Sample records for algorithm visualization technology

  1. The Impact of Online Algorithm Visualization on ICT Students' Achievements in Introduction to Programming Course

    ERIC Educational Resources Information Center

    Saltan, Fatih

    2017-01-01

    Online Algorithm Visualization (OAV) is one of the recent developments in the instructional technology field that aims to help students handle difficulties faced when they begin to learn programming. This study aims to investigate the effect of online algorithm visualization on students' achievement in the introduction to programming course. To…

  2. GeoBuilder: a geometric algorithm visualization and debugging system for 2D and 3D geometric computing.

    PubMed

    Wei, Jyh-Da; Tsai, Ming-Hung; Lee, Gen-Cher; Huang, Jeng-Hung; Lee, Der-Tsai

    2009-01-01

    Algorithm visualization is a unique research topic that integrates engineering skills such as computer graphics, system programming, database management, computer networks, etc., to facilitate algorithmic researchers in testing their ideas, demonstrating new findings, and teaching algorithm design in the classroom. Within the broad applications of algorithm visualization, there still remain performance issues that deserve further research, e.g., system portability, collaboration capability, and animation effect in 3D environments. Using modern technologies of Java programming, we develop an algorithm visualization and debugging system, dubbed GeoBuilder, for geometric computing. The GeoBuilder system features Java's promising portability, engagement of collaboration in algorithm development, and automatic camera positioning for tracking 3D geometric objects. In this paper, we describe the design of the GeoBuilder system and demonstrate its applications.

  3. A topology visualization early warning distribution algorithm for large-scale network security incidents.

    PubMed

    He, Hui; Fan, Guotao; Ye, Jianwei; Zhang, Weizhe

    2013-01-01

    It is of great significance to research the early warning system for large-scale network security incidents. It can improve the network system's emergency response capabilities, alleviate the cyber attacks' damage, and strengthen the system's counterattack ability. A comprehensive early warning system is presented in this paper, which combines active measurement and anomaly detection. The key visualization algorithm and technology of the system are mainly discussed. The large-scale network system's plane visualization is realized based on the divide and conquer thought. First, the topology of the large-scale network is divided into some small-scale networks by the MLkP/CR algorithm. Second, the sub graph plane visualization algorithm is applied to each small-scale network. Finally, the small-scale networks' topologies are combined into a topology based on the automatic distribution algorithm of force analysis. As the algorithm transforms the large-scale network topology plane visualization problem into a series of small-scale network topology plane visualization and distribution problems, it has higher parallelism and is able to handle the display of ultra-large-scale network topology.

  4. Visual Perception Based Rate Control Algorithm for HEVC

    NASA Astrophysics Data System (ADS)

    Feng, Zeqi; Liu, PengYu; Jia, Kebin

    2018-01-01

    For HEVC, rate control is an indispensably important video coding technology to alleviate the contradiction between video quality and the limited encoding resources during video communication. However, the rate control benchmark algorithm of HEVC ignores subjective visual perception. For key focus regions, bit allocation of LCU is not ideal and subjective quality is unsatisfied. In this paper, a visual perception based rate control algorithm for HEVC is proposed. First bit allocation weight of LCU level is optimized based on the visual perception of luminance and motion to ameliorate video subjective quality. Then λ and QP are adjusted in combination with the bit allocation weight to improve rate distortion performance. Experimental results show that the proposed algorithm reduces average 0.5% BD-BR and maximum 1.09% BD-BR at no cost in bitrate accuracy compared with HEVC (HM15.0). The proposed algorithm devotes to improving video subjective quality under various video applications.

  5. An algorithm based on OmniView technology to reconstruct sagittal and coronal planes of the fetal brain from volume datasets acquired by three-dimensional ultrasound.

    PubMed

    Rizzo, G; Capponi, A; Pietrolucci, M E; Capece, A; Aiello, E; Mammarella, S; Arduini, D

    2011-08-01

    To describe a novel algorithm, based on the new display technology 'OmniView', developed to visualize diagnostic sagittal and coronal planes of the fetal brain from volumes obtained by three-dimensional (3D) ultrasonography. We developed an algorithm to image standard neurosonographic planes by drawing dissecting lines through the axial transventricular view of 3D volume datasets acquired transabdominally. The algorithm was tested on 106 normal fetuses at 18-24 weeks of gestation and the visualization rates of brain diagnostic planes were evaluated by two independent reviewers. The algorithm was also applied to nine cases with proven brain defects. The two reviewers, using the algorithm on normal fetuses, found satisfactory images with visualization rates ranging between 71.7% and 96.2% for sagittal planes and between 76.4% and 90.6% for coronal planes. The agreement rate between the two reviewers, as expressed by Cohen's kappa coefficient, was > 0.93 for sagittal planes and > 0.89 for coronal planes. All nine abnormal volumes were identified by a single observer from among a series including normal brains, and eight of these nine cases were diagnosed correctly. This novel algorithm can be used to visualize standard sagittal and coronal planes in the fetal brain. This approach may simplify the examination of the fetal brain and reduce dependency of success on operator skill. Copyright © 2011 ISUOG. Published by John Wiley & Sons, Ltd.

  6. The change in critical technologies for computational physics

    NASA Technical Reports Server (NTRS)

    Watson, Val

    1990-01-01

    It is noted that the types of technology required for computational physics are changing as the field matures. Emphasis has shifted from computer technology to algorithm technology and, finally, to visual analysis technology as areas of critical research for this field. High-performance graphical workstations tied to a supercommunicator with high-speed communications along with the development of especially tailored visualization software has enabled analysis of highly complex fluid-dynamics simulations. Particular reference is made here to the development of visual analysis tools at NASA's Numerical Aerodynamics Simulation Facility. The next technology which this field requires is one that would eliminate visual clutter by extracting key features of simulations of physics and technology in order to create displays that clearly portray these key features. Research in the tuning of visual displays to human cognitive abilities is proposed. The immediate transfer of technology to all levels of computers, specifically the inclusion of visualization primitives in basic software developments for all work stations and PCs, is recommended.

  7. Visual feature extraction and establishment of visual tags in the intelligent visual internet of things

    NASA Astrophysics Data System (ADS)

    Zhao, Yiqun; Wang, Zhihui

    2015-12-01

    The Internet of things (IOT) is a kind of intelligent networks which can be used to locate, track, identify and supervise people and objects. One of important core technologies of intelligent visual internet of things ( IVIOT) is the intelligent visual tag system. In this paper, a research is done into visual feature extraction and establishment of visual tags of the human face based on ORL face database. Firstly, we use the principal component analysis (PCA) algorithm for face feature extraction, then adopt the support vector machine (SVM) for classifying and face recognition, finally establish a visual tag for face which is already classified. We conducted a experiment focused on a group of people face images, the result show that the proposed algorithm have good performance, and can show the visual tag of objects conveniently.

  8. Guided Discovery, Visualization, and Technology Applied to the New Curriculum for Secondary Mathematics.

    ERIC Educational Resources Information Center

    Smith, Karan B.

    1996-01-01

    Presents activities which highlight major concepts of linear programming. Demonstrates how technology allows students to solve linear programming problems using exploration prior to learning algorithmic methods. (DDR)

  9. Scientific Visualization and Simulation for Multi-dimensional Marine Environment Data

    NASA Astrophysics Data System (ADS)

    Su, T.; Liu, H.; Wang, W.; Song, Z.; Jia, Z.

