Science.gov

Sample records for algorithm support vector

  1. Electricity Load Forecasting Using Support Vector Regression with Memetic Algorithms

    PubMed Central

    Hu, Zhongyi; Xiong, Tao

    2013-01-01

    Electricity load forecasting is an important issue that is widely explored and examined in power systems operation literature and commercial transactions in electricity markets literature as well. Among the existing forecasting models, support vector regression (SVR) has gained much attention. Considering the performance of SVR highly depends on its parameters; this study proposed a firefly algorithm (FA) based memetic algorithm (FA-MA) to appropriately determine the parameters of SVR forecasting model. In the proposed FA-MA algorithm, the FA algorithm is applied to explore the solution space, and the pattern search is used to conduct individual learning and thus enhance the exploitation of FA. Experimental results confirm that the proposed FA-MA based SVR model can not only yield more accurate forecasting results than the other four evolutionary algorithms based SVR models and three well-known forecasting models but also outperform the hybrid algorithms in the related existing literature. PMID:24459425

  2. DC Algorithm for Extended Robust Support Vector Machine.

    PubMed

    Fujiwara, Shuhei; Takeda, Akiko; Kanamori, Takafumi

    2017-03-23

    Nonconvex variants of support vector machines (SVMs) have been developed for various purposes. For example, robust SVMs attain robustness to outliers by using a nonconvex loss function, while extended [Formula: see text]-SVM (E[Formula: see text]-SVM) extends the range of the hyperparameter by introducing a nonconvex constraint. Here, we consider an extended robust support vector machine (ER-SVM), a robust variant of E[Formula: see text]-SVM. ER-SVM combines two types of nonconvexity from robust SVMs and E[Formula: see text]-SVM. Because of the two nonconvexities, the existing algorithm we proposed needs to be divided into two parts depending on whether the hyperparameter value is in the extended range or not. The algorithm also heuristically solves the nonconvex problem in the extended range. In this letter, we propose a new, efficient algorithm for ER-SVM. The algorithm deals with two types of nonconvexity while never entailing more computations than either E[Formula: see text]-SVM or robust SVM, and it finds a critical point of ER-SVM. Furthermore, we show that ER-SVM includes the existing robust SVMs as special cases. Numerical experiments confirm the effectiveness of integrating the two nonconvexities.

  3. Single directional SMO algorithm for least squares support vector machines.

    PubMed

    Shao, Xigao; Wu, Kun; Liao, Bifeng

    2013-01-01

    Working set selection is a major step in decomposition methods for training least squares support vector machines (LS-SVMs). In this paper, a new technique for the selection of working set in sequential minimal optimization- (SMO-) type decomposition methods is proposed. By the new method, we can select a single direction to achieve the convergence of the optimality condition. A simple asymptotic convergence proof for the new algorithm is given. Experimental comparisons demonstrate that the classification accuracy of the new method is not largely different from the existing methods, but the training speed is faster than existing ones.

  4. Support Vector Machine algorithm for regression and classification

    SciTech Connect

    Yu, Chenggang; Zavaljevski, Nela

    2001-08-01

    The software is an implementation of the Support Vector Machine (SVM) algorithm that was invented and developed by Vladimir Vapnik and his co-workers at AT&T Bell Laboratories. The specific implementation reported here is an Active Set method for solving a quadratic optimization problem that forms the major part of any SVM program. The implementation is tuned to specific constraints generated in the SVM learning. Thus, it is more efficient than general-purpose quadratic optimization programs. A decomposition method has been implemented in the software that enables processing large data sets. The size of the learning data is virtually unlimited by the capacity of the computer physical memory. The software is flexible and extensible. Two upper bounds are implemented to regulate the SVM learning for classification, which allow users to adjust the false positive and false negative rates. The software can be used either as a standalone, general-purpose SVM regression or classification program, or be embedded into a larger software system.

  5. Matrix Multiplication Algorithm Selection with Support Vector Machines

    DTIC Science & Technology

    2015-05-01

    approaches. However, most literature on this topic focuses on autotuning for templated code optimization problems using regression models [7]. Our...evaluate additional linear algebra algorithms such as QR decomposition and sparse matrix multiplication. Further- more, we are interested in gathering

  6. Design of Clinical Support Systems Using Integrated Genetic Algorithm and Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Chen, Yung-Fu; Huang, Yung-Fa; Jiang, Xiaoyi; Hsu, Yuan-Nian; Lin, Hsuan-Hung

    Clinical decision support system (CDSS) provides knowledge and specific information for clinicians to enhance diagnostic efficiency and improving healthcare quality. An appropriate CDSS can highly elevate patient safety, improve healthcare quality, and increase cost-effectiveness. Support vector machine (SVM) is believed to be superior to traditional statistical and neural network classifiers. However, it is critical to determine suitable combination of SVM parameters regarding classification performance. Genetic algorithm (GA) can find optimal solution within an acceptable time, and is faster than greedy algorithm with exhaustive searching strategy. By taking the advantage of GA in quickly selecting the salient features and adjusting SVM parameters, a method using integrated GA and SVM (IGS), which is different from the traditional method with GA used for feature selection and SVM for classification, was used to design CDSSs for prediction of successful ventilation weaning, diagnosis of patients with severe obstructive sleep apnea, and discrimination of different cell types form Pap smear. The results show that IGS is better than methods using SVM alone or linear discriminator.

  7. Semi-supervised least squares support vector machine algorithm: application to offshore oil reservoir

    NASA Astrophysics Data System (ADS)

    Luo, Wei-Ping; Li, Hong-Qi; Shi, Ning

    2016-06-01

    At the early stages of deep-water oil exploration and development, fewer and further apart wells are drilled than in onshore oilfields. Supervised least squares support vector machine algorithms are used to predict the reservoir parameters but the prediction accuracy is low. We combined the least squares support vector machine (LSSVM) algorithm with semi-supervised learning and established a semi-supervised regression model, which we call the semi-supervised least squares support vector machine (SLSSVM) model. The iterative matrix inversion is also introduced to improve the training ability and training time of the model. We use the UCI data to test the generalization of a semi-supervised and a supervised LSSVM models. The test results suggest that the generalization performance of the LSSVM model greatly improves and with decreasing training samples the generalization performance is better. Moreover, for small-sample models, the SLSSVM method has higher precision than the semi-supervised K-nearest neighbor (SKNN) method. The new semisupervised LSSVM algorithm was used to predict the distribution of porosity and sandstone in the Jingzhou study area.

  8. Identification of handwriting by using the genetic algorithm (GA) and support vector machine (SVM)

    NASA Astrophysics Data System (ADS)

    Zhang, Qigui; Deng, Kai

    2016-12-01

    As portable digital camera and a camera phone comes more and more popular, and equally pressing is meeting the requirements of people to shoot at any time, to identify and storage handwritten character. In this paper, genetic algorithm(GA) and support vector machine(SVM)are used for identification of handwriting. Compare with parameters-optimized method, this technique overcomes two defects: first, it's easy to trap in the local optimum; second, finding the best parameters in the larger range will affects the efficiency of classification and prediction. As the experimental results suggest, GA-SVM has a higher recognition rate.

  9. Classification of urban vegetation patterns from hyperspectral imagery: hybrid algorithm based on genetic algorithm tuned fuzzy support vector machine

    NASA Astrophysics Data System (ADS)

    Zhou, Mandi; Shu, Jiong; Chen, Zhigang; Ji, Minhe

    2012-11-01

    Hyperspectral imagery has been widely used in terrain classification for its high resolution. Urban vegetation, known as an essential part of the urban ecosystem, can be difficult to discern due to high similarity of spectral signatures among some land-cover classes. In this paper, we investigate a hybrid approach of the genetic-algorithm tuned fuzzy support vector machine (GA-FSVM) technique and apply it to urban vegetation classification from aerial hyperspectral urban imagery. The approach adopts the genetic algorithm to optimize parameters of support vector machine, and employs the K-nearest neighbor algorithm to calculate the membership function for each fuzzy parameter, aiming to reduce the effects of the isolated and noisy samples. Test data come from push-broom hyperspectral imager (PHI) hyperspectral remote sensing image which partially covers a corner of the Shanghai World Exposition Park, while PHI is a hyper-spectral sensor developed by Shanghai Institute of Technical Physics. Experimental results show the GA-FSVM model generates overall accuracy of 71.2%, outperforming the maximum likelihood classifier with 49.4% accuracy and the artificial neural network method with 60.8% accuracy. It indicates GA-FSVM is a promising model for vegetation classification from hyperspectral urban data, and has good advantage in the application of classification involving abundant mixed pixels and small samples problem.

  10. [Tree species information extraction of farmland returned to forests based on improved support vector machine algorithm].

    PubMed

    Wu, Jian; Peng, Dao-Li

    2011-04-01

    The difference analysis of spectrum among tree species and the improvement of classification algorithm are the difficult points of extracting tree species information using remote sensing images, and are also the keys to improving the accuracy in the tree species information extraction in farmland returned to forests area. TM images were selected in this study, and the spectral indexes that could distinguish tree species information were filtered by analyzing tree species spectrum. Afterwards, the information of tree species was extracted using improved support vector machine algorithm. Although errors and confusion exist, this method shows satisfying results with an overall accuracy of 81.7%. The corresponding result of the traditional method is 72.5%. The method in this paper can achieve a more precise information extraction of tree species and the results can meet the demand of accurate monitoring and decision-making. This method is significant to the rapid assessment of project quality.

  11. Support vector machines

    NASA Technical Reports Server (NTRS)

    Garay, Michael J.; Mazzoni, Dominic; Davies, Roger; Wagstaff, Kiri

    2004-01-01

    Support Vector Machines (SVMs) are a type of supervised learning algorith,, other examples of which are Artificial Neural Networks (ANNs), Decision Trees, and Naive Bayesian Classifiers. Supervised learning algorithms are used to classify objects labled by a 'supervisor' - typically a human 'expert.'.

  12. Fault diagnosis based on support vector machines with parameter optimisation by artificial immunisation algorithm

    NASA Astrophysics Data System (ADS)

    Yuan, Shengfa; Chu, Fulei

    2007-04-01

    Support vector machines (SVM) is a new general machine-learning tool based on the structural risk minimisation principle that exhibits good generalisation when fault samples are few, it is especially fit for classification, forecasting and estimation in small-sample cases such as fault diagnosis, but some parameters in SVM are selected by man's experience, this has hampered its efficiency in practical application. Artificial immunisation algorithm (AIA) is used to optimise the parameters in SVM in this paper. The AIA is a new optimisation method based on the biologic immune principle of human being and other living beings. It can effectively avoid the premature convergence and guarantees the variety of solution. With the parameters optimised by AIA, the total capability of the SVM classifier is improved. The fault diagnosis of turbo pump rotor shows that the SVM optimised by AIA can give higher recognition accuracy than the normal SVM.

  13. SNPs selection using support vector regression and genetic algorithms in GWAS

    PubMed Central

    2014-01-01

    Introduction This paper proposes a new methodology to simultaneously select the most relevant SNPs markers for the characterization of any measurable phenotype described by a continuous variable using Support Vector Regression with Pearson Universal kernel as fitness function of a binary genetic algorithm. The proposed methodology is multi-attribute towards considering several markers simultaneously to explain the phenotype and is based jointly on statistical tools, machine learning and computational intelligence. Results The suggested method has shown potential in the simulated database 1, with additive effects only, and real database. In this simulated database, with a total of 1,000 markers, and 7 with major effect on the phenotype and the other 993 SNPs representing the noise, the method identified 21 markers. Of this total, 5 are relevant SNPs between the 7 but 16 are false positives. In real database, initially with 50,752 SNPs, we have reduced to 3,073 markers, increasing the accuracy of the model. In the simulated database 2, with additive effects and interactions (epistasis), the proposed method matched to the methodology most commonly used in GWAS. Conclusions The method suggested in this paper demonstrates the effectiveness in explaining the real phenotype (PTA for milk), because with the application of the wrapper based on genetic algorithm and Support Vector Regression with Pearson Universal, many redundant markers were eliminated, increasing the prediction and accuracy of the model on the real database without quality control filters. The PUK demonstrated that it can replicate the performance of linear and RBF kernels. PMID:25573332

  14. A Genetic Algorithm Based Support Vector Machine Model for Blood-Brain Barrier Penetration Prediction

    PubMed Central

    Zhang, Daqing; Xiao, Jianfeng; Zhou, Nannan; Zheng, Mingyue; Luo, Xiaomin; Jiang, Hualiang; Chen, Kaixian

    2015-01-01

    Blood-brain barrier (BBB) is a highly complex physical barrier determining what substances are allowed to enter the brain. Support vector machine (SVM) is a kernel-based machine learning method that is widely used in QSAR study. For a successful SVM model, the kernel parameters for SVM and feature subset selection are the most important factors affecting prediction accuracy. In most studies, they are treated as two independent problems, but it has been proven that they could affect each other. We designed and implemented genetic algorithm (GA) to optimize kernel parameters and feature subset selection for SVM regression and applied it to the BBB penetration prediction. The results show that our GA/SVM model is more accurate than other currently available log BB models. Therefore, to optimize both SVM parameters and feature subset simultaneously with genetic algorithm is a better approach than other methods that treat the two problems separately. Analysis of our log BB model suggests that carboxylic acid group, polar surface area (PSA)/hydrogen-bonding ability, lipophilicity, and molecular charge play important role in BBB penetration. Among those properties relevant to BBB penetration, lipophilicity could enhance the BBB penetration while all the others are negatively correlated with BBB penetration. PMID:26504797

  15. Automatic ultrasonic breast lesions detection using support vector machine based algorithm

    NASA Astrophysics Data System (ADS)

    Yeh, Chih-Kuang; Miao, Shan-Jung; Fan, Wei-Che; Chen, Yung-Sheng

    2007-03-01

    It is difficult to automatically detect tumors and extract lesion boundaries in ultrasound images due to the variance in shape, the interference from speckle noise, and the low contrast between objects and background. The enhancement of ultrasonic image becomes a significant task before performing lesion classification, which was usually done with manual delineation of the tumor boundaries in the previous works. In this study, a linear support vector machine (SVM) based algorithm is proposed for ultrasound breast image training and classification. Then a disk expansion algorithm is applied for automatically detecting lesions boundary. A set of sub-images including smooth and irregular boundaries in tumor objects and those in speckle-noised background are trained by the SVM algorithm to produce an optimal classification function. Based on this classification model, each pixel within an ultrasound image is classified into either object or background oriented pixel. This enhanced binary image can highlight the object and suppress the speckle noise; and it can be regarded as degraded paint character (DPC) image containing closure noise, which is well known in perceptual organization of psychology. An effective scheme of removing closure noise using iterative disk expansion method has been successfully demonstrated in our previous works. The boundary detection of ultrasonic breast lesions can be further equivalent to the removal of speckle noise. By applying the disk expansion method to the binary image, we can obtain a significant radius-based image where the radius for each pixel represents the corresponding disk covering the specific object information. Finally, a signal transmission process is used for searching the complete breast lesion region and thus the desired lesion boundary can be effectively and automatically determined. Our algorithm can be performed iteratively until all desired objects are detected. Simulations and clinical images were introduced to

  16. Combining support vector machine with genetic algorithm to classify ultrasound breast tumor images.

    PubMed

    Wu, Wen-Jie; Lin, Shih-Wei; Moon, Woo Kyung

    2012-12-01

    To promote the classification accuracy and decrease the time of extracting features and finding (near) optimal classification model of an ultrasound breast tumor image computer-aided diagnosis system, we propose an approach which simultaneously combines feature selection and parameter setting in this study. In our approach ultrasound breast tumors were segmented automatically by a level set method. The auto-covariance texture features and morphologic features were first extracted following the use of a genetic algorithm to detect significant features and determine the near-optimal parameters for the support vector machine (SVM) to identify the tumor as benign or malignant. The proposed CAD system can differentiate benign from malignant breast tumors with high accuracy and short feature extraction time. According to the experimental results, the accuracy of the proposed CAD system for classifying breast tumors is 95.24% and the computing time of the proposed system for calculating features of all breast tumor images is only 8% of that of a system without feature selection. Furthermore, the time of finding (near) optimal classification model is significantly than that of grid search. It is therefore clinically useful in reducing the number of biopsies of benign lesions and offers a second reading to assist inexperienced physicians in avoiding misdiagnosis.

  17. The Construction of Support Vector Machine Classifier Using the Firefly Algorithm

    PubMed Central

    Chao, Chih-Feng; Horng, Ming-Huwi

    2015-01-01

    The setting of parameters in the support vector machines (SVMs) is very important with regard to its accuracy and efficiency. In this paper, we employ the firefly algorithm to train all parameters of the SVM simultaneously, including the penalty parameter, smoothness parameter, and Lagrangian multiplier. The proposed method is called the firefly-based SVM (firefly-SVM). This tool is not considered the feature selection, because the SVM, together with feature selection, is not suitable for the application in a multiclass classification, especially for the one-against-all multiclass SVM. In experiments, binary and multiclass classifications are explored. In the experiments on binary classification, ten of the benchmark data sets of the University of California, Irvine (UCI), machine learning repository are used; additionally the firefly-SVM is applied to the multiclass diagnosis of ultrasonic supraspinatus images. The classification performance of firefly-SVM is also compared to the original LIBSVM method associated with the grid search method and the particle swarm optimization based SVM (PSO-SVM). The experimental results advocate the use of firefly-SVM to classify pattern classifications for maximum accuracy. PMID:25802511

  18. Phytoplankton global mapping from space with a support vector machine algorithm

    NASA Astrophysics Data System (ADS)

    de Boissieu, Florian; Menkes, Christophe; Dupouy, Cécile; Rodier, Martin; Bonnet, Sophie; Mangeas, Morgan; Frouin, Robert J.

    2014-11-01

    In recent years great progress has been made in global mapping of phytoplankton from space. Two main trends have emerged, the recognition of phytoplankton functional types (PFT) based on reflectance normalized to chlorophyll-a concentration, and the recognition of phytoplankton size class (PSC) based on the relationship between cell size and chlorophyll-a concentration. However, PFTs and PSCs are not decorrelated, and one approach can complement the other in a recognition task. In this paper, we explore the recognition of several dominant PFTs by combining reflectance anomalies, chlorophyll-a concentration and other environmental parameters, such as sea surface temperature and wind speed. Remote sensing pixels are labeled thanks to coincident in-situ pigment data from GeP&CO, NOMAD and MAREDAT datasets, covering various oceanographic environments. The recognition is made with a supervised Support Vector Machine classifier trained on the labeled pixels. This algorithm enables a non-linear separation of the classes in the input space and is especially adapted for small training datasets as available here. Moreover, it provides a class probability estimate, allowing one to enhance the robustness of the classification results through the choice of a minimum probability threshold. A greedy feature selection associated to a 10-fold cross-validation procedure is applied to select the most discriminative input features and evaluate the classification performance. The best classifiers are finally applied on daily remote sensing datasets (SeaWIFS, MODISA) and the resulting dominant PFT maps are compared with other studies. Several conclusions are drawn: (1) the feature selection highlights the weight of temperature, chlorophyll-a and wind speed variables in phytoplankton recognition; (2) the classifiers show good results and dominant PFT maps in agreement with phytoplankton distribution knowledge; (3) classification on MODISA data seems to perform better than on SeaWIFS data

  19. Automated beam placement for breast radiotherapy using a support vector machine based algorithm

    SciTech Connect

    Zhao Xuan; Kong, Dewen; Jozsef, Gabor; Chang, Jenghwa; Wong, Edward K.; Formenti, Silvia C.; Wang Yao

    2012-05-15

    Purpose: To develop an automated beam placement technique for whole breast radiotherapy using tangential beams. We seek to find optimal parameters for tangential beams to cover the whole ipsilateral breast (WB) and minimize the dose to the organs at risk (OARs). Methods: A support vector machine (SVM) based method is proposed to determine the optimal posterior plane of the tangential beams. Relative significances of including/avoiding the volumes of interests are incorporated into the cost function of the SVM. After finding the optimal 3-D plane that separates the whole breast (WB) and the included clinical target volumes (CTVs) from the OARs, the gantry angle, collimator angle, and posterior jaw size of the tangential beams are derived from the separating plane equation. Dosimetric measures of the treatment plans determined by the automated method are compared with those obtained by applying manual beam placement by the physicians. The method can be further extended to use multileaf collimator (MLC) blocking by optimizing posterior MLC positions. Results: The plans for 36 patients (23 prone- and 13 supine-treated) with left breast cancer were analyzed. Our algorithm reduced the volume of the heart that receives >500 cGy dose (V5) from 2.7 to 1.7 cm{sup 3} (p = 0.058) on average and the volume of the ipsilateral lung that receives >1000 cGy dose (V10) from 55.2 to 40.7 cm{sup 3} (p = 0.0013). The dose coverage as measured by volume receiving >95% of the prescription dose (V95%) of the WB without a 5 mm superficial layer decreases by only 0.74% (p = 0.0002) and the V95% for the tumor bed with 1.5 cm margin remains unchanged. Conclusions: This study has demonstrated the feasibility of using a SVM-based algorithm to determine optimal beam placement without a physician's intervention. The proposed method reduced the dose to OARs, especially for supine treated patients, without any relevant degradation of dose homogeneity and coverage in general.

  20. A Nonlinear Adaptive Beamforming Algorithm Based on Least Squares Support Vector Regression

    PubMed Central

    Wang, Lutao; Jin, Gang; Li, Zhengzhou; Xu, Hongbin

    2012-01-01

    To overcome the performance degradation in the presence of steering vector mismatches, strict restrictions on the number of available snapshots, and numerous interferences, a novel beamforming approach based on nonlinear least-square support vector regression machine (LS-SVR) is derived in this paper. In this approach, the conventional linearly constrained minimum variance cost function used by minimum variance distortionless response (MVDR) beamformer is replaced by a squared-loss function to increase robustness in complex scenarios and provide additional control over the sidelobe level. Gaussian kernels are also used to obtain better generalization capacity. This novel approach has two highlights, one is a recursive regression procedure to estimate the weight vectors on real-time, the other is a sparse model with novelty criterion to reduce the final size of the beamformer. The analysis and simulation tests show that the proposed approach offers better noise suppression capability and achieve near optimal signal-to-interference-and-noise ratio (SINR) with a low computational burden, as compared to other recently proposed robust beamforming techniques.

  1. Predicting pupylation sites in prokaryotic proteins using semi-supervised self-training support vector machine algorithm.

    PubMed

    Ju, Zhe; Gu, Hong

    2016-08-15

    As one important post-translational modification of prokaryotic proteins, pupylation plays a key role in regulating various biological processes. The accurate identification of pupylation sites is crucial for understanding the underlying mechanisms of pupylation. Although several computational methods have been developed for the identification of pupylation sites, the prediction accuracy of them is still unsatisfactory. Here, a novel bioinformatics tool named IMP-PUP is proposed to improve the prediction of pupylation sites. IMP-PUP is constructed on the composition of k-spaced amino acid pairs and trained with a modified semi-supervised self-training support vector machine (SVM) algorithm. The proposed algorithm iteratively trains a series of support vector machine classifiers on both annotated and non-annotated pupylated proteins. Computational results show that IMP-PUP achieves the area under receiver operating characteristic curves of 0.91, 0.73, and 0.75 on our training set, Tung's testing set, and our testing set, respectively, which are better than those of the different error costs SVM algorithm and the original self-training SVM algorithm. Independent tests also show that IMP-PUP significantly outperforms three other existing pupylation site predictors: GPS-PUP, iPUP, and pbPUP. Therefore, IMP-PUP can be a useful tool for accurate prediction of pupylation sites. A MATLAB software package for IMP-PUP is available at https://juzhe1120.github.io/.

  2. Cancer Classification in Microarray Data using a Hybrid Selective Independent Component Analysis and υ-Support Vector Machine Algorithm

    PubMed Central

    Saberkari, Hamidreza; Shamsi, Mousa; Joroughi, Mahsa; Golabi, Faegheh; Sedaaghi, Mohammad Hossein

    2014-01-01

    Microarray data have an important role in identification and classification of the cancer tissues. Having a few samples of microarrays in cancer researches is always one of the most concerns which lead to some problems in designing the classifiers. For this matter, preprocessing gene selection techniques should be utilized before classification to remove the noninformative genes from the microarray data. An appropriate gene selection method can significantly improve the performance of cancer classification. In this paper, we use selective independent component analysis (SICA) for decreasing the dimension of microarray data. Using this selective algorithm, we can solve the instability problem occurred in the case of employing conventional independent component analysis (ICA) methods. First, the reconstruction error and selective set are analyzed as independent components of each gene, which have a small part in making error in order to reconstruct new sample. Then, some of the modified support vector machine (υ-SVM) algorithm sub-classifiers are trained, simultaneously. Eventually, the best sub-classifier with the highest recognition rate is selected. The proposed algorithm is applied on three cancer datasets (leukemia, breast cancer and lung cancer datasets), and its results are compared with other existing methods. The results illustrate that the proposed algorithm (SICA + υ-SVM) has higher accuracy and validity in order to increase the classification accuracy. Such that, our proposed algorithm exhibits relative improvements of 3.3% in correctness rate over ICA + SVM and SVM algorithms in lung cancer dataset. PMID:25426433

  3. Cancer Classification in Microarray Data using a Hybrid Selective Independent Component Analysis and υ-Support Vector Machine Algorithm.

    PubMed

    Saberkari, Hamidreza; Shamsi, Mousa; Joroughi, Mahsa; Golabi, Faegheh; Sedaaghi, Mohammad Hossein

    2014-10-01

    Microarray data have an important role in identification and classification of the cancer tissues. Having a few samples of microarrays in cancer researches is always one of the most concerns which lead to some problems in designing the classifiers. For this matter, preprocessing gene selection techniques should be utilized before classification to remove the noninformative genes from the microarray data. An appropriate gene selection method can significantly improve the performance of cancer classification. In this paper, we use selective independent component analysis (SICA) for decreasing the dimension of microarray data. Using this selective algorithm, we can solve the instability problem occurred in the case of employing conventional independent component analysis (ICA) methods. First, the reconstruction error and selective set are analyzed as independent components of each gene, which have a small part in making error in order to reconstruct new sample. Then, some of the modified support vector machine (υ-SVM) algorithm sub-classifiers are trained, simultaneously. Eventually, the best sub-classifier with the highest recognition rate is selected. The proposed algorithm is applied on three cancer datasets (leukemia, breast cancer and lung cancer datasets), and its results are compared with other existing methods. The results illustrate that the proposed algorithm (SICA + υ-SVM) has higher accuracy and validity in order to increase the classification accuracy. Such that, our proposed algorithm exhibits relative improvements of 3.3% in correctness rate over ICA + SVM and SVM algorithms in lung cancer dataset.

  4. [MicroRNA Target Prediction Based on Support Vector Machine Ensemble Classification Algorithm of Under-sampling Technique].

    PubMed

    Chen, Zhiru; Hong, Wenxue

    2016-02-01

    Considering the low accuracy of prediction in the positive samples and poor overall classification effects caused by unbalanced sample data of MicroRNA (miRNA) target, we proposes a support vector machine (SVM)-integration of under-sampling and weight (IUSM) algorithm in this paper, an under-sampling based on the ensemble learning algorithm. The algorithm adopts SVM as learning algorithm and AdaBoost as integration framework, and embeds clustering-based under-sampling into the iterative process, aiming at reducing the degree of unbalanced distribution of positive and negative samples. Meanwhile, in the process of adaptive weight adjustment of the samples, the SVM-IUSM algorithm eliminates the abnormal ones in negative samples with robust sample weights smoothing mechanism so as to avoid over-learning. Finally, the prediction of miRNA target integrated classifier is achieved with the combination of multiple weak classifiers through the voting mechanism. The experiment revealed that the SVM-IUSW, compared with other algorithms on unbalanced dataset collection, could not only improve the accuracy of positive targets and the overall effect of classification, but also enhance the generalization ability of miRNA target classifier.

  5. Support Vector Machines Trained with Evolutionary Algorithms Employing Kernel Adatron for Large Scale Classification of Protein Structures

    PubMed Central

    Arana-Daniel, Nancy; Gallegos, Alberto A.; López-Franco, Carlos; Alanís, Alma Y.; Morales, Jacob; López-Franco, Adriana

    2016-01-01

    With the increasing power of computers, the amount of data that can be processed in small periods of time has grown exponentially, as has the importance of classifying large-scale data efficiently. Support vector machines have shown good results classifying large amounts of high-dimensional data, such as data generated by protein structure prediction, spam recognition, medical diagnosis, optical character recognition and text classification, etc. Most state of the art approaches for large-scale learning use traditional optimization methods, such as quadratic programming or gradient descent, which makes the use of evolutionary algorithms for training support vector machines an area to be explored. The present paper proposes an approach that is simple to implement based on evolutionary algorithms and Kernel-Adatron for solving large-scale classification problems, focusing on protein structure prediction. The functional properties of proteins depend upon their three-dimensional structures. Knowing the structures of proteins is crucial for biology and can lead to improvements in areas such as medicine, agriculture and biofuels. PMID:27980384

  6. Support Vector Machines Trained with Evolutionary Algorithms Employing Kernel Adatron for Large Scale Classification of Protein Structures.

    PubMed

    Arana-Daniel, Nancy; Gallegos, Alberto A; López-Franco, Carlos; Alanís, Alma Y; Morales, Jacob; López-Franco, Adriana

    2016-01-01

    With the increasing power of computers, the amount of data that can be processed in small periods of time has grown exponentially, as has the importance of classifying large-scale data efficiently. Support vector machines have shown good results classifying large amounts of high-dimensional data, such as data generated by protein structure prediction, spam recognition, medical diagnosis, optical character recognition and text classification, etc. Most state of the art approaches for large-scale learning use traditional optimization methods, such as quadratic programming or gradient descent, which makes the use of evolutionary algorithms for training support vector machines an area to be explored. The present paper proposes an approach that is simple to implement based on evolutionary algorithms and Kernel-Adatron for solving large-scale classification problems, focusing on protein structure prediction. The functional properties of proteins depend upon their three-dimensional structures. Knowing the structures of proteins is crucial for biology and can lead to improvements in areas such as medicine, agriculture and biofuels.

  7. Applying different independent component analysis algorithms and support vector regression for IT chain store sales forecasting.

    PubMed

    Dai, Wensheng; Wu, Jui-Yu; Lu, Chi-Jie

    2014-01-01

    Sales forecasting is one of the most important issues in managing information technology (IT) chain store sales since an IT chain store has many branches. Integrating feature extraction method and prediction tool, such as support vector regression (SVR), is a useful method for constructing an effective sales forecasting scheme. Independent component analysis (ICA) is a novel feature extraction technique and has been widely applied to deal with various forecasting problems. But, up to now, only the basic ICA method (i.e., temporal ICA model) was applied to sale forecasting problem. In this paper, we utilize three different ICA methods including spatial ICA (sICA), temporal ICA (tICA), and spatiotemporal ICA (stICA) to extract features from the sales data and compare their performance in sales forecasting of IT chain store. Experimental results from a real sales data show that the sales forecasting scheme by integrating stICA and SVR outperforms the comparison models in terms of forecasting error. The stICA is a promising tool for extracting effective features from branch sales data and the extracted features can improve the prediction performance of SVR for sales forecasting.

  8. A support vector regression-firefly algorithm-based model for limiting velocity prediction in sewer pipes.

    PubMed

    Ebtehaj, Isa; Bonakdari, Hossein

    2016-01-01

    Sediment transport without deposition is an essential consideration in the optimum design of sewer pipes. In this study, a novel method based on a combination of support vector regression (SVR) and the firefly algorithm (FFA) is proposed to predict the minimum velocity required to avoid sediment settling in pipe channels, which is expressed as the densimetric Froude number (Fr). The efficiency of support vector machine (SVM) models depends on the suitable selection of SVM parameters. In this particular study, FFA is used by determining these SVM parameters. The actual effective parameters on Fr calculation are generally identified by employing dimensional analysis. The different dimensionless variables along with the models are introduced. The best performance is attributed to the model that employs the sediment volumetric concentration (C(V)), ratio of relative median diameter of particles to hydraulic radius (d/R), dimensionless particle number (D(gr)) and overall sediment friction factor (λ(s)) parameters to estimate Fr. The performance of the SVR-FFA model is compared with genetic programming, artificial neural network and existing regression-based equations. The results indicate the superior performance of SVR-FFA (mean absolute percentage error = 2.123%; root mean square error =0.116) compared with other methods.

  9. Diagnosis by Volatile Organic Compounds in Exhaled Breath from Lung Cancer Patients Using Support Vector Machine Algorithm.

    PubMed

    Sakumura, Yuichi; Koyama, Yutaro; Tokutake, Hiroaki; Hida, Toyoaki; Sato, Kazuo; Itoh, Toshio; Akamatsu, Takafumi; Shin, Woosuck

    2017-02-04

    Monitoring exhaled breath is a very attractive, noninvasive screening technique for early diagnosis of diseases, especially lung cancer. However, the technique provides insufficient accuracy because the exhaled air has many crucial volatile organic compounds (VOCs) at very low concentrations (ppb level). We analyzed the breath exhaled by lung cancer patients and healthy subjects (controls) using gas chromatography/mass spectrometry (GC/MS), and performed a subsequent statistical analysis to diagnose lung cancer based on the combination of multiple lung cancer-related VOCs. We detected 68 VOCs as marker species using GC/MS analysis. We reduced the number of VOCs and used support vector machine (SVM) algorithm to classify the samples. We observed that a combination of five VOCs (CHN, methanol, CH₃CN, isoprene, 1-propanol) is sufficient for 89.0% screening accuracy, and hence, it can be used for the design and development of a desktop GC-sensor analysis system for lung cancer.

  10. Feature Selection Method Based on Artificial Bee Colony Algorithm and Support Vector Machines for Medical Datasets Classification

    PubMed Central

    Yilmaz, Nihat; Inan, Onur

    2013-01-01

    This paper offers a hybrid approach that uses the artificial bee colony (ABC) algorithm for feature selection and support vector machines for classification. The purpose of this paper is to test the effect of elimination of the unimportant and obsolete features of the datasets on the success of the classification, using the SVM classifier. The developed approach conventionally used in liver diseases and diabetes diagnostics, which are commonly observed and reduce the quality of life, is developed. For the diagnosis of these diseases, hepatitis, liver disorders and diabetes datasets from the UCI database were used, and the proposed system reached a classification accuracies of 94.92%, 74.81%, and 79.29%, respectively. For these datasets, the classification accuracies were obtained by the help of the 10-fold cross-validation method. The results show that the performance of the method is highly successful compared to other results attained and seems very promising for pattern recognition applications. PMID:23983632

  11. Diagnosis by Volatile Organic Compounds in Exhaled Breath from Lung Cancer Patients Using Support Vector Machine Algorithm

    PubMed Central

    Sakumura, Yuichi; Koyama, Yutaro; Tokutake, Hiroaki; Hida, Toyoaki; Sato, Kazuo; Itoh, Toshio; Akamatsu, Takafumi; Shin, Woosuck

    2017-01-01

    Monitoring exhaled breath is a very attractive, noninvasive screening technique for early diagnosis of diseases, especially lung cancer. However, the technique provides insufficient accuracy because the exhaled air has many crucial volatile organic compounds (VOCs) at very low concentrations (ppb level). We analyzed the breath exhaled by lung cancer patients and healthy subjects (controls) using gas chromatography/mass spectrometry (GC/MS), and performed a subsequent statistical analysis to diagnose lung cancer based on the combination of multiple lung cancer-related VOCs. We detected 68 VOCs as marker species using GC/MS analysis. We reduced the number of VOCs and used support vector machine (SVM) algorithm to classify the samples. We observed that a combination of five VOCs (CHN, methanol, CH3CN, isoprene, 1-propanol) is sufficient for 89.0% screening accuracy, and hence, it can be used for the design and development of a desktop GC-sensor analysis system for lung cancer. PMID:28165388

  12. GAPS IN SUPPORT VECTOR OPTIMIZATION

    SciTech Connect

    STEINWART, INGO; HUSH, DON; SCOVEL, CLINT; LIST, NICOLAS

    2007-01-29

    We show that the stopping criteria used in many support vector machine (SVM) algorithms working on the dual can be interpreted as primal optimality bounds which in turn are known to be important for the statistical analysis of SVMs. To this end we revisit the duality theory underlying the derivation of the dual and show that in many interesting cases primal optimality bounds are the same as known dual optimality bounds.

  13. Metal Artifact Reduction and Segmentation of Dental Computerized Tomography Images Using Least Square Support Vector Machine and Mean Shift Algorithm.

    PubMed

    Mortaheb, Parinaz; Rezaeian, Mehdi

    2016-01-01

    Segmentation and three-dimensional (3D) visualization of teeth in dental computerized tomography (CT) images are of dentists' requirements for both abnormalities diagnosis and the treatments such as dental implant and orthodontic planning. On the other hand, dental CT image segmentation is a difficult process because of the specific characteristics of the tooth's structure. This paper presents a method for automatic segmentation of dental CT images. We present a multi-step method, which starts with a preprocessing phase to reduce the metal artifact using the least square support vector machine. Integral intensity profile is then applied to detect each tooth's region candidates. Finally, the mean shift algorithm is used to partition the region of each tooth, and all these segmented slices are then applied for 3D visualization of teeth. Examining the performance of our proposed approach, a set of reliable assessment metrics is utilized. We applied the segmentation method on 14 cone-beam CT datasets. Functionality analysis of the proposed method demonstrated precise segmentation results on different sample slices. Accuracy analysis of the proposed method indicates that we can increase the sensitivity, specificity, precision, and accuracy of the segmentation results by 83.24%, 98.35%, 72.77%, and 97.62% and decrease the error rate by 2.34%. The experimental results show that the proposed approach performs well on different types of CT images and has better performance than all existing approaches. Moreover, segmentation results can be more accurate by using the proposed algorithm of metal artifact reduction in the preprocessing phase.

  14. Isomap based supporting vector machine

    NASA Astrophysics Data System (ADS)

    Liang, W. N.

    2015-12-01

    This research presents a new isomap based supporting vector machine method. Isomap is a dimension reduction method which is able to analyze nonlinear relationship of data on manifolds. Accordingly, support vector machine is established on the isomap manifold to classify given and predict unknown data. A case study of the isomap based supporting vector machine for environmental planning problems is conducted.

  15. Estimation of Teacher Practices Based on Text Transcripts of Teacher Speech Using a Support Vector Machine Algorithm

    ERIC Educational Resources Information Center

    Araya, Roberto; Plana, Francisco; Dartnell, Pablo; Soto-Andrade, Jorge; Luci, Gina; Salinas, Elena; Araya, Marylen

    2012-01-01

    Teacher practice is normally assessed by observers who watch classes or videos of classes. Here, we analyse an alternative strategy that uses text transcripts and a support vector machine classifier. For each one of the 710 videos of mathematics classes from the 2005 Chilean National Teacher Assessment Programme, a single 4-minute slice was…

  16. Classification of G-protein coupled receptors based on support vector machine with maximum relevance minimum redundancy and genetic algorithm

    PubMed Central

    2010-01-01

    Background Because a priori knowledge about function of G protein-coupled receptors (GPCRs) can provide useful information to pharmaceutical research, the determination of their function is a quite meaningful topic in protein science. However, with the rapid increase of GPCRs sequences entering into databanks, the gap between the number of known sequence and the number of known function is widening rapidly, and it is both time-consuming and expensive to determine their function based only on experimental techniques. Therefore, it is vitally significant to develop a computational method for quick and accurate classification of GPCRs. Results In this study, a novel three-layer predictor based on support vector machine (SVM) and feature selection is developed for predicting and classifying GPCRs directly from amino acid sequence data. The maximum relevance minimum redundancy (mRMR) is applied to pre-evaluate features with discriminative information while genetic algorithm (GA) is utilized to find the optimized feature subsets. SVM is used for the construction of classification models. The overall accuracy with three-layer predictor at levels of superfamily, family and subfamily are obtained by cross-validation test on two non-redundant dataset. The results are about 0.5% to 16% higher than those of GPCR-CA and GPCRPred. Conclusion The results with high success rates indicate that the proposed predictor is a useful automated tool in predicting GPCRs. GPCR-SVMFS, a corresponding executable program for GPCRs prediction and classification, can be acquired freely on request from the authors. PMID:20550715

  17. Genetic algorithm optimization in drug design QSAR: Bayesian-regularized genetic neural networks (BRGNN) and genetic algorithm-optimized support vectors machines (GA-SVM).

    PubMed

    Fernandez, Michael; Caballero, Julio; Fernandez, Leyden; Sarai, Akinori

    2011-02-01

    Many articles in "in silico" drug design implemented genetic algorithm (GA) for feature selection, model optimization, conformational search, or docking studies. Some of these articles described GA applications to quantitative structure-activity relationships (QSAR) modeling in combination with regression and/or classification techniques. We reviewed the implementation of GA in drug design QSAR and specifically its performance in the optimization of robust mathematical models such as Bayesian-regularized artificial neural networks (BRANNs) and support vector machines (SVMs) on different drug design problems. Modeled data sets encompassed ADMET and solubility properties, cancer target inhibitors, acetylcholinesterase inhibitors, HIV-1 protease inhibitors, ion-channel and calcium entry blockers, and antiprotozoan compounds as well as protein classes, functional, and conformational stability data. The GA-optimized predictors were often more accurate and robust than previous published models on the same data sets and explained more than 65% of data variances in validation experiments. In addition, feature selection over large pools of molecular descriptors provided insights into the structural and atomic properties ruling ligand-target interactions.

  18. Wavelet frame accelerated reduced support vector machines.

    PubMed

    Ratsch, Matthias; Teschke, Gerd; Romdhani, Sami; Vetter, Thomas

    2008-12-01

    In this paper, a novel method for reducing the runtime complexity of a support vector machine classifier is presented. The new training algorithm is fast and simple. This is achieved by an over-complete wavelet transform that finds the optimal approximation of the support vectors. The presented derivation shows that the wavelet theory provides an upper bound on the distance between the decision function of the support vector machine and our classifier. The obtained classifier is fast, since a Haar wavelet approximation of the support vectors is used, enabling efficient integral image-based kernel evaluations. This provides a set of cascaded classifiers of increasing complexity for an early rejection of vectors easy to discriminate. This excellent runtime performance is achieved by using a hierarchical evaluation over the number of incorporated and additional over the approximation accuracy of the reduced set vectors. Here, this algorithm is applied to the problem of face detection, but it can also be used for other image-based classifications. The algorithm presented, provides a 530-fold speedup over the support vector machine, enabling face detection at more than 25 fps on a standard PC.

  19. Experimental analysis and mathematical prediction of Cd(II) removal by biosorption using support vector machines and genetic algorithms.

    PubMed

    Hlihor, Raluca Maria; Diaconu, Mariana; Leon, Florin; Curteanu, Silvia; Tavares, Teresa; Gavrilescu, Maria

    2015-05-25

    We investigated the bioremoval of Cd(II) in batch mode, using dead and living biomass of Trichoderma viride. Kinetic studies revealed three distinct stages of the biosorption process. The pseudo-second order model and the Langmuir model described well the kinetics and equilibrium of the biosorption process, with a determination coefficient, R(2)>0.99. The value of the mean free energy of adsorption, E, is less than 16 kJ/mol at 25 °C, suggesting that, at low temperature, the dominant process involved in Cd(II) biosorption by dead T. viride is the chemical ion-exchange. With the temperature increasing to 40-50 °C, E values are above 16 kJ/mol, showing that the particle diffusion mechanism could play an important role in Cd(II) biosorption. The studies on T. viride growth in Cd(II) solutions and its bioaccumulation performance showed that the living biomass was able to bioaccumulate 100% Cd(II) from a 50 mg/L solution at pH 6.0. The influence of pH, biomass dosage, metal concentration, contact time and temperature on the bioremoval efficiency was evaluated to further assess the biosorption capability of the dead biosorbent. These complex influences were correlated by means of a modeling procedure consisting in data driven approach in which the principles of artificial intelligence were applied with the help of support vector machines (SVM), combined with genetic algorithms (GA). According to our data, the optimal working conditions for the removal of 98.91% Cd(II) by T. viride were found for an aqueous solution containing 26.11 mg/L Cd(II) as follows: pH 6.0, contact time of 3833 min, 8 g/L biosorbent, temperature 46.5 °C. The complete characterization of bioremoval parameters indicates that T. viride is an excellent material to treat wastewater containing low concentrations of metal.

  20. Vectorcardiographic loop alignment for fetal movement detection using the expectation-maximization algorithm and support vector machines.

    PubMed

    Vullings, R; Mischi, M

    2013-01-01

    Reduced fetal movement is an important parameter to assess fetal distress. Currently, no suitable methods are available that can objectively assess fetal movement during pregnancy. Fetal vectorcardiographic (VCG) loop alignment could be such a method. In general, the goal of VCG loop alignment is to correct for motion-induced changes in the VCGs of (multiple) consecutive heartbeats. However, the parameters used for loop alignment also provide information to assess fetal movement. Unfortunately, current methods for VCG loop alignment are not robust against low-quality VCG signals. In this paper, a more robust method for VCG loop alignment is developed that includes a priori information on the loop alignment, yielding a maximum a posteriori loop alignment. Classification, based on movement parameters extracted from the alignment, is subsequently performed using support vector machines, resulting in correct classification of (absence of) fetal movement in about 75% of cases. After additional validation and optimization, this method can possibly be employed for continuous fetal movement monitoring.

  1. Support vector machine and mel frequency Cepstral coefficient based algorithm for hand gestures and bidirectional speech to text device

    NASA Astrophysics Data System (ADS)

    Balbin, Jessie R.; Padilla, Dionis A.; Fausto, Janette C.; Vergara, Ernesto M.; Garcia, Ramon G.; Delos Angeles, Bethsedea Joy S.; Dizon, Neil John A.; Mardo, Mark Kevin N.

    2017-02-01

    This research is about translating series of hand gesture to form a word and produce its equivalent sound on how it is read and said in Filipino accent using Support Vector Machine and Mel Frequency Cepstral Coefficient analysis. The concept is to detect Filipino speech input and translate the spoken words to their text form in Filipino. This study is trying to help the Filipino deaf community to impart their thoughts through the use of hand gestures and be able to communicate to people who do not know how to read hand gestures. This also helps literate deaf to simply read the spoken words relayed to them using the Filipino speech to text system.

  2. Authentication of the botanical origin of unifloral honey by infrared spectroscopy coupled with support vector machine algorithm

    NASA Astrophysics Data System (ADS)

    Lenhardt, L.; Zeković, I.; Dramićanin, T.; Tešić, Ž.; Milojković-Opsenica, D.; Dramićanin, M. D.

    2014-09-01

    In recent years, the potential of Fourier-transform infrared spectroscopy coupled with different chemometric tools in food analysis has been established. This technique is rapid, low cost, and reliable and requires little sample preparation. In this work, 130 Serbian unifloral honey samples (linden, acacia, and sunflower types) were analyzed using attenuated total reflectance infrared spectroscopy (ATR-IR). For each spectrum, 64 scans were recorded in wavenumbers between 4000 and 500 cm-1 and at a spectral resolution of 4 cm-1. These spectra were analyzed using principal component analysis (PCA), and calculated principal components were then used for support vector machine (SVM) training. In this way, the pattern-recognition tool is obtained for building a classification model for determining the botanical origin of honey. The PCA was used to analyze results and to see if the separation between groups of different types of honeys exists. Using the SVM, the classification model was built and classification errors were acquired. It has been observed that this technique is adequate for determining the botanical origin of honey with a success rate of 98.6%. Based on these results, it can be concluded that this technique offers many possibilities for future rapid qualitative analysis of honey.

  3. Analysis of dissection algorithms for vector computers

    NASA Technical Reports Server (NTRS)

    George, A.; Poole, W. G., Jr.; Voigt, R. G.

    1978-01-01

    Recently two dissection algorithms (one-way and incomplete nested dissection) have been developed for solving the sparse positive definite linear systems arising from n by n grid problems. Concurrently, vector computers (such as the CDC STAR-100 and TI ASC) have been developed for large scientific applications. An analysis of the use of dissection algorithms on vector computers dictates that vectors of maximum length be utilized thereby implying little or no dissection; on the other hand, minimizing operation counts suggest that considerable dissection be performed. In this paper we discuss the resolution of this conflict by minimizing the total time required by vectorized versions of the two algorithms.

  4. Progressive Classification Using Support Vector Machines

    NASA Technical Reports Server (NTRS)

    Wagstaff, Kiri; Kocurek, Michael

    2009-01-01

    An algorithm for progressive classification of data, analogous to progressive rendering of images, makes it possible to compromise between speed and accuracy. This algorithm uses support vector machines (SVMs) to classify data. An SVM is a machine learning algorithm that builds a mathematical model of the desired classification concept by identifying the critical data points, called support vectors. Coarse approximations to the concept require only a few support vectors, while precise, highly accurate models require far more support vectors. Once the model has been constructed, the SVM can be applied to new observations. The cost of classifying a new observation is proportional to the number of support vectors in the model. When computational resources are limited, an SVM of the appropriate complexity can be produced. However, if the constraints are not known when the model is constructed, or if they can change over time, a method for adaptively responding to the current resource constraints is required. This capability is particularly relevant for spacecraft (or any other real-time systems) that perform onboard data analysis. The new algorithm enables the fast, interactive application of an SVM classifier to a new set of data. The classification process achieved by this algorithm is characterized as progressive because a coarse approximation to the true classification is generated rapidly and thereafter iteratively refined. The algorithm uses two SVMs: (1) a fast, approximate one and (2) slow, highly accurate one. New data are initially classified by the fast SVM, producing a baseline approximate classification. For each classified data point, the algorithm calculates a confidence index that indicates the likelihood that it was classified correctly in the first pass. Next, the data points are sorted by their confidence indices and progressively reclassified by the slower, more accurate SVM, starting with the items most likely to be incorrectly classified. The user

  5. Image reconstruction for an electrical capacitance tomography system based on a least-squares support vector machine and a self-adaptive particle swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Xia; Hu, Hong-li; Liu, Fei; Gao, Xiang Xiang

    2011-10-01

    The task of image reconstruction for an electrical capacitance tomography (ECT) system is to determine the permittivity distribution and hence the phase distribution in a pipeline by measuring the electrical capacitances between sets of electrodes placed around its periphery. In view of the nonlinear relationship between the permittivity distribution and capacitances and the limited number of independent capacitance measurements, image reconstruction for ECT is a nonlinear and ill-posed inverse problem. To solve this problem, a new image reconstruction method for ECT based on a least-squares support vector machine (LS-SVM) combined with a self-adaptive particle swarm optimization (PSO) algorithm is presented. Regarded as a special small sample theory, the SVM avoids the issues appearing in artificial neural network methods such as difficult determination of a network structure, over-learning and under-learning. However, the SVM performs differently with different parameters. As a relatively new population-based evolutionary optimization technique, PSO is adopted to realize parameters' effective selection with the advantages of global optimization and rapid convergence. This paper builds up a 12-electrode ECT system and a pneumatic conveying platform to verify this image reconstruction algorithm. Experimental results indicate that the algorithm has good generalization ability and high-image reconstruction quality.

  6. Identification of Shearer Cutting Patterns Using Vibration Signals Based on a Least Squares Support Vector Machine with an Improved Fruit Fly Optimization Algorithm

    PubMed Central

    Si, Lei; Wang, Zhongbin; Liu, Xinhua; Tan, Chao; Liu, Ze; Xu, Jing

    2016-01-01

    Shearers play an important role in fully mechanized coal mining face and accurately identifying their cutting pattern is very helpful for improving the automation level of shearers and ensuring the safety of coal mining. The least squares support vector machine (LSSVM) has been proven to offer strong potential in prediction and classification issues, particularly by employing an appropriate meta-heuristic algorithm to determine the values of its two parameters. However, these meta-heuristic algorithms have the drawbacks of being hard to understand and reaching the global optimal solution slowly. In this paper, an improved fly optimization algorithm (IFOA) to optimize the parameters of LSSVM was presented and the LSSVM coupled with IFOA (IFOA-LSSVM) was used to identify the shearer cutting pattern. The vibration acceleration signals of five cutting patterns were collected and the special state features were extracted based on the ensemble empirical mode decomposition (EEMD) and the kernel function. Some examples on the IFOA-LSSVM model were further presented and the results were compared with LSSVM, PSO-LSSVM, GA-LSSVM and FOA-LSSVM models in detail. The comparison results indicate that the proposed approach was feasible, efficient and outperformed the others. Finally, an industrial application example at the coal mining face was demonstrated to specify the effect of the proposed system. PMID:26771615

  7. Multiplex protein pattern unmixing using a non-linear variable-weighted support vector machine as optimized by a particle swarm optimization algorithm.

    PubMed

    Yang, Qin; Zou, Hong-Yan; Zhang, Yan; Tang, Li-Juan; Shen, Guo-Li; Jiang, Jian-Hui; Yu, Ru-Qin

    2016-01-15

    Most of the proteins locate more than one organelle in a cell. Unmixing the localization patterns of proteins is critical for understanding the protein functions and other vital cellular processes. Herein, non-linear machine learning technique is proposed for the first time upon protein pattern unmixing. Variable-weighted support vector machine (VW-SVM) is a demonstrated robust modeling technique with flexible and rational variable selection. As optimized by a global stochastic optimization technique, particle swarm optimization (PSO) algorithm, it makes VW-SVM to be an adaptive parameter-free method for automated unmixing of protein subcellular patterns. Results obtained by pattern unmixing of a set of fluorescence microscope images of cells indicate VW-SVM as optimized by PSO is able to extract useful pattern features by optimally rescaling each variable for non-linear SVM modeling, consequently leading to improved performances in multiplex protein pattern unmixing compared with conventional SVM and other exiting pattern unmixing methods.

  8. Predicting the critical heat flux in concentric-tube open thermosiphon: a method based on support vector machine optimized by chaotic particle swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Cai, Jiejin

    2012-08-01

    This study presents a method based on support vector machine (SVM) optimized by chaotic particle swarm optimization algorithm (CPSO) for the prediction of the critical heat flux (CHF) in concentric-tube open thermosiphon. In this process, the parameters C, ɛ and δ2 of SVM have been determined by the CPSO. As for a comparision, the traditional back propagation neural network (BPNN), radial basis function neural network (RBFNN), general regression neural network (GRNN) are also used to predict the CHF for the same experimental results under a variety of operating conditions. The MER and RMSE of SVM-CPSO model are about 45% of the BPNN model, about 60% of the RBFNN model, and about 80% of GRNN model. The simulation results demonstrate that the SVM-CPSO method can get better accuracy.

  9. Support vector machines for spam categorization.

    PubMed

    Drucker, H; Wu, D; Vapnik, V N

    1999-01-01

    We study the use of support vector machines (SVM's) in classifying e-mail as spam or nonspam by comparing it to three other classification algorithms: Ripper, Rocchio, and boosting decision trees. These four algorithms were tested on two different data sets: one data set where the number of features were constrained to the 1000 best features and another data set where the dimensionality was over 7000. SVM's performed best when using binary features. For both data sets, boosting trees and SVM's had acceptable test performance in terms of accuracy and speed. However, SVM's had significantly less training time.

  10. Recursive algorithms for vector extrapolation methods

    NASA Technical Reports Server (NTRS)

    Ford, William F.; Sidi, Avram

    1988-01-01

    Three classes of recursion relations are devised for implementing some extrapolation methods for vector sequences. One class of recursion relations can be used to implement methods like the modified minimal polynomial extrapolation and the topological epsilon algorithm; another allows implementation of methods like minimal polynomial and reduced rank extrapolation; while the remaining class can be employed in the implementation of the vector E-algorithm. Operation counts and storage requirements for these methods are also discussed, and some related techniques for special applications are also presented. Included are methods for the rapid evaluations of the vector E-algorithm.

  11. Automated image segmentation using support vector machines

    NASA Astrophysics Data System (ADS)

    Powell, Stephanie; Magnotta, Vincent A.; Andreasen, Nancy C.

    2007-03-01

    Neurodegenerative and neurodevelopmental diseases demonstrate problems associated with brain maturation and aging. Automated methods to delineate brain structures of interest are required to analyze large amounts of imaging data like that being collected in several on going multi-center studies. We have previously reported on using artificial neural networks (ANN) to define subcortical brain structures including the thalamus (0.88), caudate (0.85) and the putamen (0.81). In this work, apriori probability information was generated using Thirion's demons registration algorithm. The input vector consisted of apriori probability, spherical coordinates, and an iris of surrounding signal intensity values. We have applied the support vector machine (SVM) machine learning algorithm to automatically segment subcortical and cerebellar regions using the same input vector information. SVM architecture was derived from the ANN framework. Training was completed using a radial-basis function kernel with gamma equal to 5.5. Training was performed using 15,000 vectors collected from 15 training images in approximately 10 minutes. The resulting support vectors were applied to delineate 10 images not part of the training set. Relative overlap calculated for the subcortical structures was 0.87 for the thalamus, 0.84 for the caudate, 0.84 for the putamen, and 0.72 for the hippocampus. Relative overlap for the cerebellar lobes ranged from 0.76 to 0.86. The reliability of the SVM based algorithm was similar to the inter-rater reliability between manual raters and can be achieved without rater intervention.

  12. Comparison of Support Vector Machine, Neural Network, and CART Algorithms for the Land-Cover Classification Using Limited Training Data Points

    EPA Science Inventory

    Support vector machine (SVM) was applied for land-cover characterization using MODIS time-series data. Classification performance was examined with respect to training sample size, sample variability, and landscape homogeneity (purity). The results were compared to two convention...

  13. Support Vector Machines and Generalisation in HEP

    NASA Astrophysics Data System (ADS)

    Bethani, A.; Bevan, A. J.; Hays, J.; Stevenson, T. J.

    2016-10-01

    We review the concept of support vector machines (SVMs) and discuss examples of their use. One of the benefits of SVM algorithms, compared with neural networks and decision trees is that they can be less susceptible to over fitting than those other algorithms are to over training. This issue is related to the generalisation of a multivariate algorithm (MVA); a problem that has often been overlooked in particle physics. We discuss cross validation and how this can be used to improve the generalisation of a MVA in the context of High Energy Physics analyses. The examples presented use the Toolkit for Multivariate Analysis (TMVA) based on ROOT and describe our improvements to the SVM functionality and new tools introduced for cross validation within this framework.

  14. Characterization and classification of seven citrus herbs by liquid chromatography-quadrupole time-of-flight mass spectrometry and genetic algorithm optimized support vector machines.

    PubMed

    Duan, Li; Guo, Long; Liu, Ke; Liu, E-Hu; Li, Ping

    2014-04-25

    Citrus herbs have been widely used in traditional medicine and cuisine in China and other countries since the ancient time. However, the authentication and quality control of Citrus herbs has always been a challenging task due to their similar morphological characteristics and the diversity of the multi-components existed in the complicated matrix. In the present investigation, we developed a novel strategy to characterize and classify seven Citrus herbs based on chromatographic analysis and chemometric methods. Firstly, the chemical constituents in seven Citrus herbs were globally characterized by liquid chromatography combined with quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). Based on their retention time, UV spectra and MS fragmentation behavior, a total of 75 compounds were identified or tentatively characterized in these herbal medicines. Secondly, a segmental monitoring method based on LC-variable wavelength detection was developed for simultaneous quantification of ten marker compounds in these Citrus herbs. Thirdly, based on the contents of the ten analytes, genetic algorithm optimized support vector machines (GA-SVM) was employed to differentiate and classify the 64 samples covering these seven herbs. The obtained classifier showed good prediction performance and the overall prediction accuracy reached 96.88%. The proposed strategy is expected to provide new insight for authentication and quality control of traditional herbs.

  15. A hybrid model of support vector regression with genetic algorithm for forecasting adsorption of malachite green onto multi-walled carbon nanotubes: central composite design optimization.

    PubMed

    Ghaedi, M; Dashtian, K; Ghaedi, A M; Dehghanian, N

    2016-05-11

    The aim of this work is the study of the predictive ability of a hybrid model of support vector regression with genetic algorithm optimization (GA-SVR) for the adsorption of malachite green (MG) onto multi-walled carbon nanotubes (MWCNTs). Various factors were investigated by central composite design and optimum conditions was set as: pH 8, 0.018 g MWCNTs, 8 mg L(-1) dye mixed with 50 mL solution thoroughly for 10 min. The Langmuir, Freundlich, Temkin and D-R isothermal models are applied to fitting the experimental data, and the data was well explained by the Langmuir model with a maximum adsorption capacity of 62.11-80.64 mg g(-1) in a short time at 25 °C. Kinetic studies at various adsorbent dosages and the initial MG concentration show that maximum MG removal was achieved within 10 min of the start of every experiment under most conditions. The adsorption obeys the pseudo-second-order rate equation in addition to the intraparticle diffusion model. The optimal parameters (C of 0.2509, σ(2) of 0.1288 and ε of 0.2018) for the SVR model were obtained based on the GA. For the testing data set, MSE values of 0.0034 and the coefficient of determination (R(2)) values of 0.9195 were achieved.

  16. A Novel Hybrid Feature Selection Model for Classification of Neuromuscular Dystrophies Using Bhattacharyya Coefficient, Genetic Algorithm and Radial Basis Function Based Support Vector Machine.

    PubMed

    Anand, Divya; Pandey, Babita; Pandey, Devendra K

    2016-09-17

    An accurate classification of neuromuscular disorders is important in providing proper treatment facilities to the patients. Recently, the microarray technology is employed to monitor the level of activity or expression of large number of genes simultaneously. The gene expression data derived from the microarray experiment usually involve a large number of genes but a very few number of samples. There is a need to reduce the dimension of gene expression data which intends to find a small set of discriminative genes that accurately classifies the samples of various kinds of diseases. So, our goal is to find a small subset of genes which ensures the accurate classification of neuromuscular disorders. In the present paper, we propose a novel hybrid feature selection model for classification of neuromuscular disorders. The process of feature selection is done in two phases by integrating Bhattacharyya coefficient and genetic algorithm (GA). In the first phase, we find Bhattacharyya coefficient to choose a candidate gene subset by removing the most redundant genes. In the second phase, the target gene subset is created by selecting the most discriminative gene subset by applying GA wherein the fitness function is calculated using radial basis function support vector machine (RBF SVM). The proposed hybrid algorithm is applied on two publicly available microarray neuromuscular disorders datasets. The results are compared with two individual techniques of feature selection, namely Bhattacharyya coefficient and GA, and one integrated technique, i.e., Bhattacharyya-GA wherein the fitness function of GA is calculated using four other classifiers, which shows that the proposed integrated method is capable of giving the better classification accuracy.

  17. [Research on QSPR for n-octanol-water partition coefficients of organic compounds based on genetic algorithms-support vector machine and genetic algorithms-radial basis function neural networks].

    PubMed

    Qi, Jun; Niu, Jun-Feng; Wang, Li-Li

    2008-01-01

    A modified method to develop quantitative structure-property relationship (QSPR) models of organic compounds was proposed based on genetic algorithm (GA) and support vector machine (SVM) (GA-SVM). GA was used to perform the variable selection, and SVM was used to construct QSPR models. GA-SVM was applied to develop the QSPR models for n-octanol-water partition coefficients ( Kow) of 38 typical organic compounds in food industry. 5 descriptors (molecular weights, Hansen polarity, boiling point, percent oxygen and percent hydrogen) were selected in the QSPR model. The coefficient of multiple determination (R2), the sum of squares due to error (SSE) and the root mean squared error (RMSE) values between the measured values and predicted values of the model developed by GA-SVM are 0.999, 0.048 and 0.036, respectively, indicating good predictive capability for lgKow values of these organic compounds. Based on leave-one-out cross validation, the QSPR model constructed by GA-SVM showed good robustness (SSE = 0.295, RMSE = 0.089, R2 = 0.995). Moreover, the models developed by GA-SVM were compared with the models constructed by genetic algorithm-radial basis function neural network (GA-RBFNN) and linear method. The models constructed by GA-SVM show the optimal predictive capability and robustness in the comparison, which illustrates GA-SVM is the optimal method for developing QSPR models for lgKow values of these organic compounds.

  18. Automated Vectorization of Decision-Based Algorithms

    NASA Technical Reports Server (NTRS)

    James, Mark

    2006-01-01

    Virtually all existing vectorization algorithms are designed to only analyze the numeric properties of an algorithm and distribute those elements across multiple processors. This advances the state of the practice because it is the only known system, at the time of this reporting, that takes high-level statements and analyzes them for their decision properties and converts them to a form that allows them to automatically be executed in parallel. The software takes a high-level source program that describes a complex decision- based condition and rewrites it as a disjunctive set of component Boolean relations that can then be executed in parallel. This is important because parallel architectures are becoming more commonplace in conventional systems and they have always been present in NASA flight systems. This technology allows one to take existing condition-based code and automatically vectorize it so it naturally decomposes across parallel architectures.

  19. Ranking Support Vector Machine with Kernel Approximation

    PubMed Central

    Dou, Yong

    2017-01-01

    Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms. PMID:28293256

  20. Ranking Support Vector Machine with Kernel Approximation.

    PubMed

    Chen, Kai; Li, Rongchun; Dou, Yong; Liang, Zhengfa; Lv, Qi

    2017-01-01

    Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms.

  1. When do support vector machines work fast?

    SciTech Connect

    Steinwart, I.; Scovel, James C.

    2004-01-01

    The authors establish learning rates to the Bayes risk for support vector machines (SVM's) with hinge loss. Since a theorem of Devroyte states that no learning algorithm can learn with a uniform rate to the Bayes risk for all probability distributions they have to restrict the class of considered distributions: in order to obtain fast rates they assume a noise condition recently proposed by Tsybakov and an approximation condition in terms of the distribution and the reproducing kernel Hilbert space used by the SVM. for Gaussian RBF kernels with varying widths they propose a geometric noise assumption on the distribution which ensures the approximation condition. This geometric assumption is not in terms of smoothness but describes the concentration of the marginal distribution near the decision boundary. In particular they are able to describe nontrivial classes of distributions for which SVM's using a Gaussian kernel can learn with almost linear rate.

  2. Natural evolution of neural support vector machines.

    PubMed

    Jändel, Magnus

    2011-01-01

    Two different neural implementations of support vector machines are described and applied to one-shot trainable pattern recognition. The first model is based on oscillating associative memory and is mapped to the olfactory system. The second model is founded on competitive queuing memory originally employed for generating motor action sequences in the brain. Both models include forward pathways where a stream of support vectors is evoked from memory and merges with sensory input to produce support vector machine classifications. Misclassified events are imprinted as new support vector candidates. Support vector machine weights are tuned by virtual experimentation in sleep. Recalled training examples masquerade as sensor input and feedback from the classification process drives a learning process where support vector weights are optimized. For both support vector machine models it is demonstrated that there is a plausible evolutionary path from a simple hard-wired pattern recognizer to a full implementation of a biological kernel machine. Simple and individually beneficial modifications are accumulated in each step along this path. Neural support vector machines can apparently emerge by natural processes.

  3. Support Vector Machines: Relevance Feedback and Information Retrieval.

    ERIC Educational Resources Information Center

    Drucker, Harris; Shahrary, Behzad; Gibbon, David C.

    2002-01-01

    Compares support vector machines (SVMs) to Rocchio, Ide regular and Ide dec-hi algorithms in information retrieval (IR) of text documents using relevancy feedback. If the preliminary search is so poor that one has to search through many documents to find at least one relevant document, then SVM is preferred. Includes nine tables. (Contains 24…

  4. Quantum Support Vector Machine for Big Data Classification

    NASA Astrophysics Data System (ADS)

    Rebentrost, Patrick; Mohseni, Masoud; Lloyd, Seth

    2014-09-01

    Supervised machine learning is the classification of new data based on already classified training examples. In this work, we show that the support vector machine, an optimized binary classifier, can be implemented on a quantum computer, with complexity logarithmic in the size of the vectors and the number of training examples. In cases where classical sampling algorithms require polynomial time, an exponential speedup is obtained. At the core of this quantum big data algorithm is a nonsparse matrix exponentiation technique for efficiently performing a matrix inversion of the training data inner-product (kernel) matrix.

  5. Quantum support vector machine for big data classification.

    PubMed

    Rebentrost, Patrick; Mohseni, Masoud; Lloyd, Seth

    2014-09-26

    Supervised machine learning is the classification of new data based on already classified training examples. In this work, we show that the support vector machine, an optimized binary classifier, can be implemented on a quantum computer, with complexity logarithmic in the size of the vectors and the number of training examples. In cases where classical sampling algorithms require polynomial time, an exponential speedup is obtained. At the core of this quantum big data algorithm is a nonsparse matrix exponentiation technique for efficiently performing a matrix inversion of the training data inner-product (kernel) matrix.

