-01-01

    Background Choosing appropriate primers is probably the single most important factor affecting the polymerase chain reaction (PCR). Specific amplification of the intended target requires that primers do not have matches to other targets in certain orientations and within certain distances that allow undesired amplification. The process of designing specific primers typically involves two stages. First, the primers flanking regions of interest are generated either manually or using software tools; then they are searched against an appropriate nucleotide sequence database using tools such as BLAST to examine the potential targets. However, the latter is not an easy process as one needs to examine many details between primers and targets, such as the number and the positions of matched bases, the primer orientations and distance between forward and reverse primers. The complexity of such analysis usually makes this a time-consuming and very difficult task for users, especially when the primers have a large number of hits. Furthermore, although the BLAST program has been widely used for primer target detection, it is in fact not an ideal tool for this purpose as BLAST is a local alignment algorithm and does not necessarily return complete match information over the entire primer range. Results We present a new software tool called Primer-BLAST to alleviate the difficulty in designing target-specific primers. This tool combines BLAST with a global alignment algorithm to ensure a full primer-target alignment and is sensitive enough to detect targets that have a significant number of mismatches to primers. Primer-BLAST allows users to design new target-specific primers in one step as well as to check the specificity of pre-existing primers. Primer-BLAST also supports placing primers based on exon/intron locations and excluding single nucleotide polymorphism (SNP) sites in primers. Conclusions We describe a robust and fully implemented general purpose primer design tool that designs target-specific PCR primers. Primer-BLAST offers flexible options to adjust the specificity threshold and other primer properties. This tool is publicly available at http://www.ncbi.nlm.nih.gov/tools/primer-blast. PMID:22708584

  10. Design Principles of Regulatory Networks: Searching for the Molecular Algorithms of the Cell

    PubMed Central

    Lim, Wendell A.; Lee, Connie M.; Tang, Chao

    2013-01-01

    A challenge in biology is to understand how complex molecular networks in the cell execute sophisticated regulatory functions. Here we explore the idea that there are common and general principles that link network structures to biological functions, principles that constrain the design solutions that evolution can converge upon for accomplishing a given cellular task. We describe approaches for classifying networks based on abstract architectures and functions, rather than on the specific molecular components of the networks. For any common regulatory task, can we define the space of all possible molecular solutions? Such inverse approaches might ultimately allow the assembly of a design table of core molecular algorithms that could serve as a guide for building synthetic networks and modulating disease networks. PMID:23352241

  11. Sensor Network Middleware for Cyber-Physical Systems: Opportunities and Challenges

    NASA Astrophysics Data System (ADS)

    Singh, G.

    2015-12-01

    Wireless Sensor Network middleware typically provides abstractions for common tasks such as atomicity, synchronization and communication with the intention of isolating the developers of distributed applications from lower-level details of the underlying platforms. Developing middleware to meet the performance constraints of applications is an important challenge. Although one would like to develop generic middleware services which can be used in a variety of different applications, efficiency considerations often force developers to design middleware and algorithms customized to specific operational contexts. This presentation will discuss techniques to design middleware that is customizable to suit the performance needs of specific applications. We also discuss the challenges poised in designing middleware for pervasive sensor networks and cyber-physical systems with specific focus on environmental monitoring.

  12. Joint design of large-tip-angle parallel RF pulses and blipped gradient trajectories.

    PubMed

    Cao, Zhipeng; Donahue, Manus J; Ma, Jun; Grissom, William A

    2016-03-01

    To design multichannel large-tip-angle kT-points and spokes radiofrequency (RF) pulses and gradient waveforms for transmit field inhomogeneity compensation in high field magnetic resonance imaging. An algorithm to design RF subpulse weights and gradient blip areas is proposed to minimize a magnitude least-squares cost function that measures the difference between realized and desired state parameters in the spin domain, and penalizes integrated RF power. The minimization problem is solved iteratively with interleaved target phase updates, RF subpulse weights updates using the conjugate gradient method with optimal control-based derivatives, and gradient blip area updates using the conjugate gradient method. Two-channel parallel transmit simulations and experiments were conducted in phantoms and human subjects at 7 T to demonstrate the method and compare it to small-tip-angle-designed pulses and circularly polarized excitations. The proposed algorithm designed more homogeneous and accurate 180° inversion and refocusing pulses than other methods. It also designed large-tip-angle pulses on multiple frequency bands with independent and joint phase relaxation. Pulses designed by the method improved specificity and contrast-to-noise ratio in a finger-tapping spin echo blood oxygen level dependent functional magnetic resonance imaging study, compared with circularly polarized mode refocusing. A joint RF and gradient waveform design algorithm was proposed and validated to improve large-tip-angle inversion and refocusing at ultrahigh field. © 2015 Wiley Periodicals, Inc.

  13. Exploration of available feature detection and identification systems and their performance on radiographs

    NASA Astrophysics Data System (ADS)

    Wantuch, Andrew C.; Vita, Joshua A.; Jimenez, Edward S.; Bray, Iliana E.

    2016-10-01

    Despite object detection, recognition, and identification being very active areas of computer vision research, many of the available tools to aid in these processes are designed with only photographs in mind. Although some algorithms used specifically for feature detection and identification may not take explicit advantage of the colors available in the image, they still under-perform on radiographs, which are grayscale images. We are especially interested in the robustness of these algorithms, specifically their performance on a preexisting database of X-ray radiographs in compressed JPEG form, with multiple ways of describing pixel information. We will review various aspects of the performance of available feature detection and identification systems, including MATLABs Computer Vision toolbox, VLFeat, and OpenCV on our non-ideal database. In the process, we will explore possible reasons for the algorithms' lessened ability to detect and identify features from the X-ray radiographs.

  14. Design of nucleic acid sequences for DNA computing based on a thermodynamic approach

    PubMed Central

    Tanaka, Fumiaki; Kameda, Atsushi; Yamamoto, Masahito; Ohuchi, Azuma

    2005-01-01

    We have developed an algorithm for designing multiple sequences of nucleic acids that have a uniform melting temperature between the sequence and its complement and that do not hybridize non-specifically with each other based on the minimum free energy (ΔGmin). Sequences that satisfy these constraints can be utilized in computations, various engineering applications such as microarrays, and nano-fabrications. Our algorithm is a random generate-and-test algorithm: it generates a candidate sequence randomly and tests whether the sequence satisfies the constraints. The novelty of our algorithm is that the filtering method uses a greedy search to calculate ΔGmin. This effectively excludes inappropriate sequences before ΔGmin is calculated, thereby reducing computation time drastically when compared with an algorithm without the filtering. Experimental results in silico showed the superiority of the greedy search over the traditional approach based on the hamming distance. In addition, experimental results in vitro demonstrated that the experimental free energy (ΔGexp) of 126 sequences correlated well with ΔGmin (|R| = 0.90) than with the hamming distance (|R| = 0.80). These results validate the rationality of a thermodynamic approach. We implemented our algorithm in a graphic user interface-based program written in Java. PMID:15701762

  15. Anatomy-Based Algorithms for Detecting Oral Cancer Using Reflectance and Fluorescence Spectroscopy

    PubMed Central

    McGee, Sasha; Mardirossian, Vartan; Elackattu, Alphi; Mirkovic, Jelena; Pistey, Robert; Gallagher, George; Kabani, Sadru; Yu, Chung-Chieh; Wang, Zimmern; Badizadegan, Kamran; Grillone, Gregory; Feld, Michael S.

    2010-01-01

    Objectives We used reflectance and fluorescence spectroscopy to noninvasively and quantitatively distinguish benign from dysplastic/malignant oral lesions. We designed diagnostic algorithms to account for differences in the spectral properties among anatomic sites (gingiva, buccal mucosa, etc). Methods In vivo reflectance and fluorescence spectra were collected from 71 patients with oral lesions. The tissue was then biopsied and the specimen evaluated by histopathology. Quantitative parameters related to tissue morphology and biochemistry were extracted from the spectra. Diagnostic algorithms specific for combinations of sites with similar spectral properties were developed. Results Discrimination of benign from dysplastic/malignant lesions was most successful when algorithms were designed for individual sites (area under the receiver operator characteristic curve [ROC-AUC], 0.75 for the lateral surface of the tongue) and was least accurate when all sites were combined (ROC-AUC, 0.60). The combination of sites with similar spectral properties (floor of mouth and lateral surface of the tongue) yielded an ROC-AUC of 0.71. Conclusions Accurate spectroscopic detection of oral disease must account for spectral variations among anatomic sites. Anatomy-based algorithms for single sites or combinations of sites demonstrated good diagnostic performance in distinguishing benign lesions from dysplastic/malignant lesions and consistently performed better than algorithms developed for all sites combined. PMID:19999369

  16. Eye center localization and gaze gesture recognition for human-computer interaction.

    PubMed

    Zhang, Wenhao; Smith, Melvyn L; Smith, Lyndon N; Farooq, Abdul

    2016-03-01

    This paper introduces an unsupervised modular approach for accurate and real-time eye center localization in images and videos, thus allowing a coarse-to-fine, global-to-regional scheme. The trajectories of eye centers in consecutive frames, i.e., gaze gestures, are further analyzed, recognized, and employed to boost the human-computer interaction (HCI) experience. This modular approach makes use of isophote and gradient features to estimate the eye center locations. A selective oriented gradient filter has been specifically designed to remove strong gradients from eyebrows, eye corners, and shadows, which sabotage most eye center localization methods. A real-world implementation utilizing these algorithms has been designed in the form of an interactive advertising billboard to demonstrate the effectiveness of our method for HCI. The eye center localization algorithm has been compared with 10 other algorithms on the BioID database and six other algorithms on the GI4E database. It outperforms all the other algorithms in comparison in terms of localization accuracy. Further tests on the extended Yale Face Database b and self-collected data have proved this algorithm to be robust against moderate head poses and poor illumination conditions. The interactive advertising billboard has manifested outstanding usability and effectiveness in our tests and shows great potential for benefiting a wide range of real-world HCI applications.

  17. Common spaceborne multicomputer operating system and development environment

    NASA Technical Reports Server (NTRS)

    Craymer, L. G.; Lewis, B. F.; Hayes, P. J.; Jones, R. L.

    1994-01-01

    A preliminary technical specification for a multicomputer operating system is developed. The operating system is targeted for spaceborne flight missions and provides a broad range of real-time functionality, dynamic remote code-patching capability, and system fault tolerance and long-term survivability features. Dataflow concepts are used for representing application algorithms. Functional features are included to ensure real-time predictability for a class of algorithms which require data-driven execution on an iterative steady state basis. The development environment supports the development of algorithm code, design of control parameters, performance analysis, simulation of real-time dataflow applications, and compiling and downloading of the resulting application.

  18. A Massively Parallel Computational Method of Reading Index Files for SOAPsnv.

    PubMed

    Zhu, Xiaoqian; Peng, Shaoliang; Liu, Shaojie; Cui, Yingbo; Gu, Xiang; Gao, Ming; Fang, Lin; Fang, Xiaodong

    2015-12-01

    SOAPsnv is the software used for identifying the single nucleotide variation in cancer genes. However, its performance is yet to match the massive amount of data to be processed. Experiments reveal that the main performance bottleneck of SOAPsnv software is the pileup algorithm. The original pileup algorithm's I/O process is time-consuming and inefficient to read input files. Moreover, the scalability of the pileup algorithm is also poor. Therefore, we designed a new algorithm, named BamPileup, aiming to improve the performance of sequential read, and the new pileup algorithm implemented a parallel read mode based on index. Using this method, each thread can directly read the data start from a specific position. The results of experiments on the Tianhe-2 supercomputer show that, when reading data in a multi-threaded parallel I/O way, the processing time of algorithm is reduced to 3.9 s and the application program can achieve a speedup up to 100×. Moreover, the scalability of the new algorithm is also satisfying.

  19. Exploiting Redundancy and Application Scalability for Cost-Effective, Time-Constrained Execution of HPC Applications on Amazon EC2

    DOE PAGES

    Marathe, Aniruddha P.; Harris, Rachel A.; Lowenthal, David K.; ...

    2015-12-17

    The use of clouds to execute high-performance computing (HPC) applications has greatly increased recently. Clouds provide several potential advantages over traditional supercomputers and in-house clusters. The most popular cloud is currently Amazon EC2, which provides fixed-cost and variable-cost, auction-based options. The auction market trades lower cost for potential interruptions that necessitate checkpointing; if the market price exceeds the bid price, a node is taken away from the user without warning. We explore techniques to maximize performance per dollar given a time constraint within which an application must complete. Specifically, we design and implement multiple techniques to reduce expected cost bymore » exploiting redundancy in the EC2 auction market. We then design an adaptive algorithm that selects a scheduling algorithm and determines the bid price. We show that our adaptive algorithm executes programs up to seven times cheaper than using the on-demand market and up to 44 percent cheaper than the best non-redundant, auction-market algorithm. We extend our adaptive algorithm to incorporate application scalability characteristics for further cost savings. In conclusion, we show that the adaptive algorithm informed with scalability characteristics of applications achieves up to 56 percent cost savings compared to the expected cost for the base adaptive algorithm run at a fixed, user-defined scale.« less

  20. Modeling Group Interactions via Open Data Sources

    DTIC Science & Technology

    2011-08-30

    data. The state-of-art search engines are designed to help general query-specific search and not suitable for finding disconnected online groups. The...groups, (2) developing innovative mathematical and statistical models and efficient algorithms that leverage existing search engines and employ

  1. 40 CFR 86.1809-12 - Prohibition of defeat devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... programs, engineering evaluations, design specifications, calibrations, on-board computer algorithms, and... manufacturer must submit, with the Part II certification application, an engineering evaluation demonstrating... vehicles, the engineering evaluation must also include particulate emissions. [75 FR 25685, May 7, 2010] ...

  2. High performance genetic algorithm for VLSI circuit partitioning

    NASA Astrophysics Data System (ADS)

    Dinu, Simona

    2016-12-01

    Partitioning is one of the biggest challenges in computer-aided design for VLSI circuits (very large-scale integrated circuits). This work address the min-cut balanced circuit partitioning problem- dividing the graph that models the circuit into almost equal sized k sub-graphs while minimizing the number of edges cut i.e. minimizing the number of edges connecting the sub-graphs. The problem may be formulated as a combinatorial optimization problem. Experimental studies in the literature have shown the problem to be NP-hard and thus it is important to design an efficient heuristic algorithm to solve it. The approach proposed in this study is a parallel implementation of a genetic algorithm, namely an island model. The information exchange between the evolving subpopulations is modeled using a fuzzy controller, which determines an optimal balance between exploration and exploitation of the solution space. The results of simulations show that the proposed algorithm outperforms the standard sequential genetic algorithm both in terms of solution quality and convergence speed. As a direction for future study, this research can be further extended to incorporate local search operators which should include problem-specific knowledge. In addition, the adaptive configuration of mutation and crossover rates is another guidance for future research.

  3. Optimal Design of Gradient Materials and Bi-Level Optimization of Topology Using Targets (BOTT)

    NASA Astrophysics Data System (ADS)

    Garland, Anthony

    The objective of this research is to understand the fundamental relationships necessary to develop a method to optimize both the topology and the internal gradient material distribution of a single object while meeting constraints and conflicting objectives. Functionally gradient material (FGM) objects possess continuous varying material properties throughout the object, and they allow an engineer to tailor individual regions of an object to have specific mechanical properties by locally modifying the internal material composition. A variety of techniques exists for topology optimization, and several methods exist for FGM optimization, but combining the two together is difficult. Understanding the relationship between topology and material gradient optimization enables the selection of an appropriate model and the development of algorithms, which allow engineers to design high-performance parts that better meet design objectives than optimized homogeneous material objects. For this research effort, topology optimization means finding the optimal connected structure with an optimal shape. FGM optimization means finding the optimal macroscopic material properties within an object. Tailoring the material constitutive matrix as a function of position results in gradient properties. Once, the target macroscopic properties are known, a mesostructure or a particular material nanostructure can be found which gives the target material properties at each macroscopic point. This research demonstrates that topology and gradient materials can both be optimized together for a single part. The algorithms use a discretized model of the domain and gradient based optimization algorithms. In addition, when considering two conflicting objectives the algorithms in this research generate clear 'features' within a single part. This tailoring of material properties within different areas of a single part (automated design of 'features') using computational design tools is a novel benefit of gradient material designs. A macroscopic gradient can be achieved by varying the microstructure or the mesostructures of an object. The mesostructure interpretation allows for more design freedom since the mesostructures can be tuned to have non-isotropic material properties. A new algorithm called Bi-level Optimization of Topology using Targets (BOTT) seeks to find the best distribution of mesostructure designs throughout a single object in order to minimize an objective value. On the macro level, the BOTT algorithm optimizes the macro topology and gradient material properties within the object. The BOTT algorithm optimizes the material gradient by finding the best constitutive matrix at each location with the object. In order to enhance the likelihood that a mesostructure can be generated with the same equivalent constitutive matrix, the variability of the constitutive matrix is constrained to be an orthotropic material. The stiffness in the X and Y directions (of the base coordinate system) can change in addition to rotating the orthotropic material to align with the loading at each region. Second, the BOTT algorithm designs mesostructures with macroscopic properties equal to the target properties found in step one while at the same time the algorithm seeks to minimize material usage in each mesostructure. The mesostructure algorithm maximizes the strain energy of the mesostructures unit cell when a pseudo strain is applied to the cell. A set of experiments reveals the fundamental relationship between target cell density and the strain (or pseudo strain) applied to a unit cell and the output effective properties of the mesostructure. At low density, a few mesostructure unit cell design are possible, while at higher density the mesostructure unit cell designs have many possibilities. Therefore, at low densities the effective properties of the mesostructure are a step function of the applied pseudo strain. At high densities, the effective properties of the mesostructure are continuous function of the applied pseudo strain. Finally, the macro and mesostructure designs are coordinated so that the macro and meso levels agree on the material properties at each macro region. In addition, a coordination effort seeks to coordinate the boundaries of adjacent mesostructure designs so that the macro load path is transmitted from one mesostructure design to its neighbors. The BOTT algorithm has several advantages over existing algorithms within the literature. First, the BOTT algorithm significantly reduces the computational power required to run the algorithm. Second, the BOTT algorithm indirectly enforces a minimum mesostructure density constraint which increases the manufacturability of the final design. Third, the BOTT algorithm seeks to transfer the load from one mesostructure to its neighbors by coordinating the boundaries of adjacent mesostructure designs. However, the BOTT algorithm can still be improved since it may have difficulty converging due to the step function nature of the mesostructure design problem at low density.

  4. Compensator improvement for multivariable control systems

    NASA Technical Reports Server (NTRS)

    Mitchell, J. R.; Mcdaniel, W. L., Jr.; Gresham, L. L.

    1977-01-01

    A theory and the associated numerical technique are developed for an iterative design improvement of the compensation for linear, time-invariant control systems with multiple inputs and multiple outputs. A strict constraint algorithm is used in obtaining a solution of the specified constraints of the control design. The result of the research effort is the multiple input, multiple output Compensator Improvement Program (CIP). The objective of the Compensator Improvement Program is to modify in an iterative manner the free parameters of the dynamic compensation matrix so that the system satisfies frequency domain specifications. In this exposition, the underlying principles of the multivariable CIP algorithm are presented and the practical utility of the program is illustrated with space vehicle related examples.

  5. Performance optimization of the power user electric energy data acquire system based on MOEA/D evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Ding, Zhongan; Gao, Chen; Yan, Shengteng; Yang, Canrong

    2017-10-01

    The power user electric energy data acquire system (PUEEDAS) is an important part of smart grid. This paper builds a multi-objective optimization model for the performance of the PUEEADS from the point of view of the combination of the comprehensive benefits and cost. Meanwhile, the Chebyshev decomposition approach is used to decompose the multi-objective optimization problem. We design a MOEA/D evolutionary algorithm to solve the problem. By analyzing the Pareto optimal solution set of multi-objective optimization problem and comparing it with the monitoring value to grasp the direction of optimizing the performance of the PUEEDAS. Finally, an example is designed for specific analysis.

  6. A DVE Time Management Simulation and Verification Platform Based on Causality Consistency Middleware

    NASA Astrophysics Data System (ADS)

    Zhou, Hangjun; Zhang, Wei; Peng, Yuxing; Li, Sikun

    During the course of designing a time management algorithm for DVEs, the researchers always become inefficiency for the distraction from the realization of the trivial and fundamental details of simulation and verification. Therefore, a platform having realized theses details is desirable. However, this has not been achieved in any published work to our knowledge. In this paper, we are the first to design and realize a DVE time management simulation and verification platform providing exactly the same interfaces as those defined by the HLA Interface Specification. Moreover, our platform is based on a new designed causality consistency middleware and might offer the comparison of three kinds of time management services: CO, RO and TSO. The experimental results show that the implementation of the platform only costs small overhead, and that the efficient performance of it is highly effective for the researchers to merely focus on the improvement of designing algorithms.

  7. Intelligent Visual Input: A Graphical Method for Rapid Entry of Patient-Specific Data

    PubMed Central

    Bergeron, Bryan P.; Greenes, Robert A.

    1987-01-01

    Intelligent Visual Input (IVI) provides a rapid, graphical method of data entry for both expert system interaction and medical record keeping purposes. Key components of IVI include: a high-resolution graphic display; an interface supportive of rapid selection, i.e., one utilizing a mouse or light pen; algorithm simplification modules; and intelligent graphic algorithm expansion modules. A prototype IVI system, designed to facilitate entry of physical exam findings, is used to illustrates the potential advantages of this approach.

  8. Aerodynamic shape optimization directed toward a supersonic transport using sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay

    1995-01-01

    This investigation was conducted from March 1994 to August 1995, primarily, to extend and implement the previously developed aerodynamic design optimization methodologies for the problems related to a supersonic transport design. These methods had demonstrated promise to improve the designs (more specifically, the shape) of aerodynamic surfaces, by coupling optimization algorithms (OA) with Computational Fluid Dynamics (CFD) algorithms via sensitivity analyses (SA) with surface definition methods from Computer Aided Design (CAD). The present extensions of this method and their supersonic implementations have produced wing section designs, delta wing designs, cranked-delta wing designs, and nacelle designs, all of which have been reported in the open literature. Despite the fact that these configurations were highly simplified to be of any practical or commercial use, they served the algorithmic and proof-of-concept objectives of the study very well. The primary cause for the configurational simplifications, other than the usual simplify-to-study the fundamentals reason, were the premature closing of the project. Only after the first of the originally intended three-year term, both the funds and the computer resources supporting the project were abruptly cut due to their severe shortages at the funding agency. Nonetheless, it was shown that the extended methodologies could be viable options in optimizing the design of not only an isolated single-component configuration, but also a multiple-component configuration in supersonic and viscous flow. This allowed designing with the mutual interference of the components being one of the constraints all along the evolution of the shapes.

  9. Verification of the FtCayuga fault-tolerant microprocessor system. Volume 2: Formal specification and correctness theorems

    NASA Technical Reports Server (NTRS)

    Bickford, Mark; Srivas, Mandayam

    1991-01-01

    Presented here is a formal specification and verification of a property of a quadruplicately redundant fault tolerant microprocessor system design. A complete listing of the formal specification of the system and the correctness theorems that are proved are given. The system performs the task of obtaining interactive consistency among the processors using a special instruction on the processors. The design is based on an algorithm proposed by Pease, Shostak, and Lamport. The property verified insures that an execution of the special instruction by the processors correctly accomplishes interactive consistency, providing certain preconditions hold, using a computer aided design verification tool, Spectool, and the theorem prover, Clio. A major contribution of the work is the demonstration of a significant fault tolerant hardware design that is mechanically verified by a theorem prover.

  10. Analysis and simulation tools for solar array power systems

    NASA Astrophysics Data System (ADS)

    Pongratananukul, Nattorn

    This dissertation presents simulation tools developed specifically for the design of solar array power systems. Contributions are made in several aspects of the system design phases, including solar source modeling, system simulation, and controller verification. A tool to automate the study of solar array configurations using general purpose circuit simulators has been developed based on the modeling of individual solar cells. Hierarchical structure of solar cell elements, including semiconductor properties, allows simulation of electrical properties as well as the evaluation of the impact of environmental conditions. A second developed tool provides a co-simulation platform with the capability to verify the performance of an actual digital controller implemented in programmable hardware such as a DSP processor, while the entire solar array including the DC-DC power converter is modeled in software algorithms running on a computer. This "virtual plant" allows developing and debugging code for the digital controller, and also to improve the control algorithm. One important task in solar arrays is to track the maximum power point on the array in order to maximize the power that can be delivered. Digital controllers implemented with programmable processors are particularly attractive for this task because sophisticated tracking algorithms can be implemented and revised when needed to optimize their performance. The proposed co-simulation tools are thus very valuable in developing and optimizing the control algorithm, before the system is built. Examples that demonstrate the effectiveness of the proposed methodologies are presented. The proposed simulation tools are also valuable in the design of multi-channel arrays. In the specific system that we have designed and tested, the control algorithm is implemented on a single digital signal processor. In each of the channels the maximum power point is tracked individually. In the prototype we built, off-the-shelf commercial DC-DC converters were utilized. At the end, the overall performance of the entire system was evaluated using solar array simulators capable of simulating various I-V characteristics, and also by using an electronic load. Experimental results are presented.

  11. Cyber attack analysis on cyber-physical systems: Detectability, severity, and attenuation strategy

    NASA Astrophysics Data System (ADS)

    Kwon, Cheolhyeon

    Security of Cyber-Physical Systems (CPS) against malicious cyber attacks is an important yet challenging problem. Since most cyber attacks happen in erratic ways, it is usually intractable to describe and diagnose them systematically. Motivated by such difficulties, this thesis presents a set of theories and algorithms for a cyber-secure architecture of the CPS within the control theoretic perspective. Here, instead of identifying a specific cyber attack model, we are focused on analyzing the system's response during cyber attacks. Firstly, we investigate the detectability of the cyber attacks from the system's behavior under cyber attacks. Specifically, we conduct a study on the vulnerabilities in the CPS's monitoring system against the stealthy cyber attack that is carefully designed to avoid being detected by its detection scheme. After classifying three kinds of cyber attacks according to the attacker's ability to compromise the system, we derive the necessary and sufficient conditions under which such stealthy cyber attacks can be designed to cause the unbounded estimation error while not being detected. Then, the analytical design method of the optimal stealthy cyber attack that maximizes the estimation error is developed. The proposed stealthy cyber attack analysis is demonstrated with illustrative examples on Air Traffic Control (ATC) system and Unmanned Aerial Vehicle (UAV) navigation system applications. Secondly, in an attempt to study the CPSs' vulnerabilities in more detail, we further discuss a methodology to identify potential cyber threats inherent in the given CPSs and quantify the attack severity accordingly. We then develop an analytical algorithm to test the behavior of the CPS under various cyber attack combinations. Compared to a numerical approach, the analytical algorithm enables the prediction of the most effective cyber attack combinations without computing the severity of all possible attack combinations, thereby greatly reducing the computational cost. The proposed algorithm is validated through a linearized longitudinal motion of a UAV example. Finally, we propose an attack attenuation strategy via the controller design for CPSs that are robust to various types of cyber attacks. While the previous studies have investigated a secure control by assuming a specific attack strategy, in this research we propose a hybrid robust control scheme that contains multiple sub-controllers, each matched to a specific type of cyber attacks. Then the system can be adapted to various cyber attacks (including those that are not assumed for sub-controller design) by switching its sub-controllers to achieve the best performance. Then, a method for designing a secure switching logic to counter all possible cyber attacks is proposed and it verifies mathematically the system's performance and stability as well. The performance of the proposed control scheme is demonstrated by an example with the hybrid H2 - H-infinity controller applied to a UAV example.

  12. Michael F. Crowley | NREL

    Science.gov Websites

    architectures. Crowlely's group has designed and implemented new methods and algorithms specifically for biomass , Crowley developed highly parallel methods for simulations of bio-macromolecules. Affiliated Research advanced sampling methods, Crowley and his team determine free energies such as binding of substrates

  13. 40 CFR 86.1809-10 - Prohibition of defeat devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... programs, engineering evaluations, design specifications, calibrations, on-board computer algorithms, and..., with the Part II certification application, an engineering evaluation demonstrating to the satisfaction... not occur in the temperature range of 20 to 86 °F. For diesel vehicles, the engineering evaluation...

  14. Super-resolution for imagery from integrated microgrid polarimeters.

    PubMed

    Hardie, Russell C; LeMaster, Daniel A; Ratliff, Bradley M

    2011-07-04

    Imagery from microgrid polarimeters is obtained by using a mosaic of pixel-wise micropolarizers on a focal plane array (FPA). Each distinct polarization image is obtained by subsampling the full FPA image. Thus, the effective pixel pitch for each polarization channel is increased and the sampling frequency is decreased. As a result, aliasing artifacts from such undersampling can corrupt the true polarization content of the scene. Here we present the first multi-channel multi-frame super-resolution (SR) algorithms designed specifically for the problem of image restoration in microgrid polarization imagers. These SR algorithms can be used to address aliasing and other degradations, without sacrificing field of view or compromising optical resolution with an anti-aliasing filter. The new SR methods are designed to exploit correlation between the polarimetric channels. One of the new SR algorithms uses a form of regularized least squares and has an iterative solution. The other is based on the faster adaptive Wiener filter SR method. We demonstrate that the new multi-channel SR algorithms are capable of providing significant enhancement of polarimetric imagery and that they outperform their independent channel counterparts.

  15. ROMUSE 2.0 User Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khuwaileh, Bassam; Turinsky, Paul; Williams, Brian J.

    2016-10-04

    ROMUSE (Reduced Order Modeling Based Uncertainty/Sensitivity Estimator) is an effort within the Consortium for Advanced Simulation of Light water reactors (CASL) to provide an analysis tool to be used in conjunction with reactor core simulators, especially the Virtual Environment for Reactor Applications (VERA). ROMUSE is written in C++ and is currently capable of performing various types of parameters perturbations, uncertainty quantification, surrogate models construction and subspace analysis. Version 2.0 has the capability to interface with DAKOTA which gives ROMUSE access to the various algorithms implemented within DAKOTA. ROMUSE is mainly designed to interface with VERA and the Comprehensive Modeling andmore » Simulation Suite for Nuclear Safety Analysis and Design (SCALE) [1,2,3], however, ROMUSE can interface with any general model (e.g. python and matlab) with Input/Output (I/O) format that follows the Hierarchical Data Format 5 (HDF5). In this brief user manual, the use of ROMUSE will be overviewed and example problems will be presented and briefly discussed. The algorithms provided here range from algorithms inspired by those discussed in Ref.[4] to nuclear-specific algorithms discussed in Ref. [3].« less

  16. CHAM: weak signals detection through a new multivariate algorithm for process control

    NASA Astrophysics Data System (ADS)

    Bergeret, François; Soual, Carole; Le Gratiet, B.

    2016-10-01

    Derivatives technologies based on core CMOS processes are significantly aggressive in term of design rules and process control requirements. Process control plan is a derived from Process Assumption (PA) calculations which result in a design rule based on known process variability capabilities, taking into account enough margin to be safe not only for yield but especially for reliability. Even though process assumptions are calculated with a 4 sigma known process capability margin, efficient and competitive designs are challenging the process especially for derivatives technologies in 40 and 28nm nodes. For wafer fab process control, PA are declined in monovariate (layer1 CD, layer2 CD, layer2 to layer1 overlay, layer3 CD etc….) control charts with appropriated specifications and control limits which all together are securing the silicon. This is so far working fine but such system is not really sensitive to weak signals coming from interactions of multiple key parameters (high layer2 CD combined with high layer3 CD as an example). CHAM is a software using an advanced statistical algorithm specifically designed to detect small signals, especially when there are many parameters to control and when the parameters can interact to create yield issues. In this presentation we will first present the CHAM algorithm, then the case-study on critical dimensions, with the results, and we will conclude on future work. This partnership between Ippon and STM is part of E450LMDAP, European project dedicated to metrology and lithography development for future technology nodes, especially 10nm.

  17. Adaptive Augmenting Control Flight Characterization Experiment on an F/A-18

    NASA Technical Reports Server (NTRS)

    VanZwieten, Tannen S.; Orr, Jeb S.; Wall, John H.; Gilligan, Eric T.

    2014-01-01

    This paper summarizes the Adaptive Augmenting Control (AAC) flight characterization experiments performed using an F/A-18 (TN 853). AAC was designed and developed specifically for launch vehicles, and is currently part of the baseline autopilot design for NASA's Space Launch System (SLS). The scope covered here includes a brief overview of the algorithm (covered in more detail elsewhere), motivation and benefits of flight testing, top-level SLS flight test objectives, applicability of the F/A-18 as a platform for testing a launch vehicle control design, test cases designed to fully vet the AAC algorithm, flight test results, and conclusions regarding the functionality of AAC. The AAC algorithm developed at Marshall Space Flight Center is a forward loop gain multiplicative adaptive algorithm that modifies the total attitude control system gain in response to sensed model errors or undesirable parasitic mode resonances. The AAC algorithm provides the capability to improve or decrease performance by balancing attitude tracking with the mitigation of parasitic dynamics, such as control-structure interaction or servo-actuator limit cycles. In the case of the latter, if unmodeled or mismodeled parasitic dynamics are present that would otherwise result in a closed-loop instability or near instability, the adaptive controller decreases the total loop gain to reduce the interaction between these dynamics and the controller. This is in contrast to traditional adaptive control logic, which focuses on improving performance by increasing gain. The computationally simple AAC attitude control algorithm has stability properties that are reconcilable in the context of classical frequency-domain criteria (i.e., gain and phase margin). The algorithm assumes that the baseline attitude control design is well-tuned for a nominal trajectory and is designed to adapt only when necessary. Furthermore, the adaptation is attracted to the nominal design and adapts only on an as-needed basis (see Figure 1). The MSFC algorithm design was formulated during the Constellation Program and reached a high maturity level during SLS through simulation-based development and internal and external analytical review. The AAC algorithm design has three summary-level objectives: (1) "Do no harm;" return to baseline control design when not needed, (2) Increase performance; respond to error in ability of vehicle to track command, and (3) Regain stability; respond to undesirable control-structure interaction or other parasitic dynamics. AAC has been successfully implemented as part of the Space Launch System baseline design, including extensive testing in high-fidelity 6-DOF simulations the details of which are described in [1]. The Dryden Flight Research Center's F/A-18 Full-Scale Advanced Systems Testbed (FAST) platform is used to conduct an algorithm flight characterization experiment intended to fully vet the aforementioned design objectives. FAST was specifically designed with this type of test program in mind. The onboard flight control system has full-authority experiment control of ten aerodynamic effectors and two throttles. It has production and research sensor inputs and pilot engage/disengage and real-time configuration of up to eight different experiments on a single flight. It has failure detection and automatic reversion to fail-safe mode. The F/A-18 aircraft has an experiment envelope cleared for full-authority control and maneuvering and exhibits characteristics for robust recovery from unusual attitudes and configurations aided by the presence of a qualified test pilot. The F/A-18 aircraft has relatively high mass and inertia with exceptional performance; the F/A-18 also has a large thrust-to-weight ratio, owing to its military heritage. This enables the simulation of a portion of the ascent trajectory with a high degree of dynamic similarity to a launch vehicle, and the research flight control system can simulate unstable longitudinal dynamics. Parasitic dynamics such as slosh and bending modes, as well as atmospheric disturbances, are being produced by the airframe via modification of bending filters and the use of secondary control surfaces, including leading and trailing edge flaps, symmetric ailerons, and symmetric rudders. The platform also has the ability to inject signals in flight to simulate structural mode resonances or other challenging dynamics. This platform also offers more test maneuvers and longer maneuver times than a single rocket or missile test, which provides ample opportunity to fully and repeatedly exercise all aspects of the algorithm. Prior to testing on an F/A-18, AAC was the only component of the SLS autopilot design that had not been flight tested. The testing described in this paper raises the Technology Readiness Level (TRL) early in the SLS Program and is able to demonstrate its capabilities and robustness in a flight environment.

  18. Adaptive rehabilitation gaming system: on-line individualization of stroke rehabilitation.

    PubMed

    Nirme, Jens; Duff, Armin; Verschure, Paul F M J

    2011-01-01

    The effects of stroke differ considerably in degree and symptoms for different patients. It has been shown that specific, individualized and varied therapy favors recovery. The Rehabilitation Gaming System (RGS) is a Virtual Reality (VR) based rehabilitation system designed following these principles. We have developed two algorithms to control the level of task difficulty that a user of the RGS is exposed to, as well as providing controlled variation in the therapy. In this paper, we compare the two algorithms by running numerical simulations and a study with healthy subjects. We show that both algorithms allow for individualization of the challenge level of the task. Further, the results reveal that the algorithm that iteratively learns a user model for each subject also allows a high variation of the task.

  19. Face verification with balanced thresholds.

    PubMed

    Yan, Shuicheng; Xu, Dong; Tang, Xiaoou

    2007-01-01

    The process of face verification is guided by a pre-learned global threshold, which, however, is often inconsistent with class-specific optimal thresholds. It is, hence, beneficial to pursue a balance of the class-specific thresholds in the model-learning stage. In this paper, we present a new dimensionality reduction algorithm tailored to the verification task that ensures threshold balance. This is achieved by the following aspects. First, feasibility is guaranteed by employing an affine transformation matrix, instead of the conventional projection matrix, for dimensionality reduction, and, hence, we call the proposed algorithm threshold balanced transformation (TBT). Then, the affine transformation matrix, constrained as the product of an orthogonal matrix and a diagonal matrix, is optimized to improve the threshold balance and classification capability in an iterative manner. Unlike most algorithms for face verification which are directly transplanted from face identification literature, TBT is specifically designed for face verification and clarifies the intrinsic distinction between these two tasks. Experiments on three benchmark face databases demonstrate that TBT significantly outperforms the state-of-the-art subspace techniques for face verification.

  20. The Texas Children's Medication Algorithm Project: Report of the Texas Consensus Conference Panel on Medication Treatment of Childhood Attention-Deficit/Hyperactivity Disorder. Part II: Tactics. Attention-Deficit/Hyperactivity Disorder.

    PubMed

    Pliszka, S R; Greenhill, L L; Crismon, M L; Sedillo, A; Carlson, C; Conners, C K; McCracken, J T; Swanson, J M; Hughes, C W; Llana, M E; Lopez, M; Toprac, M G

    2000-07-01

    Expert consensus methodology was used to develop a medication treatment algorithm for attention-deficit/hyperactivity disorder (ADHD). The algorithm broadly outlined the choice of medication for ADHD and some of its most common comorbid conditions. Specific tactical recommendations were developed with regard to medication dosage, assessment of drug response, management of side effects, and long-term medication management. The consensus conference of academic clinicians and researchers, practicing clinicians, administrators, consumers, and families developed evidence-based tactics for the pharmacotherapy of childhood ADHD and its common comorbid disorders. The panel discussed specifics of treatment of ADHD and its comorbid conditions with stimulants, antidepressants, mood stabilizers, alpha-agonists, and (when appropriate) antipsychotics. Specific tactics for the use of each of the above agents are outlined. The tactics are designed to be practical for implementation in the public mental health sector, but they may have utility in many practice settings, including the private practice environment. Tactics for psychopharmacological management of ADHD can be developed with consensus.

  1. Optimization of the sources in local hyperthermia using a combined finite element-genetic algorithm method.

    PubMed

    Siauve, N; Nicolas, L; Vollaire, C; Marchal, C

    2004-12-01

    This article describes an optimization process specially designed for local and regional hyperthermia in order to achieve the desired specific absorption rate in the patient. It is based on a genetic algorithm coupled to a finite element formulation. The optimization method is applied to real human organs meshes assembled from computerized tomography scans. A 3D finite element formulation is used to calculate the electromagnetic field in the patient, achieved by radiofrequency or microwave sources. Space discretization is performed using incomplete first order edge elements. The sparse complex symmetric matrix equation is solved using a conjugate gradient solver with potential projection pre-conditionning. The formulation is validated by comparison of calculated specific absorption rate distributions in a phantom to temperature measurements. A genetic algorithm is used to optimize the specific absorption rate distribution to predict the phases and amplitudes of the sources leading to the best focalization. The objective function is defined as the specific absorption rate ratio in the tumour and healthy tissues. Several constraints, regarding the specific absorption rate in tumour and the total power in the patient, may be prescribed. Results obtained with two types of applicators (waveguides and annular phased array) are presented and show the faculties of the developed optimization process.

  2. Optimization methods and silicon solar cell numerical models

    NASA Technical Reports Server (NTRS)

    Girardini, K.; Jacobsen, S. E.

    1986-01-01

    An optimization algorithm for use with numerical silicon solar cell models was developed. By coupling an optimization algorithm with a solar cell model, it is possible to simultaneously vary design variables such as impurity concentrations, front junction depth, back junction depth, and cell thickness to maximize the predicted cell efficiency. An optimization algorithm was developed and interfaced with the Solar Cell Analysis Program in 1 Dimension (SCAP1D). SCAP1D uses finite difference methods to solve the differential equations which, along with several relations from the physics of semiconductors, describe mathematically the performance of a solar cell. A major obstacle is that the numerical methods used in SCAP1D require a significant amount of computer time, and during an optimization the model is called iteratively until the design variables converge to the values associated with the maximum efficiency. This problem was alleviated by designing an optimization code specifically for use with numerically intensive simulations, to reduce the number of times the efficiency has to be calculated to achieve convergence to the optimal solution.

  3. A novel resource sharing algorithm based on distributed construction for radiant enclosure problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finzell, Peter; Bryden, Kenneth M.

    This study demonstrates a novel approach to solving inverse radiant enclosure problems based on distributed construction. Specifically, the problem of determining the temperature distribution needed on the heater surfaces to achieve a desired design surface temperature profile is recast as a distributed construction problem in which a shared resource, temperature, is distributed by computational agents moving blocks. The sharing of blocks between agents enables them to achieve their desired local state, which in turn achieves the desired global state. Each agent uses the current state of their local environment and a simple set of rules to determine when to exchangemore » blocks, each block representing a discrete unit of temperature change. This algorithm is demonstrated using the established two-dimensional inverse radiation enclosure problem. The temperature profile on the heater surfaces is adjusted to achieve a desired temperature profile on the design surfaces. The resource sharing algorithm was able to determine the needed temperatures on the heater surfaces to obtain the desired temperature distribution on the design surfaces in the nine cases examined.« less

  4. A novel resource sharing algorithm based on distributed construction for radiant enclosure problems

    DOE PAGES

    Finzell, Peter; Bryden, Kenneth M.