    2017-12-01

    As higher attention on the ocean and rapid development of marine detection, there are increasingly demands for realistic simulation and interactive visualization of marine environment in real time. Based on advanced technology such as GPU rendering, CUDA parallel computing and rapid grid oriented strategy, a series of efficient and high-quality visualization methods, which can deal with large-scale and multi-dimensional marine data in different environmental circumstances, has been proposed in this paper. Firstly, a high-quality seawater simulation is realized by FFT algorithm, bump mapping and texture animation technology. Secondly, large-scale multi-dimensional marine hydrological environmental data is virtualized by 3d interactive technologies and volume rendering techniques. Thirdly, seabed terrain data is simulated with improved Delaunay algorithm, surface reconstruction algorithm, dynamic LOD algorithm and GPU programming techniques. Fourthly, seamless modelling in real time for both ocean and land based on digital globe is achieved by the WebGL technique to meet the requirement of web-based application. The experiments suggest that these methods can not only have a satisfying marine environment simulation effect, but also meet the rendering requirements of global multi-dimension marine data. Additionally, a simulation system for underwater oil spill is established by OSG 3D-rendering engine. It is integrated with the marine visualization method mentioned above, which shows movement processes, physical parameters, current velocity and direction for different types of deep water oil spill particle (oil spill particles, hydrates particles, gas particles, etc.) dynamically and simultaneously in multi-dimension. With such application, valuable reference and decision-making information can be provided for understanding the progress of oil spill in deep water, which is helpful for ocean disaster forecasting, warning and emergency response.

  10. Survey of computer vision technology for UVA navigation

    NASA Astrophysics Data System (ADS)

    Xie, Bo; Fan, Xiang; Li, Sijian

    2017-11-01

    Navigation based on computer version technology, which has the characteristics of strong independence, high precision and is not susceptible to electrical interference, has attracted more and more attention in the filed of UAV navigation research. Early navigation project based on computer version technology mainly applied to autonomous ground robot. In recent years, the visual navigation system is widely applied to unmanned machine, deep space detector and underwater robot. That further stimulate the research of integrated navigation algorithm based on computer version technology. In China, with many types of UAV development and two lunar exploration, the three phase of the project started, there has been significant progress in the study of visual navigation. The paper expounds the development of navigation based on computer version technology in the filed of UAV navigation research and draw a conclusion that visual navigation is mainly applied to three aspects as follows.(1) Acquisition of UAV navigation parameters. The parameters, including UAV attitude, position and velocity information could be got according to the relationship between the images from sensors and carrier's attitude, the relationship between instant matching images and the reference images and the relationship between carrier's velocity and characteristics of sequential images.(2) Autonomous obstacle avoidance. There are many ways to achieve obstacle avoidance in UAV navigation. The methods based on computer version technology ,including feature matching, template matching, image frames and so on, are mainly introduced. (3) The target tracking, positioning. Using the obtained images, UAV position is calculated by using optical flow method, MeanShift algorithm, CamShift algorithm, Kalman filtering and particle filter algotithm. The paper expounds three kinds of mainstream visual system. (1) High speed visual system. It uses parallel structure, with which image detection and processing are carried out at high speed. The system is applied to rapid response system. (2) The visual system of distributed network. There are several discrete image data acquisition sensor in different locations, which transmit image data to the node processor to increase the sampling rate. (3) The visual system combined with observer. The system combines image sensors with the external observers to make up for lack of visual equipment. To some degree, these systems overcome lacks of the early visual system, including low frequency, low processing efficiency and strong noise. In the end, the difficulties of navigation based on computer version technology in practical application are briefly discussed. (1) Due to the huge workload of image operation , the real-time performance of the system is poor. (2) Due to the large environmental impact , the anti-interference ability of the system is poor.(3) Due to the ability to work in a particular environment, the system has poor adaptability.

  11. Research of cartographer laser SLAM algorithm

    NASA Astrophysics Data System (ADS)

    Xu, Bo; Liu, Zhengjun; Fu, Yiran; Zhang, Changsai

    2017-11-01

    As the indoor is a relatively closed and small space, total station, GPS, close-range photogrammetry technology is difficult to achieve fast and accurate indoor three-dimensional space reconstruction task. LIDAR SLAM technology does not rely on the external environment a priori knowledge, only use their own portable lidar, IMU, odometer and other sensors to establish an independent environment map, a good solution to this problem. This paper analyzes the Google Cartographer laser SLAM algorithm from the point cloud matching and closed loop detection. Finally, the algorithm is presented in the 3D visualization tool RViz from the data acquisition and processing to create the environment map, complete the SLAM technology and realize the process of indoor threedimensional space reconstruction

  12. A soft decoding algorithm and hardware implementation for the visual prosthesis based on high order soft demodulation.

    PubMed

    Yang, Yuan; Quan, Nannan; Bu, Jingjing; Li, Xueping; Yu, Ningmei

    2016-09-26

    High order modulation and demodulation technology can solve the frequency requirement between the wireless energy transmission and data communication. In order to achieve reliable wireless data communication based on high order modulation technology for visual prosthesis, this work proposed a Reed-Solomon (RS) error correcting code (ECC) circuit on the basis of differential amplitude and phase shift keying (DAPSK) soft demodulation. Firstly, recognizing the weakness of the traditional DAPSK soft demodulation algorithm based on division that is complex for hardware implementation, an improved phase soft demodulation algorithm for visual prosthesis to reduce the hardware complexity is put forward. Based on this new algorithm, an improved RS soft decoding method is hence proposed. In this new decoding method, the combination of Chase algorithm and hard decoding algorithms is used to achieve soft decoding. In order to meet the requirements of implantable visual prosthesis, the method to calculate reliability of symbol-level based on multiplication of bit reliability is derived, which reduces the testing vectors number of Chase algorithm. The proposed algorithms are verified by MATLAB simulation and FPGA experimental results. During MATLAB simulation, the biological channel attenuation property model is added into the ECC circuit. The data rate is 8 Mbps in the MATLAB simulation and FPGA experiments. MATLAB simulation results show that the improved phase soft demodulation algorithm proposed in this paper saves hardware resources without losing bit error rate (BER) performance. Compared with the traditional demodulation circuit, the coding gain of the ECC circuit has been improved by about 3 dB under the same BER of [Formula: see text]. The FPGA experimental results show that under the condition of data demodulation error with wireless coils 3 cm away, the system can correct it. The greater the distance, the higher the BER. Then we use a bit error rate analyzer to measure BER of the demodulation circuit and the RS ECC circuit with different distance of two coils. And the experimental results show that the RS ECC circuit has about an order of magnitude lower BER than the demodulation circuit when under the same coils distance. Therefore, the RS ECC circuit has more higher reliability of the communication in the system. The improved phase soft demodulation algorithm and soft decoding algorithm proposed in this paper enables data communication that is more reliable than other demodulation system, which also provide a significant reference for further study to the visual prosthesis system.