  6. TWSVR: Regression via Twin Support Vector Machine.

    PubMed

    Khemchandani, Reshma; Goyal, Keshav; Chandra, Suresh

    2016-02-01

    Taking motivation from Twin Support Vector Machine (TWSVM) formulation, Peng (2010) attempted to propose Twin Support Vector Regression (TSVR) where the regressor is obtained via solving a pair of quadratic programming problems (QPPs). In this paper we argue that TSVR formulation is not in the true spirit of TWSVM. Further, taking motivation from Bi and Bennett (2003), we propose an alternative approach to find a formulation for Twin Support Vector Regression (TWSVR) which is in the true spirit of TWSVM. We show that our proposed TWSVR can be derived from TWSVM for an appropriately constructed classification problem. To check the efficacy of our proposed TWSVR we compare its performance with TSVR and classical Support Vector Regression(SVR) on various regression datasets.

  7. An affine projection algorithm using grouping selection of input vectors

    NASA Astrophysics Data System (ADS)

    Shin, JaeWook; Kong, NamWoong; Park, PooGyeon

    2011-10-01

    This paper present an affine projection algorithm (APA) using grouping selection of input vectors. To improve the performance of conventional APA, the proposed algorithm adjusts the number of the input vectors using two procedures: grouping procedure and selection procedure. In grouping procedure, the some input vectors that have overlapping information for update is grouped using normalized inner product. Then, few input vectors that have enough information for for coefficient update is selected using steady-state mean square error (MSE) in selection procedure. Finally, the filter coefficients update using selected input vectors. The experimental results show that the proposed algorithm has small steady-state estimation errors comparing with the existing algorithms.

  8. Incremental learning for ν-Support Vector Regression.

    PubMed

    Gu, Bin; Sheng, Victor S; Wang, Zhijie; Ho, Derek; Osman, Said; Li, Shuo

    2015-07-01

    The ν-Support Vector Regression (ν-SVR) is an effective regression learning algorithm, which has the advantage of using a parameter ν on controlling the number of support vectors and adjusting the width of the tube automatically. However, compared to ν-Support Vector Classification (ν-SVC) (Schölkopf et al., 2000), ν-SVR introduces an additional linear term into its objective function. Thus, directly applying the accurate on-line ν-SVC algorithm (AONSVM) to ν-SVR will not generate an effective initial solution. It is the main challenge to design an incremental ν-SVR learning algorithm. To overcome this challenge, we propose a special procedure called initial adjustments in this paper. This procedure adjusts the weights of ν-SVC based on the Karush-Kuhn-Tucker (KKT) conditions to prepare an initial solution for the incremental learning. Combining the initial adjustments with the two steps of AONSVM produces an exact and effective incremental ν-SVR learning algorithm (INSVR). Theoretical analysis has proven the existence of the three key inverse matrices, which are the cornerstones of the three steps of INSVR (including the initial adjustments), respectively. The experiments on benchmark datasets demonstrate that INSVR can avoid the infeasible updating paths as far as possible, and successfully converges to the optimal solution. The results also show that INSVR is faster than batch ν-SVR algorithms with both cold and warm starts.

  9. Optimized support vector regression for drilling rate of penetration estimation

    NASA Astrophysics Data System (ADS)

    Bodaghi, Asadollah; Ansari, Hamid Reza; Gholami, Mahsa

    2015-12-01

    In the petroleum industry, drilling optimization involves the selection of operating conditions for achieving the desired depth with the minimum expenditure while requirements of personal safety, environment protection, adequate information of penetrated formations and productivity are fulfilled. Since drilling optimization is highly dependent on the rate of penetration (ROP), estimation of this parameter is of great importance during well planning. In this research, a novel approach called `optimized support vector regression' is employed for making a formulation between input variables and ROP. Algorithms used for optimizing the support vector regression are the genetic algorithm (GA) and the cuckoo search algorithm (CS). Optimization implementation improved the support vector regression performance by virtue of selecting proper values for its parameters. In order to evaluate the ability of optimization algorithms in enhancing SVR performance, their results were compared to the hybrid of pattern search and grid search (HPG) which is conventionally employed for optimizing SVR. The results demonstrated that the CS algorithm achieved further improvement on prediction accuracy of SVR compared to the GA and HPG as well. Moreover, the predictive model derived from back propagation neural network (BPNN), which is the traditional approach for estimating ROP, is selected for comparisons with CSSVR. The comparative results revealed the superiority of CSSVR. This study inferred that CSSVR is a viable option for precise estimation of ROP.

  10. Adaptation of a support vector machine algorithm for segmentation and visualization of retinal structures in volumetric optical coherence tomography data sets

    PubMed Central

    Zawadzki, Robert J.; Fuller, Alfred R.; Wiley, David F.; Hamann, Bernd; Choi, Stacey S.; Werner, John S.

    2008-01-01

    Recent developments in Fourier domain—optical coherence tomography (Fd-OCT) have increased the acquisition speed of current ophthalmic Fd-OCT instruments sufficiently to allow the acquisition of volumetric data sets of human retinas in a clinical setting. The large size and three-dimensional (3D) nature of these data sets require that intelligent data processing, visualization, and analysis tools are used to take full advantage of the available information. Therefore, we have combined methods from volume visualization, and data analysis in support of better visualization and diagnosis of Fd-OCT retinal volumes. Custom-designed 3D visualization and analysis software is used to view retinal volumes reconstructed from registered B-scans. We use a support vector machine (SVM) to perform semiautomatic segmentation of retinal layers and structures for subsequent analysis including a comparison of measured layer thicknesses. We have modified the SVM to gracefully handle OCT speckle noise by treating it as a characteristic of the volumetric data. Our software has been tested successfully in clinical settings for its efficacy in assessing 3D retinal structures in healthy as well as diseased cases. Our tool facilitates diagnosis and treatment monitoring of retinal diseases. PMID:17867795

  11. Foot gait time series estimation based on support vector machine.

    PubMed

    Pant, Jeevan K; Krishnan, Sridhar

    2014-01-01

    A new algorithm for the estimation of stride interval time series from foot gait signals is proposed. The algorithm is based on the detection of beginning of heel strikes in the signal by using the support vector machine. Morphological operations are used to enhance the accuracy of detection. By taking backward differences of the detected beginning of heel strikes, stride interval time series is estimated. Simulation results are presented which shows that the proposed algorithm yields fairly accurate estimation of stride interval time series where estimation error for mean and standard deviation of the time series is of the order of 10(-4).

  12. Support Vector Machine Implementations for Classification & Clustering

    PubMed Central

    Winters-Hilt, Stephen; Yelundur, Anil; McChesney, Charlie; Landry, Matthew

    2006-01-01

    Background We describe Support Vector Machine (SVM) applications to classification and clustering of channel current data. SVMs are variational-calculus based methods that are constrained to have structural risk minimization (SRM), i.e., they provide noise tolerant solutions for pattern recognition. The SVM approach encapsulates a significant amount of model-fitting information in the choice of its kernel. In work thus far, novel, information-theoretic, kernels have been successfully employed for notably better performance over standard kernels. Currently there are two approaches for implementing multiclass SVMs. One is called external multi-class that arranges several binary classifiers as a decision tree such that they perform a single-class decision making function, with each leaf corresponding to a unique class. The second approach, namely internal-multiclass, involves solving a single optimization problem corresponding to the entire data set (with multiple hyperplanes). Results Each SVM approach encapsulates a significant amount of model-fitting information in its choice of kernel. In work thus far, novel, information-theoretic, kernels were successfully employed for notably better performance over standard kernels. Two SVM approaches to multiclass discrimination are described: (1) internal multiclass (with a single optimization), and (2) external multiclass (using an optimized decision tree). We describe benefits of the internal-SVM approach, along with further refinements to the internal-multiclass SVM algorithms that offer significant improvement in training time without sacrificing accuracy. In situations where the data isn't clearly separable, making for poor discrimination, signal clustering is used to provide robust and useful information – to this end, novel, SVM-based clustering methods are also described. As with the classification, there are Internal and External SVM Clustering algorithms, both of which are briefly described. PMID:17118147

  13. Support Vector Machine with Ensemble Tree Kernel for Relation Extraction

    PubMed Central

    Fu, Hui; Du, Zhiguo

    2016-01-01

    Relation extraction is one of the important research topics in the field of information extraction research. To solve the problem of semantic variation in traditional semisupervised relation extraction algorithm, this paper proposes a novel semisupervised relation extraction algorithm based on ensemble learning (LXRE). The new algorithm mainly uses two kinds of support vector machine classifiers based on tree kernel for integration and integrates the strategy of constrained extension seed set. The new algorithm can weaken the inaccuracy of relation extraction, which is caused by the phenomenon of semantic variation. The numerical experimental research based on two benchmark data sets (PropBank and AIMed) shows that the LXRE algorithm proposed in the paper is superior to other two common relation extraction methods in four evaluation indexes (Precision, Recall, F-measure, and Accuracy). It indicates that the new algorithm has good relation extraction ability compared with others. PMID:27118966

  14. Multiclass Reduced-Set Support Vector Machines

    NASA Technical Reports Server (NTRS)

    Tang, Benyang; Mazzoni, Dominic

    2006-01-01

    There are well-established methods for reducing the number of support vectors in a trained binary support vector machine, often with minimal impact on accuracy. We show how reduced-set methods can be applied to multiclass SVMs made up of several binary SVMs, with significantly better results than reducing each binary SVM independently. Our approach is based on Burges' approach that constructs each reduced-set vector as the pre-image of a vector in kernel space, but we extend this by recomputing the SVM weights and bias optimally using the original SVM objective function. This leads to greater accuracy for a binary reduced-set SVM, and also allows vectors to be 'shared' between multiple binary SVMs for greater multiclass accuracy with fewer reduced-set vectors. We also propose computing pre-images using differential evolution, which we have found to be more robust than gradient descent alone. We show experimental results on a variety of problems and find that this new approach is consistently better than previous multiclass reduced-set methods, sometimes with a dramatic difference.

  15. Thrust vector control algorithm design for the Cassini spacecraft

    NASA Technical Reports Server (NTRS)

    Enright, Paul J.

    1993-01-01

    This paper describes a preliminary design of the thrust vector control algorithm for the interplanetary spacecraft, Cassini. Topics of discussion include flight software architecture, modeling of sensors, actuators, and vehicle dynamics, and controller design and analysis via classical methods. Special attention is paid to potential interactions with structural flexibilities and propellant dynamics. Controller performance is evaluated in a simulation environment built around a multi-body dynamics model, which contains nonlinear models of the relevant hardware and preliminary versions of supporting attitude determination and control functions.

  16. Thrust vector control algorithm design for the Cassini spacecraft

    NASA Astrophysics Data System (ADS)

    Enright, Paul J.

    1993-02-01

    This paper describes a preliminary design of the thrust vector control algorithm for the interplanetary spacecraft, Cassini. Topics of discussion include flight software architecture, modeling of sensors, actuators, and vehicle dynamics, and controller design and analysis via classical methods. Special attention is paid to potential interactions with structural flexibilities and propellant dynamics. Controller performance is evaluated in a simulation environment built around a multi-body dynamics model, which contains nonlinear models of the relevant hardware and preliminary versions of supporting attitude determination and control functions.

  17. Biologically relevant neural network architectures for support vector machines.

    PubMed

    Jändel, Magnus

    2014-01-01

    Neural network architectures that implement support vector machines (SVM) are investigated for the purpose of modeling perceptual one-shot learning in biological organisms. A family of SVM algorithms including variants of maximum margin, 1-norm, 2-norm and ν-SVM is considered. SVM training rules adapted for neural computation are derived. It is found that competitive queuing memory (CQM) is ideal for storing and retrieving support vectors. Several different CQM-based neural architectures are examined for each SVM algorithm. Although most of the sixty-four scanned architectures are unconvincing for biological modeling four feasible candidates are found. The seemingly complex learning rule of a full ν-SVM implementation finds a particularly simple and natural implementation in bisymmetric architectures. Since CQM-like neural structures are thought to encode skilled action sequences and bisymmetry is ubiquitous in motor systems it is speculated that trainable pattern recognition in low-level perception has evolved as an internalized motor programme.

  18. Flood Classification Using Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Melsen, Lieke A.; Torfs, Paul J. J.; Brauer, Claudia C.

    2013-04-01

    Lowland floods are in general considered to be less extreme than mountainous floods. In order to investigate this, seven lowland floods in the Netherlands were selected and compared to mountainous floods from the study of Marchi et al. (2010). Both a 2D and 3D approach of the statistical two-group classification method support vector machines (Cortes and Vapnik, 1995) were used to find a statistical difference between the two flood types. Support vector machines were able to draw a decision plane between the two flood types, misclassifying one out of seven lowland floods, and one out of 67 mountainous floods. The main difference between the two flood types can be found in the runoff coefficient (with lowland floods having a lower runoff coefficient than mountainous floods), the cumulative precipitation causing the flood (which was lower for lowland floods), and, obviously, the relief ratio. Support vector machines have proved to be useful for flood classification and might be applicable in future classification studies. References Cortes, C., and V. Vapnik. "Support-Vector Networks." Machine Learning 20: (1995) 273-297. Marchi, L., M. Borga, E. Preciso, and E. Gaume. "Characterisation of selected extreme flash floods in Europe and implications for flood risk management." Journal of Hydrology 394: (2010) 118-133.

  19. Optimization of Support Vector Machine (SVM) for Object Classification

    NASA Technical Reports Server (NTRS)

    Scholten, Matthew; Dhingra, Neil; Lu, Thomas T.; Chao, Tien-Hsin

    2012-01-01

    The Support Vector Machine (SVM) is a powerful algorithm, useful in classifying data into species. The SVMs implemented in this research were used as classifiers for the final stage in a Multistage Automatic Target Recognition (ATR) system. A single kernel SVM known as SVMlight, and a modified version known as a SVM with K-Means Clustering were used. These SVM algorithms were tested as classifiers under varying conditions. Image noise levels varied, and the orientation of the targets changed. The classifiers were then optimized to demonstrate their maximum potential as classifiers. Results demonstrate the reliability of SVM as a method for classification. From trial to trial, SVM produces consistent results.

  20. Vector algorithms for geometrically nonlinear 3D finite element analysis

    NASA Technical Reports Server (NTRS)

    Whitcomb, John D.

    1989-01-01

    Algorithms for geometrically nonlinear finite element analysis are presented which exploit the vector processing capability of the VPS-32, which is closely related to the CYBER 205. By manipulating vectors (which are long lists of numbers) rather than individual numbers, very high processing speeds are obtained. Long vector lengths are obtained without extensive replication or reordering by storage of intermediate results in strategic patterns at all stages of the computations. Comparisons of execution times with those from programs using either scalar or other vector programming techniques indicate that the algorithms presented are quite efficient.

  1. Support vector machine for automatic pain recognition

    NASA Astrophysics Data System (ADS)

    Monwar, Md Maruf; Rezaei, Siamak

    2009-02-01

    Facial expressions are a key index of emotion and the interpretation of such expressions of emotion is critical to everyday social functioning. In this paper, we present an efficient video analysis technique for recognition of a specific expression, pain, from human faces. We employ an automatic face detector which detects face from the stored video frame using skin color modeling technique. For pain recognition, location and shape features of the detected faces are computed. These features are then used as inputs to a support vector machine (SVM) for classification. We compare the results with neural network based and eigenimage based automatic pain recognition systems. The experiment results indicate that using support vector machine as classifier can certainly improve the performance of automatic pain recognition system.

  2. A Novel Support Vector Machine with Globality-Locality Preserving

    PubMed Central

    Ma, Cheng-Long; Yuan, Yu-Bo

    2014-01-01

    Support vector machine (SVM) is regarded as a powerful method for pattern classification. However, the solution of the primal optimal model of SVM is susceptible for class distribution and may result in a nonrobust solution. In order to overcome this shortcoming, an improved model, support vector machine with globality-locality preserving (GLPSVM), is proposed. It introduces globality-locality preserving into the standard SVM, which can preserve the manifold structure of the data space. We complete rich experiments on the UCI machine learning data sets. The results validate the effectiveness of the proposed model, especially on the Wine and Iris databases; the recognition rate is above 97% and outperforms all the algorithms that were developed from SVM. PMID:25045750

  3. Adaptive support vector regression for UAV flight control.

    PubMed

    Shin, Jongho; Jin Kim, H; Kim, Youdan

    2011-01-01

    This paper explores an application of support vector regression for adaptive control of an unmanned aerial vehicle (UAV). Unlike neural networks, support vector regression (SVR) generates global solutions, because SVR basically solves quadratic programming (QP) problems. With this advantage, the input-output feedback-linearized inverse dynamic model and the compensation term for the inversion error are identified off-line, which we call I-SVR (inversion SVR) and C-SVR (compensation SVR), respectively. In order to compensate for the inversion error and the unexpected uncertainty, an online adaptation algorithm for the C-SVR is proposed. Then, the stability of the overall error dynamics is analyzed by the uniformly ultimately bounded property in the nonlinear system theory. In order to validate the effectiveness of the proposed adaptive controller, numerical simulations are performed on the UAV model.

  4. Feature clustering in direct eigen-vector data reduction using support vector machines

    NASA Astrophysics Data System (ADS)

    Riasati, Vahid R.; Gao, Wenhue

    2012-06-01

    Principal Component Analysis (PCA) has been used in a variety of applications like feature extraction for classification, data compression and dimensionality reduction. Often, a small set of principal components are sufficient to capture the largest variations in the data. As a result, the eigen-values of the data covariance matrix with the lowest magnitude are ignored (along with their corresponding eigen-vectors) and the remaining eigenvectors are used for a 'coarse' representation of the data. It is well known that this process of choosing a few principal components naturally induces a loss in information from a signal reconstruction standpoint. We propose a new technique to represent the data in terms of a new set of basis vectors where the high-frequency detail is preserved, at the expense of a 'feature-scale blurring'. In other words, the 'blurring' that occurs due to possible colinearities in the bases vectors is relative to the eigen-features' scales; this is inherently different from a systematic blurring function. Instead of thresholding the eigen-values, we retain all eigen-values, and apply thresholds on the components of each eigen-vector separately. The resulting basis vectors can no longer be interpreted as eigenvectors and will, in general, lose their orthogonality properties, but offer benefits in terms of preserving detail that is crucial for classification tasks. We test the merits of this new basis representation for magnitude synthetic aperture radar (SAR) Automatic Target Recognition (ATR). A feature vector is obtained by projecting a SAR image onto the aforementioned basis. Decision engines such as support vector machines (SVMs) are trained on example feature vectors per class and ultimately used to recognize the target class in real-time. Experimental validation are performed on the MSTAR database and involve comparisons against a PCA based ATR algorithm.

  5. A recurrent support vector regression model in rainfall forecasting

    NASA Astrophysics Data System (ADS)

    Pai, Ping-Feng; Hong, Wei-Chiang

    2007-03-01

    To minimize potential loss of life and property caused by rainfall during typhoon seasons, precise rainfall forecasts have been one of the key subjects in hydrological research. However, rainfall forecast is made difficult by some very complicated and unforeseen physical factors associated with rainfall. Recently, support vector regression (SVR) models and recurrent SVR (RSVR) models have been successfully employed to solve time-series problems in some fields. Nevertheless, the use of RSVR models in rainfall forecasting has not been investigated widely. This study attempts to improve the forecasting accuracy of rainfall by taking advantage of the unique strength of the SVR model, genetic algorithms, and the recurrent network architecture. The performance of genetic algorithms with different mutation rates and crossover rates in SVR parameter selection is examined. Simulation results identify the RSVR with genetic algorithms model as being an effective means of forecasting rainfall amount. Copyright

  6. Modeling and performance analysis of GPS vector tracking algorithms

    NASA Astrophysics Data System (ADS)

    Lashley, Matthew

    This dissertation provides a detailed analysis of GPS vector tracking algorithms and the advantages they have over traditional receiver architectures. Standard GPS receivers use a decentralized architecture that separates the tasks of signal tracking and position/velocity estimation. Vector tracking algorithms combine the two tasks into a single algorithm. The signals from the various satellites are processed collectively through a Kalman filter. The advantages of vector tracking over traditional, scalar tracking methods are thoroughly investigated. A method for making a valid comparison between vector and scalar tracking loops is developed. This technique avoids the ambiguities encountered when attempting to make a valid comparison between tracking loops (which are characterized by noise bandwidths and loop order) and the Kalman filters (which are characterized by process and measurement noise covariance matrices) that are used by vector tracking algorithms. The improvement in performance offered by vector tracking is calculated in multiple different scenarios. Rule of thumb analysis techniques for scalar Frequency Lock Loops (FLL) are extended to the vector tracking case. The analysis tools provide a simple method for analyzing the performance of vector tracking loops. The analysis tools are verified using Monte Carlo simulations. Monte Carlo simulations are also used to study the effects of carrier to noise power density (C/N0) ratio estimation and the advantage offered by vector tracking over scalar tracking. The improvement from vector tracking ranges from 2.4 to 6.2 dB in various scenarios. The difference in the performance of the three vector tracking architectures is analyzed. The effects of using a federated architecture with and without information sharing between the receiver's channels are studied. A combination of covariance analysis and Monte Carlo simulation is used to analyze the performance of the three algorithms. The federated algorithm without

  7. An efficient parallel algorithm for matrix-vector multiplication

    SciTech Connect

    Hendrickson, B.; Leland, R.; Plimpton, S.

    1993-03-01

    The multiplication of a vector by a matrix is the kernel computation of many algorithms in scientific computation. A fast parallel algorithm for this calculation is therefore necessary if one is to make full use of the new generation of parallel supercomputers. This paper presents a high performance, parallel matrix-vector multiplication algorithm that is particularly well suited to hypercube multiprocessors. For an n x n matrix on p processors, the communication cost of this algorithm is O(n/[radical]p + log(p)), independent of the matrix sparsity pattern. The performance of the algorithm is demonstrated by employing it as the kernel in the well-known NAS conjugate gradient benchmark, where a run time of 6.09 seconds was observed. This is the best published performance on this benchmark achieved to date using a massively parallel supercomputer.

  8. Fast modular network implementation for support vector machines.

    PubMed

    Huang, Guang-Bin; Mao, K Z; Siew, Chee-Kheong; Huang, De-Shuang

    2005-11-01

    Support vector machines (SVMs) have been extensively used. However, it is known that SVMs face difficulty in solving large complex problems due to the intensive computation involved in their training algorithms, which are at least quadratic with respect to the number of training examples. This paper proposes a new, simple, and efficient network architecture which consists of several SVMs each trained on a small subregion of the whole data sampling space and the same number of simple neural quantizer modules which inhibit the outputs of all the remote SVMs and only allow a single local SVM to fire (produce actual output) at any time. In principle, this region-computing based modular network method can significantly reduce the learning time of SVM algorithms without sacrificing much generalization performance. The experiments on a few real large complex benchmark problems demonstrate that our method can be significantly faster than single SVMs without losing much generalization performance.

  9. An assessment of support vector machines for land cover classification

    USGS Publications Warehouse

    Huang, C.; Davis, L.S.; Townshend, J.R.G.

    2002-01-01

    The support vector machine (SVM) is a group of theoretically superior machine learning algorithms. It was found competitive with the best available machine learning algorithms in classifying high-dimensional data sets. This paper gives an introduction to the theoretical development of the SVM and an experimental evaluation of its accuracy, stability and training speed in deriving land cover classifications from satellite images. The SVM was compared to three other popular classifiers, including the maximum likelihood classifier (MLC), neural network classifiers (NNC) and decision tree classifiers (DTC). The impacts of kernel configuration on the performance of the SVM and of the selection of training data and input variables on the four classifiers were also evaluated in this experiment.

  10. Vectorization of linear discrete filtering algorithms

    NASA Technical Reports Server (NTRS)

    Schiess, J. R.

    1977-01-01

    Linear filters, including the conventional Kalman filter and versions of square root filters devised by Potter and Carlson, are studied for potential application on streaming computers. The square root filters are known to maintain a positive definite covariance matrix in cases in which the Kalman filter diverges due to ill-conditioning of the matrix. Vectorization of the filters is discussed, and comparisons are made of the number of operations and storage locations required by each filter. The Carlson filter is shown to be the most efficient of the filters on the Control Data STAR-100 computer.

  11. Fast and Accurate Support Vector Machines on Large Scale Systems

    SciTech Connect

    Vishnu, Abhinav; Narasimhan, Jayenthi; Holder, Larry; Kerbyson, Darren J.; Hoisie, Adolfy

    2015-09-08

    Support Vector Machines (SVM) is a supervised Machine Learning and Data Mining (MLDM) algorithm, which has become ubiquitous largely due to its high accuracy and obliviousness to dimensionality. The objective of SVM is to find an optimal boundary --- also known as hyperplane --- which separates the samples (examples in a dataset) of different classes by a maximum margin. Usually, very few samples contribute to the definition of the boundary. However, existing parallel algorithms use the entire dataset for finding the boundary, which is sub-optimal for performance reasons. In this paper, we propose a novel distributed memory algorithm to eliminate the samples which do not contribute to the boundary definition in SVM. We propose several heuristics, which range from early (aggressive) to late (conservative) elimination of the samples, such that the overall time for generating the boundary is reduced considerably. In a few cases, a sample may be eliminated (shrunk) pre-emptively --- potentially resulting in an incorrect boundary. We propose a scalable approach to synchronize the necessary data structures such that the proposed algorithm maintains its accuracy. We consider the necessary trade-offs of single/multiple synchronization using in-depth time-space complexity analysis. We implement the proposed algorithm using MPI and compare it with libsvm--- de facto sequential SVM software --- which we enhance with OpenMP for multi-core/many-core parallelism. Our proposed approach shows excellent efficiency using up to 4096 processes on several large datasets such as UCI HIGGS Boson dataset and Offending URL dataset.

  12. A duct mapping method using least squares support vector machines

    NASA Astrophysics Data System (ADS)

    Douvenot, RéMi; Fabbro, Vincent; Gerstoft, Peter; Bourlier, Christophe; Saillard, Joseph

    2008-12-01

    This paper introduces a "refractivity from clutter" (RFC) approach with an inversion method based on a pregenerated database. The RFC method exploits the information contained in the radar sea clutter return to estimate the refractive index profile. Whereas initial efforts are based on algorithms giving a good accuracy involving high computational needs, the present method is based on a learning machine algorithm in order to obtain a real-time system. This paper shows the feasibility of a RFC technique based on the least squares support vector machine inversion method by comparing it to a genetic algorithm on simulated and noise-free data, at 1 and 5 GHz. These data are simulated in the presence of ideal trilinear surface-based ducts. The learning machine is based on a pregenerated database computed using Latin hypercube sampling to improve the efficiency of the learning. The results show that little accuracy is lost compared to a genetic algorithm approach. The computational time of a genetic algorithm is very high, whereas the learning machine approach is real time. The advantage of a real-time RFC system is that it could work on several azimuths in near real time.

  13. Fast support vector machines for continuous data.

    PubMed

    Kramer, Kurt A; Hall, Lawrence O; Goldgof, Dmitry B; Remsen, Andrew; Luo, Tong

    2009-08-01

    Support vector machines (SVMs) can be trained to be very accurate classifiers and have been used in many applications. However, the training time and, to a lesser extent, prediction time of SVMs on very large data sets can be very long. This paper presents a fast compression method to scale up SVMs to large data sets. A simple bit-reduction method is applied to reduce the cardinality of the data by weighting representative examples. We then develop SVMs trained on the weighted data. Experiments indicate that bit-reduction SVM produces a significant reduction in the time required for both training and prediction with minimum loss in accuracy. It is also shown to typically be more accurate than random sampling when the data are not overcompressed.

  14. Supernova Recognition using Support Vector Machines

    SciTech Connect

    Romano, Raquel A.; Aragon, Cecilia R.; Ding, Chris

    2006-10-01

    We introduce a novel application of Support Vector Machines(SVMs) to the problem of identifying potential supernovae usingphotometric and geometric features computed from astronomical imagery.The challenges of this supervised learning application are significant:1) noisy and corrupt imagery resulting in high levels of featureuncertainty,2) features with heavy-tailed, peaked distributions,3)extremely imbalanced and overlapping positiveand negative data sets, and4) the need to reach high positive classification rates, i.e. to find allpotential supernovae, while reducing the burdensome workload of manuallyexamining false positives. High accuracy is achieved viaasign-preserving, shifted log transform applied to features with peaked,heavy-tailed distributions. The imbalanced data problem is handled byoversampling positive examples,selectively sampling misclassifiednegative examples,and iteratively training multiple SVMs for improvedsupernovarecognition on unseen test data. We present crossvalidationresults and demonstrate the impact on a largescale supernova survey thatcurrently uses the SVM decision value to rank-order 600,000 potentialsupernovae each night.

  15. Privacy preserving RBF kernel support vector machine.

    PubMed

    Li, Haoran; Xiong, Li; Ohno-Machado, Lucila; Jiang, Xiaoqian

    2014-01-01

    Data sharing is challenging but important for healthcare research. Methods for privacy-preserving data dissemination based on the rigorous differential privacy standard have been developed but they did not consider the characteristics of biomedical data and make full use of the available information. This often results in too much noise in the final outputs. We hypothesized that this situation can be alleviated by leveraging a small portion of open-consented data to improve utility without sacrificing privacy. We developed a hybrid privacy-preserving differentially private support vector machine (SVM) model that uses public data and private data together. Our model leverages the RBF kernel and can handle nonlinearly separable cases. Experiments showed that this approach outperforms two baselines: (1) SVMs that only use public data, and (2) differentially private SVMs that are built from private data. Our method demonstrated very close performance metrics compared to nonprivate SVMs trained on the private data.

  16. Implicit, nonswitching, vector-oriented algorithm for steady transonic flow

    NASA Technical Reports Server (NTRS)

    Lottati, I.

    1983-01-01

    A rapid computation of a sequence of transonic flow solutions has to be performed in many areas of aerodynamic technology. The employment of low-cost vector array processors makes the conduction of such calculations economically feasible. However, for a full utilization of the new hardware, the developed algorithms must take advantage of the special characteristics of the vector array processor. The present investigation has the objective to develop an efficient algorithm for solving transonic flow problems governed by mixed partial differential equations on an array processor.

  17. A high-performance FFT algorithm for vector supercomputers

    NASA Technical Reports Server (NTRS)

    Bailey, David H.

    1988-01-01

    Many traditional algorithms for computing the fast Fourier transform (FFT) on conventional computers are unacceptable for advanced vector and parallel computers because they involve nonunit, power-of-two memory strides. A practical technique for computing the FFT that avoids all such strides and appears to be near-optimal for a variety of current vector and parallel computers is presented. Performance results of a program based on this technique are given. Notable among these results is that a FORTRAN implementation of this algorithm on the CRAY-2 runs up to 77-percent faster than Cray's assembly-coded library routine.

  18. Vectorized Rebinning Algorithm for Fast Data Down-Sampling

    NASA Technical Reports Server (NTRS)

    Dean, Bruce; Aronstein, David; Smith, Jeffrey

    2013-01-01

    A vectorized rebinning (down-sampling) algorithm, applicable to N-dimensional data sets, has been developed that offers a significant reduction in computer run time when compared to conventional rebinning algorithms. For clarity, a two-dimensional version of the algorithm is discussed to illustrate some specific details of the algorithm content, and using the language of image processing, 2D data will be referred to as "images," and each value in an image as a "pixel." The new approach is fully vectorized, i.e., the down-sampling procedure is done as a single step over all image rows, and then as a single step over all image columns. Data rebinning (or down-sampling) is a procedure that uses a discretely sampled N-dimensional data set to create a representation of the same data, but with fewer discrete samples. Such data down-sampling is fundamental to digital signal processing, e.g., for data compression applications.

  19. Attitude determination using vector observations - A fast optimal matrix algorithm

    NASA Technical Reports Server (NTRS)

    Markley, F. L.

    1993-01-01

    The attitude matrix minimizing Wahba's loss function is computed directly by a method that is competitive with the fastest known algorithm for finding this optimal estimate. The method also provides an estimate of the attitude error covariance matrix. Analysis of the special case of two vector observations identifies those cases for which the TRIAD or algebraic method minimizes Wahba's loss function.

  20. Attitude determination using vector observations: A fast optimal matrix algorithm

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis

    1993-01-01

    The attitude matrix minimizing Wahba's loss function is computed directly by a method that is competitive with the fastest known algorithm for finding this optimal estimate. The method also provides an estimate of the attitude error covariance matrix. Analysis of the special case of two vector observations identifies those cases for which the TRIAD or algebraic method minimizes Wahba's loss function.

  1. A generalized vector-valued total variation algorithm

    SciTech Connect

    Wohlberg, Brendt; Rodriguez, Paul

    2009-01-01

    We propose a simple but flexible method for solving the generalized vector-valued TV (VTV) functional, which includes both the {ell}{sup 2}-VTV and {ell}{sup 1}-VTV regularizations as special cases, to address the problems of deconvolution and denoising of vector-valued (e.g. color) images with Gaussian or salt-andpepper noise. This algorithm is the vectorial extension of the Iteratively Reweighted Norm (IRN) algorithm [I] originally developed for scalar (grayscale) images. This method offers competitive computational performance for denoising and deconvolving vector-valued images corrupted with Gaussian ({ell}{sup 2}-VTV case) and salt-and-pepper noise ({ell}{sup 1}-VTV case).

  2. The connection between regularization operators and support vector kernels.

    PubMed

    Smola, Alex J.; Schölkopf, Bernhard; Müller, Klaus Robert

    1998-06-01

    In this paper a correspondence is derived between regularization operators used in regularization networks and support vector kernels. We prove that the Green's Functions associated with regularization operators are suitable support vector kernels with equivalent regularization properties. Moreover, the paper provides an analysis of currently used support vector kernels in the view of regularization theory and corresponding operators associated with the classes of both polynomial kernels and translation invariant kernels. The latter are also analyzed on periodical domains. As a by-product we show that a large number of radial basis functions, namely conditionally positive definite functions, may be used as support vector kernels.

  3. Recursive support vector machines for dimensionality reduction.

    PubMed

    Tao, Qing; Chu, Dejun; Wang, Jue

    2008-01-01

    The usual dimensionality reduction technique in supervised learning is mainly based on linear discriminant analysis (LDA), but it suffers from singularity or undersampled problems. On the other hand, a regular support vector machine (SVM) separates the data only in terms of one single direction of maximum margin, and the classification accuracy may be not good enough. In this letter, a recursive SVM (RSVM) is presented, in which several orthogonal directions that best separate the data with the maximum margin are obtained. Theoretical analysis shows that a completely orthogonal basis can be derived in feature subspace spanned by the training samples and the margin is decreasing along the recursive components in linearly separable cases. As a result, a new dimensionality reduction technique based on multilevel maximum margin components and then a classifier with high accuracy are achieved. Experiments in synthetic and several real data sets show that RSVM using multilevel maximum margin features can do efficient dimensionality reduction and outperform regular SVM in binary classification problems.

  4. Data selection using support vector regression

    NASA Astrophysics Data System (ADS)

    Richman, Michael B.; Leslie, Lance M.; Trafalis, Theodore B.; Mansouri, Hicham

    2015-03-01

    Geophysical data sets are growing at an ever-increasing rate, requiring computationally efficient data selection (thinning) methods to preserve essential information. Satellites, such as WindSat, provide large data sets for assessing the accuracy and computational efficiency of data selection techniques. A new data thinning technique, based on support vector regression (SVR), is developed and tested. To manage large on-line satellite data streams, observations from WindSat are formed into subsets by Voronoi tessellation and then each is thinned by SVR (TSVR). Three experiments are performed. The first confirms the viability of TSVR for a relatively small sample, comparing it to several commonly used data thinning methods (random selection, averaging and Barnes filtering), producing a 10% thinning rate (90% data reduction), low mean absolute errors (MAE) and large correlations with the original data. A second experiment, using a larger dataset, shows TSVR retrievals with MAE < 1 m s-1 and correlations ⩽ 0.98. TSVR was an order of magnitude faster than the commonly used thinning methods. A third experiment applies a two-stage pipeline to TSVR, to accommodate online data. The pipeline subsets reconstruct the wind field with the same accuracy as the second experiment, is an order of magnitude faster than the nonpipeline TSVR. Therefore, pipeline TSVR is two orders of magnitude faster than commonly used thinning methods that ingest the entire data set. This study demonstrates that TSVR pipeline thinning is an accurate and computationally efficient alternative to commonly used data selection techniques.

  5. A methodology for constructing fuzzy algorithms for learning vector quantization.

    PubMed

    Karayiannis, N B

    1997-01-01

    This paper presents a general methodology for the development of fuzzy algorithms for learning vector quantization (FALVQ). The design of specific FALVQ algorithms according to existing approaches reduces to the selection of the membership function assigned to the weight vectors of an LVQ competitive neural network, which represent the prototypes. The development of a broad variety of FALVQ algorithms can be accomplished by selecting the form of the interference function that determines the effect of the nonwinning prototypes on the attraction between the winning prototype and the input of the network. The proposed methodology provides the basis for extending the existing FALVQ 1, FALVQ 2, and FALVQ 3 families of algorithms. This paper also introduces two quantitative measures which establish a relationship between the formulation that led to FALVQ algorithms and the competition between the prototypes during the learning process. The proposed algorithms and competition measures are tested and evaluated using the IRIS data set. The significance of the proposed competition measure is illustrated using FALVQ algorithms to perform segmentation of magnetic resonance images of the brain.

  6. A sparse matrix algorithm on the Boolean vector machine

    NASA Technical Reports Server (NTRS)

    Wagner, Robert A.; Patrick, Merrell L.

    1988-01-01

    VLSI technology is being used to implement a prototype Boolean Vector Machine (BVM), which is a large network of very small processors with equally small memories that operate in SIMD mode; these use bit-serial arithmetic, and communicate via cube-connected cycles network. The BVM's bit-serial arithmetic and the small memories of individual processors are noted to compromise the system's effectiveness in large numerical problem applications. Attention is presently given to the implementation of a basic matrix-vector iteration algorithm for space matrices of the BVM, in order to generate over 1 billion useful floating-point operations/sec for this iteration algorithm. The algorithm is expressed in a novel language designated 'BVM'.

  7. Recursive feature selection with significant variables of support vectors.

    PubMed

    Tsai, Chen-An; Huang, Chien-Hsun; Chang, Ching-Wei; Chen, Chun-Houh

    2012-01-01

    The development of DNA microarray makes researchers screen thousands of genes simultaneously and it also helps determine high- and low-expression level genes in normal and disease tissues. Selecting relevant genes for cancer classification is an important issue. Most of the gene selection methods use univariate ranking criteria and arbitrarily choose a threshold to choose genes. However, the parameter setting may not be compatible to the selected classification algorithms. In this paper, we propose a new gene selection method (SVM-t) based on the use of t-statistics embedded in support vector machine. We compared the performance to two similar SVM-based methods: SVM recursive feature elimination (SVMRFE) and recursive support vector machine (RSVM). The three methods were compared based on extensive simulation experiments and analyses of two published microarray datasets. In the simulation experiments, we found that the proposed method is more robust in selecting informative genes than SVMRFE and RSVM and capable to attain good classification performance when the variations of informative and noninformative genes are different. In the analysis of two microarray datasets, the proposed method yields better performance in identifying fewer genes with good prediction accuracy, compared to SVMRFE and RSVM.

  8. Support vector machines for nuclear reactor state estimation

    SciTech Connect

    Zavaljevski, N.; Gross, K. C.

    2000-02-14

    Validation of nuclear power reactor signals is often performed by comparing signal prototypes with the actual reactor signals. The signal prototypes are often computed based on empirical data. The implementation of an estimation algorithm which can make predictions on limited data is an important issue. A new machine learning algorithm called support vector machines (SVMS) recently developed by Vladimir Vapnik and his coworkers enables a high level of generalization with finite high-dimensional data. The improved generalization in comparison with standard methods like neural networks is due mainly to the following characteristics of the method. The input data space is transformed into a high-dimensional feature space using a kernel function, and the learning problem is formulated as a convex quadratic programming problem with a unique solution. In this paper the authors have applied the SVM method for data-based state estimation in nuclear power reactors. In particular, they implemented and tested kernels developed at Argonne National Laboratory for the Multivariate State Estimation Technique (MSET), a nonlinear, nonparametric estimation technique with a wide range of applications in nuclear reactors. The methodology has been applied to three data sets from experimental and commercial nuclear power reactor applications. The results are promising. The combination of MSET kernels with the SVM method has better noise reduction and generalization properties than the standard MSET algorithm.

  9. Online support vector machine based on convex hull vertices selection.

    PubMed

    Wang, Di; Qiao, Hong; Zhang, Bo; Wang, Min

    2013-04-01

    The support vector machine (SVM) method, as a promising classification technique, has been widely used in various fields due to its high efficiency. However, SVM cannot effectively solve online classification problems since, when a new sample is misclassified, the classifier has to be retrained with all training samples plus the new sample, which is time consuming. According to the geometric characteristics of SVM, in this paper we propose an online SVM classifier called VS-OSVM, which is based on convex hull vertices selection within each class. The VS-OSVM algorithm has two steps: 1) the samples selection process, in which a small number of skeleton samples constituting an approximate convex hull in each class of the current training samples are selected and 2) the online updating process, in which the classifier is updated with newly arriving samples and the selected skeleton samples. From the theoretical point of view, the first d+1 (d is the dimension of the input samples) selected samples are proved to be vertices of the convex hull. This guarantees that the selected samples in our approach keep the greatest amount of information of the convex hull. From the application point of view, the new algorithm can update the classifier without reducing its classification performance. Experimental results on benchmark data sets have shown the validity and effectiveness of the VS-OSVM algorithm.

  10. Reinforced Angle-based Multicategory Support Vector Machines

    PubMed Central

    Zhang, Chong; Liu, Yufeng; Wang, Junhui; Zhu, Hongtu

    2015-01-01

    The Support Vector Machine (SVM) is a very popular classification tool with many successful applications. It was originally designed for binary problems with desirable theoretical properties. Although there exist various Multicategory SVM (MSVM) extensions in the literature, some challenges remain. In particular, most existing MSVMs make use of k classification functions for a k-class problem, and the corresponding optimization problems are typically handled by existing quadratic programming solvers. In this paper, we propose a new group of MSVMs, namely the Reinforced Angle-based MSVMs (RAMSVMs), using an angle-based prediction rule with k − 1 functions directly. We prove that RAMSVMs can enjoy Fisher consistency. Moreover, we show that the RAMSVM can be implemented using the very efficient coordinate descent algorithm on its dual problem. Numerical experiments demonstrate that our method is highly competitive in terms of computational speed, as well as classification prediction performance. Supplemental materials for the article are available online. PMID:27891045

  11. Support Vector Machines for Hyperspectral Remote Sensing Classification

    NASA Technical Reports Server (NTRS)

    Gualtieri, J. Anthony; Cromp, R. F.

    1998-01-01

    The Support Vector Machine provides a new way to design classification algorithms which learn from examples (supervised learning) and generalize when applied to new data. We demonstrate its success on a difficult classification problem from hyperspectral remote sensing, where we obtain performances of 96%, and 87% correct for a 4 class problem, and a 16 class problem respectively. These results are somewhat better than other recent results on the same data. A key feature of this classifier is its ability to use high-dimensional data without the usual recourse to a feature selection step to reduce the dimensionality of the data. For this application, this is important, as hyperspectral data consists of several hundred contiguous spectral channels for each exemplar. We provide an introduction to this new approach, and demonstrate its application to classification of an agriculture scene.

  12. Segmentation of mosaicism in cervicographic images using support vector machines

    NASA Astrophysics Data System (ADS)

    Xue, Zhiyun; Long, L. Rodney; Antani, Sameer; Jeronimo, Jose; Thoma, George R.

    2009-02-01

    The National Library of Medicine (NLM), in collaboration with the National Cancer Institute (NCI), is creating a large digital repository of cervicographic images for the study of uterine cervix cancer prevention. One of the research goals is to automatically detect diagnostic bio-markers in these images. Reliable bio-marker segmentation in large biomedical image collections is a challenging task due to the large variation in image appearance. Methods described in this paper focus on segmenting mosaicism, which is an important vascular feature used to visually assess the degree of cervical intraepithelial neoplasia. The proposed approach uses support vector machines (SVM) trained on a ground truth dataset annotated by medical experts (which circumvents the need for vascular structure extraction). We have evaluated the performance of the proposed algorithm and experimentally demonstrated its feasibility.

  13. Application of Support Vector Machine to Forex Monitoring

    NASA Astrophysics Data System (ADS)

    Kamruzzaman, Joarder; Sarker, Ruhul A.

    Previous studies have demonstrated superior performance of artificial neural network (ANN) based forex forecasting models over traditional regression models. This paper applies support vector machines to build a forecasting model from the historical data using six simple technical indicators and presents a comparison with an ANN based model trained by scaled conjugate gradient (SCG) learning algorithm. The models are evaluated and compared on the basis of five commonly used performance metrics that measure closeness of prediction as well as correctness in directional change. Forecasting results of six different currencies against Australian dollar reveal superior performance of SVM model using simple linear kernel over ANN-SCG model in terms of all the evaluation metrics. The effect of SVM parameter selection on prediction performance is also investigated and analyzed.

  14. Cloud Detection of Optical Satellite Images Using Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Lee, Kuan-Yi; Lin, Chao-Hung

    2016-06-01

    Cloud covers are generally present in optical remote-sensing images, which limit the usage of acquired images and increase the difficulty of data analysis, such as image compositing, correction of atmosphere effects, calculations of vegetation induces, land cover classification, and land cover change detection. In previous studies, thresholding is a common and useful method in cloud detection. However, a selected threshold is usually suitable for certain cases or local study areas, and it may be failed in other cases. In other words, thresholding-based methods are data-sensitive. Besides, there are many exceptions to control, and the environment is changed dynamically. Using the same threshold value on various data is not effective. In this study, a threshold-free method based on Support Vector Machine (SVM) is proposed, which can avoid the abovementioned problems. A statistical model is adopted to detect clouds instead of a subjective thresholding-based method, which is the main idea of this study. The features used in a classifier is the key to a successful classification. As a result, Automatic Cloud Cover Assessment (ACCA) algorithm, which is based on physical characteristics of clouds, is used to distinguish the clouds and other objects. In the same way, the algorithm called Fmask (Zhu et al., 2012) uses a lot of thresholds and criteria to screen clouds, cloud shadows, and snow. Therefore, the algorithm of feature extraction is based on the ACCA algorithm and Fmask. Spatial and temporal information are also important for satellite images. Consequently, co-occurrence matrix and temporal variance with uniformity of the major principal axis are used in proposed method. We aim to classify images into three groups: cloud, non-cloud and the others. In experiments, images acquired by the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and images containing the landscapes of agriculture, snow area, and island are tested. Experiment results demonstrate the detection

  15. Testing of the Support Vector Machine for Binary-Class Classification

    NASA Technical Reports Server (NTRS)

    Scholten, Matthew

    2011-01-01

    The Support Vector Machine is a powerful algorithm, useful in classifying data in to species. The Support Vector Machines implemented in this research were used as classifiers for the final stage in a Multistage Autonomous Target Recognition system. A single kernel SVM known as SVMlight, and a modified version known as a Support Vector Machine with K-Means Clustering were used. These SVM algorithms were tested as classifiers under varying conditions. Image noise levels varied, and the orientation of the targets changed. The classifiers were then optimized to demonstrate their maximum potential as classifiers. Results demonstrate the reliability of SMV as a method for classification. From trial to trial, SVM produces consistent results

  16. A comparative study of surface EMG classification by fuzzy relevance vector machine and fuzzy support vector machine.

    PubMed

    Xie, Hong-Bo; Huang, Hu; Wu, Jianhua; Liu, Lei

    2015-02-01

    We present a multiclass fuzzy relevance vector machine (FRVM) learning mechanism and evaluate its performance to classify multiple hand motions using surface electromyographic (sEMG) signals. The relevance vector machine (RVM) is a sparse Bayesian kernel method which avoids some limitations of the support vector machine (SVM). However, RVM still suffers the difficulty of possible unclassifiable regions in multiclass problems. We propose two fuzzy membership function-based FRVM algorithms to solve such problems, based on experiments conducted on seven healthy subjects and two amputees with six hand motions. Two feature sets, namely, AR model coefficients and room mean square value (AR-RMS), and wavelet transform (WT) features, are extracted from the recorded sEMG signals. Fuzzy support vector machine (FSVM) analysis was also conducted for wide comparison in terms of accuracy, sparsity, training and testing time, as well as the effect of training sample sizes. FRVM yielded comparable classification accuracy with dramatically fewer support vectors in comparison with FSVM. Furthermore, the processing delay of FRVM was much less than that of FSVM, whilst training time of FSVM much faster than FRVM. The results indicate that FRVM classifier trained using sufficient samples can achieve comparable generalization capability as FSVM with significant sparsity in multi-channel sEMG classification, which is more suitable for sEMG-based real-time control applications.

  17. Application of support vector machine and particle swarm optimization in micro near infrared spectrometer

    NASA Astrophysics Data System (ADS)

    Xiong, Yuhong; Liu, Yunxiang; Shu, Minglei

    2016-10-01

    In the process of actual measurement and analysis of micro near infrared spectrometer, genetic algorithm is used to select the wavelengths and then partial least square method is used for modeling and analyzing. Because genetic algorithm has the disadvantages of slow convergence and difficult parameter setting, and partial least square method in dealing with nonlinear data is far from being satisfactory, the practical application effect of partial least square method based on genetic algorithm is severely affected negatively. The paper introduces the fundamental principles of particle swarm optimization and support vector machine, and proposes a support vector machine method based on particle swarm optimization. The method can overcome the disadvantage of partial least squares method based on genetic algorithm to a certain extent. Finally, the method is tested by an example, and the results show that the method is effective.

  18. Semisupervised Support Vector Machines With Tangent Space Intrinsic Manifold Regularization.

    PubMed

    Sun, Shiliang; Xie, Xijiong

    2016-09-01

    Semisupervised learning has been an active research topic in machine learning and data mining. One main reason is that labeling examples is expensive and time-consuming, while there are large numbers of unlabeled examples available in many practical problems. So far, Laplacian regularization has been widely used in semisupervised learning. In this paper, we propose a new regularization method called tangent space intrinsic manifold regularization. It is intrinsic to data manifold and favors linear functions on the manifold. Fundamental elements involved in the formulation of the regularization are local tangent space representations, which are estimated by local principal component analysis, and the connections that relate adjacent tangent spaces. Simultaneously, we explore its application to semisupervised classification and propose two new learning algorithms called tangent space intrinsic manifold regularized support vector machines (TiSVMs) and tangent space intrinsic manifold regularized twin SVMs (TiTSVMs). They effectively integrate the tangent space intrinsic manifold regularization consideration. The optimization of TiSVMs can be solved by a standard quadratic programming, while the optimization of TiTSVMs can be solved by a pair of standard quadratic programmings. The experimental results of semisupervised classification problems show the effectiveness of the proposed semisupervised learning algorithms.

  19. Automatic inspection of textured surfaces by support vector machines

    NASA Astrophysics Data System (ADS)

    Jahanbin, Sina; Bovik, Alan C.; Pérez, Eduardo; Nair, Dinesh

    2009-08-01

    Automatic inspection of manufactured products with natural looking textures is a challenging task. Products such as tiles, textile, leather, and lumber project image textures that cannot be modeled as periodic or otherwise regular; therefore, a stochastic modeling of local intensity distribution is required. An inspection system to replace human inspectors should be flexible in detecting flaws such as scratches, cracks, and stains occurring in various shapes and sizes that have never been seen before. A computer vision algorithm is proposed in this paper that extracts local statistical features from grey-level texture images decomposed with wavelet frames into subbands of various orientations and scales. The local features extracted are second order statistics derived from grey-level co-occurrence matrices. Subsequently, a support vector machine (SVM) classifier is trained to learn a general description of normal texture from defect-free samples. This algorithm is implemented in LabVIEW and is capable of processing natural texture images in real-time.

  20. Using support vector machines for anomalous change detonation

    SciTech Connect

    Theiler, James P; Steinwart, Ingo; Llamocca, Daniel

    2010-01-01

    We cast anomalous change detection as a binary classification problem, and use a support vector machine (SVM) to build a detector that does not depend on assumptions about the underlying data distribution. To speed up the computation, our SVM is implemented, in part, on a graphical processing unit. Results on real and simulated anomalous changes are used to compare performance to algorithms which effectively assume a Gaussian distribution. In this paper, we investigate the use of support vector machines (SVMs) with radial basis kernels for finding anomalous changes. Compared to typical applications of SVMs, we are operating in a regime of very low false alarm rate. This means that even for relatively large training sets, the data are quite meager in the regime of operational interest. This drives us to use larger training sets, which in turn places more of a computational burden on the SVM. We initially considered three different approaches to to address the need to work in the very low false alarm rate regime. The first is a standard SVM which is trained at one threshold (where more reliable estimates of false alarm rates are possible) and then re-thresholded for the low false alarm rate regime. The second uses the same thresholding approach, but employs a so-called least squares SVM; here a quadratic (instead of a hinge-based) loss function is employed, and for this model, there are good theoretical arguments in favor of adjusting the threshold in a straightforward manner. The third approach employs a weighted support vector machine, where the weights for the two types of errors (false alarm and missed detection) are automatically adjusted to achieve the desired false alarm rate. We have found in previous experiments (not shown here) that the first two types can in some cases work well, while in other cases they do not. This renders both approaches unreliable for automated change detection. By contrast, the third approach reliably produces good results, but at

  1. A Distributed Support Vector Machine Learning Over Wireless Sensor Networks.

    PubMed

    Kim, Woojin; Stanković, Milos S; Johansson, Karl H; Kim, H Jin

    2015-11-01

    This paper is about fully-distributed support vector machine (SVM) learning over wireless sensor networks. With the concept of the geometric SVM, we propose to gossip the set of extreme points of the convex hull of local data set with neighboring nodes. It has the advantages of a simple communication mechanism and finite-time convergence to a common global solution. Furthermore, we analyze the scalability with respect to the amount of exchanged information and convergence time, with a specific emphasis on the small-world phenomenon. First, with the proposed naive convex hull algorithm, the message length remains bounded as the number of nodes increases. Second, by utilizing a small-world network, we have an opportunity to drastically improve the convergence performance with only a small increase in power consumption. These properties offer a great advantage when dealing with a large-scale network. Simulation and experimental results support the feasibility and effectiveness of the proposed gossip-based process and the analysis.

  2. SPIDERz: SuPport vector classification for IDEntifying Redshifts

    NASA Astrophysics Data System (ADS)

    Jones, Evan; Singal, J.

    2016-08-01

    SPIDERz (SuPport vector classification for IDEntifying Redshifts) applies powerful support vector machine (SVM) optimization and statistical learning techniques to custom data sets to obtain accurate photometric redshift (photo-z) estimations. It is written for the IDL environment and can be applied to traditional data sets consisting of photometric band magnitudes, or alternatively to data sets with additional galaxy parameters (such as shape information) to investigate potential correlations between the extra galaxy parameters and redshift.

  3. Recognition of extraversion level based on handwriting and support vector machines.

    PubMed

    Górska, Zuzanna; Janicki, Artur

    2012-06-01

    This study investigated whether it is possible to train a machine to discriminate levels of extraversion based on handwriting variables. Support vector machines (SVMs) were used as a learning algorithm. Handwriting of 883 people (404 men, 479 women) was examined. Extraversion was measured using the Polish version of the NEO-Five Factor Inventory. The handwriting samples were described by 48 variables. The support vector machines were separately trained and tested for each sex, using 10-fold cross-validation. Good recognition accuracy (around .7) was achieved for 10 handwriting variables, different for men and women. The results suggest the existence of a relationship between handwriting elements and extraversion.

  4. Terminated Ramp-Support vector machines: a nonparametric data dependent kernel.

    PubMed

    Merler, Stefano; Jurman, Giuseppe

    2006-12-01

    We propose a novel algorithm, Terminated Ramp-Support Vector Machines (TR-SVM), for classification and feature ranking purposes in the family of Support Vector Machines. The main improvement relies on the fact that the kernel is automatically determined by the training examples. It is built as a function of simple classifiers, generalized terminated ramp functions, obtained by separating oppositely labeled pairs of training points. The algorithm has a meaningful geometrical interpretation, and it is derived in the framework of Tikhonov regularization theory. Its unique free parameter is the regularization one, representing a trade-off between empirical error and solution complexity. Employing the equivalence between the proposed algorithm and two-layer networks, a theoretical bound on the generalization error is also derived, together with Vapnik-Chervonenkis dimension. Performances are tested on a number of synthetic and real data sets.

  5. Speech/Music Classification Enhancement for 3GPP2 SMV Codec Based on Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Kyun; Chang, Joon-Hyuk

    In this letter, we propose a novel approach to speech/music classification based on the support vector machine (SVM) to improve the performance of the 3GPP2 selectable mode vocoder (SMV) codec. We first analyze the features and the classification method used in real time speech/music classification algorithm in SMV, and then apply the SVM for enhanced speech/music classification. For evaluation of performance, we compare the proposed algorithm and the traditional algorithm of the SMV. The performance of the proposed system is evaluated under the various environments and shows better performance compared to the original method in the SMV.

  6. Mobile Phonocardiogram Diagnosis in Newborns Using Support Vector Machine

    PubMed Central

    Amiri, Amir Mohammad; Abtahi, Mohammadreza; Constant, Nick; Mankodiya, Kunal

    2017-01-01

    Phonocardiogram (PCG) monitoring on newborns is one of the most important and challenging tasks in the heart assessment in the early ages of life. In this paper, we present a novel approach for cardiac monitoring applied in PCG data. This basic system coupled with denoising, segmentation, cardiac cycle selection and classification of heart sound can be used widely for a large number of the data. This paper describes the problems and additional advantages of the PCG method including the possibility of recording heart sound at home, removing unwanted noises and data reduction on a mobile device, and an intelligent system to diagnose heart diseases on the cloud server. A wide range of physiological features from various analysis domains, including modeling, time/frequency domain analysis, an algorithm, etc., is proposed in order to extract features which will be considered as inputs for the classifier. In order to record the PCG data set from multiple subjects over one year, an electronic stethoscope was used for collecting data that was connected to a mobile device. In this study, we used different types of classifiers in order to distinguish between healthy and pathological heart sounds, and a comparison on the performances revealed that support vector machine (SVM) provides 92.2% accuracy and AUC = 0.98 in a time of 1.14 seconds for training, on a dataset of 116 samples. PMID:28335471

  7. Ensemble Feature Learning of Genomic Data Using Support Vector Machine.

    PubMed

    Anaissi, Ali; Goyal, Madhu; Catchpoole, Daniel R; Braytee, Ali; Kennedy, Paul J

    2016-01-01

    The identification of a subset of genes having the ability to capture the necessary information to distinguish classes of patients is crucial in bioinformatics applications. Ensemble and bagging methods have been shown to work effectively in the process of gene selection and classification. Testament to that is random forest which combines random decision trees with bagging to improve overall feature selection and classification accuracy. Surprisingly, the adoption of these methods in support vector machines has only recently received attention but mostly on classification not gene selection. This paper introduces an ensemble SVM-Recursive Feature Elimination (ESVM-RFE) for gene selection that follows the concepts of ensemble and bagging used in random forest but adopts the backward elimination strategy which is the rationale of RFE algorithm. The rationale behind this is, building ensemble SVM models using randomly drawn bootstrap samples from the training set, will produce different feature rankings which will be subsequently aggregated as one feature ranking. As a result, the decision for elimination of features is based upon the ranking of multiple SVM models instead of choosing one particular model. Moreover, this approach will address the problem of imbalanced datasets by constructing a nearly balanced bootstrap sample. Our experiments show that ESVM-RFE for gene selection substantially increased the classification performance on five microarray datasets compared to state-of-the-art methods. Experiments on the childhood leukaemia dataset show that an average 9% better accuracy is achieved by ESVM-RFE over SVM-RFE, and 5% over random forest based approach. The selected genes by the ESVM-RFE algorithm were further explored with Singular Value Decomposition (SVD) which reveals significant clusters with the selected data.

  8. A new approach to simulate characterization of particulate matter employing support vector machines.

    PubMed

    Mogireddy, K; Devabhaktuni, V; Kumar, A; Aggarwal, P; Bhattacharya, P

    2011-02-28

    This paper, for the first time, applies the support vector machines (SVMs) paradigm to identify the optimal segmentation algorithm for physical characterization of particulate matter. Size of the particles is an essential component of physical characterization as larger particles get filtered through nose and throat while smaller particles have detrimental effect on human health. Typical particulate characterization processes involve image reading, preprocessing, segmentation, feature extraction, and representation. Of these various steps, knowledge based selection of optimal image segmentation algorithm (from existing segmentation algorithms) is the key for accurately analyzing the captured images of fine particulate matter. Motivated by the emerging machine-learning concepts, we present a new framework for automating the selection of optimal image segmentation algorithm employing SVMs trained and validated with image feature data. Results show that the SVM method accurately predicts the best segmentation algorithm. As well, an image processing algorithm based on Sobel edge detection is developed and illustrated.

  9. Building Ultra-Low False Alarm Rate Support Vector Classifier Ensembles Using Random Subspaces

    SciTech Connect

    Chen, B Y; Lemmond, T D; Hanley, W G

    2008-10-06

    This paper presents the Cost-Sensitive Random Subspace Support Vector Classifier (CS-RS-SVC), a new learning algorithm that combines random subspace sampling and bagging with Cost-Sensitive Support Vector Classifiers to more effectively address detection applications burdened by unequal misclassification requirements. When compared to its conventional, non-cost-sensitive counterpart on a two-class signal detection application, random subspace sampling is shown to very effectively leverage the additional flexibility offered by the Cost-Sensitive Support Vector Classifier, yielding a more than four-fold increase in the detection rate at a false alarm rate (FAR) of zero. Moreover, the CS-RS-SVC is shown to be fairly robust to constraints on the feature subspace dimensionality, enabling reductions in computation time of up to 82% with minimal performance degradation.

  10. Vectorization of a penalty function algorithm for well scheduling

    NASA Technical Reports Server (NTRS)

    Absar, I.

    1984-01-01

    In petroleum engineering, the oil production profiles of a reservoir can be simulated by using a finite gridded model. This profile is affected by the number and choice of wells which in turn is a result of various production limits and constraints including, for example, the economic minimum well spacing, the number of drilling rigs available and the time required to drill and complete a well. After a well is available it may be shut in because of excessive water or gas productions. In order to optimize the field performance a penalty function algorithm was developed for scheduling wells. For an example with some 343 wells and 15 different constraints, the scheduling routine vectorized for the CYBER 205 averaged 560 times faster performance than the scalar version.

  11. Support vector machines for learning to identify the critical positions of a protein.

    PubMed

    Dubey, Anshul; Realff, Matthew J; Lee, Jay H; Bommarius, Andreas S

    2005-06-07

    A method for identifying the positions in the amino acid sequence, which are critical for the catalytic activity of a protein using support vector machines (SVMs) is introduced and analysed. SVMs are supported by an efficient learning algorithm and can utilize some prior knowledge about the structure of the problem. The amino acid sequences of the variants of a protein, created by inducing mutations, along with their fitness are required as input data by the method to predict its critical positions. To investigate the performance of this algorithm, variants of the beta-lactamase enzyme were created in silico using simulations of both mutagenesis and recombination protocols. Results from literature on beta-lactamase were used to test the accuracy of this method. It was also compared with the results from a simple search algorithm. The algorithm was also shown to be able to predict critical positions that can tolerate two different amino acids and retain function.

  12. Detection of ventricular suction in an implantable rotary blood pump using support vector machines.

    PubMed

    Wang, Yu; Faragallah, George; Divo, Eduardo; Simaan, Marwan A

    2011-01-01

    A new suction detection algorithm for rotary Left Ventricular Assist Devices (LVAD) is presented. The algorithm is based on a Lagrangian Support Vector Machine (LSVM) model. Six suction indices are derived from the LVAD pump flow signal and form the inputs to the LSVM classifier. The LSVM classifier is trained and tested to classify pump flow patterns into three states: No Suction, Approaching Suction, and Suction. The proposed algorithm has been tested using existing in vivo data. When compared to three existing methods, the proposed algorithm produced superior performance in terms of classification accuracy, stability, and learning speed. The ability of the algorithm to detect suction provides a reliable platform in the development of a pump speed controller that has the capability of avoiding suction.

  13. An Algorithm for Converting Static Earth Sensor Measurements into Earth Observation Vectors

    NASA Technical Reports Server (NTRS)

    Harman, R.; Hashmall, Joseph A.; Sedlak, Joseph

    2004-01-01

    An algorithm has been developed that converts penetration angles reported by Static Earth Sensors (SESs) into Earth observation vectors. This algorithm allows compensation for variation in the horizon height including that caused by Earth oblateness. It also allows pitch and roll to be computed using any number (greater than 1) of simultaneous sensor penetration angles simplifying processing during periods of Sun and Moon interference. The algorithm computes body frame unit vectors through each SES cluster. It also computes GCI vectors from the spacecraft to the position on the Earth's limb where each cluster detects the Earth's limb. These body frame vectors are used as sensor observation vectors and the GCI vectors are used as reference vectors in an attitude solution. The attitude, with the unobservable yaw discarded, is iteratively refined to provide the Earth observation vector solution.

  14. Support vector machine classification trees based on fuzzy entropy of classification.

    PubMed

    de Boves Harrington, Peter

    2017-02-15

    The support vector machine (SVM) is a powerful classifier that has recently been implemented in a classification tree (SVMTreeG). This classifier partitioned the data by finding gaps in the data space. For large and complex datasets, there may be no gaps in the data space confounding this type of classifier. A novel algorithm was devised that uses fuzzy entropy to find optimal partitions for situations when clusters of data are overlapped in the data space. Also, a kernel version of the fuzzy entropy algorithm was devised. A fast support vector machine implementation is used that has no cost C or slack variables to optimize. Statistical comparisons using bootstrapped Latin partitions among the tree classifiers were made using a synthetic XOR data set and validated with ten prediction sets comprised of 50,000 objects and a data set of NMR spectra obtained from 12 tea sample extracts.

  15. nu-Anomica: A Fast Support Vector Based Novelty Detection Technique

    NASA Technical Reports Server (NTRS)

    Das, Santanu; Bhaduri, Kanishka; Oza, Nikunj C.; Srivastava, Ashok N.

    2009-01-01

    In this paper we propose nu-Anomica, a novel anomaly detection technique that can be trained on huge data sets with much reduced running time compared to the benchmark one-class Support Vector Machines algorithm. In -Anomica, the idea is to train the machine such that it can provide a close approximation to the exact decision plane using fewer training points and without losing much of the generalization performance of the classical approach. We have tested the proposed algorithm on a variety of continuous data sets under different conditions. We show that under all test conditions the developed procedure closely preserves the accuracy of standard one-class Support Vector Machines while reducing both the training time and the test time by 5 - 20 times.

  16. Optical diagnosis of colon and cervical cancer by support vector machine

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sabyasachi; Kurmi, Indrajit; Dey, Rajib; Das, Nandan K.; Pradhan, Sanjay; Pradhan, Asima; Ghosh, Nirmalya; Panigrahi, Prasanta K.; Mohanty, Samarendra

    2016-05-01

    A probabilistic robust diagnostic algorithm is very much essential for successful cancer diagnosis by optical spectroscopy. We report here support vector machine (SVM) classification to better discriminate the colon and cervical cancer tissues from normal tissues based on elastic scattering spectroscopy. The efficacy of SVM based classification with different kernel has been tested on multifractal parameters like Hurst exponent, singularity spectrum width in order to classify the cancer tissues.

  17. Diagnosis of Acute Coronary Syndrome with a Support Vector Machine.

    PubMed

    Berikol, Göksu Bozdereli; Yildiz, Oktay; Özcan, I Türkay

    2016-04-01

    Acute coronary syndrome (ACS) is a serious condition arising from an imbalance of supply and demand to meet myocardium's metabolic needs. Patients typically present with retrosternal chest pain radiating to neck and left arm. Electrocardiography (ECG) and laboratory tests are used indiagnosis. However in emergency departments, there are some difficulties for physicians to decide whether hospitalizing, following up or discharging the patient. The aim of the study is to diagnose ACS and helping the physician with his decisionto discharge or to hospitalizevia machine learning techniques such as support vector machine (SVM) by using patient data including age, sex, risk factors, and cardiac enzymes (CK-MB, Troponin I) of patients presenting to emergency department with chest pain. Clinical, laboratory, and imaging data of 228 patients presenting to emergency department with chest pain were reviewedand the performance of support vector machine. Four different methods (Support vector machine (SVM), Artificial neural network (ANN), Naïve Bayes and Logistic Regression) were tested and the results of SVM which has the highest accuracy is reported. Among 228 patients aged 19 to 91 years who were included in the study, 99 (43.4 %) were qualified as ACS, while 129 (56.5 %) had no ACS. The classification model using SVM attained a 99.13 % classification success. The present study showed a 99.13 % classification success for ACS diagnosis attained by Support Vector Machine. This study showed that machine learning techniques may help emergency department staff make decisions by rapidly producing relevant data.

  18. Support vector machines classifiers of physical activities in preschoolers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The goal of this study is to develop, test, and compare multinomial logistic regression (MLR) and support vector machines (SVM) in classifying preschool-aged children physical activity data acquired from an accelerometer. In this study, 69 children aged 3-5 years old were asked to participate in a s...