    2017-03-06

    This study demonstrates a novel approach to solving inverse radiant enclosure problems based on distributed construction. Specifically, the problem of determining the temperature distribution needed on the heater surfaces to achieve a desired design surface temperature profile is recast as a distributed construction problem in which a shared resource, temperature, is distributed by computational agents moving blocks. The sharing of blocks between agents enables them to achieve their desired local state, which in turn achieves the desired global state. Each agent uses the current state of their local environment and a simple set of rules to determine when to exchangemore » blocks, each block representing a discrete unit of temperature change. This algorithm is demonstrated using the established two-dimensional inverse radiation enclosure problem. The temperature profile on the heater surfaces is adjusted to achieve a desired temperature profile on the design surfaces. The resource sharing algorithm was able to determine the needed temperatures on the heater surfaces to obtain the desired temperature distribution on the design surfaces in the nine cases examined.« less

  5. Real-time handling of existing content sources on a multi-layer display

    NASA Astrophysics Data System (ADS)

    Singh, Darryl S. K.; Shin, Jung

    2013-03-01

    A Multi-Layer Display (MLD) consists of two or more imaging planes separated by physical depth where the depth is a key component in creating a glasses-free 3D effect. Its core benefits include being viewable from multiple angles, having full panel resolution for 3D effects with no side effects of nausea or eye-strain. However, typically content must be designed for its optical configuration in foreground and background image pairs. A process was designed to give a consistent 3D effect in a 2-layer MLD from existing stereo video content in real-time. Optimizations to stereo matching algorithms that generate depth maps in real-time were specifically tailored for the optical characteristics and image processing algorithms of a MLD. The end-to-end process included improvements to the Hierarchical Belief Propagation (HBP) stereo matching algorithm, improvements to optical flow and temporal consistency. Imaging algorithms designed for the optical characteristics of a MLD provided some visual compensation for depth map inaccuracies. The result can be demonstrated in a PC environment, displayed on a 22" MLD, used in the casino slot market, with 8mm of panel seperation. Prior to this development, stereo content had not been used to achieve a depth-based 3D effect on a MLD in real-time

  6. I/O-Efficient Scientific Computation Using TPIE

    NASA Technical Reports Server (NTRS)

    Vengroff, Darren Erik; Vitter, Jeffrey Scott

    1996-01-01

    In recent years, input/output (I/O)-efficient algorithms for a wide variety of problems have appeared in the literature. However, systems specifically designed to assist programmers in implementing such algorithms have remained scarce. TPIE is a system designed to support I/O-efficient paradigms for problems from a variety of domains, including computational geometry, graph algorithms, and scientific computation. The TPIE interface frees programmers from having to deal not only with explicit read and write calls, but also the complex memory management that must be performed for I/O-efficient computation. In this paper we discuss applications of TPIE to problems in scientific computation. We discuss algorithmic issues underlying the design and implementation of the relevant components of TPIE and present performance results of programs written to solve a series of benchmark problems using our current TPIE prototype. Some of the benchmarks we present are based on the NAS parallel benchmarks while others are of our own creation. We demonstrate that the central processing unit (CPU) overhead required to manage I/O is small and that even with just a single disk, the I/O overhead of I/O-efficient computation ranges from negligible to the same order of magnitude as CPU time. We conjecture that if we use a number of disks in parallel this overhead can be all but eliminated.

  7. Classifier-Guided Sampling for Complex Energy System Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backlund, Peter B.; Eddy, John P.

    2015-09-01

    This report documents the results of a Laboratory Directed Research and Development (LDRD) effort enti tled "Classifier - Guided Sampling for Complex Energy System Optimization" that was conducted during FY 2014 and FY 2015. The goal of this proj ect was to develop, implement, and test major improvements to the classifier - guided sampling (CGS) algorithm. CGS is type of evolutionary algorithm for perform ing search and optimization over a set of discrete design variables in the face of one or more objective functions. E xisting evolutionary algorithms, such as genetic algorithms , may require a large number of omore » bjecti ve function evaluations to identify optimal or near - optimal solutions . Reducing the number of evaluations can result in significant time savings, especially if the objective function is computationally expensive. CGS reduce s the evaluation count by us ing a Bayesian network classifier to filter out non - promising candidate designs , prior to evaluation, based on their posterior probabilit ies . In this project, b oth the single - objective and multi - objective version s of the CGS are developed and tested on a set of benchm ark problems. As a domain - specific case study, CGS is used to design a microgrid for use in islanded mode during an extended bulk power grid outage.« less

  8. A novel heuristic algorithm for capacitated vehicle routing problem

    NASA Astrophysics Data System (ADS)

    Kır, Sena; Yazgan, Harun Reşit; Tüncel, Emre

    2017-09-01

    The vehicle routing problem with the capacity constraints was considered in this paper. It is quite difficult to achieve an optimal solution with traditional optimization methods by reason of the high computational complexity for large-scale problems. Consequently, new heuristic or metaheuristic approaches have been developed to solve this problem. In this paper, we constructed a new heuristic algorithm based on the tabu search and adaptive large neighborhood search (ALNS) with several specifically designed operators and features to solve the capacitated vehicle routing problem (CVRP). The effectiveness of the proposed algorithm was illustrated on the benchmark problems. The algorithm provides a better performance on large-scaled instances and gained advantage in terms of CPU time. In addition, we solved a real-life CVRP using the proposed algorithm and found the encouraging results by comparison with the current situation that the company is in.

  9. Computerized design of controllers using data models

    NASA Technical Reports Server (NTRS)

    Irwin, Dennis; Mitchell, Jerrel; Medina, Enrique; Allwine, Dan; Frazier, Garth; Duncan, Mark

    1995-01-01

    The major contributions of the grant effort have been the enhancement of the Compensator Improvement Program (CIP), which resulted in the Ohio University CIP (OUCIP) package, and the development of the Model and Data-Oriented Computer Aided Design System (MADCADS). Incorporation of direct z-domain designs into CIP was tested and determined to be numerically ill-conditioned for the type of lightly damped problems for which the development was intended. Therefore, it was decided to pursue the development of z-plane designs in the w-plane, and to make this conversion transparent to the user. The analytical development needed for this feature, as well as that needed for including compensator damping ratios and DC gain specifications, closed loop stability requirements, and closed loop disturbance rejection specifications into OUCIP are all contained in Section 3. OUCIP was successfully tested with several example systems to verify proper operation of existing and new features. The extension of the CIP philosophy and algorithmic approach to handle modern multivariable controller design criteria was implemented and tested. Several new algorithms for implementing the search approach to modern multivariable control system design were developed and tested. This analytical development, most of which was incorporated into the MADCADS software package, is described in Section 4, which also includes results of the application of MADCADS to the MSFC ACES facility and the Hubble Space Telescope.

  10. GPU implementation of prior image constrained compressed sensing (PICCS)

    NASA Astrophysics Data System (ADS)

    Nett, Brian E.; Tang, Jie; Chen, Guang-Hong

    2010-04-01

    The Prior Image Constrained Compressed Sensing (PICCS) algorithm (Med. Phys. 35, pg. 660, 2008) has been applied to several computed tomography applications with both standard CT systems and flat-panel based systems designed for guiding interventional procedures and radiation therapy treatment delivery. The PICCS algorithm typically utilizes a prior image which is reconstructed via the standard Filtered Backprojection (FBP) reconstruction algorithm. The algorithm then iteratively solves for the image volume that matches the measured data, while simultaneously assuring the image is similar to the prior image. The PICCS algorithm has demonstrated utility in several applications including: improved temporal resolution reconstruction, 4D respiratory phase specific reconstructions for radiation therapy, and cardiac reconstruction from data acquired on an interventional C-arm. One disadvantage of the PICCS algorithm, just as other iterative algorithms, is the long computation times typically associated with reconstruction. In order for an algorithm to gain clinical acceptance reconstruction must be achievable in minutes rather than hours. In this work the PICCS algorithm has been implemented on the GPU in order to significantly reduce the reconstruction time of the PICCS algorithm. The Compute Unified Device Architecture (CUDA) was used in this implementation.

  11. e-DMDAV: A new privacy preserving algorithm for wearable enterprise information systems

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenjiang; Wang, Xiaoni; Uden, Lorna; Zhang, Peng; Zhao, Yingsi

    2018-04-01

    Wearable devices have been widely used in many fields to improve the quality of people's lives. More and more data on individuals and businesses are collected by statistical organizations though those devices. Almost all of this data holds confidential information. Statistical Disclosure Control (SDC) seeks to protect statistical data in such a way that it can be released without giving away confidential information that can be linked to specific individuals or entities. The MDAV (Maximum Distance to Average Vector) algorithm is an efficient micro-aggregation algorithm belonging to SDC. However, the MDAV algorithm cannot survive homogeneity and background knowledge attacks because it was designed for static numerical data. This paper proposes a systematic dynamic-updating anonymity algorithm based on MDAV called the e-DMDAV algorithm. This algorithm introduces a new parameter and a table to ensure that the k records in one cluster with the range of the distinct values in each cluster is no less than e for numerical and non-numerical datasets. This new algorithm has been evaluated and compared with the MDAV algorithm. The simulation results show that the new algorithm outperforms MDAV in terms of minimizing distortion and disclosure risk with a similar computational cost.

  12. Automated Antenna Design with Evolutionary Algorithms

    NASA Technical Reports Server (NTRS)

    Hornby, Gregory S.; Globus, Al; Linden, Derek S.; Lohn, Jason D.

    2006-01-01

    Current methods of designing and optimizing antennas by hand are time and labor intensive, and limit complexity. Evolutionary design techniques can overcome these limitations by searching the design space and automatically finding effective solutions. In recent years, evolutionary algorithms have shown great promise in finding practical solutions in large, poorly understood design spaces. In particular, spacecraft antenna design has proven tractable to evolutionary design techniques. Researchers have been investigating evolutionary antenna design and optimization since the early 1990s, and the field has grown in recent years as computer speed has increased and electromagnetic simulators have improved. Two requirements-compliant antennas, one for ST5 and another for TDRS-C, have been automatically designed by evolutionary algorithms. The ST5 antenna is slated to fly this year, and a TDRS-C phased array element has been fabricated and tested. Such automated evolutionary design is enabled by medium-to-high quality simulators and fast modern computers to evaluate computer-generated designs. Evolutionary algorithms automate cut-and-try engineering, substituting automated search though millions of potential designs for intelligent search by engineers through a much smaller number of designs. For evolutionary design, the engineer chooses the evolutionary technique, parameters and the basic form of the antenna, e.g., single wire for ST5 and crossed-element Yagi for TDRS-C. Evolutionary algorithms then search for optimal configurations in the space defined by the engineer. NASA's Space Technology 5 (ST5) mission will launch three small spacecraft to test innovative concepts and technologies. Advanced evolutionary algorithms were used to automatically design antennas for ST5. The combination of wide beamwidth for a circularly-polarized wave and wide impedance bandwidth made for a challenging antenna design problem. From past experience in designing wire antennas, we chose to constrain the evolutionary design to a monopole wire antenna. The results of the runs produced requirements-compliant antennas that were subsequently fabricated and tested. The evolved antenna has a number of advantages with regard to power consumption, fabrication time and complexity, and performance. Lower power requirements result from achieving high gain across a wider range of elevation angles, thus allowing a broader range of angles over which maximum data throughput can be achieved. Since the evolved antenna does not require a phasing circuit, less design and fabrication work is required. In terms of overall work, the evolved antenna required approximately three person-months to design and fabricate whereas the conventional antenna required about five. Furthermore, when the mission was modified and new orbital parameters selected, a redesign of the antenna to new requirements was required. The evolutionary system was rapidly modified and a new antenna evolved in a few weeks. The evolved antenna was shown to be compliant to the ST5 mission requirements. It has an unusual organic looking structure, one that expert antenna designers would not likely produce. This antenna has been tested, baselined and is scheduled to fly this year. In addition to the ST5 antenna, our laboratory has evolved an S-band phased array antenna element design that meets the requirements for NASA's TDRS-C communications satellite scheduled for launch early next decade. A combination of fairly broad bandwidth, high efficiency and circular polarization at high gain made for another challenging design problem. We chose to constrain the evolutionary design to a crossed-element Yagi antenna. The specification called for two types of elements, one for receive only and one for transmit/receive. We were able to evolve a single element design that meets both specifications thereby simplifying the antenna and reducing testing and integration costs. The highest performance antenna found using a getic algorithm and stochastic hill-climbing has been fabricated and tested. Laboratory results correspond well with simulation. Aerospace component design is an expensive and important step in space development. Evolutionary design can make a significant contribution wherever sufficiently fast, accurate and capable software simulators are available. We have demonstrated successful real-world design in the spacecraft antenna domain; and there is good reason to believe that these results could be replicated in other design spaces.

  13. The design of multi-core DSP parallel model based on message passing and multi-level pipeline

    NASA Astrophysics Data System (ADS)

    Niu, Jingyu; Hu, Jian; He, Wenjing; Meng, Fanrong; Li, Chuanrong

    2017-10-01

    Currently, the design of embedded signal processing system is often based on a specific application, but this idea is not conducive to the rapid development of signal processing technology. In this paper, a parallel processing model architecture based on multi-core DSP platform is designed, and it is mainly suitable for the complex algorithms which are composed of different modules. This model combines the ideas of multi-level pipeline parallelism and message passing, and summarizes the advantages of the mainstream model of multi-core DSP (the Master-Slave model and the Data Flow model), so that it has better performance. This paper uses three-dimensional image generation algorithm to validate the efficiency of the proposed model by comparing with the effectiveness of the Master-Slave and the Data Flow model.

  14. Cascade Optimization Strategy with Neural Network and Regression Approximations Demonstrated on a Preliminary Aircraft Engine Design

    NASA Technical Reports Server (NTRS)

    Hopkins, Dale A.; Patnaik, Surya N.

    2000-01-01

    A preliminary aircraft engine design methodology is being developed that utilizes a cascade optimization strategy together with neural network and regression approximation methods. The cascade strategy employs different optimization algorithms in a specified sequence. The neural network and regression methods are used to approximate solutions obtained from the NASA Engine Performance Program (NEPP), which implements engine thermodynamic cycle and performance analysis models. The new methodology is proving to be more robust and computationally efficient than the conventional optimization approach of using a single optimization algorithm with direct reanalysis. The methodology has been demonstrated on a preliminary design problem for a novel subsonic turbofan engine concept that incorporates a wave rotor as a cycle-topping device. Computations of maximum thrust were obtained for a specific design point in the engine mission profile. The results (depicted in the figure) show a significant improvement in the maximum thrust obtained using the new methodology in comparison to benchmark solutions obtained using NEPP in a manual design mode.

  15. A systematic review of validated methods for identifying hypersensitivity reactions other than anaphylaxis (fever, rash, and lymphadenopathy), using administrative and claims data.

    PubMed

    Schneider, Gary; Kachroo, Sumesh; Jones, Natalie; Crean, Sheila; Rotella, Philip; Avetisyan, Ruzan; Reynolds, Matthew W

    2012-01-01

    The Food and Drug Administration's Mini-Sentinel pilot program aims to conduct active surveillance to refine safety signals that emerge for marketed medical products. A key facet of this surveillance is to develop and understand the validity of algorithms for identifying health outcomes of interest from administrative and claims data. This article summarizes the process and findings of the algorithm review of hypersensitivity reactions. PubMed and Iowa Drug Information Service searches were conducted to identify citations applicable to the hypersensitivity reactions of health outcomes of interest. Level 1 abstract reviews and Level 2 full-text reviews were conducted to find articles using administrative and claims data to identify hypersensitivity reactions and including validation estimates of the coding algorithms. We identified five studies that provided validated hypersensitivity-reaction algorithms. Algorithm positive predictive values (PPVs) for various definitions of hypersensitivity reactions ranged from 3% to 95%. PPVs were high (i.e. 90%-95%) when both exposures and diagnoses were very specific. PPV generally decreased when the definition of hypersensitivity was expanded, except in one study that used data mining methodology for algorithm development. The ability of coding algorithms to identify hypersensitivity reactions varied, with decreasing performance occurring with expanded outcome definitions. This examination of hypersensitivity-reaction coding algorithms provides an example of surveillance bias resulting from outcome definitions that include mild cases. Data mining may provide tools for algorithm development for hypersensitivity and other health outcomes. Research needs to be conducted on designing validation studies to test hypersensitivity-reaction algorithms and estimating their predictive power, sensitivity, and specificity. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Hardware Algorithm Implementation for Mission Specific Processing

    DTIC Science & Technology

    2008-03-01

    knowledge about the VLSI technology and understands VHDL, scripting, and intergrating the script in Cadencersoftware pro- gram or Modelsimr. The main...possible to have a trade off between parallel and serial logic design for the circuit. Power can be saved by using parallization, pipelining, or a

  17. Cloud Computing for Mission Design and Operations

    NASA Technical Reports Server (NTRS)

    Arrieta, Juan; Attiyah, Amy; Beswick, Robert; Gerasimantos, Dimitrios

    2012-01-01

    The space mission design and operations community already recognizes the value of cloud computing and virtualization. However, natural and valid concerns, like security, privacy, up-time, and vendor lock-in, have prevented a more widespread and expedited adoption into official workflows. In the interest of alleviating these concerns, we propose a series of guidelines for internally deploying a resource-oriented hub of data and algorithms. These guidelines provide a roadmap for implementing an architecture inspired in the cloud computing model: associative, elastic, semantical, interconnected, and adaptive. The architecture can be summarized as exposing data and algorithms as resource-oriented Web services, coordinated via messaging, and running on virtual machines; it is simple, and based on widely adopted standards, protocols, and tools. The architecture may help reduce common sources of complexity intrinsic to data-driven, collaborative interactions and, most importantly, it may provide the means for teams and agencies to evaluate the cloud computing model in their specific context, with minimal infrastructure changes, and before committing to a specific cloud services provider.

  18. Multi-objective optimization of a low specific speed centrifugal pump using an evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    An, Zhao; Zhounian, Lai; Peng, Wu; Linlin, Cao; Dazhuan, Wu

    2016-07-01

    This paper describes the shape optimization of a low specific speed centrifugal pump at the design point. The target pump has already been manually modified on the basis of empirical knowledge. A genetic algorithm (NSGA-II) with certain enhancements is adopted to improve its performance further with respect to two goals. In order to limit the number of design variables without losing geometric information, the impeller is parametrized using the Bézier curve and a B-spline. Numerical simulation based on a Reynolds averaged Navier-Stokes (RANS) turbulent model is done in parallel to evaluate the flow field. A back-propagating neural network is constructed as a surrogate for performance prediction to save computing time, while initial samples are selected according to an orthogonal array. Then global Pareto-optimal solutions are obtained and analysed. The results manifest that unexpected flow structures, such as the secondary flow on the meridian plane, have diminished or vanished in the optimized pump.

  19. Variational Trajectory Optimization Tool Set: Technical description and user's manual

    NASA Technical Reports Server (NTRS)

    Bless, Robert R.; Queen, Eric M.; Cavanaugh, Michael D.; Wetzel, Todd A.; Moerder, Daniel D.

    1993-01-01

    The algorithms that comprise the Variational Trajectory Optimization Tool Set (VTOTS) package are briefly described. The VTOTS is a software package for solving nonlinear constrained optimal control problems from a wide range of engineering and scientific disciplines. The VTOTS package was specifically designed to minimize the amount of user programming; in fact, for problems that may be expressed in terms of analytical functions, the user needs only to define the problem in terms of symbolic variables. This version of the VTOTS does not support tabular data; thus, problems must be expressed in terms of analytical functions. The VTOTS package consists of two methods for solving nonlinear optimal control problems: a time-domain finite-element algorithm and a multiple shooting algorithm. These two algorithms, under the VTOTS package, may be run independently or jointly. The finite-element algorithm generates approximate solutions, whereas the shooting algorithm provides a more accurate solution to the optimization problem. A user's manual, some examples with results, and a brief description of the individual subroutines are included.

  20. An Effective Hybrid Cuckoo Search Algorithm with Improved Shuffled Frog Leaping Algorithm for 0-1 Knapsack Problems

    PubMed Central

    Wang, Gai-Ge; Feng, Qingjiang; Zhao, Xiang-Jun

    2014-01-01

    An effective hybrid cuckoo search algorithm (CS) with improved shuffled frog-leaping algorithm (ISFLA) is put forward for solving 0-1 knapsack problem. First of all, with the framework of SFLA, an improved frog-leap operator is designed with the effect of the global optimal information on the frog leaping and information exchange between frog individuals combined with genetic mutation with a small probability. Subsequently, in order to improve the convergence speed and enhance the exploitation ability, a novel CS model is proposed with considering the specific advantages of Lévy flights and frog-leap operator. Furthermore, the greedy transform method is used to repair the infeasible solution and optimize the feasible solution. Finally, numerical simulations are carried out on six different types of 0-1 knapsack instances, and the comparative results have shown the effectiveness of the proposed algorithm and its ability to achieve good quality solutions, which outperforms the binary cuckoo search, the binary differential evolution, and the genetic algorithm. PMID:25404940

  1. Development of an Algorithm for Satellite Remote Sensing of Sea and Lake Ice

    NASA Astrophysics Data System (ADS)

    Dorofy, Peter T.

    Satellite remote sensing of snow and ice has a long history. The traditional method for many snow and ice detection algorithms has been the use of the Normalized Difference Snow Index (NDSI). This manuscript is composed of two parts. Chapter 1, Development of a Mid-Infrared Sea and Lake Ice Index (MISI) using the GOES Imager, discusses the desirability, development, and implementation of alternative index for an ice detection algorithm, application of the algorithm to the detection of lake ice, and qualitative validation against other ice mapping products; such as, the Ice Mapping System (IMS). Chapter 2, Application of Dynamic Threshold in a Lake Ice Detection Algorithm, continues with a discussion of the development of a method that considers the variable viewing and illumination geometry of observations throughout the day. The method is an alternative to Bidirectional Reflectance Distribution Function (BRDF) models. Evaluation of the performance of the algorithm is introduced by aggregating classified pixels within geometrical boundaries designated by IMS and obtaining sensitivity and specificity statistical measures.

  2. An evaluation of the NQF Quality Data Model for representing Electronic Health Record driven phenotyping algorithms.

    PubMed

    Thompson, William K; Rasmussen, Luke V; Pacheco, Jennifer A; Peissig, Peggy L; Denny, Joshua C; Kho, Abel N; Miller, Aaron; Pathak, Jyotishman

    2012-01-01

    The development of Electronic Health Record (EHR)-based phenotype selection algorithms is a non-trivial and highly iterative process involving domain experts and informaticians. To make it easier to port algorithms across institutions, it is desirable to represent them using an unambiguous formal specification language. For this purpose we evaluated the recently developed National Quality Forum (NQF) information model designed for EHR-based quality measures: the Quality Data Model (QDM). We selected 9 phenotyping algorithms that had been previously developed as part of the eMERGE consortium and translated them into QDM format. Our study concluded that the QDM contains several core elements that make it a promising format for EHR-driven phenotyping algorithms for clinical research. However, we also found areas in which the QDM could be usefully extended, such as representing information extracted from clinical text, and the ability to handle algorithms that do not consist of Boolean combinations of criteria.

  3. Design and Implementation of the Automated Rendezvous Targeting Algorithms for Orion

    NASA Technical Reports Server (NTRS)

    DSouza, Christopher; Weeks, Michael

    2010-01-01

    The Orion vehicle will be designed to perform several rendezvous missions: rendezvous with the ISS in Low Earth Orbit (LEO), rendezvous with the EDS/Altair in LEO, a contingency rendezvous with the ascent stage of the Altair in Low Lunar Orbit (LLO) and a contingency rendezvous in LLO with the ascent and descent stage in the case of an aborted lunar landing. Therefore, it is not difficult to realize that each of these scenarios imposes different operational, timing, and performance constraints on the GNC system. To this end, a suite of on-board guidance and targeting algorithms have been designed to meet the requirement to perform the rendezvous independent of communications with the ground. This capability is particularly relevant for the lunar missions, some of which may occur on the far side of the moon. This paper will describe these algorithms which are designed to be structured and arranged in such a way so as to be flexible and able to safely perform a wide variety of rendezvous trajectories. The goal of the algorithms is not to merely fly one specific type of canned rendezvous profile. Conversely, it was designed from the start to be general enough such that any type of trajectory profile can be flown.(i.e. a coelliptic profile, a stable orbit rendezvous profile, and a expedited LLO rendezvous profile, etc) all using the same rendezvous suite of algorithms. Each of these profiles makes use of maneuver types which have been designed with dual goals of robustness and performance. They are designed to converge quickly under dispersed conditions and they are designed to perform many of the functions performed on the ground today. The targeting algorithms consist of a phasing maneuver (NC), an altitude adjust maneuver (NH), and plane change maneuver (NPC), a coelliptic maneuver (NSR), a Lambert targeted maneuver, and several multiple-burn targeted maneuvers which combine one of more of these algorithms. The derivation and implementation of each of these algorithms will be discussed in detail, as well and the Rendezvous Targeting "wrapper" which will sequentially tie them all together into a single onboard targeting tool which can produce a final integrated rendezvous trajectory. In a similar fashion, the various guidance modes available for flying out each of these maneuvers will be discussed as well. This paradigm of having the onboard guidance & targeting capability described above is different than the way the Space Shuttle has operated thus far. As a result, a discussion of these differences in terms of operations and ground and crew intervention will also be discussed. However, the general framework of how the mission designers on the ground first perform all mission design and planning functions, and then uplink that burn plan to the vehicle ensures that the ground will be involved to ensure safety and reliability. The only real difference is which of these functions will be done onboard vs. on the ground as done currently. Finally, this paper will describe the performance of each of these algorithms individually as well as the entire suite of algorithms as applied to the Orion ISS and EDS/Altair rendezvous missions in LEO. These algorithms have been incorporated in both a Linear Covariance environment and a Monte Carlo environment and the results of these dispersion analyses will be presented in the paper as well.

  4. Xyce parallel electronic simulator : users' guide.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, Ting; Rankin, Eric Lamont; Thornquist, Heidi K.

    2011-05-01

    This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: (1) Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). Note that this includes support for most popular parallel and serial computers; (2) Improved performance for all numerical kernels (e.g., time integrator, nonlinear and linear solvers) through state-of-the-artmore » algorithms and novel techniques. (3) Device models which are specifically tailored to meet Sandia's needs, including some radiation-aware devices (for Sandia users only); and (4) Object-oriented code design and implementation using modern coding practices that ensure that the Xyce Parallel Electronic Simulator will be maintainable and extensible far into the future. Xyce is a parallel code in the most general sense of the phrase - a message passing parallel implementation - which allows it to run efficiently on the widest possible number of computing platforms. These include serial, shared-memory and distributed-memory parallel as well as heterogeneous platforms. Careful attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. The development of Xyce provides a platform for computational research and development aimed specifically at the needs of the Laboratory. With Xyce, Sandia has an 'in-house' capability with which both new electrical (e.g., device model development) and algorithmic (e.g., faster time-integration methods, parallel solver algorithms) research and development can be performed. As a result, Xyce is a unique electrical simulation capability, designed to meet the unique needs of the laboratory.« less

  5. The Efficiency of Split Panel Designs in an Analysis of Variance Model

    PubMed Central

    Wang, Wei-Guo; Liu, Hai-Jun

    2016-01-01

    We consider split panel design efficiency in analysis of variance models, that is, the determination of the cross-sections series optimal proportion in all samples, to minimize parametric best linear unbiased estimators of linear combination variances. An orthogonal matrix is constructed to obtain manageable expression of variances. On this basis, we derive a theorem for analyzing split panel design efficiency irrespective of interest and budget parameters. Additionally, relative estimator efficiency based on the split panel to an estimator based on a pure panel or a pure cross-section is present. The analysis shows that the gains from split panel can be quite substantial. We further consider the efficiency of split panel design, given a budget, and transform it to a constrained nonlinear integer programming. Specifically, an efficient algorithm is designed to solve the constrained nonlinear integer programming. Moreover, we combine one at time designs and factorial designs to illustrate the algorithm’s efficiency with an empirical example concerning monthly consumer expenditure on food in 1985, in the Netherlands, and the efficient ranges of the algorithm parameters are given to ensure a good solution. PMID:27163447

  6. Parallel language constructs for tensor product computations on loosely coupled architectures

    NASA Technical Reports Server (NTRS)

    Mehrotra, Piyush; Vanrosendale, John

    1989-01-01

    Distributed memory architectures offer high levels of performance and flexibility, but have proven awkard to program. Current languages for nonshared memory architectures provide a relatively low level programming environment, and are poorly suited to modular programming, and to the construction of libraries. A set of language primitives designed to allow the specification of parallel numerical algorithms at a higher level is described. Tensor product array computations are focused on along with a simple but important class of numerical algorithms. The problem of programming 1-D kernal routines is focused on first, such as parallel tridiagonal solvers, and then how such parallel kernels can be combined to form parallel tensor product algorithms is examined.

  7. Definition of an Ontology Matching Algorithm for Context Integration in Smart Cities

    PubMed Central

    Otero-Cerdeira, Lorena; Rodríguez-Martínez, Francisco J.; Gómez-Rodríguez, Alma

    2014-01-01

    In this paper we describe a novel proposal in the field of smart cities: using an ontology matching algorithm to guarantee the automatic information exchange between the agents and the smart city. A smart city is composed by different types of agents that behave as producers and/or consumers of the information in the smart city. In our proposal, the data from the context is obtained by sensor and device agents while users interact with the smart city by means of user or system agents. The knowledge of each agent, as well as the smart city's knowledge, is semantically represented using different ontologies. To have an open city, that is fully accessible to any agent and therefore to provide enhanced services to the users, there is the need to ensure a seamless communication between agents and the city, regardless of their inner knowledge representations, i.e., ontologies. To meet this goal we use ontology matching techniques, specifically we have defined a new ontology matching algorithm called OntoPhil to be deployed within a smart city, which has never been done before. OntoPhil was tested on the benchmarks provided by the well known evaluation initiative, Ontology Alignment Evaluation Initiative, and also compared to other matching algorithms, although these algorithms were not specifically designed for smart cities. Additionally, specific tests involving a smart city's ontology and different types of agents were conducted to validate the usefulness of OntoPhil in the smart city environment. PMID:25494353

  8. Definition of an Ontology Matching Algorithm for Context Integration in Smart Cities.

    PubMed

    Otero-Cerdeira, Lorena; Rodríguez-Martínez, Francisco J; Gómez-Rodríguez, Alma

    2014-12-08

    In this paper we describe a novel proposal in the field of smart cities: using an ontology matching algorithm to guarantee the automatic information exchange between the agents and the smart city. A smart city is composed by different types of agents that behave as producers and/or consumers of the information in the smart city. In our proposal, the data from the context is obtained by sensor and device agents while users interact with the smart city by means of user or system agents. The knowledge of each agent, as well as the smart city's knowledge, is semantically represented using different ontologies. To have an open city, that is fully accessible to any agent and therefore to provide enhanced services to the users, there is the need to ensure a seamless communication between agents and the city, regardless of their inner knowledge representations, i.e., ontologies. To meet this goal we use ontology matching techniques, specifically we have defined a new ontology matching algorithm called OntoPhil to be deployed within a smart city, which has never been done before. OntoPhil was tested on the benchmarks provided by the well known evaluation initiative, Ontology Alignment Evaluation Initiative, and also compared to other matching algorithms, although these algorithms were not specifically designed for smart cities. Additionally, specific tests involving a smart city's ontology and different types of agents were conducted to validate the usefulness of OntoPhil in the smart city environment.

  9. ProbeDesigner: for the design of probesets for branched DNA (bDNA) signal amplification assays.

    PubMed

    Bushnell, S; Budde, J; Catino, T; Cole, J; Derti, A; Kelso, R; Collins, M L; Molino, G; Sheridan, P; Monahan, J; Urdea, M

    1999-05-01

    The sensitivity and specificity of branched DNA (bDNA) assays are derived in part through the judicious design of the capture and label extender probes. To minimize non-specific hybridization (NSH) events, which elevate assay background, candidate probes must be computer screened for complementarity with generic sequences present in the assay. We present a software application which allows for rapid and flexible design of bDNA probesets for novel targets. It includes an algorithm for estimating the magnitude of NSH contribution to background, a mechanism for removing probes with elevated contributions, a methodology for the simultaneous design of probesets for multiple targets, and a graphical user interface which guides the user through the design steps. The program is available as a commercial package through the Pharmaceutical Drug Discovery program at Chiron Diagnostics.

  10. Developing a Shuffled Complex-Self Adaptive Hybrid Evolution (SC-SAHEL) Framework for Water Resources Management and Water-Energy System Optimization

    NASA Astrophysics Data System (ADS)

    Rahnamay Naeini, M.; Sadegh, M.; AghaKouchak, A.; Hsu, K. L.; Sorooshian, S.; Yang, T.

    2017-12-01

    Meta-Heuristic optimization algorithms have gained a great deal of attention in a wide variety of fields. Simplicity and flexibility of these algorithms, along with their robustness, make them attractive tools for solving optimization problems. Different optimization methods, however, hold algorithm-specific strengths and limitations. Performance of each individual algorithm obeys the "No-Free-Lunch" theorem, which means a single algorithm cannot consistently outperform all possible optimization problems over a variety of problems. From users' perspective, it is a tedious process to compare, validate, and select the best-performing algorithm for a specific problem or a set of test cases. In this study, we introduce a new hybrid optimization framework, entitled Shuffled Complex-Self Adaptive Hybrid EvoLution (SC-SAHEL), which combines the strengths of different evolutionary algorithms (EAs) in a parallel computing scheme, and allows users to select the most suitable algorithm tailored to the problem at hand. The concept of SC-SAHEL is to execute different EAs as separate parallel search cores, and let all participating EAs to compete during the course of the search. The newly developed SC-SAHEL algorithm is designed to automatically select, the best performing algorithm for the given optimization problem. This algorithm is rigorously effective in finding the global optimum for several strenuous benchmark test functions, and computationally efficient as compared to individual EAs. We benchmark the proposed SC-SAHEL algorithm over 29 conceptual test functions, and two real-world case studies - one hydropower reservoir model and one hydrological model (SAC-SMA). Results show that the proposed framework outperforms individual EAs in an absolute majority of the test problems, and can provide competitive results to the fittest EA algorithm with more comprehensive information during the search. The proposed framework is also flexible for merging additional EAs, boundary-handling techniques, and sampling schemes, and has good potential to be used in Water-Energy system optimal operation and management.

  11. A systematic review of validated methods for identifying anaphylaxis, including anaphylactic shock and angioneurotic edema, using administrative and claims data.

    PubMed

    Schneider, Gary; Kachroo, Sumesh; Jones, Natalie; Crean, Sheila; Rotella, Philip; Avetisyan, Ruzan; Reynolds, Matthew W

    2012-01-01

    The Food and Drug Administration's Mini-Sentinel pilot program initially aims to conduct active surveillance to refine safety signals that emerge for marketed medical products. A key facet of this surveillance is to develop and understand the validity of algorithms for identifying health outcomes of interest from administrative and claims data. This article summarizes the process and findings of the algorithm review of anaphylaxis. PubMed and Iowa Drug Information Service searches were conducted to identify citations applicable to the anaphylaxis health outcome of interest. Level 1 abstract reviews and Level 2 full-text reviews were conducted to find articles using administrative and claims data to identify anaphylaxis and including validation estimates of the coding algorithms. Our search revealed limited literature focusing on anaphylaxis that provided administrative and claims data-based algorithms and validation estimates. Only four studies identified via literature searches provided validated algorithms; however, two additional studies were identified by Mini-Sentinel collaborators and were incorporated. The International Classification of Diseases, Ninth Revision, codes varied, as did the positive predictive value, depending on the cohort characteristics and the specific codes used to identify anaphylaxis. Research needs to be conducted on designing validation studies to test anaphylaxis algorithms and estimating their predictive power, sensitivity, and specificity. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Shared Memory Parallelization of an Implicit ADI-type CFD Code

    NASA Technical Reports Server (NTRS)

    Hauser, Th.; Huang, P. G.

    1999-01-01

    A parallelization study designed for ADI-type algorithms is presented using the OpenMP specification for shared-memory multiprocessor programming. Details of optimizations specifically addressed to cache-based computer architectures are described and performance measurements for the single and multiprocessor implementation are summarized. The paper demonstrates that optimization of memory access on a cache-based computer architecture controls the performance of the computational algorithm. A hybrid MPI/OpenMP approach is proposed for clusters of shared memory machines to further enhance the parallel performance. The method is applied to develop a new LES/DNS code, named LESTool. A preliminary DNS calculation of a fully developed channel flow at a Reynolds number of 180, Re(sub tau) = 180, has shown good agreement with existing data.

  13. Self-Tuning of Design Variables for Generalized Predictive Control

    NASA Technical Reports Server (NTRS)

    Lin, Chaung; Juang, Jer-Nan

    2000-01-01

    Three techniques are introduced to determine the order and control weighting for the design of a generalized predictive controller. These techniques are based on the application of fuzzy logic, genetic algorithms, and simulated annealing to conduct an optimal search on specific performance indexes or objective functions. Fuzzy logic is found to be feasible for real-time and on-line implementation due to its smooth and quick convergence. On the other hand, genetic algorithms and simulated annealing are applicable for initial estimation of the model order and control weighting, and final fine-tuning within a small region of the solution space, Several numerical simulations for a multiple-input and multiple-output system are given to illustrate the techniques developed in this paper.

  14. Bell-Curve Based Evolutionary Strategies for Structural Optimization

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.

    2001-01-01

    Evolutionary methods are exceedingly popular with practitioners of many fields; more so than perhaps any optimization tool in existence. Historically Genetic Algorithms (GAs) led the way in practitioner popularity. However, in the last ten years Evolutionary Strategies (ESs) and Evolutionary Programs (EPS) have gained a significant foothold. One partial explanation for this shift is the interest in using GAs to solve continuous optimization problems. The typical GA relies upon a cumbersome binary representation of the design variables. An ES or EP, however, works directly with the real-valued design variables. For detailed references on evolutionary methods in general and ES or EP in specific see Back and Dasgupta and Michalesicz. We call our evolutionary algorithm BCB (bell curve based) since it is based upon two normal distributions.

  15. Using an improved association rules mining optimization algorithm in web-based mobile-learning system

    NASA Astrophysics Data System (ADS)

    Huang, Yin; Chen, Jianhua; Xiong, Shaojun

    2009-07-01

    Mobile-Learning (M-learning) makes many learners get the advantages of both traditional learning and E-learning. Currently, Web-based Mobile-Learning Systems have created many new ways and defined new relationships between educators and learners. Association rule mining is one of the most important fields in data mining and knowledge discovery in databases. Rules explosion is a serious problem which causes great concerns, as conventional mining algorithms often produce too many rules for decision makers to digest. Since Web-based Mobile-Learning System collects vast amounts of student profile data, data mining and knowledge discovery techniques can be applied to find interesting relationships between attributes of learners, assessments, the solution strategies adopted by learners and so on. Therefore ,this paper focus on a new data-mining algorithm, combined with the advantages of genetic algorithm and simulated annealing algorithm , called ARGSA(Association rules based on an improved Genetic Simulated Annealing Algorithm), to mine the association rules. This paper first takes advantage of the Parallel Genetic Algorithm and Simulated Algorithm designed specifically for discovering association rules. Moreover, the analysis and experiment are also made to show the proposed method is superior to the Apriori algorithm in this Mobile-Learning system.

  16. Problem Solving Techniques for the Design of Algorithms.

    ERIC Educational Resources Information Center

    Kant, Elaine; Newell, Allen

    1984-01-01

    Presents model of algorithm design (activity in software development) based on analysis of protocols of two subjects designing three convex hull algorithms. Automation methods, methods for studying algorithm design, role of discovery in problem solving, and comparison of different designs of case study according to model are highlighted.…

  17. [Using cancer case identification algorithms in medico-administrative databases: Literature review and first results from the REDSIAM Tumors group based on breast, colon, and lung cancer].

    PubMed

    Bousquet, P-J; Caillet, P; Coeuret-Pellicer, M; Goulard, H; Kudjawu, Y C; Le Bihan, C; Lecuyer, A I; Séguret, F

    2017-10-01

    The development and use of healthcare databases accentuates the need for dedicated tools, including validated selection algorithms of cancer diseased patients. As part of the development of the French National Health Insurance System data network REDSIAM, the tumor taskforce established an inventory of national and internal published algorithms in the field of cancer. This work aims to facilitate the choice of a best-suited algorithm. A non-systematic literature search was conducted for various cancers. Results are presented for lung, breast, colon, and rectum. Medline, Scopus, the French Database in Public Health, Google Scholar, and the summaries of the main French journals in oncology and public health were searched for publications until August 2016. An extraction grid adapted to oncology was constructed and used for the extraction process. A total of 18 publications were selected for lung cancer, 18 for breast cancer, and 12 for colorectal cancer. Validation studies of algorithms are scarce. When information is available, the performance and choice of an algorithm are dependent on the context, purpose, and location of the planned study. Accounting for cancer disease specificity, the proposed extraction chart is more detailed than the generic chart developed for other REDSIAM taskforces, but remains easily usable in practice. This study illustrates the complexity of cancer detection through sole reliance on healthcare databases and the lack of validated algorithms specifically designed for this purpose. Studies that standardize and facilitate validation of these algorithms should be developed and promoted. Copyright © 2017. Published by Elsevier Masson SAS.

  18. Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images.