  13. Industrial Inspection with Open Eyes: Advance with Machine Vision Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zheng; Ukida, H.; Niel, Kurt

    Machine vision systems have evolved significantly with the technology advances to tackle the challenges from modern manufacturing industry. A wide range of industrial inspection applications for quality control are benefiting from visual information captured by different types of cameras variously configured in a machine vision system. This chapter screens the state of the art in machine vision technologies in the light of hardware, software tools, and major algorithm advances for industrial inspection. The inspection beyond visual spectrum offers a significant complementary to the visual inspection. The combination with multiple technologies makes it possible for the inspection to achieve a bettermore » performance and efficiency in varied applications. The diversity of the applications demonstrates the great potential of machine vision systems for industry.« less

  14. Advanced Computer Image Generation Techniques Exploiting Perceptual Characteristics. Final Report.

    ERIC Educational Resources Information Center

    Stenger, Anthony J.; And Others

    This study suggests and identifies computer image generation (CIG) algorithms for visual simulation that improve the training effectiveness of CIG simulators and identifies areas of basic research in visual perception that are significant for improving CIG technology. The first phase of the project entailed observing three existing CIG simulators.…

  15. Cross-media color reproduction using the frequency-based spatial gamut mapping algorithm based on human color vision

    NASA Astrophysics Data System (ADS)

    Wu, Guangyuan; Niu, Shijun; Li, Xiaozhou; Hu, Guichun

    2018-04-01

    Due to the increasing globalization of printing industry, remoting proofing will become the inevitable development trend. Cross-media color reproduction will occur in different color gamuts using remote proofing technologies, which usually leads to the problem of incompatible color gamut. In this paper, to achieve equivalent color reproduction between a monitor and a printer, a frequency-based spatial gamut mapping algorithm is proposed for decreasing the loss of visual color information. The design of algorithm is based on the contrast sensitivity functions (CSF), which exploited CSF spatial filter to preserve luminance of the high spatial frequencies and chrominance of the low frequencies. First we show a general framework for how to apply CSF spatial filter in retention of relevant visual information. Then we compare the proposed framework with HPMINDE, CUSP, Bala's algorithm. The psychophysical experimental results indicated the good performance of the proposed algorithm.

  16. Visual Odometry for Autonomous Deep-Space Navigation

    NASA Technical Reports Server (NTRS)

    Robinson, Shane; Pedrotty, Sam

    2016-01-01

    Visual Odometry fills two critical needs shared by all future exploration architectures considered by NASA: Autonomous Rendezvous and Docking (AR&D), and autonomous navigation during loss of comm. To do this, a camera is combined with cutting-edge algorithms (called Visual Odometry) into a unit that provides accurate relative pose between the camera and the object in the imagery. Recent simulation analyses have demonstrated the ability of this new technology to reliably, accurately, and quickly compute a relative pose. This project advances this technology by both preparing the system to process flight imagery and creating an activity to capture said imagery. This technology can provide a pioneering optical navigation platform capable of supporting a wide variety of future missions scenarios: deep space rendezvous, asteroid exploration, loss-of-comm.

  17. Visual fatigue modeling for stereoscopic video shot based on camera motion

    NASA Astrophysics Data System (ADS)

    Shi, Guozhong; Sang, Xinzhu; Yu, Xunbo; Liu, Yangdong; Liu, Jing

    2014-11-01

    As three-dimensional television (3-DTV) and 3-D movie become popular, the discomfort of visual feeling limits further applications of 3D display technology. The cause of visual discomfort from stereoscopic video conflicts between accommodation and convergence, excessive binocular parallax, fast motion of objects and so on. Here, a novel method for evaluating visual fatigue is demonstrated. Influence factors including spatial structure, motion scale and comfortable zone are analyzed. According to the human visual system (HVS), people only need to converge their eyes to the specific objects for static cameras and background. Relative motion should be considered for different camera conditions determining different factor coefficients and weights. Compared with the traditional visual fatigue prediction model, a novel visual fatigue predicting model is presented. Visual fatigue degree is predicted using multiple linear regression method combining with the subjective evaluation. Consequently, each factor can reflect the characteristics of the scene, and the total visual fatigue score can be indicated according to the proposed algorithm. Compared with conventional algorithms which ignored the status of the camera, our approach exhibits reliable performance in terms of correlation with subjective test results.

  18. Towards automated visual flexible endoscope navigation.

    PubMed

    van der Stap, Nanda; van der Heijden, Ferdinand; Broeders, Ivo A M J

    2013-10-01

    The design of flexible endoscopes has not changed significantly in the past 50 years. A trend is observed towards a wider application of flexible endoscopes with an increasing role in complex intraluminal therapeutic procedures. The nonintuitive and nonergonomical steering mechanism now forms a barrier in the extension of flexible endoscope applications. Automating the navigation of endoscopes could be a solution for this problem. This paper summarizes the current state of the art in image-based navigation algorithms. The objectives are to find the most promising navigation system(s) to date and to indicate fields for further research. A systematic literature search was performed using three general search terms in two medical-technological literature databases. Papers were included according to the inclusion criteria. A total of 135 papers were analyzed. Ultimately, 26 were included. Navigation often is based on visual information, which means steering the endoscope using the images that the endoscope produces. Two main techniques are described: lumen centralization and visual odometry. Although the research results are promising, no successful, commercially available automated flexible endoscopy system exists to date. Automated systems that employ conventional flexible endoscopes show the most promising prospects in terms of cost and applicability. To produce such a system, the research focus should lie on finding low-cost mechatronics and technologically robust steering algorithms. Additional functionality and increased efficiency can be obtained through software development. The first priority is to find real-time, robust steering algorithms. These algorithms need to handle bubbles, motion blur, and other image artifacts without disrupting the steering process.

  19. Spatiotemporal Beamforming: A Transparent and Unified Decoding Approach to Synchronous Visual Brain-Computer Interfacing.

    PubMed

    Wittevrongel, Benjamin; Van Hulle, Marc M

    2017-01-01

    Brain-Computer Interfaces (BCIs) decode brain activity with the aim to establish a direct communication channel with an external device. Albeit they have been hailed to (re-)establish communication in persons suffering from severe motor- and/or communication disabilities, only recently BCI applications have been challenging other assistive technologies. Owing to their considerably increased performance and the advent of affordable technological solutions, BCI technology is expected to trigger a paradigm shift not only in assistive technology but also in the way we will interface with technology. However, the flipside of the quest for accuracy and speed is most evident in EEG-based visual BCI where it has led to a gamut of increasingly complex classifiers, tailored to the needs of specific stimulation paradigms and use contexts. In this contribution, we argue that spatiotemporal beamforming can serve several synchronous visual BCI paradigms. We demonstrate this for three popular visual paradigms even without attempting to optimizing their electrode sets. For each selectable target, a spatiotemporal beamformer is applied to assess whether the corresponding signal-of-interest is present in the preprocessed multichannel EEG signals. The target with the highest beamformer output is then selected by the decoder (maximum selection). In addition to this simple selection rule, we also investigated whether interactions between beamformer outputs could be employed to increase accuracy by combining the outputs for all targets into a feature vector and applying three common classification algorithms. The results show that the accuracy of spatiotemporal beamforming with maximum selection is at par with that of the classification algorithms and interactions between beamformer outputs do not further improve that accuracy.

  20. Accessing eSDO Solar Image Processing and Visualization through AstroGrid

    NASA Astrophysics Data System (ADS)

    Auden, E.; Dalla, S.

    2008-08-01

    The eSDO project is funded by the UK's Science and Technology Facilities Council (STFC) to integrate Solar Dynamics Observatory (SDO) data, algorithms, and visualization tools with the UK's Virtual Observatory project, AstroGrid. In preparation for the SDO launch in January 2009, the eSDO team has developed nine algorithms covering coronal behaviour, feature recognition, and global / local helioseismology. Each of these algorithms has been deployed as an AstroGrid Common Execution Architecture (CEA) application so that they can be included in complex VO workflows. In addition, the PLASTIC-enabled eSDO "Streaming Tool" online movie application allows users to search multi-instrument solar archives through AstroGrid web services and visualise the image data through galleries, an interactive movie viewing applet, and QuickTime movies generated on-the-fly.