  19. Robust support vector machine-trained fuzzy system.

    PubMed

    Forghani, Yahya; Yazdi, Hadi Sadoghi

    2014-02-01

    Because the SVM (support vector machine) classifies data with the widest symmetric margin to decrease the probability of the test error, modern fuzzy systems use SVM to tune the parameters of fuzzy if-then rules. But, solving the SVM model is time-consuming. To overcome this disadvantage, we propose a rapid method to solve the robust SVM model and use it to tune the parameters of fuzzy if-then rules. The robust SVM is an extension of SVM for interval-valued data classification. We compare our proposed method with SVM, robust SVM, ISVM-FC (incremental support vector machine-trained fuzzy classifier), BSVM-FC (batch support vector machine-trained fuzzy classifier), SOTFN-SV (a self-organizing TS-type fuzzy network with support vector learning) and SCLSE (a TS-type fuzzy system with subtractive clustering for antecedent parameter tuning and LSE for consequent parameter tuning) by using some real datasets. According to experimental results, the use of proposed approach leads to very low training and testing time with good misclassification rate.

  20. Identifying saltcedar with hyperspectral data and support vector machines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Saltcedar (Tamarix spp.) are a group of dense phreatophytic shrubs and trees that are invasive to riparian areas throughout the United States. This study determined the feasibility of using hyperspectral data and a support vector machine (SVM) classifier to discriminate saltcedar from other cover t...

  1. Support vector machine for day ahead electricity price forecasting

    NASA Astrophysics Data System (ADS)

    Razak, Intan Azmira binti Wan Abdul; Abidin, Izham bin Zainal; Siah, Yap Keem; Rahman, Titik Khawa binti Abdul; Lada, M. Y.; Ramani, Anis Niza binti; Nasir, M. N. M.; Ahmad, Arfah binti

    2015-05-01

    Electricity price forecasting has become an important part of power system operation and planning. In a pool- based electric energy market, producers submit selling bids consisting in energy blocks and their corresponding minimum selling prices to the market operator. Meanwhile, consumers submit buying bids consisting in energy blocks and their corresponding maximum buying prices to the market operator. Hence, both producers and consumers use day ahead price forecasts to derive their respective bidding strategies to the electricity market yet reduce the cost of electricity. However, forecasting electricity prices is a complex task because price series is a non-stationary and highly volatile series. Many factors cause for price spikes such as volatility in load and fuel price as well as power import to and export from outside the market through long term contract. This paper introduces an approach of machine learning algorithm for day ahead electricity price forecasting with Least Square Support Vector Machine (LS-SVM). Previous day data of Hourly Ontario Electricity Price (HOEP), generation's price and demand from Ontario power market are used as the inputs for training data. The simulation is held using LSSVMlab in Matlab with the training and testing data of 2004. SVM that widely used for classification and regression has great generalization ability with structured risk minimization principle rather than empirical risk minimization. Moreover, same parameter settings in trained SVM give same results that absolutely reduce simulation process compared to other techniques such as neural network and time series. The mean absolute percentage error (MAPE) for the proposed model shows that SVM performs well compared to neural network.

  2. Magnetic resonance imaging segmentation techniques using batch-type learning vector quantization algorithms.

    PubMed

    Yang, Miin-Shen; Lin, Karen Chia-Ren; Liu, Hsiu-Chih; Lirng, Jiing-Feng

    2007-02-01

    In this article, we propose batch-type learning vector quantization (LVQ) segmentation techniques for the magnetic resonance (MR) images. Magnetic resonance imaging (MRI) segmentation is an important technique to differentiate abnormal and normal tissues in MR image data. The proposed LVQ segmentation techniques are compared with the generalized Kohonen's competitive learning (GKCL) methods, which were proposed by Lin et al. [Magn Reson Imaging 21 (2003) 863-870]. Three MRI data sets of real cases are used in this article. The first case is from a 2-year-old girl who was diagnosed with retinoblastoma in her left eye. The second case is from a 55-year-old woman who developed complete left side oculomotor palsy immediately after a motor vehicle accident. The third case is from an 84-year-old man who was diagnosed with Alzheimer disease (AD). Our comparisons are based on sensitivity of algorithm parameters, the quality of MRI segmentation with the contrast-to-noise ratio and the accuracy of the region of interest tissue. Overall, the segmentation results from batch-type LVQ algorithms present good accuracy and quality of the segmentation images, and also flexibility of algorithm parameters in all the comparison consequences. The results support that the proposed batch-type LVQ algorithms are better than the previous GKCL algorithms. Specifically, the proposed fuzzy-soft LVQ algorithm works well in segmenting AD MRI data set to accurately measure the hippocampus volume in AD MR images.

  3. A selective-update affine projection algorithm with selective input vectors

    NASA Astrophysics Data System (ADS)

    Kong, NamWoong; Shin, JaeWook; Park, PooGyeon

    2011-10-01

    This paper proposes an affine projection algorithm (APA) with selective input vectors, which based on the concept of selective-update in order to reduce estimation errors and computations. The algorithm consists of two procedures: input- vector-selection and state-decision. The input-vector-selection procedure determines the number of input vectors by checking with mean square error (MSE) whether the input vectors have enough information for update. The state-decision procedure determines the current state of the adaptive filter by using the state-decision criterion. As the adaptive filter is in transient state, the algorithm updates the filter coefficients with the selected input vectors. On the other hand, as soon as the adaptive filter reaches the steady state, the update procedure is not performed. Through these two procedures, the proposed algorithm achieves small steady-state estimation errors, low computational complexity and low update complexity for colored input signals.

  4. An Autonomous Star Identification Algorithm Based on One-Dimensional Vector Pattern for Star Sensors.

    PubMed

    Luo, Liyan; Xu, Luping; Zhang, Hua

    2015-07-07

    In order to enhance the robustness and accelerate the recognition speed of star identification, an autonomous star identification algorithm for star sensors is proposed based on the one-dimensional vector pattern (one_DVP). In the proposed algorithm, the space geometry information of the observed stars is used to form the one-dimensional vector pattern of the observed star. The one-dimensional vector pattern of the same observed star remains unchanged when the stellar image rotates, so the problem of star identification is simplified as the comparison of the two feature vectors. The one-dimensional vector pattern is adopted to build the feature vector of the star pattern, which makes it possible to identify the observed stars robustly. The characteristics of the feature vector and the proposed search strategy for the matching pattern make it possible to achieve the recognition result as quickly as possible. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition accuracy and robustness by the proposed algorithm are better than those by the pyramid algorithm, the modified grid algorithm, and the LPT algorithm. The theoretical analysis and experimental results show that the proposed algorithm outperforms the other three star identification algorithms.

  5. Classification of Regional Ionospheric Disturbances Based on Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Begüm Terzi, Merve; Arikan, Feza; Arikan, Orhan; Karatay, Secil

    2016-07-01

    Ionosphere is an anisotropic, inhomogeneous, time varying and spatio-temporally dispersive medium whose parameters can be estimated almost always by using indirect measurements. Geomagnetic, gravitational, solar or seismic activities cause variations of ionosphere at various spatial and temporal scales. This complex spatio-temporal variability is challenging to be identified due to extensive scales in period, duration, amplitude and frequency of disturbances. Since geomagnetic and solar indices such as Disturbance storm time (Dst), F10.7 solar flux, Sun Spot Number (SSN), Auroral Electrojet (AE), Kp and W-index provide information about variability on a global scale, identification and classification of regional disturbances poses a challenge. The main aim of this study is to classify the regional effects of global geomagnetic storms and classify them according to their risk levels. For this purpose, Total Electron Content (TEC) estimated from GPS receivers, which is one of the major parameters of ionosphere, will be used to model the regional and local variability that differs from global activity along with solar and geomagnetic indices. In this work, for the automated classification of the regional disturbances, a classification technique based on a robust machine learning technique that have found wide spread use, Support Vector Machine (SVM) is proposed. SVM is a supervised learning model used for classification with associated learning algorithm that analyze the data and recognize patterns. In addition to performing linear classification, SVM can efficiently perform nonlinear classification by embedding data into higher dimensional feature spaces. Performance of the developed classification technique is demonstrated for midlatitude ionosphere over Anatolia using TEC estimates generated from the GPS data provided by Turkish National Permanent GPS Network (TNPGN-Active) for solar maximum year of 2011. As a result of implementing the developed classification

  6. Margin based ontology sparse vector learning algorithm and applied in biology science.

    PubMed

    Gao, Wei; Qudair Baig, Abdul; Ali, Haidar; Sajjad, Wasim; Reza Farahani, Mohammad

    2017-01-01

    In biology field, the ontology application relates to a large amount of genetic information and chemical information of molecular structure, which makes knowledge of ontology concepts convey much information. Therefore, in mathematical notation, the dimension of vector which corresponds to the ontology concept is often very large, and thus improves the higher requirements of ontology algorithm. Under this background, we consider the designing of ontology sparse vector algorithm and application in biology. In this paper, using knowledge of marginal likelihood and marginal distribution, the optimized strategy of marginal based ontology sparse vector learning algorithm is presented. Finally, the new algorithm is applied to gene ontology and plant ontology to verify its efficiency.

  7. The research and application of visual saliency and adaptive support vector machine in target tracking field.

    PubMed

    Chen, Yuantao; Xu, Weihong; Kuang, Fangjun; Gao, Shangbing

    2013-01-01

    The efficient target tracking algorithm researches have become current research focus of intelligent robots. The main problems of target tracking process in mobile robot face environmental uncertainty. They are very difficult to estimate the target states, illumination change, target shape changes, complex backgrounds, and other factors and all affect the occlusion in tracking robustness. To further improve the target tracking's accuracy and reliability, we present a novel target tracking algorithm to use visual saliency and adaptive support vector machine (ASVM). Furthermore, the paper's algorithm has been based on the mixture saliency of image features. These features include color, brightness, and sport feature. The execution process used visual saliency features and those common characteristics have been expressed as the target's saliency. Numerous experiments demonstrate the effectiveness and timeliness of the proposed target tracking algorithm in video sequences where the target objects undergo large changes in pose, scale, and illumination.

  8. Breast cancer diagnosis using level-set statistics and support vector machines.

    PubMed

    Liu, Jianguo; Yuan, Xiaohui; Buckles, Bill P

    2008-01-01

    Breast cancer diagnosis based on microscopic biopsy images and machine learning has demonstrated great promise in the past two decades. Various feature selection (or extraction) and classification algorithms have been attempted with success. However, some feature selection processes are complex and the number of features used can be quite large. We propose a new feature selection method based on level-set statistics. This procedure is simple and, when used with support vector machines (SVM), only a small number of features is needed to achieve satisfactory accuracy that is comparable to those using more sophisticated features. Therefore, the classification can be completed in much shorter time. We use multi-class support vector machines as the classification tool. Numerical results are reported to support the viability of this new procedure.

  9. SOLAR FLARE PREDICTION USING SDO/HMI VECTOR MAGNETIC FIELD DATA WITH A MACHINE-LEARNING ALGORITHM

    SciTech Connect

    Bobra, M. G.; Couvidat, S.

    2015-01-10

    We attempt to forecast M- and X-class solar flares using a machine-learning algorithm, called support vector machine (SVM), and four years of data from the Solar Dynamics Observatory's Helioseismic and Magnetic Imager, the first instrument to continuously map the full-disk photospheric vector magnetic field from space. Most flare forecasting efforts described in the literature use either line-of-sight magnetograms or a relatively small number of ground-based vector magnetograms. This is the first time a large data set of vector magnetograms has been used to forecast solar flares. We build a catalog of flaring and non-flaring active regions sampled from a database of 2071 active regions, comprised of 1.5 million active region patches of vector magnetic field data, and characterize each active region by 25 parameters. We then train and test the machine-learning algorithm and we estimate its performances using forecast verification metrics with an emphasis on the true skill statistic (TSS). We obtain relatively high TSS scores and overall predictive abilities. We surmise that this is partly due to fine-tuning the SVM for this purpose and also to an advantageous set of features that can only be calculated from vector magnetic field data. We also apply a feature selection algorithm to determine which of our 25 features are useful for discriminating between flaring and non-flaring active regions and conclude that only a handful are needed for good predictive abilities.

  10. Large-scale linear nonparallel support vector machine solver.

    PubMed

    Tian, Yingjie; Ping, Yuan

    2014-02-01

    Twin support vector machines (TWSVMs), as the representative nonparallel hyperplane classifiers, have shown the effectiveness over standard SVMs from some aspects. However, they still have some serious defects restricting their further study and real applications: (1) They have to compute and store the inverse matrices before training, it is intractable for many applications where data appear with a huge number of instances as well as features; (2) TWSVMs lost the sparseness by using a quadratic loss function making the proximal hyperplane close enough to the class itself. This paper proposes a Sparse Linear Nonparallel Support Vector Machine, termed as L1-NPSVM, to deal with large-scale data based on an efficient solver-dual coordinate descent (DCD) method. Both theoretical analysis and experiments indicate that our method is not only suitable for large scale problems, but also performs as good as TWSVMs and SVMs.

  11. Classifier based on support vector machine for JET plasma configurations

    SciTech Connect

    Dormido-Canto, S.; Farias, G.; Dormido, R.; Sanchez, J.; Duro, N.; Vargas, H.

    2008-10-15

    The last flux surface can be used to identify the plasma configuration of discharges. For automated recognition of JET configurations, a learning system based on support vector machines has been developed. Each configuration is described by 12 geometrical parameters. A multiclass system has been developed by means of the one-versus-the-rest approach. Results with eight simultaneous classes (plasma configurations) show a success rate close to 100%.

  12. Lumbar Ultrasound Image Feature Extraction and Classification with Support Vector Machine.

    PubMed

    Yu, Shuang; Tan, Kok Kiong; Sng, Ban Leong; Li, Shengjin; Sia, Alex Tiong Heng

    2015-10-01

    Needle entry site localization remains a challenge for procedures that involve lumbar puncture, for example, epidural anesthesia. To solve the problem, we have developed an image classification algorithm that can automatically identify the bone/interspinous region for ultrasound images obtained from lumbar spine of pregnant patients in the transverse plane. The proposed algorithm consists of feature extraction, feature selection and machine learning procedures. A set of features, including matching values, positions and the appearance of black pixels within pre-defined windows along the midline, were extracted from the ultrasound images using template matching and midline detection methods. A support vector machine was then used to classify the bone images and interspinous images. The support vector machine model was trained with 1,040 images from 26 pregnant subjects and tested on 800 images from a separate set of 20 pregnant patients. A success rate of 95.0% on training set and 93.2% on test set was achieved with the proposed method. The trained support vector machine model was further tested on 46 off-line collected videos, and successfully identified the proper needle insertion site (interspinous region) in 45 of the cases. Therefore, the proposed method is able to process the ultrasound images of lumbar spine in an automatic manner, so as to facilitate the anesthetists' work of identifying the needle entry site.

  13. Automated detection of Martian water ice clouds using Support Vector Machine and simple feature vectors

    NASA Astrophysics Data System (ADS)

    Ogohara, Kazunori; Munetomo, Takafumi; Hatanaka, Yuji; Okumura, Susumu

    2016-12-01

    We present a method for evaluating the presence of Martian water ice clouds using difference images and cross-correlation distributions calculated from blue band images of the Valles Marineris obtained by the Mars Orbiter Camera onboard the Mars Global Surveyor (MGS/MOC). We derived one subtracted image and one cross-correlation distribution from two reflectance images. The difference between the maximum and the average, variance, kurtosis, and skewness of the subtracted image were calculated. Those of the cross-correlation distribution were also calculated. These eight statistics were used as feature vectors for training Support Vector Machine because they were the simplest of features that was expected to be closely associated with the physical properties of water ice clouds. The generalization ability was tested using 10-fold cross-validation. F-measure and accuracy tended to be approximately 0.8 if the maximum in the normalized reflectance and the difference of the maximum and the average in the cross-correlation were selected as features. This result can be physically explained because the blue band as well as the red band is sensitive to water ice clouds. A simple and low-dimensional feature vector enables us to understand the detected water ice clouds physically and presents the lower bound of the score that classifiers trained using more sophisticated feature vectors have to achieve.

  14. Boosting support vector regression in QSAR studies of bioactivities of chemical compounds.

    PubMed

    Zhou, Yan-Ping; Jiang, Jian-Hui; Lin, Wei-Qi; Zou, Hong-Yan; Wu, Hai-Long; Shen, Guo-Li; Yu, Ru-Qin

    2006-07-01

    In this paper, boosting has been coupled with SVR to develop a new method, boosting support vector regression (BSVR). BSVR is implemented by firstly constructing a series of SVR models on the various weighted versions of the original training set and then combining the predictions from the constructed SVR models to obtain integrative results by weighted median. The proposed BSVR algorithm has been used to predict toxicities of nitrobenzenes and inhibitory potency of 1-phenyl[2H]-tetrahydro-triazine-3-one analogues as inhibitors of 5-lipoxygenase. As comparisons to this method, the multiple linear regression (MLR) and conventional support vector regression (SVR) have also been investigated. Experimental results have shown that the introduction of boosting drastically enhances the generalization performance of individual SVR model and BSVR is a well-performing technique in QSAR studies superior to multiple linear regression.

  15. Web page classification based on a binary hierarchical classifier for multi-class support vector machines

    NASA Astrophysics Data System (ADS)

    Li, Cunhe; Wang, Guangqing

    2013-03-01

    Web page classification is one of the essential techniques for Web mining. This paper proposes a binary hierarchical classifier for multi-class support vector machines for web page classification. This method applies truncated singular value decomposition on the training data that reduces its dimension and the noise data. After the truncated singular value decomposition on the training data, it uses the improved k-means algorithm design the binary hierarchical structure, the improved k-means algorithm makes the separability of one macro-class is the smallest, makes the separability of two macro-classes is the largest. The result of experiment performed on the training datasets shows that this algorithm can enhance precision of web page classification.

  16. Support vector machine as a binary classifier for automated object detection in remotely sensed data

    NASA Astrophysics Data System (ADS)

    Wardaya, P. D.

    2014-02-01

    In the present paper, author proposes the application of Support Vector Machine (SVM) for the analysis of satellite imagery. One of the advantages of SVM is that, with limited training data, it may generate comparable or even better results than the other methods. The SVM algorithm is used for automated object detection and characterization. Specifically, the SVM is applied in its basic nature as a binary classifier where it classifies two classes namely, object and background. The algorithm aims at effectively detecting an object from its background with the minimum training data. The synthetic image containing noises is used for algorithm testing. Furthermore, it is implemented to perform remote sensing image analysis such as identification of Island vegetation, water body, and oil spill from the satellite imagery. It is indicated that SVM provides the fast and accurate analysis with the acceptable result.

  17. Morphological analysis of dendrites and spines by hybridization of ridge detection with twin support vector machine.

    PubMed

    Wang, Shuihua; Chen, Mengmeng; Li, Yang; Shao, Ying; Zhang, Yudong; Du, Sidan; Wu, Jane

    2016-01-01

    Dendritic spines are described as neuronal protrusions. The morphology of dendritic spines and dendrites has a strong relationship to its function, as well as playing an important role in understanding brain function. Quantitative analysis of dendrites and dendritic spines is essential to an understanding of the formation and function of the nervous system. However, highly efficient tools for the quantitative analysis of dendrites and dendritic spines are currently undeveloped. In this paper we propose a novel three-step cascaded algorithm-RTSVM- which is composed of ridge detection as the curvature structure identifier for backbone extraction, boundary location based on differences in density, the Hu moment as features and Twin Support Vector Machine (TSVM) classifiers for spine classification. Our data demonstrates that this newly developed algorithm has performed better than other available techniques used to detect accuracy and false alarm rates. This algorithm will be used effectively in neuroscience research.

  18. Solar Flare Prediction Model with Three Machine-learning Algorithms using Ultraviolet Brightening and Vector Magnetograms

    NASA Astrophysics Data System (ADS)

    Nishizuka, N.; Sugiura, K.; Kubo, Y.; Den, M.; Watari, S.; Ishii, M.

    2017-02-01

    We developed a flare prediction model using machine learning, which is optimized to predict the maximum class of flares occurring in the following 24 hr. Machine learning is used to devise algorithms that can learn from and make decisions on a huge amount of data. We used solar observation data during the period 2010–2015, such as vector magnetograms, ultraviolet (UV) emission, and soft X-ray emission taken by the Solar Dynamics Observatory and the Geostationary Operational Environmental Satellite. We detected active regions (ARs) from the full-disk magnetogram, from which ∼60 features were extracted with their time differentials, including magnetic neutral lines, the current helicity, the UV brightening, and the flare history. After standardizing the feature database, we fully shuffled and randomly separated it into two for training and testing. To investigate which algorithm is best for flare prediction, we compared three machine-learning algorithms: the support vector machine, k-nearest neighbors (k-NN), and extremely randomized trees. The prediction score, the true skill statistic, was higher than 0.9 with a fully shuffled data set, which is higher than that for human forecasts. It was found that k-NN has the highest performance among the three algorithms. The ranking of the feature importance showed that previous flare activity is most effective, followed by the length of magnetic neutral lines, the unsigned magnetic flux, the area of UV brightening, and the time differentials of features over 24 hr, all of which are strongly correlated with the flux emergence dynamics in an AR.

  19. Rapid Generation of Synthetic Seismograms in Layered Media by Vectorization of the Algorithm

    DTIC Science & Technology

    1987-12-01

    are possible in a reasonable time . The procedure described in this paper is based on a reorganization of the inside loops of a conventional reflectivity algorithm to permit vectorization. Sedimentary rock.

  20. Support vector machine classifiers for large data sets.

    SciTech Connect

    Gertz, E. M.; Griffin, J. D.

    2006-01-31

    This report concerns the generation of support vector machine classifiers for solving the pattern recognition problem in machine learning. Several methods are proposed based on interior point methods for convex quadratic programming. Software implementations are developed by adapting the object-oriented packaging OOQP to the problem structure and by using the software package PETSc to perform time-intensive computations in a distributed setting. Linear systems arising from classification problems with moderately large numbers of features are solved by using two techniques--one a parallel direct solver, the other a Krylov-subspace method incorporating novel preconditioning strategies. Numerical results are provided, and computational experience is discussed.

  1. Label-free Optofluidic Cell Classifier Utilizing Support Vector Machines.

    PubMed

    Wu, Tsung-Feng; Mei, Zhe; Lo, Yu-Hwa

    2013-09-01

    A unique optofluidic lab-on-a-chip device that can measure optically encoded forward scattering signals has been demonstrated. From the design of the spatial pattern, the position and velocity of each cell in the flow can be detected and then a spatial cell distribution over the cross section of the channel can be generated. According to the forward scattering intensity and position information of cells, a data-mining method, support vector machines (SVMs), is applied for cell classification. With the help of SVMs, the multi-dimensional analysis can be performed to significantly increase all figures of merit for cell classification.

  2. Statistical properties of support vector machines with forgetting factor.

    PubMed

    Funaya, Hiroyuki; Ikeda, Kazushi

    2012-03-01

    Introducing a forgetting factor allows a support vector machine to solve time-varying problems adaptively. However, the exponential forgetting factor proposed in an earlier work does not ensure convergence of average generalization error even for a simple linearly separable problem. To guarantee convergence, we propose a factorial forgetting factor which decays factorially over time. We approximately derive the average generalization error of the factorial forgetting factor as well as that of the exponential forgetting factor using a simple one-dimensional problem, and confirm our theory by computer simulations. Finally, we show that our theory can be extended to arbitrary types of forgetting factors for simple linearly separable cases.

  3. Cardiovascular Response Identification Based on Nonlinear Support Vector Regression

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Su, Steven W.; Chan, Gregory S. H.; Celler, Branko G.; Cheng, Teddy M.; Savkin, Andrey V.

    This study experimentally investigates the relationships between central cardiovascular variables and oxygen uptake based on nonlinear analysis and modeling. Ten healthy subjects were studied using cycle-ergometry exercise tests with constant workloads ranging from 25 Watt to 125 Watt. Breath by breath gas exchange, heart rate, cardiac output, stroke volume and blood pressure were measured at each stage. The modeling results proved that the nonlinear modeling method (Support Vector Regression) outperforms traditional regression method (reducing Estimation Error between 59% and 80%, reducing Testing Error between 53% and 72%) and is the ideal approach in the modeling of physiological data, especially with small training data set.

  4. Near Real-Time Dust Aerosol Detection with Support Vector Machines for Regression

    NASA Astrophysics Data System (ADS)

    Rivas-Perea, P.; Rivas-Perea, P. E.; Cota-Ruiz, J.; Aragon Franco, R. A.

    2015-12-01

    Remote sensing instruments operating in the near-infrared spectrum usually provide the necessary information for further dust aerosol spectral analysis using statistical or machine learning algorithms. Such algorithms have proven to be effective in analyzing very specific case studies or dust events. However, very few make the analysis open to the public on a regular basis, fewer are designed specifically to operate in near real-time to higher resolutions, and almost none give a global daily coverage. In this research we investigated a large-scale approach to a machine learning algorithm called "support vector regression". The algorithm uses four near-infrared spectral bands from NASA MODIS instrument: B20 (3.66-3.84μm), B29 (8.40-8.70μm), B31 (10.78-11.28μm), and B32 (11.77-12.27μm). The algorithm is presented with ground truth from more than 30 distinct reported dust events, from different geographical regions, at different seasons, both over land and sea cover, in the presence of clouds and clear sky, and in the presence of fires. The purpose of our algorithm is to learn to distinguish the dust aerosols spectral signature from other spectral signatures, providing as output an estimate of the probability of a data point being consistent with dust aerosol signatures. During modeling with ground truth, our algorithm achieved more than 90% of accuracy, and the current live performance of the algorithm is remarkable. Moreover, our algorithm is currently operating in near real-time using NASA's Land, Atmosphere Near real-time Capability for EOS (LANCE) servers, providing a high resolution global overview including 64, 32, 16, 8, 4, 2, and 1km. The near real-time analysis of our algorithm is now available to the general public at http://dust.reev.us and archives of the results starting from 2012 are available upon request.

  5. Agricultural mapping using Support Vector Machine-Based Endmember Extraction (SVM-BEE)

    SciTech Connect

    Archibald, Richard K; Filippi, Anthony M; Bhaduri, Budhendra L; Bright, Eddie A

    2009-01-01

    Extracting endmembers from remotely sensed images of vegetated areas can present difficulties. In this research, we applied a recently developed endmember-extraction algorithm based on Support Vector Machines (SVMs) to the problem of semi-autonomous estimation of vegetation endmembers from a hyperspectral image. This algorithm, referred to as Support Vector Machine-Based Endmember Extraction (SVM-BEE), accurately and rapidly yields a computed representation of hyperspectral data that can accommodate multiple distributions. The number of distributions is identified without prior knowledge, based upon this representation. Prior work established that SVM-BEE is robustly noise-tolerant and can semi-automatically and effectively estimate endmembers; synthetic data and a geologic scene were previously analyzed. Here we compared the efficacies of the SVM-BEE and N-FINDR algorithms in extracting endmembers from a predominantly agricultural scene. SVM-BEE was able to estimate vegetation and other endmembers for all classes in the image, which N-FINDR failed to do. Classifications based on SVM-BEE endmembers were markedly more accurate compared with those based on N-FINDR endmembers.

  6. Classification of EEG signals using a multiple kernel learning support vector machine.

    PubMed

    Li, Xiaoou; Chen, Xun; Yan, Yuning; Wei, Wenshi; Wang, Z Jane

    2014-07-17

    In this study, a multiple kernel learning support vector machine algorithm is proposed for the identification of EEG signals including mental and cognitive tasks, which is a key component in EEG-based brain computer interface (BCI) systems. The presented BCI approach included three stages: (1) a pre-processing step was performed to improve the general signal quality of the EEG; (2) the features were chosen, including wavelet packet entropy and Granger causality, respectively; (3) a multiple kernel learning support vector machine (MKL-SVM) based on a gradient descent optimization algorithm was investigated to classify EEG signals, in which the kernel was defined as a linear combination of polynomial kernels and radial basis function kernels. Experimental results showed that the proposed method provided better classification performance compared with the SVM based on a single kernel. For mental tasks, the average accuracies for 2-class, 3-class, 4-class, and 5-class classifications were 99.20%, 81.25%, 76.76%, and 75.25% respectively. Comparing stroke patients with healthy controls using the proposed algorithm, we achieved the average classification accuracies of 89.24% and 80.33% for 0-back and 1-back tasks respectively. Our results indicate that the proposed approach is promising for implementing human-computer interaction (HCI), especially for mental task classification and identifying suitable brain impairment candidates.

  7. Classification of EEG Signals Using a Multiple Kernel Learning Support Vector Machine

    PubMed Central

    Li, Xiaoou; Chen, Xun; Yan, Yuning; Wei, Wenshi; Wang, Z. Jane

    2014-01-01

    In this study, a multiple kernel learning support vector machine algorithm is proposed for the identification of EEG signals including mental and cognitive tasks, which is a key component in EEG-based brain computer interface (BCI) systems. The presented BCI approach included three stages: (1) a pre-processing step was performed to improve the general signal quality of the EEG; (2) the features were chosen, including wavelet packet entropy and Granger causality, respectively; (3) a multiple kernel learning support vector machine (MKL-SVM) based on a gradient descent optimization algorithm was investigated to classify EEG signals, in which the kernel was defined as a linear combination of polynomial kernels and radial basis function kernels. Experimental results showed that the proposed method provided better classification performance compared with the SVM based on a single kernel. For mental tasks, the average accuracies for 2-class, 3-class, 4-class, and 5-class classifications were 99.20%, 81.25%, 76.76%, and 75.25% respectively. Comparing stroke patients with healthy controls using the proposed algorithm, we achieved the average classification accuracies of 89.24% and 80.33% for 0-back and 1-back tasks respectively. Our results indicate that the proposed approach is promising for implementing human-computer interaction (HCI), especially for mental task classification and identifying suitable brain impairment candidates. PMID:25036334

  8. Diagnosis of Chronic Kidney Disease Based on Support Vector Machine by Feature Selection Methods.

    PubMed

    Polat, Huseyin; Danaei Mehr, Homay; Cetin, Aydin

    2017-04-01

    As Chronic Kidney Disease progresses slowly, early detection and effective treatment are the only cure to reduce the mortality rate. Machine learning techniques are gaining significance in medical diagnosis because of their classification ability with high accuracy rates. The accuracy of classification algorithms depend on the use of correct feature selection algorithms to reduce the dimension of datasets. In this study, Support Vector Machine classification algorithm was used to diagnose Chronic Kidney Disease. To diagnose the Chronic Kidney Disease, two essential types of feature selection methods namely, wrapper and filter approaches were chosen to reduce the dimension of Chronic Kidney Disease dataset. In wrapper approach, classifier subset evaluator with greedy stepwise search engine and wrapper subset evaluator with the Best First search engine were used. In filter approach, correlation feature selection subset evaluator with greedy stepwise search engine and filtered subset evaluator with the Best First search engine were used. The results showed that the Support Vector Machine classifier by using filtered subset evaluator with the Best First search engine feature selection method has higher accuracy rate (98.5%) in the diagnosis of Chronic Kidney Disease compared to other selected methods.

  9. Research on multi-class classification of support vector data description

    NASA Astrophysics Data System (ADS)

    Shen, Minghua; Xiao, Huaitie; Fu, Qiang

    2007-11-01

    Support Vector Data Description (SVDD) is a one-class classification method developed in recent years. It has been used in many fields because of its good performance and high executive efficiency when there are only one-class training samples. It has been proven that SVDD has less support vector numbers, less optimization time and faster testing speed than those of two-class classifier such as SVM. At present, researches and acquirable literatures about SVDD multi-class classification are little, which restricts the SVDD application. One SVDD multi-class classification algorithm is proposed in the paper. Based on minimum distance classification rule, the misclassification in multi-class classification is well solved and by applying the threshold strategy the rejection in multi-class classification is greatly alleviated. Finally, by classifying range profiles of three targets, the effect of kernel function parameter and SNR on the proposed algorithm is investigated and the effectiveness of the algorithm is testified by quantities of experiments.

  10. Solar Flare Prediction Using SDO/HMI Vector Magnetic Field Data with a Machine-Learning Algorithm

    NASA Astrophysics Data System (ADS)

    Bobra, M.; Couvidat, S. P.

    2014-12-01

    We attempt to forecast M-and X-class solar flares using a machine-learning algorithm, called Support Vector Machine (SVM), and four years of data from the Solar Dynamics Observatory's Helioseismic and Magnetic Imager, the first instrument to continuously map the full-disk photospheric vector magnetic field from space (Schou et al., 2012). Most flare forecasting efforts described in the literature use either line-of-sight magnetograms or a relatively small number of ground-based vector magnetograms. This is the first time such a large dataset of vector magnetograms has been used to forecast solar flares. We build a catalog of flaring and non-flaring active regions sampled from a database of 2,071 active regions, comprised of 1.5 million active region patches of vector magnetic field data, and characterize each active region by 25 parameters --- which include the flux, energy, shear, current, helicity, gradient, geometry, and Lorentz force. We then train and test the machine-learning algorithm. Finally, we estimate the performance of this algorithm using forecast verification metrics with an emphasis on the true skill statistic (TSS). Bloomfield et al. (2012) suggest the use of the TSS as it is not sensitive to the class imbalance problem. Indeed, there are many more non-flaring active regions in a given time interval than flaring ones: this class imbalance distorts many performance metrics and renders comparison between various studies somewhat unreliable. We obtain relatively high TSS scores and overall predictive abilities. We surmise that this is partly due to fine-tuning the SVM for this purpose and also to an advantageous set of features that can only be calculated from vector magnetic field data. We also apply a feature selection algorithm to determine which of our 25 features are useful for discriminating between flaring and non-flaring active regions and conclude that only a handful are needed for good predictive abilities.

  11. GPU accelerated support vector machines for mining high-throughput screening data.

    PubMed

    Liao, Quan; Wang, Jibo; Webster, Yue; Watson, Ian A

    2009-12-01

    Support Vector Machine (SVM), one of the most promising tools in chemical informatics, is time-consuming for mining large high-throughput screening (HTS) data sets. Here, we describe a parallelization of SVM-light algorithm on a graphic processor unit (GPU), using molecular fingerprints as descriptors and the Tanimoto index as kernel function. Comparison experiments based on six PubChem Bioassay data sets show that the GPU version is 43-104x faster than SVM-light for building classification models and 112-212x over SVM-light for building regression models.

  12. Optimized multilevel codebook searching algorithm for vector quantization in image coding

    NASA Astrophysics Data System (ADS)

    Cao, Hugh Q.; Li, Weiping

    1996-02-01

    An optimized multi-level codebook searching algorithm (MCS) for vector quantization is presented in this paper. Although it belongs to the category of the fast nearest neighbor searching (FNNS) algorithms for vector quantization, the MCS algorithm is not a variation of any existing FNNS algorithms (such as k-d tree searching algorithm, partial-distance searching algorithm, triangle inequality searching algorithm...). A multi-level search theory has been introduced. The problem for the implementation of this theory has been solved by a specially defined irregular tree structure which can be built from a training set. This irregular tree structure is different from any tree structures used in TSVQ, prune tree VQ, quad tree VQ... Strictly speaking, it cannot be called tree structure since it allows one node has more than one set of parents, it is only a directed graph. This is the essential difference between MCS algorithm and other TSVQ algorithms which ensures its better performance. An efficient design procedure has been given to find the optimized irregular tree for practical source. The simulation results of applying MCS algorithm to image VQ show that this algorithm can reduce searching complexity to less than 3% of the exhaustive search vector quantization (ESVQ) (4096 codevectors and 16 dimension) while introducing negligible error (0.064 dB degradation from ESVQ). Simulation results also show that the searching complexity is close linearly increase with bitrate.

  13. Support vector machine with hypergraph-based pairwise constraints.

    PubMed

    Hou, Qiuling; Lv, Meng; Zhen, Ling; Jing, Ling

    2016-01-01

    Although support vector machine (SVM) has become a powerful tool for pattern classification and regression, a major disadvantage is it fails to exploit the underlying correlation between any pair of data points as much as possible. Inspired by the modified pairwise constraints trick, in this paper, we propose a novel classifier termed as support vector machine with hypergraph-based pairwise constraints to improve the performance of the classical SVM by introducing a new regularization term with hypergraph-based pairwise constraints (HPC). The new classifier is expected to not only learn the structural information of each point itself, but also acquire the prior distribution knowledge about each constrained pair by combining the discrimination metric and hypergraph learning together. Three major contributions of this paper can be summarized as follows: (1) acquiring the high-order relationships between different samples by hypergraph learning; (2) presenting a more reasonable discriminative regularization term by combining the discrimination metric and hypergraph learning; (3) improving the performance of the existing SVM classifier by introducing HPC regularization term. And the comprehensive experimental results on twenty-five datasets demonstrate the validity and advantage of our approach.

  14. Support Vector Machine Classification of Drunk Driving Behaviour

    PubMed Central

    Chen, Huiqin; Chen, Lei

    2017-01-01

    Alcohol is the root cause of numerous traffic accidents due to its pharmacological action on the human central nervous system. This study conducted a detection process to distinguish drunk driving from normal driving under simulated driving conditions. The classification was performed by a support vector machine (SVM) classifier trained to distinguish between these two classes by integrating both driving performance and physiological measurements. In addition, principal component analysis was conducted to rank the weights of the features. The standard deviation of R–R intervals (SDNN), the root mean square value of the difference of the adjacent R–R interval series (RMSSD), low frequency (LF), high frequency (HF), the ratio of the low and high frequencies (LF/HF), and average blink duration were the highest weighted features in the study. The results show that SVM classification can successfully distinguish drunk driving from normal driving with an accuracy of 70%. The driving performance data and the physiological measurements reported by this paper combined with air-alcohol concentration could be integrated using the support vector regression classification method to establish a better early warning model, thereby improving vehicle safety. PMID:28125006

  15. Novel cascade FPGA accelerator for support vector machines classification.

    PubMed

    Papadonikolakis, Markos; Bouganis, Christos-Savvas

    2012-07-01

    Support vector machines (SVMs) are a powerful machine learning tool, providing state-of-the-art accuracy to many classification problems. However, SVM classification is a computationally complex task, suffering from linear dependencies on the number of the support vectors and the problem's dimensionality. This paper presents a fully scalable field programmable gate array (FPGA) architecture for the acceleration of SVM classification, which exploits the device heterogeneity and the dynamic range diversities among the dataset attributes. An adaptive and fully-customized processing unit is proposed, which utilizes the available heterogeneous resources of a modern FPGA device in efficient way with respect to the problem's characteristics. The implementation results demonstrate the efficiency of the heterogeneous architecture, presenting a speed-up factor of 2-3 orders of magnitude, compared to the CPU implementation. The proposed architecture outperforms other proposed FPGA and graphic processor unit approaches by more than seven times. Furthermore, based on the special properties of the heterogeneous architecture, this paper introduces the first FPGA-oriented cascade SVM classifier scheme, which exploits the FPGA reconfigurability and intensifies the custom-arithmetic properties of the heterogeneous architecture. The results show that the proposed cascade scheme is able to increase the heterogeneous classifier throughput even further, without introducing any penalty on the resource utilization.

  16. Clifford support vector machines for classification, regression, and recurrence.

    PubMed

    Bayro-Corrochano, Eduardo Jose; Arana-Daniel, Nancy

    2010-11-01

    This paper introduces the Clifford support vector machines (CSVM) as a generalization of the real and complex-valued support vector machines using the Clifford geometric algebra. In this framework, we handle the design of kernels involving the Clifford or geometric product. In this approach, one redefines the optimization variables as multivectors. This allows us to have a multivector as output. Therefore, we can represent multiple classes according to the dimension of the geometric algebra in which we work. We show that one can apply CSVM for classification and regression and also to build a recurrent CSVM. The CSVM is an attractive approach for the multiple input multiple output processing of high-dimensional geometric entities. We carried out comparisons between CSVM and the current approaches to solve multiclass classification and regression. We also study the performance of the recurrent CSVM with experiments involving time series. The authors believe that this paper can be of great use for researchers and practitioners interested in multiclass hypercomplex computing, particularly for applications in complex and quaternion signal and image processing, satellite control, neurocomputation, pattern recognition, computer vision, augmented virtual reality, robotics, and humanoids.

  17. Classification of multispectral images by using Lagrangian support vector machines

    NASA Astrophysics Data System (ADS)

    Zhu, Hongmei; Yang, Xiaojun

    2008-12-01

    Lagragian support vector machine (LSVM) is a linearly convergent Lagrangian, which is obtained by reformulating the quadratic program of a standard linear support vector machine. To investigate the performance of the classifier working on multispectral images with LSVM as optimizer, we devise a new test based on LSVMs for classifying multispectral data in this work. First of all, data are preprocessed. To acquire the optimum bands for image classification, multispectral image is mapped into a two-dimensional feature space to inspect the bands with redundant spectral information. These extracted data acquired through the feature selection is named data group B relative to the original data group A for a purpose of comparison. Then, to classify multiclass problem, binary classification is extended to multiclass classification by pairwise method. Secondly, two groups of data are trained to find models. In this phase, optimal C values are chosen carefully through trials with different values. Then, classifiers based on LSVMs with optimal C values are used to yield optimal separating hyperplane (OSH). Lastly, in prediction phase, the two groups of data are inputted respectively into each classifier for testing. These classifiers include ones with linear kernel and ones with polynomial kernel of degree 2. The results of the experiment reveal that classifiers with LSVMs as an optimizer have excellent performances with both linear kernel and polynomial kernel of degree 2. Bias caused by the differentia of the two groups of data is not obvious.

  18. Optimization of an algorithm for measurements of velocity vector components using a three-wire sensor.

    PubMed

    Ligeza, P; Socha, K

    2007-10-01

    Hot-wire measurements of velocity vector components use a sensor with three orthogonal wires, taking advantage of an anisotropic effect of wire sensitivity. The sensor is connected to a three-channel anemometric circuit and a data acquisition and processing system. Velocity vector components are obtained from measurement signals, using a modified algorithm for measuring velocity vector components enabling the minimization of measurement errors described in this paper. The standard deviation of the relative error was significantly reduced in comparison with the classical algorithm.

  19. Protein Kinase Classification with 2866 Hidden Markov Models and One Support Vector Machine

    NASA Technical Reports Server (NTRS)

    Weber, Ryan; New, Michael H.; Fonda, Mark (Technical Monitor)

    2002-01-01

    The main application considered in this paper is predicting true kinases from randomly permuted kinases that share the same length and amino acid distributions as the true kinases. Numerous methods already exist for this classification task, such as HMMs, motif-matchers, and sequence comparison algorithms. We build on some of these efforts by creating a vector from the output of thousands of structurally based HMMs, created offline with Pfam-A seed alignments using SAM-T99, which then must be combined into an overall classification for the protein. Then we use a Support Vector Machine for classifying this large ensemble Pfam-Vector, with a polynomial and chisquared kernel. In particular, the chi-squared kernel SVM performs better than the HMMs and better than the BLAST pairwise comparisons, when predicting true from false kinases in some respects, but no one algorithm is best for all purposes or in all instances so we consider the particular strengths and weaknesses of each.

  20. An Improved Systematic Approach to Predicting Transcription Factor Target Genes Using Support Vector Machine

    PubMed Central

    Cui, Song; Youn, Eunseog; Lee, Joohyun; Maas, Stephan J.

    2014-01-01

    Biological prediction of transcription factor binding sites and their corresponding transcription factor target genes (TFTGs) makes great contribution to understanding the gene regulatory networks. However, these approaches are based on laborious and time-consuming biological experiments. Numerous computational approaches have shown great potential to circumvent laborious biological methods. However, the majority of these algorithms provide limited performances and fail to consider the structural property of the datasets. We proposed a refined systematic computational approach for predicting TFTGs. Based on previous work done on identifying auxin response factor target genes from Arabidopsis thaliana co-expression data, we adopted a novel reverse-complementary distance-sensitive n-gram profile algorithm. This algorithm converts each upstream sub-sequence into a high-dimensional vector data point and transforms the prediction task into a classification problem using support vector machine-based classifier. Our approach showed significant improvement compared to other computational methods based on the area under curve value of the receiver operating characteristic curve using 10-fold cross validation. In addition, in the light of the highly skewed structure of the dataset, we also evaluated other metrics and their associated curves, such as precision-recall curves and cost curves, which provided highly satisfactory results. PMID:24743548

  1. Cavitation detection of butterfly valve using support vector machines

    NASA Astrophysics Data System (ADS)

    Yang, Bo-Suk; Hwang, Won-Woo; Ko, Myung-Han; Lee, Soo-Jong

    2005-10-01

    Butterfly valves are popularly used in service in the industrial and water works pipeline systems with large diameter because of its lightweight, simple structure and the rapidity of its manipulation. Sometimes cavitation can occur, resulting in noise, vibration and rapid deterioration of the valve trim, and do not allow further operation. Thus, monitoring of cavitation is of economic interest and is very important in industry. This paper proposes a condition monitoring scheme using statistical feature evaluation and support vector machine (SVM) to detect the cavitation conditions of butterfly valve which used as a flow control valve at the pumping stations. The stationary features of vibration signals are extracted from statistical moments. The SVMs are trained, and then classify normal and cavitation conditions of control valves. The SVMs with the reorganized feature vectors can distinguish the class of the untrained and untested data. The classification validity of this method is examined by various signals acquired from butterfly valves in the pumping stations. And the classification success rate is compared with that of self-organizing feature map neural network (SOFM).

  2. Broiler chickens can benefit from machine learning: support vector machine analysis of observational epidemiological data.

    PubMed

    Hepworth, Philip J; Nefedov, Alexey V; Muchnik, Ilya B; Morgan, Kenton L

    2012-08-07

    Machine-learning algorithms pervade our daily lives. In epidemiology, supervised machine learning has the potential for classification, diagnosis and risk factor identification. Here, we report the use of support vector machine learning to identify the features associated with hock burn on commercial broiler farms, using routinely collected farm management data. These data lend themselves to analysis using machine-learning techniques. Hock burn, dermatitis of the skin over the hock, is an important indicator of broiler health and welfare. Remarkably, this classifier can predict the occurrence of high hock burn prevalence with accuracy of 0.78 on unseen data, as measured by the area under the receiver operating characteristic curve. We also compare the results with those obtained by standard multi-variable logistic regression and suggest that this technique provides new insights into the data. This novel application of a machine-learning algorithm, embedded in poultry management systems could offer significant improvements in broiler health and welfare worldwide.

  3. Advantage of support vector machine for neural spike train decoding under spike sorting errors.

    PubMed

    Hwan Kim, Kyung; Shin Kim, Sung; June Kim, Sung

    2005-01-01

    Decoding of kinematic variables from neuronal spike trains is important for neuroprosthetic devices. The spike trains from single units must be extracted from extracellular neural signals and thus spike detection and sorting procedure is essential. Since the spike detection and sorting procedure may yield considerable errors, decoding algorithm should be robust against spike train errors. Here we showed that the spike train decoding algorithms employing a nonlinear mapping, especially support vector machine (SVM), may be more advantageous contrary to conventional belief that linear filter is sufficient. The advantage became more conspicuous with erroneous spike trains. Using the SVM, satisfactory performance could be obtained much more easily, compared to the case of using multilayer perceptron, which was employed for previous studies. The results suggests the possibility of neuroprosthetic device with a low-quality spike sorting preprocessor.

  4. Particulate matter characterization by gray level co-occurrence matrix based support vector machines.

    PubMed

    Manivannan, K; Aggarwal, P; Devabhaktuni, V; Kumar, A; Nims, D; Bhattacharya, P

    2012-07-15

    An efficient and highly reliable automatic selection of optimal segmentation algorithm for characterizing particulate matter is presented in this paper. Support vector machines (SVMs) are used as a new self-regulating classifier trained by gray level co-occurrence matrix (GLCM) of the image. This matrix is calculated at various angles and the texture features are evaluated for classifying the images. Results show that the performance of GLCM-based SVMs is drastically improved over the previous histogram-based SVMs. Our proposed GLCM-based approach of training SVM predicts a robust and more accurate segmentation algorithm than the standard histogram technique, as additional information based on the spatial relationship between pixels is incorporated for image classification. Further, the GLCM-based SVM classifiers were more accurate and required less training data when compared to the artificial neural network (ANN) classifiers.

  5. Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines

    PubMed Central

    del Val, Lara; Izquierdo-Fuente, Alberto; Villacorta, Juan J.; Raboso, Mariano

    2015-01-01

    Drawing on the results of an acoustic biometric system based on a MSE classifier, a new biometric system has been implemented. This new system preprocesses acoustic images, extracts several parameters and finally classifies them, based on Support Vector Machine (SVM). The preprocessing techniques used are spatial filtering, segmentation—based on a Gaussian Mixture Model (GMM) to separate the person from the background, masking—to reduce the dimensions of images—and binarization—to reduce the size of each image. An analysis of classification error and a study of the sensitivity of the error versus the computational burden of each implemented algorithm are presented. This allows the selection of the most relevant algorithms, according to the benefits required by the system. A significant improvement of the biometric system has been achieved by reducing the classification error, the computational burden and the storage requirements. PMID:26091392

  6. Support vector machines for spike pattern classification with a leaky integrate-and-fire neuron

    PubMed Central

    Ambard, Maxime; Rotter, Stefan

    2012-01-01

    Spike pattern classification is a key topic in machine learning, computational neuroscience, and electronic device design. Here, we offer a new supervised learning rule based on Support Vector Machines (SVM) to determine the synaptic weights of a leaky integrate-and-fire (LIF) neuron model for spike pattern classification. We compare classification performance between this algorithm and other methods sharing the same conceptual framework. We consider the effect of postsynaptic potential (PSP) kernel dynamics on patterns separability, and we propose an extension of the method to decrease computational load. The algorithm performs well in generalization tasks. We show that the peak value of spike patterns separability depends on a relation between PSP dynamics and spike pattern duration, and we propose a particular kernel that is well-suited for fast computations and electronic implementations. PMID:23181017

  7. Morphological analysis of dendrites and spines by hybridization of ridge detection with twin support vector machine

    PubMed Central

    Wang, Shuihua; Chen, Mengmeng; Li, Yang; Shao, Ying; Zhang, Yudong

    2016-01-01

    Dendritic spines are described as neuronal protrusions. The morphology of dendritic spines and dendrites has a strong relationship to its function, as well as playing an important role in understanding brain function. Quantitative analysis of dendrites and dendritic spines is essential to an understanding of the formation and function of the nervous system. However, highly efficient tools for the quantitative analysis of dendrites and dendritic spines are currently undeveloped. In this paper we propose a novel three-step cascaded algorithm–RTSVM— which is composed of ridge detection as the curvature structure identifier for backbone extraction, boundary location based on differences in density, the Hu moment as features and Twin Support Vector Machine (TSVM) classifiers for spine classification. Our data demonstrates that this newly developed algorithm has performed better than other available techniques used to detect accuracy and false alarm rates. This algorithm will be used effectively in neuroscience research. PMID:27547530

  8. Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines.

    PubMed

    del Val, Lara; Izquierdo-Fuente, Alberto; Villacorta, Juan J; Raboso, Mariano

    2015-06-17

    Drawing on the results of an acoustic biometric system based on a MSE classifier, a new biometric system has been implemented. This new system preprocesses acoustic images, extracts several parameters and finally classifies them, based on Support Vector Machine (SVM). The preprocessing techniques used are spatial filtering, segmentation-based on a Gaussian Mixture Model (GMM) to separate the person from the background, masking-to reduce the dimensions of images-and binarization-to reduce the size of each image. An analysis of classification error and a study of the sensitivity of the error versus the computational burden of each implemented algorithm are presented. This allows the selection of the most relevant algorithms, according to the benefits required by the system. A significant improvement of the biometric system has been achieved by reducing the classification error, the computational burden and the storage requirements.

  9. Runtime support for parallelizing data mining algorithms

    NASA Astrophysics Data System (ADS)

    Jin, Ruoming; Agrawal, Gagan

    2002-03-01

    With recent technological advances, shared memory parallel machines have become more scalable, and offer large main memories and high bus bandwidths. They are emerging as good platforms for data warehousing and data mining. In this paper, we focus on shared memory parallelization of data mining algorithms. We have developed a series of techniques for parallelization of data mining algorithms, including full replication, full locking, fixed locking, optimized full locking, and cache-sensitive locking. Unlike previous work on shared memory parallelization of specific data mining algorithms, all of our techniques apply to a large number of common data mining algorithms. In addition, we propose a reduction-object based interface for specifying a data mining algorithm. We show how our runtime system can apply any of the technique we have developed starting from a common specification of the algorithm.

  10. Target Localization in Wireless Sensor Networks Using Online Semi-Supervised Support Vector Regression

    PubMed Central

    Yoo, Jaehyun; Kim, H. Jin

    2015-01-01

    Machine learning has been successfully used for target localization in wireless sensor networks (WSNs) due to its accurate and robust estimation against highly nonlinear and noisy sensor measurement. For efficient and adaptive learning, this paper introduces online semi-supervised support vector regression (OSS-SVR). The first advantage of the proposed algorithm is that, based on semi-supervised learning framework, it can reduce the requirement on the amount of the labeled training data, maintaining accurate estimation. Second, with an extension to online learning, the proposed OSS-SVR automatically tracks changes of the system to be learned, such as varied noise characteristics. We compare the proposed algorithm with semi-supervised manifold learning, an online Gaussian process and online semi-supervised colocalization. The algorithms are evaluated for estimating the unknown location of a mobile robot in a WSN. The experimental results show that the proposed algorithm is more accurate under the smaller amount of labeled training data and is robust to varying noise. Moreover, the suggested algorithm performs fast computation, maintaining the best localization performance in comparison with the other methods. PMID:26024420

  11. Detection of periods of food intake using Support Vector Machines.

    PubMed

    Lopez-Meyer, Paulo; Schuckers, Stephanie; Makeyev, Oleksandr; Sazonov, Edward

    2010-01-01

    Studies of obesity and eating disorders need objective tools of Monitoring of Ingestive Behavior (MIB) that can detect and characterize food intake. In this paper we describe detection of food intake by a Support Vector Machine classifier trained on time history of chews and swallows. The training was performed on data collected from 18 subjects in 72 experiments involving eating and other activities (for example, talking). The highest accuracy of detecting food intake (94%) was achieved in configuration where both chews and swallows were used as predictors. Using only swallowing as a predictor resulted in 80% accuracy. Experimental results suggest that these two predictors may be used for differentiation between periods of resting and food intake with a resolution of 30 seconds. Proposed methods may be utilized for development of an accurate, inexpensive, and non-intrusive methodology to objectively monitor food intake in free living conditions.

  12. Prediction of Pork Quality by Fuzzy Support Vector Machine Classifier

    NASA Astrophysics Data System (ADS)

    Zhang, Jianxi; Yu, Huaizhi; Wang, Jiamin

    Existing objective methods to evaluate pork quality in general do not yield satisfactory results and their applications in meat industry are limited. In this study, fuzzy support vector machine (FSVM) method was developed to evaluate and predict pork quality rapidly and nondestructively. Firstly, the discrete wavelet transform (DWT) was used to eliminate the noise component in original spectrum and the new spectrum was reconstructed. Then, considering the characteristic variables still exist correlation and contain some redundant information, principal component analysis (PCA) was carried out. Lastly, FSVM was developed to differentiate and classify pork samples into different quality grades using the features from PCA. Jackknife tests on the working datasets indicated that the prediction accuracies were higher than other methods.

  13. Extended robust support vector machine based on financial risk minimization.

    PubMed

    Takeda, Akiko; Fujiwara, Shuhei; Kanamori, Takafumi

    2014-11-01

    Financial risk measures have been used recently in machine learning. For example, ν-support vector machine ν-SVM) minimizes the conditional value at risk (CVaR) of margin distribution. The measure is popular in finance because of the subadditivity property, but it is very sensitive to a few outliers in the tail of the distribution. We propose a new classification method, extended robust SVM (ER-SVM), which minimizes an intermediate risk measure between the CVaR and value at risk (VaR) by expecting that the resulting model becomes less sensitive than ν-SVM to outliers. We can regard ER-SVM as an extension of robust SVM, which uses a truncated hinge loss. Numerical experiments imply the ER-SVM's possibility of achieving a better prediction performance with proper parameter setting.

  14. HYBRID NEURAL NETWORK AND SUPPORT VECTOR MACHINE METHOD FOR OPTIMIZATION

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan (Inventor)

    2005-01-01

    System and method for optimization of a design associated with a response function, using a hybrid neural net and support vector machine (NN/SVM) analysis to minimize or maximize an objective function, optionally subject to one or more constraints. As a first example, the NN/SVM analysis is applied iteratively to design of an aerodynamic component, such as an airfoil shape, where the objective function measures deviation from a target pressure distribution on the perimeter of the aerodynamic component. As a second example, the NN/SVM analysis is applied to data classification of a sequence of data points in a multidimensional space. The NN/SVM analysis is also applied to data regression.

  15. Hybrid Neural Network and Support Vector Machine Method for Optimization

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan (Inventor)

    2007-01-01

    System and method for optimization of a design associated with a response function, using a hybrid neural net and support vector machine (NN/SVM) analysis to minimize or maximize an objective function, optionally subject to one or more constraints. As a first example, the NN/SVM analysis is applied iteratively to design of an aerodynamic component, such as an airfoil shape, where the objective function measures deviation from a target pressure distribution on the perimeter of the aerodynamic component. As a second example, the NN/SVM analysis is applied to data classification of a sequence of data points in a multidimensional space. The NN/SVM analysis is also applied to data regression.

  16. Finger vein image quality evaluation using support vector machines

    NASA Astrophysics Data System (ADS)

    Yang, Lu; Yang, Gongping; Yin, Yilong; Xiao, Rongyang

    2013-02-01

    In an automatic finger-vein recognition system, finger-vein image quality is significant for segmentation, enhancement, and matching processes. In this paper, we propose a finger-vein image quality evaluation method using support vector machines (SVMs). We extract three features including the gradient, image contrast, and information capacity from the input image. An SVM model is built on the training images with annotated quality labels (i.e., high/low) and then applied to unseen images for quality evaluation. To resolve the class-imbalance problem in the training data, we perform oversampling for the minority class with random-synthetic minority oversampling technique. Cross-validation is also employed to verify the reliability and stability of the learned model. Our experimental results show the effectiveness of our method in evaluating the quality of finger-vein images, and by discarding low-quality images detected by our method, the overall finger-vein recognition performance is considerably improved.

  17. Clustering technique-based least square support vector machine for EEG signal classification.

    PubMed

    Siuly; Li, Yan; Wen, Peng Paul

    2011-12-01

    This paper presents a new approach called clustering technique-based least square support vector machine (CT-LS-SVM) for the classification of EEG signals. Decision making is performed in two stages. In the first stage, clustering technique (CT) has been used to extract representative features of EEG data. In the second stage, least square support vector machine (LS-SVM) is applied to the extracted features to classify two-class EEG signals. To demonstrate the effectiveness of the proposed method, several experiments have been conducted on three publicly available benchmark databases, one for epileptic EEG data, one for mental imagery tasks EEG data and another one for motor imagery EEG data. Our proposed approach achieves an average sensitivity, specificity and classification accuracy of 94.92%, 93.44% and 94.18%, respectively, for the epileptic EEG data; 83.98%, 84.37% and 84.17% respectively, for the motor imagery EEG data; and 64.61%, 58.77% and 61.69%, respectively, for the mental imagery tasks EEG data. The performance of the CT-LS-SVM algorithm is compared in terms of classification accuracy and execution (running) time with our previous study where simple random sampling with a least square support vector machine (SRS-LS-SVM) was employed for EEG signal classification. We also compare the proposed method with other existing methods in the literature for the three databases. The experimental results show that the proposed algorithm can produce a better classification rate than the previous reported methods and takes much less execution time compared to the SRS-LS-SVM technique. The research findings in this paper indicate that the proposed approach is very efficient for classification of two-class EEG signals.

  18. Interpreting support vector machine models for multivariate group wise analysis in neuroimaging.

    PubMed

    Gaonkar, Bilwaj; T Shinohara, Russell; Davatzikos, Christos

    2015-08-01

    Machine learning based classification algorithms like support vector machines (SVMs) have shown great promise for turning a high dimensional neuroimaging data into clinically useful decision criteria. However, tracing imaging based patterns that contribute significantly to classifier decisions remains an open problem. This is an issue of critical importance in imaging studies seeking to determine which anatomical or physiological imaging features contribute to the classifier's decision, thereby allowing users to critically evaluate the findings of such machine learning methods and to understand disease mechanisms. The majority of published work addresses the question of statistical inference for support vector classification using permutation tests based on SVM weight vectors. Such permutation testing ignores the SVM margin, which is critical in SVM theory. In this work we emphasize the use of a statistic that explicitly accounts for the SVM margin and show that the null distributions associated with this statistic are asymptotically normal. Further, our experiments show that this statistic is a lot less conservative as compared to weight based permutation tests and yet specific enough to tease out multivariate patterns in the data. Thus, we can better understand the multivariate patterns that the SVM uses for neuroimaging based classification.

  19. Interpreting support vector machine models for multivariate group wise analysis in neuroimaging

    PubMed Central

    Gaonkar, Bilwaj; Shinohara, Russell T; Davatzikos, Christos

    2015-01-01

    Machine learning based classification algorithms like support vector machines (SVMs) have shown great promise for turning a high dimensional neuroimaging data into clinically useful decision criteria. However, tracing imaging based patterns that contribute significantly to classifier decisions remains an open problem. This is an issue of critical importance in imaging studies seeking to determine which anatomical or physiological imaging features contribute to the classifier’s decision, thereby allowing users to critically evaluate the findings of such machine learning methods and to understand disease mechanisms. The majority of published work addresses the question of statistical inference for support vector classification using permutation tests based on SVM weight vectors. Such permutation testing ignores the SVM margin, which is critical in SVM theory. In this work we emphasize the use of a statistic that explicitly accounts for the SVM margin and show that the null distributions associated with this statistic are asymptotically normal. Further, our experiments show that this statistic is a lot less conservative as compared to weight based permutation tests and yet specific enough to tease out multivariate patterns in the data. Thus, we can better understand the multivariate patterns that the SVM uses for neuroimaging based classification. PMID:26210913

  20. Identification of apnea during respiratory monitoring using support vector machine classifier: a pilot study.

    PubMed

    Pradhapan, Paruthi; Swaminathan, Muthukaruppan; Salila Vijayalal Mohan, Hari Krishna; Sriraam, N

    2013-04-01

    To determine the use of photoplethysmography (PPG) as a reliable marker for identifying respiratory apnea based on time-frequency features with support vector machine (SVM) classifier. The PPG signals were acquired from 40 healthy subjects with the help of a simple, non-invasive experimental setup under normal and induced apnea conditions. Artifact free segments were selected and baseline and amplitude variabilities were derived from each recording. Frequency spectrum analysis was then applied to study the power distribution in the low frequency (0.04-0.15 Hz) and high frequency (0.15-0.40 Hz) bands as a result of respiratory pattern changes. Support vector machine (SVM) learning algorithm was used to distinguish between the normal and apnea waveforms using different time-frequency features. The algorithm was trained and tested (780 and 500 samples respectively) and all the simulations were carried out using linear kernel function. Classification accuracy of 97.22 % was obtained for the combination of power ratio and reflection index features using SVM classifier. The pilot study indicates that PPG can be used as a cost effective diagnostic tool for detecting respiratory apnea using a simple, robust and non-invasive experimental setup. The ease of application and conclusive results has proved that such a system can be further developed for use in real-time monitoring under critical care conditions.

  1. Predicting the biomechanical strength of proximal femur specimens with Minkowski functionals and support vector regression

    NASA Astrophysics Data System (ADS)

    Yang, Chien-Chun; Nagarajan, Mahesh B.; Huber, Markus B.; Carballido-Gamio, Julio; Bauer, Jan S.; Baum, Thomas; Eckstein, Felix; Lochmüller, Eva-Maria; Link, Thomas M.; Wismüller, Axel

    2014-03-01

    Regional trabecular bone quality estimation for purposes of femoral bone strength prediction is important for improving the clinical assessment of osteoporotic fracture risk. In this study, we explore the ability of 3D Minkowski Functionals derived from multi-detector computed tomography (MDCT) images of proximal femur specimens in predicting their corresponding biomechanical strength. MDCT scans were acquired for 50 proximal femur specimens harvested from human cadavers. An automated volume of interest (VOI)-fitting algorithm was used to define a consistent volume in the femoral head of each specimen. In these VOIs, the trabecular bone micro-architecture was characterized by statistical moments of its BMD distribution and by topological features derived from Minkowski Functionals. A linear multiregression analysis and a support vector regression (SVR) algorithm with a linear kernel were used to predict the failure load (FL) from the feature sets; the predicted FL was compared to the true FL determined through biomechanical testing. The prediction performance was measured by the root mean square error (RMSE) for each feature set. The best prediction result was obtained from the Minkowski Functional surface used in combination with SVR, which had the lowest prediction error (RMSE = 0.939 ± 0.345) and which was significantly lower than mean BMD (RMSE = 1.075 ± 0.279, p<0.005). Our results indicate that the biomechanical strength prediction can be significantly improved in proximal femur specimens with Minkowski Functionals extracted from on MDCT images used in conjunction with support vector regression.

  2. A Bayesian least squares support vector machines based framework for fault diagnosis and failure prognosis

    NASA Astrophysics Data System (ADS)

    Khawaja, Taimoor Saleem

    A high-belief low-overhead Prognostics and Health Management (PHM) system is desired for online real-time monitoring of complex non-linear systems operating in a complex (possibly non-Gaussian) noise environment. This thesis presents a Bayesian Least Squares Support Vector Machine (LS-SVM) based framework for fault diagnosis and failure prognosis in nonlinear non-Gaussian systems. The methodology assumes the availability of real-time process measurements, definition of a set of fault indicators and the existence of empirical knowledge (or historical data) to characterize both nominal and abnormal operating conditions. An efficient yet powerful Least Squares Support Vector Machine (LS-SVM) algorithm, set within a Bayesian Inference framework, not only allows for the development of real-time algorithms for diagnosis and prognosis but also provides a solid theoretical framework to address key concepts related to classification for diagnosis and regression modeling for prognosis. SVM machines are founded on the principle of Structural Risk Minimization (SRM) which tends to find a good trade-off between low empirical risk and small capacity. The key features in SVM are the use of non-linear kernels, the absence of local minima, the sparseness of the solution and the capacity control obtained by optimizing the margin. The Bayesian Inference framework linked with LS-SVMs allows a probabilistic interpretation of the results for diagnosis and prognosis. Additional levels of inference provide the much coveted features of adaptability and tunability of the modeling parameters. The two main modules considered in this research are fault diagnosis and failure prognosis. With the goal of designing an efficient and reliable fault diagnosis scheme, a novel Anomaly Detector is suggested based on the LS-SVM machines. The proposed scheme uses only baseline data to construct a 1-class LS-SVM machine which, when presented with online data is able to distinguish between normal behavior

  3. Timing formulas for dissection algorithms on vector computers

    NASA Technical Reports Server (NTRS)

    Poole, W. G., Jr.

    1977-01-01

    The use of the finite element and finite difference methods often leads to the problem of solving large, sparse, positive definite systems of linear equations. MACSYMA plays a major role in the generation of formulas representing the time required for execution of the dissection algorithms. The use of MACSYMA in the generation of those formulas is described.

  4. Ecological footprint model using the support vector machine technique.

    PubMed

    Ma, Haibo; Chang, Wenjuan; Cui, Guangbai

    2012-01-01

    The per capita ecological footprint (EF) is one of the most widely recognized measures of environmental sustainability. It aims to quantify the Earth's biological resources required to support human activity. In this paper, we summarize relevant previous literature, and present five factors that influence per capita EF. These factors are: National gross domestic product (GDP), urbanization (independent of economic development), distribution of income (measured by the Gini coefficient), export dependence (measured by the percentage of exports to total GDP), and service intensity (measured by the percentage of service to total GDP). A new ecological footprint model based on a support vector machine (SVM), which is a machine-learning method based on the structural risk minimization principle from statistical learning theory was conducted to calculate the per capita EF of 24 nations using data from 123 nations. The calculation accuracy was measured by average absolute error and average relative error. They were 0.004883 and 0.351078% respectively. Our results demonstrate that the EF model based on SVM has good calculation performance.

  5. Ecological Footprint Model Using the Support Vector Machine Technique

    PubMed Central

    Ma, Haibo; Chang, Wenjuan; Cui, Guangbai

    2012-01-01

    The per capita ecological footprint (EF) is one of the most widely recognized measures of environmental sustainability. It aims to quantify the Earth's biological resources required to support human activity. In this paper, we summarize relevant previous literature, and present five factors that influence per capita EF. These factors are: National gross domestic product (GDP), urbanization (independent of economic development), distribution of income (measured by the Gini coefficient), export dependence (measured by the percentage of exports to total GDP), and service intensity (measured by the percentage of service to total GDP). A new ecological footprint model based on a support vector machine (SVM), which is a machine-learning method based on the structural risk minimization principle from statistical learning theory was conducted to calculate the per capita EF of 24 nations using data from 123 nations. The calculation accuracy was measured by average absolute error and average relative error. They were 0.004883 and 0.351078% respectively. Our results demonstrate that the EF model based on SVM has good calculation performance. PMID:22291949

  6. Assimilation of PFISR Data Using Support Vector Regression and Ground Based Camera Constraints

    NASA Astrophysics Data System (ADS)

    Clayton, R.; Lynch, K. A.; Nicolls, M. J.; Hampton, D. L.; Michell, R.; Samara, M.; Guinther, J.