    PubMed

    Marchetti, Michael A; Codella, Noel C F; Dusza, Stephen W; Gutman, David A; Helba, Brian; Kalloo, Aadi; Mishra, Nabin; Carrera, Cristina; Celebi, M Emre; DeFazio, Jennifer L; Jaimes, Natalia; Marghoob, Ashfaq A; Quigley, Elizabeth; Scope, Alon; Yélamos, Oriol; Halpern, Allan C

    2018-02-01

    Computer vision may aid in melanoma detection. We sought to compare melanoma diagnostic accuracy of computer algorithms to dermatologists using dermoscopic images. We conducted a cross-sectional study using 100 randomly selected dermoscopic images (50 melanomas, 44 nevi, and 6 lentigines) from an international computer vision melanoma challenge dataset (n = 379), along with individual algorithm results from 25 teams. We used 5 methods (nonlearned and machine learning) to combine individual automated predictions into "fusion" algorithms. In a companion study, 8 dermatologists classified the lesions in the 100 images as either benign or malignant. The average sensitivity and specificity of dermatologists in classification was 82% and 59%. At 82% sensitivity, dermatologist specificity was similar to the top challenge algorithm (59% vs. 62%, P = .68) but lower than the best-performing fusion algorithm (59% vs. 76%, P = .02). Receiver operating characteristic area of the top fusion algorithm was greater than the mean receiver operating characteristic area of dermatologists (0.86 vs. 0.71, P = .001). The dataset lacked the full spectrum of skin lesions encountered in clinical practice, particularly banal lesions. Readers and algorithms were not provided clinical data (eg, age or lesion history/symptoms). Results obtained using our study design cannot be extrapolated to clinical practice. Deep learning computer vision systems classified melanoma dermoscopy images with accuracy that exceeded some but not all dermatologists. Copyright © 2017 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  19. Sensitive and specific peak detection for SELDI-TOF mass spectrometry using a wavelet/neural-network based approach.

    PubMed

    Emanuele, Vincent A; Panicker, Gitika; Gurbaxani, Brian M; Lin, Jin-Mann S; Unger, Elizabeth R

    2012-01-01

    SELDI-TOF mass spectrometer's compact size and automated, high throughput design have been attractive to clinical researchers, and the platform has seen steady-use in biomarker studies. Despite new algorithms and preprocessing pipelines that have been developed to address reproducibility issues, visual inspection of the results of SELDI spectra preprocessing by the best algorithms still shows miscalled peaks and systematic sources of error. This suggests that there continues to be problems with SELDI preprocessing. In this work, we study the preprocessing of SELDI in detail and introduce improvements. While many algorithms, including the vendor supplied software, can identify peak clusters of specific mass (or m/z) in groups of spectra with high specificity and low false discover rate (FDR), the algorithms tend to underperform estimating the exact prevalence and intensity of peaks in those clusters. Thus group differences that at first appear very strong are shown, after careful and laborious hand inspection of the spectra, to be less than significant. Here we introduce a wavelet/neural network based algorithm which mimics what a team of expert, human users would call for peaks in each of several hundred spectra in a typical SELDI clinical study. The wavelet denoising part of the algorithm optimally smoothes the signal in each spectrum according to an improved suite of signal processing algorithms previously reported (the LibSELDI toolbox under development). The neural network part of the algorithm combines those results with the raw signal and a training dataset of expertly called peaks, to call peaks in a test set of spectra with approximately 95% accuracy. The new method was applied to data collected from a study of cervical mucus for the early detection of cervical cancer in HPV infected women. The method shows promise in addressing the ongoing SELDI reproducibility issues.

  20. Evolutionary and biological metaphors for engineering design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakiela, M.

    1994-12-31

    Since computing became generally available, there has been strong interest in using computers to assist and automate engineering design processes. Specifically, for design optimization and automation, nonlinear programming and artificial intelligence techniques have been extensively studied. New computational techniques, based upon the natural processes of evolution, adaptation, and learing, are showing promise because of their generality and robustness. This presentation will describe the use of two such techniques, genetic algorithms and classifier systems, for a variety of engineering design problems. Structural topology optimization, meshing, and general engineering optimization are shown as example applications.

  1. Recommended System Design for the Occupational Health Management Information System (OHMIS). Volume 1.

    DTIC Science & Technology

    1983-04-01

    Management Information System (OHMIS). The system design includes: detailed function data flows for each of the core data processing functions of OHMIS, in the form of input/processing/output algorithms; detailed descriptions of the inputs and outputs; performance specifications of OHMIS; resources required to develop and operate OHMIS (Vol II). In addition, the report provides a summary of the rationale used to develop the recommended system design, a description of the methodology used to develop the recommended system design, and a review of existing

  2. Automated design of minimum drag light aircraft fuselages and nacelles

    NASA Technical Reports Server (NTRS)

    Smetana, F. O.; Fox, S. R.; Karlin, B. E.

    1982-01-01

    The constrained minimization algorithm of Vanderplaats is applied to the problem of designing minimum drag faired bodies such as fuselages and nacelles. Body drag is computed by a variation of the Hess-Smith code. This variation includes a boundary layer computation. The encased payload provides arbitrary geometric constraints, specified a priori by the designer, below which the fairing cannot shrink. The optimization may include engine cooling air flows entering and exhausting through specific port locations on the body.

  3. Comparison of Reconstruction and Control algorithms on the ESO end-to-end simulator OCTOPUS

    NASA Astrophysics Data System (ADS)

    Montilla, I.; Béchet, C.; Lelouarn, M.; Correia, C.; Tallon, M.; Reyes, M.; Thiébaut, É.

    Extremely Large Telescopes are very challenging concerning their Adaptive Optics requirements. Their diameters, the specifications demanded by the science for which they are being designed for, and the planned use of Extreme Adaptive Optics systems, imply a huge increment in the number of degrees of freedom in the deformable mirrors. It is necessary to study new reconstruction algorithms to implement the real time control in Adaptive Optics at the required speed. We have studied the performance, applied to the case of the European ELT, of three different algorithms: the matrix-vector multiplication (MVM) algorithm, considered as a reference; the Fractal Iterative Method (FrIM); and the Fourier Transform Reconstructor (FTR). The algorithms have been tested on ESO's OCTOPUS software, which simulates the atmosphere, the deformable mirror, the sensor and the closed-loop control. The MVM is the default reconstruction and control method implemented in OCTOPUS, but it scales in O(N2) operations per loop so it is not considered as a fast algorithm for wave-front reconstruction and control on an Extremely Large Telescope. The two other methods are the fast algorithms studied in the E-ELT Design Study. The performance, as well as their response in the presence of noise and with various atmospheric conditions, has been compared using a Single Conjugate Adaptive Optics configuration for a 42 m diameter ELT, with a total amount of 5402 actuators. Those comparisons made on a common simulator allow to enhance the pros and cons of the various methods, and give us a better understanding of the type of reconstruction algorithm that an ELT demands.

  4. Automatic and Robust Delineation of the Fiducial Points of the Seismocardiogram Signal for Non-invasive Estimation of Cardiac Time Intervals.

    PubMed

    Khosrow-Khavar, Farzad; Tavakolian, Kouhyar; Blaber, Andrew; Menon, Carlo

    2016-10-12

    The purpose of this research was to design a delineation algorithm that could detect specific fiducial points of the seismocardiogram (SCG) signal with or without using the electrocardiogram (ECG) R-wave as the reference point. The detected fiducial points were used to estimate cardiac time intervals. Due to complexity and sensitivity of the SCG signal, the algorithm was designed to robustly discard the low-quality cardiac cycles, which are the ones that contain unrecognizable fiducial points. The algorithm was trained on a dataset containing 48,318 manually annotated cardiac cycles. It was then applied to three test datasets: 65 young healthy individuals (dataset 1), 15 individuals above 44 years old (dataset 2), and 25 patients with previous heart conditions (dataset 3). The algorithm accomplished high prediction accuracy with the rootmean- square-error of less than 5 ms for all the test datasets. The algorithm overall mean detection rate per individual recordings (DRI) were 74, 68, and 42 percent for the three test datasets when concurrent ECG and SCG were used. For the standalone SCG case, the mean DRI was 32, 14 and 21 percent. When the proposed algorithm applied to concurrent ECG and SCG signals, the desired fiducial points of the SCG signal were successfully estimated with a high detection rate. For the standalone case, however, the algorithm achieved high prediction accuracy and detection rate for only the young individual dataset. The presented algorithm could be used for accurate and non-invasive estimation of cardiac time intervals.

  5. Learning with Calculator Games

    ERIC Educational Resources Information Center

    Frahm, Bruce

    2013-01-01

    Educational games provide a fun introduction to new material and a review of mathematical algorithms. Specifically, games can be designed to assist students in developing mathematical skills as an incidental consequence of the game-playing process. The programs presented in this article are adaptations of board games or television shows that…

  6. 48 CFR 252.227-7013 - Rights in technical data-Noncommercial items.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... causing a computer to perform a specific operation or series of operations. (3) Computer software means computer programs, source code, source code listings, object code listings, design details, algorithms... or will be developed exclusively with Government funds; (ii) Studies, analyses, test data, or similar...

  7. 48 CFR 252.227-7013 - Rights in technical data-Noncommercial items.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... causing a computer to perform a specific operation or series of operations. (3) Computer software means computer programs, source code, source code listings, object code listings, design details, algorithms... or will be developed exclusively with Government funds; (ii) Studies, analyses, test data, or similar...

  8. 48 CFR 252.227-7013 - Rights in technical data-Noncommercial items.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... causing a computer to perform a specific operation or series of operations. (3) Computer software means computer programs, source code, source code listings, object code listings, design details, algorithms... or will be developed exclusively with Government funds; (ii) Studies, analyses, test data, or similar...

  9. 48 CFR 252.227-7013 - Rights in technical data-Noncommercial items.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... causing a computer to perform a specific operation or series of operations. (3) Computer software means computer programs, source code, source code listings, object code listings, design details, algorithms... developed exclusively with Government funds; (ii) Studies, analyses, test data, or similar data produced for...

  10. Genetic evolutionary taboo search for optimal marker placement in infrared patient setup

    NASA Astrophysics Data System (ADS)

    Riboldi, M.; Baroni, G.; Spadea, M. F.; Tagaste, B.; Garibaldi, C.; Cambria, R.; Orecchia, R.; Pedotti, A.

    2007-09-01

    In infrared patient setup adequate selection of the external fiducial configuration is required for compensating inner target displacements (target registration error, TRE). Genetic algorithms (GA) and taboo search (TS) were applied in a newly designed approach to optimal marker placement: the genetic evolutionary taboo search (GETS) algorithm. In the GETS paradigm, multiple solutions are simultaneously tested in a stochastic evolutionary scheme, where taboo-based decision making and adaptive memory guide the optimization process. The GETS algorithm was tested on a group of ten prostate patients, to be compared to standard optimization and to randomly selected configurations. The changes in the optimal marker configuration, when TRE is minimized for OARs, were specifically examined. Optimal GETS configurations ensured a 26.5% mean decrease in the TRE value, versus 19.4% for conventional quasi-Newton optimization. Common features in GETS marker configurations were highlighted in the dataset of ten patients, even when multiple runs of the stochastic algorithm were performed. Including OARs in TRE minimization did not considerably affect the spatial distribution of GETS marker configurations. In conclusion, the GETS algorithm proved to be highly effective in solving the optimal marker placement problem. Further work is needed to embed site-specific deformation models in the optimization process.

  11. HPC Programming on Intel Many-Integrated-Core Hardware with MAGMA Port to Xeon Phi

    DOE PAGES

    Dongarra, Jack; Gates, Mark; Haidar, Azzam; ...

    2015-01-01

    This paper presents the design and implementation of several fundamental dense linear algebra (DLA) algorithms for multicore with Intel Xeon Phi coprocessors. In particular, we consider algorithms for solving linear systems. Further, we give an overview of the MAGMA MIC library, an open source, high performance library, that incorporates the developments presented here and, more broadly, provides the DLA functionality equivalent to that of the popular LAPACK library while targeting heterogeneous architectures that feature a mix of multicore CPUs and coprocessors. The LAPACK-compliance simplifies the use of the MAGMA MIC library in applications, while providing them with portably performant DLA.more » High performance is obtained through the use of the high-performance BLAS, hardware-specific tuning, and a hybridization methodology whereby we split the algorithm into computational tasks of various granularities. Execution of those tasks is properly scheduled over the heterogeneous hardware by minimizing data movements and mapping algorithmic requirements to the architectural strengths of the various heterogeneous hardware components. Our methodology and programming techniques are incorporated into the MAGMA MIC API, which abstracts the application developer from the specifics of the Xeon Phi architecture and is therefore applicable to algorithms beyond the scope of DLA.« less

  12. An Experimental Comparison of Similarity Assessment Measures for 3D Models on Constrained Surface Deformation

    NASA Astrophysics Data System (ADS)

    Quan, Lulin; Yang, Zhixin

    2010-05-01

    To address the issues in the area of design customization, this paper expressed the specification and application of the constrained surface deformation, and reported the experimental performance comparison of three prevail effective similarity assessment algorithms on constrained surface deformation domain. Constrained surface deformation becomes a promising method that supports for various downstream applications of customized design. Similarity assessment is regarded as the key technology for inspecting the success of new design via measuring the difference level between the deformed new design and the initial sample model, and indicating whether the difference level is within the limitation. According to our theoretical analysis and pre-experiments, three similarity assessment algorithms are suitable for this domain, including shape histogram based method, skeleton based method, and U system moment based method. We analyze their basic functions and implementation methodologies in detail, and do a series of experiments on various situations to test their accuracy and efficiency using precision-recall diagram. Shoe model is chosen as an industrial example for the experiments. It shows that shape histogram based method gained an optimal performance in comparison. Based on the result, we proposed a novel approach that integrating surface constrains and shape histogram description with adaptive weighting method, which emphasize the role of constrains during the assessment. The limited initial experimental result demonstrated that our algorithm outperforms other three algorithms. A clear direction for future development is also drawn at the end of the paper.

  13. The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector

    NASA Astrophysics Data System (ADS)

    Acciarri, R.; Adams, C.; An, R.; Anthony, J.; Asaadi, J.; Auger, M.; Bagby, L.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; Bass, M.; Bay, F.; Bishai, M.; Blake, A.; Bolton, T.; Camilleri, L.; Caratelli, D.; Carls, B.; Castillo Fernandez, R.; Cavanna, F.; Chen, H.; Church, E.; Cianci, D.; Cohen, E.; Collin, G. H.; Conrad, J. M.; Convery, M.; Crespo-Anadón, J. I.; Del Tutto, M.; Devitt, D.; Dytman, S.; Eberly, B.; Ereditato, A.; Escudero Sanchez, L.; Esquivel, J.; Fadeeva, A. A.; Fleming, B. T.; Foreman, W.; Furmanski, A. P.; Garcia-Gamez, D.; Garvey, G. T.; Genty, V.; Goeldi, D.; Gollapinni, S.; Graf, N.; Gramellini, E.; Greenlee, H.; Grosso, R.; Guenette, R.; Hackenburg, A.; Hamilton, P.; Hen, O.; Hewes, J.; Hill, C.; Ho, J.; Horton-Smith, G.; Hourlier, A.; Huang, E.-C.; James, C.; Jan de Vries, J.; Jen, C.-M.; Jiang, L.; Johnson, R. A.; Joshi, J.; Jostlein, H.; Kaleko, D.; Karagiorgi, G.; Ketchum, W.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Laube, A.; Li, Y.; Lister, A.; Littlejohn, B. R.; Lockwitz, S.; Lorca, D.; Louis, W. C.; Luethi, M.; Lundberg, B.; Luo, X.; Marchionni, A.; Mariani, C.; Marshall, J.; Martinez Caicedo, D. A.; Meddage, V.; Miceli, T.; Mills, G. B.; Moon, J.; Mooney, M.; Moore, C. D.; Mousseau, J.; Murrells, R.; Naples, D.; Nienaber, P.; Nowak, J.; Palamara, O.; Paolone, V.; Papavassiliou, V.; Pate, S. F.; Pavlovic, Z.; Piasetzky, E.; Porzio, D.; Pulliam, G.; Qian, X.; Raaf, J. L.; Rafique, A.; Rochester, L.; Rudolf von Rohr, C.; Russell, B.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, M. H.; Sinclair, J.; Smith, A.; Snider, E. L.; Soderberg, M.; Söldner-Rembold, S.; Soleti, S. R.; Spentzouris, P.; Spitz, J.; St. John, J.; Strauss, T.; Szelc, A. M.; Tagg, N.; Terao, K.; Thomson, M.; Toups, M.; Tsai, Y.-T.; Tufanli, S.; Usher, T.; Van De Pontseele, W.; Van de Water, R. G.; Viren, B.; Weber, M.; Wickremasinghe, D. A.; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Yang, T.; Yates, L.; Zeller, G. P.; Zennamo, J.; Zhang, C.

    2018-01-01

    The development and operation of liquid-argon time-projection chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens of algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.

  14. Development and application of unified algorithms for problems in computational science

    NASA Technical Reports Server (NTRS)

    Shankar, Vijaya; Chakravarthy, Sukumar

    1987-01-01

    A framework is presented for developing computationally unified numerical algorithms for solving nonlinear equations that arise in modeling various problems in mathematical physics. The concept of computational unification is an attempt to encompass efficient solution procedures for computing various nonlinear phenomena that may occur in a given problem. For example, in Computational Fluid Dynamics (CFD), a unified algorithm will be one that allows for solutions to subsonic (elliptic), transonic (mixed elliptic-hyperbolic), and supersonic (hyperbolic) flows for both steady and unsteady problems. The objectives are: development of superior unified algorithms emphasizing accuracy and efficiency aspects; development of codes based on selected algorithms leading to validation; application of mature codes to realistic problems; and extension/application of CFD-based algorithms to problems in other areas of mathematical physics. The ultimate objective is to achieve integration of multidisciplinary technologies to enhance synergism in the design process through computational simulation. Specific unified algorithms for a hierarchy of gas dynamics equations and their applications to two other areas: electromagnetic scattering, and laser-materials interaction accounting for melting.

  15. Comparison of algorithms to generate event times conditional on time-dependent covariates.

    PubMed

    Sylvestre, Marie-Pierre; Abrahamowicz, Michal

    2008-06-30

    The Cox proportional hazards model with time-dependent covariates (TDC) is now a part of the standard statistical analysis toolbox in medical research. As new methods involving more complex modeling of time-dependent variables are developed, simulations could often be used to systematically assess the performance of these models. Yet, generating event times conditional on TDC requires well-designed and efficient algorithms. We compare two classes of such algorithms: permutational algorithms (PAs) and algorithms based on a binomial model. We also propose a modification of the PA to incorporate a rejection sampler. We performed a simulation study to assess the accuracy, stability, and speed of these algorithms in several scenarios. Both classes of algorithms generated data sets that, once analyzed, provided virtually unbiased estimates with comparable variances. In terms of computational efficiency, the PA with the rejection sampler reduced the time necessary to generate data by more than 50 per cent relative to alternative methods. The PAs also allowed more flexibility in the specification of the marginal distributions of event times and required less calibration.

  16. A formally verified algorithm for interactive consistency under a hybrid fault model

    NASA Technical Reports Server (NTRS)

    Lincoln, Patrick; Rushby, John

    1993-01-01

    Consistent distribution of single-source data to replicated computing channels is a fundamental problem in fault-tolerant system design. The 'Oral Messages' (OM) algorithm solves this problem of Interactive Consistency (Byzantine Agreement) assuming that all faults are worst-cass. Thambidurai and Park introduced a 'hybrid' fault model that distinguished three fault modes: asymmetric (Byzantine), symmetric, and benign; they also exhibited, along with an informal 'proof of correctness', a modified version of OM. Unfortunately, their algorithm is flawed. The discipline of mechanically checked formal verification eventually enabled us to develop a correct algorithm for Interactive Consistency under the hybrid fault model. This algorithm withstands $a$ asymmetric, $s$ symmetric, and $b$ benign faults simultaneously, using $m+1$ rounds, provided $n is greater than 2a + 2s + b + m$, and $m\\geg a$. We present this algorithm, discuss its subtle points, and describe its formal specification and verification in PVS. We argue that formal verification systems such as PVS are now sufficiently effective that their application to fault-tolerance algorithms should be considered routine.

  17. ACQUA: Automated Cyanobacterial Quantification Algorithm for toxic filamentous genera using spline curves, pattern recognition and machine learning.

    PubMed

    Gandola, Emanuele; Antonioli, Manuela; Traficante, Alessio; Franceschini, Simone; Scardi, Michele; Congestri, Roberta

    2016-05-01

    Toxigenic cyanobacteria are one of the main health risks associated with water resources worldwide, as their toxins can affect humans and fauna exposed via drinking water, aquaculture and recreation. Microscopy monitoring of cyanobacteria in water bodies and massive growth systems is a routine operation for cell abundance and growth estimation. Here we present ACQUA (Automated Cyanobacterial Quantification Algorithm), a new fully automated image analysis method designed for filamentous genera in Bright field microscopy. A pre-processing algorithm has been developed to highlight filaments of interest from background signals due to other phytoplankton and dust. A spline-fitting algorithm has been designed to recombine interrupted and crossing filaments in order to perform accurate morphometric analysis and to extract the surface pattern information of highlighted objects. In addition, 17 specific pattern indicators have been developed and used as input data for a machine-learning algorithm dedicated to the recognition between five widespread toxic or potentially toxic filamentous genera in freshwater: Aphanizomenon, Cylindrospermopsis, Dolichospermum, Limnothrix and Planktothrix. The method was validated using freshwater samples from three Italian volcanic lakes comparing automated vs. manual results. ACQUA proved to be a fast and accurate tool to rapidly assess freshwater quality and to characterize cyanobacterial assemblages in aquatic environments. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Real Time Intelligent Target Detection and Analysis with Machine Vision

    NASA Technical Reports Server (NTRS)

    Howard, Ayanna; Padgett, Curtis; Brown, Kenneth

    2000-01-01

    We present an algorithm for detecting a specified set of targets for an Automatic Target Recognition (ATR) application. ATR involves processing images for detecting, classifying, and tracking targets embedded in a background scene. We address the problem of discriminating between targets and nontarget objects in a scene by evaluating 40x40 image blocks belonging to an image. Each image block is first projected onto a set of templates specifically designed to separate images of targets embedded in a typical background scene from those background images without targets. These filters are found using directed principal component analysis which maximally separates the two groups. The projected images are then clustered into one of n classes based on a minimum distance to a set of n cluster prototypes. These cluster prototypes have previously been identified using a modified clustering algorithm based on prior sensed data. Each projected image pattern is then fed into the associated cluster's trained neural network for classification. A detailed description of our algorithm will be given in this paper. We outline our methodology for designing the templates, describe our modified clustering algorithm, and provide details on the neural network classifiers. Evaluation of the overall algorithm demonstrates that our detection rates approach 96% with a false positive rate of less than 0.03%.

  19. Topology optimisation of micro fluidic mixers considering fluid-structure interactions with a coupled Lattice Boltzmann algorithm

    NASA Astrophysics Data System (ADS)

    Munk, David J.; Kipouros, Timoleon; Vio, Gareth A.; Steven, Grant P.; Parks, Geoffrey T.

    2017-11-01

    Recently, the study of micro fluidic devices has gained much interest in various fields from biology to engineering. In the constant development cycle, the need to optimise the topology of the interior of these devices, where there are two or more optimality criteria, is always present. In this work, twin physical situations, whereby optimal fluid mixing in the form of vorticity maximisation is accompanied by the requirement that the casing in which the mixing takes place has the best structural performance in terms of the greatest specific stiffness, are considered. In the steady state of mixing this also means that the stresses in the casing are as uniform as possible, thus giving a desired operating life with minimum weight. The ultimate aim of this research is to couple two key disciplines, fluids and structures, into a topology optimisation framework, which shows fast convergence for multidisciplinary optimisation problems. This is achieved by developing a bi-directional evolutionary structural optimisation algorithm that is directly coupled to the Lattice Boltzmann method, used for simulating the flow in the micro fluidic device, for the objectives of minimum compliance and maximum vorticity. The needs for the exploration of larger design spaces and to produce innovative designs make meta-heuristic algorithms, such as genetic algorithms, particle swarms and Tabu Searches, less efficient for this task. The multidisciplinary topology optimisation framework presented in this article is shown to increase the stiffness of the structure from the datum case and produce physically acceptable designs. Furthermore, the topology optimisation method outperforms a Tabu Search algorithm in designing the baffle to maximise the mixing of the two fluids.

  20. An Overview of a Trajectory-Based Solution for En Route and Terminal Area Self-Spacing to Include Parallel Runway Operations

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    2011-01-01

    This paper presents an overview of an algorithm specifically designed to support NASA's Airborne Precision Spacing concept. This airborne self-spacing concept is trajectory-based, allowing for spacing operations prior to the aircraft being on a common path. This implementation provides the ability to manage spacing against two traffic aircraft, with one of these aircraft operating to a parallel dependent runway. Because this algorithm is trajectory-based, it also has the inherent ability to support required-time-of-arrival (RTA) operations

  1. Detecting REM sleep from the finger: an automatic REM sleep algorithm based on peripheral arterial tone (PAT) and actigraphy.

    PubMed

    Herscovici, Sarah; Pe'er, Avivit; Papyan, Surik; Lavie, Peretz

    2007-02-01

    Scoring of REM sleep based on polysomnographic recordings is a laborious and time-consuming process. The growing number of ambulatory devices designed for cost-effective home-based diagnostic sleep recordings necessitates the development of a reliable automatic REM sleep detection algorithm that is not based on the traditional electroencephalographic, electrooccolographic and electromyographic recordings trio. This paper presents an automatic REM detection algorithm based on the peripheral arterial tone (PAT) signal and actigraphy which are recorded with an ambulatory wrist-worn device (Watch-PAT100). The PAT signal is a measure of the pulsatile volume changes at the finger tip reflecting sympathetic tone variations. The algorithm was developed using a training set of 30 patients recorded simultaneously with polysomnography and Watch-PAT100. Sleep records were divided into 5 min intervals and two time series were constructed from the PAT amplitudes and PAT-derived inter-pulse periods in each interval. A prediction function based on 16 features extracted from the above time series that determines the likelihood of detecting a REM epoch was developed. The coefficients of the prediction function were determined using a genetic algorithm (GA) optimizing process tuned to maximize a price function depending on the sensitivity, specificity and agreement of the algorithm in comparison with the gold standard of polysomnographic manual scoring. Based on a separate validation set of 30 patients overall sensitivity, specificity and agreement of the automatic algorithm to identify standard 30 s epochs of REM sleep were 78%, 92%, 89%, respectively. Deploying this REM detection algorithm in a wrist worn device could be very useful for unattended ambulatory sleep monitoring. The innovative method of optimization using a genetic algorithm has been proven to yield robust results in the validation set.

  2. The Principle of the Micro-Electronic Neural Bridge and a Prototype System Design.

    PubMed

    Huang, Zong-Hao; Wang, Zhi-Gong; Lu, Xiao-Ying; Li, Wen-Yuan; Zhou, Yu-Xuan; Shen, Xiao-Yan; Zhao, Xin-Tai

    2016-01-01

    The micro-electronic neural bridge (MENB) aims to rebuild lost motor function of paralyzed humans by routing movement-related signals from the brain, around the damage part in the spinal cord, to the external effectors. This study focused on the prototype system design of the MENB, including the principle of the MENB, the neural signal detecting circuit and the functional electrical stimulation (FES) circuit design, and the spike detecting and sorting algorithm. In this study, we developed a novel improved amplitude threshold spike detecting method based on variable forward difference threshold for both training and bridging phase. The discrete wavelet transform (DWT), a new level feature coefficient selection method based on Lilliefors test, and the k-means clustering method based on Mahalanobis distance were used for spike sorting. A real-time online spike detecting and sorting algorithm based on DWT and Euclidean distance was also implemented for the bridging phase. Tested by the data sets available at Caltech, in the training phase, the average sensitivity, specificity, and clustering accuracies are 99.43%, 97.83%, and 95.45%, respectively. Validated by the three-fold cross-validation method, the average sensitivity, specificity, and classification accuracy are 99.43%, 97.70%, and 96.46%, respectively.

  3. Hybrid CMS methods with model reduction for assembly of structures

    NASA Technical Reports Server (NTRS)

    Farhat, Charbel

    1991-01-01

    Future on-orbit structures will be designed and built in several stages, each with specific control requirements. Therefore there must be a methodology which can predict the dynamic characteristics of the assembled structure, based on the dynamic characteristics of the subassemblies and their interfaces. The methodology developed by CSC to address this issue is Hybrid Component Mode Synthesis (HCMS). HCMS distinguishes itself from standard component mode synthesis algorithms in the following features: (1) it does not require the subcomponents to have displacement compatible models, which makes it ideal for analyzing the deployment of heterogeneous flexible multibody systems, (2) it incorporates a second-level model reduction scheme at the interface, which makes it much faster than other algorithms and therefore suitable for control purposes, and (3) it does answer specific questions such as 'how does the global fundamental frequency vary if I change the physical parameters of substructure k by a specified amount?'. Because it is based on an energy principle rather than displacement compatibility, this methodology can also help the designer to define an assembly process. Current and future efforts are devoted to applying the HCMS method to design and analyze docking and berthing procedures in orbital construction.

  4. Application of a repetitive process setting to design of monotonically convergent iterative learning control

    NASA Astrophysics Data System (ADS)

    Boski, Marcin; Paszke, Wojciech

    2015-11-01

    This paper deals with the problem of designing an iterative learning control algorithm for discrete linear systems using repetitive process stability theory. The resulting design produces a stabilizing output feedback controller in the time domain and a feedforward controller that guarantees monotonic convergence in the trial-to-trial domain. The results are also extended to limited frequency range design specification. New design procedure is introduced in terms of linear matrix inequality (LMI) representations, which guarantee the prescribed performances of ILC scheme. A simulation example is given to illustrate the theoretical developments.

  5. Computational strategies for the automated design of RNA nanoscale structures from building blocks using NanoTiler.

    PubMed

    Bindewald, Eckart; Grunewald, Calvin; Boyle, Brett; O'Connor, Mary; Shapiro, Bruce A

    2008-10-01

    One approach to designing RNA nanoscale structures is to use known RNA structural motifs such as junctions, kissing loops or bulges and to construct a molecular model by connecting these building blocks with helical struts. We previously developed an algorithm for detecting internal loops, junctions and kissing loops in RNA structures. Here we present algorithms for automating or assisting many of the steps that are involved in creating RNA structures from building blocks: (1) assembling building blocks into nanostructures using either a combinatorial search or constraint satisfaction; (2) optimizing RNA 3D ring structures to improve ring closure; (3) sequence optimisation; (4) creating a unique non-degenerate RNA topology descriptor. This effectively creates a computational pipeline for generating molecular models of RNA nanostructures and more specifically RNA ring structures with optimized sequences from RNA building blocks. We show several examples of how the algorithms can be utilized to generate RNA tecto-shapes.

  6. High-speed architecture for the decoding of trellis-coded modulation

    NASA Technical Reports Server (NTRS)

    Osborne, William P.

    1992-01-01

    Since 1971, when the Viterbi Algorithm was introduced as the optimal method of decoding convolutional codes, improvements in circuit technology, especially VLSI, have steadily increased its speed and practicality. Trellis-Coded Modulation (TCM) combines convolutional coding with higher level modulation (non-binary source alphabet) to provide forward error correction and spectral efficiency. For binary codes, the current stare-of-the-art is a 64-state Viterbi decoder on a single CMOS chip, operating at a data rate of 25 Mbps. Recently, there has been an interest in increasing the speed of the Viterbi Algorithm by improving the decoder architecture, or by reducing the algorithm itself. Designs employing new architectural techniques are now in existence, however these techniques are currently applied to simpler binary codes, not to TCM. The purpose of this report is to discuss TCM architectural considerations in general, and to present the design, at the logic gate level, or a specific TCM decoder which applies these considerations to achieve high-speed decoding.

  7. Computational strategies for the automated design of RNA nanoscale structures from building blocks using NanoTiler☆

    PubMed Central

    Bindewald, Eckart; Grunewald, Calvin; Boyle, Brett; O’Connor, Mary; Shapiro, Bruce A.

    2013-01-01

    One approach to designing RNA nanoscale structures is to use known RNA structural motifs such as junctions, kissing loops or bulges and to construct a molecular model by connecting these building blocks with helical struts. We previously developed an algorithm for detecting internal loops, junctions and kissing loops in RNA structures. Here we present algorithms for automating or assisting many of the steps that are involved in creating RNA structures from building blocks: (1) assembling building blocks into nanostructures using either a combinatorial search or constraint satisfaction; (2) optimizing RNA 3D ring structures to improve ring closure; (3) sequence optimisation; (4) creating a unique non-degenerate RNA topology descriptor. This effectively creates a computational pipeline for generating molecular models of RNA nanostructures and more specifically RNA ring structures with optimized sequences from RNA building blocks. We show several examples of how the algorithms can be utilized to generate RNA tecto-shapes. PMID:18838281

  8. Design of Clinical Support Systems Using Integrated Genetic Algorithm and Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Chen, Yung-Fu; Huang, Yung-Fa; Jiang, Xiaoyi; Hsu, Yuan-Nian; Lin, Hsuan-Hung

    Clinical decision support system (CDSS) provides knowledge and specific information for clinicians to enhance diagnostic efficiency and improving healthcare quality. An appropriate CDSS can highly elevate patient safety, improve healthcare quality, and increase cost-effectiveness. Support vector machine (SVM) is believed to be superior to traditional statistical and neural network classifiers. However, it is critical to determine suitable combination of SVM parameters regarding classification performance. Genetic algorithm (GA) can find optimal solution within an acceptable time, and is faster than greedy algorithm with exhaustive searching strategy. By taking the advantage of GA in quickly selecting the salient features and adjusting SVM parameters, a method using integrated GA and SVM (IGS), which is different from the traditional method with GA used for feature selection and SVM for classification, was used to design CDSSs for prediction of successful ventilation weaning, diagnosis of patients with severe obstructive sleep apnea, and discrimination of different cell types form Pap smear. The results show that IGS is better than methods using SVM alone or linear discriminator.

  9. Evolutionary design of a generalized polynomial neural network for modelling sediment transport in clean pipes

    NASA Astrophysics Data System (ADS)

    Ebtehaj, Isa; Bonakdari, Hossein; Khoshbin, Fatemeh

    2016-10-01

    To determine the minimum velocity required to prevent sedimentation, six different models were proposed to estimate the densimetric Froude number (Fr). The dimensionless parameters of the models were applied along with a combination of the group method of data handling (GMDH) and the multi-target genetic algorithm. Therefore, an evolutionary design of the generalized GMDH was developed using a genetic algorithm with a specific coding scheme so as not to restrict connectivity configurations to abutting layers only. In addition, a new preserving mechanism by the multi-target genetic algorithm was utilized for the Pareto optimization of GMDH. The results indicated that the most accurate model was the one that used the volumetric concentration of sediment (CV), relative hydraulic radius (d/R), dimensionless particle number (Dgr) and overall sediment friction factor (λs) in estimating Fr. Furthermore, the comparison between the proposed method and traditional equations indicated that GMDH is more accurate than existing equations.

  10. A spatial operator algebra for manipulator modeling and control

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Kreutz, Kenneth; Jain, Abhinandan

    1989-01-01

    A recently developed spatial operator algebra, useful for modeling, control, and trajectory design of manipulators is discussed. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of a manipulator. Inversion of operators can be efficiently obtained via techniques of recursive filtering and smoothing. The operator algebra provides a high level framework for describing the dynamic and kinematic behavior of a manipulator and control and trajectory design algorithms. The interpretation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding of manipulator dynamics and kinematics. Furthermore, implementable recursive algorithms can be immediately derived from the abstract operator expressions by inspection. Thus, the transition from an abstract problem formulation and solution to the detailed mechanizaton of specific algorithms is greatly simplified. The analytical formulation of the operator algebra, as well as its implementation in the Ada programming language are discussed.

  11. Employing multi-GPU power for molecular dynamics simulation: an extension of GALAMOST

    NASA Astrophysics Data System (ADS)

    Zhu, You-Liang; Pan, Deng; Li, Zhan-Wei; Liu, Hong; Qian, Hu-Jun; Zhao, Yang; Lu, Zhong-Yuan; Sun, Zhao-Yan

    2018-04-01

    We describe the algorithm of employing multi-GPU power on the basis of Message Passing Interface (MPI) domain decomposition in a molecular dynamics code, GALAMOST, which is designed for the coarse-grained simulation of soft matters. The code of multi-GPU version is developed based on our previous single-GPU version. In multi-GPU runs, one GPU takes charge of one domain and runs single-GPU code path. The communication between neighbouring domains takes a similar algorithm of CPU-based code of LAMMPS, but is optimised specifically for GPUs. We employ a memory-saving design which can enlarge maximum system size at the same device condition. An optimisation algorithm is employed to prolong the update period of neighbour list. We demonstrate good performance of multi-GPU runs on the simulation of Lennard-Jones liquid, dissipative particle dynamics liquid, polymer and nanoparticle composite, and two-patch particles on workstation. A good scaling of many nodes on cluster for two-patch particles is presented.

  12. Design of primers and probes for quantitative real-time PCR methods.

    PubMed

    Rodríguez, Alicia; Rodríguez, Mar; Córdoba, Juan J; Andrade, María J

    2015-01-01

    Design of primers and probes is one of the most crucial factors affecting the success and quality of quantitative real-time PCR (qPCR) analyses, since an accurate and reliable quantification depends on using efficient primers and probes. Design of primers and probes should meet several criteria to find potential primers and probes for specific qPCR assays. The formation of primer-dimers and other non-specific products should be avoided or reduced. This factor is especially important when designing primers for SYBR(®) Green protocols but also in designing probes to ensure specificity of the developed qPCR protocol. To design primers and probes for qPCR, multiple software programs and websites are available being numerous of them free. These tools often consider the default requirements for primers and probes, although new research advances in primer and probe design should be progressively added to different algorithm programs. After a proper design, a precise validation of the primers and probes is necessary. Specific consideration should be taken into account when designing primers and probes for multiplex qPCR and reverse transcription qPCR (RT-qPCR). This chapter provides guidelines for the design of suitable primers and probes and their subsequent validation through the development of singlex qPCR, multiplex qPCR, and RT-qPCR protocols.

  13. Multi-objective engineering design using preferences

    NASA Astrophysics Data System (ADS)

    Sanchis, J.; Martinez, M.; Blasco, X.

    2008-03-01

    System design is a complex task when design parameters have to satisy a number of specifications and objectives which often conflict with those of others. This challenging problem is called multi-objective optimization (MOO). The most common approximation consists in optimizing a single cost index with a weighted sum of objectives. However, once weights are chosen the solution does not guarantee the best compromise among specifications, because there is an infinite number of solutions. A new approach can be stated, based on the designer's experience regarding the required specifications and the associated problems. This valuable information can be translated into preferences for design objectives, and will lead the search process to the best solution in terms of these preferences. This article presents a new method, which enumerates these a priori objective preferences. As a result, a single objective is built automatically and no weight selection need be performed. Problems occuring because of the multimodal nature of the generated single cost index are managed with genetic algorithms (GAs).

  14. Context-specific metabolic networks are consistent with experiments.

    PubMed

    Becker, Scott A; Palsson, Bernhard O

    2008-05-16

    Reconstructions of cellular metabolism are publicly available for a variety of different microorganisms and some mammalian genomes. To date, these reconstructions are "genome-scale" and strive to include all reactions implied by the genome annotation, as well as those with direct experimental evidence. Clearly, many of the reactions in a genome-scale reconstruction will not be active under particular conditions or in a particular cell type. Methods to tailor these comprehensive genome-scale reconstructions into context-specific networks will aid predictive in silico modeling for a particular situation. We present a method called Gene Inactivity Moderated by Metabolism and Expression (GIMME) to achieve this goal. The GIMME algorithm uses quantitative gene expression data and one or more presupposed metabolic objectives to produce the context-specific reconstruction that is most consistent with the available data. Furthermore, the algorithm provides a quantitative inconsistency score indicating how consistent a set of gene expression data is with a particular metabolic objective. We show that this algorithm produces results consistent with biological experiments and intuition for adaptive evolution of bacteria, rational design of metabolic engineering strains, and human skeletal muscle cells. This work represents progress towards producing constraint-based models of metabolism that are specific to the conditions where the expression profiling data is available.

  15. 48 CFR 252.227-7013 - Rights in technical data-Noncommercial items.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... causing a computer to perform a specific operation or series of operations. (3) Computer software means computer programs, source code, source code listings, object code listings, design details, algorithms... funds; (ii) Studies, analyses, test data, or similar data produced for this contract, when the study...

  16. Limitations and potentials of current motif discovery algorithms

    PubMed Central

    Hu, Jianjun; Li, Bin; Kihara, Daisuke

    2005-01-01

    Computational methods for de novo identification of gene regulation elements, such as transcription factor binding sites, have proved to be useful for deciphering genetic regulatory networks. However, despite the availability of a large number of algorithms, their strengths and weaknesses are not sufficiently understood. Here, we designed a comprehensive set of performance measures and benchmarked five modern sequence-based motif discovery algorithms using large datasets generated from Escherichia coli RegulonDB. Factors that affect the prediction accuracy, scalability and reliability are characterized. It is revealed that the nucleotide and the binding site level accuracy are very low, while the motif level accuracy is relatively high, which indicates that the algorithms can usually capture at least one correct motif in an input sequence. To exploit diverse predictions from multiple runs of one or more algorithms, a consensus ensemble algorithm has been developed, which achieved 6–45% improvement over the base algorithms by increasing both the sensitivity and specificity. Our study illustrates limitations and potentials of existing sequence-based motif discovery algorithms. Taking advantage of the revealed potentials, several promising directions for further improvements are discussed. Since the sequence-based algorithms are the baseline of most of the modern motif discovery algorithms, this paper suggests substantial improvements would be possible for them. PMID:16284194

  17. CATO: a CAD tool for intelligent design of optical networks and interconnects

    NASA Astrophysics Data System (ADS)

    Chlamtac, Imrich; Ciesielski, Maciej; Fumagalli, Andrea F.; Ruszczyk, Chester; Wedzinga, Gosse

    1997-10-01

    Increasing communication speed requirements have created a great interest in very high speed optical and all-optical networks and interconnects. The design of these optical systems is a highly complex task, requiring the simultaneous optimization of various parts of the system, ranging from optical components' characteristics to access protocol techniques. Currently there are no computer aided design (CAD) tools on the market to support the interrelated design of all parts of optical communication systems, thus the designer has to rely on costly and time consuming testbed evaluations. The objective of the CATO (CAD tool for optical networks and interconnects) project is to develop a prototype of an intelligent CAD tool for the specification, design, simulation and optimization of optical communication networks. CATO allows the user to build an abstract, possible incomplete, model of the system, and determine its expected performance. Based on design constraints provided by the user, CATO will automatically complete an optimum design, using mathematical programming techniques, intelligent search methods and artificial intelligence (AI). Initial design and testing of a CATO prototype (CATO-1) has been completed recently. The objective was to prove the feasibility of combining AI techniques, simulation techniques, an optical device library and a graphical user interface into a flexible CAD tool for obtaining optimal communication network designs in terms of system cost and performance. CATO-1 is an experimental tool for designing packet-switching wavelength division multiplexing all-optical communication systems using a LAN/MAN ring topology as the underlying network. The two specific AI algorithms incorporated are simulated annealing and a genetic algorithm. CATO-1 finds the optimal number of transceivers for each network node, using an objective function that includes the cost of the devices and the overall system performance.