  1. Decoding ensemble activity from neurophysiological recordings in the temporal cortex.

    PubMed

    Kreiman, Gabriel

    2011-01-01

    We study subjects with pharmacologically intractable epilepsy who undergo semi-chronic implantation of electrodes for clinical purposes. We record physiological activity from tens to more than one hundred electrodes implanted in different parts of neocortex. These recordings provide higher spatial and temporal resolution than non-invasive measures of human brain activity. Here we discuss our efforts to develop hardware and algorithms to interact with the human brain by decoding ensemble activity in single trials. We focus our discussion on decoding visual information during a variety of visual object recognition tasks but the same technologies and algorithms can also be directly applied to other cognitive phenomena.

  2. Real-time tracking using stereo and motion: Visual perception for space robotics

    NASA Technical Reports Server (NTRS)

    Nishihara, H. Keith; Thomas, Hans; Huber, Eric; Reid, C. Ann

    1994-01-01

    The state-of-the-art in computing technology is rapidly attaining the performance necessary to implement many early vision algorithms at real-time rates. This new capability is helping to accelerate progress in vision research by improving our ability to evaluate the performance of algorithms in dynamic environments. In particular, we are becoming much more aware of the relative stability of various visual measurements in the presence of camera motion and system noise. This new processing speed is also allowing us to raise our sights toward accomplishing much higher-level processing tasks, such as figure-ground separation and active object tracking, in real-time. This paper describes a methodology for using early visual measurements to accomplish higher-level tasks; it then presents an overview of the high-speed accelerators developed at Teleos to support early visual measurements. The final section describes the successful deployment of a real-time vision system to provide visual perception for the Extravehicular Activity Helper/Retriever robotic system in tests aboard NASA's KC135 reduced gravity aircraft.

  3. Integrating Conjoint Analysis with TOPSIS Algorithm to the Visual Effect of Icon Design Based on Multiple Users' Image Perceptions

    ERIC Educational Resources Information Center

    Tung, Ting-Chun; Chen, Hung-Yuan

    2017-01-01

    With the advance of mobile computing and wireless technology, a user's intent to interact with the interface of a mobile device is motivated not only by its intuitional operation, but also by the emotional perception induced by its aesthetic appeal. A graphical interface employing icons with suitable visual effect based on the users' emotional…

  4. Realistic tissue visualization using photoacoustic image

    NASA Astrophysics Data System (ADS)

    Cho, Seonghee; Managuli, Ravi; Jeon, Seungwan; Kim, Jeesu; Kim, Chulhong

    2018-02-01

    Visualization methods are very important in biomedical imaging. As a technology that understands life, biomedical imaging has the unique advantage of providing the most intuitive information in the image. This advantage of biomedical imaging can be greatly improved by choosing a special visualization method. This is more complicated in volumetric data. Volume data has the advantage of containing 3D spatial information. Unfortunately, the data itself cannot directly represent the potential value. Because images are always displayed in 2D space, visualization is the key and creates the real value of volume data. However, image processing of 3D data requires complicated algorithms for visualization and high computational burden. Therefore, specialized algorithms and computing optimization are important issues in volume data. Photoacoustic-imaging is a unique imaging modality that can visualize the optical properties of deep tissue. Because the color of the organism is mainly determined by its light absorbing component, photoacoustic data can provide color information of tissue, which is closer to real tissue color. In this research, we developed realistic tissue visualization using acoustic-resolution photoacoustic volume data. To achieve realistic visualization, we designed specialized color transfer function, which depends on the depth of the tissue from the skin. We used direct ray casting method and processed color during computing shader parameter. In the rendering results, we succeeded in obtaining similar texture results from photoacoustic data. The surface reflected rays were visualized in white, and the reflected color from the deep tissue was visualized red like skin tissue. We also implemented the CUDA algorithm in an OpenGL environment for real-time interactive imaging.

  5. Visual attitude propagation for small satellites

    NASA Astrophysics Data System (ADS)

    Rawashdeh, Samir A.

    As electronics become smaller and more capable, it has become possible to conduct meaningful and sophisticated satellite missions in a small form factor. However, the capability of small satellites and the range of possible applications are limited by the capabilities of several technologies, including attitude determination and control systems. This dissertation evaluates the use of image-based visual attitude propagation as a compliment or alternative to other attitude determination technologies that are suitable for miniature satellites. The concept lies in using miniature cameras to track image features across frames and extracting the underlying rotation. The problem of visual attitude propagation as a small satellite attitude determination system is addressed from several aspects: related work, algorithm design, hardware and performance evaluation, possible applications, and on-orbit experimentation. These areas of consideration reflect the organization of this dissertation. A "stellar gyroscope" is developed, which is a visual star-based attitude propagator that uses relative motion of stars in an imager's field of view to infer the attitude changes. The device generates spacecraft relative attitude estimates in three degrees of freedom. Algorithms to perform the star detection, correspondence, and attitude propagation are presented. The Random Sample Consensus (RANSAC) approach is applied to the correspondence problem to successfully pair stars across frames while mitigating falsepositive and false-negative star detections. This approach provides tolerance to the noise levels expected in using miniature optics and no baffling, and the noise caused by radiation dose on orbit. The hardware design and algorithms are validated using test images of the night sky. The application of the stellar gyroscope as part of a CubeSat attitude determination and control system is described. The stellar gyroscope is used to augment a MEMS gyroscope attitude propagation algorithm to minimize drift in the absence of an absolute attitude sensor. The stellar gyroscope is a technology demonstration experiment on KySat-2, a 1-Unit CubeSat being developed in Kentucky that is in line to launch with the NASA ELaNa CubeSat Launch Initiative. It has also been adopted by industry as a sensor for CubeSat Attitude Determination and Control Systems (ADCS). KEYWORDS: Small Satellites, Attitude Determination, Egomotion Estimation, RANSAC, Image Processing.

  6. Spatial Paradigm for Information Retrieval and Exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The SPIRE system consists of software for visual analysis of primarily text based information sources. This technology enables the content analysis of text documents without reading all the documents. It employs several algorithms for text and word proximity analysis. It identifies the key themes within the text documents. From this analysis, it projects the results onto a visual spatial proximity display (Galaxies or Themescape) where items (documents and/or themes) visually close to each other are known to have content which is close to each other. Innovative interaction techniques then allow for dynamic visual analysis of large text based information spaces.

  7. SPIRE1.03. Spatial Paradigm for Information Retrieval and Exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, K.J.; Bohn, S.; Crow, V.

    The SPIRE system consists of software for visual analysis of primarily text based information sources. This technology enables the content analysis of text documents without reading all the documents. It employs several algorithms for text and word proximity analysis. It identifies the key themes within the text documents. From this analysis, it projects the results onto a visual spatial proximity display (Galaxies or Themescape) where items (documents and/or themes) visually close to each other are known to have content which is close to each other. Innovative interaction techniques then allow for dynamic visual analysis of large text based information spaces.

  8. D Visualization of Volcanic Ash Dispersion Prediction with Spatial Information Open Platform in Korea

    NASA Astrophysics Data System (ADS)

    Youn, J.; Kim, T.