    2013-12-01

    In order to best interpret the information gained from multipoint in situ measurements, a Support Vector Regression algorithm is being developed to interpret the data collected from the instruments in the context of ground observations (such as those from camera or radar array). The idea behind SVR is to construct the simplest function that models the data with the least squared error, subject to constraints given by the user. Constraints can be brought into the algorithm from other data sources or from models. As is often the case with data, a perfect solution to such a problem may be impossible, thus 'slack' may be introduced to control how closely the model adheres to the data. The algorithm employs kernels, and chooses radial basis functions as an appropriate kernel. The current SVR code can take input data as one to three dimensional scalars or vectors, and may also include time. External data can be incorporated and assimilated into a model of the environment. Regions of minimal and maximal values are allowed to relax to the sample average (or a user-supplied model) on size and time scales determined by user input, known as feature sizes. These feature sizes can vary for each degree of freedom if the user desires. The user may also select weights for each data point, if it is desirable to weight parts of the data differently. In order to test the algorithm, Poker Flat Incoherent Scatter Radar (PFISR) and MICA sounding rocket data are being used as sample data. The PFISR data consists of many beams, each with multiple ranges. In addition to analyzing the radar data as it stands, the algorithm is being used to simulate data from a localized ionospheric swarm of Cubesats using existing PFISR data. The sample points of the radar at one altitude slice can serve as surrogates for satellites in a cubeswarm. The number of beams of the PFISR radar can then be used to see what the algorithm would output for a swarm of similar size. By using PFISR data in the 15-beam to

  7. Black box modeling of PIDs implemented in PLCs without structural information: a support vector regression approach.

    PubMed

    Salat, Robert; Awtoniuk, Michal

    In this report, the parameters identification of a proportional-integral-derivative (PID) algorithm implemented in a programmable logic controller (PLC) using support vector regression (SVR) is presented. This report focuses on a black box model of the PID with additional functions and modifications provided by the manufacturers and without information on the exact structure. The process of feature selection and its impact on the training and testing abilities are emphasized. The method was tested on a real PLC (Siemens and General Electric) with the implemented PID. The results show that the SVR maps the function of the PID algorithms and the modifications introduced by the manufacturer of the PLC with high accuracy. With this approach, the simulation results can be directly used to tune the PID algorithms in the PLC. The method is sufficiently universal in that it can be applied to any PI or PID algorithm implemented in the PLC with additional functions and modifications that were previously considered to be trade secrets. This method can also be an alternative for engineers who need to tune the PID and do not have any such information on the structure and cannot use the default settings for the known structures.

  8. Fruit fly optimization based least square support vector regression for blind image restoration

    NASA Astrophysics Data System (ADS)

    Zhang, Jiao; Wang, Rui; Li, Junshan; Yang, Yawei

    2014-11-01

    The goal of image restoration is to reconstruct the original scene from a degraded observation. It is a critical and challenging task in image processing. Classical restorations require explicit knowledge of the point spread function and a description of the noise as priors. However, it is not practical for many real image processing. The recovery processing needs to be a blind image restoration scenario. Since blind deconvolution is an ill-posed problem, many blind restoration methods need to make additional assumptions to construct restrictions. Due to the differences of PSF and noise energy, blurring images can be quite different. It is difficult to achieve a good balance between proper assumption and high restoration quality in blind deconvolution. Recently, machine learning techniques have been applied to blind image restoration. The least square support vector regression (LSSVR) has been proven to offer strong potential in estimating and forecasting issues. Therefore, this paper proposes a LSSVR-based image restoration method. However, selecting the optimal parameters for support vector machine is essential to the training result. As a novel meta-heuristic algorithm, the fruit fly optimization algorithm (FOA) can be used to handle optimization problems, and has the advantages of fast convergence to the global optimal solution. In the proposed method, the training samples are created from a neighborhood in the degraded image to the central pixel in the original image. The mapping between the degraded image and the original image is learned by training LSSVR. The two parameters of LSSVR are optimized though FOA. The fitness function of FOA is calculated by the restoration error function. With the acquired mapping, the degraded image can be recovered. Experimental results show the proposed method can obtain satisfactory restoration effect. Compared with BP neural network regression, SVR method and Lucy-Richardson algorithm, it speeds up the restoration rate and

  9. Monthly evaporation forecasting using artificial neural networks and support vector machines

    NASA Astrophysics Data System (ADS)

    Tezel, Gulay; Buyukyildiz, Meral

    2016-04-01

    Evaporation is one of the most important components of the hydrological cycle, but is relatively difficult to estimate, due to its complexity, as it can be influenced by numerous factors. Estimation of evaporation is important for the design of reservoirs, especially in arid and semi-arid areas. Artificial neural network methods and support vector machines (SVM) are frequently utilized to estimate evaporation and other hydrological variables. In this study, usability of artificial neural networks (ANNs) (multilayer perceptron (MLP) and radial basis function network (RBFN)) and ɛ-support vector regression (SVR) artificial intelligence methods was investigated to estimate monthly pan evaporation. For this aim, temperature, relative humidity, wind speed, and precipitation data for the period 1972 to 2005 from Beysehir meteorology station were used as input variables while pan evaporation values were used as output. The Romanenko and Meyer method was also considered for the comparison. The results were compared with observed class A pan evaporation data. In MLP method, four different training algorithms, gradient descent with momentum and adaptive learning rule backpropagation (GDX), Levenberg-Marquardt (LVM), scaled conjugate gradient (SCG), and resilient backpropagation (RBP), were used. Also, ɛ-SVR model was used as SVR model. The models were designed via 10-fold cross-validation (CV); algorithm performance was assessed via mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R 2). According to the performance criteria, the ANN algorithms and ɛ-SVR had similar results. The ANNs and ɛ-SVR methods were found to perform better than the Romanenko and Meyer methods. Consequently, the best performance using the test data was obtained using SCG(4,2,2,1) with R 2 = 0.905.

  10. Single face image reconstruction for super resolution using support vector regression

    NASA Astrophysics Data System (ADS)

    Lin, Haijie; Yuan, Qiping; Chen, Zhihong; Yang, Xiaoping

    2016-10-01

    In recent years, we have witnessed the prosperity of the face image super-resolution (SR) reconstruction, especially the learning-based technology. In this paper, a novel super-resolution face reconstruction framework based on support vector regression (SVR) about a single image is presented. Given some input data, SVR can precisely predict output class labels. We regard the SR problem as the estimation of pixel labels in its high resolution version. It's effective to put local binary pattern (LBP) codes and partial pixels into input vectors during training models in our work, and models are learnt from a set of high and low resolution face image. By optimizing vector pairs which are used for learning model, the final reconstructed results were advanced. Especially to deserve to be mentioned, we can get more high frequency information by exploiting the cyclical scan actions in the process of both training and prediction. A large number of experimental data and visual observation have shown that our method outperforms bicubic interpolation and some stateof- the-art super-resolution algorithms.

  11. Spacebased Estimation of Moisture Transport in Marine Atmosphere Using Support Vector Regression

    NASA Technical Reports Server (NTRS)

    Xie, Xiaosu; Liu, W. Timothy; Tang, Benyang

    2007-01-01

    An improved algorithm is developed based on support vector regression (SVR) to estimate horizonal water vapor transport integrated through the depth of the atmosphere ((Theta)) over the global ocean from observations of surface wind-stress vector by QuikSCAT, cloud drift wind vector derived from the Multi-angle Imaging SpectroRadiometer (MISR) and geostationary satellites, and precipitable water from the Special Sensor Microwave/Imager (SSM/I). The statistical relation is established between the input parameters (the surface wind stress, the 850 mb wind, the precipitable water, time and location) and the target data ((Theta) calculated from rawinsondes and reanalysis of numerical weather prediction model). The results are validated with independent daily rawinsonde observations, monthly mean reanalysis data, and through regional water balance. This study clearly demonstrates the improvement of (Theta) derived from satellite data using SVR over previous data sets based on linear regression and neural network. The SVR methodology reduces both mean bias and standard deviation comparedwith rawinsonde observations. It agrees better with observations from synoptic to seasonal time scales, and compare more favorably with the reanalysis data on seasonal variations. Only the SVR result can achieve the water balance over South America. The rationale of the advantage by SVR method and the impact of adding the upper level wind will also be discussed.

  12. Development of a sugar-binding residue prediction system from protein sequences using support vector machine.

    PubMed

    Banno, Masaki; Komiyama, Yusuke; Cao, Wei; Oku, Yuya; Ueki, Kokoro; Sumikoshi, Kazuya; Nakamura, Shugo; Terada, Tohru; Shimizu, Kentaro

    2017-02-01

    Several methods have been proposed for protein-sugar binding site prediction using machine learning algorithms. However, they are not effective to learn various properties of binding site residues caused by various interactions between proteins and sugars. In this study, we classified sugars into acidic and nonacidic sugars and showed that their binding sites have different amino acid occurrence frequencies. By using this result, we developed sugar-binding residue predictors dedicated to the two classes of sugars: an acid sugar binding predictor and a nonacidic sugar binding predictor. We also developed a combination predictor which combines the results of the two predictors. We showed that when a sugar is known to be an acidic sugar, the acidic sugar binding predictor achieves the best performance, and showed that when a sugar is known to be a nonacidic sugar or is not known to be either of the two classes, the combination predictor achieves the best performance. Our method uses only amino acid sequences for prediction. Support vector machine was used as a machine learning algorithm and the position-specific scoring matrix created by the position-specific iterative basic local alignment search tool was used as the feature vector. We evaluated the performance of the predictors using five-fold cross-validation. We have launched our system, as an open source freeware tool on the GitHub repository (https://doi.org/10.5281/zenodo.61513).

  13. Recognizing clinical entities in hospital discharge summaries using Structural Support Vector Machines with word representation features

    PubMed Central

    2013-01-01

    Background Named entity recognition (NER) is an important task in clinical natural language processing (NLP) research. Machine learning (ML) based NER methods have shown good performance in recognizing entities in clinical text. Algorithms and features are two important factors that largely affect the performance of ML-based NER systems. Conditional Random Fields (CRFs), a sequential labelling algorithm, and Support Vector Machines (SVMs), which is based on large margin theory, are two typical machine learning algorithms that have been widely applied to clinical NER tasks. For features, syntactic and semantic information of context words has often been used in clinical NER systems. However, Structural Support Vector Machines (SSVMs), an algorithm that combines the advantages of both CRFs and SVMs, and word representation features, which contain word-level back-off information over large unlabelled corpus by unsupervised algorithms, have not been extensively investigated for clinical text processing. Therefore, the primary goal of this study is to evaluate the use of SSVMs and word representation features in clinical NER tasks. Methods In this study, we developed SSVMs-based NER systems to recognize clinical entities in hospital discharge summaries, using the data set from the concept extration task in the 2010 i2b2 NLP challenge. We compared the performance of CRFs and SSVMs-based NER classifiers with the same feature sets. Furthermore, we extracted two different types of word representation features (clustering-based representation features and distributional representation features) and integrated them with the SSVMs-based clinical NER system. We then reported the performance of SSVM-based NER systems with different types of word representation features. Results and discussion Using the same training (N = 27,837) and test (N = 45,009) sets in the challenge, our evaluation showed that the SSVMs-based NER systems achieved better performance than the CRFs

  14. Clinical evaluation of the vector algorithm for neonatal hearing screening using automated auditory brainstem response.

    PubMed

    Keohane, Bernie M; Mason, Steve M; Baguley, David M

    2004-02-01

    A novel auditory brainstem response (ABR) detection and scoring algorithm, entitled the Vector algorithm is described. An independent clinical evaluation of the algorithm using 464 tests (120 non-stimulated and 344 stimulated tests) on 60 infants, with a mean age of approximately 6.5 weeks, estimated test sensitivity greater than 0.99 and test specificity at 0.87 for one test. Specificity was estimated to be greater than 0.95 for a two stage screen. Test times were of the order of 1.5 minutes per ear for detection of an ABR and 4.5 minutes per ear in the absence of a clear response. The Vector algorithm is commercially available for both automated screening and threshold estimation in hearing screening devices.

  15. Application of differential evolution for optimization of least-square support vector machine classifier of signal-averaged electrocardiograms

    NASA Astrophysics Data System (ADS)

    Krys, Sebastian; Jankowski, Stanislaw; Piatkowska-Janko, Ewa

    2009-06-01

    This paper presents the application of differential evolution, an evolutionary algorithm of solving a single objective optimization problem - tuning the hiperparameters of least-square support vector machine classifier. The goal was to improve the classification of patients with sustained ventricular tachycardia after myocardial infarction based on a signal-averaged electrocardiography dataset received from the Medical University of Warsaw. The applied method attained a classification rate of 96% of the SVT+ group.

  16. Carcinogenicity prediction of noncongeneric chemicals by a support vector machine.

    PubMed

    Zhong, Min; Nie, Xianglei; Yan, Aixia; Yuan, Qipeng

    2013-05-20

    The ability to identify carcinogenic compounds is of fundamental importance to the safe application of chemicals. In this study, we generated an array of in silico models allowing the classification of compounds into carcinogenic and noncarcinogenic agents based on a data set of 852 noncongeneric chemicals collected from the Carcinogenic Potency Database (CPDBAS). Twenty-four molecular descriptors were selected by Pearson correlation, F-score, and stepwise regression analysis. These descriptors cover a range of physicochemical properties, including electrophilicity, geometry, molecular weight, size, and solubility. The descriptor mutagenic showed the highest correlation coefficient with carcinogenicity. On the basis of these descriptors, a support vector machine-based (SVM) classification model was developed and fine-tuned by a 10-fold cross-validation approach. Both the SVM model (Model A1) and the best model from the 10-fold cross-validation (Model B3) runs gave good results on the test set with prediction accuracy over 80%, sensitivity over 76%, and specificity over 82%. In addition, extended connectivity fingerprints (ECFPs) and the Toxtree software were used to analyze the functional groups and substructures linked to carcinogenicity. It was found that the results of both methods are in good agreement.

  17. Fuzzy support vector machines based on linear clustering

    NASA Astrophysics Data System (ADS)

    Xiong, Shengwu; Liu, Hongbing; Niu, Xiaoxiao

    2005-10-01

    A new Fuzzy Support Vector Machines (FSVMs) based on linear clustering is proposed in this paper. Its concept comes from the idea of linear clustering, selecting the data points near to the preformed hyperplane, which is formed on the training set including one positive and one negative training samples respectively. The more important samples near to the preformed hyperplane are selected by linear clustering technique, and the new FSVMs are formed on the more important data set. It integrates the merit of two kinds of FSVMs. The membership functions are defined using the relative distance between the data points and the preformed hyperplane during the training process. The fuzzy membership decision functions of multi-class FSVMs adopt the minimal value of all the decision functions of two-class FSVMs. To demonstrate the superiority of our methods, the benchmark data sets of machines learning databases are selected to verify the proposed FSVMs. The experimental results indicate that the proposed FSVMs can reduce the training data and running time, and its recognition rate is greater than or equal to that of FSVMs through selecting a suitable linear clustering parameter.

  18. Data filtering with support vector machines in geometric camera calibration.

    PubMed

    Ergun, B; Kavzoglu, T; Colkesen, I; Sahin, C

    2010-02-01

    The use of non-metric digital cameras in close-range photogrammetric applications and machine vision has become a popular research agenda. Being an essential component of photogrammetric evaluation, camera calibration is a crucial stage for non-metric cameras. Therefore, accurate camera calibration and orientation procedures have become prerequisites for the extraction of precise and reliable 3D metric information from images. The lack of accurate inner orientation parameters can lead to unreliable results in the photogrammetric process. A camera can be well defined with its principal distance, principal point offset and lens distortion parameters. Different camera models have been formulated and used in close-range photogrammetry, but generally sensor orientation and calibration is performed with a perspective geometrical model by means of the bundle adjustment. In this study, support vector machines (SVMs) using radial basis function kernel is employed to model the distortions measured for Olympus Aspherical Zoom lens Olympus E10 camera system that are later used in the geometric calibration process. It is intended to introduce an alternative approach for the on-the-job photogrammetric calibration stage. Experimental results for DSLR camera with three focal length settings (9, 18 and 36 mm) were estimated using bundle adjustment with additional parameters, and analyses were conducted based on object point discrepancies and standard errors. Results show the robustness of the SVMs approach on the correction of image coordinates by modelling total distortions on-the-job calibration process using limited number of images.

  19. Solving nonstationary classification problems with coupled support vector machines.

    PubMed

    Grinblat, Guillermo L; Uzal, Lucas C; Ceccatto, H Alejandro; Granitto, Pablo M

    2011-01-01

    Many learning problems may vary slowly over time: in particular, some critical real-world applications. When facing this problem, it is desirable that the learning method could find the correct input-output function and also detect the change in the concept and adapt to it. We introduce the time-adaptive support vector machine (TA-SVM), which is a new method for generating adaptive classifiers, capable of learning concepts that change with time. The basic idea of TA-SVM is to use a sequence of classifiers, each one appropriate for a small time window but, in contrast to other proposals, learning all the hyperplanes in a global way. We show that the addition of a new term in the cost function of the set of SVMs (that penalizes the diversity between consecutive classifiers) produces a coupling of the sequence that allows TA-SVM to learn as a single adaptive classifier. We evaluate different aspects of the method using appropriate drifting problems. In particular, we analyze the regularizing effect of changing the number of classifiers in the sequence or adapting the strength of the coupling. A comparison with other methods in several problems, including the well-known STAGGER dataset and the real-world electricity pricing domain, shows the good performance of TA-SVM in all tested situations.

  20. River flow time series using least squares support vector machines

    NASA Astrophysics Data System (ADS)

    Samsudin, R.; Saad, P.; Shabri, A.

    2011-06-01

    This paper proposes a novel hybrid forecasting model known as GLSSVM, which combines the group method of data handling (GMDH) and the least squares support vector machine (LSSVM). The GMDH is used to determine the useful input variables which work as the time series forecasting for the LSSVM model. Monthly river flow data from two stations, the Selangor and Bernam rivers in Selangor state of Peninsular Malaysia were taken into consideration in the development of this hybrid model. The performance of this model was compared with the conventional artificial neural network (ANN) models, Autoregressive Integrated Moving Average (ARIMA), GMDH and LSSVM models using the long term observations of monthly river flow discharge. The root mean square error (RMSE) and coefficient of correlation (R) are used to evaluate the models' performances. In both cases, the new hybrid model has been found to provide more accurate flow forecasts compared to the other models. The results of the comparison indicate that the new hybrid model is a useful tool and a promising new method for river flow forecasting.

  1. Detection of Splice Sites Using Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Varadwaj, Pritish; Purohit, Neetesh; Arora, Bhumika

    Automatic identification and annotation of exon and intron region of gene, from DNA sequences has been an important research area in field of computational biology. Several approaches viz. Hidden Markov Model (HMM), Artificial Intelligence (AI) based machine learning and Digital Signal Processing (DSP) techniques have extensively and independently been used by various researchers to cater this challenging task. In this work, we propose a Support Vector Machine based kernel learning approach for detection of splice sites (the exon-intron boundary) in a gene. Electron-Ion Interaction Potential (EIIP) values of nucleotides have been used for mapping character sequences to corresponding numeric sequences. Radial Basis Function (RBF) SVM kernel is trained using EIIP numeric sequences. Furthermore this was tested on test gene dataset for detection of splice site by window (of 12 residues) shifting. Optimum values of window size, various important parameters of SVM kernel have been optimized for a better accuracy. Receiver Operating Characteristic (ROC) curves have been utilized for displaying the sensitivity rate of the classifier and results showed 94.82% accuracy for splice site detection on test dataset.

  2. Explaining Support Vector Machines: A Color Based Nomogram

    PubMed Central

    Van Belle, Vanya; Van Calster, Ben; Van Huffel, Sabine; Suykens, Johan A. K.; Lisboa, Paulo

    2016-01-01

    Problem setting Support vector machines (SVMs) are very popular tools for classification, regression and other problems. Due to the large choice of kernels they can be applied with, a large variety of data can be analysed using these tools. Machine learning thanks its popularity to the good performance of the resulting models. However, interpreting the models is far from obvious, especially when non-linear kernels are used. Hence, the methods are used as black boxes. As a consequence, the use of SVMs is less supported in areas where interpretability is important and where people are held responsible for the decisions made by models. Objective In this work, we investigate whether SVMs using linear, polynomial and RBF kernels can be explained such that interpretations for model-based decisions can be provided. We further indicate when SVMs can be explained and in which situations interpretation of SVMs is (hitherto) not possible. Here, explainability is defined as the ability to produce the final decision based on a sum of contributions which depend on one single or at most two input variables. Results Our experiments on simulated and real-life data show that explainability of an SVM depends on the chosen parameter values (degree of polynomial kernel, width of RBF kernel and regularization constant). When several combinations of parameter values yield the same cross-validation performance, combinations with a lower polynomial degree or a larger kernel width have a higher chance of being explainable. Conclusions This work summarizes SVM classifiers obtained with linear, polynomial and RBF kernels in a single plot. Linear and polynomial kernels up to the second degree are represented exactly. For other kernels an indication of the reliability of the approximation is presented. The complete methodology is available as an R package and two apps and a movie are provided to illustrate the possibilities offered by the method. PMID:27723811

  3. A circuitous shortest path algorithm labeled by previous-arc vector group in navigation GIS

    NASA Astrophysics Data System (ADS)

    Yang, Lin; Zhou, Shunping; Wan, Bo; Pan, Xiaofang

    2008-10-01

    Path planning, as the core module of navigation GIS, its efficiency and accuracy has a crucial impact on the navigation system. General shortest-path algorithm is based on the classic node label-setting algorithm, which does not consider the situation of including circuitous road sections. Therefore, sometimes it will neglect the closer circuitous path at hand but find the farther path or even failed to find any path in the real road network with complicated traffic restrictions. For the sake of finding more accurate path, this paper presents a circuitous shortest path algorithm labeled by previous-arc vector group. Firstly, we generate incremental network topological relationships according to two random positions travelers are interested in. Secondly, we construct a vector group including previous arc, and seek the way by labeling the previous-arc vector group. Finally, the shortest path in the sense of mathematics which may contain circuitous road sections can be acquired. An experimental work has been done with this algorithm using the map of Beijing, which showed that the algorithm not only well improved the accuracy of the shortest path result between the two random positions in the road network, but also kept the efficiency of the classic node labeled algorithm.

  4. Robust Vision-Based Pose Estimation Algorithm for AN Uav with Known Gravity Vector

    NASA Astrophysics Data System (ADS)

    Kniaz, V. V.

    2016-06-01

    Accurate estimation of camera external orientation with respect to a known object is one of the central problems in photogrammetry and computer vision. In recent years this problem is gaining an increasing attention in the field of UAV autonomous flight. Such application requires a real-time performance and robustness of the external orientation estimation algorithm. The accuracy of the solution is strongly dependent on the number of reference points visible on the given image. The problem only has an analytical solution if 3 or more reference points are visible. However, in limited visibility conditions it is often needed to perform external orientation with only 2 visible reference points. In such case the solution could be found if the gravity vector direction in the camera coordinate system is known. A number of algorithms for external orientation estimation for the case of 2 known reference points and a gravity vector were developed to date. Most of these algorithms provide analytical solution in the form of polynomial equation that is subject to large errors in the case of complex reference points configurations. This paper is focused on the development of a new computationally effective and robust algorithm for external orientation based on positions of 2 known reference points and a gravity vector. The algorithm implementation for guidance of a Parrot AR.Drone 2.0 micro-UAV is discussed. The experimental evaluation of the algorithm proved its computational efficiency and robustness against errors in reference points positions and complex configurations.

  5. Modified Particle Filtering Algorithm for Single Acoustic Vector Sensor DOA Tracking

    PubMed Central

    Li, Xinbo; Sun, Haixin; Jiang, Liangxu; Shi, Yaowu; Wu, Yue

    2015-01-01

    The conventional direction of arrival (DOA) estimation algorithm with static sources assumption usually estimates the source angles of two adjacent moments independently and the correlation of the moments is not considered. In this article, we focus on the DOA estimation of moving sources and a modified particle filtering (MPF) algorithm is proposed with state space model of single acoustic vector sensor. Although the particle filtering (PF) algorithm has been introduced for acoustic vector sensor applications, it is not suitable for the case that one dimension angle of source is estimated with large deviation, the two dimension angles (pitch angle and azimuth angle) cannot be simultaneously employed to update the state through resampling processing of PF algorithm. To solve the problems mentioned above, the MPF algorithm is proposed in which the state estimation of previous moment is introduced to the particle sampling of present moment to improve the importance function. Moreover, the independent relationship of pitch angle and azimuth angle is considered and the two dimension angles are sampled and evaluated, respectively. Then, the MUSIC spectrum function is used as the “likehood” function of the MPF algorithm, and the modified PF-MUSIC (MPF-MUSIC) algorithm is proposed to improve the root mean square error (RMSE) and the probability of convergence. The theoretical analysis and the simulation results validate the effectiveness and feasibility of the two proposed algorithms. PMID:26501280

  6. Least squares twin support vector machine with Universum data for classification

    NASA Astrophysics Data System (ADS)

    Xu, Yitian; Chen, Mei; Li, Guohui

    2016-11-01

    Universum, a third class not belonging to either class of the classification problem, allows to incorporate the prior knowledge into the learning process. A lot of previous work have demonstrated that the Universum is helpful to the supervised and semi-supervised classification. Moreover, Universum has already been introduced into the support vector machine (SVM) and twin support vector machine (TSVM) to enhance the generalisation performance. To further increase the generalisation performance, we propose a least squares TSVM with Universum data (?-TSVM) in this paper. Our ?-TSVM possesses the following advantages: first, it exploits Universum data to improve generalisation performance. Besides, it implements the structural risk minimisation principle by adding a regularisation to the objective function. Finally, it costs less computing time by solving two small-sized systems of linear equations instead of a single larger-sized quadratic programming problem. To verify the validity of our proposed algorithm, we conduct various experiments around the size of labelled samples and the number of Universum data on data-sets including seven benchmark data-sets, Toy data, MNIST and Face images. Empirical experiments indicate that Universum contributes to making prediction accuracy improved even stable. Especially when fewer labelled samples given, ?-TSVM is far superior to the improved LS-TSVM (ILS-TSVM), and slightly superior to the ?-TSVM.

  7. Prediction of protein-glucose binding sites using support vector machines.

    PubMed

    Nassif, Houssam; Al-Ali, Hassan; Khuri, Sawsan; Keirouz, Walid

    2009-10-01

    Glucose is a simple sugar that plays an essential role in many basic metabolic and signaling pathways. Many proteins have binding sites that are highly specific to glucose. The exponential increase of genomic data has revealed the identity of many proteins that seem to be central to biological processes, but whose exact functions are unknown. Many of these proteins seem to be associated with disease processes. Being able to predict glucose-specific binding sites in these proteins will greatly enhance our ability to annotate protein function and may significantly contribute to drug design. We hereby present the first glucose-binding site classifier algorithm. We consider the sugar-binding pocket as a spherical spatio-chemical environment and represent it as a vector of geometric and chemical features. We then perform Random Forests feature selection to identify key features and analyze them using support vector machines classification. Our work shows that glucose binding sites can be modeled effectively using a limited number of basic chemical and residue features. Using a leave-one-out cross-validation method, our classifier achieves a 8.11% error, a 89.66% sensitivity and a 93.33% specificity over our dataset. From a biochemical perspective, our results support the relevance of ordered water molecules and ions in determining glucose specificity. They also reveal the importance of carboxylate residues in glucose binding and the high concentration of negatively charged atoms in direct contact with the bound glucose molecule.

  8. Human action recognition with group lasso regularized-support vector machine

    NASA Astrophysics Data System (ADS)

    Luo, Huiwu; Lu, Huanzhang; Wu, Yabei; Zhao, Fei

    2016-05-01

    The bag-of-visual-words (BOVW) and Fisher kernel are two popular models in human action recognition, and support vector machine (SVM) is the most commonly used classifier for the two models. We show two kinds of group structures in the feature representation constructed by BOVW and Fisher kernel, respectively, since the structural information of feature representation can be seen as a prior for the classifier and can improve the performance of the classifier, which has been verified in several areas. However, the standard SVM employs L2-norm regularization in its learning procedure, which penalizes each variable individually and cannot express the structural information of feature representation. We replace the L2-norm regularization with group lasso regularization in standard SVM, and a group lasso regularized-support vector machine (GLRSVM) is proposed. Then, we embed the group structural information of feature representation into GLRSVM. Finally, we introduce an algorithm to solve the optimization problem of GLRSVM by alternating directions method of multipliers. The experiments evaluated on KTH, YouTube, and Hollywood2 datasets show that our method achieves promising results and improves the state-of-the-art methods on KTH and YouTube datasets.

  9. A tool for urban soundscape evaluation applying Support Vector Machines for developing a soundscape classification model.

    PubMed

    Torija, Antonio J; Ruiz, Diego P; Ramos-Ridao, Angel F

    2014-06-01

    To ensure appropriate soundscape management in urban environments, the urban-planning authorities need a range of tools that enable such a task to be performed. An essential step during the management of urban areas from a sound standpoint should be the evaluation of the soundscape in such an area. In this sense, it has been widely acknowledged that a subjective and acoustical categorization of a soundscape is the first step to evaluate it, providing a basis for designing or adapting it to match people's expectations as well. In this sense, this work proposes a model for automatic classification of urban soundscapes. This model is intended for the automatic classification of urban soundscapes based on underlying acoustical and perceptual criteria. Thus, this classification model is proposed to be used as a tool for a comprehensive urban soundscape evaluation. Because of the great complexity associated with the problem, two machine learning techniques, Support Vector Machines (SVM) and Support Vector Machines trained with Sequential Minimal Optimization (SMO), are implemented in developing model classification. The results indicate that the SMO model outperforms the SVM model in the specific task of soundscape classification. With the implementation of the SMO algorithm, the classification model achieves an outstanding performance (91.3% of instances correctly classified).

  10. Evaluation of Algorithms for a Miles-in-Trail Decision Support Tool

    NASA Technical Reports Server (NTRS)

    Bloem, Michael; Hattaway, David; Bambos, Nicholas

    2012-01-01

    Four machine learning algorithms were prototyped and evaluated for use in a proposed decision support tool that would assist air traffic managers as they set Miles-in-Trail restrictions. The tool would display probabilities that each possible Miles-in-Trail value should be used in a given situation. The algorithms were evaluated with an expected Miles-in-Trail cost that assumes traffic managers set restrictions based on the tool-suggested probabilities. Basic Support Vector Machine, random forest, and decision tree algorithms were evaluated, as was a softmax regression algorithm that was modified to explicitly reduce the expected Miles-in-Trail cost. The algorithms were evaluated with data from the summer of 2011 for air traffic flows bound to the Newark Liberty International Airport (EWR) over the ARD, PENNS, and SHAFF fixes. The algorithms were provided with 18 input features that describe the weather at EWR, the runway configuration at EWR, the scheduled traffic demand at EWR and the fixes, and other traffic management initiatives in place at EWR. Features describing other traffic management initiatives at EWR and the weather at EWR achieved relatively high information gain scores, indicating that they are the most useful for estimating Miles-in-Trail. In spite of a high variance or over-fitting problem, the decision tree algorithm achieved the lowest expected Miles-in-Trail costs when the algorithms were evaluated using 10-fold cross validation with the summer 2011 data for these air traffic flows.

  11. Noninvasive extraction of fetal electrocardiogram based on Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Fu, Yumei; Xiang, Shihan; Chen, Tianyi; Zhou, Ping; Huang, Weiyan

    2015-10-01

    The fetal electrocardiogram (FECG) signal has important clinical value for diagnosing the fetal heart diseases and choosing suitable therapeutics schemes to doctors. So, the noninvasive extraction of FECG from electrocardiogram (ECG) signals becomes a hot research point. A new method, the Support Vector Machine (SVM) is utilized for the extraction of FECG with limited size of data. Firstly, the theory of the SVM and the principle of the extraction based on the SVM are studied. Secondly, the transformation of maternal electrocardiogram (MECG) component in abdominal composite signal is verified to be nonlinear and fitted with the SVM. Then, the SVM is trained, and the training results are compared with the real data to ensure the effect of the training. Meanwhile, the parameters of the SVM are optimized to achieve the best performance so that the learning machine can be utilized to fit the unknown samples. Finally, the FECG is extracted by removing the optimal estimation of MECG component from the abdominal composite signal. In order to evaluate the performance of FECG extraction based on the SVM, the Signal-to-Noise Ratio (SNR) and the visual test are used. The experimental results show that the FECG with good quality can be extracted, its SNR ratio is significantly increased as high as 9.2349 dB and the time cost is significantly decreased as short as 0.802 seconds. Compared with the traditional method, the noninvasive extraction method based on the SVM has a simple realization, the shorter treatment time and the better extraction quality under the same conditions.

  12. Discrimination of thermostable and thermophilic lipases using support vector machines.

    PubMed

    Zhao, Wei; Wang, Xunzhang; Deng, Riqiang; Wang, Jinwen; Zhou, Hongbo

    2011-07-01

    Discriminating thermophilic lipases from their similar thermostable counterparts is a challenging task and it would help to design stable proteins. In this study, the distributions of N (N=2, 3) neighboring amino acids and the non-adjacent di-residue coupling patterns in the sequences of 65 thermostable and 77 thermophilic lipases had been systematically analyzed. It was found that the hydrophobic residues Leu, Pro, Met, Phe, Trp, as well as the polar residue Tyr had higher occurrence in thermophilic lipases than thermostable ones. The occurrence frequencies of KC EE KE RE, VE, YI, EK, VK, EV, YV, EY, KY, VY and YY in thermophilic proteins were significantly higher, while the occurrence frequencies of QC, QH, QN, HQ, MQ, NQ, QQ, TQ, QS and QT were significantly lower. CXP or CPX showed significantly positive to lipase thermostability, while XXQ or QXX showed significantly negative to lipase thermostability. Non-adjacent di-residue coupling patterns of PR14, RY32, YR47, LE53, LE64, PP64, RP70 and PP101 were significantly different in thermophilic lipases and their thermostable counterparts. The composition of dipeptide, tripeptide and non-adjacent di-residue patterns contained more information than amino acid composition. A statistical method based on support vector machines (SVMs) was developed for discriminating thermophilic and thermostable lipases. The accuracy of this method for the training dataset was 97.17?. Furthermore, the highest accuracy of the method for testing datasets was 98.41?. The influence of some specific patterns on lipase thermostability was also discussed.

  13. Support vector machines (SVMs) for monitoring network design.

    PubMed

    Asefa, Tirusew; Kemblowski, Mariush; Urroz, Gilberto; McKee, Mac

    2005-01-01

    In this paper we present a hydrologic application of a new statistical learning methodology called support vector machines (SVMs). SVMs are based on minimization of a bound on the generalized error (risk) model, rather than just the mean square error over a training set. Due to Mercer's conditions on the kernels, the corresponding optimization problems are convex and hence have no local minima. In this paper, SVMs are illustratively used to reproduce the behavior of Monte Carlo-based flow and transport models that are in turn used in the design of a ground water contamination detection monitoring system. The traditional approach, which is based on solving transient transport equations for each new configuration of a conductivity field, is too time consuming in practical applications. Thus, there is a need to capture the behavior of the transport phenomenon in random media in a relatively simple manner. The objective of the exercise is to maximize the probability of detecting contaminants that exceed some regulatory standard before they reach a compliance boundary, while minimizing cost (i.e., number of monitoring wells). Application of the method at a generic site showed a rather promising performance, which leads us to believe that SVMs could be successfully employed in other areas of hydrology. The SVM was trained using 510 monitoring configuration samples generated from 200 Monte Carlo flow and transport realizations. The best configurations of well networks selected by the SVM were identical with the ones obtained from the physical model, but the reliabilities provided by the respective networks differ slightly.

  14. A 'Drift' algorithm for integrating vector polyline and DEM based on the spherical DQG

    NASA Astrophysics Data System (ADS)

    Wang, Jiaojiao; Wang, Lei; Cao, Wenmin; Zhao, Xuesheng

    2014-03-01

    The efficient integration method of vector and DEM data on a global scale is one of the important issues in the community of Digital Earth. Among the existing methods, geometry-based approach maintains the characteristics of vector data necessary for inquiry and analysis. However, the complexity of geometry-based approach, which needs lots of interpolation calculation, limits its applications greatly in the multi-source spatial data integration on a global scale. To overcome this serious deficiency, a novel 'drift' algorithm is developed based on the spherical Degenerate Quadtree Grid (DQG) on which the global DEMs data is represented. The main principle of this algorithm is that the vector node in a DQG cell can be moved to the cell corner-point without changing the visualization effects if the cell is smaller or equal to a pixel of screen. A detailed algorithm and the multi-scale operation steps are also presented. By the 'drift' algorithm, the vector polylines and DEM grids are integrated seamlessly, avoiding lots of interpolation calculating. Based on the approach described above, we have developed a computer program in platform OpenGL 3D API with VC++ language. In this experiment, USGS GTOPO30 DEM data and 1:1,000,000 DCW roads data sets in China area are selected. Tests have shown that time consumption of the 'drift' algorithm is only about 25% of that of the traditional ones, moreover, the mean error of drift operation on vector nodes can be controlled within about half a DQG cell. In the end, the conclusions and future works are also given.

  15. Diagnostic Method of Diabetes Based on Support Vector Machine and Tongue Images

    PubMed Central

    Hu, Xiaojuan; Chen, Qingguang; Tu, Liping; Huang, Jingbin; Cui, Ji

    2017-01-01

    Objective. The purpose of this research is to develop a diagnostic method of diabetes based on standardized tongue image using support vector machine (SVM). Methods. Tongue images of 296 diabetic subjects and 531 nondiabetic subjects were collected by the TDA-1 digital tongue instrument. Tongue body and tongue coating were separated by the division-merging method and chrominance-threshold method. With extracted color and texture features of the tongue image as input variables, the diagnostic model of diabetes with SVM was trained. After optimizing the combination of SVM kernel parameters and input variables, the influences of the combinations on the model were analyzed. Results. After normalizing parameters of tongue images, the accuracy rate of diabetes predication was increased from 77.83% to 78.77%. The accuracy rate and area under curve (AUC) were not reduced after reducing the dimensions of tongue features with principal component analysis (PCA), while substantially saving the training time. During the training for selecting SVM parameters by genetic algorithm (GA), the accuracy rate of cross-validation was grown from 72% or so to 83.06%. Finally, we compare with several state-of-the-art algorithms, and experimental results show that our algorithm has the best predictive accuracy. Conclusions. The diagnostic method of diabetes on the basis of tongue images in Traditional Chinese Medicine (TCM) is of great value, indicating the feasibility of digitalized tongue diagnosis. PMID:28133611

  16. Automated Cell Selection Using Support Vector Machine for Application to Spectral Nanocytology

    PubMed Central

    Miao, Qin; Derbas, Justin; Eid, Aya; Subramanian, Hariharan; Backman, Vadim

    2016-01-01

    Partial wave spectroscopy (PWS) enables quantification of the statistical properties of cell structures at the nanoscale, which has been used to identify patients harboring premalignant tumors by interrogating easily accessible sites distant from location of the lesion. Due to its high sensitivity, cells that are well preserved need to be selected from the smear images for further analysis. To date, such cell selection has been done manually. This is time-consuming, is labor-intensive, is vulnerable to bias, and has considerable inter- and intraoperator variability. In this study, we developed a classification scheme to identify and remove the corrupted cells or debris that are of no diagnostic value from raw smear images. The slide of smear sample is digitized by acquiring and stitching low-magnification transmission. Objects are then extracted from these images through segmentation algorithms. A training-set is created by manually classifying objects as suitable or unsuitable. A feature-set is created by quantifying a large number of features for each object. The training-set and feature-set are used to train a selection algorithm using Support Vector Machine (SVM) classifiers. We show that the selection algorithm achieves an error rate of 93% with a sensitivity of 95%. PMID:26904682

  17. Diagnostic Method of Diabetes Based on Support Vector Machine and Tongue Images.

    PubMed

    Zhang, Jianfeng; Xu, Jiatuo; Hu, Xiaojuan; Chen, Qingguang; Tu, Liping; Huang, Jingbin; Cui, Ji

    2017-01-01

    Objective. The purpose of this research is to develop a diagnostic method of diabetes based on standardized tongue image using support vector machine (SVM). Methods. Tongue images of 296 diabetic subjects and 531 nondiabetic subjects were collected by the TDA-1 digital tongue instrument. Tongue body and tongue coating were separated by the division-merging method and chrominance-threshold method. With extracted color and texture features of the tongue image as input variables, the diagnostic model of diabetes with SVM was trained. After optimizing the combination of SVM kernel parameters and input variables, the influences of the combinations on the model were analyzed. Results. After normalizing parameters of tongue images, the accuracy rate of diabetes predication was increased from 77.83% to 78.77%. The accuracy rate and area under curve (AUC) were not reduced after reducing the dimensions of tongue features with principal component analysis (PCA), while substantially saving the training time. During the training for selecting SVM parameters by genetic algorithm (GA), the accuracy rate of cross-validation was grown from 72% or so to 83.06%. Finally, we compare with several state-of-the-art algorithms, and experimental results show that our algorithm has the best predictive accuracy. Conclusions. The diagnostic method of diabetes on the basis of tongue images in Traditional Chinese Medicine (TCM) is of great value, indicating the feasibility of digitalized tongue diagnosis.

  18. Automatic pathology classification using a single feature machine learning support - vector machines

    NASA Astrophysics Data System (ADS)

    Yepes-Calderon, Fernando; Pedregosa, Fabian; Thirion, Bertrand; Wang, Yalin; Lepore, Natasha

    2014-03-01

    Magnetic Resonance Imaging (MRI) has been gaining popularity in the clinic in recent years as a safe in-vivo imaging technique. As a result, large troves of data are being gathered and stored daily that may be used as clinical training sets in hospitals. While numerous machine learning (ML) algorithms have been implemented for Alzheimer's disease classification, their outputs are usually difficult to interpret in the clinical setting. Here, we propose a simple method of rapid diagnostic classification for the clinic using Support Vector Machines (SVM)1 and easy to obtain geometrical measurements that, together with a cortical and sub-cortical brain parcellation, create a robust framework capable of automatic diagnosis with high accuracy. On a significantly large imaging dataset consisting of over 800 subjects taken from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, classification-success indexes of up to 99.2% are reached with a single measurement.

  19. PSO-based support vector machine with cuckoo search technique for clinical disease diagnoses.

    PubMed

    Liu, Xiaoyong; Fu, Hui

    2014-01-01

    Disease diagnosis is conducted with a machine learning method. We have proposed a novel machine learning method that hybridizes support vector machine (SVM), particle swarm optimization (PSO), and cuckoo search (CS). The new method consists of two stages: firstly, a CS based approach for parameter optimization of SVM is developed to find the better initial parameters of kernel function, and then PSO is applied to continue SVM training and find the best parameters of SVM. Experimental results indicate that the proposed CS-PSO-SVM model achieves better classification accuracy and F-measure than PSO-SVM and GA-SVM. Therefore, we can conclude that our proposed method is very efficient compared to the previously reported algorithms.

  20. River Flow Forecasting: a Hybrid Model of Self Organizing Maps and Least Square Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Ismail, S.; Samsudin, R.; Shabri, A.

    2010-10-01

    Successful river flow time series forecasting is a major goal and an essential procedure that is necessary in water resources planning and management. This study introduced a new hybrid model based on a combination of two familiar non-linear method of mathematical modeling: Self Organizing Map (SOM) and Least Square Support Vector Machine (LSSVM) model referred as SOM-LSSVM model. The hybrid model uses the SOM algorithm to cluster the training data into several disjointed clusters and the individual LSSVM is used to forecast the river flow. The feasibility of this proposed model is evaluated to actual river flow data from Bernam River located in Selangor, Malaysia. Their results have been compared to those obtained using LSSVM and artificial neural networks (ANN) models. The experiment results show that the SOM-LSSVM model outperforms other models for forecasting river flow. It also indicates that the proposed model can forecast more precisely and provides a promising alternative technique in river flow forecasting.

  1. Parallel sequential minimal optimization for the training of support vector machines.

    PubMed

    Cao, L J; Keerthi, S S; Ong, Chong-Jin; Zhang, J Q; Periyathamby, Uvaraj; Fu, Xiu Ju; Lee, H P

    2006-07-01

    Sequential minimal optimization (SMO) is one popular algorithm for training support vector machine (SVM), but it still requires a large amount of computation time for solving large size problems. This paper proposes one parallel implementation of SMO for training SVM. The parallel SMO is developed using message passing interface (MPI). Specifically, the parallel SMO first partitions the entire training data set into smaller subsets and then simultaneously runs multiple CPU processors to deal with each of the partitioned data sets. Experiments show that there is great speedup on the adult data set and the Mixing National Institute of Standard and Technology (MNIST) data set when many processors are used. There are also satisfactory results on the Web data set.

  2. Support vector machine for multi-classification of mineral prospectivity areas

    NASA Astrophysics Data System (ADS)

    Abedi, Maysam; Norouzi, Gholam-Hossain; Bahroudi, Abbas

    2012-09-01

    In this paper on mineral prospectivity mapping, a supervised classification method called Support Vector Machine (SVM) is used to explore porphyry-Cu deposits. Different data layers of geological, geophysical and geochemical themes are integrated to evaluate the Now Chun porphyry-Cu deposit, located in the Kerman province of Iran, and to prepare a prospectivity map for mineral exploration. The SVM method, a data-driven approach to pattern recognition, had a correct-classification rate of 52.38% for twenty-one boreholes divided into five classes. The results of the study indicated the capability of SVM as a supervised learning algorithm tool for the predictive mapping of mineral prospects. Multi-classification of the prospect for detailed study could increase the resolution of the prospectivity map and decrease the drilling risk.

  3. A Numerical Comparison of Rule Ensemble Methods and Support Vector Machines

    SciTech Connect

    Meza, Juan C.; Woods, Mark

    2009-12-18

    Machine or statistical learning is a growing field that encompasses many scientific problems including estimating parameters from data, identifying risk factors in health studies, image recognition, and finding clusters within datasets, to name just a few examples. Statistical learning can be described as 'learning from data' , with the goal of making a prediction of some outcome of interest. This prediction is usually made on the basis of a computer model that is built using data where the outcomes and a set of features have been previously matched. The computer model is called a learner, hence the name machine learning. In this paper, we present two such algorithms, a support vector machine method and a rule ensemble method. We compared their predictive power on three supernova type 1a data sets provided by the Nearby Supernova Factory and found that while both methods give accuracies of approximately 95%, the rule ensemble method gives much lower false negative rates.

  4. Accelerating Families of Fuzzy K-Means Algorithms for Vector Quantization Codebook Design

    PubMed Central

    Mata, Edson; Bandeira, Silvio; de Mattos Neto, Paulo; Lopes, Waslon; Madeiro, Francisco

    2016-01-01

    The performance of signal processing systems based on vector quantization depends on codebook design. In the image compression scenario, the quality of the reconstructed images depends on the codebooks used. In this paper, alternatives are proposed for accelerating families of fuzzy K-means algorithms for codebook design. The acceleration is obtained by reducing the number of iterations of the algorithms and applying efficient nearest neighbor search techniques. Simulation results concerning image vector quantization have shown that the acceleration obtained so far does not decrease the quality of the reconstructed images. Codebook design time savings up to about 40% are obtained by the accelerated versions with respect to the original versions of the algorithms. PMID:27886061

  5. Artificial immune system based on adaptive clonal selection for feature selection and parameters optimisation of support vector machines

    NASA Astrophysics Data System (ADS)

    Sadat Hashemipour, Maryam; Soleimani, Seyed Ali

    2016-01-01

    Artificial immune system (AIS) algorithm based on clonal selection method can be defined as a soft computing method inspired by theoretical immune system in order to solve science and engineering problems. Support vector machine (SVM) is a popular pattern classification method with many diverse applications. Kernel parameter setting in the SVM training procedure along with the feature selection significantly impacts on the classification accuracy rate. In this study, AIS based on Adaptive Clonal Selection (AISACS) algorithm has been used to optimise the SVM parameters and feature subset selection without degrading the SVM classification accuracy. Several public datasets of University of California Irvine machine learning (UCI) repository are employed to calculate the classification accuracy rate in order to evaluate the AISACS approach then it was compared with grid search algorithm and Genetic Algorithm (GA) approach. The experimental results show that the feature reduction rate and running time of the AISACS approach are better than the GA approach.

  6. Semi-Automatic Classification of Birdsong Elements Using a Linear Support Vector Machine

    PubMed Central

    Tachibana, Ryosuke O.; Oosugi, Naoya; Okanoya, Kazuo

    2014-01-01

    Birdsong provides a unique model for understanding the behavioral and neural bases underlying complex sequential behaviors. However, birdsong analyses require laborious effort to make the data quantitatively analyzable. The previous attempts had succeeded to provide some reduction of human efforts involved in birdsong segment classification. The present study was aimed to further reduce human efforts while increasing classification performance. In the current proposal, a linear-kernel support vector machine was employed to minimize the amount of human-generated label samples for reliable element classification in birdsong, and to enable the classifier to handle highly-dimensional acoustic features while avoiding the over-fitting problem. Bengalese finch's songs in which distinct elements (i.e., syllables) were aligned in a complex sequential pattern were used as a representative test case in the neuroscientific research field. Three evaluations were performed to test (1) algorithm validity and accuracy with exploring appropriate classifier settings, (2) capability to provide accuracy with reducing amount of instruction dataset, and (3) capability in classifying large dataset with minimized manual labeling. The results from the evaluation (1) showed that the algorithm is 99.5% reliable in song syllables classification. This accuracy was indeed maintained in evaluation (2), even when the instruction data classified by human were reduced to one-minute excerpt (corresponding to 300–400 syllables) for classifying two-minute excerpt. The reliability remained comparable, 98.7% accuracy, when a large target dataset of whole day recordings (∼30,000 syllables) was used. Use of a linear-kernel support vector machine showed sufficient accuracies with minimized manually generated instruction data in bird song element classification. The methodology proposed would help reducing laborious processes in birdsong analysis without sacrificing reliability, and therefore can help

  7. A “Salt and Pepper” Noise Reduction Scheme for Digital Images Based on Support Vector Machines Classification and Regression

    PubMed Central

    Gómez-Moreno, Hilario; Gil-Jiménez, Pedro; Lafuente-Arroyo, Sergio; López-Sastre, Roberto; Maldonado-Bascón, Saturnino

    2014-01-01

    We present a new impulse noise removal technique based on Support Vector Machines (SVM). Both classification and regression were used to reduce the “salt and pepper” noise found in digital images. Classification enables identification of noisy pixels, while regression provides a means to determine reconstruction values. The training vectors necessary for the SVM were generated synthetically in order to maintain control over quality and complexity. A modified median filter based on a previous noise detection stage and a regression-based filter are presented and compared to other well-known state-of-the-art noise reduction algorithms. The results show that the filters proposed achieved good results, outperforming other state-of-the-art algorithms for low and medium noise ratios, and were comparable for very highly corrupted images. PMID:25202739

  8. A Consistent Information Criterion for Support Vector Machines in Diverging Model Spaces

    PubMed Central

    Zhang, Xiang; Wu, Yichao; Wang, Lan; Li, Runze

    2015-01-01

    Information criteria have been popularly used in model selection and proved to possess nice theoretical properties. For classification, Claeskens et al. (2008) proposed support vector machine information criterion for feature selection and provided encouraging numerical evidence. Yet no theoretical justification was given there. This work aims to fill the gap and to provide some theoretical justifications for support vector machine information criterion in both fixed and diverging model spaces. We first derive a uniform convergence rate for the support vector machine solution and then show that a modification of the support vector machine information criterion achieves model selection consistency even when the number of features diverges at an exponential rate of the sample size. This consistency result can be further applied to selecting the optimal tuning parameter for various penalized support vector machine methods. Finite-sample performance of the proposed information criterion is investigated using Monte Carlo studies and one real-world gene selection problem. PMID:27239164

  9. A novel retinal vessel extraction algorithm based on matched filtering and gradient vector flow

    NASA Astrophysics Data System (ADS)

    Yu, Lei; Xia, Mingliang; Xuan, Li

    2013-10-01

    The microvasculature network of retina plays an important role in the study and diagnosis of retinal diseases (age-related macular degeneration and diabetic retinopathy for example). Although it is possible to noninvasively acquire high-resolution retinal images with modern retinal imaging technologies, non-uniform illumination, the low contrast of thin vessels and the background noises all make it difficult for diagnosis. In this paper, we introduce a novel retinal vessel extraction algorithm based on gradient vector flow and matched filtering to segment retinal vessels with different likelihood. Firstly, we use isotropic Gaussian kernel and adaptive histogram equalization to smooth and enhance the retinal images respectively. Secondly, a multi-scale matched filtering method is adopted to extract the retinal vessels. Then, the gradient vector flow algorithm is introduced to locate the edge of the retinal vessels. Finally, we combine the results of matched filtering method and gradient vector flow algorithm to extract the vessels at different likelihood levels. The experiments demonstrate that our algorithm is efficient and the intensities of vessel images exactly represent the likelihood of the vessels.

  10. Fall Detection with the Support Vector Machine during Scripted and Continuous Unscripted Activities

    PubMed Central

    Liu, Shing-Hong; Cheng, Wen-Chang

    2012-01-01

    In recent years, the number of proposed fall-detection systems that have been developed has increased dramatically. A threshold-based algorithm utilizing an accelerometer has been used to detect low-complexity falling activities. In this study, we defined activities in which the body's center of gravity quickly declines as falling activities of daily life (ADLs). In the non-falling ADLs, we also focused on the body's center of gravity. A hyperplane of the support vector machine (SVM) was used as the separating plane to replace the traditional threshold method for the detection of falling ADLs. The scripted and continuous unscripted activities were performed by two groups of young volunteers (20 subjects) and one group of elderly volunteers (five subjects). The results showed that the four parameters of the input vector had the best accuracy with 99.1% and 98.4% in the training and testing, respectively. For the continuous unscripted test of one hour, there were two and one false positive events among young volunteers and elderly volunteers, respectively. PMID:23112713

  11. Flux-vector splitting algorithm for chain-rule conservation-law form

    NASA Technical Reports Server (NTRS)

    Shih, T. I.-P.; Nguyen, H. L.; Willis, E. A.; Steinthorsson, E.; Li, Z.

    1991-01-01

    A flux-vector splitting algorithm with Newton-Raphson iteration was developed for the 'full compressible' Navier-Stokes equations cast in chain-rule conservation-law form. The algorithm is intended for problems with deforming spatial domains and for problems whose governing equations cannot be cast in strong conservation-law form. The usefulness of the algorithm for such problems was demonstrated by applying it to analyze the unsteady, two- and three-dimensional flows inside one combustion chamber of a Wankel engine under nonfiring conditions. Solutions were obtained to examine the algorithm in terms of conservation error, robustness, and ability to handle complex flows on time-dependent grid systems.

  12. Compression of fingerprint data using the wavelet vector quantization image compression algorithm. 1992 progress report

    SciTech Connect

    Bradley, J.N.; Brislawn, C.M.

    1992-04-11

    This report describes the development of a Wavelet Vector Quantization (WVQ) image compression algorithm for fingerprint raster files. The pertinent work was performed at Los Alamos National Laboratory for the Federal Bureau of Investigation. This document describes a previously-sent package of C-language source code, referred to as LAFPC, that performs the WVQ fingerprint compression and decompression tasks. The particulars of the WVQ algorithm and the associated design procedure are detailed elsewhere; the purpose of this document is to report the results of the design algorithm for the fingerprint application and to delineate the implementation issues that are incorporated in LAFPC. Special attention is paid to the computation of the wavelet transform, the fast search algorithm used for the VQ encoding, and the entropy coding procedure used in the transmission of the source symbols.

  13. Automatic event detection in low SNR microseismic signals based on multi-scale permutation entropy and a support vector machine

    NASA Astrophysics Data System (ADS)

    Jia, Rui-Sheng; Sun, Hong-Mei; Peng, Yan-Jun; Liang, Yong-Quan; Lu, Xin-Ming

    2016-12-01

    Microseismic monitoring is an effective means for providing early warning of rock or coal dynamical disasters, and its first step is microseismic event detection, although low SNR microseismic signals often cannot effectively be detected by routine methods. To solve this problem, this paper presents permutation entropy and a support vector machine to detect low SNR microseismic events. First, an extraction method of signal features based on multi-scale permutation entropy is proposed by studying the influence of the scale factor on the signal permutation entropy. Second, the detection model of low SNR microseismic events based on the least squares support vector machine is built by performing a multi-scale permutation entropy calculation for the collected vibration signals, constructing a feature vector set of signals. Finally, a comparative analysis of the microseismic events and noise signals in the experiment proves that the different characteristics of the two can be fully expressed by using multi-scale permutation entropy. The detection model of microseismic events combined with the support vector machine, which has the features of high classification accuracy and fast real-time algorithms, can meet the requirements of online, real-time extractions of microseismic events.

  14. Diagnosis support using Fuzzy Cognitive Maps combined with Genetic Algorithms.

    PubMed

    Georgopoulos, Voula C; Stylios, Chrysotomos D

    2009-01-01

    A new hybrid modeling methodology to support medical diagnosis decisions is developed here. It extends previous work on Competitive Fuzzy Cognitive Maps for Medical Diagnosis Support Systems by complementing them with Genetic Algorithms Methods for concept interaction. The synergy of these methodologies is accomplished by a new proposed algorithm that leads to more dependable Advanced Medical Diagnosis Support Systems that are suitable to handle situations where the decisions are not clearly distinct. The technique developed here is applied successfully to model and test a differential diagnosis problem from the speech pathology area for the diagnosis of language impairments.

  15. Multiple sources and multiple measures based traffic flow prediction using the chaos theory and support vector regression method

    NASA Astrophysics Data System (ADS)

    Cheng, Anyu; Jiang, Xiao; Li, Yongfu; Zhang, Chao; Zhu, Hao

    2017-01-01

    This study proposes a multiple sources and multiple measures based traffic flow prediction algorithm using the chaos theory and support vector regression method. In particular, first, the chaotic characteristics of traffic flow associated with the speed, occupancy, and flow are identified using the maximum Lyapunov exponent. Then, the phase space of multiple measures chaotic time series are reconstructed based on the phase space reconstruction theory and fused into a same multi-dimensional phase space using the Bayesian estimation theory. In addition, the support vector regression (SVR) model is designed to predict the traffic flow. Numerical experiments are performed using the data from multiple sources. The results show that, compared with the single measure, the proposed method has better performance for the short-term traffic flow prediction in terms of the accuracy and timeliness.

  16. Detection of segments with fetal QRS complex from abdominal maternal ECG recordings using support vector machine

    NASA Astrophysics Data System (ADS)

    Delgado, Juan A.; Altuve, Miguel; Nabhan Homsi, Masun

    2015-12-01

    This paper introduces a robust method based on the Support Vector Machine (SVM) algorithm to detect the presence of Fetal QRS (fQRS) complexes in electrocardiogram (ECG) recordings provided by the PhysioNet/CinC challenge 2013. ECG signals are first segmented into contiguous frames of 250 ms duration and then labeled in six classes. Fetal segments are tagged according to the position of fQRS complex within each one. Next, segment features extraction and dimensionality reduction are obtained by applying principal component analysis on Haar-wavelet transform. After that, two sub-datasets are generated to separate representative segments from atypical ones. Imbalanced class problem is dealt by applying sampling without replacement on each sub-dataset. Finally, two SVMs are trained and cross-validated using the two balanced sub-datasets separately. Experimental results show that the proposed approach achieves high performance rates in fetal heartbeats detection that reach up to 90.95% of accuracy, 92.16% of sensitivity, 88.51% of specificity, 94.13% of positive predictive value and 84.96% of negative predictive value. A comparative study is also carried out to show the performance of other two machine learning algorithms for fQRS complex estimation, which are K-nearest neighborhood and Bayesian network.

  17. Eddy current characterization of small cracks using least square support vector machine

    NASA Astrophysics Data System (ADS)

    Chelabi, M.; Hacib, T.; Le Bihan, Y.; Ikhlef, N.; Boughedda, H.; Mekideche, M. R.

    2016-04-01

    Eddy current (EC) sensors are used for non-destructive testing since they are able to probe conductive materials. Despite being a conventional technique for defect detection and localization, the main weakness of this technique is that defect characterization, of the exact determination of the shape and dimension, is still a question to be answered. In this work, we demonstrate the capability of small crack sizing using signals acquired from an EC sensor. We report our effort to develop a systematic approach to estimate the size of rectangular and thin defects (length and depth) in a conductive plate. The achieved approach by the novel combination of a finite element method (FEM) with a statistical learning method is called least square support vector machines (LS-SVM). First, we use the FEM to design the forward problem. Next, an algorithm is used to find an adaptive database. Finally, the LS-SVM is used to solve the inverse problems, creating polynomial functions able to approximate the correlation between the crack dimension and the signal picked up from the EC sensor. Several methods are used to find the parameters of the LS-SVM. In this study, the particle swarm optimization (PSO) and genetic algorithm (GA) are proposed for tuning the LS-SVM. The results of the design and the inversions were compared to both simulated and experimental data, with accuracy experimentally verified. These suggested results prove the applicability of the presented approach.

  18. Identifying organic-rich Marcellus Shale lithofacies by support vector machine classifier in the Appalachian basin

    NASA Astrophysics Data System (ADS)

    Wang, Guochang; Carr, Timothy R.; Ju, Yiwen; Li, Chaofeng

    2014-03-01

    Unconventional shale reservoirs as the result of extremely low matrix permeability, higher potential gas productivity requires not only sufficient gas-in-place, but also a high concentration of brittle minerals (silica and/or carbonate) that is amenable to hydraulic fracturing. Shale lithofacies is primarily defined by mineral composition and organic matter richness, and its representation as a 3-D model has advantages in recognizing productive zones of shale-gas reservoirs, designing horizontal wells and stimulation strategy, and aiding in understanding depositional process of organic-rich shale. A challenging and key step is to effectively recognize shale lithofacies from well conventional logs, where the relationship is very complex and nonlinear. In the recognition of shale lithofacies, the application of support vector machine (SVM), which underlies statistical learning theory and structural risk minimization principle, is superior to the traditional empirical risk minimization principle employed by artificial neural network (ANN). We propose SVM classifier combined with learning algorithms, such as grid searching, genetic algorithm and particle swarm optimization, and various kernel functions the approach to identify Marcellus Shale lithofacies. Compared with ANN classifiers, the experimental results of SVM classifiers showed higher cross-validation accuracy, better stability and less computational time cost. The SVM classifier with radius basis function as kernel worked best as it is trained by particle swarm optimization. The lithofacies predicted using the SVM classifier are used to build a 3-D Marcellus Shale lithofacies model, which assists in identifying higher productive zones, especially with thermal maturity and natural fractures.

  19. Hybrid RGSA and Support Vector Machine Framework for Three-Dimensional Magnetic Resonance Brain Tumor Classification

    PubMed Central

    Rajesh Sharma, R.; Marikkannu, P.

    2015-01-01

    A novel hybrid approach for the identification of brain regions using magnetic resonance images accountable for brain tumor is presented in this paper. Classification of medical images is substantial in both clinical and research areas. Magnetic resonance imaging (MRI) modality outperforms towards diagnosing brain abnormalities like brain tumor, multiple sclerosis, hemorrhage, and many more. The primary objective of this work is to propose a three-dimensional (3D) novel brain tumor classification model using MRI images with both micro- and macroscale textures designed to differentiate the MRI of brain under two classes of lesion, benign and malignant. The design approach was initially preprocessed using 3D Gaussian filter. Based on VOI (volume of interest) of the image, features were extracted using 3D volumetric Square Centroid Lines Gray Level Distribution Method (SCLGM) along with 3D run length and cooccurrence matrix. The optimal features are selected using the proposed refined gravitational search algorithm (RGSA). Support vector machines, over backpropagation network, and k-nearest neighbor are used to evaluate the goodness of classifier approach. The preliminary evaluation of the system is performed using 320 real-time brain MRI images. The system is trained and tested by using a leave-one-case-out method. The performance of the classifier is tested using the receiver operating characteristic curve of 0.986 (±002). The experimental results demonstrate the systematic and efficient feature extraction and feature selection algorithm to the performance of state-of-the-art feature classification methods. PMID:26509188

  20. Potential of cancer screening with serum surface-enhanced Raman spectroscopy and a support vector machine

    NASA Astrophysics Data System (ADS)

    Li, S. X.; Zhang, Y. J.; Zeng, Q. Y.; Li, L. F.; Guo, Z. Y.; Liu, Z. M.; Xiong, H. L.; Liu, S. H.

    2014-06-01

    Cancer is the most common disease to threaten human health. The ability to screen individuals with malignant tumours with only a blood sample would be greatly advantageous to early diagnosis and intervention. This study explores the possibility of discriminating between cancer patients and normal subjects with serum surface-enhanced Raman spectroscopy (SERS) and a support vector machine (SVM) through a peripheral blood sample. A total of 130 blood samples were obtained from patients with liver cancer, colonic cancer, esophageal cancer, nasopharyngeal cancer, gastric cancer, as well as 113 blood samples from normal volunteers. Several diagnostic models were built with the serum SERS spectra using SVM and principal component analysis (PCA) techniques. The results show that a diagnostic accuracy of 85.5% is acquired with a PCA algorithm, while a diagnostic accuracy of 95.8% is obtained using radial basis function (RBF), PCA-SVM methods. The results prove that a RBF kernel PCA-SVM technique is superior to PCA and conventional SVM (C-SVM) algorithms in classification serum SERS spectra. The study demonstrates that serum SERS, in combination with SVM techniques, has great potential for screening cancerous patients with any solid malignant tumour through a peripheral blood sample.

  1. Support vector machine as an alternative method for lithology classification of crystalline rocks

    NASA Astrophysics Data System (ADS)

    Deng, Chengxiang; Pan, Heping; Fang, Sinan; Amara Konaté, Ahmed; Qin, Ruidong

    2017-03-01

    With the expansion of machine learning algorithms, automatic lithology classification that uses well logging data is becoming significant in formation evaluation and reservoir characterization. In fact, the complicated composition and structural variations of metamorphic rocks result in more nonlinear features in well logging data and elevate requirements to algorithms. Herein, the application of the support vector machine (SVM) in classifying crystalline rocks from Chinese Continental Scientific Drilling Main Hole (CCSD-MH) data was reported. We found that the SVM performs poorly on the lithology classification of crystalline rocks when training samples are imbalanced. The fact is that training samples are generally limited and imbalanced as cores cannot be obtained balanced and at 100 percent. In this paper, we introduced the synthetic minority over-sampling technique (SMOTE) and Borderline-SMOTE to deal with imbalanced data. After experiments generating different quantities of training samples by SMOTE and Borderline-SMOTE, the most suitable classifier was selected to overcome the disadvantage of the SVM. Then, the popular supervised classifier back-propagation neural networks (BPNN), which has been proved competent for lithology classification of crystalline rocks in previous studies, was compared to evaluate the performance of the SVM. Results show that Borderline-SMOTE can improve the SVM with substantially increased accuracy even for minority classes in a reasonable manner, while the SVM outperforms BPNN in aspects of lithology prediction and CCSD-MH data generalization. We demonstrate the potential of the SVM as an alternative to current methods for lithology identification of crystalline rocks.

  2. Support vector machines for detecting age-related changes in running kinematics.

    PubMed

    Fukuchi, Reginaldo K; Eskofier, Bjoern M; Duarte, Marcos; Ferber, Reed

    2011-02-03

    Age-related changes in running kinematics have been reported in the literature using classical inferential statistics. However, this approach has been hampered by the increased number of biomechanical gait variables reported and subsequently the lack of differences presented in these studies. Data mining techniques have been applied in recent biomedical studies to solve this problem using a more general approach. In the present work, we re-analyzed lower extremity running kinematic data of 17 young and 17 elderly male runners using the Support Vector Machine (SVM) classification approach. In total, 31 kinematic variables were extracted to train the classification algorithm and test the generalized performance. The results revealed different accuracy rates across three different kernel methods adopted in the classifier, with the linear kernel performing the best. A subsequent forward feature selection algorithm demonstrated that with only six features, the linear kernel SVM achieved 100% classification performance rate, showing that these features provided powerful combined information to distinguish age groups. The results of the present work demonstrate potential in applying this approach to improve knowledge about the age-related differences in running gait biomechanics and encourages the use of the SVM in other clinical contexts.