  18. Symbolic LTL Compilation for Model Checking: Extended Abstract

    NASA Technical Reports Server (NTRS)

    Rozier, Kristin Y.; Vardi, Moshe Y.

    2007-01-01

    In Linear Temporal Logic (LTL) model checking, we check LTL formulas representing desired behaviors against a formal model of the system designed to exhibit these behaviors. To accomplish this task, the LTL formulas must be translated into automata [21]. We focus on LTL compilation by investigating LTL satisfiability checking via a reduction to model checking. Having shown that symbolic LTL compilation algorithms are superior to explicit automata construction algorithms for this task [16], we concentrate here on seeking a better symbolic algorithm.We present experimental data comparing algorithmic variations such as normal forms, encoding methods, and variable ordering and examine their effects on performance metrics including processing time and scalability. Safety critical systems, such as air traffic control, life support systems, hazardous environment controls, and automotive control systems, pervade our daily lives, yet testing and simulation alone cannot adequately verify their reliability [3]. Model checking is a promising approach to formal verification for safety critical systems which involves creating a formal mathematical model of the system and translating desired safety properties into a formal specification for this model. The complement of the specification is then checked against the system model. When the model does not satisfy the specification, model-checking tools accompany this negative answer with a counterexample, which points to an inconsistency between the system and the desired behaviors and aids debugging efforts.

  19. Ascertainment and verification of end-stage renal disease and end-stage liver disease in the north american AIDS cohort collaboration on research and design.

    PubMed

    Kitahata, Mari M; Drozd, Daniel R; Crane, Heidi M; Van Rompaey, Stephen E; Althoff, Keri N; Gange, Stephen J; Klein, Marina B; Lucas, Gregory M; Abraham, Alison G; Lo Re, Vincent; McReynolds, Justin; Lober, William B; Mendes, Adell; Modur, Sharada P; Jing, Yuezhou; Morton, Elizabeth J; Griffith, Margaret A; Freeman, Aimee M; Moore, Richard D

    2015-01-01

    The burden of HIV disease has shifted from traditional AIDS-defining illnesses to serious non-AIDS-defining comorbid conditions. Research aimed at improving HIV-related comorbid disease outcomes requires well-defined, verified clinical endpoints. We developed methods to ascertain and verify end-stage renal disease (ESRD) and end-stage liver disease (ESLD) and validated screening algorithms within the largest HIV cohort collaboration in North America (NA-ACCORD). Individuals who screened positive among all participants in twelve cohorts enrolled between January 1996 and December 2009 underwent medical record review to verify incident ESRD or ESLD using standardized protocols. We randomly sampled 6% of contributing cohorts to determine the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of ESLD and ESRD screening algorithms in a validation subcohort. Among 43,433 patients screened for ESRD, 822 screened positive of which 620 met clinical criteria for ESRD. The algorithm had 100% sensitivity, 99% specificity, 82% PPV, and 100% NPV for ESRD. Among 41,463 patients screened for ESLD, 2,024 screened positive of which 645 met diagnostic criteria for ESLD. The algorithm had 100% sensitivity, 95% specificity, 27% PPV, and 100% NPV for ESLD. Our methods proved robust for ascertainment of ESRD and ESLD in persons infected with HIV.

  20. Video segmentation for post-production

    NASA Astrophysics Data System (ADS)

    Wills, Ciaran

    2001-12-01

    Specialist post-production is an industry that has much to gain from the application of content-based video analysis techniques. However the types of material handled in specialist post-production, such as television commercials, pop music videos and special effects are quite different in nature from the typical broadcast material which many video analysis techniques are designed to work with; shots are short and highly dynamic, and the transitions are often novel or ambiguous. We address the problem of scene change detection and develop a new algorithm which tackles some of the common aspects of post-production material that cause difficulties for past algorithms, such as illumination changes and jump cuts. Operating in the compressed domain on Motion JPEG compressed video, our algorithm detects cuts and fades by analyzing each JPEG macroblock in the context of its temporal and spatial neighbors. Analyzing the DCT coefficients directly we can extract the mean color of a block and an approximate detail level. We can also perform an approximated cross-correlation between two blocks. The algorithm is part of a set of tools being developed to work with an automated asset management system designed specifically for use in post-production facilities.

  1. As-built design specification for the digital derivation of daily and monthly data bases from synoptic observations of temperature and precipitation for the People's Republic of China

    NASA Technical Reports Server (NTRS)

    Jeun, B. H.; Barger, G. L.

    1977-01-01

    A data base of synoptic meteorological information was compiled for the People's Republic of China, as an integral part of the Large Area Crop Inventory Experiment. A system description is provided, including hardware and software specifications, computation algorithms and an evaluation of output validity. Operations are also outlined, with emphasis placed on least squares interpolation.

  2. Symbolic discrete event system specification

    NASA Technical Reports Server (NTRS)

    Zeigler, Bernard P.; Chi, Sungdo

    1992-01-01

    Extending discrete event modeling formalisms to facilitate greater symbol manipulation capabilities is important to further their use in intelligent control and design of high autonomy systems. An extension to the DEVS formalism that facilitates symbolic expression of event times by extending the time base from the real numbers to the field of linear polynomials over the reals is defined. A simulation algorithm is developed to generate the branching trajectories resulting from the underlying nondeterminism. To efficiently manage symbolic constraints, a consistency checking algorithm for linear polynomial constraints based on feasibility checking algorithms borrowed from linear programming has been developed. The extended formalism offers a convenient means to conduct multiple, simultaneous explorations of model behaviors. Examples of application are given with concentration on fault model analysis.

  3. An algorithm for generating all possible 2(p-q) fractional factorial designs and its use in scientific experimentation

    NASA Technical Reports Server (NTRS)

    Sidik, S. M.

    1973-01-01

    An algorithm and computer program are presented for generating all the distinct 2(p-q) fractional factorial designs. Some applications of this algorithm to the construction of tables of designs and of designs for nonstandard situations and its use in Bayesian design are discussed. An appendix includes a discussion of an actual experiment whose design was facilitated by the algorithm.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    P-Mart was designed specifically to allow cancer researchers to perform robust statistical processing of publicly available cancer proteomic datasets. To date an online statistical processing suite for proteomics does not exist. The P-Mart software is designed to allow statistical programmers to utilize these algorithms through packages in the R programming language as well as offering a web-based interface using the Azure cloud technology. The Azure cloud technology also allows the release of the software via Docker containers.

  5. Generic Kalman Filter Software

    NASA Technical Reports Server (NTRS)

    Lisano, Michael E., II; Crues, Edwin Z.

    2005-01-01

    The Generic Kalman Filter (GKF) software provides a standard basis for the development of application-specific Kalman-filter programs. Historically, Kalman filters have been implemented by customized programs that must be written, coded, and debugged anew for each unique application, then tested and tuned with simulated or actual measurement data. Total development times for typical Kalman-filter application programs have ranged from months to weeks. The GKF software can simplify the development process and reduce the development time by eliminating the need to re-create the fundamental implementation of the Kalman filter for each new application. The GKF software is written in the ANSI C programming language. It contains a generic Kalman-filter-development directory that, in turn, contains a code for a generic Kalman filter function; more specifically, it contains a generically designed and generically coded implementation of linear, linearized, and extended Kalman filtering algorithms, including algorithms for state- and covariance-update and -propagation functions. The mathematical theory that underlies the algorithms is well known and has been reported extensively in the open technical literature. Also contained in the directory are a header file that defines generic Kalman-filter data structures and prototype functions and template versions of application-specific subfunction and calling navigation/estimation routine code and headers. Once the user has provided a calling routine and the required application-specific subfunctions, the application-specific Kalman-filter software can be compiled and executed immediately. During execution, the generic Kalman-filter function is called from a higher-level navigation or estimation routine that preprocesses measurement data and post-processes output data. The generic Kalman-filter function uses the aforementioned data structures and five implementation- specific subfunctions, which have been developed by the user on the basis of the aforementioned templates. The GKF software can be used to develop many different types of unfactorized Kalman filters. A developer can choose to implement either a linearized or an extended Kalman filter algorithm, without having to modify the GKF software. Control dynamics can be taken into account or neglected in the filter-dynamics model. Filter programs developed by use of the GKF software can be made to propagate equations of motion for linear or nonlinear dynamical systems that are deterministic or stochastic. In addition, filter programs can be made to operate in user-selectable "covariance analysis" and "propagation-only" modes that are useful in design and development stages.

  6. Administrative Algorithms to identify Avascular necrosis of bone among patients undergoing upper or lower extremity magnetic resonance imaging: a validation study.

    PubMed

    Barbhaiya, Medha; Dong, Yan; Sparks, Jeffrey A; Losina, Elena; Costenbader, Karen H; Katz, Jeffrey N

    2017-06-19

    Studies of the epidemiology and outcomes of avascular necrosis (AVN) require accurate case-finding methods. The aim of this study was to evaluate performance characteristics of a claims-based algorithm designed to identify AVN cases in administrative data. Using a centralized patient registry from a US academic medical center, we identified all adults aged ≥18 years who underwent magnetic resonance imaging (MRI) of an upper/lower extremity joint during the 1.5 year study period. A radiologist report confirming AVN on MRI served as the gold standard. We examined the sensitivity, specificity, positive predictive value (PPV) and positive likelihood ratio (LR + ) of four algorithms (A-D) using International Classification of Diseases, 9th edition (ICD-9) codes for AVN. The algorithms ranged from least stringent (Algorithm A, requiring ≥1 ICD-9 code for AVN [733.4X]) to most stringent (Algorithm D, requiring ≥3 ICD-9 codes, each at least 30 days apart). Among 8200 patients who underwent MRI, 83 (1.0% [95% CI 0.78-1.22]) had AVN by gold standard. Algorithm A yielded the highest sensitivity (81.9%, 95% CI 72.0-89.5), with PPV of 66.0% (95% CI 56.0-75.1). The PPV of algorithm D increased to 82.2% (95% CI 67.9-92.0), although sensitivity decreased to 44.6% (95% CI 33.7-55.9). All four algorithms had specificities >99%. An algorithm that uses a single billing code to screen for AVN among those who had MRI has the highest sensitivity and is best suited for studies in which further medical record review confirming AVN is feasible. Algorithms using multiple billing codes are recommended for use in administrative databases when further AVN validation is not feasible.

  7. Fully Automated Detection of Cloud and Aerosol Layers in the CALIPSO Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Vaughan, Mark A.; Powell, Kathleen A.; Kuehn, Ralph E.; Young, Stuart A.; Winker, David M.; Hostetler, Chris A.; Hunt, William H.; Liu, Zhaoyan; McGill, Matthew J.; Getzewich, Brian J.

    2009-01-01

    Accurate knowledge of the vertical and horizontal extent of clouds and aerosols in the earth s atmosphere is critical in assessing the planet s radiation budget and for advancing human understanding of climate change issues. To retrieve this fundamental information from the elastic backscatter lidar data acquired during the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission, a selective, iterated boundary location (SIBYL) algorithm has been developed and deployed. SIBYL accomplishes its goals by integrating an adaptive context-sensitive profile scanner into an iterated multiresolution spatial averaging scheme. This paper provides an in-depth overview of the architecture and performance of the SIBYL algorithm. It begins with a brief review of the theory of target detection in noise-contaminated signals, and an enumeration of the practical constraints levied on the retrieval scheme by the design of the lidar hardware, the geometry of a space-based remote sensing platform, and the spatial variability of the measurement targets. Detailed descriptions are then provided for both the adaptive threshold algorithm used to detect features of interest within individual lidar profiles and the fully automated multiresolution averaging engine within which this profile scanner functions. The resulting fusion of profile scanner and averaging engine is specifically designed to optimize the trade-offs between the widely varying signal-to-noise ratio of the measurements and the disparate spatial resolutions of the detection targets. Throughout the paper, specific algorithm performance details are illustrated using examples drawn from the existing CALIPSO dataset. Overall performance is established by comparisons to existing layer height distributions obtained by other airborne and space-based lidars.

  8. Path planning and energy management of solar-powered unmanned ground vehicles

    NASA Astrophysics Data System (ADS)

    Kaplan, Adam

    Many of the applications pertinent to unmanned vehicles, such as environmental research and analysis, communications, and information-surveillance and reconnaissance, benefit from prolonged vehicle operation time. Conventional efforts to increase the operational time of electric-powered unmanned vehicles have traditionally focused on the design of energy-efficient components and the identification of energy efficient search patterns, while little attention has been paid to the vehicle's mission-level path plan and power management. This thesis explores the formulation and generation of integrated motion-plans and power-schedules for solar-panel equipped mobile robots operating under strict energy constraints, which cannot be effectively addressed through conventional motion planning algorithms. Transit problems are considered to design time-optimal paths using both Balkcom-Mason and Pseudo-Dubins curves. Additionally, a more complicated problem to generate mission plans for vehicles which must persistently travel between certain locations, similar to the traveling salesperson problem (TSP), is presented. A comparison between one of the common motion-planning algorithms and experimental results of the prescribed algorithms, made possible by use of a test environment and mobile robot designed and developed specifically for this research, are presented and discussed.

  9. Tuning algorithms for fractional order internal model controllers for time delay processes

    NASA Astrophysics Data System (ADS)

    Muresan, Cristina I.; Dutta, Abhishek; Dulf, Eva H.; Pinar, Zehra; Maxim, Anca; Ionescu, Clara M.

    2016-03-01

    This paper presents two tuning algorithms for fractional-order internal model control (IMC) controllers for time delay processes. The two tuning algorithms are based on two specific closed-loop control configurations: the IMC control structure and the Smith predictor structure. In the latter, the equivalency between IMC and Smith predictor control structures is used to tune a fractional-order IMC controller as the primary controller of the Smith predictor structure. Fractional-order IMC controllers are designed in both cases in order to enhance the closed-loop performance and robustness of classical integer order IMC controllers. The tuning procedures are exemplified for both single-input-single-output as well as multivariable processes, described by first-order and second-order transfer functions with time delays. Different numerical examples are provided, including a general multivariable time delay process. Integer order IMC controllers are designed in each case, as well as fractional-order IMC controllers. The simulation results show that the proposed fractional-order IMC controller ensures an increased robustness to modelling uncertainties. Experimental results are also provided, for the design of a multivariable fractional-order IMC controller in a Smith predictor structure for a quadruple-tank system.

  10. Developing a Screening Algorithm for Type II Diabetes Mellitus in the Resource-Limited Setting of Rural Tanzania.

    PubMed

    West, Caroline; Ploth, David; Fonner, Virginia; Mbwambo, Jessie; Fredrick, Francis; Sweat, Michael

    2016-04-01

    Noncommunicable diseases are on pace to outnumber infectious disease as the leading cause of death in sub-Saharan Africa, yet many questions remain unanswered with concern toward effective methods of screening for type II diabetes mellitus (DM) in this resource-limited setting. We aim to design a screening algorithm for type II DM that optimizes sensitivity and specificity of identifying individuals with undiagnosed DM, as well as affordability to health systems and individuals. Baseline demographic and clinical data, including hemoglobin A1c (HbA1c), were collected from 713 participants using probability sampling of the general population. We used these data, along with model parameters obtained from the literature, to mathematically model 8 purposed DM screening algorithms, while optimizing the sensitivity and specificity using Monte Carlo and Latin Hypercube simulation. An algorithm that combines risk assessment and measurement of fasting blood glucose was found to be superior for the most resource-limited settings (sensitivity 68%, sensitivity 99% and cost per patient having DM identified as $2.94). Incorporating HbA1c testing improves the sensitivity to 75.62%, but raises the cost per DM case identified to $6.04. The preferred algorithms are heavily biased to diagnose those with more severe cases of DM. Using basic risk assessment tools and fasting blood sugar testing in lieu of HbA1c testing in resource-limited settings could allow for significantly more feasible DM screening programs with reasonable sensitivity and specificity. Copyright © 2016 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  11. Crisis management during anaesthesia: the development of an anaesthetic crisis management manual

    PubMed Central

    Runciman, W; Kluger, M; Morris, R; Paix, A; Watterson, L; Webb, R

    2005-01-01

    Background: All anaesthetists have to handle life threatening crises with little or no warning. However, some cognitive strategies and work practices that are appropriate for speed and efficiency under normal circumstances may become maladaptive in a crisis. It was judged in a previous study that the use of a structured "core" algorithm (based on the mnemonic COVER ABCD–A SWIFT CHECK) would diagnose and correct the problem in 60% of cases and provide a functional diagnosis in virtually all of the remaining 40%. It was recommended that specific sub-algorithms be developed for managing the problems underlying the remaining 40% of crises and assembled in an easy-to-use manual. Sub-algorithms were therefore developed for these problems so that they could be checked for applicability and validity against the first 4000 anaesthesia incidents reported to the Australian Incident Monitoring Study (AIMS). Methods: The need for 24 specific sub-algorithms was identified. Teams of practising anaesthetists were assembled and sets of incidents relevant to each sub-algorithm were identified from the first 4000 reported to AIMS. Based largely on successful strategies identified in these reports, a set of 24 specific sub-algorithms was developed for trial against the 4000 AIMS reports and assembled into an easy-to-use manual. A process was developed for applying each component of the core algorithm COVER at one of four levels (scan-check-alert/ready-emergency) according to the degree of perceived urgency, and incorporated into the manual. The manual was disseminated at a World Congress and feedback was obtained. Results: Each of the 24 specific crisis management sub-algorithms was tested against the relevant incidents among the first 4000 reported to AIMS and compared with the actual management by the anaesthetist at the time. It was judged that, if the core algorithm had been correctly applied, the appropriate sub-algorithm would have been resolved better and/or faster in one in eight of all incidents, and would have been unlikely to have caused harm to any patient. The descriptions of the validation of each of the 24 sub-algorithms constitute the remaining 24 papers in this set. Feedback from five meetings each attended by 60–100 anaesthetists was then collated and is included. Conclusion: The 24 sub-algorithms developed form the basis for developing a rational evidence-based approach to crisis management during anaesthesia. The COVER component has been found to be satisfactory in real life resuscitation situations and the sub-algorithms have been used successfully for several years. It would now be desirable for carefully designed simulator based studies, using naive trainees at the start of their training, to systematically examine the merits and demerits of various aspects of the sub-algorithms. It would seem prudent that these sub-algorithms be regarded, for the moment, as decision aids to support and back up clinicians' natural responses to a crisis when all is not progressing as expected. PMID:15933282

  12. Crisis management during anaesthesia: the development of an anaesthetic crisis management manual.

    PubMed

    Runciman, W B; Kluger, M T; Morris, R W; Paix, A D; Watterson, L M; Webb, R K

    2005-06-01

    All anaesthetists have to handle life threatening crises with little or no warning. However, some cognitive strategies and work practices that are appropriate for speed and efficiency under normal circumstances may become maladaptive in a crisis. It was judged in a previous study that the use of a structured "core" algorithm (based on the mnemonic COVER ABCD-A SWIFT CHECK) would diagnose and correct the problem in 60% of cases and provide a functional diagnosis in virtually all of the remaining 40%. It was recommended that specific sub-algorithms be developed for managing the problems underlying the remaining 40% of crises and assembled in an easy-to-use manual. Sub-algorithms were therefore developed for these problems so that they could be checked for applicability and validity against the first 4000 anaesthesia incidents reported to the Australian Incident Monitoring Study (AIMS). The need for 24 specific sub-algorithms was identified. Teams of practising anaesthetists were assembled and sets of incidents relevant to each sub-algorithm were identified from the first 4000 reported to AIMS. Based largely on successful strategies identified in these reports, a set of 24 specific sub-algorithms was developed for trial against the 4000 AIMS reports and assembled into an easy-to-use manual. A process was developed for applying each component of the core algorithm COVER at one of four levels (scan-check-alert/ready-emergency) according to the degree of perceived urgency, and incorporated into the manual. The manual was disseminated at a World Congress and feedback was obtained. Each of the 24 specific crisis management sub-algorithms was tested against the relevant incidents among the first 4000 reported to AIMS and compared with the actual management by the anaesthetist at the time. It was judged that, if the core algorithm had been correctly applied, the appropriate sub-algorithm would have been resolved better and/or faster in one in eight of all incidents, and would have been unlikely to have caused harm to any patient. The descriptions of the validation of each of the 24 sub-algorithms constitute the remaining 24 papers in this set. Feedback from five meetings each attended by 60-100 anaesthetists was then collated and is included. The 24 sub-algorithms developed form the basis for developing a rational evidence-based approach to crisis management during anaesthesia. The COVER component has been found to be satisfactory in real life resuscitation situations and the sub-algorithms have been used successfully for several years. It would now be desirable for carefully designed simulator based studies, using naive trainees at the start of their training, to systematically examine the merits and demerits of various aspects of the sub-algorithms. It would seem prudent that these sub-algorithms be regarded, for the moment, as decision aids to support and back up clinicians' natural responses to a crisis when all is not progressing as expected.

  13. Predicting the reactivity of proteins from their sequence alone: Kazal family of protein inhibitors of serine proteinases

    PubMed Central

    Lu, Stephen M.; Lu, Wuyuan; Qasim, M. A.; Anderson, Stephen; Apostol, Izydor; Ardelt, Wojciech; Bigler, Theresa; Chiang, Yi Wen; Cook, James; James, Michael N. G.; Kato, Ikunoshin; Kelly, Clyde; Kohr, William; Komiyama, Tomoko; Lin, Tiao-Yin; Ogawa, Michio; Otlewski, Jacek; Park, Soon-Jae; Qasim, Sabiha; Ranjbar, Michael; Tashiro, Misao; Warne, Nicholas; Whatley, Harry; Wieczorek, Anna; Wieczorek, Maciej; Wilusz, Tadeusz; Wynn, Richard; Zhang, Wenlei; Laskowski, Michael

    2001-01-01

    An additivity-based sequence to reactivity algorithm for the interaction of members of the Kazal family of protein inhibitors with six selected serine proteinases is described. Ten consensus variable contact positions in the inhibitor were identified, and the 19 possible variants at each of these positions were expressed. The free energies of interaction of these variants and the wild type were measured. For an additive system, this data set allows for the calculation of all possible sequences, subject to some restrictions. The algorithm was extensively tested. It is exceptionally fast so that all possible sequences can be predicted. The strongest, the most specific possible, and the least specific inhibitors were designed, and an evolutionary problem was solved. PMID:11171964

  14. Analysis of Variance in Statistical Image Processing

    NASA Astrophysics Data System (ADS)

    Kurz, Ludwik; Hafed Benteftifa, M.

    1997-04-01

    A key problem in practical image processing is the detection of specific features in a noisy image. Analysis of variance (ANOVA) techniques can be very effective in such situations, and this book gives a detailed account of the use of ANOVA in statistical image processing. The book begins by describing the statistical representation of images in the various ANOVA models. The authors present a number of computationally efficient algorithms and techniques to deal with such problems as line, edge, and object detection, as well as image restoration and enhancement. By describing the basic principles of these techniques, and showing their use in specific situations, the book will facilitate the design of new algorithms for particular applications. It will be of great interest to graduate students and engineers in the field of image processing and pattern recognition.

  15. Algorithmic Mechanism Design of Evolutionary Computation.

    PubMed

    Pei, Yan

    2015-01-01

    We consider algorithmic design, enhancement, and improvement of evolutionary computation as a mechanism design problem. All individuals or several groups of individuals can be considered as self-interested agents. The individuals in evolutionary computation can manipulate parameter settings and operations by satisfying their own preferences, which are defined by an evolutionary computation algorithm designer, rather than by following a fixed algorithm rule. Evolutionary computation algorithm designers or self-adaptive methods should construct proper rules and mechanisms for all agents (individuals) to conduct their evolution behaviour correctly in order to definitely achieve the desired and preset objective(s). As a case study, we propose a formal framework on parameter setting, strategy selection, and algorithmic design of evolutionary computation by considering the Nash strategy equilibrium of a mechanism design in the search process. The evaluation results present the efficiency of the framework. This primary principle can be implemented in any evolutionary computation algorithm that needs to consider strategy selection issues in its optimization process. The final objective of our work is to solve evolutionary computation design as an algorithmic mechanism design problem and establish its fundamental aspect by taking this perspective. This paper is the first step towards achieving this objective by implementing a strategy equilibrium solution (such as Nash equilibrium) in evolutionary computation algorithm.

  16. Algorithmic Mechanism Design of Evolutionary Computation

    PubMed Central

    2015-01-01

    We consider algorithmic design, enhancement, and improvement of evolutionary computation as a mechanism design problem. All individuals or several groups of individuals can be considered as self-interested agents. The individuals in evolutionary computation can manipulate parameter settings and operations by satisfying their own preferences, which are defined by an evolutionary computation algorithm designer, rather than by following a fixed algorithm rule. Evolutionary computation algorithm designers or self-adaptive methods should construct proper rules and mechanisms for all agents (individuals) to conduct their evolution behaviour correctly in order to definitely achieve the desired and preset objective(s). As a case study, we propose a formal framework on parameter setting, strategy selection, and algorithmic design of evolutionary computation by considering the Nash strategy equilibrium of a mechanism design in the search process. The evaluation results present the efficiency of the framework. This primary principle can be implemented in any evolutionary computation algorithm that needs to consider strategy selection issues in its optimization process. The final objective of our work is to solve evolutionary computation design as an algorithmic mechanism design problem and establish its fundamental aspect by taking this perspective. This paper is the first step towards achieving this objective by implementing a strategy equilibrium solution (such as Nash equilibrium) in evolutionary computation algorithm. PMID:26257777

  17. Bell-Curve Based Evolutionary Strategies for Structural Optimization

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.

    2000-01-01

    Evolutionary methods are exceedingly popular with practitioners of many fields; more so than perhaps any optimization tool in existence. Historically Genetic Algorithms (GAs) led the way in practitioner popularity (Reeves 1997). However, in the last ten years Evolutionary Strategies (ESs) and Evolutionary Programs (EPS) have gained a significant foothold (Glover 1998). One partial explanation for this shift is the interest in using GAs to solve continuous optimization problems. The typical GA relies upon a cumber-some binary representation of the design variables. An ES or EP, however, works directly with the real-valued design variables. For detailed references on evolutionary methods in general and ES or EP in specific see Back (1996) and Dasgupta and Michalesicz (1997). We call our evolutionary algorithm BCB (bell curve based) since it is based upon two normal distributions.

  18. Low complexity 1D IDCT for 16-bit parallel architectures

    NASA Astrophysics Data System (ADS)

    Bivolarski, Lazar

    2007-09-01

    This paper shows that using the Loeffler, Ligtenberg, and Moschytz factorization of 8-point IDCT [2] one-dimensional (1-D) algorithm as a fast approximation of the Discrete Cosine Transform (DCT) and using only 16 bit numbers, it is possible to create in an IEEE 1180-1990 compliant and multiplierless algorithm with low computational complexity. This algorithm as characterized by its structure is efficiently implemented on parallel high performance architectures as well as due to its low complexity is sufficient for wide range of other architectures. Additional constraint on this work was the requirement of compliance with the existing MPEG standards. The hardware implementation complexity and low resources where also part of the design criteria for this algorithm. This implementation is also compliant with the precision requirements described in MPEG IDCT precision specification ISO/IEC 23002-1. Complexity analysis is performed as an extension to the simple measure of shifts and adds for the multiplierless algorithm as additional operations are included in the complexity measure to better describe the actual transform implementation complexity.

  19. Clinically oriented device programming in bradycardia patients: part 1 (sinus node disease). Proposals from AIAC (Italian Association of Arrhythmology and Cardiac Pacing).

    PubMed

    Ziacchi, Matteo; Palmisano, Pietro; Biffi, Mauro; Ricci, Renato P; Landolina, Maurizio; Zoni-Berisso, Massimo; Occhetta, Eraldo; Maglia, Giampiero; Botto, Gianluca; Padeletti, Luigi; Boriani, Giuseppe

    2018-04-01

    : Modern pacemakers have an increasing number of programable parameters and specific algorithms designed to optimize pacing therapy in relation to the individual characteristics of patients. When choosing the most appropriate pacemaker type and programing, the following variables must be taken into account: the type of bradyarrhythmia at the time of pacemaker implantation; the cardiac chamber requiring pacing, and the percentage of pacing actually needed to correct the rhythm disorder; the possible association of multiple rhythm disturbances and conduction diseases; the evolution of conduction disorders during follow-up. The goals of device programing are to preserve or restore the heart rate response to metabolic and hemodynamic demands; to maintain physiological conduction; to maximize device longevity; to detect, prevent, and treat atrial arrhythmia. In patients with sinus node disease, the optimal pacing mode is DDDR. Based on all the available evidence, in this setting, we consider appropriate the activation of the following algorithms: rate responsive function in patients with chronotropic incompetence; algorithms to maximize intrinsic atrioventricular conduction in the absence of atrioventricular blocks; mode-switch algorithms; algorithms for autoadaptive management of the atrial pacing output; algorithms for the prevention and treatment of atrial tachyarrhythmias in the subgroup of patients with atrial tachyarrhythmias/atrial fibrillation. The purpose of this two-part consensus document is to provide specific suggestions (based on an extensive literature review) on appropriate pacemaker setting in relation to patients' clinical features.

  20. A smartphone-based pain management app for adolescents with cancer: establishing system requirements and a pain care algorithm based on literature review, interviews, and consensus.

    PubMed

    Jibb, Lindsay A; Stevens, Bonnie J; Nathan, Paul C; Seto, Emily; Cafazzo, Joseph A; Stinson, Jennifer N

    2014-03-19

    Pain that occurs both within and outside of the hospital setting is a common and distressing problem for adolescents with cancer. The use of smartphone technology may facilitate rapid, in-the-moment pain support for this population. To ensure the best possible pain management advice is given, evidence-based and expert-vetted care algorithms and system design features, which are designed using user-centered methods, are required. To develop the decision algorithm and system requirements that will inform the pain management advice provided by a real-time smartphone-based pain management app for adolescents with cancer. A systematic approach to algorithm development and system design was utilized. Initially, a comprehensive literature review was undertaken to understand the current body of knowledge pertaining to pediatric cancer pain management. A user-centered approach to development was used as the results of the review were disseminated to 15 international experts (clinicians, scientists, and a consumer) in pediatric pain, pediatric oncology and mHealth design, who participated in a 2-day consensus conference. This conference used nominal group technique to develop consensus on important pain inputs, pain management advice, and system design requirements. Using data generated at the conference, a prototype algorithm was developed. Iterative qualitative testing was conducted with adolescents with cancer, as well as pediatric oncology and pain health care providers to vet and refine the developed algorithm and system requirements for the real-time smartphone app. The systematic literature review established the current state of research related to nonpharmacological pediatric cancer pain management. The 2-day consensus conference established which clinically important pain inputs by adolescents would require action (pain management advice) from the app, the appropriate advice the app should provide to adolescents in pain, and the functional requirements of the app. These results were used to build a detailed prototype algorithm capable of providing adolescents with pain management support based on their individual pain. Analysis of qualitative interviews with 9 multidisciplinary health care professionals and 10 adolescents resulted in 4 themes that helped to adapt the algorithm and requirements to the needs of adolescents. Specifically, themes were overall endorsement of the system, the need for a clinical expert, the need to individualize the system, and changes to the algorithm to improve potential clinical effectiveness. This study used a phased and user-centered approach to develop a pain management algorithm for adolescents with cancer and the system requirements of an associated app. The smartphone software is currently being created and subsequent work will focus on the usability, feasibility, and effectiveness testing of the app for adolescents with cancer pain.

  1. A Smartphone-Based Pain Management App for Adolescents With Cancer: Establishing System Requirements and a Pain Care Algorithm Based on Literature Review, Interviews, and Consensus

    PubMed Central

    Stevens, Bonnie J; Nathan, Paul C; Seto, Emily; Cafazzo, Joseph A; Stinson, Jennifer N

    2014-01-01

    Background Pain that occurs both within and outside of the hospital setting is a common and distressing problem for adolescents with cancer. The use of smartphone technology may facilitate rapid, in-the-moment pain support for this population. To ensure the best possible pain management advice is given, evidence-based and expert-vetted care algorithms and system design features, which are designed using user-centered methods, are required. Objective To develop the decision algorithm and system requirements that will inform the pain management advice provided by a real-time smartphone-based pain management app for adolescents with cancer. Methods A systematic approach to algorithm development and system design was utilized. Initially, a comprehensive literature review was undertaken to understand the current body of knowledge pertaining to pediatric cancer pain management. A user-centered approach to development was used as the results of the review were disseminated to 15 international experts (clinicians, scientists, and a consumer) in pediatric pain, pediatric oncology and mHealth design, who participated in a 2-day consensus conference. This conference used nominal group technique to develop consensus on important pain inputs, pain management advice, and system design requirements. Using data generated at the conference, a prototype algorithm was developed. Iterative qualitative testing was conducted with adolescents with cancer, as well as pediatric oncology and pain health care providers to vet and refine the developed algorithm and system requirements for the real-time smartphone app. Results The systematic literature review established the current state of research related to nonpharmacological pediatric cancer pain management. The 2-day consensus conference established which clinically important pain inputs by adolescents would require action (pain management advice) from the app, the appropriate advice the app should provide to adolescents in pain, and the functional requirements of the app. These results were used to build a detailed prototype algorithm capable of providing adolescents with pain management support based on their individual pain. Analysis of qualitative interviews with 9 multidisciplinary health care professionals and 10 adolescents resulted in 4 themes that helped to adapt the algorithm and requirements to the needs of adolescents. Specifically, themes were overall endorsement of the system, the need for a clinical expert, the need to individualize the system, and changes to the algorithm to improve potential clinical effectiveness. Conclusions This study used a phased and user-centered approach to develop a pain management algorithm for adolescents with cancer and the system requirements of an associated app. The smartphone software is currently being created and subsequent work will focus on the usability, feasibility, and effectiveness testing of the app for adolescents with cancer pain. PMID:24646454

  2. Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures.

    PubMed

    Li, Guo-Zhong; Vissers, Johannes P C; Silva, Jeffrey C; Golick, Dan; Gorenstein, Marc V; Geromanos, Scott J

    2009-03-01

    A novel database search algorithm is presented for the qualitative identification of proteins over a wide dynamic range, both in simple and complex biological samples. The algorithm has been designed for the analysis of data originating from data independent acquisitions, whereby multiple precursor ions are fragmented simultaneously. Measurements used by the algorithm include retention time, ion intensities, charge state, and accurate masses on both precursor and product ions from LC-MS data. The search algorithm uses an iterative process whereby each iteration incrementally increases the selectivity, specificity, and sensitivity of the overall strategy. Increased specificity is obtained by utilizing a subset database search approach, whereby for each subsequent stage of the search, only those peptides from securely identified proteins are queried. Tentative peptide and protein identifications are ranked and scored by their relative correlation to a number of models of known and empirically derived physicochemical attributes of proteins and peptides. In addition, the algorithm utilizes decoy database techniques for automatically determining the false positive identification rates. The search algorithm has been tested by comparing the search results from a four-protein mixture, the same four-protein mixture spiked into a complex biological background, and a variety of other "system" type protein digest mixtures. The method was validated independently by data dependent methods, while concurrently relying on replication and selectivity. Comparisons were also performed with other commercially and publicly available peptide fragmentation search algorithms. The presented results demonstrate the ability to correctly identify peptides and proteins from data independent acquisition strategies with high sensitivity and specificity. They also illustrate a more comprehensive analysis of the samples studied; providing approximately 20% more protein identifications, compared to a more conventional data directed approach using the same identification criteria, with a concurrent increase in both sequence coverage and the number of modified peptides.

  3. Computational electromagnetics: the physics of smooth versus oscillatory fields.

    PubMed

    Chew, W C

    2004-03-15

    This paper starts by discussing the difference in the physics between solutions to Laplace's equation (static) and Maxwell's equations for dynamic problems (Helmholtz equation). Their differing physical characters are illustrated by how the two fields convey information away from their source point. The paper elucidates the fact that their differing physical characters affect the use of Laplacian field and Helmholtz field in imaging. They also affect the design of fast computational algorithms for electromagnetic scattering problems. Specifically, a comparison is made between fast algorithms developed using wavelets, the simple fast multipole method, and the multi-level fast multipole algorithm for electrodynamics. The impact of the physical characters of the dynamic field on the parallelization of the multi-level fast multipole algorithm is also discussed. The relationship of diagonalization of translators to group theory is presented. Finally, future areas of research for computational electromagnetics are described.

  4. Machine-checked proofs of the design and implementation of a fault-tolerant circuit

    NASA Technical Reports Server (NTRS)

    Bevier, William R.; Young, William D.

    1990-01-01

    A formally verified implementation of the 'oral messages' algorithm of Pease, Shostak, and Lamport is described. An abstract implementation of the algorithm is verified to achieve interactive consistency in the presence of faults. This abstract characterization is then mapped down to a hardware level implementation which inherits the fault-tolerant characteristics of the abstract version. All steps in the proof were checked with the Boyer-Moore theorem prover. A significant results is the demonstration of a fault-tolerant device that is formally specified and whose implementation is proved correct with respect to this specification. A significant simplifying assumption is that the redundant processors behave synchronously. A mechanically checked proof that the oral messages algorithm is 'optimal' in the sense that no algorithm which achieves agreement via similar message passing can tolerate a larger proportion of faulty processor is also described.

  5. Challenges and Recent Developments in Hearing Aids: Part I. Speech Understanding in Noise, Microphone Technologies and Noise Reduction Algorithms

    PubMed Central

    Chung, King

    2004-01-01

    This review discusses the challenges in hearing aid design and fitting and the recent developments in advanced signal processing technologies to meet these challenges. The first part of the review discusses the basic concepts and the building blocks of digital signal processing algorithms, namely, the signal detection and analysis unit, the decision rules, and the time constants involved in the execution of the decision. In addition, mechanisms and the differences in the implementation of various strategies used to reduce the negative effects of noise are discussed. These technologies include the microphone technologies that take advantage of the spatial differences between speech and noise and the noise reduction algorithms that take advantage of the spectral difference and temporal separation between speech and noise. The specific technologies discussed in this paper include first-order directional microphones, adaptive directional microphones, second-order directional microphones, microphone matching algorithms, array microphones, multichannel adaptive noise reduction algorithms, and synchrony detection noise reduction algorithms. Verification data for these technologies, if available, are also summarized. PMID:15678225

  6. Stochastic characterization of phase detection algorithms in phase-shifting interferometry

    DOE PAGES

    Munteanu, Florin

    2016-11-01

    Phase-shifting interferometry (PSI) is the preferred non-contact method for profiling sub-nanometer surfaces. Based on monochromatic light interference, the method computes the surface profile from a set of interferograms collected at separate stepping positions. Errors in the estimated profile are introduced when these positions are not located correctly. In order to cope with this problem, various algorithms that minimize the effects of certain types of stepping errors (linear, sinusoidal, etc.) have been developed. Despite the relatively large number of algorithms suggested in the literature, there is no unified way of characterizing their performance when additional unaccounted random errors are present. Here,more » we suggest a procedure for quantifying the expected behavior of each algorithm in the presence of independent and identically distributed (i.i.d.) random stepping errors, which can occur in addition to the systematic errors for which the algorithm has been designed. As a result, the usefulness of this method derives from the fact that it can guide the selection of the best algorithm for specific measurement situations.« less

  7. Fast Adapting Ensemble: A New Algorithm for Mining Data Streams with Concept Drift

    PubMed Central

    Ortíz Díaz, Agustín; Ramos-Jiménez, Gonzalo; Frías Blanco, Isvani; Caballero Mota, Yailé; Morales-Bueno, Rafael

    2015-01-01

    The treatment of large data streams in the presence of concept drifts is one of the main challenges in the field of data mining, particularly when the algorithms have to deal with concepts that disappear and then reappear. This paper presents a new algorithm, called Fast Adapting Ensemble (FAE), which adapts very quickly to both abrupt and gradual concept drifts, and has been specifically designed to deal with recurring concepts. FAE processes the learning examples in blocks of the same size, but it does not have to wait for the batch to be complete in order to adapt its base classification mechanism. FAE incorporates a drift detector to improve the handling of abrupt concept drifts and stores a set of inactive classifiers that represent old concepts, which are activated very quickly when these concepts reappear. We compare our new algorithm with various well-known learning algorithms, taking into account, common benchmark datasets. The experiments show promising results from the proposed algorithm (regarding accuracy and runtime), handling different types of concept drifts. PMID:25879051

  8. Visual performance-based image enhancement methodology: an investigation of contrast enhancement algorithms

    NASA Astrophysics Data System (ADS)

    Neriani, Kelly E.; Herbranson, Travis J.; Reis, George A.; Pinkus, Alan R.; Goodyear, Charles D.

    2006-05-01

    While vast numbers of image enhancing algorithms have already been developed, the majority of these algorithms have not been assessed in terms of their visual performance-enhancing effects using militarily relevant scenarios. The goal of this research was to apply a visual performance-based assessment methodology to evaluate six algorithms that were specifically designed to enhance the contrast of digital images. The image enhancing algorithms used in this study included three different histogram equalization algorithms, the Autolevels function, the Recursive Rational Filter technique described in Marsi, Ramponi, and Carrato1 and the multiscale Retinex algorithm described in Rahman, Jobson and Woodell2. The methodology used in the assessment has been developed to acquire objective human visual performance data as a means of evaluating the contrast enhancement algorithms. Objective performance metrics, response time and error rate, were used to compare algorithm enhanced images versus two baseline conditions, original non-enhanced images and contrast-degraded images. Observers completed a visual search task using a spatial-forcedchoice paradigm. Observers searched images for a target (a military vehicle) hidden among foliage and then indicated in which quadrant of the screen the target was located. Response time and percent correct were measured for each observer. Results of the study and future directions are discussed.