    2016-06-01

    Visualization of disaster dispersion prediction enables decision makers and civilian to prepare disaster and to reduce the damage by showing the realistic simulation results. With advances of GIS technology and the theory of volcanic disaster prediction algorithm, the predicted disaster dispersions are displayed in spatial information. However, most of volcanic ash dispersion predictions are displayed in 2D. 2D visualization has a limitation to understand the realistic dispersion prediction since its height could be presented only by colour. Especially for volcanic ash, 3D visualization of dispersion prediction is essential since it could bring out big aircraft accident. In this paper, we deals with 3D visualization techniques of volcanic ash dispersion prediction with spatial information open platform in Korea. First, time-series volcanic ash 3D position and concentrations are calculated with WRF (Weather Research and Forecasting) model and Modified Fall3D algorithm. For 3D visualization, we propose three techniques; those are 'Cube in the air', 'Cube in the cube', and 'Semi-transparent plane in the air' methods. In the 'Cube in the Air', which locates the semitransparent cubes having different color depends on its particle concentration. Big cube is not realistic when it is zoomed. Therefore, cube is divided into small cube with Octree algorithm. That is 'Cube in the Cube' algorithm. For more realistic visualization, we apply 'Semi-transparent Volcanic Ash Plane' which shows the ash as fog. The results are displayed in the 'V-world' which is a spatial information open platform implemented by Korean government. Proposed techniques were adopted in Volcanic Disaster Response System implemented by Korean Ministry of Public Safety and Security.

  9. Multiresolution Algorithms for Processing Giga-Models: Real-time Visualization, Reasoning, and Interaction

    DTIC Science & Technology

    2012-04-23

    Interactive Virtual Hair Salon , Presence, (05 2007): 237. doi: 2012/04/17 12:55:26 31 Theodore Kim, Jason Sewall, Avneesh Sud, Ming Lin. Fast...in Games , Utrecht, Netherlands, Nov. 2009. Keynote Speaker, IADIS International Conference on Computer Graphics and Visualization, Portugal, June 2009...Keynote Speaker, ACM Symposium on Virtual Reality Software and Technology, Bordeaux, France, October 2008. Invited Speaker, Motion in Games , Utrecht

  10. Corridor One:An Integrated Distance Visualization Enuronments for SSI+ASCI Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopher R. Johnson, Charles D. Hansen

    2001-10-29

    The goal of Corridor One: An Integrated Distance Visualization Environment for ASCI and SSI Application was to combine the forces of six leading edge laboratories working in the areas of visualization and distributed computing and high performance networking (Argonne National Laboratory, Lawrence Berkeley National Laboratory, Los Alamos National Laboratory, University of Illinois, University of Utah and Princeton University) to develop and deploy the most advanced integrated distance visualization environment for large-scale scientific visualization and demonstrate it on applications relevant to the DOE SSI and ASCI programs. The Corridor One team brought world class expertise in parallel rendering, deep image basedmore » rendering, immersive environment technology, large-format multi-projector wall based displays, volume and surface visualization algorithms, collaboration tools and streaming media technology, network protocols for image transmission, high-performance networking, quality of service technology and distributed computing middleware. Our strategy was to build on the very successful teams that produced the I-WAY, ''Computational Grids'' and CAVE technology and to add these to the teams that have developed the fastest parallel visualizations systems and the most widely used networking infrastructure for multicast and distributed media. Unfortunately, just as we were getting going on the Corridor One project, DOE cut the program after the first year. As such, our final report consists of our progress during year one of the grant.« less

  11. Building a robust vehicle detection and classification module

    NASA Astrophysics Data System (ADS)

    Grigoryev, Anton; Khanipov, Timur; Koptelov, Ivan; Bocharov, Dmitry; Postnikov, Vassily; Nikolaev, Dmitry

    2015-12-01

    The growing adoption of intelligent transportation systems (ITS) and autonomous driving requires robust real-time solutions for various event and object detection problems. Most of real-world systems still cannot rely on computer vision algorithms and employ a wide range of costly additional hardware like LIDARs. In this paper we explore engineering challenges encountered in building a highly robust visual vehicle detection and classification module that works under broad range of environmental and road conditions. The resulting technology is competitive to traditional non-visual means of traffic monitoring. The main focus of the paper is on software and hardware architecture, algorithm selection and domain-specific heuristics that help the computer vision system avoid implausible answers.

  12. Graphing trillions of triangles.

    PubMed

    Burkhardt, Paul

    2017-07-01

    The increasing size of Big Data is often heralded but how data are transformed and represented is also profoundly important to knowledge discovery, and this is exemplified in Big Graph analytics. Much attention has been placed on the scale of the input graph but the product of a graph algorithm can be many times larger than the input. This is true for many graph problems, such as listing all triangles in a graph. Enabling scalable graph exploration for Big Graphs requires new approaches to algorithms, architectures, and visual analytics. A brief tutorial is given to aid the argument for thoughtful representation of data in the context of graph analysis. Then a new algebraic method to reduce the arithmetic operations in counting and listing triangles in graphs is introduced. Additionally, a scalable triangle listing algorithm in the MapReduce model will be presented followed by a description of the experiments with that algorithm that led to the current largest and fastest triangle listing benchmarks to date. Finally, a method for identifying triangles in new visual graph exploration technologies is proposed.

  13. Empirical Studies of the Value of Algorithm Animation in Algorithm Understanding

    DTIC Science & Technology

    1993-08-01

    defines program visualization as "the use of the technology of interactive graphics and the crafts of graphic design , typography , animation and...classroom, considerable thought must go into the design of the animation. Guidelines exist for the design of interfaces and for the design of graphical presen...principles are learned which may be applied to several related problem situations. 2.3 Design of Pictures To obtain the maximum benefit of graphics

  14. Algorithm-Based Motion Magnification for Video Processing in Urological Laparoscopy.

    PubMed

    Adams, Fabian; Schoelly, Reto; Schlager, Daniel; Schoenthaler, Martin; Schoeb, Dominik S; Wilhelm, Konrad; Hein, Simon; Wetterauer, Ulrich; Miernik, Arkadiusz

    2017-06-01

    Minimally invasive surgery is in constant further development and has replaced many conventional operative procedures. If vascular structure movement could be detected during these procedures, it could reduce the risk of vascular injury and conversion to open surgery. The recently proposed motion-amplifying algorithm, Eulerian Video Magnification (EVM), has been shown to substantially enhance minimal object changes in digitally recorded video that is barely perceptible to the human eye. We adapted and examined this technology for use in urological laparoscopy. Video sequences of routine urological laparoscopic interventions were recorded and further processed using spatial decomposition and filtering algorithms. The freely available EVM algorithm was investigated for its usability in real-time processing. In addition, a new image processing technology, the CRS iimotion Motion Magnification (CRSMM) algorithm, was specifically adjusted for endoscopic requirements, applied, and validated by our working group. Using EVM, no significant motion enhancement could be detected without severe impairment of the image resolution, motion, and color presentation. The CRSMM algorithm significantly improved image quality in terms of motion enhancement. In particular, the pulsation of vascular structures could be displayed more accurately than in EVM. Motion magnification image processing technology has the potential for clinical importance as a video optimizing modality in endoscopic and laparoscopic surgery. Barely detectable (micro)movements can be visualized using this noninvasive marker-free method. Despite these optimistic results, the technology requires considerable further technical development and clinical tests.

  15. IPAT: a freely accessible software tool for analyzing multiple patent documents with inbuilt landscape visualizer.

    PubMed

    Ajay, Dara; Gangwal, Rahul P; Sangamwar, Abhay T

    2015-01-01

    Intelligent Patent Analysis Tool (IPAT) is an online data retrieval tool, operated based on text mining algorithm to extract specific patent information in a predetermined pattern into an Excel sheet. The software is designed and developed to retrieve and analyze technology information from multiple patent documents and generate various patent landscape graphs and charts. The software is C# coded in visual studio 2010, which extracts the publicly available patent information from the web pages like Google Patent and simultaneously study the various technology trends based on user-defined parameters. In other words, IPAT combined with the manual categorization will act as an excellent technology assessment tool in competitive intelligence and due diligence for predicting the future R&D forecast.