  3. Insect cell transformation vectors that support high level expression and promoter assessment in insect cell culture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A somatic transformation vector, pDP9, was constructed that provides a simplified means of producing permanently transformed cultured insect cells that support high levels of protein expression of foreign genes. The pDP9 plasmid vector incorporates DNA sequences from the Junonia coenia densovirus th...

  4. Vector carpets

    SciTech Connect

    Dovey, D.

    1995-03-22

    Previous papers have described a general method for visualizing vector fields that involves drawing many small ``glyphs`` to represent the field. This paper shows how to improve the speed of the algorithm by utilizing hardware support for line drawing and extends the technique from regular to unstructured grids. The new approach can be used to visualize vector fields at arbitrary surfaces within regular and unstructured grids. Applications of the algorithm include interactive visualization of transient electromagnetic fields and visualization of velocity fields in fluid flow problems.

  5. A Two-Layer Least Squares Support Vector Machine Approach to Credit Risk Assessment

    NASA Astrophysics Data System (ADS)

    Liu, Jingli; Li, Jianping; Xu, Weixuan; Shi, Yong

    Least squares support vector machine (LS-SVM) is a revised version of support vector machine (SVM) and has been proved to be a useful tool for pattern recognition. LS-SVM had excellent generalization performance and low computational cost. In this paper, we propose a new method called two-layer least squares support vector machine which combines kernel principle component analysis (KPCA) and linear programming form of least square support vector machine. With this method sparseness and robustness is obtained while solving large dimensional and large scale database. A U.S. commercial credit card database is used to test the efficiency of our method and the result proved to be a satisfactory one.

  6. [Prediction model of net photosynthetic rate of ginseng under forest based on optimized parameters support vector machine].

    PubMed

    Wu, Hai-wei; Yu, Hai-ye; Zhang, Lei

    2011-05-01

    Using K-fold cross validation method and two support vector machine functions, four kernel functions, grid-search, genetic algorithm and particle swarm optimization, the authors constructed the support vector machine model of the best penalty parameter c and the best correlation coefficient. Using information granulation technology, the authors constructed P particle and epsilon particle about those factors affecting net photosynthetic rate, and reduced these dimensions of the determinant. P particle includes the percent of visible spectrum ingredients. Epsilon particle includes leaf temperature, scattering radiation, air temperature, and so on. It is possible to obtain the best correlation coefficient among photosynthetic effective radiation, visible spectrum and individual net photosynthetic rate by this technology. The authors constructed the training set and the forecasting set including photosynthetic effective radiation, P particle and epsilon particle. The result shows that epsilon-SVR-RBF-genetic algorithm model, nu-SVR-linear-grid-search model and nu-SVR-RBF-genetic algorithm model obtain the correlation coefficient of up to 97% about the forecasting set including photosynthetic effective radiation and P particle. The penalty parameter c of nu-SVR-linear-grid-search model is the minimum, so the model's generalization ability is the best. The authors forecasted the forecasting set including photosynthetic effective radiation, P particle and epsilon particle by the model, and the correlation coefficient is up to 96%.

  7. Automated detection of pulmonary nodules in CT images with support vector machines

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Liu, Wanyu; Sun, Xiaoming

    2008-10-01

    Many methods have been proposed to avoid radiologists fail to diagnose small pulmonary nodules. Recently, support vector machines (SVMs) had received an increasing attention for pattern recognition. In this paper, we present a computerized system aimed at pulmonary nodules detection; it identifies the lung field, extracts a set of candidate regions with a high sensitivity ratio and then classifies candidates by the use of SVMs. The Computer Aided Diagnosis (CAD) system presented in this paper supports the diagnosis of pulmonary nodules from Computed Tomography (CT) images as inflammation, tuberculoma, granuloma..sclerosing hemangioma, and malignant tumor. Five texture feature sets were extracted for each lesion, while a genetic algorithm based feature selection method was applied to identify the most robust features. The selected feature set was fed into an ensemble of SVMs classifiers. The achieved classification performance was 100%, 92.75% and 90.23% in the training, validation and testing set, respectively. It is concluded that computerized analysis of medical images in combination with artificial intelligence can be used in clinical practice and may contribute to more efficient diagnosis.

  8. A Support Vector Machine Classification of Thyroid Bioptic Specimens Using MALDI-MSI Data

    PubMed Central

    De Sio, Gabriele; Chinello, Clizia; Pagni, Fabio

    2016-01-01

    Biomarkers able to characterise and predict multifactorial diseases are still one of the most important targets for all the “omics” investigations. In this context, Matrix-Assisted Laser Desorption/Ionisation-Mass Spectrometry Imaging (MALDI-MSI) has gained considerable attention in recent years, but it also led to a huge amount of complex data to be elaborated and interpreted. For this reason, computational and machine learning procedures for biomarker discovery are important tools to consider, both to reduce data dimension and to provide predictive markers for specific diseases. For instance, the availability of protein and genetic markers to support thyroid lesion diagnoses would impact deeply on society due to the high presence of undetermined reports (THY3) that are generally treated as malignant patients. In this paper we show how an accurate classification of thyroid bioptic specimens can be obtained through the application of a state-of-the-art machine learning approach (i.e., Support Vector Machines) on MALDI-MSI data, together with a particular wrapper feature selection algorithm (i.e., recursive feature elimination). The model is able to provide an accurate discriminatory capability using only 20 out of 144 features, resulting in an increase of the model performances, reliability, and computational efficiency. Finally, tissue areas rather than average proteomic profiles are classified, highlighting potential discriminating areas of clinical interest. PMID:27293431

  9. Experimental realization of a quantum support vector machine.

    PubMed

    Li, Zhaokai; Liu, Xiaomei; Xu, Nanyang; Du, Jiangfeng

    2015-04-10

    The fundamental principle of artificial intelligence is the ability of machines to learn from previous experience and do future work accordingly. In the age of big data, classical learning machines often require huge computational resources in many practical cases. Quantum machine learning algorithms, on the other hand, could be exponentially faster than their classical counterparts by utilizing quantum parallelism. Here, we demonstrate a quantum machine learning algorithm to implement handwriting recognition on a four-qubit NMR test bench. The quantum machine learns standard character fonts and then recognizes handwritten characters from a set with two candidates. Because of the wide spread importance of artificial intelligence and its tremendous consumption of computational resources, quantum speedup would be extremely attractive against the challenges of big data.

  10. Experimental Realization of a Quantum Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Li, Zhaokai; Liu, Xiaomei; Xu, Nanyang; Du, Jiangfeng

    2015-04-01

    The fundamental principle of artificial intelligence is the ability of machines to learn from previous experience and do future work accordingly. In the age of big data, classical learning machines often require huge computational resources in many practical cases. Quantum machine learning algorithms, on the other hand, could be exponentially faster than their classical counterparts by utilizing quantum parallelism. Here, we demonstrate a quantum machine learning algorithm to implement handwriting recognition on a four-qubit NMR test bench. The quantum machine learns standard character fonts and then recognizes handwritten characters from a set with two candidates. Because of the wide spread importance of artificial intelligence and its tremendous consumption of computational resources, quantum speedup would be extremely attractive against the challenges of big data.

  11. Multiscale asymmetric orthogonal wavelet kernel for linear programming support vector learning and nonlinear dynamic systems identification.

    PubMed

    Lu, Zhao; Sun, Jing; Butts, Kenneth

    2014-05-01

    Support vector regression for approximating nonlinear dynamic systems is more delicate than the approximation of indicator functions in support vector classification, particularly for systems that involve multitudes of time scales in their sampled data. The kernel used for support vector learning determines the class of functions from which a support vector machine can draw its solution, and the choice of kernel significantly influences the performance of a support vector machine. In this paper, to bridge the gap between wavelet multiresolution analysis and kernel learning, the closed-form orthogonal wavelet is exploited to construct new multiscale asymmetric orthogonal wavelet kernels for linear programming support vector learning. The closed-form multiscale orthogonal wavelet kernel provides a systematic framework to implement multiscale kernel learning via dyadic dilations and also enables us to represent complex nonlinear dynamics effectively. To demonstrate the superiority of the proposed multiscale wavelet kernel in identifying complex nonlinear dynamic systems, two case studies are presented that aim at building parallel models on benchmark datasets. The development of parallel models that address the long-term/mid-term prediction issue is more intricate and challenging than the identification of series-parallel models where only one-step ahead prediction is required. Simulation results illustrate the effectiveness of the proposed multiscale kernel learning.

  12. Objective research of auscultation signals in Traditional Chinese Medicine based on wavelet packet energy and support vector machine.

    PubMed

    Yan, Jianjun; Shen, Xiaojing; Wang, Yiqin; Li, Fufeng; Xia, Chunming; Guo, Rui; Chen, Chunfeng; Shen, Qingwei

    2010-01-01

    This study aims at utilising Wavelet Packet Transform (WPT) and Support Vector Machine (SVM) algorithm to make objective analysis and quantitative research for the auscultation in Traditional Chinese Medicine (TCM) diagnosis. First, Wavelet Packet Decomposition (WPD) at level 6 was employed to split more elaborate frequency bands of the auscultation signals. Then statistic analysis was made based on the extracted Wavelet Packet Energy (WPE) features from WPD coefficients. Furthermore, the pattern recognition was used to distinguish mixed subjects' statistical feature values of sample groups through SVM. Finally, the experimental results showed that the classification accuracies were at a high level.

  13. Evaluation of vectorized Monte Carlo algorithms on GPUs for a neutron Eigenvalue problem

    SciTech Connect

    Du, X.; Liu, T.; Ji, W.; Xu, X. G.; Brown, F. B.

    2013-07-01

    Conventional Monte Carlo (MC) methods for radiation transport computations are 'history-based', which means that one particle history at a time is tracked. Simulations based on such methods suffer from thread divergence on the graphics processing unit (GPU), which severely affects the performance of GPUs. To circumvent this limitation, event-based vectorized MC algorithms can be utilized. A versatile software test-bed, called ARCHER - Accelerated Radiation-transport Computations in Heterogeneous Environments - was used for this study. ARCHER facilitates the development and testing of a MC code based on the vectorized MC algorithm implemented on GPUs by using NVIDIA's Compute Unified Device Architecture (CUDA). The ARCHER{sub GPU} code was designed to solve a neutron eigenvalue problem and was tested on a NVIDIA Tesla M2090 Fermi card. We found that although the vectorized MC method significantly reduces the occurrence of divergent branching and enhances the warp execution efficiency, the overall simulation speed is ten times slower than the conventional history-based MC method on GPUs. By analyzing detailed GPU profiling information from ARCHER, we discovered that the main reason was the large amount of global memory transactions, causing severe memory access latency. Several possible solutions to alleviate the memory latency issue are discussed. (authors)

  14. Water flow algorithm decision support tool for travelling salesman problem

    NASA Astrophysics Data System (ADS)

    Kamarudin, Anis Aklima; Othman, Zulaiha Ali; Sarim, Hafiz Mohd

    2016-08-01

    This paper discuss about the role of Decision Support Tool in Travelling Salesman Problem (TSP) for helping the researchers who doing research in same area will get the better result from the proposed algorithm. A study has been conducted and Rapid Application Development (RAD) model has been use as a methodology which includes requirement planning, user design, construction and cutover. Water Flow Algorithm (WFA) with initialization technique improvement is used as the proposed algorithm in this study for evaluating effectiveness against TSP cases. For DST evaluation will go through usability testing conducted on system use, quality of information, quality of interface and overall satisfaction. Evaluation is needed for determine whether this tool can assists user in making a decision to solve TSP problems with the proposed algorithm or not. Some statistical result shown the ability of this tool in term of helping researchers to conduct the experiments on the WFA with improvements TSP initialization.

  15. An algorithm to estimate the object support in truncated images

    SciTech Connect

    Hsieh, Scott S.; Nett, Brian E.; Cao, Guangzhi; Pelc, Norbert J.

    2014-07-15

    Purpose: Truncation artifacts in CT occur if the object to be imaged extends past the scanner field of view (SFOV). These artifacts impede diagnosis and could possibly introduce errors in dose plans for radiation therapy. Several approaches exist for correcting truncation artifacts, but existing correction algorithms do not accurately recover the skin line (or support) of the patient, which is important in some dose planning methods. The purpose of this paper was to develop an iterative algorithm that recovers the support of the object. Methods: The authors assume that the truncated portion of the image is made up of soft tissue of uniform CT number and attempt to find a shape consistent with the measured data. Each known measurement in the sinogram is interpreted as an estimate of missing mass along a line. An initial estimate of the object support is generated by thresholding a reconstruction made using a previous truncation artifact correction algorithm (e.g., water cylinder extrapolation). This object support is iteratively deformed to reduce the inconsistency with the measured data. The missing data are estimated using this object support to complete the dataset. The method was tested on simulated and experimentally truncated CT data. Results: The proposed algorithm produces a better defined skin line than water cylinder extrapolation. On the experimental data, the RMS error of the skin line is reduced by about 60%. For moderately truncated images, some soft tissue contrast is retained near the SFOV. As the extent of truncation increases, the soft tissue contrast outside the SFOV becomes unusable although the skin line remains clearly defined, and in reformatted images it varies smoothly from slice to slice as expected. Conclusions: The support recovery algorithm provides a more accurate estimate of the patient outline than thresholded, basic water cylinder extrapolation, and may be preferred in some radiation therapy applications.

  16. Self-adapting root-MUSIC algorithm and its real-valued formulation for acoustic vector sensor array

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Zhang, Guo-jun; Xue, Chen-yang; Zhang, Wen-dong; Xiong, Ji-jun

    2012-12-01

    In this paper, based on the root-MUSIC algorithm for acoustic pressure sensor array, a new self-adapting root-MUSIC algorithm for acoustic vector sensor array is proposed by self-adaptive selecting the lead orientation vector, and its real-valued formulation by Forward-Backward(FB) smoothing and real-valued inverse covariance matrix is also proposed, which can reduce the computational complexity and distinguish the coherent signals. The simulation experiment results show the better performance of two new algorithm with low Signal-to-Noise (SNR) in direction of arrival (DOA) estimation than traditional MUSIC algorithm, and the experiment results using MEMS vector hydrophone array in lake trails show the engineering practicability of two new algorithms.

  17. A support vector machine to search for metal-poor galaxies

    NASA Astrophysics Data System (ADS)

    Shi, Fei; Liu, Yu-Yan; Kong, Xu; Chen, Yang; Li, Zhong-Hua; Zhi, Shu-Teng

    2014-10-01

    To develop a fast and reliable method for selecting metal-poor galaxies (MPGs), especially in large surveys and huge data bases, a support vector machine (SVM) supervized learning algorithms is applied to a sample of star-forming galaxies from the Sloan Digital Sky Survey data release 9 provided by the Max Planck Institute and the Johns Hopkins University (http://www.sdss3.org/dr9/spectro/spectroaccess.php). A two-step approach is adopted: (i) the SVM must be trained with a subset of objects that are known to be either MPGs or metal-rich galaxies (MRGs), treating the strong emission line flux measurements as input feature vectors in n-dimensional space, where n is the number of strong emission line flux ratios. (ii) After training on a sample of star-forming galaxies, the remaining galaxies are classified in the automatic test analysis as either MPGs or MRGs using a 10-fold cross-validation technique. For target selection, we have achieved an acquisition accuracy for MPGs of ˜96 and ˜95 per cent for an MPG threshold of 12 + log(O/H) = 8.00 and 12 + log(O/H) = 8.39, respectively. Running the code takes minutes in most cases under the MATLAB 2013a software environment. The code in the Letter is available on the web (http://fshi5388.blog.163.com). The SVM method can easily be extended to any MPGs target selection task and can be regarded as an efficient classification method particularly suitable for modern large surveys.

  18. Parallel algorithm for determining motion vectors in ice floe images by matching edge features

    NASA Technical Reports Server (NTRS)

    Manohar, M.; Ramapriyan, H. K.; Strong, J. P.

    1988-01-01

    A parallel algorithm is described to determine motion vectors of ice floes using time sequences of images of the Arctic ocean obtained from the Synthetic Aperture Radar (SAR) instrument flown on-board the SEASAT spacecraft. Researchers describe a parallel algorithm which is implemented on the MPP for locating corresponding objects based on their translationally and rotationally invariant features. The algorithm first approximates the edges in the images by polygons or sets of connected straight-line segments. Each such edge structure is then reduced to a seed point. Associated with each seed point are the descriptions (lengths, orientations and sequence numbers) of the lines constituting the corresponding edge structure. A parallel matching algorithm is used to match packed arrays of such descriptions to identify corresponding seed points in the two images. The matching algorithm is designed such that fragmentation and merging of ice floes are taken into account by accepting partial matches. The technique has been demonstrated to work on synthetic test patterns and real image pairs from SEASAT in times ranging from .5 to 0.7 seconds for 128 x 128 images.

  19. Dynamic support region-based astronomical image deconvolution algorithm

    NASA Astrophysics Data System (ADS)

    Geng, Ze-xun; Chen, Bo; Xu, Qing; Zhang, Bao-ming; Gong, Zhi-hui

    2008-07-01

    The performance of high-resolution imaging with large optical instruments is severely limited by atmospheric turbulence, and an image deconvolution is required for reaching the diffraction limit. A new astronomical image deconvolution algorithm is proposed, which incorporates dynamic support region and improved cost function to NAS-RIF algorithm. The enhanced NAS-RIF (ENAS-RIF) method takes into account the noise in the image and can dynamically shrink support region (SR) in application. In restoration process, initial SR is set to approximate counter of the true object, and then SR automatically contracts with iteration going. The approximate counter of interested object is detected by means of beamlet transform detecting edge. The ENAS-RIF algorithm is applied to the restorations of in-door Laser point source and long exposure extended object images. The experimental results demonstrate that the ENAS-RIF algorithm works better than classical NAS-RIF algorithm in deconvolution of the degraded image with low SNR and convergence speed is faster.

  20. Terminator Detection by Support Vector Machine Utilizing aStochastic Context-Free Grammar

    SciTech Connect

    Francis-Lyon, Patricia; Cristianini, Nello; Holbrook, Stephen

    2006-12-30

    A 2-stage detector was designed to find rho-independent transcription terminators in the Escherichia coli genome. The detector includes a Stochastic Context Free Grammar (SCFG) component and a Support Vector Machine (SVM) component. To find terminators, the SCFG searches the intergenic regions of nucleotide sequence for local matches to a terminator grammar that was designed and trained utilizing examples of known terminators. The grammar selects sequences that are the best candidates for terminators and assigns them a prefix, stem-loop, suffix structure using the Cocke-Younger-Kasaami (CYK) algorithm, modified to incorporate energy affects of base pairing. The parameters from this inferred structure are passed to the SVM classifier, which distinguishes terminators from non-terminators that score high according to the terminator grammar. The SVM was trained with negative examples drawn from intergenic sequences that include both featureless and RNA gene regions (which were assigned prefix, stem-loop, suffix structure by the SCFG), so that it successfully distinguishes terminators from either of these. The classifier was found to be 96.4% successful during testing.

  1. Hadoop-Based Distributed System for Online Prediction of Air Pollution Based on Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Ghaemi, Z.; Farnaghi, M.; Alimohammadi, A.

    2015-12-01

    The critical impact of air pollution on human health and environment in one hand and the complexity of pollutant concentration behavior in the other hand lead the scientists to look for advance techniques for monitoring and predicting the urban air quality. Additionally, recent developments in data measurement techniques have led to collection of various types of data about air quality. Such data is extremely voluminous and to be useful it must be processed at high velocity. Due to the complexity of big data analysis especially for dynamic applications, online forecasting of pollutant concentration trends within a reasonable processing time is still an open problem. The purpose of this paper is to present an online forecasting approach based on Support Vector Machine (SVM) to predict the air quality one day in advance. In order to overcome the computational requirements for large-scale data analysis, distributed computing based on the Hadoop platform has been employed to leverage the processing power of multiple processing units. The MapReduce programming model is adopted for massive parallel processing in this study. Based on the online algorithm and Hadoop framework, an online forecasting system is designed to predict the air pollution of Tehran for the next 24 hours. The results have been assessed on the basis of Processing Time and Efficiency. Quite accurate predictions of air pollutant indicator levels within an acceptable processing time prove that the presented approach is very suitable to tackle large scale air pollution prediction problems.

  2. Multicategory classification of 11 neuromuscular diseases based on microarray data using support vector machine.

    PubMed

    Choi, Soo Beom; Park, Jee Soo; Chung, Jai Won; Yoo, Tae Keun; Kim, Deok Won

    2014-01-01

    We applied multicategory machine learning methods to classify 11 neuromuscular disease groups and one control group based on microarray data. To develop multicategory classification models with optimal parameters and features, we performed a systematic evaluation of three machine learning algorithms and four feature selection methods using three-fold cross validation and a grid search. This study included 114 subjects of 11 neuromuscular diseases and 31 subjects of a control group using microarray data with 22,283 probe sets from the National Center for Biotechnology Information (NCBI). We obtained an accuracy of 100%, relative classifier information (RCI) of 1.0, and a kappa index of 1.0 by applying the models of support vector machines one-versus-one (SVM-OVO), SVM one-versus-rest (OVR), and directed acyclic graph SVM (DAGSVM), using the ratio of genes between categories to within-category sums of squares (BW) feature selection method. Each of these three models selected only four features to categorize the 12 groups, resulting in a time-saving and cost-effective strategy for diagnosing neuromuscular diseases. In addition, a gene symbol, SPP1 was selected as the top-ranked gene by the BW method. We confirmed relationships between the gene (SPP1) and Duchenne muscular dystrophy (DMD) from a previous study. With our models as clinically helpful tools, neuromuscular diseases could be classified quickly using a computer, thereby giving a time-saving, cost-effective, and accurate diagnosis.

  3. Objective grading of the pivot shift phenomenon using a support vector machine approach.

    PubMed

    Labbe, David R; de Guise, Jacques A; Mezghani, Neila; Godbout, Véronique; Grimard, Guy; Baillargeon, David; Lavigne, Patrick; Fernandes, Julio; Ranger, Pierre; Hagemeister, Nicola

    2011-01-04

    The pivot shift test is the only clinical test that has been shown to correlate with subjective criteria of knee joint function following rupture of the anterior cruciate ligament. The grade of the pivot shift is important in predicting short- and long-term outcome. However, because this grade is established by a clinician in a subjective manner, the pivot shift's value as a clinical tool is reduced. The purpose of this study was to develop a system that will objectively grade the pivot shift test based on recorded knee joint kinematics. Fifty-six subjects with different degrees of knee joint stability had the pivot shift test performed by one of eight different orthopaedic surgeons while their knee joint kinematics were recorded. A support vector machine based algorithm was used to objectively classify these recordings according to a clinical grade. The grades established by the surgeons were used as the gold standard for the development of the classifier. There was substantial agreement between our classifier and the surgeons in establishing the grade (weighted kappa=0.68). Seventy-one of 107 recordings (66%) were given the same grade and 96% of the time our classifier was within one grade of that given by the surgeons. Moreover, grades 0 and 1 were distinguished from grade 2 to 3 with 86% sensitivity and 90% specificity. Our results show the feasibility of automatically grading the pivot shift in a manner similar to that of an experienced clinician, based on knee joint kinematics.

  4. Application of kernel principal component analysis and support vector regression for reconstruction of cardiac transmembrane potentials.

    PubMed

    Jiang, Mingfeng; Zhu, Lingyan; Wang, Yaming; Xia, Ling; Shou, Guofa; Liu, Feng; Crozier, Stuart

    2011-03-21

    Non-invasively reconstructing the transmembrane potentials (TMPs) from body surface potentials (BSPs) constitutes one form of the inverse ECG problem that can be treated as a regression problem with multi-inputs and multi-outputs, and which can be solved using the support vector regression (SVR) method. In developing an effective SVR model, feature extraction is an important task for pre-processing the original input data. This paper proposes the application of principal component analysis (PCA) and kernel principal component analysis (KPCA) to the SVR method for feature extraction. Also, the genetic algorithm and simplex optimization method is invoked to determine the hyper-parameters of the SVR. Based on the realistic heart-torso model, the equivalent double-layer source method is applied to generate the data set for training and testing the SVR model. The experimental results show that the SVR method with feature extraction (PCA-SVR and KPCA-SVR) can perform better than that without the extract feature extraction (single SVR) in terms of the reconstruction of the TMPs on epi- and endocardial surfaces. Moreover, compared with the PCA-SVR, the KPCA-SVR features good approximation and generalization ability when reconstructing the TMPs.

  5. Support vector machines with constraints for sparsity in the primal parameters.

    PubMed

    Gómez-Verdejo, Vanessa; Martínez-Ramón, Manel; Arenas-García, Jerónimo; Lázaro-Gredilla, Miguel; Molina-Bulla, Harold

    2011-08-01

    This paper introduces a new support vector machine (SVM) formulation to obtain sparse solutions in the primal SVM parameters, providing a new method for feature selection based on SVMs. This new approach includes additional constraints to the classical ones that drop the weights associated to those features that are likely to be irrelevant. A ν-SVM formulation has been used, where ν indicates the fraction of features to be considered. This paper presents two versions of the proposed sparse classifier, a 2-norm SVM and a 1-norm SVM, the latter having a reduced computational burden with respect to the first one. Additionally, an explanation is provided about how the presented approach can be readily extended to multiclass classification or to problems where groups of features, rather than isolated features, need to be selected. The algorithms have been tested in a variety of synthetic and real data sets and they have been compared against other state of the art SVM-based linear feature selection methods, such as 1-norm SVM and doubly regularized SVM. The results show the good feature selection ability of the approaches.

  6. Classifier transfer with data selection strategies for online support vector machine classification with class imbalance

    NASA Astrophysics Data System (ADS)

    Krell, Mario Michael; Wilshusen, Nils; Seeland, Anett; Kim, Su Kyoung

    2017-04-01

    Objective. Classifier transfers usually come with dataset shifts. To overcome dataset shifts in practical applications, we consider the limitations in computational resources in this paper for the adaptation of batch learning algorithms, like the support vector machine (SVM). Approach. We focus on data selection strategies which limit the size of the stored training data by different inclusion, exclusion, and further dataset manipulation criteria like handling class imbalance with two new approaches. We provide a comparison of the strategies with linear SVMs on several synthetic datasets with different data shifts as well as on different transfer settings with electroencephalographic (EEG) data. Main results. For the synthetic data, adding only misclassified samples performed astoundingly well. Here, balancing criteria were very important when the other criteria were not well chosen. For the transfer setups, the results show that the best strategy depends on the intensity of the drift during the transfer. Adding all and removing the oldest samples results in the best performance, whereas for smaller drifts, it can be sufficient to only add samples near the decision boundary of the SVM which reduces processing resources. Significance. For brain–computer interfaces based on EEG data, models trained on data from a calibration session, a previous recording session, or even from a recording session with another subject are used. We show, that by using the right combination of data selection criteria, it is possible to adapt the SVM classifier to overcome the performance drop from the transfer.

  7. Excel2SVM: a stand-alone Python tool for data analysis via support vector machines.

    PubMed

    Hellman, Matthew; Jett, Marti; Hammamieh, Rasha

    2008-03-01

    The creation of classification kernel models to categorize unknown data samples of massive magnitude is an extremely advantageous tool for the scientific community. Excel2SVM, a stand-alone Python mathematical analysis tool, bridges the gap between researchers and computer science to create a simple graphical user interface that allows users to examine data and perform maximal margin classification. This valuable ability to train support vector machines and classify unknown data files is harnessed in this fast and efficient software, granting researchers full access to this complicated, high-level algorithm. Excel2SVM offers the ability to convert data to the proper sparse format while performing a variety of kernel functions along with cost factors/modes, grids, crossvalidation, and several other functions. This program functions with any type of quantitative data making Excel2SVM the ideal tool for analyzing a wide variety of input. The software is free and available at www.bioinformatics.org/excel2svm. A link to the software may also be found at www.kernel-machines.org. This software provides a useful graphical user interface that has proven to provide kernel models with accurate results and data classification through a decision boundary.

  8. Classification of serous ovarian tumors based on microarray data using multicategory support vector machines.

    PubMed

    Park, Jee Soo; Choi, Soo Beom; Chung, Jai Won; Kim, Sung Woo; Kim, Deok Won

    2014-01-01

    Ovarian cancer, the most fatal of reproductive cancers, is the fifth leading cause of death in women in the United States. Serous borderline ovarian tumors (SBOTs) are considered to be earlier or less malignant forms of serous ovarian carcinomas (SOCs). SBOTs are asymptomatic and progression to advanced stages is common. Using DNA microarray technology, we designed multicategory classification models to discriminate ovarian cancer subclasses. To develop multicategory classification models with optimal parameters and features, we systematically evaluated three machine learning algorithms and three feature selection methods using five-fold cross validation and a grid search. The study included 22 subjects with normal ovarian surface epithelial cells, 12 with SBOTs, and 79 with SOCs according to microarray data with 54,675 probe sets obtained from the National Center for Biotechnology Information gene expression omnibus repository. Application of the optimal model of support vector machines one-versus-rest with signal-to-noise as a feature selection method gave an accuracy of 97.3%, relative classifier information of 0.916, and a kappa index of 0.941. In addition, 5 features, including the expression of putative biomarkers SNTN and AOX1, were selected to differentiate between normal, SBOT, and SOC groups. An accurate diagnosis of ovarian tumor subclasses by application of multicategory machine learning would be cost-effective and simple to perform, and would ensure more effective subclass-targeted therapy.

  9. Using Support Vector Machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review.

    PubMed

    Orrù, Graziella; Pettersson-Yeo, William; Marquand, Andre F; Sartori, Giuseppe; Mechelli, Andrea

    2012-04-01

    Standard univariate analysis of neuroimaging data has revealed a host of neuroanatomical and functional differences between healthy individuals and patients suffering a wide range of neurological and psychiatric disorders. Significant only at group level however these findings have had limited clinical translation, and recent attention has turned toward alternative forms of analysis, including Support-Vector-Machine (SVM). A type of machine learning, SVM allows categorisation of an individual's previously unseen data into a predefined group using a classification algorithm, developed on a training data set. In recent years, SVM has been successfully applied in the context of disease diagnosis, transition prediction and treatment prognosis, using both structural and functional neuroimaging data. Here we provide a brief overview of the method and review those studies that applied it to the investigation of Alzheimer's disease, schizophrenia, major depression, bipolar disorder, presymptomatic Huntington's disease, Parkinson's disease and autistic spectrum disorder. We conclude by discussing the main theoretical and practical challenges associated with the implementation of this method into the clinic and possible future directions.

  10. Online Least Squares One-Class Support Vector Machines-Based Abnormal Visual Event Detection

    PubMed Central

    Wang, Tian; Chen, Jie; Zhou, Yi; Snoussi, Hichem

    2013-01-01

    The abnormal event detection problem is an important subject in real-time video surveillance. In this paper, we propose a novel online one-class classification algorithm, online least squares one-class support vector machine (online LS-OC-SVM), combined with its sparsified version (sparse online LS-OC-SVM). LS-OC-SVM extracts a hyperplane as an optimal description of training objects in a regularized least squares sense. The online LS-OC-SVM learns a training set with a limited number of samples to provide a basic normal model, then updates the model through remaining data. In the sparse online scheme, the model complexity is controlled by the coherence criterion. The online LS-OC-SVM is adopted to handle the abnormal event detection problem. Each frame of the video is characterized by the covariance matrix descriptor encoding the moving information, then is classified into a normal or an abnormal frame. Experiments are conducted, on a two-dimensional synthetic distribution dataset and a benchmark video surveillance dataset, to demonstrate the promising results of the proposed online LS-OC-SVM method. PMID:24351629

  11. Estimation of the laser cutting operating cost by support vector regression methodology

    NASA Astrophysics Data System (ADS)

    Jović, Srđan; Radović, Aleksandar; Šarkoćević, Živče; Petković, Dalibor; Alizamir, Meysam

    2016-09-01

    Laser cutting is a popular manufacturing process utilized to cut various types of materials economically. The operating cost is affected by laser power, cutting speed, assist gas pressure, nozzle diameter and focus point position as well as the workpiece material. In this article, the process factors investigated were: laser power, cutting speed, air pressure and focal point position. The aim of this work is to relate the operating cost to the process parameters mentioned above. CO2 laser cutting of stainless steel of medical grade AISI316L has been investigated. The main goal was to analyze the operating cost through the laser power, cutting speed, air pressure, focal point position and material thickness. Since the laser operating cost is a complex, non-linear task, soft computing optimization algorithms can be used. Intelligent soft computing scheme support vector regression (SVR) was implemented. The performance of the proposed estimator was confirmed with the simulation results. The SVR results are then compared with artificial neural network and genetic programing. According to the results, a greater improvement in estimation accuracy can be achieved through the SVR compared to other soft computing methodologies. The new optimization methods benefit from the soft computing capabilities of global optimization and multiobjective optimization rather than choosing a starting point by trial and error and combining multiple criteria into a single criterion.

  12. A pixel-based color image segmentation using support vector machine and fuzzy C-means.

    PubMed

    Wang, Xiang-Yang; Zhang, Xian-Jin; Yang, Hong-Ying; Bu, Juan

    2012-09-01

    Image segmentation is an important tool in image processing and can serve as an efficient front end to sophisticated algorithms and thereby simplify subsequent processing. In this paper, we present a pixel-based color image segmentation using Support Vector Machine (SVM) and Fuzzy C-Means (FCM). Firstly, the pixel-level color feature and texture feature of the image, which is used as input of the SVM model (classifier), are extracted via the local spatial similarity measure model and Steerable filter. Then, the SVM model (classifier) is trained by using FCM with the extracted pixel-level features. Finally, the color image is segmented with the trained SVM model (classifier). This image segmentation can not only take full advantage of the local information of the color image but also the ability of the SVM classifier. Experimental evidence shows that the proposed method has a very effective computational behavior and effectiveness, and decreases the time and increases the quality of color image segmentation in comparison with the state-of-the-art segmentation methods recently proposed in the literature.

  13. Fuzzy classifier based support vector regression framework for Poisson ratio determination

    NASA Astrophysics Data System (ADS)

    Asoodeh, Mojtaba; Bagheripour, Parisa

    2013-09-01

    Poisson ratio is considered as one of the most important rock mechanical properties of hydrocarbon reservoirs. Determination of this parameter through laboratory measurement is time, cost, and labor intensive. Furthermore, laboratory measurements do not provide continuous data along the reservoir intervals. Hence, a fast, accurate, and inexpensive way of determining Poisson ratio which produces continuous data over the whole reservoir interval is desirable. For this purpose, support vector regression (SVR) method based on statistical learning theory (SLT) was employed as a supervised learning algorithm to estimate Poisson ratio from conventional well log data. SVR is capable of accurately extracting the implicit knowledge contained in conventional well logs and converting the gained knowledge into Poisson ratio data. Structural risk minimization (SRM) principle which is embedded in the SVR structure in addition to empirical risk minimization (EMR) principle provides a robust model for finding quantitative formulation between conventional well log data and Poisson ratio. Although satisfying results were obtained from an individual SVR model, it had flaws of overestimation in low Poisson ratios and underestimation in high Poisson ratios. These errors were eliminated through implementation of fuzzy classifier based SVR (FCBSVR). The FCBSVR significantly improved accuracy of the final prediction. This strategy was successfully applied to data from carbonate reservoir rocks of an Iranian Oil Field. Results indicated that SVR predicted Poisson ratio values are in good agreement with measured values.

  14. Detection and localization of damage using empirical mode decomposition and multilevel support vector machine

    NASA Astrophysics Data System (ADS)

    Dushyanth, N. D.; Suma, M. N.; Latte, Mrityanjaya V.

    2016-03-01

    Damage in the structure may raise a significant amount of maintenance cost and serious safety problems. Hence detection of the damage at its early stage is of prime importance. The main contribution pursued in this investigation is to propose a generic optimal methodology to improve the accuracy of positioning of the flaw in a structure. This novel approach involves a two-step process. The first step essentially aims at extracting the damage-sensitive features from the received signal, and these extracted features are often termed the damage index or damage indices, serving as an indicator to know whether the damage is present or not. In particular, a multilevel SVM (support vector machine) plays a vital role in the distinction of faulty and healthy structures. Formerly, when a structure is unveiled as a damaged structure, in the subsequent step, the position of the damage is identified using Hilbert-Huang transform. The proposed algorithm has been evaluated in both simulation and experimental tests on a 6061 aluminum plate with dimensions 300 mm × 300 mm × 5 mm which accordingly yield considerable improvement in the accuracy of estimating the position of the flaw.

  15. Setting up the critical rainfall line for debris flows via support vector machines

    NASA Astrophysics Data System (ADS)

    Tsai, Y. F.; Chan, C. H.; Chang, C. H.

    2015-10-01

    The Chi-Chi earthquake in 1999 caused tremendous landslides which triggered many debris flows and resulted in significant loss of public lives and property. To prevent the disaster of debris flow, setting a critical rainfall line for each debris-flow stream is necessary. Firstly, 8 predisposing factors of debris flow were used to cluster 377 streams which have similar rainfall lines into 7 groups via the genetic algorithm. Then, support vector machines (SVM) were applied to setup the critical rainfall line for debris flows. SVM is a machine learning approach proposed based on statistical learning theory and has been widely used on pattern recognition and regression. This theory raises the generalized ability of learning mechanisms according to the minimum structural risk. Therefore, the advantage of using SVM can obtain results of minimized error rates without many training samples. Finally, the experimental results confirm that SVM method performs well in setting a critical rainfall line for each group of debris-flow streams.

  16. A faster optimization method based on support vector regression for aerodynamic problems

    NASA Astrophysics Data System (ADS)

    Yang, Xixiang; Zhang, Weihua

    2013-09-01

    In this paper, a new strategy for optimal design of complex aerodynamic configuration with a reasonable low computational effort is proposed. In order to solve the formulated aerodynamic optimization problem with heavy computation complexity, two steps are taken: (1) a sequential approximation method based on support vector regression (SVR) and hybrid cross validation strategy, is proposed to predict aerodynamic coefficients, and thus approximates the objective function and constraint conditions of the originally formulated optimization problem with given limited sample points; (2) a sequential optimization algorithm is proposed to ensure the obtained optimal solution by solving the approximation optimization problem in step (1) is very close to the optimal solution of the originally formulated optimization problem. In the end, we adopt a complex aerodynamic design problem, that is optimal aerodynamic design of a flight vehicle with grid fins, to demonstrate our proposed optimization methods, and numerical results show that better results can be obtained with a significantly lower computational effort than using classical optimization techniques.

  17. Disease Prediction based on Functional Connectomes using a Scalable and Spatially-Informed Support Vector Machine

    PubMed Central

    Watanabe, Takanori; Kessler, Daniel; Scott, Clayton; Angstadt, Michael; Sripada, Chandra

    2014-01-01

    Substantial evidence indicates that major psychiatric disorders are associated with distributed neural dysconnectivity, leading to strong interest in using neuroimaging methods to accurately predict disorder status. In this work, we are specifically interested in a multivariate approach that uses features derived from whole-brain resting state functional connectomes. However, functional connectomes reside in a high dimensional space, which complicates model interpretation and introduces numerous statistical and computational challenges. Traditional feature selection techniques are used to reduce data dimensionality, but are blind to the spatial structure of the connectomes. We propose a regularization framework where the 6-D structure of the functional connectome (defined by pairs of points in 3-D space) is explicitly taken into account via the fused Lasso or the GraphNet regularizer. Our method only restricts the loss function to be convex and margin-based, allowing non-differentiable loss functions such as the hinge-loss to be used. Using the fused Lasso or GraphNet regularizer with the hinge-loss leads to a structured sparse support vector machine (SVM) with embedded feature selection. We introduce a novel efficient optimization algorithm based on the augmented Lagrangian and the classical alternating direction method, which can solve both fused Lasso and GraphNet regularized SVM with very little modification. We also demonstrate that the inner subproblems of the algorithm can be solved efficiently in analytic form by coupling the variable splitting strategy with a data augmentation scheme. Experiments on simulated data and resting state scans from a large schizophrenia dataset show that our proposed approach can identify predictive regions that are spatially contiguous in the 6-D “connectome space,” offering an additional layer of interpretability that could provide new insights about various disease processes. PMID:24704268

  18. Balanced VS Imbalanced Training Data: Classifying Rapideye Data with Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Ustuner, M.; Sanli, F. B.; Abdikan, S.

    2016-06-01

    The accuracy of supervised image classification is highly dependent upon several factors such as the design of training set (sample selection, composition, purity and size), resolution of input imagery and landscape heterogeneity. The design of training set is still a challenging issue since the sensitivity of classifier algorithm at learning stage is different for the same dataset. In this paper, the classification of RapidEye imagery with balanced and imbalanced training data for mapping the crop types was addressed. Classification with imbalanced training data may result in low accuracy in some scenarios. Support Vector Machines (SVM), Maximum Likelihood (ML) and Artificial Neural Network (ANN) classifications were implemented here to classify the data. For evaluating the influence of the balanced and imbalanced training data on image classification algorithms, three different training datasets were created. Two different balanced datasets which have 70 and 100 pixels for each class of interest and one imbalanced dataset in which each class has different number of pixels were used in classification stage. Results demonstrate that ML and NN classifications are affected by imbalanced training data in resulting a reduction in accuracy (from 90.94% to 85.94% for ML and from 91.56% to 88.44% for NN) while SVM is not affected significantly (from 94.38% to 94.69%) and slightly improved. Our results highlighted that SVM is proven to be a very robust, consistent and effective classifier as it can perform very well under balanced and imbalanced training data situations. Furthermore, the training stage should be precisely and carefully designed for the need of adopted classifier.

  19. Disease prediction based on functional connectomes using a scalable and spatially-informed support vector machine.

    PubMed

    Watanabe, Takanori; Kessler, Daniel; Scott, Clayton; Angstadt, Michael; Sripada, Chandra

    2014-08-01

    Substantial evidence indicates that major psychiatric disorders are associated with distributed neural dysconnectivity, leading to a strong interest in using neuroimaging methods to accurately predict disorder status. In this work, we are specifically interested in a multivariate approach that uses features derived from whole-brain resting state functional connectomes. However, functional connectomes reside in a high dimensional space, which complicates model interpretation and introduces numerous statistical and computational challenges. Traditional feature selection techniques are used to reduce data dimensionality, but are blind to the spatial structure of the connectomes. We propose a regularization framework where the 6-D structure of the functional connectome (defined by pairs of points in 3-D space) is explicitly taken into account via the fused Lasso or the GraphNet regularizer. Our method only restricts the loss function to be convex and margin-based, allowing non-differentiable loss functions such as the hinge-loss to be used. Using the fused Lasso or GraphNet regularizer with the hinge-loss leads to a structured sparse support vector machine (SVM) with embedded feature selection. We introduce a novel efficient optimization algorithm based on the augmented Lagrangian and the classical alternating direction method, which can solve both fused Lasso and GraphNet regularized SVM with very little modification. We also demonstrate that the inner subproblems of the algorithm can be solved efficiently in analytic form by coupling the variable splitting strategy with a data augmentation scheme. Experiments on simulated data and resting state scans from a large schizophrenia dataset show that our proposed approach can identify predictive regions that are spatially contiguous in the 6-D "connectome space," offering an additional layer of interpretability that could provide new insights about various disease processes.

  20. Support Vector Machines for Multitemporal and Multisensor Change Detection in a Mining Area

    NASA Astrophysics Data System (ADS)

    Hecheltjen, Antje; Waske, Bjorn; Thonfeld, Frank; Braun, Matthias; Menz, Gunter

    2010-12-01

    Long-term change detection often implies the challenge of incorporating multitemporal data from different sensors. Most of the conventional change detection algorithms are designed for bi-temporal datasets from the same sensors detecting only the existence of changes. The labeling of change areas remains a difficult task. To overcome such drawbacks, much attention has been given lately to algorithms arising from machine learning, such as Support Vector Machines (SVMs). While SVMs have been applied successfully for land cover classifications, the exploitation of this approach for change detection is still in its infancy. Few studies have already proven the applicability of SVMs for bi- and multitemporal change detection using data from one sensor only. In this paper we demonstrate the application of SVM for multitemporal and -sensor change detection. Our study site covers lignite open pit mining areas in the German state North Rhine-Westphalia. The dataset consists of bi-temporal Landsat data and multi-temporal ERS SAR data covering two time slots (2001 and 2009). The SVM is conducted using the IDL program imageSVM. Change is deduced from one time slot to the next resulting in two change maps. In contrast to change detection, which is based on post-classification comparison, change detection is seen here as a specific classification problem. Thus, changes are directly classified from a layer-stack of the two years. To reduce the number of change classes, we created a change mask using the magnitude of Change Vector Analysis (CVA). Training data were selected for different change classes (e.g. forest to mining or mining to agriculture) as well as for the no-change classes (e.g. agriculture). Subsequently, they were divided in two independent sets for training the SVMs and accuracy assessment, respectively. Our study shows the applicability of SVMs to classify changes via SVMs. The proposed method yielded a change map of reclaimed and active mines. The use of ERS SAR

  1. Impedance spectra classification for determining the state of charge on a lithium iron phosphate cell using a support vector machine

    NASA Astrophysics Data System (ADS)

    Jansen, P.; Vergossen, D.; Renner, D.; John, W.; Götze, J.

    2015-11-01

    An alternative method for determining the state of charge (SOC) on lithium iron phosphate cells by impedance spectra classification is given. Methods based on the electric equivalent circuit diagram (ECD), such as the Kalman Filter, the extended Kalman Filter and the state space observer, for instance, have reached their limits for this cell chemistry. The new method resigns on the open circuit voltage curve and the parameters for the electric ECD. Impedance spectra classification is implemented by a Support Vector Machine (SVM). The classes for the SVM-algorithm are represented by all the impedance spectra that correspond to the SOC (the SOC classes) for defined temperature and aging states. A divide and conquer based search algorithm on a binary search tree makes it possible to grade measured impedances using the SVM method. Statistical analysis is used to verify the concept by grading every single impedance from each impedance spectrum corresponding to the SOC by class with different magnitudes of charged error.

  2. Support vector machines and object-based classification for obtaining land-use/cover cartography from Hyperion hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Petropoulos, George P.; Kalaitzidis, Chariton; Prasad Vadrevu, Krishna

    2012-04-01

    The Hyperion hyperspectral sensor has the highest spectral resolution, acquiring spectral information of Earth's surface objects in 242 spectral bands at a spatial resolution of 30 m. In this study, we evaluate the performance of the Hyperion sensor in conjunction with the two different classification algorithms for delineating land use/cover in a typical Mediterranean setting. The algorithms include pixel-based support vector machines (SVMs) and the object-based classification algorithm. Validation of the derived land-use/cover maps from the above two algorithms was performed through error matrix statistics using the validation points from the very high resolution QuickBird imagery. Results suggested both classifiers as highly useful in mapping land use/cover in the study region with the object-based approach slightly outperforming the SVMs classification by overall higher classification accuracy and Kappa statistics. Results from the statistical significance testing using McNemar's chi-square test confirmed the superiority of the object-oriented approach compared to SVM. The relative strengths and weaknesses of the two classification algorithms for land-use/cover mapping studies are highlighted. Overall, our results underline the potential of hyperspectral remote sensing data together with an object-based classification approach for mapping land use/cover in the Mediterranean regions.

  3. Research on optical surface quality online monitoring based on support vector machine

    NASA Astrophysics Data System (ADS)

    Bi, Guo; Sun, Zhiji; Zhang, Dongxu

    2014-08-01

    The interference of grinding wheel and optic surface during grinding process causes numerous acoustic emission (AE) phenomena. AE signals are competent for monitoring the quality of the ground surface. A quality prediction model of grinding optics is established based on support vector machine (SVM). Some time domain characteristics of AE signals are chosen as the input vectors. And surface roughness (Ra) and surface shape accuracy (P-V) are the output vectors, respectively. The experiment results show that the model can accurately predict the surface quality of the optics during grinding.

  4. Time-sequenced adaptive filtering using a modified P-vector algorithm

    NASA Astrophysics Data System (ADS)

    Williams, Robert L.

    1996-10-01

    An adaptive algorithm and two stage filter structure were developed for adaptive filtering of certain classes of signals that exhibit cyclostationary characteristics. The new modified P-vector algorithm (mPa) eliminates the need for a separate desired signal which is typically required by conventional adaptive algorithms. It is then implemented in a time-sequenced manner to counteract the nonstationary characteristics typically found in certain radar and bioelectromagnetic signals. Initial algorithm testing is performed on evoked responses generated by the visual cortex of the human brain with the objective, ultimately, to transition the results to radar signals. Each sample of the evoked response is modeled as the sum of three uncorrelated signal components, a time-varying mean (M), a noise component (N), and a random jitter component (Q). A two stage single channel time-sequenced adaptive filter structure was developed which improves convergence characteristics by de coupling the time-varying mean component from the `Q' and noise components in the first stage. The EEG statistics must be known a priori and are adaptively estimated from the pre stimulus data. The performance of the two stage mPa time-sequenced adaptive filter approaches the performance for the ideal case of an adaptive filter having a noiseless desired response.

  5. Support Vector Machine Model for Automatic Detection and Classification of Seismic Events

    NASA Astrophysics Data System (ADS)

    Barros, Vesna; Barros, Lucas

    2016-04-01

    The automated processing of multiple seismic signals to detect, localize and classify seismic events is a central tool in both natural hazards monitoring and nuclear treaty verification. However, false detections and missed detections caused by station noise and incorrect classification of arrivals are still an issue and the events are often unclassified or poorly classified. Thus, machine learning techniques can be used in automatic processing for classifying the huge database of seismic recordings and provide more confidence in the final output. Applied in the context of the International Monitoring System (IMS) - a global sensor network developed for the Comprehensive Nuclear-Test-Ban Treaty (CTBT) - we propose a fully automatic method for seismic event detection and classification based on a supervised pattern recognition technique called the Support Vector Machine (SVM). According to Kortström et al., 2015, the advantages of using SVM are handleability of large number of features and effectiveness in high dimensional spaces. Our objective is to detect seismic events from one IMS seismic station located in an area of high seismicity and mining activity and classify them as earthquakes or quarry blasts. It is expected to create a flexible and easily adjustable SVM method that can be applied in different regions and datasets. Taken a step further, accurate results for seismic stations could lead to a modification of the model and its parameters to make it applicable to other waveform technologies used to monitor nuclear explosions such as infrasound and hydroacoustic waveforms. As an authorized user, we have direct access to all IMS data and bulletins through a secure signatory account. A set of significant seismic waveforms containing different types of events (e.g. earthquake, quarry blasts) and noise is being analysed to train the model and learn the typical pattern of the signal from these events. Moreover, comparing the performance of the support-vector

  6. Estimation of Electrically-Evoked Knee Torque from Mechanomyography Using Support Vector Regression

    PubMed Central

    Ibitoye, Morufu Olusola; Hamzaid, Nur Azah; Abdul Wahab, Ahmad Khairi; Hasnan, Nazirah; Olatunji, Sunday Olusanya; Davis, Glen M.

    2016-01-01

    The difficulty of real-time muscle force or joint torque estimation during neuromuscular electrical stimulation (NMES) in physical therapy and exercise science has motivated recent research interest in torque estimation from other muscle characteristics. This study investigated the accuracy of a computational intelligence technique for estimating NMES-evoked knee extension torque based on the Mechanomyographic signals (MMG) of contracting muscles that were recorded from eight healthy males. Simulation of the knee torque was modelled via Support Vector Regression (SVR) due to its good generalization ability in related fields. Inputs to the proposed model were MMG amplitude characteristics, the level of electrical stimulation or contraction intensity, and knee angle. Gaussian kernel function, as well as its optimal parameters were identified with the best performance measure and were applied as the SVR kernel function to build an effective knee torque estimation model. To train and test the model, the data were partitioned into training (70%) and testing (30%) subsets, respectively. The SVR estimation accuracy, based on the coefficient of determination (R2) between the actual and the estimated torque values was up to 94% and 89% during the training and testing cases, with root mean square errors (RMSE) of 9.48 and 12.95, respectively. The knee torque estimations obtained using SVR modelling agreed well with the experimental data from an isokinetic dynamometer. These findings support the realization of a closed-loop NMES system for functional tasks using MMG as the feedback signal source and an SVR algorithm for joint torque estimation. PMID:27447638

  7. Automated Classification of Epiphyses in the Distal Radius and Ulna using a Support Vector Machine.

    PubMed

    Wang, Ya-hui; Liu, Tai-ang; Wei, Hua; Wan, Lei; Ying, Chong-liang; Zhu, Guang-you

    2016-03-01

    The aim of this study was to automatically classify epiphyses in the distal radius and ulna using a support vector machine (SVM) and to examine the accuracy of the epiphyseal growth grades generated by the support vector machine. X-ray images of distal radii and ulnae were collected from 140 Chinese teenagers aged between 11.0 and 19.0 years. Epiphyseal growth of the two elements was classified into five grades. Features of each element were extracted using a histogram of oriented gradient (HOG), and models were established using support vector classification (SVC). The prediction results and the validity of the models were evaluated with a cross-validation test and independent test for accuracy (PA ). Our findings suggest that this new technique for epiphyseal classification was successful and that an automated technique using an SVM is reliable and feasible, with a relative high accuracy for the models.

  8. On the applicability of genetic algorithms to fast solar spectropolarimetric inversions for vector magnetography

    NASA Astrophysics Data System (ADS)

    Harker, Brian J.

    The measurement of vector magnetic fields on the sun is one of the most important diagnostic tools for characterizing solar activity. The ubiquitous solar wind is guided into interplanetary space by open magnetic field lines in the upper solar atmosphere. Highly-energetic solar flares and Coronal Mass Ejections (CMEs) are triggered in lower layers of the solar atmosphere by the driving forces at the visible "surface" of the sun, the photosphere. The driving forces there tangle and interweave the vector magnetic fields, ultimately leading to an unstable field topology with large excess magnetic energy, and this excess energy is suddenly and violently released by magnetic reconnection, emitting intense broadband radiation that spans the electromagnetic spectrum, accelerating billions of metric tons of plasma away from the sun, and finally relaxing the magnetic field to lower-energy states. These eruptive flaring events can have severe impacts on the near-Earth environment and the human technology that inhabits it. This dissertation presents a novel inversion method for inferring the properties of the vector magnetic field from telescopic measurements of the polarization states (Stokes vector) of the light received from the sun, in an effort to develop a method that is fast, accurate, and reliable. One of the long-term goals of this work is to develop such a method that is capable of rapidly-producing characterizations of the magnetic field from time-sequential data, such that near real-time projections of the complexity and flare- productivity of solar active regions can be made. This will be a boon to the field of solar flare forecasting, and should help mitigate the harmful effects of space weather on mankind's space-based endeavors. To this end, I have developed an inversion method based on genetic algorithms (GA) that have the potential for achieving such high-speed analysis.

  9. Predicting primary progressive aphasias with support vector machine approaches in structural MRI data.

    PubMed

    Bisenius, Sandrine; Mueller, Karsten; Diehl-Schmid, Janine; Fassbender, Klaus; Grimmer, Timo; Jessen, Frank; Kassubek, Jan; Kornhuber, Johannes; Landwehrmeyer, Bernhard; Ludolph, Albert; Schneider, Anja; Anderl-Straub, Sarah; Stuke, Katharina; Danek, Adrian; Otto, Markus; Schroeter, Matthias L

    2017-01-01

    Primary progressive aphasia (PPA) encompasses the three subtypes nonfluent/agrammatic variant PPA, semantic variant PPA, and the logopenic variant PPA, which are characterized by distinct patterns of language difficulties and regional brain atrophy. To validate the potential of structural magnetic resonance imaging data for early individual diagnosis, we used support vector machine classification on grey matter density maps obtained by voxel-based morphometry analysis to discriminate PPA subtypes (44 patients: 16 nonfluent/agrammatic variant PPA, 17 semantic variant PPA, 11 logopenic variant PPA) from 20 healthy controls (matched for sample size, age, and gender) in the cohort of the multi-center study of the German consortium for frontotemporal lobar degeneration. Here, we compared a whole-brain with a meta-analysis-based disease-specific regions-of-interest approach for support vector machine classification. We also used support vector machine classification to discriminate the three PPA subtypes from each other. Whole brain support vector machine classification enabled a very high accuracy between 91 and 97% for identifying specific PPA subtypes vs. healthy controls, and 78/95% for the discrimination between semantic variant vs. nonfluent/agrammatic or logopenic PPA variants. Only for the discrimination between nonfluent/agrammatic and logopenic PPA variants accuracy was low with 55%. Interestingly, the regions that contributed the most to the support vector machine classification of patients corresponded largely to the regions that were atrophic in these patients as revealed by group comparisons. Although the whole brain approach took also into account regions that were not covered in the regions-of-interest approach, both approaches showed similar accuracies due to the disease-specificity of the selected networks. Conclusion, support vector machine classification of multi-center structural magnetic resonance imaging data enables prediction of PPA subtypes with

  10. On efficient randomized algorithms for finding the PageRank vector

    NASA Astrophysics Data System (ADS)

    Gasnikov, A. V.; Dmitriev, D. Yu.

    2015-03-01

    Two randomized methods are considered for finding the PageRank vector; in other words, the solution of the system p T = p T P with a stochastic n × n matrix P, where n ˜ 107-109, is sought (in the class of probability distributions) with accuracy ɛ: ɛ ≫ n -1. Thus, the possibility of brute-force multiplication of P by the column is ruled out in the case of dense objects. The first method is based on the idea of Markov chain Monte Carlo algorithms. This approach is efficient when the iterative process p {/t+1 T} = p {/t T} P quickly reaches a steady state. Additionally, it takes into account another specific feature of P, namely, the nonzero off-diagonal elements of P are equal in rows (this property is used to organize a random walk over the graph with the matrix P). Based on modern concentration-of-measure inequalities, new bounds for the running time of this method are presented that take into account the specific features of P. In the second method, the search for a ranking vector is reduced to finding the equilibrium in the antagonistic matrix game where S n (1) is a unit simplex in ℝ n and I is the identity matrix. The arising problem is solved by applying a slightly modified Grigoriadis-Khachiyan algorithm (1995). This technique, like the Nazin-Polyak method (2009), is a randomized version of Nemirovski's mirror descent method. The difference is that randomization in the Grigoriadis-Khachiyan algorithm is used when the gradient is projected onto the simplex rather than when the stochastic gradient is computed. For sparse matrices P, the method proposed yields noticeably better results.

  11. Bayesian data assimilation provides rapid decision support for vector-borne diseases.

    PubMed

    Jewell, Chris P; Brown, Richard G

    2015-07-06

    Predicting the spread of vector-borne diseases in response to incursions requires knowledge of both host and vector demographics in advance of an outbreak. Although host population data are typically available, for novel disease introductions there is a high chance of the pathogen using a vector for which data are unavailable. This presents a barrier to estimating the parameters of dynamical models representing host-vector-pathogen interaction, and hence limits their ability to provide quantitative risk forecasts. The Theileria orientalis (Ikeda) outbreak in New Zealand cattle demonstrates this problem: even though the vector has received extensive laboratory study, a high degree of uncertainty persists over its national demographic distribution. Addressing this, we develop a Bayesian data assimilation approach whereby indirect observations of vector activity inform a seasonal spatio-temporal risk surface within a stochastic epidemic model. We provide quantitative predictions for the future spread of the epidemic, quantifying uncertainty in the model parameters, case infection times and the disease status of undetected infections. Importantly, we demonstrate how our model learns sequentially as the epidemic unfolds and provide evidence for changing epidemic dynamics through time. Our approach therefore provides a significant advance in rapid decision support for novel vector-borne disease outbreaks.

  12. Reliable bearing fault diagnosis using Bayesian inference-based multi-class support vector machines.

    PubMed

    Islam, M M Manjurul; Kim, Jaeyoung; Khan, Sheraz A; Kim, Jong-Myon

    2017-02-01

    This letter presents a multi-fault diagnosis scheme for bearings using hybrid features extracted from their acoustic emissions and a Bayesian inference-based one-against-all support vector machine (Bayesian OAASVM) for multi-class classification. The Bayesian OAASVM, which is a standard multi-class extension of the binary support vector machine, results in ambiguously labeled regions in the input space that degrade its classification performance. The proposed Bayesian OAASVM formulates the feature space as an appropriate Gaussian process prior, interprets the decision value of the Bayesian OAASVM as a maximum a posteriori evidence function, and uses Bayesian inference to label unknown samples.

  13. A study on SMO-type decomposition methods for support vector machines.

    PubMed

    Chen, Pai-Hsuen; Fan, Rong-En; Lin, Chih-Jen

    2006-07-01

    Decomposition methods are currently one of the major methods for training support vector machines. They vary mainly according to different working set selections. Existing implementations and analysis usually consider some specific selection rules. This paper studies sequential minimal optimization type decomposition methods under a general and flexible way of choosing the two-element working set. The main results include: 1) a simple asymptotic convergence proof, 2) a general explanation of the shrinking and caching techniques, and 3) the linear convergence of the methods. Extensions to some support vector machine variants are also discussed.

  14. An intercomparison of different topography effects on discrimination performance of fuzzy change vector analysis algorithm

    NASA Astrophysics Data System (ADS)

    Singh, Sartajvir; Talwar, Rajneesh

    2016-12-01

    Detection of snow cover changes is vital for avalanche hazard analysis and flood flashes that arise due to variation in temperature. Hence, multitemporal change detection is one of the practical mean to estimate the snow cover changes over larger area using remotely sensed data. There have been some previous studies that examined how accuracy of change detection analysis is affected by different topography effects over Northwestern Indian Himalayas. The present work emphases on the intercomparison of different topography effects on discrimination performance of fuzzy based change vector analysis (FCVA) as change detection algorithm that includes extraction of change-magnitude and change-direction from a specific pixel belongs multiple or partial membership. The qualitative and quantitative analysis of the proposed FCVA algorithm is performed under topographic conditions and topographic correction conditions. The experimental outcomes confirmed that in change category discrimination procedure, FCVA with topographic correction achieved 86.8% overall accuracy and 4.8% decay (82% of overall accuracy) is found in FCVA without topographic correction. This study suggests that by incorporating the topographic correction model over mountainous region satellite imagery, performance of FCVA algorithm can be significantly improved up to great extent in terms of determining actual change categories.

  15. Hybrid three-dimensional and support vector machine approach for automatic vehicle tracking and classification using a single camera

    NASA Astrophysics Data System (ADS)

    Kachach, Redouane; Cañas, José María

    2016-05-01

    Using video in traffic monitoring is one of the most active research domains in the computer vision community. TrafficMonitor, a system that employs a hybrid approach for automatic vehicle tracking and classification on highways using a simple stationary calibrated camera, is presented. The proposed system consists of three modules: vehicle detection, vehicle tracking, and vehicle classification. Moving vehicles are detected by an enhanced Gaussian mixture model background estimation algorithm. The design includes a technique to resolve the occlusion problem by using a combination of two-dimensional proximity tracking algorithm and the Kanade-Lucas-Tomasi feature tracking algorithm. The last module classifies the shapes identified into five vehicle categories: motorcycle, car, van, bus, and truck by using three-dimensional templates and an algorithm based on histogram of oriented gradients and the support vector machine classifier. Several experiments have been performed using both real and simulated traffic in order to validate the system. The experiments were conducted on GRAM-RTM dataset and a proper real video dataset which is made publicly available as part of this work.

  16. Cancer Feature Selection and Classification Using a Binary Quantum-Behaved Particle Swarm Optimization and Support Vector Machine.

    PubMed

    Xi, Maolong; Sun, Jun; Liu, Li; Fan, Fangyun; Wu, Xiaojun

    2016-01-01

    This paper focuses on the feature gene selection for cancer classification, which employs an optimization algorithm to select a subset of the genes. We propose a binary quantum-behaved particle swarm optimization (BQPSO) for cancer feature gene selection, coupling support vector machine (SVM) for cancer classification. First, the proposed BQPSO algorithm is described, which is a discretized version of original QPSO for binary 0-1 optimization problems. Then, we present the principle and procedure for cancer feature gene selection and cancer classification based on BQPSO and SVM with leave-one-out cross validation (LOOCV). Finally, the BQPSO coupling SVM (BQPSO/SVM), binary PSO coupling SVM (BPSO/SVM), and genetic algorithm coupling SVM (GA/SVM) are tested for feature gene selection and cancer classification on five microarray data sets, namely, Leukemia, Prostate, Colon, Lung, and Lymphoma. The experimental results show that BQPSO/SVM has significant advantages in accuracy, robustness, and the number of feature genes selected compared with the other two algorithms.

  17. Cancer Feature Selection and Classification Using a Binary Quantum-Behaved Particle Swarm Optimization and Support Vector Machine

    PubMed Central

    Sun, Jun; Liu, Li; Fan, Fangyun; Wu, Xiaojun

    2016-01-01

    This paper focuses on the feature gene selection for cancer classification, which employs an optimization algorithm to select a subset of the genes. We propose a binary quantum-behaved particle swarm optimization (BQPSO) for cancer feature gene selection, coupling support vector machine (SVM) for cancer classification. First, the proposed BQPSO algorithm is described, which is a discretized version of original QPSO for binary 0-1 optimization problems. Then, we present the principle and procedure for cancer feature gene selection and cancer classification based on BQPSO and SVM with leave-one-out cross validation (LOOCV). Finally, the BQPSO coupling SVM (BQPSO/SVM), binary PSO coupling SVM (BPSO/SVM), and genetic algorithm coupling SVM (GA/SVM) are tested for feature gene selection and cancer classification on five microarray data sets, namely, Leukemia, Prostate, Colon, Lung, and Lymphoma. The experimental results show that BQPSO/SVM has significant advantages in accuracy, robustness, and the number of feature genes selected compared with the other two algorithms. PMID:27642363

  18. Detection of Hard Exudates in Colour Fundus Images Using Fuzzy Support Vector Machine-Based Expert System.

    PubMed

    Jaya, T; Dheeba, J; Singh, N Albert

    2015-12-01

    Diabetic retinopathy is a major cause of vision loss in diabetic patients. Currently, there is a need for making decisions using intelligent computer algorithms when screening a large volume of data. This paper presents an expert decision-making system designed using a fuzzy support vector machine (FSVM) classifier to detect hard exudates in fundus images. The optic discs in the colour fundus images are segmented to avoid false alarms using morphological operations and based on circular Hough transform. To discriminate between the exudates and the non-exudates pixels, colour and texture features are extracted from the images. These features are given as input to the FSVM classifier. The classifier analysed 200 retinal images collected from diabetic retinopathy screening programmes. The tests made on the retinal images show that the proposed detection system has better discriminating power than the conventional support vector machine. With the best combination of FSVM and features sets, the area under the receiver operating characteristic curve reached 0.9606, which corresponds to a sensitivity of 94.1% with a specificity of 90.0%. The results suggest that detecting hard exudates using FSVM contribute to computer-assisted detection of diabetic retinopathy and as a decision support system for ophthalmologists.

  19. Parallel-vector algorithms for particle simulations on shared-memory multiprocessors

    SciTech Connect

    Nishiura, Daisuke; Sakaguchi, Hide

    2011-03-01

    Over the last few decades, the computational demands of massive particle-based simulations for both scientific and industrial purposes have been continuously increasing. Hence, considerable efforts are being made to develop parallel computing techniques on various platforms. In such simulations, particles freely move within a given space, and so on a distributed-memory system, load balancing, i.e., assigning an equal number of particles to each processor, is not guaranteed. However, shared-memory systems achieve better load balancing for particle models, but suffer from the intrinsic drawback of memory access competition, particularly during (1) paring of contact candidates from among neighboring particles and (2) force summation for each particle. Here, novel algorithms are proposed to overcome these two problems. For the first problem, the key is a pre-conditioning process during which particle labels are sorted by a cell label in the domain to which the particles belong. Then, a list of contact candidates is constructed by pairing the sorted particle labels. For the latter problem, a table comprising the list indexes of the contact candidate pairs is created and used to sum the contact forces acting on each particle for all contacts according to Newton's third law. With just these methods, memory access competition is avoided without additional redundant procedures. The parallel efficiency and compatibility of these two algorithms were evaluated in discrete element method (DEM) simulations on four types of shared-memory parallel computers: a multicore multiprocessor computer, scalar supercomputer, vector supercomputer, and graphics processing unit. The computational efficiency of a DEM code was found to be drastically improved with our algorithms on all but the scalar supercomputer. Thus, the developed parallel algorithms are useful on shared-memory parallel computers with sufficient memory bandwidth.

  20. Applying spectral unmixing and support vector machine to airborne hyperspectral imagery for detecting giant reed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated linear spectral unmixing (LSU), mixture tuned matched filtering (MTMF) and support vector machine (SVM) techniques for detecting and mapping giant reed (Arundo donax L.), an invasive weed that presents a severe threat to agroecosystems and riparian areas throughout the southern ...

  1. Fabric wrinkle characterization and classification using modified wavelet coefficients and optimized support-vector-machine classifier

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper presents a novel wrinkle evaluation method that uses modified wavelet coefficients and an optimized support-vector-machine (SVM) classification scheme to characterize and classify wrinkle appearance of fabric. Fabric images were decomposed with the wavelet transform (WT), and five parame...