  9. Optimal two-phase sampling design for comparing accuracies of two binary classification rules.

    PubMed

    Xu, Huiping; Hui, Siu L; Grannis, Shaun

    2014-02-10

    In this paper, we consider the design for comparing the performance of two binary classification rules, for example, two record linkage algorithms or two screening tests. Statistical methods are well developed for comparing these accuracy measures when the gold standard is available for every unit in the sample, or in a two-phase study when the gold standard is ascertained only in the second phase in a subsample using a fixed sampling scheme. However, these methods do not attempt to optimize the sampling scheme to minimize the variance of the estimators of interest. In comparing the performance of two classification rules, the parameters of primary interest are the difference in sensitivities, specificities, and positive predictive values. We derived the analytic variance formulas for these parameter estimates and used them to obtain the optimal sampling design. The efficiency of the optimal sampling design is evaluated through an empirical investigation that compares the optimal sampling with simple random sampling and with proportional allocation. Results of the empirical study show that the optimal sampling design is similar for estimating the difference in sensitivities and in specificities, and both achieve a substantial amount of variance reduction with an over-sample of subjects with discordant results and under-sample of subjects with concordant results. A heuristic rule is recommended when there is no prior knowledge of individual sensitivities and specificities, or the prevalence of the true positive findings in the study population. The optimal sampling is applied to a real-world example in record linkage to evaluate the difference in classification accuracy of two matching algorithms. Copyright © 2013 John Wiley & Sons, Ltd.

  10. Accurate and diverse recommendations via eliminating redundant correlations

    NASA Astrophysics Data System (ADS)

    Zhou, Tao; Su, Ri-Qi; Liu, Run-Ran; Jiang, Luo-Luo; Wang, Bing-Hong; Zhang, Yi-Cheng

    2009-12-01

    In this paper, based on a weighted projection of a bipartite user-object network, we introduce a personalized recommendation algorithm, called network-based inference (NBI), which has higher accuracy than the classical algorithm, namely collaborative filtering. In NBI, the correlation resulting from a specific attribute may be repeatedly counted in the cumulative recommendations from different objects. By considering the higher order correlations, we design an improved algorithm that can, to some extent, eliminate the redundant correlations. We test our algorithm on two benchmark data sets, MovieLens and Netflix. Compared with NBI, the algorithmic accuracy, measured by the ranking score, can be further improved by 23 per cent for MovieLens and 22 per cent for Netflix. The present algorithm can even outperform the Latent Dirichlet Allocation algorithm, which requires much longer computational time. Furthermore, most previous studies considered the algorithmic accuracy only; in this paper, we argue that the diversity and popularity, as two significant criteria of algorithmic performance, should also be taken into account. With more or less the same accuracy, an algorithm giving higher diversity and lower popularity is more favorable. Numerical results show that the present algorithm can outperform the standard one simultaneously in all five adopted metrics: lower ranking score and higher precision for accuracy, larger Hamming distance and lower intra-similarity for diversity, as well as smaller average degree for popularity.

  11. Tactical Synthesis Of Efficient Global Search Algorithms

    NASA Technical Reports Server (NTRS)

    Nedunuri, Srinivas; Smith, Douglas R.; Cook, William R.

    2009-01-01

    Algorithm synthesis transforms a formal specification into an efficient algorithm to solve a problem. Algorithm synthesis in Specware combines the formal specification of a problem with a high-level algorithm strategy. To derive an efficient algorithm, a developer must define operators that refine the algorithm by combining the generic operators in the algorithm with the details of the problem specification. This derivation requires skill and a deep understanding of the problem and the algorithmic strategy. In this paper we introduce two tactics to ease this process. The tactics serve a similar purpose to tactics used for determining indefinite integrals in calculus, that is suggesting possible ways to attack the problem.

  12. Performance of the Gemini Planet Imager’s adaptive optics system

    DOE PAGES

    Poyneer, Lisa A.; Palmer, David W.; Macintosh, Bruce; ...

    2016-01-07

    The Gemini Planet Imager’s adaptive optics (AO) subsystem was designed specifically to facilitate high-contrast imaging. We give a definitive description of the system’s algorithms and technologies as built. Ultimately, the error budget indicates that for all targets and atmospheric conditions AO bandwidth error is the largest term.

  13. The LOGO Processor; A Guide for System Programmers.

    ERIC Educational Resources Information Center

    Weiner, Walter B.; And Others

    A detailed specification of the LOGO programing system is given. The level of description is intended to enable system programers to design LOGO processors of their own. The discussion of storage allocation and garbage collection algorithms is virtually complete. An annotated LOGO system listing for the PDP-10 computer system may be obtained on…

  14. Progress in computer vision.

    NASA Astrophysics Data System (ADS)

    Jain, A. K.; Dorai, C.

    Computer vision has emerged as a challenging and important area of research, both as an engineering and a scientific discipline. The growing importance of computer vision is evident from the fact that it was identified as one of the "Grand Challenges" and also from its prominent role in the National Information Infrastructure. While the design of a general-purpose vision system continues to be elusive machine vision systems are being used successfully in specific application elusive, machine vision systems are being used successfully in specific application domains. Building a practical vision system requires a careful selection of appropriate sensors, extraction and integration of information from available cues in the sensed data, and evaluation of system robustness and performance. The authors discuss and demonstrate advantages of (1) multi-sensor fusion, (2) combination of features and classifiers, (3) integration of visual modules, and (IV) admissibility and goal-directed evaluation of vision algorithms. The requirements of several prominent real world applications such as biometry, document image analysis, image and video database retrieval, and automatic object model construction offer exciting problems and new opportunities to design and evaluate vision algorithms.

  15. Fluorescence laminar optical tomography for brain imaging: system implementation and performance evaluation.

    PubMed

    Azimipour, Mehdi; Sheikhzadeh, Mahya; Baumgartner, Ryan; Cullen, Patrick K; Helmstetter, Fred J; Chang, Woo-Jin; Pashaie, Ramin

    2017-01-01

    We present our effort in implementing a fluorescence laminar optical tomography scanner which is specifically designed for noninvasive three-dimensional imaging of fluorescence proteins in the brains of small rodents. A laser beam, after passing through a cylindrical lens, scans the brain tissue from the surface while the emission signal is captured by the epi-fluorescence optics and is recorded using an electron multiplication CCD sensor. Image reconstruction algorithms are developed based on Monte Carlo simulation to model light–tissue interaction and generate the sensitivity matrices. To solve the inverse problem, we used the iterative simultaneous algebraic reconstruction technique. The performance of the developed system was evaluated by imaging microfabricated silicon microchannels embedded inside a substrate with optical properties close to the brain as a tissue phantom and ultimately by scanning brain tissue in vivo. Details of the hardware design and reconstruction algorithms are discussed and several experimental results are presented. The developed system can specifically facilitate neuroscience experiments where fluorescence imaging and molecular genetic methods are used to study the dynamics of the brain circuitries.

  16. A MPPT Algorithm Based PV System Connected to Single Phase Voltage Controlled Grid

    NASA Astrophysics Data System (ADS)

    Sreekanth, G.; Narender Reddy, N.; Durga Prasad, A.; Nagendrababu, V.

    2012-10-01

    Future ancillary services provided by photovoltaic (PV) systems could facilitate their penetration in power systems. In addition, low-power PV systems can be designed to improve the power quality. This paper presents a single-phase PV systemthat provides grid voltage support and compensation of harmonic distortion at the point of common coupling thanks to a repetitive controller. The power provided by the PV panels is controlled by a Maximum Power Point Tracking algorithm based on the incremental conductance method specifically modified to control the phase of the PV inverter voltage. Simulation and experimental results validate the presented solution.

  17. Color object detection using spatial-color joint probability functions.

    PubMed

    Luo, Jiebo; Crandall, David

    2006-06-01

    Object detection in unconstrained images is an important image understanding problem with many potential applications. There has been little success in creating a single algorithm that can detect arbitrary objects in unconstrained images; instead, algorithms typically must be customized for each specific object. Consequently, it typically requires a large number of exemplars (for rigid objects) or a large amount of human intuition (for nonrigid objects) to develop a robust algorithm. We present a robust algorithm designed to detect a class of compound color objects given a single model image. A compound color object is defined as having a set of multiple, particular colors arranged spatially in a particular way, including flags, logos, cartoon characters, people in uniforms, etc. Our approach is based on a particular type of spatial-color joint probability function called the color edge co-occurrence histogram. In addition, our algorithm employs perceptual color naming to handle color variation, and prescreening to limit the search scope (i.e., size and location) for the object. Experimental results demonstrated that the proposed algorithm is insensitive to object rotation, scaling, partial occlusion, and folding, outperforming a closely related algorithm based on color co-occurrence histograms by a decisive margin.

  18. The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acciarri, R.; Adams, C.; An, R.

    The development and operation of Liquid-Argon Time-Projection Chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens ofmore » algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.« less

  19. An Airway Network Flow Assignment Approach Based on an Efficient Multiobjective Optimization Framework

    PubMed Central

    Zhang, Xuejun; Lei, Jiaxing

    2015-01-01

    Considering reducing the airspace congestion and the flight delay simultaneously, this paper formulates the airway network flow assignment (ANFA) problem as a multiobjective optimization model and presents a new multiobjective optimization framework to solve it. Firstly, an effective multi-island parallel evolution algorithm with multiple evolution populations is employed to improve the optimization capability. Secondly, the nondominated sorting genetic algorithm II is applied for each population. In addition, a cooperative coevolution algorithm is adapted to divide the ANFA problem into several low-dimensional biobjective optimization problems which are easier to deal with. Finally, in order to maintain the diversity of solutions and to avoid prematurity, a dynamic adjustment operator based on solution congestion degree is specifically designed for the ANFA problem. Simulation results using the real traffic data from China air route network and daily flight plans demonstrate that the proposed approach can improve the solution quality effectively, showing superiority to the existing approaches such as the multiobjective genetic algorithm, the well-known multiobjective evolutionary algorithm based on decomposition, and a cooperative coevolution multiobjective algorithm as well as other parallel evolution algorithms with different migration topology. PMID:26180840

  20. The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector

    DOE PAGES

    Acciarri, R.; Adams, C.; An, R.; ...

    2018-01-29

    The development and operation of Liquid-Argon Time-Projection Chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens ofmore » algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.« less

  1. Administrative Data Algorithms Can Describe Ambulatory Physician Utilization

    PubMed Central

    Shah, Baiju R; Hux, Janet E; Laupacis, Andreas; Zinman, Bernard; Cauch-Dudek, Karen; Booth, Gillian L

    2007-01-01

    Objective To validate algorithms using administrative data that characterize ambulatory physician care for patients with a chronic disease. Data Sources Seven-hundred and eighty-one people with diabetes were recruited mostly from community pharmacies to complete a written questionnaire about their physician utilization in 2002. These data were linked with administrative databases detailing health service utilization. Study Design An administrative data algorithm was defined that identified whether or not patients received specialist care, and it was tested for agreement with self-report. Other algorithms, which assigned each patient to a primary care and specialist physician, were tested for concordance with self-reported regular providers of care. Principal Findings The algorithm to identify whether participants received specialist care had 80.4 percent agreement with questionnaire responses (κ = 0.59). Compared with self-report, administrative data had a sensitivity of 68.9 percent and specificity 88.3 percent for identifying specialist care. The best administrative data algorithm to assign each participant's regular primary care and specialist providers was concordant with self-report in 82.6 and 78.2 percent of cases, respectively. Conclusions Administrative data algorithms can accurately match self-reported ambulatory physician utilization. PMID:17610448

  2. Genetic Optimization and Simulation of a Piezoelectric Pipe-Crawling Inspection Robot

    NASA Technical Reports Server (NTRS)

    Hollinger, Geoffrey A.; Briscoe, Jeri M.

    2004-01-01

    Using the DarwinZk development software, a genetic algorithm (GA) was used to design and optimize a pipe-crawling robot for parameters such as mass, power consumption, and joint extension to further the research of the Miniature Inspection Systems Technology (MIST) team. In an attempt to improve on existing designs, a new robot was developed, the piezo robot. The final proposed design uses piezoelectric expansion actuators to move the robot with a 'chimneying' method employed by mountain climbers and greatly improves on previous designs in load bearing ability, pipe traversing specifications, and field usability. This research shows the advantages of GA assisted design in the field of robotics.

  3. Advancing the LSST Operations Simulator

    NASA Astrophysics Data System (ADS)

    Saha, Abhijit; Ridgway, S. T.; Cook, K. H.; Delgado, F.; Chandrasekharan, S.; Petry, C. E.; Operations Simulator Group

    2013-01-01

    The Operations Simulator for the Large Synoptic Survey Telescope (LSST; http://lsst.org) allows the planning of LSST observations that obey explicit science driven observing specifications, patterns, schema, and priorities, while optimizing against the constraints placed by design-specific opto-mechanical system performance of the telescope facility, site specific conditions (including weather and seeing), as well as additional scheduled and unscheduled downtime. A simulation run records the characteristics of all observations (e.g., epoch, sky position, seeing, sky brightness) in a MySQL database, which can be queried for any desired purpose. Derivative information digests of the observing history database are made with an analysis package called Simulation Survey Tools for Analysis and Reporting (SSTAR). Merit functions and metrics have been designed to examine how suitable a specific simulation run is for several different science applications. This poster reports recent work which has focussed on an architectural restructuring of the code that will allow us to a) use "look-ahead" strategies that avoid cadence sequences that cannot be completed due to observing constraints; and b) examine alternate optimization strategies, so that the most efficient scheduling algorithm(s) can be identified and used: even few-percent efficiency gains will create substantive scientific opportunity. The enhanced simulator will be used to assess the feasibility of desired observing cadences, study the impact of changing science program priorities, and assist with performance margin investigations of the LSST system.

  4. Evolutionary Optimization of a Quadrifilar Helical Antenna

    NASA Technical Reports Server (NTRS)

    Lohn, Jason D.; Kraus, William F.; Linden, Derek S.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Automated antenna synthesis via evolutionary design has recently garnered much attention in the research literature. Evolutionary algorithms show promise because, among search algorithms, they are able to effectively search large, unknown design spaces. NASA's Mars Odyssey spacecraft is due to reach final Martian orbit insertion in January, 2002. Onboard the spacecraft is a quadrifilar helical antenna that provides telecommunications in the UHF band with landed assets, such as robotic rovers. Each helix is driven by the same signal which is phase-delayed in 90 deg increments. A small ground plane is provided at the base. It is designed to operate in the frequency band of 400-438 MHz. Based on encouraging previous results in automated antenna design using evolutionary search, we wanted to see whether such techniques could improve upon Mars Odyssey antenna design. Specifically, a co-evolutionary genetic algorithm is applied to optimize the gain and size of the quadrifilar helical antenna. The optimization was performed in-situ in the presence of a neighboring spacecraft structure. On the spacecraft, a large aluminum fuel tank is adjacent to the antenna. Since this fuel tank can dramatically affect the antenna's performance, we leave it to the evolutionary process to see if it can exploit the fuel tank's properties advantageously. Optimizing in the presence of surrounding structures would be quite difficult for human antenna designers, and thus the actual antenna was designed for free space (with a small ground plane). In fact, when flying on the spacecraft, surrounding structures that are moveable (e.g., solar panels) may be moved during the mission in order to improve the antenna's performance.

  5. Redundancy Maintenance and Garbage Collection Strategies in Peer-to-Peer Storage Systems

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Datta, Anwitaman

    Maintaining redundancy in P2P storage systems is essential for reliability guarantees. Numerous P2P storage system maintenance algorithms have been proposed in the last years, each supposedly improving upon the previous approaches. We perform a systematic comparative study of the various strategies taking also into account the influence of different garbage collection mechanisms, an issue not studied so far. Our experiments show that while some strategies generally perform better than some others, there is no universally best strategy, and their relative superiority depends on various other design choices as well as the specific evaluation criterion. Our results can be used by P2P storage systems designers to make prudent design decisions, and our exploration of the various evaluation metrics also provides a more comprehensive framework to compare algorithms for P2P storage systems. While there are numerous network simulators specifically developed even to simulate peer-to-peer networks, there existed no P2P storage simulators - a byproduct of this work is a generic modular P2P storage system simulator which we provide as open-source. Different redundancy, maintenance, placement, garbage-collection policies, churn scenarios can be easily integrated to the simulator to try out new schemes in future, and provides a common framework to compare (future) p2p storage systems designs - something which has not been possible so far.

  6. Algorithms Bridging Quantum Computation and Chemistry

    NASA Astrophysics Data System (ADS)

    McClean, Jarrod Ryan

    The design of new materials and chemicals derived entirely from computation has long been a goal of computational chemistry, and the governing equation whose solution would permit this dream is known. Unfortunately, the exact solution to this equation has been far too expensive and clever approximations fail in critical situations. Quantum computers offer a novel solution to this problem. In this work, we develop not only new algorithms to use quantum computers to study hard problems in chemistry, but also explore how such algorithms can help us to better understand and improve our traditional approaches. In particular, we first introduce a new method, the variational quantum eigensolver, which is designed to maximally utilize the quantum resources available in a device to solve chemical problems. We apply this method in a real quantum photonic device in the lab to study the dissociation of the helium hydride (HeH+) molecule. We also enhance this methodology with architecture specific optimizations on ion trap computers and show how linear-scaling techniques from traditional quantum chemistry can be used to improve the outlook of similar algorithms on quantum computers. We then show how studying quantum algorithms such as these can be used to understand and enhance the development of classical algorithms. In particular we use a tool from adiabatic quantum computation, Feynman's Clock, to develop a new discrete time variational principle and further establish a connection between real-time quantum dynamics and ground state eigenvalue problems. We use these tools to develop two novel parallel-in-time quantum algorithms that outperform competitive algorithms as well as offer new insights into the connection between the fermion sign problem of ground states and the dynamical sign problem of quantum dynamics. Finally we use insights gained in the study of quantum circuits to explore a general notion of sparsity in many-body quantum systems. In particular we use developments from the field of compressed sensing to find compact representations of ground states. As an application we study electronic systems and find solutions dramatically more compact than traditional configuration interaction expansions, offering hope to extend this methodology to challenging systems in chemical and material design.

  7. Orientation domains: A mobile grid clustering algorithm with spherical corrections

    NASA Astrophysics Data System (ADS)

    Mencos, Joana; Gratacós, Oscar; Farré, Mercè; Escalante, Joan; Arbués, Pau; Muñoz, Josep Anton

    2012-12-01

    An algorithm has been designed and tested which was devised as a tool assisting the analysis of geological structures solely from orientation data. More specifically, the algorithm was intended for the analysis of geological structures that can be approached as planar and piecewise features, like many folded strata. Input orientation data is expressed as pairs of angles (azimuth and dip). The algorithm starts by considering the data in Cartesian coordinates. This is followed by a search for an initial clustering solution, which is achieved by comparing the results output from the systematic shift of a regular rigid grid over the data. This initial solution is optimal (achieves minimum square error) once the grid size and the shift increment are fixed. Finally, the algorithm corrects for the variable spread that is generally expected from the data type using a reshaped non-rigid grid. The algorithm is size-oriented, which implies the application of conditions over cluster size through all the process in contrast to density-oriented algorithms, also widely used when dealing with spatial data. Results are derived in few seconds and, when tested over synthetic examples, they were found to be consistent and reliable. This makes the algorithm a valuable alternative to the time-consuming traditional approaches available to geologists.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Dean J.; Harding, Lee T.

    Isotope identification algorithms that are contained in the Gamma Detector Response and Analysis Software (GADRAS) can be used for real-time stationary measurement and search applications on platforms operating under Linux or Android operating sys-tems. Since the background radiation can vary considerably due to variations in natu-rally-occurring radioactive materials (NORM), spectral algorithms can be substantial-ly more sensitive to threat materials than search algorithms based strictly on count rate. Specific isotopes or interest can be designated for the search algorithm, which permits suppression of alarms for non-threatening sources, such as such as medical radionuclides. The same isotope identification algorithms that are usedmore » for search ap-plications can also be used to process static measurements. The isotope identification algorithms follow the same protocols as those used by the Windows version of GADRAS, so files that are created under the Windows interface can be copied direct-ly to processors on fielded sensors. The analysis algorithms contain provisions for gain adjustment and energy lineariza-tion, which enables direct processing of spectra as they are recorded by multichannel analyzers. Gain compensation is performed by utilizing photopeaks in background spectra. Incorporation of this energy calibration tasks into the analysis algorithm also eliminates one of the more difficult challenges associated with development of radia-tion detection equipment.« less

  9. Refined Genetic Algorithms for Polypeptide Structure Prediction.

    DTIC Science & Technology

    1996-12-01

    16 I I I. Algorithm Analysis, Design , and Implemen tation : : : : : : : : : : : : : : : : : : : : : : : : : 18 3.1 Analysis...21 3.2 Algorithm Design and Implemen tation : : : : : : : : : : : : : : : : : : : : : : : : : 22 3.2.1...26 IV. Exp erimen t Design

  10. Parallel algorithms for placement and routing in VLSI design. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Brouwer, Randall Jay

    1991-01-01

    The computational requirements for high quality synthesis, analysis, and verification of very large scale integration (VLSI) designs have rapidly increased with the fast growing complexity of these designs. Research in the past has focused on the development of heuristic algorithms, special purpose hardware accelerators, or parallel algorithms for the numerous design tasks to decrease the time required for solution. Two new parallel algorithms are proposed for two VLSI synthesis tasks, standard cell placement and global routing. The first algorithm, a parallel algorithm for global routing, uses hierarchical techniques to decompose the routing problem into independent routing subproblems that are solved in parallel. Results are then presented which compare the routing quality to the results of other published global routers and which evaluate the speedups attained. The second algorithm, a parallel algorithm for cell placement and global routing, hierarchically integrates a quadrisection placement algorithm, a bisection placement algorithm, and the previous global routing algorithm. Unique partitioning techniques are used to decompose the various stages of the algorithm into independent tasks which can be evaluated in parallel. Finally, results are presented which evaluate the various algorithm alternatives and compare the algorithm performance to other placement programs. Measurements are presented on the parallel speedups available.

  11. Testing of a long-term fall detection system incorporated into a custom vest for the elderly.

    PubMed

    Bourke, Alan K; van de Ven, Pepijn W J; Chaya, Amy E; OLaighin, Gearóid M; Nelson, John

    2008-01-01

    A fall detection system and algorithm, incorporated into a custom designed garment has been developed. The developed fall detection system uses a tri-axial accelerometer to detect impacts and monitor posture. This sensor is attached to a custom designed vest, designed to be worn by the elderly person under clothing. The fall detection algorithm was developed and incorporates both impact and posture detection capability. The vest and fall algorithm was tested by two teams of 5 elderly subjects who wore the sensor system in turn for 2 week each and were monitored for 8 hours a day. The system previously achieved sensitivity of >90% and a specificity of >99%, using young healthy subjects performing falls and normal activities of daily living (ADL). In this study, over 833 hours of monitoring was performed over the course of the four weeks from the elderly subjects, during normal daily activity. In this time no actual falls were recorded, however the system registered a total of the 42 fall-alerts however only 9 were received at the care taker site. A fall detection system incorporated into a custom designed garment has been developed which will help reduce the incidence of the long-lie, when falls occur in the elderly population. However further development is required to reduce the number of false-positives and improve the transmission of messages.

  12. Accessing primary care Big Data: the development of a software algorithm to explore the rich content of consultation records.

    PubMed

    MacRae, J; Darlow, B; McBain, L; Jones, O; Stubbe, M; Turner, N; Dowell, A

    2015-08-21

    To develop a natural language processing software inference algorithm to classify the content of primary care consultations using electronic health record Big Data and subsequently test the algorithm's ability to estimate the prevalence and burden of childhood respiratory illness in primary care. Algorithm development and validation study. To classify consultations, the algorithm is designed to interrogate clinical narrative entered as free text, diagnostic (Read) codes created and medications prescribed on the day of the consultation. Thirty-six consenting primary care practices from a mixed urban and semirural region of New Zealand. Three independent sets of 1200 child consultation records were randomly extracted from a data set of all general practitioner consultations in participating practices between 1 January 2008-31 December 2013 for children under 18 years of age (n=754,242). Each consultation record within these sets was independently classified by two expert clinicians as respiratory or non-respiratory, and subclassified according to respiratory diagnostic categories to create three 'gold standard' sets of classified records. These three gold standard record sets were used to train, test and validate the algorithm. Sensitivity, specificity, positive predictive value and F-measure were calculated to illustrate the algorithm's ability to replicate judgements of expert clinicians within the 1200 record gold standard validation set. The algorithm was able to identify respiratory consultations in the 1200 record validation set with a sensitivity of 0.72 (95% CI 0.67 to 0.78) and a specificity of 0.95 (95% CI 0.93 to 0.98). The positive predictive value of algorithm respiratory classification was 0.93 (95% CI 0.89 to 0.97). The positive predictive value of the algorithm classifying consultations as being related to specific respiratory diagnostic categories ranged from 0.68 (95% CI 0.40 to 1.00; other respiratory conditions) to 0.91 (95% CI 0.79 to 1.00; throat infections). A software inference algorithm that uses primary care Big Data can accurately classify the content of clinical consultations. This algorithm will enable accurate estimation of the prevalence of childhood respiratory illness in primary care and resultant service utilisation. The methodology can also be applied to other areas of clinical care. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  13. A Comparative Study of Optimization Algorithms for Engineering Synthesis.

    DTIC Science & Technology

    1983-03-01

    the ADS program demonstrates the flexibility a design engineer would have in selecting an optimization algorithm best suited to solve a particular...demonstrates the flexibility a design engineer would have in selecting an optimization algorithm best suited to solve a particular problem. 4 TABLE OF...algorithm to suit a particular problem. The ADS library of design optimization algorithms was . developed by Vanderplaats in response to the first

  14. Ranking Reputation and Quality in Online Rating Systems

    PubMed Central

    Liao, Hao; Zeng, An; Xiao, Rui; Ren, Zhuo-Ming; Chen, Duan-Bing; Zhang, Yi-Cheng

    2014-01-01

    How to design an accurate and robust ranking algorithm is a fundamental problem with wide applications in many real systems. It is especially significant in online rating systems due to the existence of some spammers. In the literature, many well-performed iterative ranking methods have been proposed. These methods can effectively recognize the unreliable users and reduce their weight in judging the quality of objects, and finally lead to a more accurate evaluation of the online products. In this paper, we design an iterative ranking method with high performance in both accuracy and robustness. More specifically, a reputation redistribution process is introduced to enhance the influence of highly reputed users and two penalty factors enable the algorithm resistance to malicious behaviors. Validation of our method is performed in both artificial and real user-object bipartite networks. PMID:24819119

  15. Algorithm for early discharge after total thyroidectomy using PTH to predict hypocalcemia: prospective study.

    PubMed

    Schlottmann, F; Arbulú, A L Campos; Sadava, E E; Mendez, P; Pereyra, L; Fernández Vila, J M; Mezzadri, N A

    2015-10-01

    Hypocalcemia is the most common complication after total thyroidectomy. The aim of this study was to determine whether postoperative parathyroid hormone (PTH) levels predict hypocalcemia in order to design an algorithm for early discharge. We present a prospective study including patients who underwent total thyroidectomy. Hypocalcemia was defined as serum ionized calcium < 1.09 mmol/L or clinical evidence of hypocalcemia. PTH measurement was performed preoperatively and at 1, 3, and 6 h postoperatively. The percent decline of preoperative values was calculated for each time point. One hundred and six patients were included. Thirty-six (33.9%) patients presented hypocalcemia. A 50% decline in PTH levels at 3 h postoperatively showed the highest sensitivity and specificity to predict hypocalcemia (91 and 73%, respectively). No patients with a decrease <35% developed hypocalcemia (100% sensitivity), and all patients with a decrease >80% had hypocalcemia (100% specificity). PTH determination at 3 h postoperatively is a reliable predictor of hypocalcemia. According to the proposed algorithm, patients with less than 80% drop in PTH levels can be safely discharged the day of the surgery.

  16. Indirect learning control for nonlinear dynamical systems

    NASA Technical Reports Server (NTRS)

    Ryu, Yeong Soon; Longman, Richard W.

    1993-01-01

    In a previous paper, learning control algorithms were developed based on adaptive control ideas for linear time variant systems. The learning control methods were shown to have certain advantages over their adaptive control counterparts, such as the ability to produce zero tracking error in time varying systems, and the ability to eliminate repetitive disturbances. In recent years, certain adaptive control algorithms have been developed for multi-body dynamic systems such as robots, with global guaranteed convergence to zero tracking error for the nonlinear system euations. In this paper we study the relationship between such adaptive control methods designed for this specific class of nonlinear systems, and the learning control problem for such systems, seeking to converge to zero tracking error in following a specific command repeatedly, starting from the same initial conditions each time. The extension of these methods from the adaptive control problem to the learning control problem is seen to be trivial. The advantages and disadvantages of using learning control based on such adaptive control concepts for nonlinear systems, and the use of other currently available learning control algorithms are discussed.

  17. A novel algorithm for notch detection

    NASA Astrophysics Data System (ADS)

    Acosta, C.; Salazar, D.; Morales, D.

    2013-06-01

    It is common knowledge that DFM guidelines require revisions to design data. These guidelines impose the need for corrections inserted into areas within the design data flow. At times, this requires rather drastic modifications to the data, both during the layer derivation or DRC phase, and especially within the RET phase. For example, OPC. During such data transformations, several polygon geometry changes are introduced, which can substantially increase shot count, geometry complexity, and eventually conversion to mask writer machine formats. In this resulting complex data, it may happen that notches are found that do not significantly contribute to the final manufacturing results, but do in fact contribute to the complexity of the surrounding geometry, and are therefore undesirable. Additionally, there are cases in which the overall figure count can be reduced with minimum impact in the quality of the corrected data, if notches are detected and corrected. Case in point, there are other cases where data quality could be improved if specific valley notches are filled in, or peak notches are cut out. Such cases generally satisfy specific geometrical restrictions in order to be valid candidates for notch correction. Traditional notch detection has been done for rectilinear data (Manhattan-style) and only in axis-parallel directions. The traditional approaches employ dimensional measurement algorithms that measure edge distances along the outside of polygons. These approaches are in general adaptations, and therefore ill-fitted for generalized detection of notches with strange shapes and in strange rotations. This paper covers a novel algorithm developed for the CATS MRCC tool that finds both valley and/or peak notches that are candidates for removal. The algorithm is generalized and invariant to data rotation, so that it can find notches in data rotated in any angle. It includes parameters to control the dimensions of detected notches, as well as algorithm tolerances and data reach.

  18. Improving Design Efficiency for Large-Scale Heterogeneous Circuits

    NASA Astrophysics Data System (ADS)

    Gregerson, Anthony

    Despite increases in logic density, many Big Data applications must still be partitioned across multiple computing devices in order to meet their strict performance requirements. Among the most demanding of these applications is high-energy physics (HEP), which uses complex computing systems consisting of thousands of FPGAs and ASICs to process the sensor data created by experiments at particles accelerators such as the Large Hadron Collider (LHC). Designing such computing systems is challenging due to the scale of the systems, the exceptionally high-throughput and low-latency performance constraints that necessitate application-specific hardware implementations, the requirement that algorithms are efficiently partitioned across many devices, and the possible need to update the implemented algorithms during the lifetime of the system. In this work, we describe our research to develop flexible architectures for implementing such large-scale circuits on FPGAs. In particular, this work is motivated by (but not limited in scope to) high-energy physics algorithms for the Compact Muon Solenoid (CMS) experiment at the LHC. To make efficient use of logic resources in multi-FPGA systems, we introduce Multi-Personality Partitioning, a novel form of the graph partitioning problem, and present partitioning algorithms that can significantly improve resource utilization on heterogeneous devices while also reducing inter-chip connections. To reduce the high communication costs of Big Data applications, we also introduce Information-Aware Partitioning, a partitioning method that analyzes the data content of application-specific circuits, characterizes their entropy, and selects circuit partitions that enable efficient compression of data between chips. We employ our information-aware partitioning method to improve the performance of the hardware validation platform for evaluating new algorithms for the CMS experiment. Together, these research efforts help to improve the efficiency and decrease the cost of the developing large-scale, heterogeneous circuits needed to enable large-scale application in high-energy physics and other important areas.

  19. Benchmarking image fusion system design parameters

    NASA Astrophysics Data System (ADS)

    Howell, Christopher L.

    2013-06-01

    A clear and absolute method for discriminating between image fusion algorithm performances is presented. This method can effectively be used to assist in the design and modeling of image fusion systems. Specifically, it is postulated that quantifying human task performance using image fusion should be benchmarked to whether the fusion algorithm, at a minimum, retained the performance benefit achievable by each independent spectral band being fused. The established benchmark would then clearly represent the threshold that a fusion system should surpass to be considered beneficial to a particular task. A genetic algorithm is employed to characterize the fused system parameters using a Matlab® implementation of NVThermIP as the objective function. By setting the problem up as a mixed-integer constraint optimization problem, one can effectively look backwards through the image acquisition process: optimizing fused system parameters by minimizing the difference between modeled task difficulty measure and the benchmark task difficulty measure. The results of an identification perception experiment are presented, where human observers were asked to identify a standard set of military targets, and used to demonstrate the effectiveness of the benchmarking process.

  20. An algorithm-based topographical biomaterials library to instruct cell fate

    PubMed Central

    Unadkat, Hemant V.; Hulsman, Marc; Cornelissen, Kamiel; Papenburg, Bernke J.; Truckenmüller, Roman K.; Carpenter, Anne E.; Wessling, Matthias; Post, Gerhard F.; Uetz, Marc; Reinders, Marcel J. T.; Stamatialis, Dimitrios; van Blitterswijk, Clemens A.; de Boer, Jan

    2011-01-01

    It is increasingly recognized that material surface topography is able to evoke specific cellular responses, endowing materials with instructive properties that were formerly reserved for growth factors. This opens the window to improve upon, in a cost-effective manner, biological performance of any surface used in the human body. Unfortunately, the interplay between surface topographies and cell behavior is complex and still incompletely understood. Rational approaches to search for bioactive surfaces will therefore omit previously unperceived interactions. Hence, in the present study, we use mathematical algorithms to design nonbiased, random surface features and produce chips of poly(lactic acid) with 2,176 different topographies. With human mesenchymal stromal cells (hMSCs) grown on the chips and using high-content imaging, we reveal unique, formerly unknown, surface topographies that are able to induce MSC proliferation or osteogenic differentiation. Moreover, we correlate parameters of the mathematical algorithms to cellular responses, which yield novel design criteria for these particular parameters. In conclusion, we demonstrate that randomized libraries of surface topographies can be broadly applied to unravel the interplay between cells and surface topography and to find improved material surfaces. PMID:21949368

  1. Ionospheric Specifications for SAR Interferometry (ISSI)

    NASA Technical Reports Server (NTRS)

    Pi, Xiaoqing; Chapman, Bruce D; Freeman, Anthony; Szeliga, Walter; Buckley, Sean M.; Rosen, Paul A.; Lavalle, Marco

    2013-01-01

    The ISSI software package is designed to image the ionosphere from space by calibrating and processing polarimetric synthetic aperture radar (PolSAR) data collected from low Earth orbit satellites. Signals transmitted and received by a PolSAR are subject to the Faraday rotation effect as they traverse the magnetized ionosphere. The ISSI algorithms combine the horizontally and vertically polarized (with respect to the radar system) SAR signals to estimate Faraday rotation and ionospheric total electron content (TEC) with spatial resolutions of sub-kilometers to kilometers, and to derive radar system calibration parameters. The ISSI software package has been designed and developed to integrate the algorithms, process PolSAR data, and image as well as visualize the ionospheric measurements. A number of tests have been conducted using ISSI with PolSAR data collected from various latitude regions using the phase array-type L-band synthetic aperture radar (PALSAR) onboard Japan Aerospace Exploration Agency's Advanced Land Observing Satellite mission, and also with Global Positioning System data. These tests have demonstrated and validated SAR-derived ionospheric images and data correction algorithms.

  2. A Short-Term and High-Resolution System Load Forecasting Approach Using Support Vector Regression with Hybrid Parameters Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Huaiguang

    This work proposes an approach for distribution system load forecasting, which aims to provide highly accurate short-term load forecasting with high resolution utilizing a support vector regression (SVR) based forecaster and a two-step hybrid parameters optimization method. Specifically, because the load profiles in distribution systems contain abrupt deviations, a data normalization is designed as the pretreatment for the collected historical load data. Then an SVR model is trained by the load data to forecast the future load. For better performance of SVR, a two-step hybrid optimization algorithm is proposed to determine the best parameters. In the first step of themore » hybrid optimization algorithm, a designed grid traverse algorithm (GTA) is used to narrow the parameters searching area from a global to local space. In the second step, based on the result of the GTA, particle swarm optimization (PSO) is used to determine the best parameters in the local parameter space. After the best parameters are determined, the SVR model is used to forecast the short-term load deviation in the distribution system.« less

  3. Efficient lossy compression implementations of hyperspectral images: tools, hardware platforms, and comparisons

    NASA Astrophysics Data System (ADS)

    García, Aday; Santos, Lucana; López, Sebastián.; Callicó, Gustavo M.; Lopez, Jose F.; Sarmiento, Roberto

    2014-05-01

    Efficient onboard satellite hyperspectral image compression represents a necessity and a challenge for current and future space missions. Therefore, it is mandatory to provide hardware implementations for this type of algorithms in order to achieve the constraints required for onboard compression. In this work, we implement the Lossy Compression for Exomars (LCE) algorithm on an FPGA by means of high-level synthesis (HSL) in order to shorten the design cycle. Specifically, we use CatapultC HLS tool to obtain a VHDL description of the LCE algorithm from C-language specifications. Two different approaches are followed for HLS: on one hand, introducing the whole C-language description in CatapultC and on the other hand, splitting the C-language description in functional modules to be implemented independently with CatapultC, connecting and controlling them by an RTL description code without HLS. In both cases the goal is to obtain an FPGA implementation. We explain the several changes applied to the original Clanguage source code in order to optimize the results obtained by CatapultC for both approaches. Experimental results show low area occupancy of less than 15% for a SRAM-based Virtex-5 FPGA and a maximum frequency above 80 MHz. Additionally, the LCE compressor was implemented into an RTAX2000S antifuse-based FPGA, showing an area occupancy of 75% and a frequency around 53 MHz. All these serve to demonstrate that the LCE algorithm can be efficiently executed on an FPGA onboard a satellite. A comparison between both implementation approaches is also provided. The performance of the algorithm is finally compared with implementations on other technologies, specifically a graphics processing unit (GPU) and a single-threaded CPU.

  4. Automated Transfer Vehicle (ATV) Critical Safety Software Overview

    NASA Astrophysics Data System (ADS)

    Berthelier, D.

    2002-01-01

    The European Automated Transfer Vehicle is an unmanned transportation system designed to dock to International Space Station (ISS) and to contribute to the logistic servicing of the ISS. Concisely, ATV control is realized by a nominal flight control function (using computers, softwares, sensors, actuators). In order to cover the extreme situations where this nominal chain can not ensure safe trajectory with respect to ISS, a segregated proximity flight safety function is activated, where unsafe free drift trajectories can be encountered. This function relies notably on a segregated computer, the Monitoring and Safing Unit (MSU) ; in case of major ATV malfunction detection, ATV is then controlled by MSU software. Therefore, this software is critical because a MSU software failure could result in catastrophic consequences. This paper provides an overview both of this software functions and of the software development and validation method which is specific considering its criticality. First part of the paper describes briefly the proximity flight safety chain. Second part deals with the software functions. Indeed, MSU software is in charge of monitoring nominal computers and ATV corridors, using its own navigation algorithms, and, if an abnormal situation is detected, it is in charge of the ATV control during the Collision Avoidance Manoeuvre (CAM) consisting in an attitude controlled braking boost, followed by a Post-CAM manoeuvre : a Sun-pointed ATV attitude control during up to 24 hours on a safe trajectory. Monitoring, navigation and control algorithms principles are presented. Third part of this paper describes the development and validation process : algorithms functional studies , ADA coding and unit validations ; algorithms ADA code integration and validation on a specific non real-time MATLAB/SIMULINK simulator ; global software functional engineering phase, architectural design, unit testing, integration and validation on target computer.

  5. The potential of genetic algorithms for conceptual design of rotor systems

    NASA Technical Reports Server (NTRS)

    Crossley, William A.; Wells, Valana L.; Laananen, David H.

    1993-01-01

    The capabilities of genetic algorithms as a non-calculus based, global search method make them potentially useful in the conceptual design of rotor systems. Coupling reasonably simple analysis tools to the genetic algorithm was accomplished, and the resulting program was used to generate designs for rotor systems to match requirements similar to those of both an existing helicopter and a proposed helicopter design. This provides a comparison with the existing design and also provides insight into the potential of genetic algorithms in design of new rotors.