  16. Methyl green and nitrotetrazolium blue chloride co-expression in colon tissue: A hyperspectral microscopic imaging analysis

    NASA Astrophysics Data System (ADS)

    Li, Qingli; Liu, Hongying; Wang, Yiting; Sun, Zhen; Guo, Fangmin; Zhu, Jianzhong

    2014-12-01

    Histological observation of dual-stained colon sections is usually performed by visual observation under a light microscope, or by viewing on a computer screen with the assistance of image processing software in both research and clinical settings. These traditional methods are usually not sufficient to reliably differentiate spatially overlapping chromogens generated by different dyes. Hyperspectral microscopic imaging technology offers a solution for these constraints as the hyperspectral microscopic images contain information that allows differentiation between spatially co-located chromogens with similar but different spectra. In this paper, a hyperspectral microscopic imaging (HMI) system is used to identify methyl green and nitrotetrazolium blue chloride in dual-stained colon sections. Hyperspectral microscopic images are captured and the normalized score algorithm is proposed to identify the stains and generate the co-expression results. Experimental results show that the proposed normalized score algorithm can generate more accurate co-localization results than the spectral angle mapper algorithm. The hyperspectral microscopic imaging technology can enhance the visualization of dual-stained colon sections, improve the contrast and legibility of each stain using their spectral signatures, which is helpful for pathologist performing histological analyses.

  17. Data Mining Technologies Inspired from Visual Principle

    NASA Astrophysics Data System (ADS)

    Xu, Zongben

    In this talk we review the recent work done by our group on data mining (DM) technologies deduced from simulating visual principle. Through viewing a DM problem as a cognition problems and treading a data set as an image with each light point located at a datum position, we developed a series of high efficient algorithms for clustering, classification and regression via mimicking visual principles. In pattern recognition, human eyes seem to possess a singular aptitude to group objects and find important structure in an efficient way. Thus, a DM algorithm simulating visual system may solve some basic problems in DM research. From this point of view, we proposed a new approach for data clustering by modeling the blurring effect of lateral retinal interconnections based on scale space theory. In this approach, as the data image blurs, smaller light blobs merge into large ones until the whole image becomes one light blob at a low enough level of resolution. By identifying each blob with a cluster, the blurring process then generates a family of clustering along the hierarchy. The proposed approach provides unique solutions to many long standing problems, such as the cluster validity and the sensitivity to initialization problems, in clustering. We extended such an approach to classification and regression problems, through combatively employing the Weber's law in physiology and the cell response classification facts. The resultant classification and regression algorithms are proven to be very efficient and solve the problems of model selection and applicability to huge size of data set in DM technologies. We finally applied the similar idea to the difficult parameter setting problem in support vector machine (SVM). Viewing the parameter setting problem as a recognition problem of choosing a visual scale at which the global and local structures of a data set can be preserved, and the difference between the two structures be maximized in the feature space, we derived a direct parameter setting formula for the Gaussian SVM. The simulations and applications show that the suggested formula significantly outperforms the known model selection methods in terms of efficiency and precision.

  18. Compiler Optimization Pass Visualization: The Procedural Abstraction Case

    ERIC Educational Resources Information Center

    Schaeckeler, Stefan; Shang, Weijia; Davis, Ruth

    2009-01-01

    There is an active research community concentrating on visualizations of algorithms taught in CS1 and CS2 courses. These visualizations can help students to create concrete visual images of the algorithms and their underlying concepts. Not only "fundamental algorithms" can be visualized, but also algorithms used in compilers. Visualizations that…

  19. MutScan: fast detection and visualization of target mutations by scanning FASTQ data.

    PubMed

    Chen, Shifu; Huang, Tanxiao; Wen, Tiexiang; Li, Hong; Xu, Mingyan; Gu, Jia

    2018-01-22

    Some types of clinical genetic tests, such as cancer testing using circulating tumor DNA (ctDNA), require sensitive detection of known target mutations. However, conventional next-generation sequencing (NGS) data analysis pipelines typically involve different steps of filtering, which may cause miss-detection of key mutations with low frequencies. Variant validation is also indicated for key mutations detected by bioinformatics pipelines. Typically, this process can be executed using alignment visualization tools such as IGV or GenomeBrowse. However, these tools are too heavy and therefore unsuitable for validating mutations in ultra-deep sequencing data. We developed MutScan to address problems of sensitive detection and efficient validation for target mutations. MutScan involves highly optimized string-searching algorithms, which can scan input FASTQ files to grab all reads that support target mutations. The collected supporting reads for each target mutation will be piled up and visualized using web technologies such as HTML and JavaScript. Algorithms such as rolling hash and bloom filter are applied to accelerate scanning and make MutScan applicable to detect or visualize target mutations in a very fast way. MutScan is a tool for the detection and visualization of target mutations by only scanning FASTQ raw data directly. Compared to conventional pipelines, this offers a very high performance, executing about 20 times faster, and offering maximal sensitivity since it can grab mutations with even one single supporting read. MutScan visualizes detected mutations by generating interactive pile-ups using web technologies. These can serve to validate target mutations, thus avoiding false positives. Furthermore, MutScan can visualize all mutation records in a VCF file to HTML pages for cloud-friendly VCF validation. MutScan is an open source tool available at GitHub: https://github.com/OpenGene/MutScan.

  20. Interactive target tracking for persistent wide-area surveillance

    NASA Astrophysics Data System (ADS)

    Ersoy, Ilker; Palaniappan, Kannappan; Seetharaman, Guna S.; Rao, Raghuveer M.

    2012-06-01

    Persistent aerial surveillance is an emerging technology that can provide continuous, wide-area coverage from an aircraft-based multiple-camera system. Tracking targets in these data sets is challenging for vision algorithms due to large data (several terabytes), very low frame rate, changing viewpoint, strong parallax and other imperfections due to registration and projection. Providing an interactive system for automated target tracking also has additional challenges that require online algorithms that are seamlessly integrated with interactive visualization tools to assist the user. We developed an algorithm that overcomes these challenges and demonstrated it on data obtained from a wide-area imaging platform.

  1. Comparison of visual field test results obtained through Humphrey matrix frequency doubling technology perimetry versus standard automated perimetry in healthy children.

    PubMed

    Kocabeyoglu, Sibel; Uzun, Salih; Mocan, Mehmet Cem; Bozkurt, Banu; Irkec, Murat; Orhan, Mehmet

    2013-10-01

    The aim of this study was to compare the visual field test results in healthy children obtained via the Humphrey matrix 24-2 threshold program and standard automated perimetry (SAP) using the Swedish interactive threshold algorithm (SITA)-Standard 24-2 test. This prospective study included 55 healthy children without ocular or systemic disorders who underwent both SAP and frequency doubling technology (FDT) perimetry visual field testing. Visual field test reliability indices, test duration, global indices (mean deviation [MD], and pattern standard deviation [PSD]) were compared between the 2 tests using the Wilcoxon signed-rank test and paired t-test. The performance of the Humphrey field analyzer (HFA) 24-2 SITA-standard and frequency-doubling technology Matrix 24-2 tests between genders were compared with Mann-Whitney U-test. Fifty-five healthy children with a mean age of 12.2 ± 1.9 years (range from 8 years to 16 years) were included in this prospective study. The test durations of SAP and FDT were similar (5.2 ± 0.5 and 5.1 ± 0.2 min, respectively, P = 0.651). MD and the PSD values obtained via FDT Matrix were significantly higher than those obtained via SAP (P < 0.001), and fixation losses and false negative errors were significantly less with SAP (P < 0.05). A weak positive correlation between the two tests in terms of MD (r = 0.352, P = 0.008) and PSD (r = 0.329, P = 0.014) was observed. Children were able to complete both the visual test algorithms successfully within 6 min. However, SAP testing appears to be associated with less depression of the visual field indices of healthy children. FDT Matrix and SAP should not be used interchangeably in the follow-up of children.