  2. Support vector machine applied to predict the zoonotic potential of E. coli O157 cattle isolates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methods based on sequence data analysis facilitate the tracking of disease outbreaks, allow relationships between strains to be reconstructed and virulence factors to be identified. However, these methods are used postfactum after an outbreak has happened. Here, we show that support vector machine a...

  3. A correction method using a support vector machine to minimize hematocrit interference in blood glucose measurements.

    PubMed

    Shin, Jaeyeon; Park, Hodong; Cho, Sungpil; Nam, Hakhyun; Lee, Kyoung-Joung

    2014-09-01

    Point-of-care testing glucose meters are widely used, important tools for determining the blood glucose levels of people with diabetes, patients in intensive care units, pregnant women, and newborn infants. However, a number of studies have concluded that a change in hematocrit (Hct) levels can seriously affect the accuracy of glucose measurements. The aim of this study was to develop an algorithm for glucose calculation with improved accuracy using the Hct compensation method that minimizes the effects of Hct on glucose measurements. The glucose concentrations in this study were calculated with an adaptive calibration curve using linear fitting prediction and a support vector machine, which minimized the bias in the glucose concentrations caused by the Hct interference. This was followed by an evaluation of performance according to the international organization for standardization (ISO) 15197:2013 based on bias with respect to the reference method, the coefficient of variation, and the valid blood samples/total blood samples within the ±20% and 15% error grids. Chronoamperometry was performed to verify the effect of Hct variation and to compare the proposed method. As a result, the average coefficients of variation for chronoamperometry and the Hct compensation method were 2.43% and 3.71%, respectively, while the average biases (%) for these methods were 12.08% and 5.69%, respectively. The results of chronoamperometry demonstrated that a decrease in Hct levels increases glucose concentrations, whereas an increase in Hct levels reduces glucose concentrations. Finally, the proposed method has improved the accuracy of glucose measurements compared to existing chronoamperometry methods.

  4. Incorrect support and missing center tolerances of phasing algorithms

    DOE PAGES

    Huang, Xiaojing; Nelson, Johanna; Steinbrener, Jan; ...

    2010-01-01

    In x-ray diffraction microscopy, iterative algorithms retrieve reciprocal space phase information, and a real space image, from an object's coherent diffraction intensities through the use of a priori information such as a finite support constraint. In many experiments, the object's shape or support is not well known, and the diffraction pattern is incompletely measured. We describe here computer simulations to look at the effects of both of these possible errors when using several common reconstruction algorithms. Overly tight object supports prevent successful convergence; however, we show that this can often be recognized through pathological behavior of the phase retrieval transfermore » function. Dynamic range limitations often make it difficult to record the central speckles of the diffraction pattern. We show that this leads to increasing artifacts in the image when the number of missing central speckles exceeds about 10, and that the removal of unconstrained modes from the reconstructed image is helpful only when the number of missing central speckles is less than about 50. In conclusion, this simulation study helps in judging the reconstructability of experimentally recorded coherent diffraction patterns.« less

  5. Incorrect support and missing center tolerances of phasing algorithms

    SciTech Connect

    Huang, Xiaojing; Nelson, Johanna; Steinbrener, Jan; Kirz, Janos; Turner, Joshua J.; Jacobsen, Chris

    2010-01-01

    In x-ray diffraction microscopy, iterative algorithms retrieve reciprocal space phase information, and a real space image, from an object's coherent diffraction intensities through the use of a priori information such as a finite support constraint. In many experiments, the object's shape or support is not well known, and the diffraction pattern is incompletely measured. We describe here computer simulations to look at the effects of both of these possible errors when using several common reconstruction algorithms. Overly tight object supports prevent successful convergence; however, we show that this can often be recognized through pathological behavior of the phase retrieval transfer function. Dynamic range limitations often make it difficult to record the central speckles of the diffraction pattern. We show that this leads to increasing artifacts in the image when the number of missing central speckles exceeds about 10, and that the removal of unconstrained modes from the reconstructed image is helpful only when the number of missing central speckles is less than about 50. In conclusion, this simulation study helps in judging the reconstructability of experimentally recorded coherent diffraction patterns.

  6. Flight test results of a vector-based failure detection and isolation algorithm for a redundant strapdown inertial measurement unit

    NASA Technical Reports Server (NTRS)

    Morrell, F. R.; Bailey, M. L.; Motyka, P. R.

    1988-01-01

    Flight test results of a vector-based fault-tolerant algorithm for a redundant strapdown inertial measurement unit are presented. Because the inertial sensors provide flight-critical information for flight control and navigation, failure detection and isolation is developed in terms of a multi-level structure. Threshold compensation techniques for gyros and accelerometers, developed to enhance the sensitivity of the failure detection process to low-level failures, are presented. Four flight tests, conducted in a commercial transport type environment, were used to determine the ability of the failure detection and isolation algorithm to detect failure signals, such a hard-over, null, or bias shifts. The algorithm provided timely detection and correct isolation of flight control- and low-level failures. The flight tests of the vector-based algorithm demonstrated its capability to provide false alarm free dual fail-operational performance for the skewed array of inertial sensors.

  7. Classification of Dengue Fever Patients Based on Gene Expression Data Using Support Vector Machines

    PubMed Central

    Khan, Asif M.; Gil, Laura H. V. G.; Marques, Ernesto T. A.; Calzavara-Silva, Carlos E.; Tan, Tin Wee

    2010-01-01

    Background Symptomatic infection by dengue virus (DENV) can range from dengue fever (DF) to dengue haemorrhagic fever (DHF), however, the determinants of DF or DHF progression are not completely understood. It is hypothesised that host innate immune response factors are involved in modulating the disease outcome and the expression levels of genes involved in this response could be used as early prognostic markers for disease severity. Methodology/Principal Findings mRNA expression levels of genes involved in DENV innate immune responses were measured using quantitative real time PCR (qPCR). Here, we present a novel application of the support vector machines (SVM) algorithm to analyze the expression pattern of 12 genes in peripheral blood mononuclear cells (PBMCs) of 28 dengue patients (13 DHF and 15 DF) during acute viral infection. The SVM model was trained using gene expression data of these genes and achieved the highest accuracy of ∼85% with leave-one-out cross-validation. Through selective removal of gene expression data from the SVM model, we have identified seven genes (MYD88, TLR7, TLR3, MDA5, IRF3, IFN-α and CLEC5A) that may be central in differentiating DF patients from DHF, with MYD88 and TLR7 observed to be the most important. Though the individual removal of expression data of five other genes had no impact on the overall accuracy, a significant combined role was observed when the SVM model of the two main genes (MYD88 and TLR7) was re-trained to include the five genes, increasing the overall accuracy to ∼96%. Conclusions/Significance Here, we present a novel use of the SVM algorithm to classify DF and DHF patients, as well as to elucidate the significance of the various genes involved. It was observed that seven genes are critical in classifying DF and DHF patients: TLR3, MDA5, IRF3, IFN-α, CLEC5A, and the two most important MYD88 and TLR7. While these preliminary results are promising, further experimental investigation is necessary to validate

  8. Computer-aided diagnosis of Alzheimer's disease using support vector machines and classification trees

    NASA Astrophysics Data System (ADS)

    Salas-Gonzalez, D.; Górriz, J. M.; Ramírez, J.; López, M.; Álvarez, I.; Segovia, F.; Chaves, R.; Puntonet, C. G.

    2010-05-01

    This paper presents a computer-aided diagnosis technique for improving the accuracy of early diagnosis of Alzheimer-type dementia. The proposed methodology is based on the selection of voxels which present Welch's t-test between both classes, normal and Alzheimer images, greater than a given threshold. The mean and standard deviation of intensity values are calculated for selected voxels. They are chosen as feature vectors for two different classifiers: support vector machines with linear kernel and classification trees. The proposed methodology reaches greater than 95% accuracy in the classification task.

  9. Dilated contour extraction and component labeling algorithm for object vector representation

    NASA Astrophysics Data System (ADS)

    Skourikhine, Alexei N.

    2005-08-01

    Object boundary extraction from binary images is important for many applications, e.g., image vectorization, automatic interpretation of images containing segmentation results, printed and handwritten documents and drawings, maps, and AutoCAD drawings. Efficient and reliable contour extraction is also important for pattern recognition due to its impact on shape-based object characterization and recognition. The presented contour tracing and component labeling algorithm produces dilated (sub-pixel) contours associated with corresponding regions. The algorithm has the following features: (1) it always produces non-intersecting, non-degenerate contours, including the case of one-pixel wide objects; (2) it associates the outer and inner (i.e., around hole) contours with the corresponding regions during the process of contour tracing in a single pass over the image; (3) it maintains desired connectivity of object regions as specified by 8-neighbor or 4-neighbor connectivity of adjacent pixels; (4) it avoids degenerate regions in both background and foreground; (5) it allows an easy augmentation that will provide information about the containment relations among regions; (6) it has a time complexity that is dominantly linear in the number of contour points. This early component labeling (contour-region association) enables subsequent efficient object-based processing of the image information.

  10. A Real-Time Interference Monitoring Technique for GNSS Based on a Twin Support Vector Machine Method.

    PubMed

    Li, Wutao; Huang, Zhigang; Lang, Rongling; Qin, Honglei; Zhou, Kai; Cao, Yongbin

    2016-03-04

    Interferences can severely degrade the performance of Global Navigation Satellite System (GNSS) receivers. As the first step of GNSS any anti-interference measures, interference monitoring for GNSS is extremely essential and necessary. Since interference monitoring can be considered as a classification problem, a real-time interference monitoring technique based on Twin Support Vector Machine (TWSVM) is proposed in this paper. A TWSVM model is established, and TWSVM is solved by the Least Squares Twin Support Vector Machine (LSTWSVM) algorithm. The interference monitoring indicators are analyzed to extract features from the interfered GNSS signals. The experimental results show that the chosen observations can be used as the interference monitoring indicators. The interference monitoring performance of the proposed method is verified by using GPS L1 C/A code signal and being compared with that of standard SVM. The experimental results indicate that the TWSVM-based interference monitoring is much faster than the conventional SVM. Furthermore, the training time of TWSVM is on millisecond (ms) level and the monitoring time is on microsecond (μs) level, which make the proposed approach usable in practical interference monitoring applications.

  11. A Real-Time Interference Monitoring Technique for GNSS Based on a Twin Support Vector Machine Method

    PubMed Central

    Li, Wutao; Huang, Zhigang; Lang, Rongling; Qin, Honglei; Zhou, Kai; Cao, Yongbin

    2016-01-01

    Interferences can severely degrade the performance of Global Navigation Satellite System (GNSS) receivers. As the first step of GNSS any anti-interference measures, interference monitoring for GNSS is extremely essential and necessary. Since interference monitoring can be considered as a classification problem, a real-time interference monitoring technique based on Twin Support Vector Machine (TWSVM) is proposed in this paper. A TWSVM model is established, and TWSVM is solved by the Least Squares Twin Support Vector Machine (LSTWSVM) algorithm. The interference monitoring indicators are analyzed to extract features from the interfered GNSS signals. The experimental results show that the chosen observations can be used as the interference monitoring indicators. The interference monitoring performance of the proposed method is verified by using GPS L1 C/A code signal and being compared with that of standard SVM. The experimental results indicate that the TWSVM-based interference monitoring is much faster than the conventional SVM. Furthermore, the training time of TWSVM is on millisecond (ms) level and the monitoring time is on microsecond (μs) level, which make the proposed approach usable in practical interference monitoring applications. PMID:26959020

  12. Target versus background characterization: second-generation wavelets and support vector machines

    NASA Astrophysics Data System (ADS)

    Gorsich, David J.; Karlsen, Robert E.; Gerhart, Grant R.; Genton, Marc G.

    1999-07-01

    The problem of determining the difference between a target and the background is a very difficult and ill-posed problem, yet it is a problem constantly faced by engineers working in target detection and machine vision. Terms like target, background, and clutter are not well defined and are often used differently in every context. Clutter can be defined as a stationary noise process, anything non-target, or anything that looks like a target but is not. Targets can be defined by deformable templates, models, or by specific feature vectors. Models, templates and features must be defined before classification begins. Both models and feature vectors somehow hold the defining characteristics of the target, for example the gun barrel of a tank. Most importantly, feature vectors and models reduce the dimensionality of the problem making numerical methods possible. This paper explores several fairly recent techniques that provide promising new approaches to these old problems. Wavelets are used to de-trend images to eliminate deterministic components, and a trained support vector machine is used to classify the remaining complicated or stochastic components of the image. Ripely's K-function is used to study the spatial location of the wavelet coefficients. The support vector machine avoids the choice of a model or feature vector, and the wavelets provide a way to determine the non-predictability of the local image components. The K-function of the wavelet coefficients serves as a new clutter metric. The technique is tested on the TNO image set through several random simulations.

  13. A Hybrid Sales Forecasting Scheme by Combining Independent Component Analysis with K-Means Clustering and Support Vector Regression

    PubMed Central

    2014-01-01

    Sales forecasting plays an important role in operating a business since it can be used to determine the required inventory level to meet consumer demand and avoid the problem of under/overstocking. Improving the accuracy of sales forecasting has become an important issue of operating a business. This study proposes a hybrid sales forecasting scheme by combining independent component analysis (ICA) with K-means clustering and support vector regression (SVR). The proposed scheme first uses the ICA to extract hidden information from the observed sales data. The extracted features are then applied to K-means algorithm for clustering the sales data into several disjoined clusters. Finally, the SVR forecasting models are applied to each group to generate final forecasting results. Experimental results from information technology (IT) product agent sales data reveal that the proposed sales forecasting scheme outperforms the three comparison models and hence provides an efficient alternative for sales forecasting. PMID:25045738

  14. Blind steganalysis method for JPEG steganography combined with the semisupervised learning and soft margin support vector machine

    NASA Astrophysics Data System (ADS)

    Dong, Yu; Zhang, Tao; Xi, Ling

    2015-01-01

    Stego images embedded by unknown steganographic algorithms currently may not be detected by using steganalysis detectors based on binary classifier. However, it is difficult to obtain high detection accuracy by using universal steganalysis based on one-class classifier. For solving this problem, a blind detection method for JPEG steganography was proposed from the perspective of information theory. The proposed method combined the semisupervised learning and soft margin support vector machine with steganalysis detector based on one-class classifier to utilize the information in test data for improving detection performance. Reliable blind detection for JPEG steganography was realized only using cover images for training. The experimental results show that the proposed method can contribute to improving the detection accuracy of steganalysis detector based on one-class classifier and has good robustness under different source mismatch conditions.

  15. Support vector machine with a Pearson VII function kernel for discriminating halophilic and non-halophilic proteins.

    PubMed

    Zhang, Guangya; Ge, Huihua

    2013-10-01

    Understanding of proteins adaptive to hypersaline environment and identifying them is a challenging task and would help to design stable proteins. Here, we have systematically analyzed the normalized amino acid compositions of 2121 halophilic and 2400 non-halophilic proteins. The results showed that halophilic protein contained more Asp at the expense of Lys, Ile, Cys and Met, fewer small and hydrophobic residues, and showed a large excess of acidic over basic amino acids. Then, we introduce a support vector machine method to discriminate the halophilic and non-halophilic proteins, by using a novel Pearson VII universal function based kernel. In the three validation check methods, it achieved an overall accuracy of 97.7%, 91.7% and 86.9% and outperformed other machine learning algorithms. We also address the influence of protein size on prediction accuracy and found the worse performance for small size proteins might be some significant residues (Cys and Lys) were missing in the proteins.

  16. QSAR and classification study of 1,4-dihydropyridine calcium channel antagonists based on least squares support vector machines.

    PubMed

    Yao, Xiaojun; Liu, Huanxiang; Zhang, Ruisheng; Liu, Mancang; Hu, Zhide; Panaye, A; Doucet, J P; Fan, Botao

    2005-01-01

    The least squares support vector machine (LSSVM), as a novel machine learning algorithm, was used to develop quantitative and classification models as a potential screening mechanism for a novel series of 1,4-dihydropyridine calcium channel antagonists for the first time. Each compound was represented by calculated structural descriptors that encode constitutional, topological, geometrical, electrostatic, quantum-chemical features. The heuristic method was then used to search the descriptor space and select the descriptors responsible for activity. Quantitative modeling results in a nonlinear, seven-descriptor model based on LSSVM with mean-square errors 0.2593, a predicted correlation coefficient (R(2)) 0.8696, and a cross-validated correlation coefficient (R(cv)(2)) 0.8167. The best classification results are found using LSSVM: the percentage (%) of correct prediction based on leave one out cross-validation was 91.1%. This paper provides a new and effective method for drug design and screening.

  17. Predicting the biomechanical strength of proximal femur specimens with bone mineral density features and support vector regression

    NASA Astrophysics Data System (ADS)

    Huber, Markus B.; Yang, Chien-Chun; Carballido-Gamio, Julio; Bauer, Jan S.; Baum, Thomas; Nagarajan, Mahesh B.; Eckstein, Felix; Lochmüller, Eva; Majumdar, Sharmila; Link, Thomas M.; Wismüller, Axel

    2012-03-01

    To improve the clinical assessment of osteoporotic hip fracture risk, recent computer-aided diagnosis systems explore new approaches to estimate the local trabecular bone quality beyond bone density alone to predict femoral bone strength. In this context, statistical bone mineral density (BMD) features extracted from multi-detector computed tomography (MDCT) images of proximal femur specimens and different function approximations methods were compared in their ability to predict the biomechanical strength. MDCT scans were acquired in 146 proximal femur specimens harvested from human cadavers. The femurs' failure load (FL) was determined through biomechanical testing. An automated volume of interest (VOI)-fitting algorithm was used to define a consistent volume in the femoral head of each specimen. In these VOIs, the trabecular bone was represented by statistical moments of the BMD distribution and by pairwise spatial occurrence of BMD values using the gray-level co-occurrence (GLCM) approach. A linear multi-regression analysis (MultiReg) and a support vector regression algorithm with a linear kernel (SVRlin) were used to predict the FL from the image feature sets. The prediction performance was measured by the root mean square error (RMSE) for each image feature on independent test sets; in addition the coefficient of determination R2 was calculated. The best prediction result was obtained with a GLCM feature set using SVRlin, which had the lowest prediction error (RSME = 1.040+/-0.143, R2 = 0.544) and which was significantly lower that the standard approach of using BMD.mean and MultiReg (RSME = 1.093+/-0.133, R2 = 0.490, p<0.0001). The combined sets including BMD.mean and GLCM features had a similar or slightly lower performance than using only GLCM features. The results indicate that the performance of high-dimensional BMD features extracted from MDCT images in predicting the biomechanical strength of proximal femur specimens can be significantly improved by

  18. Vector-model-supported optimization in volumetric-modulated arc stereotactic radiotherapy planning for brain metastasis.

    PubMed

    Liu, Eva Sau Fan; Wu, Vincent Wing Cheung; Harris, Benjamin; Foote, Matthew; Lehman, Margot; Chan, Lawrence Wing Chi

    2017-03-17

    Long planning time in volumetric-modulated arc stereotactic radiotherapy (VMA-SRT) cases can limit its clinical efficiency and use. A vector model could retrieve previously successful radiotherapy cases that share various common anatomic features with the current case. The prsent study aimed to develop a vector model that could reduce planning time by applying the optimization parameters from those retrieved reference cases. Thirty-six VMA-SRT cases of brain metastasis (gender, male [n = 23], female [n = 13]; age range, 32 to 81 years old) were collected and used as a reference database. Another 10 VMA-SRT cases were planned with both conventional optimization and vector-model-supported optimization, following the oncologists' clinical dose prescriptions. Planning time and plan quality measures were compared using the 2-sided paired Wilcoxon signed rank test with a significance level of 0.05, with positive false discovery rate (pFDR) of less than 0.05. With vector-model-supported optimization, there was a significant reduction in the median planning time, a 40% reduction from 3.7 to 2.2 hours (p = 0.002, pFDR = 0.032), and for the number of iterations, a 30% reduction from 8.5 to 6.0 (p = 0.006, pFDR = 0.047). The quality of plans from both approaches was comparable. From these preliminary results, vector-model-supported optimization can expedite the optimization of VMA-SRT for brain metastasis while maintaining plan quality.

  19. Feature extraction from terahertz pulses for classification of RNA data via support vector machines

    NASA Astrophysics Data System (ADS)

    Yin, Xiaoxia; Ng, Brian W.-H.; Fischer, Bernd; Ferguson, Bradley; Mickan, Samuel P.; Abbott, Derek

    2006-12-01

    This study investigates binary and multiple classes of classification via support vector machines (SVMs). A couple of groups of two dimensional features are extracted via frequency orientation components, which result in the effective classification of Terahertz (T-ray) pulses for discrimination of RNA data and various powder samples. For each classification task, a pair of extracted feature vectors from the terahertz signals corresponding to each class is viewed as two coordinates and plotted in the same coordinate system. The current classification method extracts specific features from the Fourier spectrum, without applying an extra feature extractor. This method shows that SVMs can employ conventional feature extraction methods for a T-ray classification task. Moreover, we discuss the challenges faced by this method. A pairwise classification method is applied for the multi-class classification of powder samples. Plots of learning vectors assist in understanding the classification task, which exhibit improved clustering, clear learning margins, and least support vectors. This paper highlights the ability to use a small number of features (2D features) for classification via analyzing the frequency spectrum, which greatly reduces the computation complexity in achieving the preferred classification performance.

  20. Application of machine learning using support vector machines for crater detection from Martian digital topography data

    NASA Astrophysics Data System (ADS)

    Salamunićcar, Goran; Lončarić, Sven

    In our previous work, in order to extend the GT-57633 catalogue [PSS, 56 (15), 1992-2008] with still uncatalogued impact-craters, the following has been done [GRS, 48 (5), in press, doi:10.1109/TGRS.2009.2037750]: (1) the crater detection algorithm (CDA) based on digital elevation model (DEM) was developed; (2) using 1/128° MOLA data, this CDA proposed 414631 crater-candidates; (3) each crater-candidate was analyzed manually; and (4) 57592 were confirmed as correct detections. The resulting GT-115225 catalog is the significant result of this effort. However, to check such a large number of crater-candidates manually was a demanding task. This was the main motivation for work on improvement of the CDA in order to provide better classification of craters as true and false detections. To achieve this, we extended the CDA with the machine learning capability, using support vector machines (SVM). In the first step, the CDA (re)calculates numerous terrain morphometric attributes from DEM. For this purpose, already existing modules of the CDA from our previous work were reused in order to be capable to prepare these attributes. In addition, new attributes were introduced such as ellipse eccentricity and tilt. For machine learning purpose, the CDA is additionally extended to provide 2-D topography-profile and 3-D shape for each crater-candidate. The latter two are a performance problem because of the large number of crater-candidates in combination with the large number of attributes. As a solution, we developed a CDA architecture wherein it is possible to combine the SVM with a radial basis function (RBF) or any other kernel (for initial set of attributes), with the SVM with linear kernel (for the cases when 2-D and 3-D data are included as well). Another challenge is that, in addition to diversity of possible crater types, there are numerous morphological differences between the smallest (mostly very circular bowl-shaped craters) and the largest (multi-ring) impact

  1. Viral vector tropism for supporting cells in the developing murine cochlea.

    PubMed

    Sheffield, Abraham M; Gubbels, Samuel P; Hildebrand, Michael S; Newton, Stephen S; Chiorini, John A; Di Pasquale, Giovanni; Smith, Richard J H

    2011-07-01

    Gene-based therapeutics are being developed as novel treatments for genetic hearing loss. One roadblock to effective gene therapy is the identification of vectors which will safely deliver therapeutics to targeted cells. The cellular heterogeneity that exists within the cochlea makes viral tropism a vital consideration for effective inner ear gene therapy. There are compelling reasons to identify a viral vector with tropism for organ of Corti supporting cells. Supporting cells are the primary expression site of connexin 26 gap junction proteins that are mutated in the most common form of congenital genetic deafness (DFNB1). Supporting cells are also primary targets for inducing hair cell regeneration. Since many genetic forms of deafness are congenital it is necessary to administer gene transfer-based therapeutics prior to the onset of significant hearing loss. We have used transuterine microinjection of the fetal murine otocyst to investigate viral tropism in the developing inner ear. For the first time we have characterized viral tropism for supporting cells following in utero delivery to their progenitors. We report the inner ear tropism and potential ototoxicity of three previously untested vectors: early-generation adenovirus (Ad5.CMV.GFP), advanced-generation adenovirus (Adf.11D) and bovine adeno-associated virus (BAAV.CMV.GFP). Adenovirus showed robust tropism for organ of Corti supporting cells throughout the cochlea but induced increased ABR thresholds indicating ototoxicity. BAAV also showed tropism for organ of Corti supporting cells, with preferential transduction toward the cochlear apex. Additionally, BAAV readily transduced spiral ganglion neurons. Importantly, the BAAV-injected ears exhibited normal hearing at 5 weeks of age when compared to non-injected ears. Our results support the use of BAAV for safe and efficient targeting of supporting cell progenitors in the developing murine inner ear.

  2. Using support vector machines with tract-based spatial statistics for automated classification of Tourette syndrome children

    NASA Astrophysics Data System (ADS)

    Wen, Hongwei; Liu, Yue; Wang, Jieqiong; Zhang, Jishui; Peng, Yun; He, Huiguang

    2016-03-01

    Tourette syndrome (TS) is a developmental neuropsychiatric disorder with the cardinal symptoms of motor and vocal tics which emerges in early childhood and fluctuates in severity in later years. To date, the neural basis of TS is not fully understood yet and TS has a long-term prognosis that is difficult to accurately estimate. Few studies have looked at the potential of using diffusion tensor imaging (DTI) in conjunction with machine learning algorithms in order to automate the classification of healthy children and TS children. Here we apply Tract-Based Spatial Statistics (TBSS) method to 44 TS children and 48 age and gender matched healthy children in order to extract the diffusion values from each voxel in the white matter (WM) skeleton, and a feature selection algorithm (ReliefF) was used to select the most salient voxels for subsequent classification with support vector machine (SVM). We use a nested cross validation to yield an unbiased assessment of the classification method and prevent overestimation. The accuracy (88.04%), sensitivity (88.64%) and specificity (87.50%) were achieved in our method as peak performance of the SVM classifier was achieved using the axial diffusion (AD) metric, demonstrating the potential of a joint TBSS and SVM pipeline for fast, objective classification of healthy and TS children. These results support that our methods may be useful for the early identification of subjects with TS, and hold promise for predicting prognosis and treatment outcome for individuals with TS.

  3. Suspended Sediment Load Prediction Using Support Vector Machines in the Goodwin Creek Experimental Watershed

    NASA Astrophysics Data System (ADS)

    Chiang, Jie-Lun; Tsai, Kuang-Jung; Chen, Yie-Ruey; Lee, Ming-Hsi; Sun, Jai-Wei

    2014-05-01

    Strong correlation exists between river discharge and suspended sediment load. The relationship of discharge and suspended sediment load was used to estimate suspended sediment load by using regression model, artificial neural network and support vector machine in this study. Records of river discharges and suspended sediment loads in the Goodwin Creek Experimental Watershed in United States were investigated as a case study. Seventy percent of the records were used as training data set to develop prediction models. The other thirty percent records were used as verification data set. The performances of those models were evaluated by mean absolute percentage error (MAPE). The MAPEs show that support vector machine outperforms the artificial neural network and regression model. The results show that the MAPE of the proposed SVM can achieve less than 14% for 120 minutes prediction (four time steps). As a result, we believe that the proposed SVM model has high potential for predicting suspended sediment load.

  4. Difference mapping method using least square support vector regression for variable-fidelity metamodelling

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Shao, Xinyu; Gao, Liang; Jiang, Ping; Qiu, Haobo

    2015-06-01

    Engineering design, especially for complex engineering systems, is usually a time-consuming process involving computation-intensive computer-based simulation and analysis methods. A difference mapping method using least square support vector regression is developed in this work, as a special metamodelling methodology that includes variable-fidelity data, to replace the computationally expensive computer codes. A general difference mapping framework is proposed where a surrogate base is first created, then the approximation is gained by a mapping the difference between the base and the real high-fidelity response surface. The least square support vector regression is adopted to accomplish the mapping. Two different sampling strategies, nested and non-nested design of experiments, are conducted to explore their respective effects on modelling accuracy. Different sample sizes and three approximation performance measures of accuracy are considered.

  5. Product demand forecasts using wavelet kernel support vector machine and particle swarm optimization in manufacture system

    NASA Astrophysics Data System (ADS)

    Wu, Qi

    2010-03-01

    Demand forecasts play a crucial role in supply chain management. The future demand for a certain product is the basis for the respective replenishment systems. Aiming at demand series with small samples, seasonal character, nonlinearity, randomicity and fuzziness, the existing support vector kernel does not approach the random curve of the sales time series in the space (quadratic continuous integral space). In this paper, we present a hybrid intelligent system combining the wavelet kernel support vector machine and particle swarm optimization for demand forecasting. The results of application in car sale series forecasting show that the forecasting approach based on the hybrid PSOWv-SVM model is effective and feasible, the comparison between the method proposed in this paper and other ones is also given, which proves that this method is, for the discussed example, better than hybrid PSOv-SVM and other traditional methods.

  6. Identification of comment-on sentences in online biomedical documents using support vector machines

    NASA Astrophysics Data System (ADS)

    Kim, In Cheol; Le, Daniel X.; Thoma, George R.

    2007-01-01

    MEDLINE (R) is the premier bibliographic online database of the National Library of Medicine, containing approximately 14 million citations and abstracts from over 4,800 biomedical journals. This paper presents an automated method based on support vector machines to identify a "comment-on" list, which is a field in a MEDLINE citation denoting previously published articles commented on by a given article. For comparative study, we also introduce another method based on scoring functions that estimate the significance of each sentence in a given article. Preliminary experiments conducted on HTML-formatted online biomedical documents collected from 24 different journal titles show that the support vector machine with polynomial kernel function performs best in terms of recall and F-measure rates.

  7. Metabolic changes in rat urine after acute paraquat poisoning and discriminated by support vector machine.

    PubMed

    Wen, Congcong; Wang, Zhiyi; Zhang, Meiling; Wang, Shuanghu; Geng, Peiwu; Sun, Fa; Chen, Mengchun; Lin, Guanyang; Hu, Lufeng; Ma, Jianshe; Wang, Xianqin

    2016-01-01

    Paraquat is quick-acting and non-selective, killing green plant tissue on contact; it is also toxic to human beings and animals. In this study, we developed a urine metabonomic method by gas chromatography-mass spectrometry to evaluate the effect of acute paraquat poisoning on rats. Pattern recognition analysis, including both partial least squares discriminate analysis and principal component analysis revealed that acute paraquat poisoning induced metabolic perturbations. Compared with the control group, the levels of benzeneacetic acid and hexadecanoic acid of the acute paraquat poisoning group (intragastric administration 36 mg/kg) increased, while the levels of butanedioic acid, pentanedioic acid, altronic acid decreased. Based on these urinary metabolomics data, support vector machine was applied to discriminate the metabolomic change of paraquat groups from the control group, which achieved 100% classification accuracy. In conclusion, metabonomic method combined with support vector machine can be used as a useful diagnostic tool in paraquat-poisoned rats.

  8. Evaluation and recognition of skin images with aging by support vector machine

    NASA Astrophysics Data System (ADS)

    Hu, Liangjun; Wu, Shulian; Li, Hui

    2016-10-01

    Aging is a very important issue not only in dermatology, but also cosmetic science. Cutaneous aging involves both chronological and photoaging aging process. The evaluation and classification of aging is an important issue with the medical cosmetology workers nowadays. The purpose of this study is to assess chronological-age-related and photo-age-related of human skin. The texture features of skin surface skin, such as coarseness, contrast were analyzed by Fourier transform and Tamura. And the aim of it is to detect the object hidden in the skin texture in difference aging skin. Then, Support vector machine was applied to train the texture feature. The different age's states were distinguished by the support vector machine (SVM) classifier. The results help us to further understand the mechanism of different aging skin from texture feature and help us to distinguish the different aging states.

  9. Clinical Decision Support Systems for Comorbidity: Architecture, Algorithms, and Applications

    PubMed Central

    Fan, Aihua; Tang, Yu

    2017-01-01

    In this paper, we present the design of a clinical decision support system (CDSS) for monitoring comorbid conditions. Specifically, we address the architecture of a CDSS by characterizing it from three layers and discuss the algorithms in each layer. Also we address the applications of CDSSs in a few real scenarios and analyze the accuracy of a CDSS in consideration of the potential conflicts when using multiple clinical practice guidelines concurrently. Finally, we compare the system performance in our design with that in the other design schemes. Our study shows that our proposed design can achieve a clinical decision in a shorter time than the other designs, while ensuring a high level of system accuracy. PMID:28373881

  10. Novel classification method for remote sensing images based on information entropy discretization algorithm and vector space model

    NASA Astrophysics Data System (ADS)

    Xie, Li; Li, Guangyao; Xiao, Mang; Peng, Lei

    2016-04-01

    Various kinds of remote sensing image classification algorithms have been developed to adapt to the rapid growth of remote sensing data. Conventional methods typically have restrictions in either classification accuracy or computational efficiency. Aiming to overcome the difficulties, a new solution for remote sensing image classification is presented in this study. A discretization algorithm based on information entropy is applied to extract features from the data set and a vector space model (VSM) method is employed as the feature representation algorithm. Because of the simple structure of the feature space, the training rate is accelerated. The performance of the proposed method is compared with two other algorithms: back propagation neural networks (BPNN) method and ant colony optimization (ACO) method. Experimental results confirm that the proposed method is superior to the other algorithms in terms of classification accuracy and computational efficiency.

  11. Wormholes admitting conformal Killing vectors and supported by generalized Chaplygin gas

    NASA Astrophysics Data System (ADS)

    Kuhfittig, Peter K. F.

    2015-08-01

    When Morris and Thorne first proposed that traversable wormholes may be actual physical objects, they concentrated on the geometry by specifying the shape and redshift functions. This mathematical approach necessarily raises questions regarding the determination of the required stress-energy tensor. This paper discusses a natural way to obtain a complete wormhole solution by assuming that the wormhole (1) is supported by generalized Chaplygin gas and (2) admits conformal Killing vectors.

  12. Performance and optimization of support vector machines in high-energy physics classification problems

    NASA Astrophysics Data System (ADS)

    Sahin, M. Ö.; Krücker, D.; Melzer-Pellmann, I.-A.

    2016-12-01

    In this paper we promote the use of Support Vector Machines (SVM) as a machine learning tool for searches in high-energy physics. As an example for a new-physics search we discuss the popular case of Supersymmetry at the Large Hadron Collider. We demonstrate that the SVM is a valuable tool and show that an automated discovery-significance based optimization of the SVM hyper-parameters is a highly efficient way to prepare an SVM for such applications.

  13. A vectorized algorithm for 3D dynamics of a tethered satellite

    NASA Technical Reports Server (NTRS)

    Wilson, Howard B.

    1989-01-01

    Equations of motion characterizing the three dimensional motion of a tethered satellite during the retrieval phase are studied. The mathematical model involves an arbitrary number of point masses connected by weightless cords. Motion occurs in a gravity gradient field. The formulation presented accounts for general functions describing support point motion, rate of tether retrieval, and arbitrary forces applied to the point masses. The matrix oriented program language MATLAB is used to produce an efficient vectorized formulation for computing natural frequencies and mode shapes for small oscillations about the static equilibrium configuration; and for integrating the nonlinear differential equations governing large amplitude motions. An example of time response pertaining to the skip rope effect is investigated.

  14. Online Support Vector Regression with Varying Parameters for Time-Dependent Data

    SciTech Connect

    Omitaomu, Olufemi A; Jeong, Myong K; Badiru, Adedeji B

    2011-01-01

    Support vector regression (SVR) is a machine learning technique that continues to receive interest in several domains including manufacturing, engineering, and medicine. In order to extend its application to problems in which datasets arrive constantly and in which batch processing of the datasets is infeasible or expensive, an accurate online support vector regression (AOSVR) technique was proposed. The AOSVR technique efficiently updates a trained SVR function whenever a sample is added to or removed from the training set without retraining the entire training data. However, the AOSVR technique assumes that the new samples and the training samples are of the same characteristics; hence, the same value of SVR parameters is used for training and prediction. This assumption is not applicable to data samples that are inherently noisy and non-stationary such as sensor data. As a result, we propose Accurate On-line Support Vector Regression with Varying Parameters (AOSVR-VP) that uses varying SVR parameters rather than fixed SVR parameters, and hence accounts for the variability that may exist in the samples. To accomplish this objective, we also propose a generalized weight function to automatically update the weights of SVR parameters in on-line monitoring applications. The proposed function allows for lower and upper bounds for SVR parameters. We tested our proposed approach and compared results with the conventional AOSVR approach using two benchmark time series data and sensor data from nuclear power plant. The results show that using varying SVR parameters is more applicable to time dependent data.

  15. Prediction of Spirometric Forced Expiratory Volume (FEV1) Data Using Support Vector Regression

    NASA Astrophysics Data System (ADS)

    Kavitha, A.; Sujatha, C. M.; Ramakrishnan, S.

    2010-01-01

    In this work, prediction of forced expiratory volume in 1 second (FEV1) in pulmonary function test is carried out using the spirometer and support vector regression analysis. Pulmonary function data are measured with flow volume spirometer from volunteers (N=175) using a standard data acquisition protocol. The acquired data are then used to predict FEV1. Support vector machines with polynomial kernel function with four different orders were employed to predict the values of FEV1. The performance is evaluated by computing the average prediction accuracy for normal and abnormal cases. Results show that support vector machines are capable of predicting FEV1 in both normal and abnormal cases and the average prediction accuracy for normal subjects was higher than that of abnormal subjects. Accuracy in prediction was found to be high for a regularization constant of C=10. Since FEV1 is the most significant parameter in the analysis of spirometric data, it appears that this method of assessment is useful in diagnosing the pulmonary abnormalities with incomplete data and data with poor recording.

  16. Regional Flood Frequency Analysis using Support Vector Regression under historical and future climate

    NASA Astrophysics Data System (ADS)

    Gizaw, Mesgana Seyoum; Gan, Thian Yew

    2016-07-01

    Regional Flood Frequency Analysis (RFFA) is a statistical method widely used to estimate flood quantiles of catchments with limited streamflow data. In addition, to estimate the flood quantile of ungauged sites, there could be only a limited number of stations with complete dataset are available from hydrologically similar, surrounding catchments. Besides traditional regression based RFFA methods, recent applications of machine learning algorithms such as the artificial neural network (ANN) have shown encouraging results in regional flood quantile estimations. Another novel machine learning technique that is becoming widely applicable in the hydrologic community is the Support Vector Regression (SVR). In this study, an RFFA model based on SVR was developed to estimate regional flood quantiles for two study areas, one with 26 catchments located in southeastern British Columbia (BC) and another with 23 catchments located in southern Ontario (ON), Canada. The SVR-RFFA model for both study sites was developed from 13 sets of physiographic and climatic predictors for the historical period. The Ef (Nash Sutcliffe coefficient) and R2 of the SVR-RFFA model was about 0.7 when estimating flood quantiles of 10, 25, 50 and 100 year return periods which indicate satisfactory model performance in both study areas. In addition, the SVR-RFFA model also performed well based on other goodness-of-fit statistics such as BIAS (mean bias) and BIASr (relative BIAS). If the amount of data available for training RFFA models is limited, the SVR-RFFA model was found to perform better than an ANN based RFFA model, and with significantly lower median CV (coefficient of variation) of the estimated flood quantiles. The SVR-RFFA model was then used to project changes in flood quantiles over the two study areas under the impact of climate change using the RCP4.5 and RCP8.5 climate projections of five Coupled Model Intercomparison Project (CMIP5) GCMs (Global Climate Models) for the 2041

  17. SAMSVM: A tool for misalignment filtration of SAM-format sequences with support vector machine.

    PubMed

    Yang, Jianfeng; Ding, Xiaofan; Sun, Xing; Tsang, Shui-Ying; Xue, Hong

    2015-12-01

    Sequence alignment/map (SAM) formatted sequences [Li H, Handsaker B, Wysoker A et al., Bioinformatics 25(16):2078-2079, 2009.] have taken on a main role in bioinformatics since the development of massive parallel sequencing. However, because misalignment of sequences poses a significant problem in analysis of sequencing data that could lead to false positives in variant calling, the exclusion of misaligned reads is a necessity in analysis. In this regard, the multiple features of SAM-formatted sequences can be treated as vectors in a multi-dimension space to allow the application of a support vector machine (SVM). Applying the LIBSVM tools developed by Chang and Lin [Chang C-C, Lin C-J, ACM Trans Intell Syst Technol 2:1-27, 2011.] as a simple interface for support vector classification, the SAMSVM package has been developed in this study to enable misalignment filtration of SAM-formatted sequences. Cross-validation between two simulated datasets processed with SAMSVM yielded accuracies that ranged from 0.89 to 0.97 with F-scores ranging from 0.77 to 0.94 in 14 groups characterized by different mutation rates from 0.001 to 0.1, indicating that the model built using SAMSVM was accurate in misalignment detection. Application of SAMSVM to actual sequencing data resulted in filtration of misaligned reads and correction of variant calling.

  18. Applying Support Vector Machine in classifying satellite images for the assessment of urban sprawl

    NASA Astrophysics Data System (ADS)

    murgante, Beniamino; Nolè, Gabriele; Lasaponara, Rosa; Lanorte, Antonio; Calamita, Giuseppe

    2013-04-01

    In last decades the spreading of new buildings, road infrastructures and a scattered proliferation of houses in zones outside urban areas, produced a countryside urbanization with no rules, consuming soils and impoverishing the landscape. Such a phenomenon generated a huge environmental impact, diseconomies and a decrease in life quality. This study analyzes processes concerning land use change, paying particular attention to urban sprawl phenomenon. The application is based on the integration of Geographic Information Systems and Remote Sensing adopting open source technologies. The objective is to understand size distribution and dynamic expansion of urban areas in order to define a methodology useful to both identify and monitor the phenomenon. In order to classify "urban" pixels, over time monitoring of settlements spread, understanding trends of artificial territories, classifications of satellite images at different dates have been realized. In order to obtain these classifications, supervised classification algorithms have been adopted. More particularly, Support Vector Machine (SVM) learning algorithm has been applied to multispectral remote data. One of the more interesting features in SVM is the possibility to obtain good results also adopting few classification pixels of training areas. SVM has several interesting features, such as the capacity to obtain good results also adopting few classification pixels of training areas, a high possibility of configuration parameters and the ability to discriminate pixels with similar spectral responses. Multi-temporal ASTER satellite data at medium resolution have been adopted because are very suitable in evaluating such phenomena. The application is based on the integration of Geographic Information Systems and Remote Sensing technologies by means of open source software. Tools adopted in managing and processing data are GRASS GIS, Quantum GIS and R statistical project. The area of interest is located south of Bari

  19. Susceptibility mapping of shallow landslides using kernel-based Gaussian process, support vector machines and logistic regression

    NASA Astrophysics Data System (ADS)

    Colkesen, Ismail; Sahin, Emrehan Kutlug; Kavzoglu, Taskin

    2016-06-01

    Identification of landslide prone areas and production of accurate landslide susceptibility zonation maps have been crucial topics for hazard management studies. Since the prediction of susceptibility is one of the main processing steps in landslide susceptibility analysis, selection of a suitable prediction method plays an important role in the success of the susceptibility zonation process. Although simple statistical algorithms (e.g. logistic regression) have been widely used in the literature, the use of advanced non-parametric algorithms in landslide susceptibility zonation has recently become an active research topic. The main purpose of this study is to investigate the possible application of kernel-based Gaussian process regression (GPR) and support vector regression (SVR) for producing landslide susceptibility map of Tonya district of Trabzon, Turkey. Results of these two regression methods were compared with logistic regression (LR) method that is regarded as a benchmark method. Results showed that while kernel-based GPR and SVR methods generally produced similar results (90.46% and 90.37%, respectively), they outperformed the conventional LR method by about 18%. While confirming the superiority of the GPR method, statistical tests based on ROC statistics, success rate and prediction rate curves revealed the significant improvement in susceptibility map accuracy by applying kernel-based GPR and SVR methods.

  20. Ambulatory activity classification with dendogram-based support vector machine: Application in lower-limb active exoskeleton.

    PubMed

    Mazumder, Oishee; Kundu, Ananda Sankar; Lenka, Prasanna Kumar; Bhaumik, Subhasis

    2016-10-01

    Ambulatory activity classification is an active area of research for controlling and monitoring state initiation, termination, and transition in mobility assistive devices such as lower-limb exoskeletons. State transition of lower-limb exoskeletons reported thus far are achieved mostly through the use of manual switches or state machine-based logic. In this paper, we propose a postural activity classifier using a 'dendogram-based support vector machine' (DSVM) which can be used to control a lower-limb exoskeleton. A pressure sensor-based wearable insole and two six-axis inertial measurement units (IMU) have been used for recognising two static and seven dynamic postural activities: sit, stand, and sit-to-stand, stand-to-sit, level walk, fast walk, slope walk, stair ascent and stair descent. Most of the ambulatory activities are periodic in nature and have unique patterns of response. The proposed classification algorithm involves the recognition of activity patterns on the basis of the periodic shape of trajectories. Polynomial coefficients extracted from the hip angle trajectory and the centre-of-pressure (CoP) trajectory during an activity cycle are used as features to classify dynamic activities. The novelty of this paper lies in finding suitable instrumentation, developing post-processing techniques, and selecting shape-based features for ambulatory activity classification. The proposed activity classifier is used to identify the activity states of a lower-limb exoskeleton. The DSVM classifier algorithm achieved an overall classification accuracy of 95.2%.

  1. Estimation of Curie temperature of manganite-based materials for magnetic refrigeration application using hybrid gravitational based support vector regression

    NASA Astrophysics Data System (ADS)

    Owolabi, Taoreed O.; Akande, Kabiru O.; Olatunji, Sunday O.; Alqahtani, Abdullah; Aldhafferi, Nahier

    2016-10-01

    Magnetic refrigeration (MR) technology stands a good chance of replacing the conventional gas compression system (CGCS) of refrigeration due to its unique features such as high efficiency, low cost as well as being environmental friendly. Its operation involves the use of magnetocaloric effect (MCE) of a magnetic material caused by application of magnetic field. Manganite-based material demonstrates maximum MCE at its magnetic ordering temperature known as Curie temperature (TC). Consequently, manganite-based material with TC around room temperature is essentially desired for effective utilization of this technology. The TC of manganite-based materials can be adequately altered to a desired value through doping with appropriate foreign materials. In order to determine a manganite with TC around room temperature and to circumvent experimental challenges therein, this work proposes a model that can effectively estimates the TC of manganite-based material doped with different materials with the aid of support vector regression (SVR) hybridized with gravitational search algorithm (GSA). Implementation of GSA algorithm ensures optimum selection of SVR hyper-parameters for improved performance of the developed model using lattice distortions as the descriptors. The result of the developed model is promising and agrees excellently with the experimental results. The outstanding estimates of the proposed model suggest its potential in promoting room temperature magnetic refrigeration through quick estimation of the effect of dopants on TC so as to obtain manganite that works well around the room temperature.

  2. Multi-phase classification by a least-squares support vector machine approach in tomography images of geological samples

    NASA Astrophysics Data System (ADS)

    Khan, Faisal; Enzmann, Frieder; Kersten, Michael

    2016-03-01

    Image processing of X-ray-computed polychromatic cone-beam micro-tomography (μXCT) data of geological samples mainly involves artefact reduction and phase segmentation. For the former, the main beam-hardening (BH) artefact is removed by applying a best-fit quadratic surface algorithm to a given image data set (reconstructed slice), which minimizes the BH offsets of the attenuation data points from that surface. A Matlab code for this approach is provided in the Appendix. The final BH-corrected image is extracted from the residual data or from the difference between the surface elevation values and the original grey-scale values. For the segmentation, we propose a novel least-squares support vector machine (LS-SVM, an algorithm for pixel-based multi-phase classification) approach. A receiver operating characteristic (ROC) analysis was performed on BH-corrected and uncorrected samples to show that BH correction is in fact an important prerequisite for accurate multi-phase classification. The combination of the two approaches was thus used to classify successfully three different more or less complex multi-phase rock core samples.

  3. A Novel Empirical Mode Decomposition With Support Vector Regression for Wind Speed Forecasting.

    PubMed

    Ren, Ye; Suganthan, Ponnuthurai Nagaratnam; Srikanth, Narasimalu

    2016-08-01

    Wind energy is a clean and an abundant renewable energy source. Accurate wind speed forecasting is essential for power dispatch planning, unit commitment decision, maintenance scheduling, and regulation. However, wind is intermittent and wind speed is difficult to predict. This brief proposes a novel wind speed forecasting method by integrating empirical mode decomposition (EMD) and support vector regression (SVR) methods. The EMD is used to decompose the wind speed time series into several intrinsic mode functions (IMFs) and a residue. Subsequently, a vector combining one historical data from each IMF and the residue is generated to train the SVR. The proposed EMD-SVR model is evaluated with a wind speed data set. The proposed EMD-SVR model outperforms several recently reported methods with respect to accuracy or computational complexity.

  4. On a vector space representation in genetic algorithms for sensor scheduling in wireless sensor networks.

    PubMed

    Martins, F V C; Carrano, E G; Wanner, E F; Takahashi, R H C; Mateus, G R; Nakamura, F G

    2014-01-01

    Recent works raised the hypothesis that the assignment of a geometry to the decision variable space of a combinatorial problem could be useful both for providing meaningful descriptions of the fitness landscape and for supporting the systematic construction of evolutionary operators (the geometric operators) that make a consistent usage of the space geometric properties in the search for problem optima. This paper introduces some new geometric operators that constitute the realization of searches along the combinatorial space versions of the geometric entities descent directions and subspaces. The new geometric operators are stated in the specific context of the wireless sensor network dynamic coverage and connectivity problem (WSN-DCCP). A genetic algorithm (GA) is developed for the WSN-DCCP using the proposed operators, being compared with a formulation based on integer linear programming (ILP) which is solved with exact methods. That ILP formulation adopts a proxy objective function based on the minimization of energy consumption in the network, in order to approximate the objective of network lifetime maximization, and a greedy approach for dealing with the system's dynamics. To the authors' knowledge, the proposed GA is the first algorithm to outperform the lifetime of networks as synthesized by the ILP formulation, also running in much smaller computational times for large instances.

  5. Predicting respiratory tumor motion with multi-dimensional adaptive filters and support vector regression.

    PubMed

    Riaz, Nadeem; Shanker, Piyush; Wiersma, Rodney; Gudmundsson, Olafur; Mao, Weihua; Widrow, Bernard; Xing, Lei

    2009-10-07

    Intra-fraction tumor tracking methods can improve radiation delivery during radiotherapy sessions. Image acquisition for tumor tracking and subsequent adjustment of the treatment beam with gating or beam tracking introduces time latency and necessitates predicting the future position of the tumor. This study evaluates the use of multi-dimensional linear adaptive filters and support vector regression to predict the motion of lung tumors tracked at 30 Hz. We expand on the prior work of other groups who have looked at adaptive filters by using a general framework of a multiple-input single-output (MISO) adaptive system that uses multiple correlated signals to predict the motion of a tumor. We compare the performance of these two novel methods to conventional methods like linear regression and single-input, single-output adaptive filters. At 400 ms latency the average root-mean-square-errors (RMSEs) for the 14 treatment sessions studied using no prediction, linear regression, single-output adaptive filter, MISO and support vector regression are 2.58, 1.60, 1.58, 1.71 and 1.26 mm, respectively. At 1 s, the RMSEs are 4.40, 2.61, 3.34, 2.66 and 1.93 mm, respectively. We find that support vector regression most accurately predicts the future tumor position of the methods studied and can provide a RMSE of less than 2 mm at 1 s latency. Also, a multi-dimensional adaptive filter framework provides improved performance over single-dimension adaptive filters. Work is underway to combine these two frameworks to improve performance.

  6. Support Vector Hazards Machine: A Counting Process Framework for Learning Risk Scores for Censored Outcomes.

    PubMed

    Wang, Yuanjia; Chen, Tianle; Zeng, Donglin

    2016-01-01

    Learning risk scores to predict dichotomous or continuous outcomes using machine learning approaches has been studied extensively. However, how to learn risk scores for time-to-event outcomes subject to right censoring has received little attention until recently. Existing approaches rely on inverse probability weighting or rank-based regression, which may be inefficient. In this paper, we develop a new support vector hazards machine (SVHM) approach to predict censored outcomes. Our method is based on predicting the counting process associated with the time-to-event outcomes among subjects at risk via a series of support vector machines. Introducing counting processes to represent time-to-event data leads to a connection between support vector machines in supervised learning and hazards regression in standard survival analysis. To account for different at risk populations at observed event times, a time-varying offset is used in estimating risk scores. The resulting optimization is a convex quadratic programming problem that can easily incorporate non-linearity using kernel trick. We demonstrate an interesting link from the profiled empirical risk function of SVHM to the Cox partial likelihood. We then formally show that SVHM is optimal in discriminating covariate-specific hazard function from population average hazard function, and establish the consistency and learning rate of the predicted risk using the estimated risk scores. Simulation studies show improved prediction accuracy of the event times using SVHM compared to existing machine learning methods and standard conventional approaches. Finally, we analyze two real world biomedical study data where we use clinical markers and neuroimaging biomarkers to predict age-at-onset of a disease, and demonstrate superiority of SVHM in distinguishing high risk versus low risk subjects.

  7. A Collaborative Framework for Distributed Privacy-Preserving Support Vector Machine Learning

    PubMed Central

    Que, Jialan; Jiang, Xiaoqian; Ohno-Machado, Lucila

    2012-01-01

    A Support Vector Machine (SVM) is a popular tool for decision support. The traditional way to build an SVM model is to estimate parameters based on a centralized repository of data. However, in the field of biomedicine, patient data are sometimes stored in local repositories or institutions where they were collected, and may not be easily shared due to privacy concerns. This creates a substantial barrier for researchers to effectively learn from the distributed data using machine learning tools like SVMs. To overcome this difficulty and promote efficient information exchange without sharing sensitive raw data, we developed a Distributed Privacy Preserving Support Vector Machine (DPP-SVM). The DPP-SVM enables privacy-preserving collaborative learning, in which a trusted server integrates “privacy-insensitive” intermediary results. The globally learned model is guaranteed to be exactly the same as learned from combined data. We also provide a free web-service (http://privacy.ucsd.edu:8080/ppsvm/) for multiple participants to collaborate and complete the SVM-learning task in an efficient and privacy-preserving manner. PMID:23304414

  8. A collaborative framework for Distributed Privacy-Preserving Support Vector Machine learning.

    PubMed

    Que, Jialan; Jiang, Xiaoqian; Ohno-Machado, Lucila

    2012-01-01

    A Support Vector Machine (SVM) is a popular tool for decision support. The traditional way to build an SVM model is to estimate parameters based on a centralized repository of data. However, in the field of biomedicine, patient data are sometimes stored in local repositories or institutions where they were collected, and may not be easily shared due to privacy concerns. This creates a substantial barrier for researchers to effectively learn from the distributed data using machine learning tools like SVMs. To overcome this difficulty and promote efficient information exchange without sharing sensitive raw data, we developed a Distributed Privacy Preserving Support Vector Machine (DPP-SVM). The DPP-SVM enables privacy-preserving collaborative learning, in which a trusted server integrates "privacy-insensitive" intermediary results. The globally learned model is guaranteed to be exactly the same as learned from combined data. We also provide a free web-service (http://privacy.ucsd.edu:8080/ppsvm/) for multiple participants to collaborate and complete the SVM-learning task in an efficient and privacy-preserving manner.

  9. Support Vector Machines for Improved Peptide Identification from Tandem Mass Spectrometry Database Search

    SciTech Connect

    Webb-Robertson, Bobbie-Jo M.

    2009-05-06

    Accurate identification of peptides is a current challenge in mass spectrometry (MS) based proteomics. The standard approach uses a search routine to compare tandem mass spectra to a database of peptides associated with the target organism. These database search routines yield multiple metrics associated with the quality of the mapping of the experimental spectrum to the theoretical spectrum of a peptide. The structure of these results make separating correct from false identifications difficult and has created a false identification problem. Statistical confidence scores are an approach to battle this false positive problem that has led to significant improvements in peptide identification. We have shown that machine learning, specifically support vector machine (SVM), is an effective approach to separating true peptide identifications from false ones. The SVM-based peptide statistical scoring method transforms a peptide into a vector representation based on database search metrics to train and validate the SVM. In practice, following the database search routine, a peptides is denoted in its vector representation and the SVM generates a single statistical score that is then used to classify presence or absence in the sample

  10. Immobilization of 293 cells using porous support particles for adenovirus vector production

    PubMed Central

    Morishita, Naoya; Katsuda, Tomohisa; Kubo, Shuji; Gotoh, Akinobu

    2010-01-01

    Adenovirus vector production by anchorage-independent 293 cells immobilized using porous biomass support particles (BSPs) was investigated in static and shake-flask cultures for efficient large-scale production of adenovirus vectors for gene therapy applications. The density of cells immobilized within BSPs was evaluated by measuring their WST-8 (2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt) reduction activity. In shake-flask culture, 293-F cells, which were adapted to serum-free suspension culture, were not successfully retained within reticulated polyvinyl formal (PVF) resin BSPs (2 × 2 × 2 mm cubes) with matrices of relatively small pores (pore diameter 60 μm). When the BSPs were coated with a cationic polymer polyethyleneimine, a high cell density of more than 107 cells cm−3-BSP was achieved in both static and shake-flask cultures with regular replacement of the culture medium. After infection with an adenovirus vector carrying the enhanced green fluorescent protein gene (Ad EGFP), the specific Ad EGFP productivity of the immobilized cells was comparable to the maximal productivity of non-immobilized 293-F cells by maintaining favorable conditions in the culture environment. PMID:20140496

  11. An Auto-flag Method of Radio Visibility Data Based on Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Hui-mei, Dai; Ying, Mei; Wei, Wang; Hui, Deng; Feng, Wang

    2017-01-01

    The Mingantu Ultrawide Spectral Radioheliograph (MUSER) has entered a test observation stage. After the construction of the data acquisition and storage system, it is urgent to automatically flag and eliminate the abnormal visibility data so as to improve the imaging quality. In this paper, according to the observational records, we create a credible visibility set, and further obtain the corresponding flag model of visibility data by using the support vector machine (SVM) technique. The results show that the SVM is a robust approach to flag the MUSER visibility data, and can attain an accuracy of about 86%. Meanwhile, this method will not be affected by solar activities, such as flare eruptions.

  12. Material grain size characterization method based on energy attenuation coefficient spectrum and support vector regression.

    PubMed

    Li, Min; Zhou, Tong; Song, Yanan

    2016-07-01

    A grain size characterization method based on energy attenuation coefficient spectrum and support vector regression (SVR) is proposed. First, the spectra of the first and second back-wall echoes are cut into several frequency bands to calculate the energy attenuation coefficient spectrum. Second, the frequency band that is sensitive to grain size variation is determined. Finally, a statistical model between the energy attenuation coefficient in the sensitive frequency band and average grain size is established through SVR. Experimental verification is conducted on austenitic stainless steel. The average relative error of the predicted grain size is 5.65%, which is better than that of conventional methods.

  13. Eyebrows Identity Authentication Based on Wavelet Transform and Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Jun-bin, CAO; Haitao, Yang; Lili, Ding

    In order to study the novel biometric of eyebrow,,this paper presents an Eyebrows identity authentication based on wavelet transform and support vector machines. The features of the eyebrows image are extracted by wavelet transform, and then classifies them based on SVM. Verification results of the experiment on an eyebrow database taken from 100 of self-built personal demonstrate the effectiveness of the system. The system has a lower FAR 0.22%and FRR 28% Therefore, eyebrow recongnition may possibly apply to personal identification.

  14. Classification of acoustic emission sources produced by carbon/epoxy composite based on support vector machine

    NASA Astrophysics Data System (ADS)

    Ding, Peng; Li, Qin; Huang, Xunlei

    2015-07-01

    Carbon/epoxy specimens were made and stretched to fracture. In the process, acoustic emission (AE) signals were collected and their parameters were set as the input parameters of the neural network. Results show that using support vector machine (SVM) network can recognize the difference of AE sources more accurately than using the BP neural network. In addition, the accuracy of the SVM increases when the number of the training set increases. It is proved that using AE signal parameters and SVM network can recognize the AE sources’ pattern well.

  15. A hierarchical classifier using new support vector machines for automatic target recognition.

    PubMed

    Casasent, David; Wang, Yu-Chiang

    2005-01-01

    A binary hierarchical classifier is proposed for automatic target recognition. We also require rejection of non-object (non-target) inputs, which are not seen during training or validation, thus producing a very difficult problem. The SVRDM (support vector representation and discrimination machine) classifier is used at each node in the hierarchy, since it offers good generalization and rejection ability. Using this hierarchical SVRDM classifier with magnitude Fourier transform (|FT|) features, which provide shift-invariance, initial test results on infra-red (IR) data are excellent.

  16. Minimum classification error-based weighted support vector machine kernels for speaker verification.

    PubMed

    Suh, Youngjoo; Kim, Hoirin

    2013-04-01

    Support vector machines (SVMs) have been proved to be an effective approach to speaker verification. An appropriate selection of the kernel function is a key issue in SVM-based classification. In this letter, a new SVM-based speaker verification method utilizing weighted kernels in the Gaussian mixture model supervector space is proposed. The weighted kernels are derived by using the discriminative training approach, which minimizes speaker verification errors. Experiments performed on the NIST 2008 speaker recognition evaluation task showed that the proposed approach provides substantially improved performance over the baseline kernel-based method.

  17. Climate Change, Public Health, and Decision Support: The New Threat of Vector-borne Disease

    NASA Astrophysics Data System (ADS)

    Grant, F.; Kumar, S.

    2011-12-01

    Climate change and vector-borne diseases constitute a massive threat to human development. It will not be enough to cut emissions of greenhouse gases-the tide of the future has already been established. Climate change and vector-borne diseases are already undermining the world's efforts to reduce extreme poverty. It is in the best interests of the world leaders to think in terms of concerted global actions, but adaptation and mitigation must be accomplished within the context of local community conditions, resources, and needs. Failure to act will continue to consign developed countries to completely avoidable health risks and significant expense. Failure to act will also reduce poorest of the world's population-some 2.6 billion people-to a future of diminished opportunity. Northrop Grumman has taken significant steps forward to develop the tools needed to assess climate change impacts on public health, collect relevant data for decision making, model projections at regional and local levels; and, deliver information and knowledge to local and regional stakeholders. Supporting these tools is an advanced enterprise architecture consisting of high performance computing, GIS visualization, and standards-based architecture. To address current deficiencies in local planning and decision making with respect to regional climate change and its effect on human health, our research is focused on performing a dynamical downscaling with the Weather Research and Forecasting (WRF) model to develop decision aids that translate the regional climate data into actionable information for users. For the present climate WRF was forced with the Max Planck Institute European Center/Hamburg Model version 5 (ECHAM5) General Circulation Model 20th century simulation. For the 21th century climate, we used an ECHAM5 simulation with the Special Report on Emissions (SRES) A1B emissions scenario. WRF was run in nested mode at spatial resolution of 108 km, 36 km and 12 km and 28 vertical levels

  18. Models of logistic regression analysis, support vector machine, and back-propagation neural network based on serum tumor markers in colorectal cancer diagnosis.

    PubMed

    Zhang, B; Liang, X L; Gao, H Y; Ye, L S; Wang, Y G

    2016-05-13

    We evaluated the application of three machine learning algorithms, including logistic regression, support vector machine and back-propagation neural network, for diagnosing congenital heart disease and colorectal cancer. By inspecting related serum tumor marker levels in colorectal cancer patients and healthy subjects, early diagnosis models for colorectal cancer were built using three machine learning algorithms to assess their corresponding diagnostic values. Except for serum alpha-fetoprotein, the levels of 11 other serum markers of patients in the colorectal cancer group were higher than those in the benign colorectal cancer group (P < 0.05). The results of logistic regression analysis indicted that individual detection of serum carcinoembryonic antigens, CA199, CA242, CA125, and CA153 and their combined detection was effective for diagnosing colorectal cancer. Combined detection had a better diagnostic effect with a sensitivity of 94.2% and specificity of 97.7%; combining serum carcinoembryonic antigens, CA199, CA242, CA125, and CA153, with the support vector machine diagnosis model and back-propagation, a neural network diagnosis model was built with diagnostic accuracies of 82 and 75%, sensitivities of 85 and 80%, and specificities of 80 and 70%, respectively. Colorectal cancer diagnosis models based on the three machine learning algorithms showed high diagnostic value and can help obtain evidence for the early diagnosis of colorectal cancer.

  19. Prediction of wood property in Chinese Fir based on visible/near-infrared spectroscopy and least square-support vector machine

    NASA Astrophysics Data System (ADS)

    Zhu, Xiangrong; Shan, Yang; Li, Gaoyang; Huang, Anmin; Zhang, Zhuoyong

    2009-10-01

    A method for the quantification of density of Chinese Fir samples based on visible/near-infrared (vis-NIR) spectrometry and least squares-support vector machine (LS-SVM) was proposed. Sample set partitioning based on joint x- y distances (SPXY) algorithm was used for dividing calibration and prediction samples, it is of value for prediction of property involving complex matrices. A stepwise procedure is employed to select samples according to their differences in both x (instrumental responses) and y (predicted parameter) spaces. For comparison, the models were also constructed by Kennard-Stone method, as well as by using the duplex and random sampling methods for subset partitioning. The results revealed that the SPXY algorithm may be an advantageous alternative to the other three strategies. To validate the reliability of LS-SVM, comparisons were made among other modeling methods such as support vector machine (SVM) and partial least squares (PLS) regression. Satisfactory models were built using LS-SVM, with lower prediction errors and superior performance in relation to SVM and PLS. These results showed possibility of building robust models to quantify the density of Chinese Fir using near-infrared spectroscopy and LS-SVM combined SPXY algorithm as a nonlinear multivariate calibration procedure.

  20. Using remote sensing in support of environmental management: A framework for selecting products, algorithms and methods.

    PubMed

    de Klerk, Helen M; Gilbertson, Jason; Lück-Vogel, Melanie; Kemp, Jaco; Munch, Zahn

    2016-11-01

    Traditionally, to map environmental features using remote sensing, practitioners will use training data to develop models on various satellite data sets using a number of classification approaches and use test data to select a single 'best performer' from which the final map is made. We use a combination of an omission/commission plot to evaluate various results and compile a probability map based on consistently strong performing models across a range of standard accuracy measures. We suggest that this easy-to-use approach can be applied in any study using remote sensing to map natural features for management action. We demonstrate this approach using optical remote sensing products of different spatial and spectral resolution to map the endemic and threatened flora of quartz patches in the Knersvlakte, South Africa. Quartz patches can be mapped using either SPOT 5 (used due to its relatively fine spatial resolution) or Landsat8 imagery (used because it is freely accessible and has higher spectral resolution). Of the variety of classification algorithms available, we tested maximum likelihood and support vector machine, and applied these to raw spectral data, the first three PCA summaries of the data, and the standard normalised difference vegetation index. We found that there is no 'one size fits all' solution to the choice of a 'best fit' model (i.e. combination of classification algorithm or data sets), which is in agreement with the literature that classifier performance will vary with data properties. We feel this lends support to our suggestion that rather than the identification of a 'single best' model and a map based on this result alone, a probability map based on the range of consistently top performing models provides a rigorous solution to environmental mapping.

  1. A multi-label learning based kernel automatic recommendation method for support vector machine.

    PubMed

    Zhang, Xueying; Song, Qinbao

    2015-01-01

    Choosing an appropriate kernel is very important and critical when classifying a new problem with Support Vector Machine. So far, more attention has been paid on constructing new kernels and choosing suitable parameter values for a specific kernel function, but less on kernel selection. Furthermore, most of current kernel selection methods focus on seeking a best kernel with the highest classification accuracy via cross-validation, they are time consuming and ignore the differences among the number of support vectors and the CPU time of SVM with different kernels. Considering the tradeoff between classification success ratio and CPU time, there may be multiple kernel functions performing equally well on the same classification problem. Aiming to automatically select those appropriate kernel functions for a given data set, we propose a multi-label learning based kernel recommendation method built on the data characteristics. For each data set, the meta-knowledge data base is first created by extracting the feature vector of data characteristics and identifying the corresponding applicable kernel set. Then the kernel recommendation model is constructed on the generated meta-knowledge data base with the multi-label classification method. Finally, the appropriate kernel functions are recommended to a new data set by the recommendation model according to the characteristics of the new data set. Extensive experiments over 132 UCI benchmark data sets, with five different types of data set characteristics, eleven typical kernels (Linear, Polynomial, Radial Basis Function, Sigmoidal function, Laplace, Multiquadric, Rational Quadratic, Spherical, Spline, Wave and Circular), and five multi-label classification methods demonstrate that, compared with the existing kernel selection methods and the most widely used RBF kernel function, SVM with the kernel function recommended by our proposed method achieved the highest classification performance.