  6. ALGOS: the development of a randomized controlled trial testing a case management algorithm designed to reduce suicide risk among suicide attempters

    PubMed Central

    2011-01-01

    Background Suicide attempts (SA) constitute a serious clinical problem. People who attempt suicide are at high risk of further repetition. However, no interventions have been shown to be effective in reducing repetition in this group of patients. Methods/Design Multicentre randomized controlled trial. We examine the effectiveness of «ALGOS algorithm»: an intervention based in a decisional tree of contact type which aims at reducing the incidence of repeated suicide attempt during 6 months. This algorithm of case management comprises the two strategies of intervention that showed a significant reduction in the number of SA repeaters: systematic telephone contact (ineffective in first-attempters) and «Crisis card» (effective only in first-attempters). Participants who are lost from contact and those refusing healthcare, can then benefit from «short letters» or «postcards». Discussion ALGOS algorithm is easily reproducible and inexpensive intervention that will supply the guidelines for assessment and management of a population sometimes in difficulties with healthcare compliance. Furthermore, it will target some of these subgroups of patients by providing specific interventions for optimizing the benefits of case management strategy. Trial Registration The study was registered with the ClinicalTrials.gov Registry; number: NCT01123174. PMID:21194496

  7. Computer-Aided Diagnosis with Deep Learning Architecture: Applications to Breast Lesions in US Images and Pulmonary Nodules in CT Scans

    NASA Astrophysics Data System (ADS)

    Cheng, Jie-Zhi; Ni, Dong; Chou, Yi-Hong; Qin, Jing; Tiu, Chui-Mei; Chang, Yeun-Chung; Huang, Chiun-Sheng; Shen, Dinggang; Chen, Chung-Ming

    2016-04-01

    This paper performs a comprehensive study on the deep-learning-based computer-aided diagnosis (CADx) for the differential diagnosis of benign and malignant nodules/lesions by avoiding the potential errors caused by inaccurate image processing results (e.g., boundary segmentation), as well as the classification bias resulting from a less robust feature set, as involved in most conventional CADx algorithms. Specifically, the stacked denoising auto-encoder (SDAE) is exploited on the two CADx applications for the differentiation of breast ultrasound lesions and lung CT nodules. The SDAE architecture is well equipped with the automatic feature exploration mechanism and noise tolerance advantage, and hence may be suitable to deal with the intrinsically noisy property of medical image data from various imaging modalities. To show the outperformance of SDAE-based CADx over the conventional scheme, two latest conventional CADx algorithms are implemented for comparison. 10 times of 10-fold cross-validations are conducted to illustrate the efficacy of the SDAE-based CADx algorithm. The experimental results show the significant performance boost by the SDAE-based CADx algorithm over the two conventional methods, suggesting that deep learning techniques can potentially change the design paradigm of the CADx systems without the need of explicit design and selection of problem-oriented features.

  8. Computer-Aided Diagnosis with Deep Learning Architecture: Applications to Breast Lesions in US Images and Pulmonary Nodules in CT Scans.

    PubMed

    Cheng, Jie-Zhi; Ni, Dong; Chou, Yi-Hong; Qin, Jing; Tiu, Chui-Mei; Chang, Yeun-Chung; Huang, Chiun-Sheng; Shen, Dinggang; Chen, Chung-Ming

    2016-04-15

    This paper performs a comprehensive study on the deep-learning-based computer-aided diagnosis (CADx) for the differential diagnosis of benign and malignant nodules/lesions by avoiding the potential errors caused by inaccurate image processing results (e.g., boundary segmentation), as well as the classification bias resulting from a less robust feature set, as involved in most conventional CADx algorithms. Specifically, the stacked denoising auto-encoder (SDAE) is exploited on the two CADx applications for the differentiation of breast ultrasound lesions and lung CT nodules. The SDAE architecture is well equipped with the automatic feature exploration mechanism and noise tolerance advantage, and hence may be suitable to deal with the intrinsically noisy property of medical image data from various imaging modalities. To show the outperformance of SDAE-based CADx over the conventional scheme, two latest conventional CADx algorithms are implemented for comparison. 10 times of 10-fold cross-validations are conducted to illustrate the efficacy of the SDAE-based CADx algorithm. The experimental results show the significant performance boost by the SDAE-based CADx algorithm over the two conventional methods, suggesting that deep learning techniques can potentially change the design paradigm of the CADx systems without the need of explicit design and selection of problem-oriented features.

  9. Compression and fast retrieval of SNP data.

    PubMed

    Sambo, Francesco; Di Camillo, Barbara; Toffolo, Gianna; Cobelli, Claudio

    2014-11-01

    The increasing interest in rare genetic variants and epistatic genetic effects on complex phenotypic traits is currently pushing genome-wide association study design towards datasets of increasing size, both in the number of studied subjects and in the number of genotyped single nucleotide polymorphisms (SNPs). This, in turn, is leading to a compelling need for new methods for compression and fast retrieval of SNP data. We present a novel algorithm and file format for compressing and retrieving SNP data, specifically designed for large-scale association studies. Our algorithm is based on two main ideas: (i) compress linkage disequilibrium blocks in terms of differences with a reference SNP and (ii) compress reference SNPs exploiting information on their call rate and minor allele frequency. Tested on two SNP datasets and compared with several state-of-the-art software tools, our compression algorithm is shown to be competitive in terms of compression rate and to outperform all tools in terms of time to load compressed data. Our compression and decompression algorithms are implemented in a C++ library, are released under the GNU General Public License and are freely downloadable from http://www.dei.unipd.it/~sambofra/snpack.html. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Compression and fast retrieval of SNP data

    PubMed Central

    Sambo, Francesco; Di Camillo, Barbara; Toffolo, Gianna; Cobelli, Claudio

    2014-01-01

    Motivation: The increasing interest in rare genetic variants and epistatic genetic effects on complex phenotypic traits is currently pushing genome-wide association study design towards datasets of increasing size, both in the number of studied subjects and in the number of genotyped single nucleotide polymorphisms (SNPs). This, in turn, is leading to a compelling need for new methods for compression and fast retrieval of SNP data. Results: We present a novel algorithm and file format for compressing and retrieving SNP data, specifically designed for large-scale association studies. Our algorithm is based on two main ideas: (i) compress linkage disequilibrium blocks in terms of differences with a reference SNP and (ii) compress reference SNPs exploiting information on their call rate and minor allele frequency. Tested on two SNP datasets and compared with several state-of-the-art software tools, our compression algorithm is shown to be competitive in terms of compression rate and to outperform all tools in terms of time to load compressed data. Availability and implementation: Our compression and decompression algorithms are implemented in a C++ library, are released under the GNU General Public License and are freely downloadable from http://www.dei.unipd.it/~sambofra/snpack.html. Contact: sambofra@dei.unipd.it or cobelli@dei.unipd.it. PMID:25064564

  11. A permutation-based non-parametric analysis of CRISPR screen data.

    PubMed

    Jia, Gaoxiang; Wang, Xinlei; Xiao, Guanghua

    2017-07-19

    Clustered regularly-interspaced short palindromic repeats (CRISPR) screens are usually implemented in cultured cells to identify genes with critical functions. Although several methods have been developed or adapted to analyze CRISPR screening data, no single specific algorithm has gained popularity. Thus, rigorous procedures are needed to overcome the shortcomings of existing algorithms. We developed a Permutation-Based Non-Parametric Analysis (PBNPA) algorithm, which computes p-values at the gene level by permuting sgRNA labels, and thus it avoids restrictive distributional assumptions. Although PBNPA is designed to analyze CRISPR data, it can also be applied to analyze genetic screens implemented with siRNAs or shRNAs and drug screens. We compared the performance of PBNPA with competing methods on simulated data as well as on real data. PBNPA outperformed recent methods designed for CRISPR screen analysis, as well as methods used for analyzing other functional genomics screens, in terms of Receiver Operating Characteristics (ROC) curves and False Discovery Rate (FDR) control for simulated data under various settings. Remarkably, the PBNPA algorithm showed better consistency and FDR control on published real data as well. PBNPA yields more consistent and reliable results than its competitors, especially when the data quality is low. R package of PBNPA is available at: https://cran.r-project.org/web/packages/PBNPA/ .

  12. Theoretical algorithms for satellite-derived sea surface temperatures

    NASA Astrophysics Data System (ADS)

    Barton, I. J.; Zavody, A. M.; O'Brien, D. M.; Cutten, D. R.; Saunders, R. W.; Llewellyn-Jones, D. T.

    1989-03-01

    Reliable climate forecasting using numerical models of the ocean-atmosphere system requires accurate data sets of sea surface temperature (SST) and surface wind stress. Global sets of these data will be supplied by the instruments to fly on the ERS 1 satellite in 1990. One of these instruments, the Along-Track Scanning Radiometer (ATSR), has been specifically designed to provide SST in cloud-free areas with an accuracy of 0.3 K. The expected capabilities of the ATSR can be assessed using transmission models of infrared radiative transfer through the atmosphere. The performances of several different models are compared by estimating the infrared brightness temperatures measured by the NOAA 9 AVHRR for three standard atmospheres. Of these, a computationally quick spectral band model is used to derive typical AVHRR and ATSR SST algorithms in the form of linear equations. These algorithms show that a low-noise 3.7-μm channel is required to give the best satellite-derived SST and that the design accuracy of the ATSR is likely to be achievable. The inclusion of extra water vapor information in the analysis did not improve the accuracy of multiwavelength SST algorithms, but some improvement was noted with the multiangle technique. Further modeling is required with atmospheric data that include both aerosol variations and abnormal vertical profiles of water vapor and temperature.

  13. Computer-Aided Diagnosis with Deep Learning Architecture: Applications to Breast Lesions in US Images and Pulmonary Nodules in CT Scans

    PubMed Central

    Cheng, Jie-Zhi; Ni, Dong; Chou, Yi-Hong; Qin, Jing; Tiu, Chui-Mei; Chang, Yeun-Chung; Huang, Chiun-Sheng; Shen, Dinggang; Chen, Chung-Ming

    2016-01-01

    This paper performs a comprehensive study on the deep-learning-based computer-aided diagnosis (CADx) for the differential diagnosis of benign and malignant nodules/lesions by avoiding the potential errors caused by inaccurate image processing results (e.g., boundary segmentation), as well as the classification bias resulting from a less robust feature set, as involved in most conventional CADx algorithms. Specifically, the stacked denoising auto-encoder (SDAE) is exploited on the two CADx applications for the differentiation of breast ultrasound lesions and lung CT nodules. The SDAE architecture is well equipped with the automatic feature exploration mechanism and noise tolerance advantage, and hence may be suitable to deal with the intrinsically noisy property of medical image data from various imaging modalities. To show the outperformance of SDAE-based CADx over the conventional scheme, two latest conventional CADx algorithms are implemented for comparison. 10 times of 10-fold cross-validations are conducted to illustrate the efficacy of the SDAE-based CADx algorithm. The experimental results show the significant performance boost by the SDAE-based CADx algorithm over the two conventional methods, suggesting that deep learning techniques can potentially change the design paradigm of the CADx systems without the need of explicit design and selection of problem-oriented features. PMID:27079888

  14. A PCR primer bank for quantitative gene expression analysis.

    PubMed

    Wang, Xiaowei; Seed, Brian

    2003-12-15

    Although gene expression profiling by microarray analysis is a useful tool for assessing global levels of transcriptional activity, variability associated with the data sets usually requires that observed differences be validated by some other method, such as real-time quantitative polymerase chain reaction (real-time PCR). However, non-specific amplification of non-target genes is frequently observed in the latter, confounding the analysis in approximately 40% of real-time PCR attempts when primer-specific labels are not used. Here we present an experimentally validated algorithm for the identification of transcript-specific PCR primers on a genomic scale that can be applied to real-time PCR with sequence-independent detection methods. An online database, PrimerBank, has been created for researchers to retrieve primer information for their genes of interest. PrimerBank currently contains 147 404 primers encompassing most known human and mouse genes. The primer design algorithm has been tested by conventional and real-time PCR for a subset of 112 primer pairs with a success rate of 98.2%.

  15. IMAGESEER - IMAGEs for Education and Research

    NASA Technical Reports Server (NTRS)

    Le Moigne, Jacqueline; Grubb, Thomas; Milner, Barbara

    2012-01-01

    IMAGESEER is a new Web portal that brings easy access to NASA image data for non-NASA researchers, educators, and students. The IMAGESEER Web site and database are specifically designed to be utilized by the university community, to enable teaching image processing (IP) techniques on NASA data, as well as to provide reference benchmark data to validate new IP algorithms. Along with the data and a Web user interface front-end, basic knowledge of the application domains, benchmark information, and specific NASA IP challenges (or case studies) are provided.

  16. Multi-objective component sizing of a power-split plug-in hybrid electric vehicle powertrain using Pareto-based natural optimization machines

    NASA Astrophysics Data System (ADS)

    Mozaffari, Ahmad; Vajedi, Mahyar; Chehresaz, Maryyeh; Azad, Nasser L.

    2016-03-01

    The urgent need to meet increasingly tight environmental regulations and new fuel economy requirements has motivated system science researchers and automotive engineers to take advantage of emerging computational techniques to further advance hybrid electric vehicle and plug-in hybrid electric vehicle (PHEV) designs. In particular, research has focused on vehicle powertrain system design optimization, to reduce the fuel consumption and total energy cost while improving the vehicle's driving performance. In this work, two different natural optimization machines, namely the synchronous self-learning Pareto strategy and the elitism non-dominated sorting genetic algorithm, are implemented for component sizing of a specific power-split PHEV platform with a Toyota plug-in Prius as the baseline vehicle. To do this, a high-fidelity model of the Toyota plug-in Prius is employed for the numerical experiments using the Autonomie simulation software. Based on the simulation results, it is demonstrated that Pareto-based algorithms can successfully optimize the design parameters of the vehicle powertrain.

  17. Enhancing Breast Cancer Recurrence Algorithms Through Selective Use of Medical Record Data.

    PubMed

    Kroenke, Candyce H; Chubak, Jessica; Johnson, Lisa; Castillo, Adrienne; Weltzien, Erin; Caan, Bette J

    2016-03-01

    The utility of data-based algorithms in research has been questioned because of errors in identification of cancer recurrences. We adapted previously published breast cancer recurrence algorithms, selectively using medical record (MR) data to improve classification. We evaluated second breast cancer event (SBCE) and recurrence-specific algorithms previously published by Chubak and colleagues in 1535 women from the Life After Cancer Epidemiology (LACE) and 225 women from the Women's Health Initiative cohorts and compared classification statistics to published values. We also sought to improve classification with minimal MR examination. We selected pairs of algorithms-one with high sensitivity/high positive predictive value (PPV) and another with high specificity/high PPV-using MR information to resolve discrepancies between algorithms, properly classifying events based on review; we called this "triangulation." Finally, in LACE, we compared associations between breast cancer survival risk factors and recurrence using MR data, single Chubak algorithms, and triangulation. The SBCE algorithms performed well in identifying SBCE and recurrences. Recurrence-specific algorithms performed more poorly than published except for the high-specificity/high-PPV algorithm, which performed well. The triangulation method (sensitivity = 81.3%, specificity = 99.7%, PPV = 98.1%, NPV = 96.5%) improved recurrence classification over two single algorithms (sensitivity = 57.1%, specificity = 95.5%, PPV = 71.3%, NPV = 91.9%; and sensitivity = 74.6%, specificity = 97.3%, PPV = 84.7%, NPV = 95.1%), with 10.6% MR review. Triangulation performed well in survival risk factor analyses vs analyses using MR-identified recurrences. Use of multiple recurrence algorithms in administrative data, in combination with selective examination of MR data, may improve recurrence data quality and reduce research costs. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Velocity Estimate Following Air Data System Failure

    DTIC Science & Technology

    2008-03-01

    39 Figure 3.3. Sampled Two Vector Approach .................................................................... 40 Figure 3.4...algorithm design in terms of reference frames, equations of motion, and velocity triangles describing the vector relationship between airspeed, wind speed...2.2.1 Reference Frames The flight of an aircraft through the air mass can be described in specific coordinate systems [ Nelson 1998]. To determine how

  19. Light-extraction enhancement for light-emitting diodes: a firefly-inspired structure refined by the genetic algorithm

    NASA Astrophysics Data System (ADS)

    Bay, Annick; Mayer, Alexandre

    2014-09-01

    The efficiency of light-emitting diodes (LED) has increased significantly over the past few years, but the overall efficiency is still limited by total internal reflections due to the high dielectric-constant contrast between the incident and emergent media. The bioluminescent organ of fireflies gave incentive for light-extraction enhance-ment studies. A specific factory-roof shaped structure was shown, by means of light-propagation simulations and measurements, to enhance light extraction significantly. In order to achieve a similar effect for light-emitting diodes, the structure needs to be adapted to the specific set-up of LEDs. In this context simulations were carried out to determine the best geometrical parameters. In the present work, the search for a geometry that maximizes the extraction of light has been conducted by using a genetic algorithm. The idealized structure considered previously was generalized to a broader variety of shapes. The genetic algorithm makes it possible to search simultaneously over a wider range of parameters. It is also significantly less time-consuming than the previous approach that was based on a systematic scan on parameters. The results of the genetic algorithm show that (1) the calculations can be performed in a smaller amount of time and (2) the light extraction can be enhanced even more significantly by using optimal parameters determined by the genetic algorithm for the generalized structure. The combination of the genetic algorithm with the Rigorous Coupled Waves Analysis method constitutes a strong simulation tool, which provides us with adapted designs for enhancing light extraction from light-emitting diodes.

  20. Validating Actigraphy as a Measure of Sleep for Preschool Children

    PubMed Central

    Bélanger, Marie-Ève; Bernier, Annie; Paquet, Jean; Simard, Valérie; Carrier, Julie

    2013-01-01

    Study Objectives: The algorithms used to derive sleep variables from actigraphy were developed with adults. Because children change position during sleep more often than adults, algorithms may detect wakefulness when the child is actually sleeping (false negative). This study compares the validity of three algorithms for detecting sleep with actigraphy by comparing them to PSG in preschoolers. The putative influence of device location (wrist or ankle) is also examined. Methods: Twelve children aged 2 to 5 years simultaneously wore an actigraph on an ankle and a wrist (Actiwatch-L, Mini-Mitter/Respironics) during a night of PSG recording at home. Three algorithms were tested: one recommended for adults and two designed to decrease false negative detection of sleep in children. Results: Actigraphy generally showed good sensitivity (> 95%; PSG sleep detection) but low specificity (± 50%; PSG wake detection). Intraclass correlations between PSG and actigraphy variables were strong (> 0.80) for sleep latency, sleep duration, and sleep efficiency, but weak for number of awakenings (< 0.40). The two algorithms designed for children enhanced the validity of actigraphy in preschoolers and increased the proportion of actigraphy-scored wake epochs scored that were also PSG-identified as wake. Sleep variables derived from the ankle and wrist were not statistically different. Conclusion: Despite the weak detection of wakefulness, Acti-watch-L appears to be a useful instrument for assessing sleep in preschoolers when used with an adapted algorithm. Citation: Bélanger M; Bernier A; Paquet J; Simard V; Julie Carrier J. Validating actigraphy as a measure of sleep for pre-school children. J Clin Sleep Med 2013;9(7):701-706. PMID:23853565

  1. Algorithmic analysis of relational learning processes in instructional technology: Some implications for basic, translational, and applied research.

    PubMed

    McIlvane, William J; Kledaras, Joanne B; Gerard, Christophe J; Wilde, Lorin; Smelson, David

    2018-07-01

    A few noteworthy exceptions notwithstanding, quantitative analyses of relational learning are most often simple descriptive measures of study outcomes. For example, studies of stimulus equivalence have made much progress using measures such as percentage consistent with equivalence relations, discrimination ratio, and response latency. Although procedures may have ad hoc variations, they remain fairly similar across studies. Comparison studies of training variables that lead to different outcomes are few. Yet to be developed are tools designed specifically for dynamic and/or parametric analyses of relational learning processes. This paper will focus on recent studies to develop (1) quality computer-based programmed instruction for supporting relational learning in children with autism spectrum disorders and intellectual disabilities and (2) formal algorithms that permit ongoing, dynamic assessment of learner performance and procedure changes to optimize instructional efficacy and efficiency. Because these algorithms have a strong basis in evidence and in theories of stimulus control, they may have utility also for basic and translational research. We present an overview of the research program, details of algorithm features, and summary results that illustrate their possible benefits. It also presents arguments that such algorithm development may encourage parametric research, help in integrating new research findings, and support in-depth quantitative analyses of stimulus control processes in relational learning. Such algorithms may also serve to model control of basic behavioral processes that is important to the design of effective programmed instruction for human learners with and without functional disabilities. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Radiofrequency pulse design in parallel transmission under strict temperature constraints.

    PubMed

    Boulant, Nicolas; Massire, Aurélien; Amadon, Alexis; Vignaud, Alexandre

    2014-09-01

    To gain radiofrequency (RF) pulse performance by directly addressing the temperature constraints, as opposed to the specific absorption rate (SAR) constraints, in parallel transmission at ultra-high field. The magnitude least-squares RF pulse design problem under hard SAR constraints was solved repeatedly by using the virtual observation points and an active-set algorithm. The SAR constraints were updated at each iteration based on the result of a thermal simulation. The numerical study was performed for an SAR-demanding and simplified time of flight sequence using B1 and ΔB0 maps obtained in vivo on a human brain at 7T. The proposed adjustment of the SAR constraints combined with an active-set algorithm provided higher flexibility in RF pulse design within a reasonable time. The modifications of those constraints acted directly upon the thermal response as desired. Although further confidence in the thermal models is needed, this study shows that RF pulse design under strict temperature constraints is within reach, allowing better RF pulse performance and faster acquisitions at ultra-high fields at the cost of higher sequence complexity. Copyright © 2013 Wiley Periodicals, Inc.

  3. Variables influencing wearable sensor outcome estimates in individuals with stroke and incomplete spinal cord injury: a pilot investigation validating two research grade sensors.

    PubMed

    Jayaraman, Chandrasekaran; Mummidisetty, Chaithanya Krishna; Mannix-Slobig, Alannah; McGee Koch, Lori; Jayaraman, Arun

    2018-03-13

    Monitoring physical activity and leveraging wearable sensor technologies to facilitate active living in individuals with neurological impairment has been shown to yield benefits in terms of health and quality of living. In this context, accurate measurement of physical activity estimates from these sensors are vital. However, wearable sensor manufacturers generally only provide standard proprietary algorithms based off of healthy individuals to estimate physical activity metrics which may lead to inaccurate estimates in population with neurological impairment like stroke and incomplete spinal cord injury (iSCI). The main objective of this cross-sectional investigation was to evaluate the validity of physical activity estimates provided by standard proprietary algorithms for individuals with stroke and iSCI. Two research grade wearable sensors used in clinical settings were chosen and the outcome metrics estimated using standard proprietary algorithms were validated against designated golden standard measures (Cosmed K4B2 for energy expenditure and metabolic equivalent and manual tallying for step counts). The influence of sensor location, sensor type and activity characteristics were also studied. 28 participants (Healthy (n = 10); incomplete SCI (n = 8); stroke (n = 10)) performed a spectrum of activities in a laboratory setting using two wearable sensors (ActiGraph and Metria-IH1) at different body locations. Manufacturer provided standard proprietary algorithms estimated the step count, energy expenditure (EE) and metabolic equivalent (MET). These estimates were compared with the estimates from gold standard measures. For verifying validity, a series of Kruskal Wallis ANOVA tests (Games-Howell multiple comparison for post-hoc analyses) were conducted to compare the mean rank and absolute agreement of outcome metrics estimated by each of the devices in comparison with the designated gold standard measurements. The sensor type, sensor location, activity characteristics and the population specific condition influences the validity of estimation of physical activity metrics using standard proprietary algorithms. Implementing population specific customized algorithms accounting for the influences of sensor location, type and activity characteristics for estimating physical activity metrics in individuals with stroke and iSCI could be beneficial.

  4. Ensemble of Chaotic and Naive Approaches for Performance Enhancement in Video Encryption.

    PubMed

    Chandrasekaran, Jeyamala; Thiruvengadam, S J

    2015-01-01

    Owing to the growth of high performance network technologies, multimedia applications over the Internet are increasing exponentially. Applications like video conferencing, video-on-demand, and pay-per-view depend upon encryption algorithms for providing confidentiality. Video communication is characterized by distinct features such as large volume, high redundancy between adjacent frames, video codec compliance, syntax compliance, and application specific requirements. Naive approaches for video encryption encrypt the entire video stream with conventional text based cryptographic algorithms. Although naive approaches are the most secure for video encryption, the computational cost associated with them is very high. This research work aims at enhancing the speed of naive approaches through chaos based S-box design. Chaotic equations are popularly known for randomness, extreme sensitivity to initial conditions, and ergodicity. The proposed methodology employs two-dimensional discrete Henon map for (i) generation of dynamic and key-dependent S-box that could be integrated with symmetric algorithms like Blowfish and Data Encryption Standard (DES) and (ii) generation of one-time keys for simple substitution ciphers. The proposed design is tested for randomness, nonlinearity, avalanche effect, bit independence criterion, and key sensitivity. Experimental results confirm that chaos based S-box design and key generation significantly reduce the computational cost of video encryption with no compromise in security.

  5. Ensemble of Chaotic and Naive Approaches for Performance Enhancement in Video Encryption

    PubMed Central

    Chandrasekaran, Jeyamala; Thiruvengadam, S. J.

    2015-01-01

    Owing to the growth of high performance network technologies, multimedia applications over the Internet are increasing exponentially. Applications like video conferencing, video-on-demand, and pay-per-view depend upon encryption algorithms for providing confidentiality. Video communication is characterized by distinct features such as large volume, high redundancy between adjacent frames, video codec compliance, syntax compliance, and application specific requirements. Naive approaches for video encryption encrypt the entire video stream with conventional text based cryptographic algorithms. Although naive approaches are the most secure for video encryption, the computational cost associated with them is very high. This research work aims at enhancing the speed of naive approaches through chaos based S-box design. Chaotic equations are popularly known for randomness, extreme sensitivity to initial conditions, and ergodicity. The proposed methodology employs two-dimensional discrete Henon map for (i) generation of dynamic and key-dependent S-box that could be integrated with symmetric algorithms like Blowfish and Data Encryption Standard (DES) and (ii) generation of one-time keys for simple substitution ciphers. The proposed design is tested for randomness, nonlinearity, avalanche effect, bit independence criterion, and key sensitivity. Experimental results confirm that chaos based S-box design and key generation significantly reduce the computational cost of video encryption with no compromise in security. PMID:26550603

  6. Algorithm to solve a chance-constrained network capacity design problem with stochastic demands and finite support

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schumacher, Kathryn M.; Chen, Richard Li-Yang; Cohn, Amy E. M.

    2016-04-15

    Here, we consider the problem of determining the capacity to assign to each arc in a given network, subject to uncertainty in the supply and/or demand of each node. This design problem underlies many real-world applications, such as the design of power transmission and telecommunications networks. We first consider the case where a set of supply/demand scenarios are provided, and we must determine the minimum-cost set of arc capacities such that a feasible flow exists for each scenario. We briefly review existing theoretical approaches to solving this problem and explore implementation strategies to reduce run times. With this as amore » foundation, our primary focus is on a chance-constrained version of the problem in which α% of the scenarios must be feasible under the chosen capacity, where α is a user-defined parameter and the specific scenarios to be satisfied are not predetermined. We describe an algorithm which utilizes a separation routine for identifying violated cut-sets which can solve the problem to optimality, and we present computational results. We also present a novel greedy algorithm, our primary contribution, which can be used to solve for a high quality heuristic solution. We present computational analysis to evaluate the performance of our proposed approaches.« less

  7. Materials Selection Criteria for Nuclear Power Applications: A Decision Algorithm

    NASA Astrophysics Data System (ADS)

    Rodríguez-Prieto, Álvaro; Camacho, Ana María; Sebastián, Miguel Ángel

    2016-02-01

    An innovative methodology based on stringency levels is proposed in this paper and improves the current selection method for structural materials used in demanding industrial applications. This paper describes a new approach for quantifying the stringency of materials requirements based on a novel deterministic algorithm to prevent potential failures. We have applied the new methodology to different standardized specifications used in pressure vessels design, such as SA-533 Grade B Cl.1, SA-508 Cl.3 (issued by the American Society of Mechanical Engineers), DIN 20MnMoNi55 (issued by the German Institute of Standardization) and 16MND5 (issued by the French Nuclear Commission) specifications and determine the influence of design code selection. This study is based on key scientific publications on the influence of chemical composition on the mechanical behavior of materials, which were not considered when the technological requirements were established in the aforementioned specifications. For this purpose, a new method to quantify the efficacy of each standard has been developed using a deterministic algorithm. The process of assigning relative weights was performed by consulting a panel of experts in materials selection for reactor pressure vessels to provide a more objective methodology; thus, the resulting mathematical calculations for quantitative analysis are greatly simplified. The final results show that steel DIN 20MnMoNi55 is the best material option. Additionally, more recently developed materials such as DIN 20MnMoNi55, 16MND5 and SA-508 Cl.3 exhibit mechanical requirements more stringent than SA-533 Grade B Cl.1. The methodology presented in this paper can be used as a decision tool in selection of materials for a wide range of applications.

  8. ArrayInitiative - a tool that simplifies creating custom Affymetrix CDFs

    PubMed Central

    2011-01-01

    Background Probes on a microarray represent a frozen view of a genome and are quickly outdated when new sequencing studies extend our knowledge, resulting in significant measurement error when analyzing any microarray experiment. There are several bioinformatics approaches to improve probe assignments, but without in-house programming expertise, standardizing these custom array specifications as a usable file (e.g. as Affymetrix CDFs) is difficult, owing mostly to the complexity of the specification file format. However, without correctly standardized files there is a significant barrier for testing competing analysis approaches since this file is one of the required inputs for many commonly used algorithms. The need to test combinations of probe assignments and analysis algorithms led us to develop ArrayInitiative, a tool for creating and managing custom array specifications. Results ArrayInitiative is a standalone, cross-platform, rich client desktop application for creating correctly formatted, custom versions of manufacturer-provided (default) array specifications, requiring only minimal knowledge of the array specification rules and file formats. Users can import default array specifications, import probe sequences for a default array specification, design and import a custom array specification, export any array specification to multiple output formats, export the probe sequences for any array specification and browse high-level information about the microarray, such as version and number of probes. The initial release of ArrayInitiative supports the Affymetrix 3' IVT expression arrays we currently analyze, but as an open source application, we hope that others will contribute modules for other platforms. Conclusions ArrayInitiative allows researchers to create new array specifications, in a standard format, based upon their own requirements. This makes it easier to test competing design and analysis strategies that depend on probe definitions. Since the custom array specifications are easily exported to the manufacturer's standard format, researchers can analyze these customized microarray experiments using established software tools, such as those available in Bioconductor. PMID:21548938

  9. Optimum structural design with plate bending elements - A survey

    NASA Technical Reports Server (NTRS)

    Haftka, R. T.; Prasad, B.

    1981-01-01

    A survey is presented of recently published papers in the field of optimum structural design of plates, largely with respect to the minimum-weight design of plates subject to such constraints as fundamental frequency maximization. It is shown that, due to the availability of powerful computers, the trend in optimum plate design is away from methods tailored to specific geometry and loads and toward methods that can be easily programmed for any kind of plate, such as finite element methods. A corresponding shift is seen in optimization from variational techniques to numerical optimization algorithms. Among the topics covered are fully stressed design and optimality criteria, mathematical programming, smooth and ribbed designs, design against plastic collapse, buckling constraints, and vibration constraints.

  10. Telemanipulator design and optimization software

    NASA Astrophysics Data System (ADS)

    Cote, Jean; Pelletier, Michel

    1995-12-01

    For many years, industrial robots have been used to execute specific repetitive tasks. In those cases, the optimal configuration and location of the manipulator only has to be found once. The optimal configuration or position where often found empirically according to the tasks to be performed. In telemanipulation, the nature of the tasks to be executed is much wider and can be very demanding in terms of dexterity and workspace. The position/orientation of the robot's base could be required to move during the execution of a task. At present, the choice of the initial position of the teleoperator is usually found empirically which can be sufficient in the case of an easy or repetitive task. In the converse situation, the amount of time wasted to move the teleoperator support platform has to be taken into account during the execution of the task. Automatic optimization of the position/orientation of the platform or a better designed robot configuration could minimize these movements and save time. This paper will present two algorithms. The first algorithm is used to optimize the position and orientation of a given manipulator (or manipulators) with respect to the environment on which a task has to be executed. The second algorithm is used to optimize the position or the kinematic configuration of a robot. For this purpose, the tasks to be executed are digitized using a position/orientation measurement system and a compact representation based on special octrees. Given a digitized task, the optimal position or Denavit-Hartenberg configuration of the manipulator can be obtained numerically. Constraints on the robot design can also be taken into account. A graphical interface has been designed to facilitate the use of the two optimization algorithms.

  11. Design of the algorithm of photons migration in the multilayer skin structure

    NASA Astrophysics Data System (ADS)

    Bulykina, Anastasiia B.; Ryzhova, Victoria A.; Korotaev, Valery V.; Samokhin, Nikita Y.

    2017-06-01

    Design of approaches and methods of the oncological diseases diagnostics has special significance. It allows determining any kind of tumors at early stages. The development of optical and laser technologies provided increase of a number of methods allowing making diagnostic studies of oncological diseases. A promising area of biomedical diagnostics is the development of automated nondestructive testing systems for the study of the skin polarizing properties based on backscattered radiation detection. Specification of the examined tissue polarizing properties allows studying of structural properties change influenced by various pathologies. Consequently, measurement and analysis of the polarizing properties of the scattered optical radiation for the development of methods for diagnosis and imaging of skin in vivo appear relevant. The purpose of this research is to design the algorithm of photons migration in the multilayer skin structure. In this research, the algorithm of photons migration in the multilayer skin structure was designed. It is based on the use of the Monte Carlo method. Implemented Monte Carlo method appears as a tracking the paths of photons experiencing random discrete direction changes before they are released from the analyzed area or decrease their intensity to negligible levels. Modeling algorithm consists of the medium and the source characteristics generation, a photon generating considering spatial coordinates of the polar and azimuthal angles, the photon weight reduction calculating due to specular and diffuse reflection, the photon mean free path definition, the photon motion direction angle definition as a result of random scattering with a Henyey-Greenstein phase function, the medium's absorption calculation. Biological tissue is modeled as a homogeneous scattering sheet characterized by absorption, a scattering and anisotropy coefficients.

  12. Structure based re-design of the binding specificity of anti-apoptotic Bcl-xL

    PubMed Central

    Chen, T. Scott; Palacios, Hector; Keating, Amy E.

    2012-01-01

    Many native proteins are multi-specific and interact with numerous partners, which can confound analysis of their functions. Protein design provides a potential route to generating synthetic variants of native proteins with more selective binding profiles. Re-designed proteins could be used as research tools, diagnostics or therapeutics. In this work, we used a library screening approach to re-engineer the multi-specific anti-apoptotic protein Bcl-xL to remove its interactions with many of its binding partners, making it a high affinity and selective binder of the BH3 region of pro-apoptotic protein Bad. To overcome the enormity of the potential Bcl-xL sequence space, we developed and applied a computational/experimental framework that used protein structure information to generate focused combinatorial libraries. Sequence features were identified using structure-based modeling, and an optimization algorithm based on integer programming was used to select degenerate codons that maximally covered these features. A constraint on library size was used to ensure thorough sampling. Using yeast surface display to screen a designed library of Bcl-xL variants, we successfully identified a protein with ~1,000-fold improvement in binding specificity for the BH3 region of Bad over the BH3 region of Bim. Although negative design was targeted only against the BH3 region of Bim, the best re-designed protein was globally specific against binding to 10 other peptides corresponding to native BH3 motifs. Our design framework demonstrates an efficient route to highly specific protein binders and may readily be adapted for application to other design problems. PMID:23154169

  13. Development of a Dependency Theory Toolbox for Database Design.

    DTIC Science & Technology

    1987-12-01

    published algorithms and theorems , and hand simulating these algorithms can be a tedious and error prone chore. Additionally, since the process of...to design and study relational databases exists in the form of published algorithms and theorems . However, hand simulating these algorithms can be a...published algorithms and theorems . Hand simulating these algorithms can be a tedious and error prone chore. Therefore, a toolbox of algorithms and

  14. Ascent performance feasibility for next-generation spacecraft

    NASA Astrophysics Data System (ADS)

    Mancuso, Salvatore Massimo

    This thesis deals with the optimization of the ascent trajectories for single-stage suborbital (SSSO), single-stage-to-orbit (SSTO), and two-stage-to-orbit (TSTO) rocket-powered spacecraft. The maximum payload weight problem has been solved using the sequential gradient-restoration algorithm. For the TSTO case, some modifications to the original version of the algorithm have been necessary in order to deal with discontinuities due to staging and the fact that the functional being minimized depends on interface conditions. The optimization problem is studied for different values of the initial thrust-to-weight ratio in the range 1.3 to 1.6, engine specific impulse in the range 400 to 500 sec, and spacecraft structural factor in the range 0.08 to 0.12. For the TSTO configuration, two subproblems are studied: uniform structural factor between stages and nonuniform structural factor between stages. Due to the regular behavior of the results obtained, engineering approximations have been developed which connect the maximum payload weight to the engine specific impulse and spacecraft structural factor; in turn, this leads to useful design considerations. Also, performance sensitivity to the scale of the aerodynamic drag is studied, and it is shown that its effect on payload weight is relatively small, even for drag changes approaching ± 50%. The main conclusions are that: the design of a SSSO configuration appears to be feasible; the design of a SSTO configuration might be comfortably feasible, marginally feasible, or unfeasible, depending on the parameter values assumed; the design of a TSTO configuration is not only feasible, but its payload appears to be considerably larger than that of a SSTO configuration. Improvements in engine specific impulse and spacecraft structural factor are desirable and crucial for SSTO feasibility; indeed, it appears that aerodynamic improvements do not yield significant improvements in payload weight.

  15. A genetic algorithm for solving supply chain network design model

    NASA Astrophysics Data System (ADS)

    Firoozi, Z.; Ismail, N.; Ariafar, S. H.; Tang, S. H.; Ariffin, M. K. M. A.

    2013-09-01

    Network design is by nature costly and optimization models play significant role in reducing the unnecessary cost components of a distribution network. This study proposes a genetic algorithm to solve a distribution network design model. The structure of the chromosome in the proposed algorithm is defined in a novel way that in addition to producing feasible solutions, it also reduces the computational complexity of the algorithm. Computational results are presented to show the algorithm performance.

  16. Optimizing Multiple QoS for Workflow Applications using PSO and Min-Max Strategy

    NASA Astrophysics Data System (ADS)

    Umar Ambursa, Faruku; Latip, Rohaya; Abdullah, Azizol; Subramaniam, Shamala

    2017-08-01

    Workflow scheduling under multiple QoS constraints is a complicated optimization problem. Metaheuristic techniques are excellent approaches used in dealing with such problem. Many metaheuristic based algorithms have been proposed, that considers various economic and trustworthy QoS dimensions. However, most of these approaches lead to high violation of user-defined QoS requirements in tight situation. Recently, a new Particle Swarm Optimization (PSO)-based QoS-aware workflow scheduling strategy (LAPSO) is proposed to improve performance in such situations. LAPSO algorithm is designed based on synergy between a violation handling method and a hybrid of PSO and min-max heuristic. Simulation results showed a great potential of LAPSO algorithm to handling user requirements even in tight situations. In this paper, the performance of the algorithm is anlysed further. Specifically, the impact of the min-max strategy on the performance of the algorithm is revealed. This is achieved by removing the violation handling from the operation of the algorithm. The results show that LAPSO based on only the min-max method still outperforms the benchmark, even though the LAPSO with the violation handling performs more significantly better.

  17. Evaluating Algorithm Performance Metrics Tailored for Prognostics

    NASA Technical Reports Server (NTRS)

    Saxena, Abhinav; Celaya, Jose; Saha, Bhaskar; Saha, Sankalita; Goebel, Kai

    2009-01-01

    Prognostics has taken a center stage in Condition Based Maintenance (CBM) where it is desired to estimate Remaining Useful Life (RUL) of the system so that remedial measures may be taken in advance to avoid catastrophic events or unwanted downtimes. Validation of such predictions is an important but difficult proposition and a lack of appropriate evaluation methods renders prognostics meaningless. Evaluation methods currently used in the research community are not standardized and in many cases do not sufficiently assess key performance aspects expected out of a prognostics algorithm. In this paper we introduce several new evaluation metrics tailored for prognostics and show that they can effectively evaluate various algorithms as compared to other conventional metrics. Specifically four algorithms namely; Relevance Vector Machine (RVM), Gaussian Process Regression (GPR), Artificial Neural Network (ANN), and Polynomial Regression (PR) are compared. These algorithms vary in complexity and their ability to manage uncertainty around predicted estimates. Results show that the new metrics rank these algorithms in different manner and depending on the requirements and constraints suitable metrics may be chosen. Beyond these results, these metrics offer ideas about how metrics suitable to prognostics may be designed so that the evaluation procedure can be standardized. 1

  18. A new approach in the design of an interactive environment for teaching Hamiltonian digraphs

    NASA Astrophysics Data System (ADS)

    Iordan, A. E.; Panoiu, M.

    2014-03-01

    In this article the authors present the necessary steps in object orientated design of an interactive environment that is dedicated to the process of acquaintances assimilation in Hamiltonian graphs theory domain, especially for the simulation of algorithms which determine the Hamiltonian trails and circuits. The modelling of the interactive environment is achieved through specific UML diagrams representing the steps of analysis, design and implementation. This interactive environment is very useful for both students and professors, because computer programming domain, especially digraphs theory domain is comprehended and assimilated with difficulty by students.

  19. Effectiveness and cost-effectiveness of a cardiovascular risk prediction algorithm for people with severe mental illness (PRIMROSE).