  2. Error Sources in Proccessing LIDAR Based Bridge Inspection

    NASA Astrophysics Data System (ADS)

    Bian, H.; Chen, S. E.; Liu, W.

    2017-09-01

    Bridge inspection is a critical task in infrastructure management and is facing unprecedented challenges after a series of bridge failures. The prevailing visual inspection was insufficient in providing reliable and quantitative bridge information although a systematic quality management framework was built to ensure visual bridge inspection data quality to minimize errors during the inspection process. The LiDAR based remote sensing is recommended as an effective tool in overcoming some of the disadvantages of visual inspection. In order to evaluate the potential of applying this technology in bridge inspection, some of the error sources in LiDAR based bridge inspection are analysed. The scanning angle variance in field data collection and the different algorithm design in scanning data processing are the found factors that will introduce errors into inspection results. Besides studying the errors sources, advanced considerations should be placed on improving the inspection data quality, and statistical analysis might be employed to evaluate inspection operation process that contains a series of uncertain factors in the future. Overall, the development of a reliable bridge inspection system requires not only the improvement of data processing algorithms, but also systematic considerations to mitigate possible errors in the entire inspection workflow. If LiDAR or some other technology can be accepted as a supplement for visual inspection, the current quality management framework will be modified or redesigned, and this would be as urgent as the refine of inspection techniques.

  3. A Double-function Digital Watermarking Algorithm Based on Chaotic System and LWT

    NASA Astrophysics Data System (ADS)

    Yuxia, Zhao; Jingbo, Fan

    A double- function digital watermarking technology is studied and a double-function digital watermarking algorithm of colored image is presented based on chaotic system and the lifting wavelet transformation (LWT).The algorithm has realized the double aims of the copyright protection and the integrity authentication of image content. Making use of feature of human visual system (HVS), the watermark image is embedded into the color image's low frequency component and middle frequency components by different means. The algorithm has great security by using two kinds chaotic mappings and Arnold to scramble the watermark image at the same time. The algorithm has good efficiency by using LWT. The emulation experiment indicates the algorithm has great efficiency and security, and the effect of concealing is really good.

  4. 3D interactive surgical visualization system using mobile spatial information acquisition and autostereoscopic display.

    PubMed

    Fan, Zhencheng; Weng, Yitong; Chen, Guowen; Liao, Hongen

    2017-07-01

    Three-dimensional (3D) visualization of preoperative and intraoperative medical information becomes more and more important in minimally invasive surgery. We develop a 3D interactive surgical visualization system using mobile spatial information acquisition and autostereoscopic display for surgeons to observe surgical target intuitively. The spatial information of regions of interest (ROIs) is captured by the mobile device and transferred to a server for further image processing. Triangular patches of intraoperative data with texture are calculated with a dimension-reduced triangulation algorithm and a projection-weighted mapping algorithm. A point cloud selection-based warm-start iterative closest point (ICP) algorithm is also developed for fusion of the reconstructed 3D intraoperative image and the preoperative image. The fusion images are rendered for 3D autostereoscopic display using integral videography (IV) technology. Moreover, 3D visualization of medical image corresponding to observer's viewing direction is updated automatically using mutual information registration method. Experimental results show that the spatial position error between the IV-based 3D autostereoscopic fusion image and the actual object was 0.38±0.92mm (n=5). The system can be utilized in telemedicine, operating education, surgical planning, navigation, etc. to acquire spatial information conveniently and display surgical information intuitively. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Automated Visual Inspection Of Integrated Circuits

    NASA Astrophysics Data System (ADS)

    Noppen, G.; Oosterlinck, Andre J.

    1989-07-01

    One of the major application fields of image processing techniques is the 'visual inspection'. For a number of rea-sons, the automated visual inspection of Integrated Circuits (IC's) has drawn a lot of attention. : Their very strict design makes them very suitable for an automated inspection. : There is already a lot of experience in the comparable Printed Circuit Board (PCB) and mask inspection. : The mechanical handling of wafers and dice is already an established technology. : Military and medical IC's should be a 100 % failproof. : IC inspection gives a high and allinost immediate payback. In this paper we wil try to give an outline of the problems involved in IC inspection, and the algorithms and methods used to overcome these problems. We will not go into de-tail, but we will try to give a general understanding. Our attention will go to the following topics. : An overview of the inspection process, with an emphasis on the second visual inspection. : The problems encountered in IC inspection, as opposed to the comparable PCB and mask inspection. : The image acquisition devices that can be used to obtain 'inspectable' images. : A general overview of the algorithms that can be used. : A short description of the algorithms developed at the ESAT-MI2 division of the katholieke Universiteit Leuven.

  6. The PANTHER User Experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coram, Jamie L.; Morrow, James D.; Perkins, David Nikolaus

    2015-09-01

    This document describes the PANTHER R&D Application, a proof-of-concept user interface application developed under the PANTHER Grand Challenge LDRD. The purpose of the application is to explore interaction models for graph analytics, drive algorithmic improvements from an end-user point of view, and support demonstration of PANTHER technologies to potential customers. The R&D Application implements a graph-centric interaction model that exposes analysts to the algorithms contained within the GeoGraphy graph analytics library. Users define geospatial-temporal semantic graph queries by constructing search templates based on nodes, edges, and the constraints among them. Users then analyze the results of the queries using bothmore » geo-spatial and temporal visualizations. Development of this application has made user experience an explicit driver for project and algorithmic level decisions that will affect how analysts one day make use of PANTHER technologies.« less

  7. Solid Freeform Fabrication of Aesthetic Objects

    ScienceCinema

    Hart, George [SUNY Stony Brook, Stony Brook, New York, United States

    2018-01-08

    Solid Freeform Fabrication (aka. Rapid Prototyping) equipment can produce beautiful three-dimensional objects of exquisite intricacy. To use this technology to its full potential requires spatial visualization in the designer and new geometric algorithms as tools. As both a sculptor and a research professor in the Computer Science department at Stony Brook University, George Hart is exploring algorithms for the design of elaborate aesthetic objects. In this talk, he will describe this work, show many images, and bring many physical models to display.

  8. Research and Construction Lunar Stereoscopic Visualization System Based on Chang'E Data

    NASA Astrophysics Data System (ADS)

    Gao, Xingye; Zeng, Xingguo; Zhang, Guihua; Zuo, Wei; Li, ChunLai

    2017-04-01

    With lunar exploration activities carried by Chang'E-1, Chang'E-2 and Chang'E-3 lunar probe, a large amount of lunar data has been obtained, including topographical and image data covering the whole moon, as well as the panoramic image data of the spot close to the landing point of Chang'E-3. In this paper, we constructed immersive virtual moon system based on acquired lunar exploration data by using advanced stereoscopic visualization technology, which will help scholars to carry out research on lunar topography, assist the further exploration of lunar science, and implement the facilitation of lunar science outreach to the public. In this paper, we focus on the building of lunar stereoscopic visualization system with the combination of software and hardware by using binocular stereoscopic display technology, real-time rendering algorithm for massive terrain data, and building virtual scene technology based on panorama, to achieve an immersive virtual tour of the whole moon and local moonscape of Chang'E-3 landing point.