  2. A Multi-Label Learning Based Kernel Automatic Recommendation Method for Support Vector Machine

    PubMed Central

    Zhang, Xueying; Song, Qinbao

    2015-01-01

    Choosing an appropriate kernel is very important and critical when classifying a new problem with Support Vector Machine. So far, more attention has been paid on constructing new kernels and choosing suitable parameter values for a specific kernel function, but less on kernel selection. Furthermore, most of current kernel selection methods focus on seeking a best kernel with the highest classification accuracy via cross-validation, they are time consuming and ignore the differences among the number of support vectors and the CPU time of SVM with different kernels. Considering the tradeoff between classification success ratio and CPU time, there may be multiple kernel functions performing equally well on the same classification problem. Aiming to automatically select those appropriate kernel functions for a given data set, we propose a multi-label learning based kernel recommendation method built on the data characteristics. For each data set, the meta-knowledge data base is first created by extracting the feature vector of data characteristics and identifying the corresponding applicable kernel set. Then the kernel recommendation model is constructed on the generated meta-knowledge data base with the multi-label classification method. Finally, the appropriate kernel functions are recommended to a new data set by the recommendation model according to the characteristics of the new data set. Extensive experiments over 132 UCI benchmark data sets, with five different types of data set characteristics, eleven typical kernels (Linear, Polynomial, Radial Basis Function, Sigmoidal function, Laplace, Multiquadric, Rational Quadratic, Spherical, Spline, Wave and Circular), and five multi-label classification methods demonstrate that, compared with the existing kernel selection methods and the most widely used RBF kernel function, SVM with the kernel function recommended by our proposed method achieved the highest classification performance. PMID:25893896

  3. Support vector machine based classification of fast Fourier transform spectroscopy of proteins

    NASA Astrophysics Data System (ADS)

    Lazarevic, Aleksandar; Pokrajac, Dragoljub; Marcano, Aristides; Melikechi, Noureddine

    2009-02-01

    Fast Fourier transform spectroscopy has proved to be a powerful method for study of the secondary structure of proteins since peak positions and their relative amplitude are affected by the number of hydrogen bridges that sustain this secondary structure. However, to our best knowledge, the method has not been used yet for identification of proteins within a complex matrix like a blood sample. The principal reason is the apparent similarity of protein infrared spectra with actual differences usually masked by the solvent contribution and other interactions. In this paper, we propose a novel machine learning based method that uses protein spectra for classification and identification of such proteins within a given sample. The proposed method uses principal component analysis (PCA) to identify most important linear combinations of original spectral components and then employs support vector machine (SVM) classification model applied on such identified combinations to categorize proteins into one of given groups. Our experiments have been performed on the set of four different proteins, namely: Bovine Serum Albumin, Leptin, Insulin-like Growth Factor 2 and Osteopontin. Our proposed method of applying principal component analysis along with support vector machines exhibits excellent classification accuracy when identifying proteins using their infrared spectra.

  4. Performance evaluation of random forest and support vector regressions in natural hazard change detection

    NASA Astrophysics Data System (ADS)

    Eisavi, Vahid; Homayouni, Saeid

    2016-10-01

    Information on land use and land cover changes is considered as a foremost requirement for monitoring environmental change. Developing change detection methodology in the remote sensing community is an active research topic. However, to the best of our knowledge, no research has been conducted so far on the application of random forest regression (RFR) and support vector regression (SVR) for natural hazard change detection from high-resolution optical remote sensing observations. Hence, the objective of this study is to examine the use of RFR and SVR to discriminate between changed and unchanged areas after a tsunami. For this study, RFR and SVR were applied to two different pilot coastlines in Indonesia and Japan. Two different remotely sensed data sets acquired by Quickbird and Ikonos sensors were used for efficient evaluation of the proposed methodology. The results demonstrated better performance of SVM compared to random forest (RF) with an overall accuracy higher by 3% to 4% and kappa coefficient by 0.05 to 0.07. Using McNemar's test, statistically significant differences (Z≥1.96), at the 5% significance level, between the confusion matrices of the RF classifier and the support vector classifier were observed in both study areas. The high accuracy of change detection obtained in this study confirms that these methods have the potential to be used for detecting changes due to natural hazards.

  5. PREDICTION OF SOLAR FLARE SIZE AND TIME-TO-FLARE USING SUPPORT VECTOR MACHINE REGRESSION

    SciTech Connect

    Boucheron, Laura E.; Al-Ghraibah, Amani; McAteer, R. T. James

    2015-10-10

    We study the prediction of solar flare size and time-to-flare using 38 features describing magnetic complexity of the photospheric magnetic field. This work uses support vector regression to formulate a mapping from the 38-dimensional feature space to a continuous-valued label vector representing flare size or time-to-flare. When we consider flaring regions only, we find an average error in estimating flare size of approximately half a geostationary operational environmental satellite (GOES) class. When we additionally consider non-flaring regions, we find an increased average error of approximately three-fourths a GOES class. We also consider thresholding the regressed flare size for the experiment containing both flaring and non-flaring regions and find a true positive rate of 0.69 and a true negative rate of 0.86 for flare prediction. The results for both of these size regression experiments are consistent across a wide range of predictive time windows, indicating that the magnetic complexity features may be persistent in appearance long before flare activity. This is supported by our larger error rates of some 40 hr in the time-to-flare regression problem. The 38 magnetic complexity features considered here appear to have discriminative potential for flare size, but their persistence in time makes them less discriminative for the time-to-flare problem.

  6. Application of support vector machines for copper potential mapping in Kerman region, Iran

    NASA Astrophysics Data System (ADS)

    Shabankareh, Mahdi; Hezarkhani, Ardeshir

    2017-04-01

    The first step in systematic exploration studies is mineral potential mapping, which involves classification of the study area to favorable and unfavorable parts. Support vector machines (SVM) are designed for supervised classification based on statistical learning theory. This method named support vector classification (SVC). This paper describes SVC model, which combine exploration data in the regional-scale for copper potential mapping in Kerman copper bearing belt in south of Iran. Data layers or evidential maps were in six datasets namely lithology, tectonic, airborne geophysics, ferric alteration, hydroxide alteration and geochemistry. The SVC modeling result selected 2220 pixels as favorable zones, approximately 25 percent of the study area. Besides, 66 out of 86 copper indices, approximately 78.6% of all, were located in favorable zones. Other main goal of this study was to determine how each input affects favorable output. For this purpose, the histogram of each normalized input data to its favorable output was drawn. The histograms of each input dataset for favorable output showed that each information layer had a certain pattern. These patterns of SVC results could be considered as regional copper exploration characteristics.

  7. Support-vector-machines-based multidimensional signal classification for fetal activity characterization

    NASA Astrophysics Data System (ADS)

    Ribes, S.; Voicu, I.; Girault, J. M.; Fournier, M.; Perrotin, F.; Tranquart, F.; Kouamé, D.

    2011-03-01

    Electronic fetal monitoring may be required during the whole pregnancy to closely monitor specific fetal and maternal disorders. Currently used methods suffer from many limitations and are not sufficient to evaluate fetal asphyxia. Fetal activity parameters such as movements, heart rate and associated parameters are essential indicators of the fetus well being, and no current device gives a simultaneous and sufficient estimation of all these parameters to evaluate the fetus well-being. We built for this purpose, a multi-transducer-multi-gate Doppler system and developed dedicated signal processing techniques for fetal activity parameter extraction in order to investigate fetus's asphyxia or well-being through fetal activity parameters. To reach this goal, this paper shows preliminary feasibility of separating normal and compromised fetuses using our system. To do so, data set consisting of two groups of fetal signals (normal and compromised) has been established and provided by physicians. From estimated parameters an instantaneous Manning-like score, referred to as ultrasonic score was introduced and was used together with movements, heart rate and associated parameters in a classification process using Support Vector Machines (SVM) method. The influence of the fetal activity parameters and the performance of the SVM were evaluated using the computation of sensibility, specificity, percentage of support vectors and total classification accuracy. We showed our ability to separate the data into two sets : normal fetuses and compromised fetuses and obtained an excellent matching with the clinical classification performed by physician.

  8. Anticipatory Monitoring and Control of Complex Systems using a Fuzzy based Fusion of Support Vector Regressors

    SciTech Connect

    Miltiadis Alamaniotis; Vivek Agarwal

    2014-10-01

    This paper places itself in the realm of anticipatory systems and envisions monitoring and control methods being capable of making predictions over system critical parameters. Anticipatory systems allow intelligent control of complex systems by predicting their future state. In the current work, an intelligent model aimed at implementing anticipatory monitoring and control in energy industry is presented and tested. More particularly, a set of support vector regressors (SVRs) are trained using both historical and observed data. The trained SVRs are used to predict the future value of the system based on current operational system parameter. The predicted values are then inputted to a fuzzy logic based module where the values are fused to obtain a single value, i.e., final system output prediction. The methodology is tested on real turbine degradation datasets. The outcome of the approach presented in this paper highlights the superiority over single support vector regressors. In addition, it is shown that appropriate selection of fuzzy sets and fuzzy rules plays an important role in improving system performance.

  9. Binary tree of posterior probability support vector machines for hyperspectral image classification

    NASA Astrophysics Data System (ADS)

    Wang, Dongli; Zhou, Yan; Zheng, Jianguo

    2011-01-01

    The problem of hyperspectral remote sensing images classification is revisited by posterior probability support vector machines (PPSVMs). To address the multiclass classification problem, PPSVMs are extended using binary tree structure and boosting with the Fisher ratio as class separability measure. The class pair with larger Fisher ratio separability measure is separated at upper nodes of the binary tree to optimize the structure of the tree and improve the classification accuracy. Two approaches are proposed to select the class pair and construct the binary tree. One is the so-called some-against-rest binary tree of PPSVMs (SBT), in which some classes are separated from the remaining classes at each node considering the Fisher ratio separability measure. For the other approach, named one-against-rest binary tree of PPSVMs (OBT), only one class is separated from the remaining classes at each node. Both approaches need only to train n - 1 (n is the number of classes) binary PPSVM classifiers, while the average convergence performance of SBT and OBT are O(log2n) and O[(n! - 1)/n], respectively. Experimental results show that both approaches obtain classification accuracy if not higher, at least comparable to other multiclass approaches, while using significantly fewer support vectors and reduced testing time.

  10. Prediction of water quality index in constructed wetlands using support vector machine.

    PubMed

    Mohammadpour, Reza; Shaharuddin, Syafiq; Chang, Chun Kiat; Zakaria, Nor Azazi; Ab Ghani, Aminuddin; Chan, Ngai Weng

    2015-04-01

    Poor water quality is a serious problem in the world which threatens human health, ecosystems, and plant/animal life. Prediction of surface water quality is a main concern in water resource and environmental systems. In this research, the support vector machine and two methods of artificial neural networks (ANNs), namely feed forward back propagation (FFBP) and radial basis function (RBF), were used to predict the water quality index (WQI) in a free constructed wetland. Seventeen points of the wetland were monitored twice a month over a period of 14 months, and an extensive dataset was collected for 11 water quality variables. A detailed comparison of the overall performance showed that prediction of the support vector machine (SVM) model with coefficient of correlation (R(2)) = 0.9984 and mean absolute error (MAE) = 0.0052 was either better or comparable with neural networks. This research highlights that the SVM and FFBP can be successfully employed for the prediction of water quality in a free surface constructed wetland environment. These methods simplify the calculation of the WQI and reduce substantial efforts and time by optimizing the computations.

  11. Detecting N6-methyladenosine sites from RNA transcriptomes using ensemble Support Vector Machines

    PubMed Central

    Chen, Wei; Xing, Pengwei; Zou, Quan

    2017-01-01

    As one of the most abundant RNA post-transcriptional modifications, N6-methyladenosine (m6A) involves in a broad spectrum of biological and physiological processes ranging from mRNA splicing and stability to cell differentiation and reprogramming. However, experimental identification of m6A sites is expensive and laborious. Therefore, it is urgent to develop computational methods for reliable prediction of m6A sites from primary RNA sequences. In the current study, a new method called RAM-ESVM was developed for detecting m6A sites from Saccharomyces cerevisiae transcriptome, which employed ensemble support vector machine classifiers and novel sequence features. The jackknife test results show that RAM-ESVM outperforms single support vector machine classifiers and other existing methods, indicating that it would be a useful computational tool for detecting m6A sites in S. cerevisiae. Furthermore, a web server named RAM-ESVM was constructed and could be freely accessible at http://server.malab.cn/RAM-ESVM/. PMID:28079126

  12. Using support vector machines to improve elemental ion identification in macromolecular crystal structures

    SciTech Connect

    Morshed, Nader; Echols, Nathaniel; Adams, Paul D.

    2015-05-01

    A method to automatically identify possible elemental ions in X-ray crystal structures has been extended to use support vector machine (SVM) classifiers trained on selected structures in the PDB, with significantly improved sensitivity over manually encoded heuristics. In the process of macromolecular model building, crystallographers must examine electron density for isolated atoms and differentiate sites containing structured solvent molecules from those containing elemental ions. This task requires specific knowledge of metal-binding chemistry and scattering properties and is prone to error. A method has previously been described to identify ions based on manually chosen criteria for a number of elements. Here, the use of support vector machines (SVMs) to automatically classify isolated atoms as either solvent or one of various ions is described. Two data sets of protein crystal structures, one containing manually curated structures deposited with anomalous diffraction data and another with automatically filtered, high-resolution structures, were constructed. On the manually curated data set, an SVM classifier was able to distinguish calcium from manganese, zinc, iron and nickel, as well as all five of these ions from water molecules, with a high degree of accuracy. Additionally, SVMs trained on the automatically curated set of high-resolution structures were able to successfully classify most common elemental ions in an independent validation test set. This method is readily extensible to other elemental ions and can also be used in conjunction with previous methods based on a priori expectations of the chemical environment and X-ray scattering.

  13. Identification of Peptide Inhibitors of Enveloped Viruses Using Support Vector Machine

    PubMed Central

    Xu, Yongtao; Yu, Shui; Zou, Jian-Wei; Hu, Guixiang; Rahman, Noorsaadah A. B. D.; Othman, Rozana Binti; Tao, Xia; Huang, Meilan

    2015-01-01

    The peptides derived from envelope proteins have been shown to inhibit the protein-protein interactions in the virus membrane fusion process and thus have a great potential to be developed into effective antiviral therapies. There are three types of envelope proteins each exhibiting distinct structure folds. Although the exact fusion mechanism remains elusive, it was suggested that the three classes of viral fusion proteins share a similar mechanism of membrane fusion. The common mechanism of action makes it possible to correlate the properties of self-derived peptide inhibitors with their activities. Here we developed a support vector machine model using sequence-based statistical scores of self-derived peptide inhibitors as input features to correlate with their activities. The model displayed 92% prediction accuracy with the Matthew’s correlation coefficient of 0.84, obviously superior to those using physicochemical properties and amino acid decomposition as input. The predictive support vector machine model for self- derived peptides of envelope proteins would be useful in development of antiviral peptide inhibitors targeting the virus fusion process. PMID:26636321

  14. Multiple support vector machines for land cover change detection: An application for mapping urban extensions

    NASA Astrophysics Data System (ADS)

    Nemmour, Hassiba; Chibani, Youcef

    The reliability of support vector machines for classifying hyper-spectral images of remote sensing has been proven in various studies. In this paper, we investigate their applicability for land cover change detection. First, SVM-based change detection is presented and performed for mapping urban growth in the Algerian capital. Different performance indicators, as well as a comparison with artificial neural networks, are used to support our experimental analysis. In a second step, a combination framework is proposed to improve change detection accuracy. Two combination rules, namely, Fuzzy Integral and Attractor Dynamics, are implemented and evaluated with respect to individual SVMs. Recognition rates achieved by individual SVMs, compared to neural networks, confirm their efficiency for land cover change detection. Furthermore, the relevance of SVM combination is highlighted.

  15. Effect of outlier removal on gene marker selection using support vector machines.

    PubMed

    Moffitt, Richard; Phan, John; Hemby, Scott; Wang, May

    2005-01-01

    Biological markers are useful tools for the diagnosis and prognosis of disease. Many different methods are currently used to extract markers from multiple data sources, including gene expression microarrays. This paper investigates the effect of outlier removal on the performance of one such biomarker selection method, Support Vector Machines (SVM). A simple method of outlier removal is employed as a preprocessing step before the data is used for SVM analysis. Both linear and radial basis kernels are used as well as four different normalization techniques. Results show that outlier removal increases the number of highly predictive genes as well as the number of poorly predicting genes. This result thus supports the use of outlier removal prior to biological marker identification via SVM analysis.

  16. Support-vector-machine tree-based domain knowledge learning toward automated sports video classification

    NASA Astrophysics Data System (ADS)

    Xiao, Guoqiang; Jiang, Yang; Song, Gang; Jiang, Jianmin

    2010-12-01

    We propose a support-vector-machine (SVM) tree to hierarchically learn from domain knowledge represented by low-level features toward automatic classification of sports videos. The proposed SVM tree adopts a binary tree structure to exploit the nature of SVM's binary classification, where each internal node is a single SVM learning unit, and each external node represents the classified output type. Such a SVM tree presents a number of advantages, which include: 1. low computing cost; 2. integrated learning and classification while preserving individual SVM's learning strength; and 3. flexibility in both structure and learning modules, where different numbers of nodes and features can be added to address specific learning requirements, and various learning models can be added as individual nodes, such as neural networks, AdaBoost, hidden Markov models, dynamic Bayesian networks, etc. Experiments support that the proposed SVM tree achieves good performances in sports video classifications.

  17. Independent Component Analysis-Support Vector Machine-Based Computer-Aided Diagnosis System for Alzheimer's with Visual Support.

    PubMed

    Khedher, Laila; Illán, Ignacio A; Górriz, Juan M; Ramírez, Javier; Brahim, Abdelbasset; Meyer-Baese, Anke

    2017-05-01

    Computer-aided diagnosis (CAD) systems constitute a powerful tool for early diagnosis of Alzheimer's disease (AD), but limitations on interpretability and performance exist. In this work, a fully automatic CAD system based on supervised learning methods is proposed to be applied on segmented brain magnetic resonance imaging (MRI) from Alzheimer's disease neuroimaging initiative (ADNI) participants for automatic classification. The proposed CAD system possesses two relevant characteristics: optimal performance and visual support for decision making. The CAD is built in two stages: a first feature extraction based on independent component analysis (ICA) on class mean images and, secondly, a support vector machine (SVM) training and classification. The obtained features for classification offer a full graphical representation of the images, giving an understandable logic in the CAD output, that can increase confidence in the CAD support. The proposed method yields classification results up to 89% of accuracy (with 92% of sensitivity and 86% of specificity) for normal controls (NC) and AD patients, 79% of accuracy (with 82% of sensitivity and 76% of specificity) for NC and mild cognitive impairment (MCI), and 85% of accuracy (with 85% of sensitivity and 86% of specificity) for MCI and AD patients.

  18. Selecting Relevant Descriptors for Classification by Bayesian Estimates: A Comparison with Decision Trees and Support Vector Machines Approaches for Disparate Data Sets.

    PubMed

    Carbon-Mangels, Miriam; Hutter, Michael C

    2011-10-01

    Classification algorithms suffer from the curse of dimensionality, which leads to overfitting, particularly if the problem is over-determined. Therefore it is of particular interest to identify the most relevant descriptors to reduce the complexity. We applied Bayesian estimates to model the probability distribution of descriptors values used for binary classification using n-fold cross-validation. As a measure for the discriminative power of the classifiers, the symmetric form of the Kullback-Leibler divergence of their probability distributions was computed. We found that the most relevant descriptors possess a Gaussian-like distribution of their values, show the largest divergences, and therefore appear most often in the cross-validation scenario. The results were compared to those of the LASSO feature selection method applied to multiple decision trees and support vector machine approaches for data sets of substrates and nonsubstrates of three Cytochrome P450 isoenzymes, which comprise strongly unbalanced compound distributions. In contrast to decision trees and support vector machines, the performance of Bayesian estimates is less affected by unbalanced data sets. This strategy reveals those descriptors that allow a simple linear separation of the classes, whereas the superior accuracy of decision trees and support vector machines can be attributed to nonlinear separation, which are in turn more prone to overfitting.

  19. A support vector machine for spectral classification of emission-line galaxies from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Shi, Fei; Liu, Yu-Yan; Sun, Guang-Lan; Li, Pei-Yu; Lei, Yu-Ming; Wang, Jian

    2015-10-01

    The emission-lines of galaxies originate from massive young stars or supermassive blackholes. As a result, spectral classification of emission-line galaxies into star-forming galaxies, active galactic nucleus (AGN) hosts, or compositions of both relates closely to formation and evolution of galaxy. To find efficient and automatic spectral classification method, especially in large surveys and huge data bases, a support vector machine (SVM) supervised learning algorithm is applied to a sample of emission-line galaxies from the Sloan Digital Sky Survey (SDSS) data release 9 (DR9) provided by the Max Planck Institute and the Johns Hopkins University (MPA/JHU). A two-step approach is adopted. (i) The SVM must be trained with a subset of objects that are known to be AGN hosts, composites or star-forming galaxies, treating the strong emission-line flux measurements as input feature vectors in an n-dimensional space, where n is the number of strong emission-line flux ratios. (ii) After training on a sample of emission-line galaxies, the remaining galaxies are automatically classified. In the classification process, we use a 10-fold cross-validation technique. We show that the classification diagrams based on the [N II]/Hα versus other emission-line ratio, such as [O III]/Hβ, [Ne III]/[O II], ([O III]λ4959+[O III]λ5007)/[O III]λ4363, [O II]/Hβ, [Ar III]/[O III], [S II]/Hα, and [O I]/Hα, plus colour, allows us to separate unambiguously AGN hosts, composites or star-forming galaxies. Among them, the diagram of [N II]/Hα versus [O III]/Hβ achieved an accuracy of 99 per cent to separate the three classes of objects. The other diagrams above give an accuracy of ˜91 per cent.

  20. A comparison of supervised machine learning algorithms and feature vectors for MS lesion segmentation using multimodal structural MRI.

    PubMed

    Sweeney, Elizabeth M; Vogelstein, Joshua T; Cuzzocreo, Jennifer L; Calabresi, Peter A; Reich, Daniel S; Crainiceanu, Ciprian M; Shinohara, Russell T

    2014-01-01

    Machine learning is a popular method for mining and analyzing large collections of medical data. We focus on a particular problem from medical research, supervised multiple sclerosis (MS) lesion segmentation in structural magnetic resonance imaging (MRI). We examine the extent to which the choice of machine learning or classification algorithm and feature extraction function impacts the performance of lesion segmentation methods. As quantitative measures derived from structural MRI are important clinical tools for research into the pathophysiology and natural history of MS, the development of automated lesion segmentation methods is an active research field. Yet, little is known about what drives performance of these methods. We evaluate the performance of automated MS lesion segmentation methods, which consist of a supervised classification algorithm composed with a feature extraction function. These feature extraction functions act on the observed T1-weighted (T1-w), T2-weighted (T2-w) and fluid-attenuated inversion recovery (FLAIR) MRI voxel intensities. Each MRI study has a manual lesion segmentation that we use to train and validate the supervised classification algorithms. Our main finding is that the differences in predictive performance are due more to differences in the feature vectors, rather than the machine learning or classification algorithms. Features that incorporate information from neighboring voxels in the brain were found to increase performance substantially. For lesion segmentation, we conclude that it is better to use simple, interpretable, and fast algorithms, such as logistic regression, linear discriminant analysis, and quadratic discriminant analysis, and to develop the features to improve performance.

  1. Combining a modified vector field histogram algorithm and real-time image processing for unknown environment navigation

    NASA Astrophysics Data System (ADS)

    Nepal, Kumud; Fine, Adam; Imam, Nabil; Pietrocola, David; Robertson, Neil; Ahlgren, David J.

    2009-01-01

    Q is an unmanned ground vehicle designed to compete in the Autonomous and Navigation Challenges of the AUVSI Intelligent Ground Vehicle Competition (IGVC). Built on a base platform of a modified PerMobil Trax off-road wheel chair frame, and running off a Dell Inspiron D820 laptop with an Intel t7400 Core 2 Duo Processor, Q gathers information from a SICK laser range finder (LRF), video cameras, differential GPS, and digital compass to localize its behavior and map out its navigational path. This behavior is handled by intelligent closed loop speed control and robust sensor data processing algorithms. In the Autonomous challenge, data taken from two IEEE 1394 cameras and the LRF are integrated and plotted on a custom-defined occupancy grid and converted into a histogram which is analyzed for openings between obstacles. The image processing algorithm consists of a series of steps involving plane extraction, normalizing of the image histogram for an effective dynamic thresholding, texture and morphological analysis and particle filtering to allow optimum operation at varying ambient conditions. In the Navigation Challenge, a modified Vector Field Histogram (VFH) algorithm is combined with an auto-regressive path planning model for obstacle avoidance and better localization. Also, Q features the Joint Architecture for Unmanned Systems (JAUS) Level 3 compliance. All algorithms are developed and implemented using National Instruments (NI) hardware and LabVIEW software. The paper will focus on explaining the various algorithms that make up Q's intelligence and the different ways and modes of their implementation.

  2. DOA and Polarization Estimation Using an Electromagnetic Vector Sensor Uniform Circular Array Based on the ESPRIT Algorithm

    PubMed Central

    Wu, Na; Qu, Zhiyu; Si, Weijian; Jiao, Shuhong

    2016-01-01

    In array signal processing systems, the direction of arrival (DOA) and polarization of signals based on uniform linear or rectangular sensor arrays are generally obtained by rotational invariance techniques (ESPRIT). However, since the ESPRIT algorithm relies on the rotational invariant structure of the received data, it cannot be applied to electromagnetic vector sensor arrays (EVSAs) featuring uniform circular patterns. To overcome this limitation, a fourth-order cumulant-based ESPRIT algorithm is proposed in this paper, for joint estimation of DOA and polarization based on a uniform circular EVSA. The proposed algorithm utilizes the fourth-order cumulant to obtain a virtual extended array of a uniform circular EVSA, from which the pairs of rotation invariant sub-arrays are obtained. The ESPRIT algorithm and parameter pair matching are then utilized to estimate the DOA and polarization of the incident signals. The closed-form parameter estimation algorithm can effectively reduce the computational complexity of the joint estimation, which has been demonstrated by numerical simulations. PMID:27983584

  3. Detection and direct readout of drugs in human urine using dynamic surface-enhanced Raman spectroscopy and support vector machines.

    PubMed

    Dong, Ronglu; Weng, Shizhuang; Yang, Liangbao; Liu, Jinhuai

    2015-03-03

    A new, novel, rapid method to detect and direct readout of drugs in human urine has been developed using dynamic surface-enhanced Raman spectroscopy (D-SERS) with portable Raman spectrometer on gold nanorods (GNRs) and a classification algorithm called support vector machines (SVM). The high-performance GNRs can generate gigantic enhancement and the SERS signals obtained using D-SERS on it have high reproducibility. On the basis of this feature of D-SERS, we have obtained SERS spectra of urine and urine containing methamphetamine (MAMP). SVM model was built using these data for fast identified and visual results. This general method was successfully applied to the detection of 3, 4-methylenedioxy methamphetamine (MDMA) in human urine. To verify the accuracy of the model, drug addicts' urine containing MAMP were detected and identified correctly and rapidly with accuracy more than 90%. The detection results were displayed directly without analysis of their SERS spectra manually. Compared with the conventional method in lab, the method only needs a 2 μL sample volume and takes no more than 2 min on the portable Raman spectrometer. It is anticipated that this method will enable rapid, convenient detection of drugs on site for the police.

  4. Combined multivariate matching pursuit and support vector machine: a way forward to classify single-sweep evoked potentials?

    PubMed

    Graversen, Carina; Brock, Christina; Drewes, Asbjørn Mohr; Farina, Dario

    2011-01-01

    Evoked brain potentials averaged over multiple sweeps provide a valuable objective measure of abnormal pain processing due to sensitization of the central nervous system. However, the average procedure cancel out important information regarding phase resetting and non-phase locked oscillations. Hence, assessment of the pain processing could be optimized by analyzing single-sweeps. To develop improved methods to assess single-sweeps, we applied a new approach in one healthy volunteer participating in a placebo controlled study of widespread hyperalgesia induced by perfusion of acid and capsaicin in the esophagus. The evoked potentials were recorded during electrical stimulations in the rectosigmoid colon. Features from the single-sweeps were extracted by a multivariate matching pursuit algorithm with Gabor atoms, and features were discriminated by a support vector machine with a linear kernel. The classification performance for the optimal number of atoms was 95% when discriminating the sensitization response from the placebo response, which was above change level compared to the performance when discriminating the two baseline responses (P < 0.001). The discriminative capacity was increased power in the delta, theta, and alpha frequency bands. This result corresponds to previous characteristics seen in chronic pain patients who exhibit central sensitization. The new approach to classify single-sweeps on a single subject basis might in the future prove to be a useful tool in assessing mechanisms in central sensitization, and could be applied to improve enriched enrollment of study subjects in clinical trial units.

  5. Pattern Recognition Application of Support Vector Machine for Fault Classification of Thyristor Controlled Series Compensated Transmission Lines

    NASA Astrophysics Data System (ADS)

    Yashvantrai Vyas, Bhargav; Maheshwari, Rudra Prakash; Das, Biswarup

    2016-06-01

    Application of series compensation in extra high voltage (EHV) transmission line makes the protection job difficult for engineers, due to alteration in system parameters and measurements. The problem amplifies with inclusion of electronically controlled compensation like thyristor controlled series compensation (TCSC) as it produce harmonics and rapid change in system parameters during fault associated with TCSC control. This paper presents a pattern recognition based fault type identification approach with support vector machine. The scheme uses only half cycle post fault data of three phase currents to accomplish the task. The change in current signal features during fault has been considered as discriminatory measure. The developed scheme in this paper is tested over a large set of fault data with variation in system and fault parameters. These fault cases have been generated with PSCAD/EMTDC on a 400 kV, 300 km transmission line model. The developed algorithm has proved better for implementation on TCSC compensated line with its improved accuracy and speed.

  6. Gradient-based fusion of infrared and visual face images using support vector machine for human face identification

    NASA Astrophysics Data System (ADS)

    Saha, Priya; Bhowmik, Mrinal K.; Bhattacharjee, Debotosh; De, Barin K.; Nasipuri, Mita

    2013-03-01

    Pose and illumination invariant face recognition problem is now-a-days an emergent problem in the field of information security. In this paper, gradient based fusion method of gradient visual and corresponding infrared face images have been proposed to overcome the problem of illumination varying conditions. This technique mainly extracts illumination insensitive features under different conditions for effective face recognition purpose. The gradient image is computed from a visible light image. Information fusion is performed in the gradient map domain. The image fusion of infrared image and corresponding visual gradient image is done in wavelet domain by taking the maximum information of approximation and detailed coefficients. These fused images have been taken for dimension reduction using Independent Component Analysis (ICA). The reduced face images are taken for training and testing purposes from different classes of different datasets of IRIS face database. SVM multiclass strategy `one-vs.-all' have been taken in the experiment. For training support vector machine, Sequential Minimal Optimization (SMO) algorithm has been used. Linear kernel and Polynomial kernel with degree 3 are used in SVM kernel functions. The experiment results show that the proposed approach generates good classification accuracies for the face images under different lighting conditions.

  7. Prediction of fungicidal activities of rice blast disease based on least-squares support vector machines and project pursuit regression.

    PubMed

    Du, Hongying; Wang, Jie; Hu, Zhide; Yao, Xiaojun; Zhang, Xiaoyun

    2008-11-26

    Three machine learning methods, genetic algorithm-multilinear regression (GA-MLR), least-squares support vector machine (LS-SVM), and project pursuit regression (PPR), were used to investigate the relationship between thiazoline derivatives and their fungicidal activities against the rice blast disease. The GA-MLR method was used to select the most appropriate molecular descriptors from a large set of descriptors, which were only calculated from molecular structures, and develop a linear quantitative structure-activity relationship (QSAR) model at the same time. On the basis of the selected descriptors, the other two more accurate models (LS-SVM and PPR) were built. Both the linear and nonlinear modes gave good prediction results, but the nonlinear models afforded better prediction ability, which meant that the LS-SVM and PPR methods could simulate the relationship between the structural descriptors and fungicidal activities more accurately. The results show that the nonlinear methods (LS-SVM and PPR) could be used as good modeling tools for the study of rice blast. Moreover, this study provides a new and simple but efficient approach, which should facilitate the design and development of new compounds to resist the rice blast disease.

  8. RESEARCH PAPER: Forecast daily indices of solar activity, F10.7, using support vector regression method

    NASA Astrophysics Data System (ADS)

    Huang, Cong; Liu, Dan-Dan; Wang, Jing-Song

    2009-06-01

    The 10.7 cm solar radio flux (F10.7), the value of the solar radio emission flux density at a wavelength of 10.7 cm, is a useful index of solar activity as a proxy for solar extreme ultraviolet radiation. It is meaningful and important to predict F10.7 values accurately for both long-term (months-years) and short-term (days) forecasting, which are often used as inputs in space weather models. This study applies a novel neural network technique, support vector regression (SVR), to forecasting daily values of F10.7. The aim of this study is to examine the feasibility of SVR in short-term F10.7 forecasting. The approach, based on SVR, reduces the dimension of feature space in the training process by using a kernel-based learning algorithm. Thus, the complexity of the calculation becomes lower and a small amount of training data will be sufficient. The time series of F10.7 from 2002 to 2006 are employed as the data sets. The performance of the approach is estimated by calculating the norm mean square error and mean absolute percentage error. It is shown that our approach can perform well by using fewer training data points than the traditional neural network.

  9. Quantitative analysis of multi-component complex oil spills based on the least-squares support vector regression

    NASA Astrophysics Data System (ADS)

    Tan, Ailing; Zhao, Yong; Wang, Siyuan

    2016-10-01

    Quantitative analysis of the simulated complex oil spills was researched based on PSO-LS-SVR method. Forty simulated mixture oil spills samples were made with different concentration proportions of gasoline, diesel and kerosene oil, and their near infrared spectra were collected. The parameters of least squares support vector machine were optimized by particle swarm optimization algorithm. The optimal concentration quantitative models of three-component oil spills were established. The best regularization parameter C and kernel parameter σ of gasoline, diesel and kerosene model were 48.1418 and 0.1067, 53.2820 and 0.1095, 59.1689 and 0.1000 respectively. The decision coefficient R2 of the prediction model were 0.9983, 0.9907 and 0.9942 respectively. RMSEP values were 0.0753, 0.1539 and 0.0789 respectively. For gasoline, diesel fuel and kerosene oil models, the mean value and variance value of predict absolute error were -0.0176±0.0636 μL/mL, -0.0084+/-0.1941 μL/mL, and 0.00338+/-0.0726 μL/mL respectively. The results showed that each component's concentration of the oil spills samples could be detected by the NIR technology combined with PSO-LS-SVR regression method, the predict results were accurate and reliable, thus this method can provide effective means for the quantitative detection and analysis of complex marine oil spills.

  10. A hybrid model of self organizing maps and least square support vector machine for river flow forecasting

    NASA Astrophysics Data System (ADS)

    Ismail, S.; Shabri, A.; Samsudin, R.

    2012-11-01

    Successful river flow forecasting is a major goal and an essential procedure that is necessary in water resource planning and management. There are many forecasting techniques used for river flow forecasting. This study proposed a hybrid model based on a combination of two methods: Self Organizing Map (SOM) and Least Squares Support Vector Machine (LSSVM) model, referred to as the SOM-LSSVM model for river flow forecasting. The hybrid model uses the SOM algorithm to cluster the entire dataset into several disjointed clusters, where the monthly river flows data with similar input pattern are grouped together from a high dimensional input space onto a low dimensional output layer. By doing this, the data with similar input patterns will be mapped to neighbouring neurons in the SOM's output layer. After the dataset has been decomposed into several disjointed clusters, an individual LSSVM is applied to forecast the river flow. The feasibility of this proposed model is evaluated with respect to the actual river flow data from the Bernam River located in Selangor, Malaysia. The performance of the SOM-LSSVM was compared with other single models such as ARIMA, ANN and LSSVM. The performance of these models was then evaluated using various performance indicators. The experimental results show that the SOM-LSSVM model outperforms the other models and performs better than ANN, LSSVM as well as ARIMA for river flow forecasting. It also indicates that the proposed model can forecast more precisely, and provides a promising alternative technique for river flow forecasting.

  11. Intraoperative diagnosis of benign and malignant breast tissues by fourier transform infrared spectroscopy and support vector machine classification

    PubMed Central

    Tian, Peirong; Zhang, Weitao; Zhao, Hongmei; Lei, Yutao; Cui, Long; Wang, Wei; Li, Qingbo; Zhu, Qing; Zhang, Yuanfu; Xu, Zhi

    2015-01-01

    Background: Fourier transform infrared (FTIR) spectroscopy has shown its unique advantages in distinguishing cancerous tissue from normal one. The aim of this study was to establish a quick and accurate diagnostic method of FTIR spectroscopy to differentiate malignancies from benign breast tissues intraoperatively. Materials and methods: In this study, a total of 100 breast tissue samples obtained from 100 patients were taken on surgery. All tissue samples were scanned for spectra intraoperatively before being processed for histopathological diagnosis. Standard normal variate (SNV) method was adopted to reduce scatter effects. Support vector machine (SVM) classification was used to discriminate spectra between malignant and benign breast tissues. Leave-one-out cross validation (LOOCV) was used to evaluate the discrimination. Results: According to histopathological examination, 50 cases were diagnosed as fibroadenoma and 50 cases as invasive ductal carcinoma. The results of SVM algorithm showed that the sensitivity, specificity and accuracy rate of this method are 90.0%, 98.0% and 94.0%, respectively. Conclusions: FTIR spectroscopy technique in combination with SVM classification could be an accurate, rapid and objective tool to differentiate malignant from benign tumors during operation. Our studies establish the feasibility of FTIR spectroscopy with chemometrics method to guide surgeons during the surgery as an effective supplement for pathological diagnosis on frozen section. PMID:25785083

  12. Comparison of AdaBoost and support vector machines for detecting Alzheimer's disease through automated hippocampal segmentation.

    PubMed

    Morra, Jonathan H; Tu, Zhuowen; Apostolova, Liana G; Green, Amity E; Toga, Arthur W; Thompson, Paul M

    2010-01-01

    We compared four automated methods for hippocampal segmentation using different machine learning algorithms: 1) hierarchical AdaBoost, 2) support vector machines (SVM) with manual feature selection, 3) hierarchical SVM with automated feature selection (Ada-SVM), and 4) a publicly available brain segmentation package (FreeSurfer). We trained our approaches using T1-weighted brain MRIs from 30 subjects [10 normal elderly, 10 mild cognitive impairment (MCI), and 10 Alzheimer's disease (AD)], and tested on an independent set of 40 subjects (20 normal, 20 AD). Manually segmented gold standard hippocampal tracings were available for all subjects (training and testing). We assessed each approach's accuracy relative to manual segmentations, and its power to map AD effects. We then converted the segmentations into parametric surfaces to map disease effects on anatomy. After surface reconstruction, we computed significance maps, and overall corrected p-values, for the 3-D profile of shape differences between AD and normal subjects. Our AdaBoost and Ada-SVM segmentations compared favorably with the manual segmentations and detected disease effects as well as FreeSurfer on the data tested. Cumulative p-value plots, in conjunction with the false discovery rate method, were used to examine the power of each method to detect correlations with diagnosis and cognitive scores. We also evaluated how segmentation accuracy depended on the size of the training set, providing practical information for future users of this technique.

  13. Support Vector Machine (SVM) as Alternative Tool to Assign Acute Aquatic Toxicity Warning Labels to Chemicals.

    PubMed

    Michielan, Lisa; Pireddu, Luca; Floris, Matteo; Moro, Stefano

    2010-01-12

    Quantitative structure-activity relationship (QSAR) analysis has been frequently utilized as a computational tool for the prediction of several eco-toxicological parameters including the acute aquatic toxicity. In the present study, we describe a novel integrated strategy to describe the acute aquatic toxicity through the combination of both toxicokinetic and toxicodynamic behaviors of chemicals. In particular, a robust classification model (TOXclass) has been derived by combining Support Vector Machine (SVM) analysis with three classes of toxicokinetic-like molecular descriptors: the autocorrelation molecular electrostatic potential (autoMEP) vectors, Sterimol topological descriptors and logP(o/w) property values. TOXclass model is able to assign chemicals to different levels of acute aquatic toxicity, providing an appropriate answer to the new regulatory requirements. Moreover, we have extended the above mentioned toxicokinetic-like descriptor set with a more toxicodynamic-like descriptors, as for example HOMO and LUMO energies, to generate a valuable SVM classifier (MOAclass) for the prediction of the mode of action (MOA) of toxic chemicals. As preliminary validation of our approach, the toxicokinetic (TOXclass) and the toxicodynamic (MOAclass) models have been applied in series to inspect both aquatic toxicity hazard and mode of action of 296 chemical substances with unknown or uncertain toxicodynamic information to assess the potential ecological risk and the toxic mechanism.

  14. Image denoising using nonsubsampled shearlet transform and twin support vector machines.

    PubMed

    Yang, Hong-Ying; Wang, Xiang-Yang; Niu, Pan-Pan; Liu, Yang-Cheng

    2014-09-01

    Denoising of images is one of the most basic tasks of image processing. It is a challenging work to design a edge/texture-preserving image denoising scheme. Nonsubsampled shearlet transform (NSST) is an effective multi-scale and multi-direction analysis method, it not only can exactly compute the shearlet coefficients based on a multiresolution analysis, but also can provide nearly optimal approximation for a piecewise smooth function. Based on NSST, a new edge/texture-preserving image denoising using twin support vector machines (TSVMs) is proposed in this paper. Firstly, the noisy image is decomposed into different subbands of frequency and orientation responses using the NSST. Secondly, the feature vector for a pixel in a noisy image is formed by the spatial geometric regularity in NSST domain, and the TSVMs model is obtained by training. Then the NSST detail coefficients are divided into information-related coefficients and noise-related ones by TSVMs training model. Finally, the detail subbands of NSST coefficients are denoised by using the adaptive threshold. Extensive experimental results demonstrate that our method can obtain better performances in terms of both subjective and objective evaluations than those state-of-the-art denoising techniques. Especially, the proposed method can preserve edges and textures very well while removing noise.

  15. Cellular automata for simulating land use changes based on support vector machines

    NASA Astrophysics Data System (ADS)

    Yang, Qingsheng; Li, Xia; Shi, Xun

    2008-06-01

    Cellular automata (CA) have been increasingly used to simulate urban sprawl and land use dynamics. A major issue in CA is defining appropriate transition rules based on training data. Linear boundaries have been widely used to define the rules. However, urban land use dynamics and many other geographical phenomena are highly complex and require nonlinear boundaries for the rules. In this study, we tested the support vector machines (SVM) as a method for constructing nonlinear transition rules for CA. SVM is good at dealing with nonlinear complex relationships. Its basic idea is to project input vectors to a higher dimensional Hilbert feature space, in which an optimal classifying hyperplane can be constructed through structural risk minimization and margin maximization. The optimal hyperplane is unique and its optimality is global. The proposed SVM-CA model was implemented using Visual Basic, ArcObjects®, and OSU-SVM. A case study simulating the urban development in the Shenzhen City, China demonstrates that the proposed model can achieve high accuracy and overcome some limitations of existing CA models in simulating complex urban systems.

  16. An adaptive online learning approach for Support Vector Regression: Online-SVR-FID

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Zio, Enrico

    2016-08-01

    Support Vector Regression (SVR) is a popular supervised data-driven approach for building empirical models from available data. Like all data-driven methods, under non-stationary environmental and operational conditions it needs to be provided with adaptive learning capabilities, which might become computationally burdensome with large datasets cumulating dynamically. In this paper, a cost-efficient online adaptive learning approach is proposed for SVR by combining Feature Vector Selection (FVS) and Incremental and Decremental Learning. The proposed approach adaptively modifies the model only when different pattern drifts are detected according to proposed criteria. Two tolerance parameters are introduced in the approach to control the computational complexity, reduce the influence of the intrinsic noise in the data and avoid the overfitting problem of SVR. Comparisons of the prediction results is made with other online learning approaches e.g. NORMA, SOGA, KRLS, Incremental Learning, on several artificial datasets and a real case study concerning time series prediction based on data recorded on a component of a nuclear power generation system. The performance indicators MSE and MARE computed on the test dataset demonstrate the efficiency of the proposed online learning method.

  17. Minimizing inter-subject variability in fNIRS-based brain-computer interfaces via multiple-kernel support vector learning.

    PubMed

    Abibullaev, Berdakh; An, Jinung; Jin, Sang-Hyeon; Lee, Seung Hyun; Moon, Jeon Il

    2013-12-01

    Brain signal variation across different subjects and sessions significantly impairs the accuracy of most brain-computer interface (BCI) systems. Herein, we present a classification algorithm that minimizes such variation, using linear programming support-vector machines (LP-SVM) and their extension to multiple kernel learning methods. The minimization is based on the decision boundaries formed in classifiers' feature spaces and their relation to BCI variation. Specifically, we estimate subject/session-invariant features in the reproducing kernel Hilbert spaces (RKHS) induced with Gaussian kernels. The idea is to construct multiple subject/session-dependent RKHS and to perform classification with LP-SVMs. To evaluate the performance of the algorithm, we applied it to oxy-hemoglobin data sets acquired from eight sessions and seven subjects as they performed two different mental tasks. Results show that our classifiers maintain good performance when applied to random patterns across varying sessions/subjects.

  18. Developing an evidence-based decision support system for rational insecticide choice in the control of African malaria vectors.

    PubMed

    Coleman, Michael; Sharp, Brian; Seocharan, Ishen; Hemingway, Janet

    2006-07-01

    The emergence of Anopheles species resistant to insecticides widely used in vector control has the potential to impact directly on the control of malaria. This may have a particularly dramatic effect in Africa, where pyrethroids impregnated onto bed-nets are the dominant insecticides used for vector control. Because the same insecticides are used for crop pests, the extensive use and misuse of insecticides for agriculture has contributed to the resistance problem in some vectors. The potential for resistance to develop in African vectors has been apparent since the 1950s, but the scale of the problem has been poorly documented. A geographical information system-based decision support system for malaria control has recently been established in Africa and used operationally in Mozambique. The system incorporates climate data and disease transmission rates, but to date it has not incorporated spatial or temporal data on vector abundance or insecticide resistance. As a first step in incorporating this information, available published data on insecticide resistance in Africa has now been collated and incorporated into this decision support system. Data also are incorporated onto the openly available Mapping Malaria Risk in Africa (MARA) Web site (http://www.mara.org.za). New data, from a range of vector population-monitoring initiatives, can now be incorporated into this open access database to allow a spatial understanding of resistance distribution and its potential impact on disease transmission to benefit vector control programs.

  19. Using support vector machine and dynamic parameter encoding to enhance global optimization

    NASA Astrophysics Data System (ADS)

    Zheng, Z.; Chen, X.; Liu, C.; Huang, K.

    2016-05-01

    This study presents an approach which combines support vector machine (SVM) and dynamic parameter encoding (DPE) to enhance the run-time performance of global optimization with time-consuming fitness function evaluations. SVMs are used as surrogate models to partly substitute for fitness evaluations. To reduce the computation time and guarantee correct convergence, this work proposes a novel strategy to adaptively adjust the number of fitness evaluations needed according to the approximate error of the surrogate model. Meanwhile, DPE is employed to compress the solution space, so that it not only accelerates the convergence but also decreases the approximate error. Numerical results of optimizing a few benchmark functions and an antenna in a practical application are presented, which verify the feasibility, efficiency and robustness of the proposed approach.

  20. Bio-signal analysis system design with support vector machines based on cloud computing service architecture.

    PubMed

    Shen, Chia-Ping; Chen, Wei-Hsin; Chen, Jia-Ming; Hsu, Kai-Ping; Lin, Jeng-Wei; Chiu, Ming-Jang; Chen, Chi-Huang; Lai, Feipei

    2010-01-01

    Today, many bio-signals such as Electroencephalography (EEG) are recorded in digital format. It is an emerging research area of analyzing these digital bio-signals to extract useful health information in biomedical engineering. In this paper, a bio-signal analyzing cloud computing architecture, called BACCA, is proposed. The system has been designed with the purpose of seamless integration into the National Taiwan University Health Information System. Based on the concept of. NET Service Oriented Architecture, the system integrates heterogeneous platforms, protocols, as well as applications. In this system, we add modern analytic functions such as approximated entropy and adaptive support vector machine (SVM). It is shown that the overall accuracy of EEG bio-signal analysis has increased to nearly 98% for different data sets, including open-source and clinical data sets.

  1. Analysis of dengue infection based on Raman spectroscopy and support vector machine (SVM)

    PubMed Central

    Khan, Saranjam; Ullah, Rahat; Khan, Asifullah; Wahab, Noorul; Bilal, Muhammad; Ahmed, Mushtaq

    2016-01-01

    The current study presents the use of Raman spectroscopy combined with support vector machine (SVM) for the classification of dengue suspected human blood sera. Raman spectra for 84 clinically dengue suspected patients acquired from Holy Family Hospital, Rawalpindi, Pakistan, have been used in this study.The spectral differences between dengue positive and normal sera have been exploited by using effective machine learning techniques. In this regard, SVM models built on the basis of three different kernel functions including Gaussian radial basis function (RBF), polynomial function and linear functionhave been employed to classify the human blood sera based on features obtained from Raman Spectra.The classification model have been evaluated with the 10-fold cross validation method. In the present study, the best performance has been achieved for the polynomial kernel of order 1. A diagnostic accuracy of about 85% with the precision of 90%, sensitivity of 73% and specificity of 93% has been achieved under these conditions. PMID:27375941

  2. Least squares support vector machine for short-term prediction of meteorological time series

    NASA Astrophysics Data System (ADS)

    Mellit, A.; Pavan, A. Massi; Benghanem, M.

    2013-01-01

    The prediction of meteorological time series plays very important role in several fields. In this paper, an application of least squares support vector machine (LS-SVM) for short-term prediction of meteorological time series (e.g. solar irradiation, air temperature, relative humidity, wind speed, wind direction and pressure) is presented. In order to check the generalization capability of the LS-SVM approach, a K-fold cross-validation and Kolmogorov-Smirnov test have been carried out. A comparison between LS-SVM and different artificial neural network (ANN) architectures (recurrent neural network, multi-layered perceptron, radial basis function and probabilistic neural network) is presented and discussed. The comparison showed that the LS-SVM produced significantly better results than ANN architectures. It also indicates that LS-SVM provides promising results for short-term prediction of meteorological data.

  3. Content-Based Discovery for Web Map Service using Support Vector Machine and User Relevance Feedback.

    PubMed

    Hu, Kai; Gui, Zhipeng; Cheng, Xiaoqiang; Qi, Kunlun; Zheng, Jie; You, Lan; Wu, Huayi

    2016-01-01

    Many discovery methods for geographic information services have been proposed. There are approaches for finding and matching geographic information services, methods for constructing geographic information service classification schemes, and automatic geographic information discovery. Overall, the efficiency of the geographic information discovery keeps improving., There are however, still two problems in Web Map Service (WMS) discovery that must be solved. Mismatches between the graphic contents of a WMS and the semantic descriptions in the metadata make discovery difficult for human users. End-users and computers comprehend WMSs differently creating semantic gaps in human-computer interactions. To address these problems, we propose an improved query process for WMSs based on the graphic contents of WMS layers, combining Support Vector Machine (SVM) and user relevance feedback. Our experiments demonstrate that the proposed method can improve the accuracy and efficiency of WMS discovery.

  4. Hybrid independent component analysis and twin support vector machine learning scheme for subtle gesture recognition.

    PubMed

    Naik, Ganesh R; Kumar, Dinesh K; Jayadeva

    2010-10-01

    Myoelectric signal classification is one of the most difficult pattern recognition problems because large variations in surface electromyogram features usually exist. In the literature, attempts have been made to apply various pattern recognition methods to classify surface electromyography into components corresponding to the activities of different muscles, but this has not been very successful, as some muscles are bigger and more active than others. This results in dataset discrepancy during classification. Multicategory classification problems are usually solved by solving many, one-versus-rest binary classification tasks. These subtasks unsurprisingly involve unbalanced datasets. Consequently, we need a learning methodology that can take into account unbalanced datasets in addition to large variations in the distributions of patterns corresponding to different classes. Here, we attempt to address the above issues using hybrid features extracted from independent component analysis and twin support vector machine techniques.

  5. Support-vector-based emergent self-organising approach for emotional understanding

    NASA Astrophysics Data System (ADS)

    Nguwi, Yok-Yen; Cho, Siu-Yeung

    2010-12-01

    This study discusses the computational analysis of general emotion understanding from questionnaires methodology. The questionnaires method approaches the subject by investigating the real experience that accompanied the emotions, whereas the other laboratory approaches are generally associated with exaggerated elements. We adopted a connectionist model called support-vector-based emergent self-organising map (SVESOM) to analyse the emotion profiling from the questionnaires method. The SVESOM first identifies the important variables by giving discriminative features with high ranking. The classifier then performs the classification based on the selected features. Experimental results show that the top rank features are in line with the work of Scherer and Wallbott [(1994), 'Evidence for Universality and Cultural Variation of Differential Emotion Response Patterning', Journal of Personality and Social Psychology, 66, 310-328], which approached the emotions physiologically. While the performance measures show that using the full features for classifications can degrade the performance, the selected features provide superior results in terms of accuracy and generalisation.

  6. Efficient Content-based Image Retrieval using Support Vector Machines for Feature Aggregation

    NASA Astrophysics Data System (ADS)

    Dimitrovski, Ivica; Loskovska, Suzana; Chorbev, Ivan

    In this paper, a content-based image retrieval system for aggregation and combination of different image features is presented. Feature aggregation is important technique in general content-based image retrieval systems that employ multiple visual features to characterize image content. We introduced and evaluated linear combination and support vector machines to fuse the different image features. The implemented system has several advantages over the existing content-based image retrieval systems. Several implemented features included in our system allow the user to adapt the system to the query image. The SVM-based approach for ranking retrieval results helps processing specific queries for which users do not have knowledge about any suitable descriptors.

  7. Experimental study on light induced influence model to mice using support vector machine

    NASA Astrophysics Data System (ADS)

    Ji, Lei; Zhao, Zhimin; Yu, Yinshan; Zhu, Xingyue

    2014-08-01

    Previous researchers have made studies on different influences created by light irradiation to animals, including retinal damage, changes of inner index and so on. However, the model of light induced damage to animals using physiological indicators as features in machine learning method is never founded. This study was designed to evaluate the changes in micro vascular diameter, the serum absorption spectrum and the blood flow influenced by light irradiation of different wavelengths, powers and exposure time with support vector machine (SVM). The micro images of the mice auricle were recorded and the vessel diameters were calculated by computer program. The serum absorption spectrums were analyzed. The result shows that training sample rate 20% and 50% have almost the same correct recognition rate. Better performance and accuracy was achieved by third-order polynomial kernel SVM quadratic optimization method and it worked suitably for predicting the light induced damage to organisms.

  8. Prediction of biochar yield from cattle manure pyrolysis via least squares support vector machine intelligent approach.

    PubMed

    Cao, Hongliang; Xin, Ya; Yuan, Qiaoxia

    2016-02-01

    To predict conveniently the biochar yield from cattle manure pyrolysis, intelligent modeling approach was introduced in this research. A traditional artificial neural networks (ANN) model and a novel least squares support vector machine (LS-SVM) model were developed. For the identification and prediction evaluation of the models, a data set with 33 experimental data was used, which were obtained using a laboratory-scale fixed bed reaction system. The results demonstrated that the intelligent modeling approach is greatly convenient and effective for the prediction of the biochar yield. In particular, the novel LS-SVM model has a more satisfying predicting performance and its robustness is better than the traditional ANN model. The introduction and application of the LS-SVM modeling method gives a successful example, which is a good reference for the modeling study of cattle manure pyrolysis process, even other similar processes.

  9. Adaboost and Support Vector Machines for White Matter Lesion Segmentation in MR Images.

    PubMed

    Quddus, Azhar; Fieguth, Paul; Basir, Otman

    2005-01-01

    The use of two powerful classification techniques (boosting and SVM) is explored for the segmentation of white-matter lesions in the MRI scans of human brain. Simple features are generated from Proton Density (PD) scans. Radial Basis Function (RBF) based Adaboost technique and Support Vector Machines (SVM) are employed for this task. The classifiers are trained on severe, moderate and mild cases. The segmentation is performed in T1 acquisition space rather than standard space (with more slices). Hence, the proposed approach requires less time for manual verification. The results indicate that the proposed approach can handle MR field inhomogeneities quite well and is completely independent from manual selection process so that it can be run under batch mode. Segmentation performance comparison with manual detection is also provided.

  10. Application of the Support Vector Machine to Predict Subclinical Mastitis in Dairy Cattle

    PubMed Central

    Mammadova, Nazira

    2013-01-01

    This study presented a potentially useful alternative approach to ascertain the presence of subclinical and clinical mastitis in dairy cows using support vector machine (SVM) techniques. The proposed method detected mastitis in a cross-sectional representative sample of Holstein dairy cattle milked using an automatic milking system. The study used such suspected indicators of mastitis as lactation rank, milk yield, electrical conductivity, average milking duration, and control season as input data. The output variable was somatic cell counts obtained from milk samples collected monthly throughout the 15 months of the control period. Cattle were judged to be healthy or infected based on those somatic cell counts. This study undertook a detailed scrutiny of the SVM methodology, constructing and examining a model which showed 89% sensitivity, 92% specificity, and 50% error in mastitis detection. PMID:24574862

  11. Using support vector machine and evolutionary profiles to predict antifreeze protein sequences.

    PubMed

    Zhao, Xiaowei; Ma, Zhiqiang; Yin, Minghao

    2012-01-01

    Antifreeze proteins (AFPs) are ice-binding proteins. Accurate identification of new AFPs is important in understanding ice-protein interactions and creating novel ice-binding domains in other proteins. In this paper, an accurate method, called AFP_PSSM, has been developed for predicting antifreeze proteins using a support vector machine (SVM) and position specific scoring matrix (PSSM) profiles. This is the first study in which evolutionary information in the form of PSSM profiles has been successfully used for predicting antifreeze proteins. Tested by 10-fold cross validation and independent test, the accuracy of the proposed method reaches 82.67% for the training dataset and 93.01% for the testing dataset, respectively. These results indicate that our predictor is a useful tool for predicting antifreeze proteins. A web server (AFP_PSSM) that implements the proposed predictor is freely available.

  12. Rapid authentication of adulteration of olive oil by near-infrared spectroscopy using support vector machines

    NASA Astrophysics Data System (ADS)

    Wu, Jingzhu; Dong, Jingjing; Dong, Wenfei; Chen, Yan; Liu, Cuiling

    2016-10-01

    A classification method of support vector machines with linear kernel was employed to authenticate genuine olive oil based on near-infrared spectroscopy. There were three types of adulteration of olive oil experimented in the study. The adulterated oil was respectively soybean oil, rapeseed oil and the mixture of soybean and rapeseed oil. The average recognition rate of second experiment was more than 90% and that of the third experiment was reach to 100%. The results showed the method had good performance in classifying genuine olive oil and the adulteration with small variation range of adulterated concentration and it was a promising and rapid technique for the detection of oil adulteration and fraud in the food industry.

  13. Cervical cancer survival prediction using hybrid of SMOTE, CART and smooth support vector machine

    NASA Astrophysics Data System (ADS)

    Purnami, S. W.; Khasanah, P. M.; Sumartini, S. H.; Chosuvivatwong, V.; Sriplung, H.

    2016-04-01

    According to the WHO, every two minutes there is one patient who died from cervical cancer. The high mortality rate is due to the lack of awareness of women for early detection. There are several factors that supposedly influence the survival of cervical cancer patients, including age, anemia status, stage, type of treatment, complications and secondary disease. This study wants to classify/predict cervical cancer survival based on those factors. Various classifications methods: classification and regression tree (CART), smooth support vector machine (SSVM), three order spline SSVM (TSSVM) were used. Since the data of cervical cancer are imbalanced, synthetic minority oversampling technique (SMOTE) is used for handling imbalanced dataset. Performances of these methods are evaluated using accuracy, sensitivity and specificity. Results of this study show that balancing data using SMOTE as preprocessing can improve performance of classification. The SMOTE-SSVM method provided better result than SMOTE-TSSVM and SMOTE-CART.

  14. A hybrid least squares support vector machines and GMDH approach for river flow forecasting

    NASA Astrophysics Data System (ADS)

    Samsudin, R.; Saad, P.; Shabri, A.

    2010-06-01

    This paper proposes a novel hybrid forecasting model, which combines the group method of data handling (GMDH) and the least squares support vector machine (LSSVM), known as GLSSVM. The GMDH is used to determine the useful input variables for LSSVM model and the LSSVM model which works as time series forecasting. In this study the application of GLSSVM for monthly river flow forecasting of Selangor and Bernam River are investigated. The results of the proposed GLSSVM approach are compared with the conventional artificial neural network (ANN) models, Autoregressive Integrated Moving Average (ARIMA) model, GMDH and LSSVM models using the long term observations of monthly river flow discharge. The standard statistical, the root mean square error (RMSE) and coefficient of correlation (R) are employed to evaluate the performance of various models developed. Experiment result indicates that the hybrid model was powerful tools to model discharge time series and can be applied successfully in complex hydrological modeling.

  15. Credit Risk Evaluation Using a C-Variable Least Squares Support Vector Classification Model

    NASA Astrophysics Data System (ADS)

    Yu, Lean; Wang, Shouyang; Lai, K. K.

    Credit risk evaluation is one of the most important issues in financial risk management. In this paper, a C-variable least squares support vector classification (C-VLSSVC) model is proposed for credit risk analysis. The main idea of this model is based on the prior knowledge that different classes may have different importance for modeling and more weights should be given to those classes with more importance. The C-VLSSVC model can be constructed by a simple modification of the regularization parameter in LSSVC, whereby more weights are given to the lease squares classification errors with important classes than the lease squares classification errors with unimportant classes while keeping the regularized terms in its original form. For illustration purpose, a real-world credit dataset is used to test the effectiveness of the C-VLSSVC model.

  16. Content-Based Discovery for Web Map Service using Support Vector Machine and User Relevance Feedback

    PubMed Central

    Cheng, Xiaoqiang; Qi, Kunlun; Zheng, Jie; You, Lan; Wu, Huayi

    2016-01-01

    Many discovery methods for geographic information services have been proposed. There are approaches for finding and matching geographic information services, methods for constructing geographic information service classification schemes, and automatic geographic information discovery. Overall, the efficiency of the geographic information discovery keeps improving., There are however, still two problems in Web Map Service (WMS) discovery that must be solved. Mismatches between the graphic contents of a WMS and the semantic descriptions in the metadata make discovery difficult for human users. End-users and computers comprehend WMSs differently creating semantic gaps in human-computer interactions. To address these problems, we propose an improved query process for WMSs based on the graphic contents of WMS layers, combining Support Vector Machine (SVM) and user relevance feedback. Our experiments demonstrate that the proposed method can improve the accuracy and efficiency of WMS discovery. PMID:27861505

  17. Data on Support Vector Machines (SVM) model to forecast photovoltaic power.

    PubMed

    Malvoni, M; De Giorgi, M G; Congedo, P M

    2016-12-01

    The data concern the photovoltaic (PV) power, forecasted by a hybrid model that considers weather variations and applies a technique to reduce the input data size, as presented in the paper entitled "Photovoltaic forecast based on hybrid pca-lssvm using dimensionality reducted data" (M. Malvoni, M.G. De Giorgi, P.M. Congedo, 2015) [1]. The quadratic Renyi entropy criteria together with the principal component analysis (PCA) are applied to the Least Squares Support Vector Machines (LS-SVM) to predict the PV power in the day-ahead time frame. The data here shared represent the proposed approach results. Hourly PV power predictions for 1,3,6,12, 24 ahead hours and for different data reduction sizes are provided in Supplementary material.

  18. Pulse waveform classification using support vector machine with Gaussian time warp edit distance kernel.

    PubMed

    Jia, Danbing; Zhang, Dongyu; Li, Naimin

    2014-01-01

    Advances in signal processing techniques have provided effective tools for quantitative research in traditional Chinese pulse diagnosis. However, because of the inevitable intraclass variations of pulse patterns, the automatic classification of pulse waveforms has remained a difficult problem. Utilizing the new elastic metric, that is, time wrap edit distance (TWED), this paper proposes to address the problem under the support vector machines (SVM) framework by using the Gaussian TWED kernel function. The proposed method, SVM with GTWED kernel (GTWED-SVM), is evaluated on a dataset including 2470 pulse waveforms of five distinct patterns. The experimental results show that the proposed method achieves a lower average error rate than current pulse waveform classification methods.

  19. Deep learning of support vector machines with class probability output networks.

    PubMed

    Kim, Sangwook; Yu, Zhibin; Kil, Rhee Man; Lee, Minho

    2015-04-01

    Deep learning methods endeavor to learn features automatically at multiple levels and allow systems to learn complex functions mapping from the input space to the output space for the given data. The ability to learn powerful features automatically is increasingly important as the volume of data and range of applications of machine learning methods continues to grow. This paper proposes a new deep architecture that uses support vector machines (SVMs) with class probability output networks (CPONs) to provide better generalization power for pattern classification problems. As a result, deep features are extracted without additional feature engineering steps, using multiple layers of the SVM classifiers with CPONs. The proposed structure closely approaches the ideal Bayes classifier as the number of layers increases. Using a simulation of classification problems, the effectiveness of the proposed method is demonstrated.

  20. Support vector machine-based feature extractor for L/H transitions in JET

    SciTech Connect

    Gonzalez, S.; Vega, J.; Pereira, A.; Ramirez, J. M.; Dormido-Canto, S.; Collaboration: JET-EFDA Contributors

    2010-10-15

    Support vector machines (SVM) are machine learning tools originally developed in the field of artificial intelligence to perform both classification and regression. In this paper, we show how SVM can be used to determine the most relevant quantities to characterize the confinement transition from low to high confinement regimes in tokamak plasmas. A set of 27 signals is used as starting point. The signals are discarded one by one until an optimal number of relevant waveforms is reached, which is the best tradeoff between keeping a limited number of quantities and not loosing essential information. The method has been applied to a database of 749 JET discharges and an additional database of 150 JET discharges has been used to test the results obtained.

  1. Supplier Short Term Load Forecasting Using Support Vector Regression and Exogenous Input

    NASA Astrophysics Data System (ADS)

    Matijaš, Marin; Vukićcević, Milan; Krajcar, Slavko

    2011-09-01

    In power systems, task of load forecasting is important for keeping equilibrium between production and consumption. With liberalization of electricity markets, task of load forecasting changed because each market participant has to forecast their own load. Consumption of end-consumers is stochastic in nature. Due to competition, suppliers are not in a position to transfer their costs to end-consumers; therefore it is essential to keep forecasting error as low as possible. Numerous papers are investigating load forecasting from the perspective of the grid or production planning. We research forecasting models from the perspective of a supplier. In this paper, we investigate different combinations of exogenous input on the simulated supplier loads and show that using points of delivery as a feature for Support Vector Regression leads to lower forecasting error, while adding customer number in different datasets does the opposite.

  2. Remote sensing image classification based on support vector machine with the multi-scale segmentation

    NASA Astrophysics Data System (ADS)

    Bao, Wenxing; Feng, Wei; Ma, Ruishi

    2015-12-01

    In this paper, we proposed a new classification method based on support vector machine (SVM) combined with multi-scale segmentation. The proposed method obtains satisfactory segmentation results which are based on both the spectral characteristics and the shape parameters of segments. SVM method is used to label all these regions after multiscale segmentation. It can effectively improve the classification results. Firstly, the homogeneity of the object spectra, texture and shape are calculated from the input image. Secondly, multi-scale segmentation method is applied to the RS image. Combining graph theory based optimization with the multi-scale image segmentations, the resulting segments are merged regarding the heterogeneity criteria. Finally, based on the segmentation result, the model of SVM combined with spectrum texture classification is constructed and applied. The results show that the proposed method can effectively improve the remote sensing image classification accuracy and classification efficiency.

  3. Analyses of ITER operation mode using the support vector machine technique for plasma discharge classification

    NASA Astrophysics Data System (ADS)

    Lukianitsa, A. A.; Zhdanov, F. M.; Zaitsev, F. S.

    2008-06-01

    A new approach is proposed for classifying tokamak plasma discharges. The method is based on a modern data mining technique—the so-called 'support vector machine', which is able to construct the optimal classifier. The international database of plasma discharges from different tokamaks has been analyzed with respect to H- and L-modes. A new linear equation, which separates H- and L-modes in the space of eight parameters, was obtained allowing us to classify a tokamak pulse as H- or L-mode and to give a quantitative estimate of how deep the pulse is in a mode. The equation also allows calculation of the value of the H-mode threshold for a selected plasma characteristic. The results are applied to ITER parameters. It is shown that in the main regimes ITER should operate deeply in H-mode. A more optimistic than known H-mode loss power threshold prediction is obtained for ITER.