    PubMed

    Zomer, Ella; Osborn, David; Nazareth, Irwin; Blackburn, Ruth; Burton, Alexandra; Hardoon, Sarah; Holt, Richard Ian Gregory; King, Michael; Marston, Louise; Morris, Stephen; Omar, Rumana; Petersen, Irene; Walters, Kate; Hunter, Rachael Maree

    2017-09-05

    To determine the cost-effectiveness of two bespoke severe mental illness (SMI)-specific risk algorithms compared with standard risk algorithms for primary cardiovascular disease (CVD) prevention in those with SMI. Primary care setting in the UK. The analysis was from the National Health Service perspective. 1000 individuals with SMI from The Health Improvement Network Database, aged 30-74 years and without existing CVD, populated the model. Four cardiovascular risk algorithms were assessed: (1) general population lipid, (2) general population body mass index (BMI), (3) SMI-specific lipid and (4) SMI-specific BMI, compared against no algorithm. At baseline, each cardiovascular risk algorithm was applied and those considered high risk ( > 10%) were assumed to be prescribed statin therapy while others received usual care. Quality-adjusted life years (QALYs) and costs were accrued for each algorithm including no algorithm, and cost-effectiveness was calculated using the net monetary benefit (NMB) approach. Deterministic and probabilistic sensitivity analyses were performed to test assumptions made and uncertainty around parameter estimates. The SMI-specific BMI algorithm had the highest NMB resulting in 15 additional QALYs and a cost saving of approximately £53 000 per 1000 patients with SMI over 10 years, followed by the general population lipid algorithm (13 additional QALYs and a cost saving of £46 000). The general population lipid and SMI-specific BMI algorithms performed equally well. The ease and acceptability of use of an SMI-specific BMI algorithm (blood tests not required) makes it an attractive algorithm to implement in clinical settings. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  20. A mission-oriented orbit design method of remote sensing satellite for region monitoring mission based on evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Shen, Xin; Zhang, Jing; Yao, Huang

    2015-12-01

    Remote sensing satellites play an increasingly prominent role in environmental monitoring and disaster rescue. Taking advantage of almost the same sunshine condition to same place and global coverage, most of these satellites are operated on the sun-synchronous orbit. However, it brings some problems inevitably, the most significant one is that the temporal resolution of sun-synchronous orbit satellite can't satisfy the demand of specific region monitoring mission. To overcome the disadvantages, two methods are exploited: the first one is to build satellite constellation which contains multiple sunsynchronous satellites, just like the CHARTER mechanism has done; the second is to design non-predetermined orbit based on the concrete mission demand. An effective method for remote sensing satellite orbit design based on multiobjective evolution algorithm is presented in this paper. Orbit design problem is converted into a multi-objective optimization problem, and a fast and elitist multi-objective genetic algorithm is utilized to solve this problem. Firstly, the demand of the mission is transformed into multiple objective functions, and the six orbit elements of the satellite are taken as genes in design space, then a simulate evolution process is performed. An optimal resolution can be obtained after specified generation via evolution operation (selection, crossover, and mutation). To examine validity of the proposed method, a case study is introduced: Orbit design of an optical satellite for regional disaster monitoring, the mission demand include both minimizing the average revisit time internal of two objectives. The simulation result shows that the solution for this mission obtained by our method meet the demand the users' demand. We can draw a conclusion that the method presented in this paper is efficient for remote sensing orbit design.

  1. Finding Kepler's Exoearths

    NASA Astrophysics Data System (ADS)

    Petigura, Erik; Marcy, G.

    2012-05-01

    With its unprecedented photometric precision and duty cycle, the Kepler mission offers the first opportunity to detect Earth analog planets. Detecting transits with depths of 0.01%, periods of 1 year, and durations of 10 hours pose a novel challenge, prompting an optimization of both the detrending of the photometry and of the transit search algorithm. We present TERRA, the Transiting Exoearth Robust Reduction Algorithm, designed specifically to find earth analogs. TERRA carefully treats systematic effects with timescales comparable to an exoearth transit and removes features that are not important from the perspective of transit detection. We demonstrate TERRA's detection power through an extensive transit injection and recovery experiment.

  2. A Flexible System for Simulating Aeronautical Telecommunication Network

    NASA Technical Reports Server (NTRS)

    Maly, Kurt; Overstreet, C. M.; Andey, R.

    1998-01-01

    At Old Dominion University, we have built Aeronautical Telecommunication Network (ATN) Simulator with NASA being the fund provider. It provides a means to evaluate the impact of modified router scheduling algorithms on the network efficiency, to perform capacity studies on various network topologies and to monitor and study various aspects of ATN through graphical user interface (GUI). In this paper we describe briefly about the proposed ATN model and our abstraction of this model. Later we describe our simulator architecture highlighting some of the design specifications, scheduling algorithms and user interface. At the end, we have provided the results of performance studies on this simulator.

  3. Performance-Based Seismic Design of Steel Frames Utilizing Colliding Bodies Algorithm

    PubMed Central

    Veladi, H.

    2014-01-01

    A pushover analysis method based on semirigid connection concept is developed and the colliding bodies optimization algorithm is employed to find optimum seismic design of frame structures. Two numerical examples from the literature are studied. The results of the new algorithm are compared to the conventional design methods to show the power or weakness of the algorithm. PMID:25202717

  4. Performance-based seismic design of steel frames utilizing colliding bodies algorithm.

    PubMed

    Veladi, H

    2014-01-01

    A pushover analysis method based on semirigid connection concept is developed and the colliding bodies optimization algorithm is employed to find optimum seismic design of frame structures. Two numerical examples from the literature are studied. The results of the new algorithm are compared to the conventional design methods to show the power or weakness of the algorithm.

  5. What does fault tolerant Deep Learning need from MPI?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amatya, Vinay C.; Vishnu, Abhinav; Siegel, Charles M.

    Deep Learning (DL) algorithms have become the {\\em de facto} Machine Learning (ML) algorithm for large scale data analysis. DL algorithms are computationally expensive -- even distributed DL implementations which use MPI require days of training (model learning) time on commonly studied datasets. Long running DL applications become susceptible to faults -- requiring development of a fault tolerant system infrastructure, in addition to fault tolerant DL algorithms. This raises an important question: {\\em What is needed from MPI for designing fault tolerant DL implementations?} In this paper, we address this problem for permanent faults. We motivate the need for amore » fault tolerant MPI specification by an in-depth consideration of recent innovations in DL algorithms and their properties, which drive the need for specific fault tolerance features. We present an in-depth discussion on the suitability of different parallelism types (model, data and hybrid); a need (or lack thereof) for check-pointing of any critical data structures; and most importantly, consideration for several fault tolerance proposals (user-level fault mitigation (ULFM), Reinit) in MPI and their applicability to fault tolerant DL implementations. We leverage a distributed memory implementation of Caffe, currently available under the Machine Learning Toolkit for Extreme Scale (MaTEx). We implement our approaches by extending MaTEx-Caffe for using ULFM-based implementation. Our evaluation using the ImageNet dataset and AlexNet neural network topology demonstrates the effectiveness of the proposed fault tolerant DL implementation using OpenMPI based ULFM.« less

  6. Design optimisation of powers-of-two FIR filter using self-organising random immigrants GA

    NASA Astrophysics Data System (ADS)

    Chandra, Abhijit; Chattopadhyay, Sudipta

    2015-01-01

    In this communication, we propose a novel design strategy of multiplier-less low-pass finite impulse response (FIR) filter with the aid of a recent evolutionary optimisation technique, known as the self-organising random immigrants genetic algorithm. Individual impulse response coefficients of the proposed filter have been encoded as sum of signed powers-of-two. During the formulation of the cost function for the optimisation algorithm, both the frequency response characteristic and the hardware cost of the discrete coefficient FIR filter have been considered. The role of crossover probability of the optimisation technique has been evaluated on the overall performance of the proposed strategy. For this purpose, the convergence characteristic of the optimisation technique has been included in the simulation results. In our analysis, two design examples of different specifications have been taken into account. In order to substantiate the efficiency of our proposed structure, a number of state-of-the-art design strategies of multiplier-less FIR filter have also been included in this article for the purpose of comparison. Critical analysis of the result unambiguously establishes the usefulness of our proposed approach for the hardware efficient design of digital filter.

  7. Enhancing Breast Cancer Recurrence Algorithms Through Selective Use of Medical Record Data

    PubMed Central

    Chubak, Jessica; Johnson, Lisa; Castillo, Adrienne; Weltzien, Erin; Caan, Bette J.

    2016-01-01

    Abstract Background: The utility of data-based algorithms in research has been questioned because of errors in identification of cancer recurrences. We adapted previously published breast cancer recurrence algorithms, selectively using medical record (MR) data to improve classification. Methods: We evaluated second breast cancer event (SBCE) and recurrence-specific algorithms previously published by Chubak and colleagues in 1535 women from the Life After Cancer Epidemiology (LACE) and 225 women from the Women’s Health Initiative cohorts and compared classification statistics to published values. We also sought to improve classification with minimal MR examination. We selected pairs of algorithms—one with high sensitivity/high positive predictive value (PPV) and another with high specificity/high PPV—using MR information to resolve discrepancies between algorithms, properly classifying events based on review; we called this “triangulation.” Finally, in LACE, we compared associations between breast cancer survival risk factors and recurrence using MR data, single Chubak algorithms, and triangulation. Results: The SBCE algorithms performed well in identifying SBCE and recurrences. Recurrence-specific algorithms performed more poorly than published except for the high-specificity/high-PPV algorithm, which performed well. The triangulation method (sensitivity = 81.3%, specificity = 99.7%, PPV = 98.1%, NPV = 96.5%) improved recurrence classification over two single algorithms (sensitivity = 57.1%, specificity = 95.5%, PPV = 71.3%, NPV = 91.9%; and sensitivity = 74.6%, specificity = 97.3%, PPV = 84.7%, NPV = 95.1%), with 10.6% MR review. Triangulation performed well in survival risk factor analyses vs analyses using MR-identified recurrences. Conclusions: Use of multiple recurrence algorithms in administrative data, in combination with selective examination of MR data, may improve recurrence data quality and reduce research costs. PMID:26582243

  8. Algorithmic Coordination in Robotic Networks

    DTIC Science & Technology

    2010-11-29

    appropriate performance, robustness and scalability properties for various task allocation , surveillance, and information gathering applications is...networking, we envision designing and analyzing algorithms with appropriate performance, robustness and scalability properties for various task ...distributed algorithms for target assignments; based on the classic auction algorithms in static networks, we intend to design efficient algorithms in worst

  9. Implementation in an FPGA circuit of Edge detection algorithm based on the Discrete Wavelet Transforms

    NASA Astrophysics Data System (ADS)

    Bouganssa, Issam; Sbihi, Mohamed; Zaim, Mounia

    2017-07-01

    The 2D Discrete Wavelet Transform (DWT) is a computationally intensive task that is usually implemented on specific architectures in many imaging systems in real time. In this paper, a high throughput edge or contour detection algorithm is proposed based on the discrete wavelet transform. A technique for applying the filters on the three directions (Horizontal, Vertical and Diagonal) of the image is used to present the maximum of the existing contours. The proposed architectures were designed in VHDL and mapped to a Xilinx Sparten6 FPGA. The results of the synthesis show that the proposed architecture has a low area cost and can operate up to 100 MHz, which can perform 2D wavelet analysis for a sequence of images while maintaining the flexibility of the system to support an adaptive algorithm.

  10. Aquatic Debris Detection Using Embedded Camera Sensors

    PubMed Central

    Wang, Yong; Wang, Dianhong; Lu, Qian; Luo, Dapeng; Fang, Wu

    2015-01-01

    Aquatic debris monitoring is of great importance to human health, aquatic habitats and water transport. In this paper, we first introduce the prototype of an aquatic sensor node equipped with an embedded camera sensor. Based on this sensing platform, we propose a fast and accurate debris detection algorithm. Our method is specifically designed based on compressive sensing theory to give full consideration to the unique challenges in aquatic environments, such as waves, swaying reflections, and tight energy budget. To upload debris images, we use an efficient sparse recovery algorithm in which only a few linear measurements need to be transmitted for image reconstruction. Besides, we implement the host software and test the debris detection algorithm on realistically deployed aquatic sensor nodes. The experimental results demonstrate that our approach is reliable and feasible for debris detection using camera sensors in aquatic environments. PMID:25647741

  11. Creative and algorithmic mathematical reasoning: effects of transfer-appropriate processing and effortful struggle

    NASA Astrophysics Data System (ADS)

    Jonsson, Bert; Kulaksiz, Yagmur C.; Lithner, Johan

    2016-11-01

    Two separate studies, Jonsson et al. (J. Math Behav. 2014;36: 20-32) and Karlsson Wirebring et al. (Trends Neurosci Educ. 2015;4(1-2):6-14), showed that learning mathematics using creative mathematical reasoning and constructing their own solution methods can be more efficient than if students use algorithmic reasoning and are given the solution procedures. It was argued that effortful struggle was the key that explained this difference. It was also argued that the results could not be explained by the effects of transfer-appropriate processing, although this was not empirically investigated. This study evaluated the hypotheses of transfer-appropriate processing and effortful struggle in relation to the specific characteristics associated with algorithmic reasoning task and creative mathematical reasoning task. In a between-subjects design, upper-secondary students were matched according to their working memory capacity.

  12. Visual improvement for bad handwriting based on Monte-Carlo method

    NASA Astrophysics Data System (ADS)

    Shi, Cao; Xiao, Jianguo; Xu, Canhui; Jia, Wenhua

    2014-03-01

    A visual improvement algorithm based on Monte Carlo simulation is proposed in this paper, in order to enhance visual effects for bad handwriting. The whole improvement process is to use well designed typeface so as to optimize bad handwriting image. In this process, a series of linear operators for image transformation are defined for transforming typeface image to approach handwriting image. And specific parameters of linear operators are estimated by Monte Carlo method. Visual improvement experiments illustrate that the proposed algorithm can effectively enhance visual effect for handwriting image as well as maintain the original handwriting features, such as tilt, stroke order and drawing direction etc. The proposed visual improvement algorithm, in this paper, has a huge potential to be applied in tablet computer and Mobile Internet, in order to improve user experience on handwriting.

  13. Progress on Complex Langevin simulations of a finite density matrix model for QCD

    NASA Astrophysics Data System (ADS)

    Bloch, Jacques; Glesaaen, Jonas; Verbaarschot, Jacobus; Zafeiropoulos, Savvas

    2018-03-01

    We study the Stephanov model, which is an RMT model for QCD at finite density, using the Complex Langevin algorithm. Naive implementation of the algorithm shows convergence towards the phase quenched or quenched theory rather than to intended theory with dynamical quarks. A detailed analysis of this issue and a potential resolution of the failure of this algorithm are discussed. We study the effect of gauge cooling on the Dirac eigenvalue distribution and time evolution of the norm for various cooling norms, which were specifically designed to remove the pathologies of the complex Langevin evolution. The cooling is further supplemented with a shifted representation for the random matrices. Unfortunately, none of these modifications generate a substantial improvement on the complex Langevin evolution and the final results still do not agree with the analytical predictions.

  14. SymDex: increasing the efficiency of chemical fingerprint similarity searches for comparing large chemical libraries by using query set indexing.

    PubMed

    Tai, David; Fang, Jianwen

    2012-08-27

    The large sizes of today's chemical databases require efficient algorithms to perform similarity searches. It can be very time consuming to compare two large chemical databases. This paper seeks to build upon existing research efforts by describing a novel strategy for accelerating existing search algorithms for comparing large chemical collections. The quest for efficiency has focused on developing better indexing algorithms by creating heuristics for searching individual chemical against a chemical library by detecting and eliminating needless similarity calculations. For comparing two chemical collections, these algorithms simply execute searches for each chemical in the query set sequentially. The strategy presented in this paper achieves a speedup upon these algorithms by indexing the set of all query chemicals so redundant calculations that arise in the case of sequential searches are eliminated. We implement this novel algorithm by developing a similarity search program called Symmetric inDexing or SymDex. SymDex shows over a 232% maximum speedup compared to the state-of-the-art single query search algorithm over real data for various fingerprint lengths. Considerable speedup is even seen for batch searches where query set sizes are relatively small compared to typical database sizes. To the best of our knowledge, SymDex is the first search algorithm designed specifically for comparing chemical libraries. It can be adapted to most, if not all, existing indexing algorithms and shows potential for accelerating future similarity search algorithms for comparing chemical databases.

  15. Speech recognition for embedded automatic positioner for laparoscope

    NASA Astrophysics Data System (ADS)

    Chen, Xiaodong; Yin, Qingyun; Wang, Yi; Yu, Daoyin

    2014-07-01

    In this paper a novel speech recognition methodology based on Hidden Markov Model (HMM) is proposed for embedded Automatic Positioner for Laparoscope (APL), which includes a fixed point ARM processor as the core. The APL system is designed to assist the doctor in laparoscopic surgery, by implementing the specific doctor's vocal control to the laparoscope. Real-time respond to the voice commands asks for more efficient speech recognition algorithm for the APL. In order to reduce computation cost without significant loss in recognition accuracy, both arithmetic and algorithmic optimizations are applied in the method presented. First, depending on arithmetic optimizations most, a fixed point frontend for speech feature analysis is built according to the ARM processor's character. Then the fast likelihood computation algorithm is used to reduce computational complexity of the HMM-based recognition algorithm. The experimental results show that, the method shortens the recognition time within 0.5s, while the accuracy higher than 99%, demonstrating its ability to achieve real-time vocal control to the APL.

  16. Adaptive Wiener filter super-resolution of color filter array images.

    PubMed

    Karch, Barry K; Hardie, Russell C

    2013-08-12

    Digital color cameras using a single detector array with a Bayer color filter array (CFA) require interpolation or demosaicing to estimate missing color information and provide full-color images. However, demosaicing does not specifically address fundamental undersampling and aliasing inherent in typical camera designs. Fast non-uniform interpolation based super-resolution (SR) is an attractive approach to reduce or eliminate aliasing and its relatively low computational load is amenable to real-time applications. The adaptive Wiener filter (AWF) SR algorithm was initially developed for grayscale imaging and has not previously been applied to color SR demosaicing. Here, we develop a novel fast SR method for CFA cameras that is based on the AWF SR algorithm and uses global channel-to-channel statistical models. We apply this new method as a stand-alone algorithm and also as an initialization image for a variational SR algorithm. This paper presents the theoretical development of the color AWF SR approach and applies it in performance comparisons to other SR techniques for both simulated and real data.

  17. Continuous data assimilation for the three-dimensional Brinkman-Forchheimer-extended Darcy model

    NASA Astrophysics Data System (ADS)

    Markowich, Peter A.; Titi, Edriss S.; Trabelsi, Saber

    2016-04-01

    In this paper we introduce and analyze an algorithm for continuous data assimilation for a three-dimensional Brinkman-Forchheimer-extended Darcy (3D BFeD) model of porous media. This model is believed to be accurate when the flow velocity is too large for Darcy’s law to be valid, and additionally the porosity is not too small. The algorithm is inspired by ideas developed for designing finite-parameters feedback control for dissipative systems. It aims to obtain improved estimates of the state of the physical system by incorporating deterministic or noisy measurements and observations. Specifically, the algorithm involves a feedback control that nudges the large scales of the approximate solution toward those of the reference solution associated with the spatial measurements. In the first part of the paper, we present a few results of existence and uniqueness of weak and strong solutions of the 3D BFeD system. The second part is devoted to the convergence analysis of the data assimilation algorithm.

  18. Using RGB-D sensors and evolutionary algorithms for the optimization of workstation layouts.

    PubMed

    Diego-Mas, Jose Antonio; Poveda-Bautista, Rocio; Garzon-Leal, Diana

    2017-11-01

    RGB-D sensors can collect postural data in an automatized way. However, the application of these devices in real work environments requires overcoming problems such as lack of accuracy or body parts' occlusion. This work presents the use of RGB-D sensors and genetic algorithms for the optimization of workstation layouts. RGB-D sensors are used to capture workers' movements when they reach objects on workbenches. Collected data are then used to optimize workstation layout by means of genetic algorithms considering multiple ergonomic criteria. Results show that typical drawbacks of using RGB-D sensors for body tracking are not a problem for this application, and that the combination with intelligent algorithms can automatize the layout design process. The procedure described can be used to automatically suggest new layouts when workers or processes of production change, to adapt layouts to specific workers based on their ways to do the tasks, or to obtain layouts simultaneously optimized for several production processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Concurrent extensions to the FORTRAN language for parallel programming of computational fluid dynamics algorithms

    NASA Technical Reports Server (NTRS)

    Weeks, Cindy Lou

    1986-01-01

    Experiments were conducted at NASA Ames Research Center to define multi-tasking software requirements for multiple-instruction, multiple-data stream (MIMD) computer architectures. The focus was on specifying solutions for algorithms in the field of computational fluid dynamics (CFD). The program objectives were to allow researchers to produce usable parallel application software as soon as possible after acquiring MIMD computer equipment, to provide researchers with an easy-to-learn and easy-to-use parallel software language which could be implemented on several different MIMD machines, and to enable researchers to list preferred design specifications for future MIMD computer architectures. Analysis of CFD algorithms indicated that extensions of an existing programming language, adaptable to new computer architectures, provided the best solution to meeting program objectives. The CoFORTRAN Language was written in response to these objectives and to provide researchers a means to experiment with parallel software solutions to CFD algorithms on machines with parallel architectures.

  20. HEURISTIC OPTIMIZATION AND ALGORITHM TUNING APPLIED TO SORPTIVE BARRIER DESIGN

    EPA Science Inventory

    While heuristic optimization is applied in environmental applications, ad-hoc algorithm configuration is typical. We use a multi-layer sorptive barrier design problem as a benchmark for an algorithm-tuning procedure, as applied to three heuristics (genetic algorithms, simulated ...

  1. System Design under Uncertainty: Evolutionary Optimization of the Gravity Probe-B Spacecraft

    NASA Technical Reports Server (NTRS)

    Pullen, Samuel P.; Parkinson, Bradford W.

    1994-01-01

    This paper discusses the application of evolutionary random-search algorithms (Simulated Annealing and Genetic Algorithms) to the problem of spacecraft design under performance uncertainty. Traditionally, spacecraft performance uncertainty has been measured by reliability. Published algorithms for reliability optimization are seldom used in practice because they oversimplify reality. The algorithm developed here uses random-search optimization to allow us to model the problem more realistically. Monte Carlo simulations are used to evaluate the objective function for each trial design solution. These methods have been applied to the Gravity Probe-B (GP-B) spacecraft being developed at Stanford University for launch in 1999, Results of the algorithm developed here for GP-13 are shown, and their implications for design optimization by evolutionary algorithms are discussed.

  2. A Novel Latin Hypercube Algorithm via Translational Propagation

    PubMed Central

    Pan, Guang; Ye, Pengcheng

    2014-01-01

    Metamodels have been widely used in engineering design to facilitate analysis and optimization of complex systems that involve computationally expensive simulation programs. The accuracy of metamodels is directly related to the experimental designs used. Optimal Latin hypercube designs are frequently used and have been shown to have good space-filling and projective properties. However, the high cost in constructing them limits their use. In this paper, a methodology for creating novel Latin hypercube designs via translational propagation and successive local enumeration algorithm (TPSLE) is developed without using formal optimization. TPSLE algorithm is based on the inspiration that a near optimal Latin Hypercube design can be constructed by a simple initial block with a few points generated by algorithm SLE as a building block. In fact, TPSLE algorithm offers a balanced trade-off between the efficiency and sampling performance. The proposed algorithm is compared to two existing algorithms and is found to be much more efficient in terms of the computation time and has acceptable space-filling and projective properties. PMID:25276844

  3. Fusion of Heterogeneous Intrusion Detection Systems for Network Attack Detection

    PubMed Central

    Kaliappan, Jayakumar; Thiagarajan, Revathi; Sundararajan, Karpagam

    2015-01-01

    An intrusion detection system (IDS) helps to identify different types of attacks in general, and the detection rate will be higher for some specific category of attacks. This paper is designed on the idea that each IDS is efficient in detecting a specific type of attack. In proposed Multiple IDS Unit (MIU), there are five IDS units, and each IDS follows a unique algorithm to detect attacks. The feature selection is done with the help of genetic algorithm. The selected features of the input traffic are passed on to the MIU for processing. The decision from each IDS is termed as local decision. The fusion unit inside the MIU processes all the local decisions with the help of majority voting rule and makes the final decision. The proposed system shows a very good improvement in detection rate and reduces the false alarm rate. PMID:26295058

  4. Fusion of Heterogeneous Intrusion Detection Systems for Network Attack Detection.

    PubMed

    Kaliappan, Jayakumar; Thiagarajan, Revathi; Sundararajan, Karpagam

    2015-01-01

    An intrusion detection system (IDS) helps to identify different types of attacks in general, and the detection rate will be higher for some specific category of attacks. This paper is designed on the idea that each IDS is efficient in detecting a specific type of attack. In proposed Multiple IDS Unit (MIU), there are five IDS units, and each IDS follows a unique algorithm to detect attacks. The feature selection is done with the help of genetic algorithm. The selected features of the input traffic are passed on to the MIU for processing. The decision from each IDS is termed as local decision. The fusion unit inside the MIU processes all the local decisions with the help of majority voting rule and makes the final decision. The proposed system shows a very good improvement in detection rate and reduces the false alarm rate.

  5. Engineering and algorithm design for an image processing Api: a technical report on ITK--the Insight Toolkit.

    PubMed

    Yoo, Terry S; Ackerman, Michael J; Lorensen, William E; Schroeder, Will; Chalana, Vikram; Aylward, Stephen; Metaxas, Dimitris; Whitaker, Ross

    2002-01-01

    We present the detailed planning and execution of the Insight Toolkit (ITK), an application programmers interface (API) for the segmentation and registration of medical image data. This public resource has been developed through the NLM Visible Human Project, and is in beta test as an open-source software offering under cost-free licensing. The toolkit concentrates on 3D medical data segmentation and registration algorithms, multimodal and multiresolution capabilities, and portable platform independent support for Windows, Linux/Unix systems. This toolkit was built using current practices in software engineering. Specifically, we embraced the concept of generic programming during the development of these tools, working extensively with C++ templates and the freedom and flexibility they allow. Software development tools for distributed consortium-based code development have been created and are also publicly available. We discuss our assumptions, design decisions, and some lessons learned.

  6. Evolutionary Multiobjective Design Targeting a Field Programmable Transistor Array

    NASA Technical Reports Server (NTRS)

    Aguirre, Arturo Hernandez; Zebulum, Ricardo S.; Coello, Carlos Coello

    2004-01-01

    This paper introduces the ISPAES algorithm for circuit design targeting a Field Programmable Transistor Array (FPTA). The use of evolutionary algorithms is common in circuit design problems, where a single fitness function drives the evolution process. Frequently, the design problem is subject to several goals or operating constraints, thus, designing a suitable fitness function catching all requirements becomes an issue. Such a problem is amenable for multi-objective optimization, however, evolutionary algorithms lack an inherent mechanism for constraint handling. This paper introduces ISPAES, an evolutionary optimization algorithm enhanced with a constraint handling technique. Several design problems targeting a FPTA show the potential of our approach.

  7. Solving the infeasible trust-region problem using approximations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renaud, John E.; Perez, Victor M.; Eldred, Michael Scott

    2004-07-01

    The use of optimization in engineering design has fueled the development of algorithms for specific engineering needs. When the simulations are expensive to evaluate or the outputs present some noise, the direct use of nonlinear optimizers is not advisable, since the optimization process will be expensive and may result in premature convergence. The use of approximations for both cases is an alternative investigated by many researchers including the authors. When approximations are present, a model management is required for proper convergence of the algorithm. In nonlinear programming, the use of trust-regions for globalization of a local algorithm has been provenmore » effective. The same approach has been used to manage the local move limits in sequential approximate optimization frameworks as in Alexandrov et al., Giunta and Eldred, Perez et al. , Rodriguez et al., etc. The experience in the mathematical community has shown that more effective algorithms can be obtained by the specific inclusion of the constraints (SQP type of algorithms) rather than by using a penalty function as in the augmented Lagrangian formulation. The presence of explicit constraints in the local problem bounded by the trust region, however, may have no feasible solution. In order to remedy this problem the mathematical community has developed different versions of a composite steps approach. This approach consists of a normal step to reduce the amount of constraint violation and a tangential step to minimize the objective function maintaining the level of constraint violation attained at the normal step. Two of the authors have developed a different approach for a sequential approximate optimization framework using homotopy ideas to relax the constraints. This algorithm called interior-point trust-region sequential approximate optimization (IPTRSAO) presents some similarities to the two normal-tangential steps algorithms. In this paper, a description of the similarities is presented and an expansion of the two steps algorithm is presented for the case of approximations.« less

  8. Boiler-turbine control system design using a genetic algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimeo, R.; Lee, K.Y.

    1995-12-01

    This paper discusses the application of a genetic algorithm to control system design for a boiler-turbine plant. In particular the authors study the ability of the genetic algorithm to develop a proportional-integral (PI) controller and a state feedback controller for a non-linear multi-input/multi-output (MIMO) plant model. The plant model is presented along with a discussion of the inherent difficulties in such controller development. A sketch of the genetic algorithm (GA) is presented and its strategy as a method of control system design is discussed. Results are presented for two different control systems that have been designed with the genetic algorithm.

  9. A Modified Particle Swarm Optimization Technique for Finding Optimal Designs for Mixture Models

    PubMed Central

    Wong, Weng Kee; Chen, Ray-Bing; Huang, Chien-Chih; Wang, Weichung

    2015-01-01

    Particle Swarm Optimization (PSO) is a meta-heuristic algorithm that has been shown to be successful in solving a wide variety of real and complicated optimization problems in engineering and computer science. This paper introduces a projection based PSO technique, named ProjPSO, to efficiently find different types of optimal designs, or nearly optimal designs, for mixture models with and without constraints on the components, and also for related models, like the log contrast models. We also compare the modified PSO performance with Fedorov's algorithm, a popular algorithm used to generate optimal designs, Cocktail algorithm, and the recent algorithm proposed by [1]. PMID:26091237

  10. Efficient iterative image reconstruction algorithm for dedicated breast CT

    NASA Astrophysics Data System (ADS)

    Antropova, Natalia; Sanchez, Adrian; Reiser, Ingrid S.; Sidky, Emil Y.; Boone, John; Pan, Xiaochuan

    2016-03-01

    Dedicated breast computed tomography (bCT) is currently being studied as a potential screening method for breast cancer. The X-ray exposure is set low to achieve an average glandular dose comparable to that of mammography, yielding projection data that contains high levels of noise. Iterative image reconstruction (IIR) algorithms may be well-suited for the system since they potentially reduce the effects of noise in the reconstructed images. However, IIR outcomes can be difficult to control since the algorithm parameters do not directly correspond to the image properties. Also, IIR algorithms are computationally demanding and have optimal parameter settings that depend on the size and shape of the breast and positioning of the patient. In this work, we design an efficient IIR algorithm with meaningful parameter specifications and that can be used on a large, diverse sample of bCT cases. The flexibility and efficiency of this method comes from having the final image produced by a linear combination of two separately reconstructed images - one containing gray level information and the other with enhanced high frequency components. Both of the images result from few iterations of separate IIR algorithms. The proposed algorithm depends on two parameters both of which have a well-defined impact on image quality. The algorithm is applied to numerous bCT cases from a dedicated bCT prototype system developed at University of California, Davis.

  11. A coarse to fine minutiae-based latent palmprint matching.

    PubMed

    Liu, Eryun; Jain, Anil K; Tian, Jie

    2013-10-01

    With the availability of live-scan palmprint technology, high resolution palmprint recognition has started to receive significant attention in forensics and law enforcement. In forensic applications, latent palmprints provide critical evidence as it is estimated that about 30 percent of the latents recovered at crime scenes are those of palms. Most of the available high-resolution palmprint matching algorithms essentially follow the minutiae-based fingerprint matching strategy. Considering the large number of minutiae (about 1,000 minutiae in a full palmprint compared to about 100 minutiae in a rolled fingerprint) and large area of foreground region in full palmprints, novel strategies need to be developed for efficient and robust latent palmprint matching. In this paper, a coarse to fine matching strategy based on minutiae clustering and minutiae match propagation is designed specifically for palmprint matching. To deal with the large number of minutiae, a local feature-based minutiae clustering algorithm is designed to cluster minutiae into several groups such that minutiae belonging to the same group have similar local characteristics. The coarse matching is then performed within each cluster to establish initial minutiae correspondences between two palmprints. Starting with each initial correspondence, a minutiae match propagation algorithm searches for mated minutiae in the full palmprint. The proposed palmprint matching algorithm has been evaluated on a latent-to-full palmprint database consisting of 446 latents and 12,489 background full prints. The matching results show a rank-1 identification accuracy of 79.4 percent, which is significantly higher than the 60.8 percent identification accuracy of a state-of-the-art latent palmprint matching algorithm on the same latent database. The average computation time of our algorithm for a single latent-to-full match is about 141 ms for genuine match and 50 ms for impostor match, on a Windows XP desktop system with 2.2-GHz CPU and 1.00-GB RAM. The computation time of our algorithm is an order of magnitude faster than a previously published state-of-the-art-algorithm.

  12. Robust Frequency-Domain Constrained Feedback Design via a Two-Stage Heuristic Approach.

    PubMed

    Li, Xianwei; Gao, Huijun

    2015-10-01

    Based on a two-stage heuristic method, this paper is concerned with the design of robust feedback controllers with restricted frequency-domain specifications (RFDSs) for uncertain linear discrete-time systems. Polytopic uncertainties are assumed to enter all the system matrices, while RFDSs are motivated by the fact that practical design specifications are often described in restricted finite frequency ranges. Dilated multipliers are first introduced to relax the generalized Kalman-Yakubovich-Popov lemma for output feedback controller synthesis and robust performance analysis. Then a two-stage approach to output feedback controller synthesis is proposed: at the first stage, a robust full-information (FI) controller is designed, which is used to construct a required output feedback controller at the second stage. To improve the solvability of the synthesis method, heuristic iterative algorithms are further formulated for exploring the feedback gain and optimizing the initial FI controller at the individual stage. The effectiveness of the proposed design method is finally demonstrated by the application to active control of suspension systems.

  13. Evolutionary Design of a Phased Array Antenna Element

    NASA Technical Reports Server (NTRS)

    Globus, Al; Linden, Derek; Lohn, Jason

    2006-01-01

    We present an evolved S-band phased array antenna element design that meets the requirements of NASA's TDRS-C communications satellite scheduled for launch early next decade. The original specification called for two types of elements, one for receive only and one for transmit/receive. We were able to evolve a single element design that meets both specifications thereby simplifying the antenna and reducing testing and integration costs. The highest performance antenna found using a genetic algorithm and stochastic hill-climbing has been fabricated and tested. Laboratory results are largely consistent with simulation. Researchers have been investigating evolutionary antenna design and optimization since the early 1990s, and the field has grown in recent years its computer speed has increased and electromagnetic simulators have improved. Many antenna types have been investigated, including wire antennas, antenna arrays and quadrifilar helical antennas. In particular, our laboratory evolved a wire antenna design for NASA's Space Technology 5 (ST5) spacecraft. This antenna has been fabricated, tested, and is scheduled for launch on the three spacecraft in 2006.

  14. Computerised lung sound analysis to improve the specificity of paediatric pneumonia diagnosis in resource-poor settings: protocol and methods for an observational study

    PubMed Central

    Gilman, Robert H; Tielsch, James M; Steinhoff, Mark; Figueroa, Dante; Rodriguez, Shalim; Caffo, Brian; Tracey, Brian; Elhilali, Mounya; West, James; Checkley, William

    2012-01-01

    Introduction WHO case management algorithm for paediatric pneumonia relies solely on symptoms of shortness of breath or cough and tachypnoea for treatment and has poor diagnostic specificity, tends to increase antibiotic resistance. Alternatives, including oxygen saturation measurement, chest ultrasound and chest auscultation, exist but with potential disadvantages. Electronic auscultation has potential for improved detection of paediatric pneumonia but has yet to be standardised. The authors aim to investigate the use of electronic auscultation to improve the specificity of the current WHO algorithm in developing countries. Methods This study is designed to test the hypothesis that pulmonary pathology can be differentiated from normal using computerised lung sound analysis (CLSA). The authors will record lung sounds from 600 children aged ≤5 years, 100 each with consolidative pneumonia, diffuse interstitial pneumonia, asthma, bronchiolitis, upper respiratory infections and normal lungs at a children's hospital in Lima, Peru. The authors will compare CLSA with the WHO algorithm and other detection approaches, including physical exam findings, chest ultrasound and microbiologic testing to construct an improved algorithm for pneumonia diagnosis. Discussion This study will develop standardised methods for electronic auscultation and chest ultrasound and compare their utility for detection of pneumonia to standard approaches. Utilising signal processing techniques, the authors aim to characterise lung sounds and through machine learning, develop a classification system to distinguish pathologic sounds. Data will allow a better understanding of the benefits and limitations of novel diagnostic techniques in paediatric pneumonia. PMID:22307098

  15. Evaluation of H.264 and H.265 full motion video encoding for small UAS platforms

    NASA Astrophysics Data System (ADS)

    McGuinness, Christopher D.; Walker, David; Taylor, Clark; Hill, Kerry; Hoffman, Marc

    2016-05-01

    Of all the steps in the image acquisition and formation pipeline, compression is the only process that degrades image quality. A selected compression algorithm succeeds or fails to provide sufficient quality at the requested compression rate depending on how well the algorithm is suited to the input data. Applying an algorithm designed for one type of data to a different type often results in poor compression performance. This is mostly the case when comparing the performance of H.264, designed for standard definition data, to HEVC (High Efficiency Video Coding), which the Joint Collaborative Team on Video Coding (JCT-VC) designed for high-definition data. This study focuses on evaluating how HEVC compares to H.264 when compressing data from small UAS platforms. To compare the standards directly, we assess two open-source traditional software solutions: x264 and x265. These software-only comparisons allow us to establish a baseline of how much improvement can generally be expected of HEVC over H.264. Then, specific solutions leveraging different types of hardware are selected to understand the limitations of commercial-off-the-shelf (COTS) options. Algorithmically, regardless of the implementation, HEVC is found to provide similar quality video as H.264 at 40% lower data rates for video resolutions greater than 1280x720, roughly 1 Megapixel (MPx). For resolutions less than 1MPx, H.264 is an adequate solution though a small (roughly 20%) compression boost is earned by employing HEVC. New low cost, size, weight, and power (CSWAP) HEVC implementations are being developed and will be ideal for small UAS systems.

  16. Automated tissue classification of pediatric brains from magnetic resonance images using age-specific atlases

    NASA Astrophysics Data System (ADS)

    Metzger, Andrew; Benavides, Amanda; Nopoulos, Peg; Magnotta, Vincent

    2016-03-01

    The goal of this project was to develop two age appropriate atlases (neonatal and one year old) that account for the rapid growth and maturational changes that occur during early development. Tissue maps from this age group were initially created by manually correcting the resulting tissue maps after applying an expectation maximization (EM) algorithm and an adult atlas to pediatric subjects. The EM algorithm classified each voxel into one of ten possible tissue types including several subcortical structures. This was followed by a novel level set segmentation designed to improve differentiation between distal cortical gray matter and white matter. To minimize the req uired manual corrections, the adult atlas was registered to the pediatric scans using high -dimensional, symmetric image normalization (SyN) registration. The subject images were then mapped to an age specific atlas space, again using SyN registration, and the resulting transformation applied to the manually corrected tissue maps. The individual maps were averaged in the age specific atlas space and blurred to generate the age appropriate anatomical priors. The resulting anatomical priors were then used by the EM algorithm to re-segment the initial training set as well as an independent testing set. The results from the adult and age-specific anatomical priors were compared to the manually corrected results. The age appropriate atlas provided superior results as compared to the adult atlas. The image analysis pipeline used in this work was built using the open source software package BRAINSTools.

  17. A real-time MTFC algorithm of space remote-sensing camera based on FPGA

    NASA Astrophysics Data System (ADS)

    Zhao, Liting; Huang, Gang; Lin, Zhe

    2018-01-01

    A real-time MTFC algorithm of space remote-sensing camera based on FPGA was designed. The algorithm can provide real-time image processing to enhance image clarity when the remote-sensing camera running on-orbit. The image restoration algorithm adopted modular design. The MTF measurement calculation module on-orbit had the function of calculating the edge extension function, line extension function, ESF difference operation, normalization MTF and MTFC parameters. The MTFC image filtering and noise suppression had the function of filtering algorithm and effectively suppressing the noise. The algorithm used System Generator to design the image processing algorithms to simplify the design structure of system and the process redesign. The image gray gradient dot sharpness edge contrast and median-high frequency were enhanced. The image SNR after recovery reduced less than 1 dB compared to the original image. The image restoration system can be widely used in various fields.

  18. Energy management and multi-layer control of networked microgrids

    NASA Astrophysics Data System (ADS)

    Zamora, Ramon

    Networked microgrids is a group of neighboring microgrids that has ability to interchange power when required in order to increase reliability and resiliency. Networked microgrid can operate in different possible configurations including: islanded microgrid, a grid-connected microgrid without a tie-line converter, a grid-connected microgrid with a tie-line converter, and networked microgrids. These possible configurations and specific characteristics of renewable energy offer challenges in designing control and management algorithms for voltage, frequency and power in all possible operating scenarios. In this work, control algorithm is designed based on large-signal model that enables microgrid to operate in wide range of operating points. A combination between PI controller and feed-forward measured system responses will compensate for the changes in operating points. The control architecture developed in this work has multi-layers and the outer layer is slower than the inner layer in time response. The main responsibility of the designed controls are to regulate voltage magnitude and frequency, as well as output power of the DG(s). These local controls also integrate with a microgrid level energy management system or microgrid central controller (MGCC) for power and energy balance for. the entire microgrid in islanded, grid-connected, or networked microgid mode. The MGCC is responsible to coordinate the lower level controls to have reliable and resilient operation. In case of communication network failure, the decentralized energy management will operate locally and will activate droop control. Simulation results indicate the superiority of designed control algorithms compared to existing ones.

  19. Do we face a fourth paradigm shift in medicine--algorithms in education?

    PubMed

    Eitel, F; Kanz, K G; Hortig, E; Tesche, A

    2000-08-01

    Medicine has evolved toward rationalization since the Enlightenment, favouring quantitative measures. Now, a paradigm shift toward control through formalization can be observed in health care whose structures and processes are subjected to increasing standardization. However, educational reforms and curricula do not yet adequately respond to this shift. The aim of this article is to describe innovative approaches in medical education for adapting to these changes. The study design is a descriptive case report relying on a literature review and on a reform project's evaluation. Concept mapping is used to graphically represent relationships among concepts, i.e. defined terms from educational literature. Definitions of 'concept map', 'guideline' and 'algorithm' are presented. A prototypical algorithm for organizational decision making in the project's instructional design is shown. Evaluation results of intrinsic learning motivation are demonstrated: intrinsic learning motivation depends upon students' perception of their competence exhibiting path coefficients varying from 0.42 to 0.51. Perception of competence varies with the type of learning environment. An innovative educational format, called 'evidence-based learning (EBL)' is deduced from these findings and described here. Effects of formalization consist of structuring decision making about implementation of different learning environments or about minimizing variance in teaching or learning. Unintended effects of formalization such as implementation problems and bureaucracy are discussed. Formalized tools for designing medical education are available. Specific instructional designs influence students' learning motivation. Concept maps are suitable for controlling educational quality, thus enabling the paradigm shift in medical education.

  20. Algorithm for designing smart factory Industry 4.0

    NASA Astrophysics Data System (ADS)

    Gurjanov, A. V.; Zakoldaev, D. A.; Shukalov, A. V.; Zharinov, I. O.

    2018-03-01

    The designing task of production division of the Industry 4.0 item designing company is being studied. The authors proposed an algorithm, which is based on the modified V L Volkovich method. This algorithm allows generating options how to arrange the production with robotized technological equipment functioning in the automatic mode. The optimization solution of the multi-criteria task for some additive criteria is the base of the algorithm.

  1. Algorithms for output feedback, multiple-model, and decentralized control problems

    NASA Technical Reports Server (NTRS)

    Halyo, N.; Broussard, J. R.

    1984-01-01

    The optimal stochastic output feedback, multiple-model, and decentralized control problems with dynamic compensation are formulated and discussed. Algorithms for each problem are presented, and their relationship to a basic output feedback algorithm is discussed. An aircraft control design problem is posed as a combined decentralized, multiple-model, output feedback problem. A control design is obtained using the combined algorithm. An analysis of the design is presented.

  2. Reflectivity retrieval in a networked radar environment

    NASA Astrophysics Data System (ADS)

    Lim, Sanghun

    Monitoring of precipitation using a high-frequency radar system such as X-band is becoming increasingly popular due to its lower cost compared to its counterpart at S-band. Networks of meteorological radar systems at higher frequencies are being pursued for targeted applications such as coverage over a city or a small basin. However, at higher frequencies, the impact of attenuation due to precipitation needs to be resolved for successful implementation. In this research, new attenuation correction algorithms are introduced to compensate the attenuation impact due to rain medium. In order to design X-band radar systems as well as evaluate algorithm development, it is useful to have simultaneous X-band observation with and without the impact of path attenuation. One way to obtain that data set is through theoretical models. Methodologies for generating realistic range profiles of radar variables at attenuating frequencies such as X-band for rain medium are presented here. Fundamental microphysical properties of precipitation, namely size and shape distribution information, are used to generate realistic profiles of X-band starting with S-band observations. Conditioning the simulation from S-band radar measurements maintains the natural distribution of microphysical parameters associated with rainfall. In this research, data taken by the CSU-CHILL radar and the National Center for Atmospheric Research S-POL radar are used to simulate X-band radar variables. Three procedures to simulate the radar variables at X-band and sample applications are presented. A new attenuation correction algorithm based on profiles of reflectivity, differential reflectivity, and differential propagation phase shift is presented. A solution for specific attenuation retrieval in rain medium is proposed that solves the integral equations for reflectivity and differential reflectivity with cumulative differential propagation phase shift constraint. The conventional rain profiling algorithms that connect reflectivity and specific attenuation can retrieve specific attenuation values along the radar path assuming a constant intercept parameter of the normalized drop size distribution. However, in convective storms, the drop size distribution parameters can have significant variation along the path. In this research, a dual-polarization rain profiling algorithm for horizontal-looking radars incorporating reflectivity as well as differential reflectivity profiles is developed. The dual-polarization rain profiling algorithm has been evaluated with X-band radar observations simulated from drop size distribution derived from high-resolution S-band measurements collected by the CSU-CHILL radar. The analysis shows that the dual-polarization rain profiling algorithm provides significant improvement over the current algorithms. A methodology for reflectivity and attenuation retrieval for rain medium in a networked radar environment is described. Electromagnetic waves backscattered from a common volume in networked radar systems are attenuated differently along the different paths. A solution for the specific attenuation distribution is proposed by solving the integral equation for reflectivity. The set of governing integral equations describing the backscatter and propagation of common resolution volume are solved simultaneously with constraints on total path attenuation. The proposed algorithm is evaluated based on simulated X-band radar observations synthesized from S-band measurements collected by the CSU-CHILL radar. Retrieved reflectivity and specific attenuation using the proposed method show good agreement with simulated reflectivity and specific attenuation.

  3. An Evaluation of Algorithms for Identifying Metastatic Breast, Lung, or Colorectal Cancer in Administrative Claims Data.

    PubMed

    Whyte, Joanna L; Engel-Nitz, Nicole M; Teitelbaum, April; Gomez Rey, Gabriel; Kallich, Joel D

    2015-07-01

    Administrative health care claims data are used for epidemiologic, health services, and outcomes cancer research and thus play a significant role in policy. Cancer stage, which is often a major driver of cost and clinical outcomes, is not typically included in claims data. Evaluate algorithms used in a dataset of cancer patients to identify patients with metastatic breast (BC), lung (LC), or colorectal (CRC) cancer using claims data. Clinical data on BC, LC, or CRC patients (between January 1, 2007 and March 31, 2010) were linked to a health care claims database. Inclusion required health plan enrollment ≥3 months before initial cancer diagnosis date. Algorithms were used in the claims database to identify patients' disease status, which was compared with physician-reported metastases. Generic and tumor-specific algorithms were evaluated using ICD-9 codes, varying diagnosis time frames, and including/excluding other tumors. Positive and negative predictive values, sensitivity, and specificity were assessed. The linked databases included 14,480 patients; of whom, 32%, 17%, and 14.2% had metastatic BC, LC, and CRC, respectively, at diagnosis and met inclusion criteria. Nontumor-specific algorithms had lower specificity than tumor-specific algorithms. Tumor-specific algorithms' sensitivity and specificity were 53% and 99% for BC, 55% and 85% for LC, and 59% and 98% for CRC, respectively. Algorithms to distinguish metastatic BC, LC, and CRC from locally advanced disease should use tumor-specific primary cancer codes with 2 claims for the specific primary cancer >30-42 days apart to reduce misclassification. These performed best overall in specificity, positive predictive values, and overall accuracy to identify metastatic cancer in a health care claims database.

  4. Optimal design of low-density SNP arrays for genomic prediction: algorithm and applications

    USDA-ARS?s Scientific Manuscript database

    Low-density (LD) single nucleotide polymorphism (SNP) arrays provide a cost-effective solution for genomic prediction and selection, but algorithms and computational tools are needed for their optimal design. A multiple-objective, local optimization (MOLO) algorithm was developed for design of optim...

  5. Parallel optimization algorithms and their implementation in VLSI design

    NASA Technical Reports Server (NTRS)

    Lee, G.; Feeley, J. J.

    1991-01-01

    Two new parallel optimization algorithms based on the simplex method are described. They may be executed by a SIMD parallel processor architecture and be implemented in VLSI design. Several VLSI design implementations are introduced. An application example is reported to demonstrate that the algorithms are effective.

  6. Proceedings of the First NASA Formal Methods Symposium

    NASA Technical Reports Server (NTRS)

    Denney, Ewen (Editor); Giannakopoulou, Dimitra (Editor); Pasareanu, Corina S. (Editor)

    2009-01-01

    Topics covered include: Model Checking - My 27-Year Quest to Overcome the State Explosion Problem; Applying Formal Methods to NASA Projects: Transition from Research to Practice; TLA+: Whence, Wherefore, and Whither; Formal Methods Applications in Air Transportation; Theorem Proving in Intel Hardware Design; Building a Formal Model of a Human-Interactive System: Insights into the Integration of Formal Methods and Human Factors Engineering; Model Checking for Autonomic Systems Specified with ASSL; A Game-Theoretic Approach to Branching Time Abstract-Check-Refine Process; Software Model Checking Without Source Code; Generalized Abstract Symbolic Summaries; A Comparative Study of Randomized Constraint Solvers for Random-Symbolic Testing; Component-Oriented Behavior Extraction for Autonomic System Design; Automated Verification of Design Patterns with LePUS3; A Module Language for Typing by Contracts; From Goal-Oriented Requirements to Event-B Specifications; Introduction of Virtualization Technology to Multi-Process Model Checking; Comparing Techniques for Certified Static Analysis; Towards a Framework for Generating Tests to Satisfy Complex Code Coverage in Java Pathfinder; jFuzz: A Concolic Whitebox Fuzzer for Java; Machine-Checkable Timed CSP; Stochastic Formal Correctness of Numerical Algorithms; Deductive Verification of Cryptographic Software; Coloured Petri Net Refinement Specification and Correctness Proof with Coq; Modeling Guidelines for Code Generation in the Railway Signaling Context; Tactical Synthesis Of Efficient Global Search Algorithms; Towards Co-Engineering Communicating Autonomous Cyber-Physical Systems; and Formal Methods for Automated Diagnosis of Autosub 6000.

  7. Enabling Large-Scale IoT-Based Services through Elastic Publish/Subscribe.

    PubMed

    Vavassori, Sergio; Soriano, Javier; Fernández, Rafael

    2017-09-19

    In this paper, we report an algorithm that is designed to leverage the cloud as infrastructure to support Internet of Things (IoT) by elastically scaling in/out so that IoT-based service users never stop receiving sensors' data. This algorithm is able to provide an uninterrupted service to end users even during the scaling operation since its internal state repartitioning is transparent for publishers or subscribers; its scaling operation is time-bounded and depends only on the dimension of the state partitions to be transmitted to the different nodes. We describe its implementation in E-SilboPS, an elastic content-based publish/subscribe (CBPS) system specifically designed to support context-aware sensing and communication in IoT-based services. E-SilboPS is a key internal asset of the FIWARE IoT services enablement platform, which offers an architecture of components specifically designed to capture data from, or act upon, IoT devices as easily as reading/changing the value of attributes linked to context entities. In addition, we discuss the quantitative measurements used to evaluate the scale-out process, as well as the results of this evaluation. This new feature rounds out the context-aware content-based features of E-SilboPS by providing, for example, the necessary middleware for constructing dashboards and monitoring panels that are capable of dynamically changing queries and continuously handling data in IoT-based services.

  8. Enabling Large-Scale IoT-Based Services through Elastic Publish/Subscribe

    PubMed Central

    2017-01-01

    In this paper, we report an algorithm that is designed to leverage the cloud as infrastructure to support Internet of Things (IoT) by elastically scaling in/out so that IoT-based service users never stop receiving sensors’ data. This algorithm is able to provide an uninterrupted service to end users even during the scaling operation since its internal state repartitioning is transparent for publishers or subscribers; its scaling operation is time-bounded and depends only on the dimension of the state partitions to be transmitted to the different nodes. We describe its implementation in E-SilboPS, an elastic content-based publish/subscribe (CBPS) system specifically designed to support context-aware sensing and communication in IoT-based services. E-SilboPS is a key internal asset of the FIWARE IoT services enablement platform, which offers an architecture of components specifically designed to capture data from, or act upon, IoT devices as easily as reading/changing the value of attributes linked to context entities. In addition, we discuss the quantitative measurements used to evaluate the scale-out process, as well as the results of this evaluation. This new feature rounds out the context-aware content-based features of E-SilboPS by providing, for example, the necessary middleware for constructing dashboards and monitoring panels that are capable of dynamically changing queries and continuously handling data in IoT-based services. PMID:28925967

  9. Genetic Algorithms for Multiple-Choice Problems

    NASA Astrophysics Data System (ADS)

    Aickelin, Uwe

    2010-04-01

    This thesis investigates the use of problem-specific knowledge to enhance a genetic algorithm approach to multiple-choice optimisation problems.It shows that such information can significantly enhance performance, but that the choice of information and the way it is included are important factors for success.Two multiple-choice problems are considered.The first is constructing a feasible nurse roster that considers as many requests as possible.In the second problem, shops are allocated to locations in a mall subject to constraints and maximising the overall income.Genetic algorithms are chosen for their well-known robustness and ability to solve large and complex discrete optimisation problems.However, a survey of the literature reveals room for further research into generic ways to include constraints into a genetic algorithm framework.Hence, the main theme of this work is to balance feasibility and cost of solutions.In particular, co-operative co-evolution with hierarchical sub-populations, problem structure exploiting repair schemes and indirect genetic algorithms with self-adjusting decoder functions are identified as promising approaches.The research starts by applying standard genetic algorithms to the problems and explaining the failure of such approaches due to epistasis.To overcome this, problem-specific information is added in a variety of ways, some of which are designed to increase the number of feasible solutions found whilst others are intended to improve the quality of such solutions.As well as a theoretical discussion as to the underlying reasons for using each operator,extensive computational experiments are carried out on a variety of data.These show that the indirect approach relies less on problem structure and hence is easier to implement and superior in solution quality.

  10. Design of the OMPS limb sensor correction algorithm

    NASA Astrophysics Data System (ADS)

    Jaross, Glen; McPeters, Richard; Seftor, Colin; Kowitt, Mark

    The Sensor Data Records (SDR) for the Ozone Mapping and Profiler Suite (OMPS) on NPOESS (National Polar-orbiting Operational Environmental Satellite System) contains geolocated and calibrated radiances, and are similar to the Level 1 data of NASA Earth Observing System and other programs. The SDR algorithms (one for each of the 3 OMPS focal planes) are the processes by which the Raw Data Records (RDR) from the OMPS sensors are converted into the records that contain all data necessary for ozone retrievals. Consequently, the algorithms must correct and calibrate Earth signals, geolocate the data, and identify and ingest collocated ancillary data. As with other limb sensors, ozone profile retrievals are relatively insensitive to calibration errors due to the use of altitude normalization and wavelength pairing. But the profile retrievals as they pertain to OMPS are not immune from sensor changes. In particular, the OMPS Limb sensor images an altitude range of > 100 km and a spectral range of 290-1000 nm on its detector. Uncorrected sensor degradation and spectral registration drifts can lead to changes in the measured radiance profile, which in turn affects the ozone trend measurement. Since OMPS is intended for long-term monitoring, sensor calibration is a specific concern. The calibration is maintained via the ground data processing. This means that all sensor calibration data, including direct solar measurements, are brought down in the raw data and processed separately by the SDR algorithms. One of the sensor corrections performed by the algorithm is the correction for stray light. The imaging spectrometer and the unique focal plane design of OMPS makes these corrections particularly challenging and important. Following an overview of the algorithm flow, we will briefly describe the sensor stray light characterization and the correction approach used in the code.

  11. Performance analysis of parallel branch and bound search with the hypercube architecture

    NASA Technical Reports Server (NTRS)

    Mraz, Richard T.

    1987-01-01

    With the availability of commercial parallel computers, researchers are examining new classes of problems which might benefit from parallel computing. This paper presents results of an investigation of the class of search intensive problems. The specific problem discussed is the Least-Cost Branch and Bound search method of deadline job scheduling. The object-oriented design methodology was used to map the problem into a parallel solution. While the initial design was good for a prototype, the best performance resulted from fine-tuning the algorithm for a specific computer. The experiments analyze the computation time, the speed up over a VAX 11/785, and the load balance of the problem when using loosely coupled multiprocessor system based on the hypercube architecture.

  12. Design optimization of steel frames using an enhanced firefly algorithm

    NASA Astrophysics Data System (ADS)

    Carbas, Serdar

    2016-12-01

    Mathematical modelling of real-world-sized steel frames under the Load and Resistance Factor Design-American Institute of Steel Construction (LRFD-AISC) steel design code provisions, where the steel profiles for the members are selected from a table of steel sections, turns out to be a discrete nonlinear programming problem. Finding the optimum design of such design optimization problems using classical optimization techniques is difficult. Metaheuristic algorithms provide an alternative way of solving such problems. The firefly algorithm (FFA) belongs to the swarm intelligence group of metaheuristics. The standard FFA has the drawback of being caught up in local optima in large-sized steel frame design problems. This study attempts to enhance the performance of the FFA by suggesting two new expressions for the attractiveness and randomness parameters of the algorithm. Two real-world-sized design examples are designed by the enhanced FFA and its performance is compared with standard FFA as well as with particle swarm and cuckoo search algorithms.

  13. Modified automatic R-peak detection algorithm for patients with epilepsy using a portable electrocardiogram recorder.

    PubMed

    Jeppesen, J; Beniczky, S; Fuglsang Frederiksen, A; Sidenius, P; Johansen, P

    2017-07-01

    Earlier studies have shown that short term heart rate variability (HRV) analysis of ECG seems promising for detection of epileptic seizures. A precise and accurate automatic R-peak detection algorithm is a necessity in a real-time, continuous measurement of HRV, in a portable ECG device. We used the portable CE marked ePatch® heart monitor to record the ECG of 14 patients, who were enrolled in the videoEEG long term monitoring unit for clinical workup of epilepsy. Recordings of the first 7 patients were used as training set of data for the R-peak detection algorithm and the recordings of the last 7 patients (467.6 recording hours) were used to test the performance of the algorithm. We aimed to modify an existing QRS-detection algorithm to a more precise R-peak detection algorithm to avoid the possible jitter Qand S-peaks can create in the tachogram, which causes error in short-term HRVanalysis. The proposed R-peak detection algorithm showed a high sensitivity (Se = 99.979%) and positive predictive value (P+ = 99.976%), which was comparable with a previously published QRS-detection algorithm for the ePatch® ECG device, when testing the same dataset. The novel R-peak detection algorithm designed to avoid jitter has very high sensitivity and specificity and thus is a suitable tool for a robust, fast, real-time HRV-analysis in patients with epilepsy, creating the possibility for real-time seizure detection for these patients.

  14. The LSST operations simulator

    NASA Astrophysics Data System (ADS)

    Delgado, Francisco; Saha, Abhijit; Chandrasekharan, Srinivasan; Cook, Kem; Petry, Catherine; Ridgway, Stephen

    2014-08-01

    The Operations Simulator for the Large Synoptic Survey Telescope (LSST; http://www.lsst.org) allows the planning of LSST observations that obey explicit science driven observing specifications, patterns, schema, and priorities, while optimizing against the constraints placed by design-specific opto-mechanical system performance of the telescope facility, site specific conditions as well as additional scheduled and unscheduled downtime. It has a detailed model to simulate the external conditions with real weather history data from the site, a fully parameterized kinematic model for the internal conditions of the telescope, camera and dome, and serves as a prototype for an automatic scheduler for the real time survey operations with LSST. The Simulator is a critical tool that has been key since very early in the project, to help validate the design parameters of the observatory against the science requirements and the goals from specific science programs. A simulation run records the characteristics of all observations (e.g., epoch, sky position, seeing, sky brightness) in a MySQL database, which can be queried for any desired purpose. Derivative information digests of the observing history are made with an analysis package called Simulation Survey Tools for Analysis and Reporting (SSTAR). Merit functions and metrics have been designed to examine how suitable a specific simulation run is for several different science applications. Software to efficiently compare the efficacy of different survey strategies for a wide variety of science applications using such a growing set of metrics is under development. A recent restructuring of the code allows us to a) use "look-ahead" strategies that avoid cadence sequences that cannot be completed due to observing constraints; and b) examine alternate optimization strategies, so that the most efficient scheduling algorithm(s) can be identified and used: even few-percent efficiency gains will create substantive scientific opportunity. The enhanced simulator is being used to assess the feasibility of desired observing cadences, study the impact of changing science program priorities and assist with performance margin investigations of the LSST system.

  15. Flexible Space-Filling Designs for Complex System Simulations

    DTIC Science & Technology

    2013-06-01

    interior of the experimental region and cannot fit higher-order models. We present a genetic algorithm that constructs space-filling designs with...Computer Experiments, Design of Experiments, Genetic Algorithm , Latin Hypercube, Response Surface Methodology, Nearly Orthogonal 15. NUMBER OF PAGES 147...experimental region and cannot fit higher-order models. We present a genetic algorithm that constructs space-filling designs with minimal correlations

  16. Genetic algorithms in conceptual design of a light-weight, low-noise, tilt-rotor aircraft

    NASA Technical Reports Server (NTRS)

    Wells, Valana L.

    1996-01-01

    This report outlines research accomplishments in the area of using genetic algorithms (GA) for the design and optimization of rotorcraft. It discusses the genetic algorithm as a search and optimization tool, outlines a procedure for using the GA in the conceptual design of helicopters, and applies the GA method to the acoustic design of rotors.

  17. Expert-guided evolutionary algorithm for layout design of complex space stations

    NASA Astrophysics Data System (ADS)

    Qian, Zhiqin; Bi, Zhuming; Cao, Qun; Ju, Weiguo; Teng, Hongfei; Zheng, Yang; Zheng, Siyu

    2017-08-01

    The layout of a space station should be designed in such a way that different equipment and instruments are placed for the station as a whole to achieve the best overall performance. The station layout design is a typical nondeterministic polynomial problem. In particular, how to manage the design complexity to achieve an acceptable solution within a reasonable timeframe poses a great challenge. In this article, a new evolutionary algorithm has been proposed to meet such a challenge. It is called as the expert-guided evolutionary algorithm with a tree-like structure decomposition (EGEA-TSD). Two innovations in EGEA-TSD are (i) to deal with the design complexity, the entire design space is divided into subspaces with a tree-like structure; it reduces the computation and facilitates experts' involvement in the solving process. (ii) A human-intervention interface is developed to allow experts' involvement in avoiding local optimums and accelerating convergence. To validate the proposed algorithm, the layout design of one-space station is formulated as a multi-disciplinary design problem, the developed algorithm is programmed and executed, and the result is compared with those from other two algorithms; it has illustrated the superior performance of the proposed EGEA-TSD.

  18. A generalized algorithm to design finite field normal basis multipliers

    NASA Technical Reports Server (NTRS)

    Wang, C. C.

    1986-01-01

    Finite field arithmetic logic is central in the implementation of some error-correcting coders and some cryptographic devices. There is a need for good multiplication algorithms which can be easily realized. Massey and Omura recently developed a new multiplication algorithm for finite fields based on a normal basis representation. Using the normal basis representation, the design of the finite field multiplier is simple and regular. The fundamental design of the Massey-Omura multiplier is based on a design of a product function. In this article, a generalized algorithm to locate a normal basis in a field is first presented. Using this normal basis, an algorithm to construct the product function is then developed. This design does not depend on particular characteristics of the generator polynomial of the field.

  19. Survival dimensionality reduction (SDR): development and clinical application of an innovative approach to detect epistasis in presence of right-censored data.

    PubMed

    Beretta, Lorenzo; Santaniello, Alessandro; van Riel, Piet L C M; Coenen, Marieke J H; Scorza, Raffaella

    2010-08-06

    Epistasis is recognized as a fundamental part of the genetic architecture of individuals. Several computational approaches have been developed to model gene-gene interactions in case-control studies, however, none of them is suitable for time-dependent analysis. Herein we introduce the Survival Dimensionality Reduction (SDR) algorithm, a non-parametric method specifically designed to detect epistasis in lifetime datasets. The algorithm requires neither specification about the underlying survival distribution nor about the underlying interaction model and proved satisfactorily powerful to detect a set of causative genes in synthetic epistatic lifetime datasets with a limited number of samples and high degree of right-censorship (up to 70%). The SDR method was then applied to a series of 386 Dutch patients with active rheumatoid arthritis that were treated with anti-TNF biological agents. Among a set of 39 candidate genes, none of which showed a detectable marginal effect on anti-TNF responses, the SDR algorithm did find that the rs1801274 SNP in the Fc gamma RIIa gene and the rs10954213 SNP in the IRF5 gene non-linearly interact to predict clinical remission after anti-TNF biologicals. Simulation studies and application in a real-world setting support the capability of the SDR algorithm to model epistatic interactions in candidate-genes studies in presence of right-censored data. http://sourceforge.net/projects/sdrproject/.

  20. Processor design optimization methodology for synthetic vision systems

    NASA Astrophysics Data System (ADS)

    Wren, Bill; Tarleton, Norman G.; Symosek, Peter F.

    1997-06-01

    Architecture optimization requires numerous inputs from hardware to software specifications. The task of varying these input parameters to obtain an optimal system architecture with regard to cost, specified performance and method of upgrade considerably increases the development cost due to the infinitude of events, most of which cannot even be defined by any simple enumeration or set of inequalities. We shall address the use of a PC-based tool using genetic algorithms to optimize the architecture for an avionics synthetic vision system, specifically passive millimeter wave system implementation.

  1. Connectionist models of conditioning: A tutorial

    PubMed Central

    Kehoe, E. James

    1989-01-01

    Models containing networks of neuron-like units have become increasingly prominent in the study of both cognitive psychology and artificial intelligence. This article describes the basic features of connectionist models and provides an illustrative application to compound-stimulus effects in respondent conditioning. Connectionist models designed specifically for operant conditioning are not yet widely available, but some current learning algorithms for machine learning indicate that such models are feasible. Conversely, designers for machine learning appear to have recognized the value of behavioral principles in producing adaptive behavior in their creations. PMID:16812604

  2. Effects of visualization on algorithm comprehension

    NASA Astrophysics Data System (ADS)

    Mulvey, Matthew

    Computer science students are expected to learn and apply a variety of core algorithms which are an essential part of the field. Any one of these algorithms by itself is not necessarily extremely complex, but remembering the large variety of algorithms and the differences between them is challenging. To address this challenge, we present a novel algorithm visualization tool designed to enhance students understanding of Dijkstra's algorithm by allowing them to discover the rules of the algorithm for themselves. It is hoped that a deeper understanding of the algorithm will help students correctly select, adapt and apply the appropriate algorithm when presented with a problem to solve, and that what is learned here will be applicable to the design of other visualization tools designed to teach different algorithms. Our visualization tool is currently in the prototype stage, and this thesis will discuss the pedagogical approach that informs its design, as well as the results of some initial usability testing. Finally, to clarify the direction for further development of the tool, four different variations of the prototype were implemented, and the instructional effectiveness of each was assessed by having a small sample participants use the different versions of the prototype and then take a quiz to assess their comprehension of the algorithm.

  3. Krill herd and piecewise-linear initialization algorithms for designing Takagi-Sugeno systems

    NASA Astrophysics Data System (ADS)

    Hodashinsky, I. A.; Filimonenko, I. V.; Sarin, K. S.

    2017-07-01

    A method for designing Takagi-Sugeno fuzzy systems is proposed which uses a piecewiselinear initialization algorithm for structure generation and a metaheuristic krill herd algorithm for parameter optimization. The obtained systems are tested against real data sets. The influence of some parameters of this algorithm on the approximation accuracy is analyzed. Estimates of the approximation accuracy and the number of fuzzy rules are compared with four known methods of design.

  4. Design of automata theory of cubical complexes with applications to diagnosis and algorithmic description

    NASA Technical Reports Server (NTRS)

    Roth, J. P.

    1972-01-01

    Methods for development of logic design together with algorithms for failure testing, a method for design of logic for ultra-large-scale integration, extension of quantum calculus to describe the functional behavior of a mechanism component-by-component and to computer tests for failures in the mechanism using the diagnosis algorithm, and the development of an algorithm for the multi-output 2-level minimization problem are discussed.

  5. Software fault-tolerance by design diversity DEDIX: A tool for experiments

    NASA Technical Reports Server (NTRS)

    Avizienis, A.; Gunningberg, P.; Kelly, J. P. J.; Lyu, R. T.; Strigini, L.; Traverse, P. J.; Tso, K. S.; Voges, U.

    1986-01-01

    The use of multiple versions of a computer program, independently designed from a common specification, to reduce the effects of an error is discussed. If these versions are designed by independent programming teams, it is expected that a fault in one version will not have the same behavior as any fault in the other versions. Since the errors in the output of the versions are different and uncorrelated, it is possible to run the versions concurrently, cross-check their results at prespecified points, and mask errors. A DEsign DIversity eXperiments (DEDIX) testbed was implemented to study the influence of common mode errors which can result in a failure of the entire system. The layered design of DEDIX and its decision algorithm are described.

  6. Formal verification of an oral messages algorithm for interactive consistency

    NASA Technical Reports Server (NTRS)

    Rushby, John

    1992-01-01

    The formal specification and verification of an algorithm for Interactive Consistency based on the Oral Messages algorithm for Byzantine Agreement is described. We compare our treatment with that of Bevier and Young, who presented a formal specification and verification for a very similar algorithm. Unlike Bevier and Young, who observed that 'the invariant maintained in the recursive subcases of the algorithm is significantly more complicated than is suggested by the published proof' and who found its formal verification 'a fairly difficult exercise in mechanical theorem proving,' our treatment is very close to the previously published analysis of the algorithm, and our formal specification and verification are straightforward. This example illustrates how delicate choices in the formulation of the problem can have significant impact on the readability of its formal specification and on the tractability of its formal verification.

  7. Rosetta:MSF: a modular framework for multi-state computational protein design.

    PubMed

    Löffler, Patrick; Schmitz, Samuel; Hupfeld, Enrico; Sterner, Reinhard; Merkl, Rainer

    2017-06-01

    Computational protein design (CPD) is a powerful technique to engineer existing proteins or to design novel ones that display desired properties. Rosetta is a software suite including algorithms for computational modeling and analysis of protein structures and offers many elaborate protocols created to solve highly specific tasks of protein engineering. Most of Rosetta's protocols optimize sequences based on a single conformation (i. e. design state). However, challenging CPD objectives like multi-specificity design or the concurrent consideration of positive and negative design goals demand the simultaneous assessment of multiple states. This is why we have developed the multi-state framework MSF that facilitates the implementation of Rosetta's single-state protocols in a multi-state environment and made available two frequently used protocols. Utilizing MSF, we demonstrated for one of these protocols that multi-state design yields a 15% higher performance than single-state design on a ligand-binding benchmark consisting of structural conformations. With this protocol, we designed de novo nine retro-aldolases on a conformational ensemble deduced from a (βα)8-barrel protein. All variants displayed measurable catalytic activity, testifying to a high success rate for this concept of multi-state enzyme design.

  8. Rosetta:MSF: a modular framework for multi-state computational protein design

    PubMed Central

    Hupfeld, Enrico; Sterner, Reinhard

    2017-01-01

    Computational protein design (CPD) is a powerful technique to engineer existing proteins or to design novel ones that display desired properties. Rosetta is a software suite including algorithms for computational modeling and analysis of protein structures and offers many elaborate protocols created to solve highly specific tasks of protein engineering. Most of Rosetta’s protocols optimize sequences based on a single conformation (i. e. design state). However, challenging CPD objectives like multi-specificity design or the concurrent consideration of positive and negative design goals demand the simultaneous assessment of multiple states. This is why we have developed the multi-state framework MSF that facilitates the implementation of Rosetta’s single-state protocols in a multi-state environment and made available two frequently used protocols. Utilizing MSF, we demonstrated for one of these protocols that multi-state design yields a 15% higher performance than single-state design on a ligand-binding benchmark consisting of structural conformations. With this protocol, we designed de novo nine retro-aldolases on a conformational ensemble deduced from a (βα)8-barrel protein. All variants displayed measurable catalytic activity, testifying to a high success rate for this concept of multi-state enzyme design. PMID:28604768

  9. Intelligent Diagnostic Assistant for Complicated Skin Diseases through C5's Algorithm.

    PubMed

    Jeddi, Fatemeh Rangraz; Arabfard, Masoud; Kermany, Zahra Arab

    2017-09-01

    Intelligent Diagnostic Assistant can be used for complicated diagnosis of skin diseases, which are among the most common causes of disability. The aim of this study was to design and implement a computerized intelligent diagnostic assistant for complicated skin diseases through C5's Algorithm. An applied-developmental study was done in 2015. Knowledge base was developed based on interviews with dermatologists through questionnaires and checklists. Knowledge representation was obtained from the train data in the database using Excel Microsoft Office. Clementine Software and C5's Algorithms were applied to draw the decision tree. Analysis of test accuracy was performed based on rules extracted using inference chains. The rules extracted from the decision tree were entered into the CLIPS programming environment and the intelligent diagnostic assistant was designed then. The rules were defined using forward chaining inference technique and were entered into Clips programming environment as RULE. The accuracy and error rates obtained in the training phase from the decision tree were 99.56% and 0.44%, respectively. The accuracy of the decision tree was 98% and the error was 2% in the test phase. Intelligent diagnostic assistant can be used as a reliable system with high accuracy, sensitivity, specificity, and agreement.

  10. Reliable numerical computation in an optimal output-feedback design

    NASA Technical Reports Server (NTRS)

    Vansteenwyk, Brett; Ly, Uy-Loi

    1991-01-01

    A reliable algorithm is presented for the evaluation of a quadratic performance index and its gradients with respect to the controller design parameters. The algorithm is a part of a design algorithm for optimal linear dynamic output-feedback controller that minimizes a finite-time quadratic performance index. The numerical scheme is particularly robust when it is applied to the control-law synthesis for systems with densely packed modes and where there is a high likelihood of encountering degeneracies in the closed-loop eigensystem. This approach through the use of an accurate Pade series approximation does not require the closed-loop system matrix to be diagonalizable. The algorithm was included in a control design package for optimal robust low-order controllers. Usefulness of the proposed numerical algorithm was demonstrated using numerous practical design cases where degeneracies occur frequently in the closed-loop system under an arbitrary controller design initialization and during the numerical search.

  11. A Parallel Particle Swarm Optimization Algorithm Accelerated by Asynchronous Evaluations

    NASA Technical Reports Server (NTRS)

    Venter, Gerhard; Sobieszczanski-Sobieski, Jaroslaw

    2005-01-01

    A parallel Particle Swarm Optimization (PSO) algorithm is presented. Particle swarm optimization is a fairly recent addition to the family of non-gradient based, probabilistic search algorithms that is based on a simplified social model and is closely tied to swarming theory. Although PSO algorithms present several attractive properties to the designer, they are plagued by high computational cost as measured by elapsed time. One approach to reduce the elapsed time is to make use of coarse-grained parallelization to evaluate the design points. Previous parallel PSO algorithms were mostly implemented in a synchronous manner, where all design points within a design iteration are evaluated before the next iteration is started. This approach leads to poor parallel speedup in cases where a heterogeneous parallel environment is used and/or where the analysis time depends on the design point being analyzed. This paper introduces an asynchronous parallel PSO algorithm that greatly improves the parallel e ciency. The asynchronous algorithm is benchmarked on a cluster assembled of Apple Macintosh G5 desktop computers, using the multi-disciplinary optimization of a typical transport aircraft wing as an example.

  12. RNA inverse folding using Monte Carlo tree search.

    PubMed

    Yang, Xiufeng; Yoshizoe, Kazuki; Taneda, Akito; Tsuda, Koji

    2017-11-06

    Artificially synthesized RNA molecules provide important ways for creating a variety of novel functional molecules. State-of-the-art RNA inverse folding algorithms can design simple and short RNA sequences of specific GC content, that fold into the target RNA structure. However, their performance is not satisfactory in complicated cases. We present a new inverse folding algorithm called MCTS-RNA, which uses Monte Carlo tree search (MCTS), a technique that has shown exceptional performance in Computer Go recently, to represent and discover the essential part of the sequence space. To obtain high accuracy, initial sequences generated by MCTS are further improved by a series of local updates. Our algorithm has an ability to control the GC content precisely and can deal with pseudoknot structures. Using common benchmark datasets for evaluation, MCTS-RNA showed a lot of promise as a standard method of RNA inverse folding. MCTS-RNA is available at https://github.com/tsudalab/MCTS-RNA .

  13. An Energy-Efficient Underground Localization System Based on Heterogeneous Wireless Networks

    PubMed Central

    Yuan, Yazhou; Chen, Cailian; Guan, Xinping; Yang, Qiuling

    2015-01-01

    A precision positioning system with energy efficiency is of great necessity for guaranteeing personnel safety in underground mines. The location information of the miners' should be transmitted to the control center timely and reliably; therefore, a heterogeneous network with the backbone based on high speed Industrial Ethernet is deployed. Since the mobile wireless nodes are working in an irregular tunnel, a specific wireless propagation model cannot fit all situations. In this paper, an underground localization system is designed to enable the adaptation to kinds of harsh tunnel environments, but also to reduce the energy consumption and thus prolong the lifetime of the network. Three key techniques are developed and implemented to improve the system performance, including a step counting algorithm with accelerometers, a power control algorithm and an adaptive packets scheduling scheme. The simulation study and experimental results show the effectiveness of the proposed algorithms and the implementation. PMID:26016918

  14. Insulin algorithms in the self-management of insulin-dependent diabetes: the interactive 'Apple Juice' program.

    PubMed

    Williams, A G

    1996-01-01

    The 'Apple Juice' program is an interactive diabetes self-management program which runs on a lap-top Macintosh Powerbook 100 computer. The dose-by-dose insulin advisory program was initially designed for children with insulin-dependent (type 1) diabetes mellitus. It utilizes several different insulin algorithms, measurement formulae, and compensation factors for meals, activity, medication and the dawn phenomenon. It was developed to assist the individual with diabetes and/or care providers, in determining specific insulin dosage recommendations throughout a 24 h period. Information technology functions include, but are not limited to automated record keeping, data recall, event reminders, data trend/pattern analyses and education. This paper highlights issues, observations and recommendations surrounding the use of the current version of the software, along with a detailed description of the insulin algorithms and measurement formulae applied successfully with the author's daughter over a six year period.

  15. The Ettention software package.

    PubMed

    Dahmen, Tim; Marsalek, Lukas; Marniok, Nico; Turoňová, Beata; Bogachev, Sviatoslav; Trampert, Patrick; Nickels, Stefan; Slusallek, Philipp

    2016-02-01

    We present a novel software package for the problem "reconstruction from projections" in electron microscopy. The Ettention framework consists of a set of modular building-blocks for tomographic reconstruction algorithms. The well-known block iterative reconstruction method based on Kaczmarz algorithm is implemented using these building-blocks, including adaptations specific to electron tomography. Ettention simultaneously features (1) a modular, object-oriented software design, (2) optimized access to high-performance computing (HPC) platforms such as graphic processing units (GPU) or many-core architectures like Xeon Phi, and (3) accessibility to microscopy end-users via integration in the IMOD package and eTomo user interface. We also provide developers with a clean and well-structured application programming interface (API) that allows for extending the software easily and thus makes it an ideal platform for algorithmic research while hiding most of the technical details of high-performance computing. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Locality-constrained anomaly detection for hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Liu, Jiabin; Li, Wei; Du, Qian; Liu, Kui

    2015-12-01

    Detecting a target with low-occurrence-probability from unknown background in a hyperspectral image, namely anomaly detection, is of practical significance. Reed-Xiaoli (RX) algorithm is considered as a classic anomaly detector, which calculates the Mahalanobis distance between local background and the pixel under test. Local RX, as an adaptive RX detector, employs a dual-window strategy to consider pixels within the frame between inner and outer windows as local background. However, the detector is sensitive if such a local region contains anomalous pixels (i.e., outliers). In this paper, a locality-constrained anomaly detector is proposed to remove outliers in the local background region before employing the RX algorithm. Specifically, a local linear representation is designed to exploit the internal relationship between linearly correlated pixels in the local background region and the pixel under test and its neighbors. Experimental results demonstrate that the proposed detector improves the original local RX algorithm.

  17. Progress on Complex Langevin simulations of a finite density matrix model for QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloch, Jacques; Glesaan, Jonas; Verbaarschot, Jacobus

    We study the Stephanov model, which is an RMT model for QCD at finite density, using the Complex Langevin algorithm. Naive implementation of the algorithm shows convergence towards the phase quenched or quenched theory rather than to intended theory with dynamical quarks. A detailed analysis of this issue and a potential resolution of the failure of this algorithm are discussed. We study the effect of gauge cooling on the Dirac eigenvalue distribution and time evolution of the norm for various cooling norms, which were specifically designed to remove the pathologies of the complex Langevin evolution. The cooling is further supplementedmore » with a shifted representation for the random matrices. Unfortunately, none of these modifications generate a substantial improvement on the complex Langevin evolution and the final results still do not agree with the analytical predictions.« less

  18. Automated vehicle detection in forward-looking infrared imagery.

    PubMed

    Der, Sandor; Chan, Alex; Nasrabadi, Nasser; Kwon, Heesung

    2004-01-10

    We describe an algorithm for the detection and clutter rejection of military vehicles in forward-looking infrared (FLIR) imagery. The detection algorithm is designed to be a prescreener that selects regions for further analysis and uses a spatial anomaly approach that looks for target-sized regions of the image that differ in texture, brightness, edge strength, or other spatial characteristics. The features are linearly combined to form a confidence image that is thresholded to find likely target locations. The clutter rejection portion uses target-specific information extracted from training samples to reduce the false alarms of the detector. The outputs of the clutter rejecter and detector are combined by a higher-level evidence integrator to improve performance over simple concatenation of the detector and clutter rejecter. The algorithm has been applied to a large number of FLIR imagery sets, and some of these results are presented here.

  19. An epidemic model for biological data fusion in ad hoc sensor networks

    NASA Astrophysics Data System (ADS)

    Chang, K. C.; Kotari, Vikas

    2009-05-01

    Bio terrorism can be a very refined and a catastrophic approach of attacking a nation. This requires the development of a complete architecture dedicatedly designed for this purpose which includes but is not limited to Sensing/Detection, Tracking and Fusion, Communication, and others. In this paper we focus on one such architecture and evaluate its performance. Various sensors for this specific purpose have been studied. The accent has been on use of Distributed systems such as ad-hoc networks and on application of epidemic data fusion algorithms to better manage the bio threat data. The emphasis has been on understanding the performance characteristics of these algorithms under diversified real time scenarios which are implemented through extensive JAVA based simulations. Through comparative studies on communication and fusion the performance of channel filter algorithm for the purpose of biological sensor data fusion are validated.

  20. A comparison of kinematic algorithms to estimate gait events during overground running.

    PubMed

    Smith, Laura; Preece, Stephen; Mason, Duncan; Bramah, Christopher

    2015-01-01

    The gait cycle is frequently divided into two distinct phases, stance and swing, which can be accurately determined from ground reaction force data. In the absence of such data, kinematic algorithms can be used to estimate footstrike and toe-off. The performance of previously published algorithms is not consistent between studies. Furthermore, previous algorithms have not been tested at higher running speeds nor used to estimate ground contact times. Therefore the purpose of this study was to both develop a new, custom-designed, event detection algorithm and compare its performance with four previously tested algorithms at higher running speeds. Kinematic and force data were collected on twenty runners during overground running at 5.6m/s. The five algorithms were then implemented and estimated times for footstrike, toe-off and contact time were compared to ground reaction force data. There were large differences in the performance of each algorithm. The custom-designed algorithm provided the most accurate estimation of footstrike (True Error 1.2 ± 17.1 ms) and contact time (True Error 3.5 ± 18.2 ms). Compared to the other tested algorithms, the custom-designed algorithm provided an accurate estimation of footstrike and toe-off across different footstrike patterns. The custom-designed algorithm provides a simple but effective method to accurately estimate footstrike, toe-off and contact time from kinematic data. Copyright © 2014 Elsevier B.V. All rights reserved.

Top