  4. Antepartum fetal heart rate feature extraction and classification using empirical mode decomposition and support vector machine

    PubMed Central

    2011-01-01

    Background Cardiotocography (CTG) is the most widely used tool for fetal surveillance. The visual analysis of fetal heart rate (FHR) traces largely depends on the expertise and experience of the clinician involved. Several approaches have been proposed for the effective interpretation of FHR. In this paper, a new approach for FHR feature extraction based on empirical mode decomposition (EMD) is proposed, which was used along with support vector machine (SVM) for the classification of FHR recordings as 'normal' or 'at risk'. Methods The FHR were recorded from 15 subjects at a sampling rate of 4 Hz and a dataset consisting of 90 randomly selected records of 20 minutes duration was formed from these. All records were labelled as 'normal' or 'at risk' by two experienced obstetricians. A training set was formed by 60 records, the remaining 30 left as the testing set. The standard deviations of the EMD components are input as features to a support vector machine (SVM) to classify FHR samples. Results For the training set, a five-fold cross validation test resulted in an accuracy of 86% whereas the overall geometric mean of sensitivity and specificity was 94.8%. The Kappa value for the training set was .923. Application of the proposed method to the testing set (30 records) resulted in a geometric mean of 81.5%. The Kappa value for the testing set was .684. Conclusions Based on the overall performance of the system it can be stated that the proposed methodology is a promising new approach for the feature extraction and classification of FHR signals. PMID:21244712

  5. Sensitivity Analysis of a Spatio-Temporal Avalanche Forecasting Model Based on Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Matasci, G.; Pozdnoukhov, A.; Kanevski, M.

    2009-04-01

    The recent progress in environmental monitoring technologies allows capturing extensive amount of data that can be used to assist in avalanche forecasting. While it is not straightforward to directly obtain the stability factors with the available technologies, the snow-pack profiles and especially meteorological parameters are becoming more and more available at finer spatial and temporal scales. Being very useful for improving physical modelling, these data are also of particular interest regarding their use involving the contemporary data-driven techniques of machine learning. Such, the use of support vector machine classifier opens ways to discriminate the ``safe'' and ``dangerous'' conditions in the feature space of factors related to avalanche activity based on historical observations. The input space of factors is constructed from the number of direct and indirect snowpack and weather observations pre-processed with heuristic and physical models into a high-dimensional spatially varying vector of input parameters. The particular system presented in this work is implemented for the avalanche-prone site of Ben Nevis, Lochaber region in Scotland. A data-driven model for spatio-temporal avalanche danger forecasting provides an avalanche danger map for this local (5x5 km) region at the resolution of 10m based on weather and avalanche observations made by forecasters on a daily basis at the site. We present the further work aimed at overcoming the ``black-box'' type modelling, a disadvantage the machine learning methods are often criticized for. It explores what the data-driven method of support vector machine has to offer to improve the interpretability of the forecast, uncovers the properties of the developed system with respect to highlighting which are the important features that led to the particular prediction (both in time and space), and presents the analysis of sensitivity of the prediction with respect to the varying input parameters. The purpose of the

  6. Intelligent decision support algorithm for distribution system restoration.

    PubMed

    Singh, Reetu; Mehfuz, Shabana; Kumar, Parmod

    2016-01-01

    Distribution system is the means of revenue for electric utility. It needs to be restored at the earliest if any feeder or complete system is tripped out due to fault or any other cause. Further, uncertainty of the loads, result in variations in the distribution network's parameters. Thus, an intelligent algorithm incorporating hybrid fuzzy-grey relation, which can take into account the uncertainties and compare the sequences is discussed to analyse and restore the distribution system. The simulation studies are carried out to show the utility of the method by ranking the restoration plans for a typical distribution system. This algorithm also meets the smart grid requirements in terms of an automated restoration plan for the partial/full blackout of network.

  7. Algorithmic support for commodity-based parallel computing systems.

    SciTech Connect

    Leung, Vitus Joseph; Bender, Michael A.; Bunde, David P.; Phillips, Cynthia Ann

    2003-10-01

    The Computational Plant or Cplant is a commodity-based distributed-memory supercomputer under development at Sandia National Laboratories. Distributed-memory supercomputers run many parallel programs simultaneously. Users submit their programs to a job queue. When a job is scheduled to run, it is assigned to a set of available processors. Job runtime depends not only on the number of processors but also on the particular set of processors assigned to it. Jobs should be allocated to localized clusters of processors to minimize communication costs and to avoid bandwidth contention caused by overlapping jobs. This report introduces new allocation strategies and performance metrics based on space-filling curves and one dimensional allocation strategies. These algorithms are general and simple. Preliminary simulations and Cplant experiments indicate that both space-filling curves and one-dimensional packing improve processor locality compared to the sorted free list strategy previously used on Cplant. These new allocation strategies are implemented in Release 2.0 of the Cplant System Software that was phased into the Cplant systems at Sandia by May 2002. Experimental results then demonstrated that the average number of communication hops between the processors allocated to a job strongly correlates with the job's completion time. This report also gives processor-allocation algorithms for minimizing the average number of communication hops between the assigned processors for grid architectures. The associated clustering problem is as follows: Given n points in {Re}d, find k points that minimize their average pairwise L{sub 1} distance. Exact and approximate algorithms are given for these optimization problems. One of these algorithms has been implemented on Cplant and will be included in Cplant System Software, Version 2.1, to be released. In more preliminary work, we suggest improvements to the scheduler separate from the allocator.

  8. Quantitative analysis of routine chemical constituents in tobacco by near-infrared spectroscopy and support vector machine.

    PubMed

    Zhang, Yong; Cong, Qian; Xie, Yunfei; JingxiuYang; Zhao, Bing

    2008-12-15

    It is important to monitor quality of tobacco during the production of cigarette. Therefore, in order to scientifically control the tobacco raw material and guarantee the cigarette quality, fast and accurate determination routine chemical of constituents of tobacco, including the total sugar, reducing sugar, Nicotine, the total nitrogen and so on, is needed. In this study, 50 samples of tobacco from different cultivation areas were surveyed by near-infrared (NIR) spectroscopy, and the spectral differences provided enough quantitative analysis information for the tobacco. Partial least squares regression (PLSR), artificial neural network (ANN), and support vector machine (SVM), were applied. The quantitative analysis models of 50 tobacco samples were studied comparatively in this experiment using PLSR, ANN, radial basis function (RBF) SVM regression, and the parameters of the models were also discussed. The spectrum variables of 50 samples had been compressed through the wavelet transformation technology before the models were established. The best experimental results were obtained using the (RBF) SVM regression with gamma=1.5, 1.3, 0.9, and 0.1, separately corresponds to total sugar, reducing sugar, Nicotine, and total nitrogen, respectively. Finally, compared with the back propagation (BP-ANN) and PLSR approach, SVM algorithm showed its excellent generalization for quantitative analysis results, while the number of samples for establishing the model is smaller. The overall results show that NIR spectroscopy combined with SVM can be efficiently utilized for rapid and accurate analysis of routine chemical compositions in tobacco. Simultaneously, the research can serve as the technical support and the foundation of quantitative analysis of other NIR applications.

  9. Quantitative analysis of routine chemical constituents in tobacco by near-infrared spectroscopy and support vector machine

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Cong, Qian; Xie, Yunfei; Yang, Jingxiu; Zhao, Bing

    2008-12-01

    It is important to monitor quality of tobacco during the production of cigarette. Therefore, in order to scientifically control the tobacco raw material and guarantee the cigarette quality, fast and accurate determination routine chemical of constituents of tobacco, including the total sugar, reducing sugar, Nicotine, the total nitrogen and so on, is needed. In this study, 50 samples of tobacco from different cultivation areas were surveyed by near-infrared (NIR) spectroscopy, and the spectral differences provided enough quantitative analysis information for the tobacco. Partial least squares regression (PLSR), artificial neural network (ANN), and support vector machine (SVM), were applied. The quantitative analysis models of 50 tobacco samples were studied comparatively in this experiment using PLSR, ANN, radial basis function (RBF) SVM regression, and the parameters of the models were also discussed. The spectrum variables of 50 samples had been compressed through the wavelet transformation technology before the models were established. The best experimental results were obtained using the (RBF) SVM regression with γ = 1.5, 1.3, 0.9, and 0.1, separately corresponds to total sugar, reducing sugar, Nicotine, and total nitrogen, respectively. Finally, compared with the back propagation (BP-ANN) and PLSR approach, SVM algorithm showed its excellent generalization for quantitative analysis results, while the number of samples for establishing the model is smaller. The overall results show that NIR spectroscopy combined with SVM can be efficiently utilized for rapid and accurate analysis of routine chemical compositions in tobacco. Simultaneously, the research can serve as the technical support and the foundation of quantitative analysis of other NIR applications.

  10. A general modelling and control algorithm of a three-phase multilevel diode clamped inverter by means of a direct space vector control

    NASA Astrophysics Data System (ADS)

    Bouhali, O.; Francois, B.; Berkouk, E. M.; Saudemont, C.

    2005-07-01

    This paper presents a simple and general direct modulation strategy that enables to copy directly modulated waveforms onto output voltages of a multilevel three-phase Diode Clamped Inverter (DCI). A general modelling of this converter is presented. A space vector scheme is developed without using Park transforms. Based on this algorithm, the location of the reference voltage vector is determined and the voltage vectors for the modulation are deduced. Simultaneously, their durations are calculated. The proposed algorithm is general and can be directly applied to a (n+1) levels inverter independently on its topology (Diode Clamped Inverter, Neutral Point Clamped, Flying Capacitor Inverter...). To verify this algorithm, both control algorithms of a 5-level DCI and a 11-level DCI are considered and simulation results are given.

  11. Wave-Based Algorithms and Bounds for Target Support Estimation

    DTIC Science & Technology

    2015-05-15

    procedure to estimate the nonconvex support. The convex support information was obtained using an exterior inverse diffraction framework. This allows...subsequent steps via a complementary interior inverse diffraction approach. This gives nonconvex bounds for the minimum source region. In many prac...target material properties, which is relevant for radar inverse scattering and imaging applications. In this project we devel- oped and validated

  12. Discovering cis-Regulatory RNAs in Shewanella Genomes by Support Vector Machines

    PubMed Central

    Xu, Xing; Ji, Yongmei; Stormo, Gary D.

    2009-01-01

    An increasing number of cis-regulatory RNA elements have been found to regulate gene expression post-transcriptionally in various biological processes in bacterial systems. Effective computational tools for large-scale identification of novel regulatory RNAs are strongly desired to facilitate our exploration of gene regulation mechanisms and regulatory networks. We present a new computational program named RSSVM (RNA Sampler+Support Vector Machine), which employs Support Vector Machines (SVMs) for efficient identification of functional RNA motifs from random RNA secondary structures. RSSVM uses a set of distinctive features to represent the common RNA secondary structure and structural alignment predicted by RNA Sampler, a tool for accurate common RNA secondary structure prediction, and is trained with functional RNAs from a variety of bacterial RNA motif/gene families covering a wide range of sequence identities. When tested on a large number of known and random RNA motifs, RSSVM shows a significantly higher sensitivity than other leading RNA identification programs while maintaining the same false positive rate. RSSVM performs particularly well on sets with low sequence identities. The combination of RNA Sampler and RSSVM provides a new, fast, and efficient pipeline for large-scale discovery of regulatory RNA motifs. We applied RSSVM to multiple Shewanella genomes and identified putative regulatory RNA motifs in the 5′ untranslated regions (UTRs) in S. oneidensis, an important bacterial organism with extraordinary respiratory and metal reducing abilities and great potential for bioremediation and alternative energy generation. From 1002 sets of 5′-UTRs of orthologous operons, we identified 166 putative regulatory RNA motifs, including 17 of the 19 known RNA motifs from Rfam, an additional 21 RNA motifs that are supported by literature evidence, 72 RNA motifs overlapping predicted transcription terminators or attenuators, and other candidate regulatory RNA

  13. Segmentation of HER2 protein overexpression in immunohistochemically stained breast cancer images using Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Pezoa, Raquel; Salinas, Luis; Torres, Claudio; Härtel, Steffen; Maureira-Fredes, Cristián; Arce, Paola

    2016-10-01

    Breast cancer is one of the most common cancers in women worldwide. Patient therapy is widely supported by analysis of immunohistochemically (IHC) stained tissue sections. In particular, the analysis of HER2 overexpression by immunohistochemistry helps to determine when patients are suitable to HER2-targeted treatment. Computational HER2 overexpression analysis is still an open problem and a challenging task principally because of the variability of immunohistochemistry tissue samples and the subjectivity of the specialists to assess the samples. In addition, the immunohistochemistry process can produce diverse artifacts that difficult the HER2 overexpression assessment. In this paper we study the segmentation of HER2 overexpression in IHC stained breast cancer tissue images using a support vector machine (SVM) classifier. We asses the SVM performance using diverse color and texture pixel-level features including the RGB, CMYK, HSV, CIE L*a*b* color spaces, color deconvolution filter and Haralick features. We measure classification performance for three datasets containing a total of 153 IHC images that were previously labeled by a pathologist.

  14. Model for noise-induced hearing loss using support vector machine

    NASA Astrophysics Data System (ADS)

    Qiu, Wei; Ye, Jun; Liu-White, Xiaohong; Hamernik, Roger P.

    2005-09-01

    Contemporary noise standards are based on the assumption that an energy metric such as the equivalent noise level is sufficient for estimating the potential of a noise stimulus to cause noise-induced hearing loss (NIHL). Available data, from laboratory-based experiments (Lei et al., 1994; Hamernik and Qiu, 2001) indicate that while an energy metric may be necessary, it is not sufficient for the prediction of NIHL. A support vector machine (SVM) NIHL prediction model was constructed, based on a 550-subject (noise-exposed chinchillas) database. Training of the model used data from 367 noise-exposed subjects. The model was tested using the remaining 183 subjects. Input variables for the model included acoustic, audiometric, and biological variables, while output variables were PTS and cell loss. The results show that an energy parameter is not sufficient to predict NIHL, especially in complex noise environments. With the kurtosis and other noise and biological parameters included as additional inputs, the performance of SVM prediction model was significantly improved. The SVM prediction model has the potential to reliably predict noise-induced hearing loss. [Work supported by NIOSH.

  15. Compartment proteomics analysis of white perch (Morone americana) ovary using support vector machines.

    PubMed

    Schilling, Justin; Nepomuceno, Angelito; Schaff, Jennifer E; Muddiman, David C; Daniels, Harry V; Reading, Benjamin J

    2014-03-07

    Compartment proteomics enable broad characterization of target tissues. We employed a simple fractionation method and filter-aided sample preparation (FASP) to characterize the cytosolic and membrane fractions of white perch ovary tissues by semiquantitative tandem mass spectrometry using label-free quantitation based on normalized spectral counts. FASP depletes both low-molecular-weight and high-molecular-weight substances that could interfere with protein digestion and subsequent peptide separation and detection. Membrane proteins are notoriously difficult to characterize due to their amphipathic nature and association with lipids. The simple fractionation we employed effectively revealed an abundance of proteins from mitochondria and other membrane-bounded organelles. We further demonstrate that support vector machines (SVMs) offer categorical classification of proteomics data superior to that of parametric statistical methods such as analysis of variance (ANOVA). Specifically, SVMs were able to perfectly (100% correct) classify samples as either membrane or cytosolic fraction during cross-validation based on the expression of 242 proteins with the highest ANOVA p-values (i.e., those that were not significant for enrichment in either fraction). The white perch ovary cytosolic and membrane proteomes and transcriptome presented in this study can support future investigations into oogenesis and early embryogenesis of white perch and other members of the genus Morone.

  16. Fuzzy texture model and support vector machine hybridization for land cover classification of remotely sensed images

    NASA Astrophysics Data System (ADS)

    Jenicka, S.; Suruliandi, A.

    2014-01-01

    Accuracy of land cover classification in remotely sensed images relies on the utilized classifier and extracted features. Texture features are significant in land cover classification. Traditional texture models capture only patterns with discrete boundaries, whereas fuzzy patterns should be classified by assigning due weightage to uncertainty. When a remotely sensed image contains noise, the image may have fuzzy patterns characterizing land covers and fuzzy boundaries separating them. Therefore, a fuzzy texture model is proposed for the effective classification of land covers in remotely sensed images. The model uses a Sugeno fuzzy inference system. A support vector machine (SVM) is used for the precise, fast classification of image pixels. The model is a hybrid of a fuzzy texture model and an SVM for the land cover classification of remotely sensed images. To support this proposal, experiments were conducted in three steps. In the first two steps, the proposed texture model was validated for supervised classifications and segmentation of a standard benchmark database. In the third step, the land cover classification of a remotely sensed image of LISS-IV (an Indian remote sensing satellite) is performed using a multivariate version of the proposed model. The classified image has 95.54% classification accuracy.

  17. Discrimination of Maize Haploid Seeds from Hybrid Seeds Using Vis Spectroscopy and Support Vector Machine Method.

    PubMed

    Liu, Jin; Guo, Ting-ting; Li, Hao-chuan; Jia, Shi-qiang; Yan, Yan-lu; An, Dong; Zhang, Yao; Chen, Shao-jiang

    2015-11-01

    Doubled haploid (DH) lines are routinely applied in the hybrid maize breeding programs of many institutes and companies for their advantages of complete homozygosity and short breeding cycle length. A key issue in this approach is an efficient screening system to identify haploid kernels from the hybrid kernels crossed with the inducer. At present, haploid kernel selection is carried out manually using the"red-crown" kernel trait (the haploid kernel has a non-pigmented embryo and pigmented endosperm) controlled by the R1-nj gene. Manual selection is time-consuming and unreliable. Furthermore, the color of the kernel embryo is concealed by the pericarp. Here, we establish a novel approach for identifying maize haploid kernels based on visible (Vis) spectroscopy and support vector machine (SVM) pattern recognition technology. The diffuse transmittance spectra of individual kernels (141 haploid kernels and 141 hybrid kernels from 9 genotypes) were collected using a portable UV-Vis spectrometer and integrating sphere. The raw spectral data were preprocessed using smoothing and vector normalization methods. The desired feature wavelengths were selected based on the results of the Kolmogorov-Smirnov test. The wavelengths with p values above 0. 05 were eliminated because the distributions of absorbance data in these wavelengths show no significant difference between haploid and hybrid kernels. Principal component analysis was then performed to reduce the number of variables. The SVM model was evaluated by 9-fold cross-validation. In each round, samples of one genotype were used as the testing set, while those of other genotypes were used as the training set. The mean rate of correct discrimination was 92.06%. This result demonstrates the feasibility of using Vis spectroscopy to identify haploid maize kernels. The method would help develop a rapid and accurate automated screening-system for haploid kernels.

  18. Stellar Spectral Classification with Minimum Within-Class and Maximum Between-Class Scatter Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Zhong-Bao, Liu

    2016-06-01

    Support Vector Machine (SVM) is one of the important stellar spectral classification methods, and it is widely used in practice. But its classification efficiencies cannot be greatly improved because it does not take the class distribution into consideration. In view of this, a modified SVM named Minimum within-class and Maximum between-class scatter Support Vector Machine (MMSVM) is constructed to deal with the above problem. MMSVM merges the advantages of Fisher's Discriminant Analysis (FDA) and SVM, and the comparative experiments on the Sloan Digital Sky Survey (SDSS) show that MMSVM performs better than SVM.

  19. Support vector machine based decision for mechanical fault condition monitoring in induction motor using an advanced Hilbert-Park transform.

    PubMed

    Ben Salem, Samira; Bacha, Khmais; Chaari, Abdelkader

    2012-09-01

    In this work we suggest an original fault signature based on an improved combination of Hilbert and Park transforms. Starting from this combination we can create two fault signatures: Hilbert modulus current space vector (HMCSV) and Hilbert phase current space vector (HPCSV). These two fault signatures are subsequently analysed using the classical fast Fourier transform (FFT). The effects of mechanical faults on the HMCSV and HPCSV spectrums are described, and the related frequencies are determined. The magnitudes of spectral components, relative to the studied faults (air-gap eccentricity and outer raceway ball bearing defect), are extracted in order to develop the input vector necessary for learning and testing the support vector machine with an aim of classifying automatically the various states of the induction motor.

  20. DOA (Direction of Arrival) Estimation by Eigendecomposition Using Single Vector Lanczos’ Algorithm

    DTIC Science & Technology

    1989-06-01

    classical spectral csti;nurion theor, and how it applies to the linear arra-% problem (bea mforniing . SubxpIce metliods stairtine with Pisarcnko H...superposition applies , thus With two signials present the instanta- neous received sieeriie vector is a linear combination of the individual steering...polynomial p.(,u) are the required eigenvalues. For our appli - cation, we are only interested in a small range of eigenvalues at the lowest end of the

  1. A Battery-Aware Algorithm for Supporting Collaborative Applications

    NASA Astrophysics Data System (ADS)

    Rollins, Sami; Chang-Yit, Cheryl

    Battery-powered devices such as laptops, cell phones, and MP3 players are becoming ubiquitous. There are several significant ways in which the ubiquity of battery-powered technology impacts the field of collaborative computing. First, applications such as collaborative data gathering, become possible. Also, existing applications that depend on collaborating devices to maintain the system infrastructure must be reconsidered. Fundamentally, the problem lies in the fact that collaborative applications often require end-user computing devices to perform tasks that happen in the background and are not directly advantageous to the user. In this work, we seek to better understand how laptop users use the batteries attached to their devices and analyze a battery-aware alternative to Gnutella’s ultrapeer selection algorithm. Our algorithm provides insight into how system maintenance tasks can be allocated to battery-powered nodes. The most significant result of our study indicates that a large portion of laptop users can participate in system maintenance without sacrificing any of their battery. These results show great promise for existing collaborative applications as well as new applications, such as collaborative data gathering, that rely upon battery-powered devices.

  2. Curriculum Assessment Using Artificial Neural Network and Support Vector Machine Modeling Approaches: A Case Study. IR Applications. Volume 29

    ERIC Educational Resources Information Center

    Chen, Chau-Kuang

    2010-01-01

    Artificial Neural Network (ANN) and Support Vector Machine (SVM) approaches have been on the cutting edge of science and technology for pattern recognition and data classification. In the ANN model, classification accuracy can be achieved by using the feed-forward of inputs, back-propagation of errors, and the adjustment of connection weights. In…

  3. Automatic Recognition of Acute Myelogenous Leukemia in Blood Microscopic Images Using K-means Clustering and Support Vector Machine

    PubMed Central

    Kazemi, Fatemeh; Najafabadi, Tooraj Abbasian; Araabi, Babak Nadjar

    2016-01-01

    Acute myelogenous leukemia (AML) is a subtype of acute leukemia, which is characterized by the accumulation of myeloid blasts in the bone marrow. Careful microscopic examination of stained blood smear or bone marrow aspirate is still the most significant diagnostic methodology for initial AML screening and considered as the first step toward diagnosis. It is time-consuming and due to the elusive nature of the signs and symptoms of AML; wrong diagnosis may occur by pathologists. Therefore, the need for automation of leukemia detection has arisen. In this paper, an automatic technique for identification and detection of AML and its prevalent subtypes, i.e., M2–M5 is presented. At first, microscopic images are acquired from blood smears of patients with AML and normal cases. After applying image preprocessing, color segmentation strategy is applied for segmenting white blood cells from other blood components and then discriminative features, i.e., irregularity, nucleus-cytoplasm ratio, Hausdorff dimension, shape, color, and texture features are extracted from the entire nucleus in the whole images containing multiple nuclei. Images are classified to cancerous and noncancerous images by binary support vector machine (SVM) classifier with 10-fold cross validation technique. Classifier performance is evaluated by three parameters, i.e., sensitivity, specificity, and accuracy. Cancerous images are also classified into their prevalent subtypes by multi-SVM classifier. The results show that the proposed algorithm has achieved an acceptable performance for diagnosis of AML and its common subtypes. Therefore, it can be used as an assistant diagnostic tool for pathologists. PMID:27563575

  4. Estimating urban impervious surfaces from Landsat-5 TM imagery using multilayer perceptron neural network and support vector machine

    NASA Astrophysics Data System (ADS)

    Sun, Zhongchang; Guo, Huadong; Li, Xinwu; Lu, Linlin; Du, Xiaoping

    2011-01-01

    In recent years, the urban impervious surface has been recognized as a key quantifiable indicator in assessing urbanization impacts on environmental and ecological conditions. A surge of research interests has resulted in the estimation of urban impervious surface using remote sensing studies. The objective of this paper is to examine and compare the effectiveness of two algorithms for extracting impervious surfaces from Landsat TM imagery; the multilayer perceptron neural network (MLPNN) and the support vector machine (SVM). An accuracy assessment was performed using the high-resolution WorldView images. The root mean square error (RMSE), the mean absolute error (MAE), and the coefficient of determination (R2) were calculated to validate the classification performance and accuracies of MLPNN and SVM. For the MLPNN model, the RMSE, MAE, and R2 were 17.18%, 11.10%, and 0.8474, respectively. The SVM yielded a result with an RMSE of 13.75%, an MAE of 8.92%, and an R2 of 0.9032. The results indicated that SVM performance was superior to that of MLPNN in impervious surface classification. To further evaluate the performance of MLPNN and SVM in handling the mixed-pixels, an accuracy assessment was also conducted for the selected test areas, including commercial, residential, and rural areas. Our results suggested that SVM had better capability in handling the mixed-pixel problem than MLPNN. The superior performance of SVM over MLPNN is mainly attributed to the SVM's capability of deriving the global optimum and handling the over-fitting problem by suitable parameter selection. Overall, SVM provides an efficient and useful method for estimating the impervious surface.

  5. Snow Depth Estimation Using Time Series Passive Microwave Imagery via Genetically Support Vector Regression (case Study Urmia Lake Basin)

    NASA Astrophysics Data System (ADS)

    Zahir, N.; Mahdi, H.

    2015-12-01

    Lake Urmia is one of the most important ecosystems of the country which is on the verge of elimination. Many factors contribute to this crisis among them is the precipitation, paly important roll. Precipitation has many forms one of them is in the form of snow. The snow on Sahand Mountain is one of the main and important sources of the Lake Urmia's water. Snow Depth (SD) is vital parameters for estimating water balance for future year. In this regards, this study is focused on SD parameter using Special Sensor Microwave/Imager (SSM/I) instruments on board the Defence Meteorological Satellite Program (DMSP) F16. The usual statistical methods for retrieving SD include linear and non-linear ones. These methods used least square procedure to estimate SD model. Recently, kernel base methods widely used for modelling statistical problem. From these methods, the support vector regression (SVR) is achieved the high performance for modelling the statistical problem. Examination of the obtained data shows the existence of outlier in them. For omitting these outliers, wavelet denoising method is applied. After the omission of the outliers it is needed to select the optimum bands and parameters for SVR. To overcome these issues, feature selection methods have shown a direct effect on improving the regression performance. We used genetic algorithm (GA) for selecting suitable features of the SSMI bands in order to estimate SD model. The results for the training and testing data in Sahand mountain is [R²_TEST=0.9049 and RMSE= 6.9654] that show the high SVR performance.

  6. Development of a Support Vector Machine - Based Image Analysis System for Focal Liver Lesions Classification in Magnetic Resonance Images

    NASA Astrophysics Data System (ADS)

    Gatos, I.; Tsantis, S.; Karamesini, M.; Skouroliakou, A.; Kagadis, G.

    2015-09-01

    Purpose: The design and implementation of a computer-based image analysis system employing the support vector machine (SVM) classifier system for the classification of Focal Liver Lesions (FLLs) on routine non-enhanced, T2-weighted Magnetic Resonance (MR) images. Materials and Methods: The study comprised 92 patients; each one of them has undergone MRI performed on a Magnetom Concerto (Siemens). Typical signs on dynamic contrast-enhanced MRI and biopsies were employed towards a three class categorization of the 92 cases: 40-benign FLLs, 25-Hepatocellular Carcinomas (HCC) within Cirrhotic liver parenchyma and 27-liver metastases from Non-Cirrhotic liver. Prior to FLLs classification an automated lesion segmentation algorithm based on Marcov Random Fields was employed in order to acquire each FLL Region of Interest. 42 texture features derived from the gray-level histogram, co-occurrence and run-length matrices and 12 morphological features were obtained from each lesion. Stepwise multi-linear regression analysis was utilized to avoid feature redundancy leading to a feature subset that fed the multiclass SVM classifier designed for lesion classification. SVM System evaluation was performed by means of leave-one-out method and ROC analysis. Results: Maximum accuracy for all three classes (90.0%) was obtained by means of the Radial Basis Kernel Function and three textural features (Inverse- Different-Moment, Sum-Variance and Long-Run-Emphasis) that describe lesion's contrast, variability and shape complexity. Sensitivity values for the three classes were 92.5%, 81.5% and 96.2% respectively, whereas specificity values were 94.2%, 95.3% and 95.5%. The AUC value achieved for the selected subset was 0.89 with 0.81 - 0.94 confidence interval. Conclusion: The proposed SVM system exhibit promising results that could be utilized as a second opinion tool to the radiologist in order to decrease the time/cost of diagnosis and the need for patients to undergo invasive examination.

  7. Rolling bearing fault detection and diagnosis based on composite multiscale fuzzy entropy and ensemble support vector machines

    NASA Astrophysics Data System (ADS)

    Zheng, Jinde; Pan, Haiyang; Cheng, Junsheng

    2017-02-01

    To timely detect the incipient failure of rolling bearing and find out the accurate fault location, a novel rolling bearing fault diagnosis method is proposed based on the composite multiscale fuzzy entropy (CMFE) and ensemble support vector machines (ESVMs). Fuzzy entropy (FuzzyEn), as an improvement of sample entropy (SampEn), is a new nonlinear method for measuring the complexity of time series. Since FuzzyEn (or SampEn) in single scale can not reflect the complexity effectively, multiscale fuzzy entropy (MFE) is developed by defining the FuzzyEns of coarse-grained time series, which represents the system dynamics in different scales. However, the MFE values will be affected by the data length, especially when the data are not long enough. By combining information of multiple coarse-grained time series in the same scale, the CMFE algorithm is proposed in this paper to enhance MFE, as well as FuzzyEn. Compared with MFE, with the increasing of scale factor, CMFE obtains much more stable and consistent values for a short-term time series. In this paper CMFE is employed to measure the complexity of vibration signals of rolling bearings and is applied to extract the nonlinear features hidden in the vibration signals. Also the physically meanings of CMFE being suitable for rolling bearing fault diagnosis are explored. Based on these, to fulfill an automatic fault diagnosis, the ensemble SVMs based multi-classifier is constructed for the intelligent classification of fault features. Finally, the proposed fault diagnosis method of rolling bearing is applied to experimental data analysis and the results indicate that the proposed method could effectively distinguish different fault categories and severities of rolling bearings.

  8. A novel fractal approach for predicting G-protein-coupled receptors and their subfamilies with support vector machines.

    PubMed

    Nie, Guoping; Li, Yong; Wang, Feichi; Wang, Siwen; Hu, Xuehai

    2015-01-01

    G-protein-coupled receptors (GPCRs) are seven membrane-spanning proteins and regulate many important physiological processes, such as vision, neurotransmission, immune response and so on. GPCRs-related pathways are the targets of a large number of marketed drugs. Therefore, the design of a reliable computational model for predicting GPCRs from amino acid sequence has long been a significant biomedical problem. Chaos game representation (CGR) reveals the fractal patterns hidden in protein sequences, and then fractal dimension (FD) is an important feature of these highly irregular geometries with concise mathematical expression. Here, in order to extract important features from GPCR protein sequences, CGR algorithm, fractal dimension and amino acid composition (AAC) are employed to formulate the numerical features of protein samples. Four groups of features are considered, and each group is evaluated by support vector machine (SVM) and 10-fold cross-validation test. To test the performance of the present method, a new non-redundant dataset was built based on latest GPCRDB database. Comparing the results of numerical experiments, the group of combined features with AAC and FD gets the best result, the accuracy is 99.22% and Matthew's correlation coefficient (MCC) is 0.9845 for identifying GPCRs from non-GPCRs. Moreover, if it is classified as a GPCR, it will be further put into the second level, which will classify a GPCR into one of the five main subfamilies. At this level, the group of combined features with AAC and FD also gets best accuracy 85.73%. Finally, the proposed predictor is also compared with existing methods and shows better performances.

  9. Comparative analyses between retained introns and constitutively spliced introns in Arabidopsis thaliana using random forest and support vector machine.

    PubMed

    Mao, Rui; Raj Kumar, Praveen Kumar; Guo, Cheng; Zhang, Yang; Liang, Chun

    2014-01-01

    One of the important modes of pre-mRNA post-transcriptional modification is alternative splicing. Alternative splicing allows creation of many distinct mature mRNA transcripts from a single gene by utilizing different splice sites. In plants like Arabidopsis thaliana, the most common type of alternative splicing is intron retention. Many studies in the past focus on positional distribution of retained introns (RIs) among different genic regions and their expression regulations, while little systematic classification of RIs from constitutively spliced introns (CSIs) has been conducted using machine learning approaches. We used random forest and support vector machine (SVM) with radial basis kernel function (RBF) to differentiate these two types of introns in Arabidopsis. By comparing coordinates of introns of all annotated mRNAs from TAIR10, we obtained our high-quality experimental data. To distinguish RIs from CSIs, We investigated the unique characteristics of RIs in comparison with CSIs and finally extracted 37 quantitative features: local and global nucleotide sequence features of introns, frequent motifs, the signal strength of splice sites, and the similarity between sequences of introns and their flanking regions. We demonstrated that our proposed feature extraction approach was more accurate in effectively classifying RIs from CSIs in comparison with other four approaches. The optimal penalty parameter C and the RBF kernel parameter [Formula: see text] in SVM were set based on particle swarm optimization algorithm (PSOSVM). Our classification performance showed F-Measure of 80.8% (random forest) and 77.4% (PSOSVM). Not only the basic sequence features and positional distribution characteristics of RIs were obtained, but also putative regulatory motifs in intron splicing were predicted based on our feature extraction approach. Clearly, our study will facilitate a better understanding of underlying mechanisms involved in intron retention.

  10. Time-frequency atoms-driven support vector machine method for bearings incipient fault diagnosis

    NASA Astrophysics Data System (ADS)

    Liu, Ruonan; Yang, Boyuan; Zhang, Xiaoli; Wang, Shibin; Chen, Xuefeng

    2016-06-01

    Bearing plays an essential role in the performance of mechanical system and fault diagnosis of mechanical system is inseparably related to the diagnosis of the bearings. However, it is a challenge to detect weak fault from the complex and non-stationary vibration signals with a large amount of noise, especially at the early stage. To improve the anti-noise ability and detect incipient fault, a novel fault detection method based on a short-time matching method and Support Vector Machine (SVM) is proposed. In this paper, the mechanism of roller bearing is discussed and the impact time frequency dictionary is constructed targeting the multi-component characteristics and fault feature of roller bearing fault vibration signals. Then, a short-time matching method is described and the simulation results show the excellent feature extraction effects in extremely low signal-to-noise ratio (SNR). After extracting the most relevance atoms as features, SVM was trained for fault recognition. Finally, the practical bearing experiments indicate that the proposed method is more effective and efficient than the traditional methods in weak impact signal oscillatory characters extraction and incipient fault diagnosis.

  11. Biomarkers of Eating Disorders Using Support Vector Machine Analysis of Structural Neuroimaging Data: Preliminary Results

    PubMed Central

    Cerasa, Antonio; Castiglioni, Isabella; Salvatore, Christian; Funaro, Angela; Martino, Iolanda; Alfano, Stefania; Donzuso, Giulia; Perrotta, Paolo; Gioia, Maria Cecilia; Gilardi, Maria Carla; Quattrone, Aldo

    2015-01-01

    Presently, there are no valid biomarkers to identify individuals with eating disorders (ED). The aim of this work was to assess the feasibility of a machine learning method for extracting reliable neuroimaging features allowing individual categorization of patients with ED. Support Vector Machine (SVM) technique, combined with a pattern recognition method, was employed utilizing structural magnetic resonance images. Seventeen females with ED (six with diagnosis of anorexia nervosa and 11 with bulimia nervosa) were compared against 17 body mass index-matched healthy controls (HC). Machine learning allowed individual diagnosis of ED versus HC with an Accuracy ≥ 0.80. Voxel-based pattern recognition analysis demonstrated that voxels influencing the classification Accuracy involved the occipital cortex, the posterior cerebellar lobule, precuneus, sensorimotor/premotor cortices, and the medial prefrontal cortex, all critical regions known to be strongly involved in the pathophysiological mechanisms of ED. Although these findings should be considered preliminary given the small size investigated, SVM analysis highlights the role of well-known brain regions as possible biomarkers to distinguish ED from HC at an individual level, thus encouraging the translational implementation of this new multivariate approach in the clinical practice. PMID:26648660

  12. Identifying Sugarcane Plantation using LANDSAT-8 Images with Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Mulyono, Sidik; Nadirah

    2016-11-01

    The use of remote sensing has been highly beneficial in the identification and also mapping and monitoring of plantations. The identification of plantations includes the physiology, disease, environmental conditions, and also the production and time of harvesting. It can be done by doing satellite imagery classification. However, to reach the final result of identification, it could be carried out by getting the solid ground truth information. This paper will discuss about detection of sugarcane plantation in Magetan district of East Java province area by using LANDSAT-8 image with specific approach of phenology profile using EVI (Enhanced Vegetation Index) value from satellite data, as an alternative vegetation index to address some of the limitation of the NDVI (Normalized Difference Vegetation Index). Method of classification used for detecting sugarcane plantation is Support Vector machines (SVM), which is a promising machine learning methodology. It has the ability to generalize well even with limited training samples and complex data. A number of samples of phenology profile for training purpose using SVMs are obtained from the area that identified as sugarcane plantation during field campaign in 2015. The same manner is also done for the objects instead of sugarcane plantation with relatively the same number of samples. The result of the research shows that Remote Sensing is able to detect the sugarcane plantation cross the district with good accuracy.

  13. Hidden Markov model and support vector machine based decoding of finger movements using electrocorticography

    NASA Astrophysics Data System (ADS)

    Wissel, Tobias; Pfeiffer, Tim; Frysch, Robert; Knight, Robert T.; Chang, Edward F.; Hinrichs, Hermann; Rieger, Jochem W.; Rose, Georg

    2013-10-01

    Objective. Support vector machines (SVM) have developed into a gold standard for accurate classification in brain-computer interfaces (BCI). The choice of the most appropriate classifier for a particular application depends on several characteristics in addition to decoding accuracy. Here we investigate the implementation of hidden Markov models (HMM) for online BCIs and discuss strategies to improve their performance. Approach. We compare the SVM, serving as a reference, and HMMs for classifying discrete finger movements obtained from electrocorticograms of four subjects performing a finger tapping experiment. The classifier decisions are based on a subset of low-frequency time domain and high gamma oscillation features. Main results. We show that decoding optimization between the two approaches is due to the way features are extracted and selected and less dependent on the classifier. An additional gain in HMM performance of up to 6% was obtained by introducing model constraints. Comparable accuracies of up to 90% were achieved with both SVM and HMM with the high gamma cortical response providing the most important decoding information for both techniques. Significance. We discuss technical HMM characteristics and adaptations in the context of the presented data as well as for general BCI applications. Our findings suggest that HMMs and their characteristics are promising for efficient online BCIs.

  14. Support Vector Machine Classification of Major Depressive Disorder Using Diffusion-Weighted Neuroimaging and Graph Theory

    PubMed Central

    Sacchet, Matthew D.; Prasad, Gautam; Foland-Ross, Lara C.; Thompson, Paul M.; Gotlib, Ian H.

    2015-01-01

    Recently, there has been considerable interest in understanding brain networks in major depressive disorder (MDD). Neural pathways can be tracked in the living brain using diffusion-weighted imaging (DWI); graph theory can then be used to study properties of the resulting fiber networks. To date, global abnormalities have not been reported in tractography-based graph metrics in MDD, so we used a machine learning approach based on “support vector machines” to differentiate depressed from healthy individuals based on multiple brain network properties. We also assessed how important specific graph metrics were for this differentiation. Finally, we conducted a local graph analysis to identify abnormal connectivity at specific nodes of the network. We were able to classify depression using whole-brain graph metrics. Small-worldness was the most useful graph metric for classification. The right pars orbitalis, right inferior parietal cortex, and left rostral anterior cingulate all showed abnormal network connectivity in MDD. This is the first use of structural global graph metrics to classify depressed individuals. These findings highlight the importance of future research to understand network properties in depression across imaging modalities, improve classification results, and relate network alterations to psychiatric symptoms, medication, and comorbidities. PMID:25762941

  15. An all-sky support vector machine selection of WISE YSO candidates

    NASA Astrophysics Data System (ADS)

    Marton, G.; Tóth, L. V.; Paladini, R.; Kun, M.; Zahorecz, S.; McGehee, P.; Kiss, Cs.

    2016-06-01

    We explored the AllWISE catalogue of the Wide-field Infrared Survey Explorer (WISE) mission and identified Young Stellar Object (YSO) candidates. Reliable 2MASS and WISE photometric data combined with Planck dust opacity values were used to build our data set and to find the best classification scheme. A sophisticated statistical method, the support vector machine (SVM) is used to analyse the multidimensional data space and to remove source types identified as contaminants (extragalactic sources, main-sequence stars, evolved stars and sources related to the interstellar medium). Objects listed in the SIMBAD data base are used to identify the already known sources and to train our method. A new all-sky selection of 133 980 Class I/II YSO candidates is presented. The estimated contamination was found to be well below 1 per cent based on comparison with our SIMBAD training set. We also compare our results to that of existing methods and catalogues. The SVM selection process successfully identified >90 per cent of the Class I/II YSOs based on comparison with photometric and spectroscopic YSO catalogues. Our conclusion is that by using the SVM, our classification is able to identify more known YSOs of the training sample than other methods based on colour-colour and magnitude-colour selection. The distribution of the YSO candidates well correlates with that of the Planck Galactic Cold Clumps in the Taurus-Auriga-Perseus-California region.

  16. Adaptive two-pass median filter based on support vector machines for image restoration.

    PubMed

    Lin, Tzu-Chao; Yu, Pao-Ta

    2004-02-01

    In this letter, a novel adaptive filter, the adaptive two-pass median (ATM) filter based on support vector machines (SVMs), is proposed to preserve more image details while effectively suppressing impulse noise for image restoration. The proposed filter is composed of a noise decision maker and two-pass median filters. Our new approach basically uses an SVM impulse detector to judge whether the input pixel is noise. If a pixel is detected as a corrupted pixel, the noise-free reduction median filter will be triggered to replace it. Otherwise, it remains unchanged. Then, to improve the quality of the restored image, a decision impulse filter is put to work in the second-pass filtering procedure. As for the noise suppressing both fixed-valued and random-valued impulses without degrading the quality of the fine details, the results of our extensive experiments demonstrate that the proposed filter outperforms earlier median-based filters in the literature. Our new filter also provides excellent robustness at various percentages of impulse noise.

  17. Inferring the location of buried UXO using a support vector machine

    NASA Astrophysics Data System (ADS)

    Fernández, Juan Pablo; Sun, Keli; Barrowes, Benjamin; O'Neill, Kevin; Shamatava, Irma; Shubitidze, Fridon; Paulsen, Keith D.

    2007-04-01

    The identification of unexploded ordnance (UXO) using electromagnetic-induction (EMI) sensors involves two essentially independent steps: Each anomaly detected by the sensor has to be located fairly accurately, and its orientation determined, before one can try to find size/shape/composition properties that identify the object uniquely. The dependence on the latter parameters is linear, and can be solved for efficiently using for example the Normalized Surface Magnetic Charge model. The location and orientation, on the other hand, have a nonlinear effect on the measurable scattered field, making their determination much more time-consuming and thus hampering the ability to carry out discrimination in real time. In particular, it is difficult to resolve for depth when one has measurements taken at only one instrument elevation. In view of the difficulties posed by direct inversion, we propose using a Support Vector Machine (SVM) to infer the location and orientation of buried UXO. SVMs are a method of supervised machine learning: the user can train a computer program by feeding it features of representative examples, and the machine, in turn, can generalize this information by finding underlying patterns and using them to classify or regress unseen instances. In this work we train an SVM using measured-field information, for both synthetic and experimental data, and evaluate its ability to predict the location of different buried objects to reasonable accuracy. We explore various combinations of input data and learning parameters in search of an optimal predictive configuration.

  18. Modeling of variable speed refrigerated display cabinets based on adaptive support vector machine

    NASA Astrophysics Data System (ADS)

    Cao, Zhikun; Han, Hua; Gu, Bo

    2010-01-01

    In this paper the adaptive support vector machine (ASVM) method is introduced to the field of intelligent modeling of refrigerated display cabinets and used to construct a highly precise mathematical model of their performance. A model for a variable speed open vertical display cabinet was constructed using preprocessing techniques for measured data, including the elimination of outlying data points by the use of an exponential weighted moving average (EWMA). Using dynamic loss coefficient adjustment, the adaptation of the SVM for use in this application was achieved. From there, the object function for energy use per unit of display area total energy consumption (TEC)/total display area (TDA) was constructed and solved using the ASVM method. When compared to the results achieved using a back-propagation neural network (BPNN) model, the ASVM model for the refrigerated display cabinet was characterized by its simple structure, fast convergence speed and high prediction accuracy. The ASVM model also has better noise rejection properties than that of original SVM model. It was revealed by the theoretical analysis and experimental results presented in this paper that it is feasible to model of the display cabinet built using the ASVM method.

  19. BacHbpred: Support Vector Machine Methods for the Prediction of Bacterial Hemoglobin-Like Proteins

    PubMed Central

    Selvaraj, MuthuKrishnan; Puri, Munish; Dikshit, Kanak L.; Lefevre, Christophe

    2016-01-01

    The recent upsurge in microbial genome data has revealed that hemoglobin-like (HbL) proteins may be widely distributed among bacteria and that some organisms may carry more than one HbL encoding gene. However, the discovery of HbL proteins has been limited to a small number of bacteria only. This study describes the prediction of HbL proteins and their domain classification using a machine learning approach. Support vector machine (SVM) models were developed for predicting HbL proteins based upon amino acid composition (AC), dipeptide composition (DC), hybrid method (AC + DC), and position specific scoring matrix (PSSM). In addition, we introduce for the first time a new prediction method based on max to min amino acid residue (MM) profiles. The average accuracy, standard deviation (SD), false positive rate (FPR), confusion matrix, and receiver operating characteristic (ROC) were analyzed. We also compared the performance of our proposed models in homology detection databases. The performance of the different approaches was estimated using fivefold cross-validation techniques. Prediction accuracy was further investigated through confusion matrix and ROC curve analysis. All experimental results indicate that the proposed BacHbpred can be a perspective predictor for determination of HbL related proteins. BacHbpred, a web tool, has been developed for HbL prediction. PMID:27034664

  20. Automated foveola localization in retinal 3D-OCT images using structural support vector machine prediction.

    PubMed

    Liu, Yu-Ying; Ishikawa, Hiroshi; Chen, Mei; Wollstein, Gadi; Schuman, Joel S; Rehg, James M

    2012-01-01

    We develop an automated method to determine the foveola location in macular 3D-OCT images in either healthy or pathological conditions. Structural Support Vector Machine (S-SVM) is trained to directly predict the location of the foveola, such that the score at the ground truth position is higher than that at any other position by a margin scaling with the associated localization loss. This S-SVM formulation directly minimizes the empirical risk of localization error, and makes efficient use of all available training data. It deals with the localization problem in a more principled way compared to the conventional binary classifier learning that uses zero-one loss and random sampling of negative examples. A total of 170 scans were collected for the experiment. Our method localized 95.1% of testing scans within the anatomical area of the foveola. Our experimental results show that the proposed method can effectively identify the location of the foveola, facilitating diagnosis around this important landmark.

  1. Phylogeography and support vector machine classification of colour variation in panther chameleons.

    PubMed

    Grbic, Djordje; Saenko, Suzanne V; Randriamoria, Toky M; Debry, Adrien; Raselimanana, Achille P; Milinkovitch, Michel C

    2015-07-01

    Lizards and snakes exhibit colour variation of adaptive value for thermoregulation, camouflage, predator avoidance, sexual selection and speciation. Furcifer pardalis, the panther chameleon, is one of the most spectacular reptilian endemic species in Madagascar, with pronounced sexual dimorphism and exceptionally large intraspecific variation in male coloration. We perform here an integrative analysis of molecular phylogeography and colour variation after collecting high-resolution colour photographs and blood samples from 324 F. pardalis individuals in locations spanning the whole species distribution. First, mitochondrial and nuclear DNA sequence analyses uncover strong genetic structure among geographically restricted haplogroups, revealing limited gene flow among populations. Bayesian coalescent modelling suggests that most of the mitochondrial haplogroups could be considered as separate species. Second, using a supervised multiclass support vector machine approach on five anatomical components, we identify patterns in 3D colour space that efficiently predict assignment of male individuals to mitochondrial haplogroups. We converted the results of this analysis into a simple visual classification key that can assist trade managers to avoid local population overharvesting.

  2. Density-Dependent Quantized Least Squares Support Vector Machine for Large Data Sets.

    PubMed

    Nan, Shengyu; Sun, Lei; Chen, Badong; Lin, Zhiping; Toh, Kar-Ann

    2017-01-01

    Based on the knowledge that input data distribution is important for learning, a data density-dependent quantization scheme (DQS) is proposed for sparse input data representation. The usefulness of the representation scheme is demonstrated by using it as a data preprocessing unit attached to the well-known least squares support vector machine (LS-SVM) for application on big data sets. Essentially, the proposed DQS adopts a single shrinkage threshold to obtain a simple quantization scheme, which adapts its outputs to input data density. With this quantization scheme, a large data set is quantized to a small subset where considerable sample size reduction is generally obtained. In particular, the sample size reduction can save significant computational cost when using the quantized subset for feature approximation via the Nyström method. Based on the quantized subset, the approximated features are incorporated into LS-SVM to develop a data density-dependent quantized LS-SVM (DQLS-SVM), where an analytic solution is obtained in the primal solution space. The developed DQLS-SVM is evaluated on synthetic and benchmark data with particular emphasis on large data sets. Extensive experimental results show that the learning machine incorporating DQS attains not only high computational efficiency but also good generalization performance.

  3. Automatic detection of sleep apnea based on EEG detrended fluctuation analysis and support vector machine.

    PubMed

    Zhou, Jing; Wu, Xiao-ming; Zeng, Wei-jie

    2015-12-01

    Sleep apnea syndrome (SAS) is prevalent in individuals and recently, there are many studies focus on using simple and efficient methods for SAS detection instead of polysomnography. However, not much work has been done on using nonlinear behavior of the electroencephalogram (EEG) signals. The purpose of this study is to find a novel and simpler method for detecting apnea patients and to quantify nonlinear characteristics of the sleep apnea. 30 min EEG scaling exponents that quantify power-law correlations were computed using detrended fluctuation analysis (DFA) and compared between six SAS and six healthy subjects during sleep. The mean scaling exponents were calculated every 30 s and 360 control values and 360 apnea values were obtained. These values were compared between the two groups and support vector machine (SVM) was used to classify apnea patients. Significant difference was found between EEG scaling exponents of the two groups (p < 0.001). SVM was used and obtained high and consistent recognition rate: average classification accuracy reached 95.1% corresponding to the sensitivity 93.2% and specificity 98.6%. DFA of EEG is an efficient and practicable method and is helpful clinically in diagnosis of sleep apnea.

  4. A Personalized Electronic Movie Recommendation System Based on Support Vector Machine and Improved Particle Swarm Optimization

    PubMed Central

    Wang, Xibin; Luo, Fengji; Qian, Ying; Ranzi, Gianluca

    2016-01-01

    With the rapid development of ICT and Web technologies, a large an amount of information is becoming available and this is producing, in some instances, a condition of information overload. Under these conditions, it is difficult for a person to locate and access useful information for making decisions. To address this problem, there are information filtering systems, such as the personalized recommendation system (PRS) considered in this paper, that assist a person in identifying possible products or services of interest based on his/her preferences. Among available approaches, collaborative Filtering (CF) is one of the most widely used recommendation techniques. However, CF has some limitations, e.g., the relatively simple similarity calculation, cold start problem, etc. In this context, this paper presents a new regression model based on the support vector machine (SVM) classification and an improved PSO (IPSO) for the development of an electronic movie PRS. In its implementation, a SVM classification model is first established to obtain a preliminary movie recommendation list based on which a SVM regression model is applied to predict movies’ ratings. The proposed PRS not only considers the movie’s content information but also integrates the users’ demographic and behavioral information to better capture the users’ interests and preferences. The efficiency of the proposed method is verified by a series of experiments based on the MovieLens benchmark data set. PMID:27898691

  5. Evaluation models for soil nutrient based on support vector machine and artificial neural networks.

    PubMed

    Li, Hao; Leng, Weijia; Zhou, Yibing; Chen, Fudi; Xiu, Zhilong; Yang, Dazuo

    2014-01-01

    Soil nutrient is an important aspect that contributes to the soil fertility and environmental effects. Traditional evaluation approaches of soil nutrient are quite hard to operate, making great difficulties in practical applications. In this paper, we present a series of comprehensive evaluation models for soil nutrient by using support vector machine (SVM), multiple linear regression (MLR), and artificial neural networks (ANNs), respectively. We took the content of organic matter, total nitrogen, alkali-hydrolysable nitrogen, rapidly available phosphorus, and rapidly available potassium as independent variables, while the evaluation level of soil nutrient content was taken as dependent variable. Results show that the average prediction accuracies of SVM models are 77.87% and 83.00%, respectively, while the general regression neural network (GRNN) model's average prediction accuracy is 92.86%, indicating that SVM and GRNN models can be used effectively to assess the levels of soil nutrient with suitable dependent variables. In practical applications, both SVM and GRNN models can be used for determining the levels of soil nutrient.

  6. Using support vector machine for improving protein-protein interaction prediction utilizing domain interactions

    SciTech Connect

    Singhal, Mudita; Shah, Anuj R.; Brown, Roslyn N.; Adkins, Joshua N.

    2010-10-02

    Understanding protein interactions is essential to gain insights into the biological processes at the whole cell level. The high-throughput experimental techniques for determining protein-protein interactions (PPI) are error prone and expensive with low overlap amongst them. Although several computational methods have been proposed for predicting protein interactions there is definite room for improvement. Here we present DomainSVM, a predictive method for PPI that uses computationally inferred domain-domain interaction values in a Support Vector Machine framework to predict protein interactions. DomainSVM method utilizes evidence of multiple interacting domains to predict a protein interaction. It outperforms existing methods of PPI prediction by achieving very high explanation ratios, precision, specificity, sensitivity and F-measure values in a 10 fold cross-validation study conducted on the positive and negative PPIs in yeast. A Functional comparison study using GO annotations on the positive and the negative test sets is presented in addition to discussing novel PPI predictions in Salmonella Typhimurium.

  7. Detection and classification of organophosphate nerve agent simulants using support vector machines with multiarray sensors.

    PubMed

    Sadik, Omowunmi; Land, Walker H; Wanekaya, Adam K; Uematsu, Michiko; Embrechts, Mark J; Wong, Lut; Leibensperger, Dale; Volykin, Alex

    2004-01-01

    The need for rapid and accurate detection systems is expanding and the utilization of cross-reactive sensor arrays to detect chemical warfare agents in conjunction with novel computational techniques may prove to be a potential solution to this challenge. We have investigated the detection, prediction, and classification of various organophosphate (OP) nerve agent simulants using sensor arrays with a novel learning scheme known as support vector machines (SVMs). The OPs tested include parathion, malathion, dichlorvos, trichlorfon, paraoxon, and diazinon. A new data reduction software program was written in MATLAB V. 6.1 to extract steady-state and kinetic data from the sensor arrays. The program also creates training sets by mixing and randomly sorting any combination of data categories into both positive and negative cases. The resulting signals were fed into SVM software for "pairwise" and "one" vs all classification. Experimental results for this new paradigm show a significant increase in classification accuracy when compared to artificial neural networks (ANNs). Three kernels, the S2000, the polynomial, and the Gaussian radial basis function (RBF), were tested and compared to the ANN. The following measures of performance were considered in the pairwise classification: receiver operating curve (ROC) Az indices, specificities, and positive predictive values (PPVs). The ROC Az) values, specifities, and PPVs increases ranged from 5% to 25%, 108% to 204%, and 13% to 54%, respectively, in all OP pairs studied when compared to the ANN baseline. Dichlorvos, trichlorfon, and paraoxon were perfectly predicted. Positive prediction for malathion was 95%.

  8. Automatic segmentation of lung nodules with growing neural gas and support vector machine.

    PubMed

    Magalhães Barros Netto, Stelmo; Corrêa Silva, Aristófanes; Acatauassú Nunes, Rodolfo; Gattass, Marcelo

    2012-11-01

    Lung cancer is distinguished by presenting one of the highest incidences and one of the highest rates of mortality among all other types of cancer. Unfortunately, this disease is often diagnosed late, affecting the treatment outcome. In order to help specialists in the search and identification of lung nodules in tomographic images, many research centers have developed computer-aided detection systems (CAD systems) to automate procedures. This work seeks to develop a methodology for automatic detection of lung nodules. The proposed method consists of the acquisition of computerized tomography images of the lung, the reduction of the volume of interest through techniques for the extraction of the thorax, extraction of the lung, and reconstruction of the original shape of the parenchyma. After that, growing neural gas (GNG) is applied to constrain even more the structures that are denser than the pulmonary parenchyma (nodules, blood vessels, bronchi, etc.). The next stage is the separation of the structures resembling lung nodules from other structures, such as vessels and bronchi. Finally, the structures are classified as either nodule or non-nodule, through shape and texture measurements together with support vector machine. The methodology ensures that nodules of reasonable size be found with 86% sensitivity and 91% specificity. This results in a mean accuracy of 91% for 10 experiments of training and testing in a sample of 48 nodules occurring in 29 exams. The rate of false positives per exam was of 0.138, for the 29 exams analyzed.

  9. Monitoring of cigarette smoking using wearable sensors and support vector machines.

    PubMed

    Lopez-Meyer, Paulo; Tiffany, Stephen; Patil, Yogendra; Sazonov, Edward

    2013-07-01

    Cigarette smoking is a serious risk factor for cancer, cardiovascular, and pulmonary diseases. Current methods of monitoring of cigarette smoking habits rely on various forms of self-report that are prone to errors and under reporting. This paper presents a first step in the development of a methodology for accurate and objective assessment of smoking using noninvasive wearable sensors (Personal Automatic Cigarette Tracker-PACT) by demonstrating feasibility of automatic recognition of smoke inhalations from signals arising from continuous monitoring of breathing and hand-to-mouth gestures by support vector machine classifiers. The performance of subject-dependent (individually calibrated) models was compared to performance of subject-independent (group) classification models. The models were trained and validated on a dataset collected from 20 subjects performing 12 different activities representative of everyday living (total duration 19.5 h or 21,411 breath cycles). Precision and recall were used as the accuracy metrics. Group models obtained 87% and 80% of average precision and recall, respectively. Individual models resulted in 90% of average precision and recall, indicating a significant presence of individual traits in signal patterns. These results suggest the feasibility of monitoring cigarette smoking by means of a wearable and noninvasive sensor system in free living conditions.

  10. An Enhanced MEMS Error Modeling Approach Based on Nu-Support Vector Regression

    PubMed Central

    Bhatt, Deepak; Aggarwal, Priyanka; Bhattacharya, Prabir; Devabhaktuni, Vijay

    2012-01-01

    Micro Electro Mechanical System (MEMS)-based inertial sensors have made possible the development of a civilian land vehicle navigation system by offering a low-cost solution. However, the accurate modeling of the MEMS sensor errors is one of the most challenging tasks in the design of low-cost navigation systems. These sensors exhibit significant errors like biases, drift, noises; which are negligible for higher grade units. Different conventional techniques utilizing the Gauss Markov model and neural network method have been previously utilized to model the errors. However, Gauss Markov model works unsatisfactorily in the case of MEMS units due to the presence of high inherent sensor errors. On the other hand, modeling the random drift utilizing Neural Network (NN) is time consuming, thereby affecting its real-time implementation. We overcome these existing drawbacks by developing an enhanced Support Vector Machine (SVM) based error model. Unlike NN, SVMs do not suffer from local minimisation or over-fitting problems and delivers a reliable global solution. Experimental results proved that the proposed SVM approach reduced the noise standard deviation by 10–35% for gyroscopes and 61–76% for accelerometers. Further, positional error drifts under static conditions improved by 41% and 80% in comparison to NN and GM approaches. PMID:23012552

  11. Support vector machine classification of major depressive disorder using diffusion-weighted neuroimaging and graph theory.

    PubMed

    Sacchet, Matthew D; Prasad, Gautam; Foland-Ross, Lara C; Thompson, Paul M; Gotlib, Ian H

    2015-01-01

    Recently, there has been considerable interest in understanding brain networks in major depressive disorder (MDD). Neural pathways can be tracked in the living brain using diffusion-weighted imaging (DWI); graph theory can then be used to study properties of the resulting fiber networks. To date, global abnormalities have not been reported in tractography-based graph metrics in MDD, so we used a machine learning approach based on "support vector machines" to differentiate depressed from healthy individuals based on multiple brain network properties. We also assessed how important specific graph metrics were for this differentiation. Finally, we conducted a local graph analysis to identify abnormal connectivity at specific nodes of the network. We were able to classify depression using whole-brain graph metrics. Small-worldness was the most useful graph metric for classification. The right pars orbitalis, right inferior parietal cortex, and left rostral anterior cingulate all showed abnormal network connectivity in MDD. This is the first use of structural global graph metrics to classify depressed individuals. These findings highlight the importance of future research to understand network properties in depression across imaging modalities, improve classification results, and relate network alterations to psychiatric symptoms, medication, and comorbidities.

  12. Using Support Vector Machine to Forecast Energy Usage of a Manhattan Skyscraper

    NASA Astrophysics Data System (ADS)

    Winter, R.; Boulanger, A.; Anderson, R.; Wu, L.

    2011-12-01

    As our society gains a better understanding of how humans have negatively impacted the environment, research related to reducing carbon emissions and overall energy consumption has become increasingly important. One of the simplest ways to reduce energy usage is by making current buildings less wasteful. By improving energy efficiency, this method of lowering our carbon footprint is particularly worthwhile because it actually reduces energy costs of operating the building, unlike many environmental initiatives that require large monetary investments. In order to improve the efficiency of the heating and air conditioning (HVAC) system of a Manhattan skyscraper, 345 Park Avenue, a predictive computer model was designed to forecast the amount of energy the building will consume. This model uses support vector machine (SVM), a method that builds a regression based purely on historical data of the building, requiring no knowledge of its size, heating and cooling methods, or any other physical properties. This pure dependence on historical data makes the model very easily applicable to different types of buildings with few model adjustments. The SVM model was built to predict a week of future energy usage based on past energy, temperature, and dew point temperature data. The predictive model closely approximated the actual values of energy usage for the spring and less closely for the winter. The prediction may be improved with additional historical data to help the model account for seasonal variability. This model is useful for creating a close approximation of future energy usage and predicting ways to diminish waste.

  13. Using Support Vector Machine Ensembles for Target Audience Classification on Twitter

    PubMed Central

    Lo, Siaw Ling; Chiong, Raymond; Cornforth, David

    2015-01-01

    The vast amount and diversity of the content shared on social media can pose a challenge for any business wanting to use it to identify potential customers. In this paper, our aim is to investigate the use of both unsupervised and supervised learning methods for target audience classification on Twitter with minimal annotation efforts. Topic domains were automatically discovered from contents shared by followers of an account owner using Twitter Latent Dirichlet Allocation (LDA). A Support Vector Machine (SVM) ensemble was then trained using contents from different account owners of the various topic domains identified by Twitter LDA. Experimental results show that the methods presented are able to successfully identify a target audience with high accuracy. In addition, we show that using a statistical inference approach such as bootstrapping in over-sampling, instead of using random sampling, to construct training datasets can achieve a better classifier in an SVM ensemble. We conclude that such an ensemble system can take advantage of data diversity, which enables real-world applications for differentiating prospective customers from the general audience, leading to business advantage in the crowded social media space. PMID:25874768

  14. Multiclass Cancer Classification by Using Fuzzy Support Vector Machine and Binary Decision Tree With Gene Selection

    PubMed Central

    2005-01-01

    We investigate the problems of multiclass cancer classification with gene selection from gene expression data. Two different constructed multiclass classifiers with gene selection are proposed, which are fuzzy support vector machine (FSVM) with gene selection and binary classification tree based on SVM with gene selection. Using F test and recursive feature elimination based on SVM as gene selection methods, binary classification tree based on SVM with F test, binary classification tree based on SVM with recursive feature elimination based on SVM, and FSVM with recursive feature elimination based on SVM are tested in our experiments. To accelerate computation, preselecting the strongest genes is also used. The proposed techniques are applied to analyze breast cancer data, small round blue-cell tumors, and acute leukemia data. Compared to existing multiclass cancer classifiers and binary classification tree based on SVM with F test or binary classification tree based on SVM with recursive feature elimination based on SVM mentioned in this paper, FSVM based on recursive feature elimination based on SVM can find most important genes that affect certain types of cancer with high recognition accuracy. PMID:16046822

  15. Prediction of Functional Class of Proteins and Peptides Irrespective of Sequence Homology by Support Vector Machines

    PubMed Central

    Tang, Zhi Qun; Lin, Hong Huang; Zhang, Hai Lei; Han, Lian Yi; Chen, Xin; Chen, Yu Zong

    2007-01-01

    Various computational methods have been used for the prediction of protein and peptide function based on their sequences. A particular challenge is to derive functional properties from sequences that show low or no homology to proteins of known function. Recently, a machine learning method, support vector machines (SVM), have been explored for predicting functional class of proteins and peptides from amino acid sequence derived properties independent of sequence similarity, which have shown promising potential for a wide spectrum of protein and peptide classes including some of the low- and non-homologous proteins. This method can thus be explored as a potential tool to complement alignment-based, clustering-based, and structure-based methods for predicting protein function. This article reviews the strategies, current progresses, and underlying difficulties in using SVM for predicting the functional class of proteins. The relevant software and web-servers are described. The reported prediction performances in the application of these methods are also presented. PMID:20066123

  16. Assessing the relative importance of climate variables to rice yield variation using support vector machines

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Wu, Wei; Liu, Hong-Bin

    2016-10-01

    Climate factors have distinct impacts on crop yields. Understanding the relative importance of these factors to crop yield variation could provide valuable information about crop planting and management under climate change condition for policymakers and farmers. The current study investigated the applicability of support vector machines (SVMs) in determining the relative importance of climate factors (mean temperature, rainfall, relative humidity, sunshine hours, daily temperature range, and rainy days) to yield variation of paddy rice in southwestern China. The SVM models were compared with traditional artificial neural networks and multiple linear regression. The performance accuracy was evaluated by mean absolute error (MAE), mean relative absolute error (MRAE), root mean square error (RMSE), relative root mean square error (RRMSE), and coefficient of determination ( R 2). Comparative results showed that SVMs outperformed artificial neural networks and multiple linear regression. The SVM with radial basis function performed best with MAE of 0.06 t ha-1, MRAE of 0.9 %, RMSE of 0.15 t ha-1, RRMSE of 2.23 %, and R 2 of 0.94. The results showed that SVMs are suitable for determining the effects of climate on crop yield variability. The relative importance of the studied climate factors to rice yield variation was in order of sunshine hours > daily temperature range > rainfall > relative humidity > mean temperature > rainy days in the current study area.

  17. sw-SVM: sensor weighting support vector machines for EEG-based brain-computer interfaces.

    PubMed

    Jrad, N; Congedo, M; Phlypo, R; Rousseau, S; Flamary, R; Yger, F; Rakotomamonjy, A

    2011-10-01

    In many machine learning applications, like brain-computer interfaces (BCI), high-dimensional sensor array data are available. Sensor measurements are often highly correlated and signal-to-noise ratio is not homogeneously spread across sensors. Thus, collected data are highly variable and discrimination tasks are challenging. In this work, we focus on sensor weighting as an efficient tool to improve the classification procedure. We present an approach integrating sensor weighting in the classification framework. Sensor weights are considered as hyper-parameters to be learned by a support vector machine (SVM). The resulting sensor weighting SVM (sw-SVM) is designed to satisfy a margin criterion, that is, the generalization error. Experimental studies on two data sets are presented, a P300 data set and an error-related potential (ErrP) data set. For the P300 data set (BCI competition III), for which a large number of trials is available, the sw-SVM proves to perform equivalently with respect to the ensemble SVM strategy that won the competition. For the ErrP data set, for which a small number of trials are available, the sw-SVM shows superior performances as compared to three state-of-the art approaches. Results suggest that the sw-SVM promises to be useful in event-related potentials classification, even with a small num