  9. Graphing trillions of triangles

    PubMed Central

    Burkhardt, Paul

    2016-01-01

    The increasing size of Big Data is often heralded but how data are transformed and represented is also profoundly important to knowledge discovery, and this is exemplified in Big Graph analytics. Much attention has been placed on the scale of the input graph but the product of a graph algorithm can be many times larger than the input. This is true for many graph problems, such as listing all triangles in a graph. Enabling scalable graph exploration for Big Graphs requires new approaches to algorithms, architectures, and visual analytics. A brief tutorial is given to aid the argument for thoughtful representation of data in the context of graph analysis. Then a new algebraic method to reduce the arithmetic operations in counting and listing triangles in graphs is introduced. Additionally, a scalable triangle listing algorithm in the MapReduce model will be presented followed by a description of the experiments with that algorithm that led to the current largest and fastest triangle listing benchmarks to date. Finally, a method for identifying triangles in new visual graph exploration technologies is proposed. PMID:28690426

  10. Driver Distraction Using Visual-Based Sensors and Algorithms.

    PubMed

    Fernández, Alberto; Usamentiaga, Rubén; Carús, Juan Luis; Casado, Rubén

    2016-10-28

    Driver distraction, defined as the diversion of attention away from activities critical for safe driving toward a competing activity, is increasingly recognized as a significant source of injuries and fatalities on the roadway. Additionally, the trend towards increasing the use of in-vehicle information systems is critical because they induce visual, biomechanical and cognitive distraction and may affect driving performance in qualitatively different ways. Non-intrusive methods are strongly preferred for monitoring distraction, and vision-based systems have appeared to be attractive for both drivers and researchers. Biomechanical, visual and cognitive distractions are the most commonly detected types in video-based algorithms. Many distraction detection systems only use a single visual cue and therefore, they may be easily disturbed when occlusion or illumination changes appear. Moreover, the combination of these visual cues is a key and challenging aspect in the development of robust distraction detection systems. These visual cues can be extracted mainly by using face monitoring systems but they should be completed with more visual cues (e.g., hands or body information) or even, distraction detection from specific actions (e.g., phone usage). Additionally, these algorithms should be included in an embedded device or system inside a car. This is not a trivial task and several requirements must be taken into account: reliability, real-time performance, low cost, small size, low power consumption, flexibility and short time-to-market. The key points for the development and implementation of sensors to carry out the detection of distraction will also be reviewed. This paper shows a review of the role of computer vision technology applied to the development of monitoring systems to detect distraction. Some key points considered as both future work and challenges ahead yet to be solved will also be addressed.

  11. Driver Distraction Using Visual-Based Sensors and Algorithms

    PubMed Central

    Fernández, Alberto; Usamentiaga, Rubén; Carús, Juan Luis; Casado, Rubén

    2016-01-01

    Driver distraction, defined as the diversion of attention away from activities critical for safe driving toward a competing activity, is increasingly recognized as a significant source of injuries and fatalities on the roadway. Additionally, the trend towards increasing the use of in-vehicle information systems is critical because they induce visual, biomechanical and cognitive distraction and may affect driving performance in qualitatively different ways. Non-intrusive methods are strongly preferred for monitoring distraction, and vision-based systems have appeared to be attractive for both drivers and researchers. Biomechanical, visual and cognitive distractions are the most commonly detected types in video-based algorithms. Many distraction detection systems only use a single visual cue and therefore, they may be easily disturbed when occlusion or illumination changes appear. Moreover, the combination of these visual cues is a key and challenging aspect in the development of robust distraction detection systems. These visual cues can be extracted mainly by using face monitoring systems but they should be completed with more visual cues (e.g., hands or body information) or even, distraction detection from specific actions (e.g., phone usage). Additionally, these algorithms should be included in an embedded device or system inside a car. This is not a trivial task and several requirements must be taken into account: reliability, real-time performance, low cost, small size, low power consumption, flexibility and short time-to-market. The key points for the development and implementation of sensors to carry out the detection of distraction will also be reviewed. This paper shows a review of the role of computer vision technology applied to the development of monitoring systems to detect distraction. Some key points considered as both future work and challenges ahead yet to be solved will also be addressed. PMID:27801822

  12. (Computer) Vision without Sight

    PubMed Central

    Manduchi, Roberto; Coughlan, James

    2012-01-01

    Computer vision holds great promise for helping persons with blindness or visual impairments (VI) to interpret and explore the visual world. To this end, it is worthwhile to assess the situation critically by understanding the actual needs of the VI population and which of these needs might be addressed by computer vision. This article reviews the types of assistive technology application areas that have already been developed for VI, and the possible roles that computer vision can play in facilitating these applications. We discuss how appropriate user interfaces are designed to translate the output of computer vision algorithms into information that the user can quickly and safely act upon, and how system-level characteristics affect the overall usability of an assistive technology. Finally, we conclude by highlighting a few novel and intriguing areas of application of computer vision to assistive technology. PMID:22815563

  13. 3D-Web-GIS RFID location sensing system for construction objects.

    PubMed

    Ko, Chien-Ho

    2013-01-01

    Construction site managers could benefit from being able to visualize on-site construction objects. Radio frequency identification (RFID) technology has been shown to improve the efficiency of construction object management. The objective of this study is to develop a 3D-Web-GIS RFID location sensing system for construction objects. An RFID 3D location sensing algorithm combining Simulated Annealing (SA) and a gradient descent method is proposed to determine target object location. In the algorithm, SA is used to stabilize the search process and the gradient descent method is used to reduce errors. The locations of the analyzed objects are visualized using the 3D-Web-GIS system. A real construction site is used to validate the applicability of the proposed method, with results indicating that the proposed approach can provide faster, more accurate, and more stable 3D positioning results than other location sensing algorithms. The proposed system allows construction managers to better understand worksite status, thus enhancing managerial efficiency.

  14. 3D-Web-GIS RFID Location Sensing System for Construction Objects

    PubMed Central

    2013-01-01

    Construction site managers could benefit from being able to visualize on-site construction objects. Radio frequency identification (RFID) technology has been shown to improve the efficiency of construction object management. The objective of this study is to develop a 3D-Web-GIS RFID location sensing system for construction objects. An RFID 3D location sensing algorithm combining Simulated Annealing (SA) and a gradient descent method is proposed to determine target object location. In the algorithm, SA is used to stabilize the search process and the gradient descent method is used to reduce errors. The locations of the analyzed objects are visualized using the 3D-Web-GIS system. A real construction site is used to validate the applicability of the proposed method, with results indicating that the proposed approach can provide faster, more accurate, and more stable 3D positioning results than other location sensing algorithms. The proposed system allows construction managers to better understand worksite status, thus enhancing managerial efficiency. PMID:23864821

  15. Flight Deck Display Technologies for 4DT and Surface Equivalent Visual Operations

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Jones, Denis R.; Shelton, Kevin J.; Arthur, Jarvis J., III; Bailey, Randall E.; Allamandola, Angela S.; Foyle, David C.; Hooey, Becky L.

    2009-01-01

    NASA research is focused on flight deck display technologies that may significantly enhance situation awareness, enable new operating concepts, and reduce the potential for incidents/accidents for terminal area and surface operations. The display technologies include surface map, head-up, and head-worn displays; 4DT guidance algorithms; synthetic and enhanced vision technologies; and terminal maneuvering area traffic conflict detection and alerting systems. This work is critical to ensure that the flight deck interface technologies and the role of the human participants can support the full realization of the Next Generation Air Transportation System (NextGen) and its novel operating concepts.

  16. Monocular zones in stereoscopic scenes: A useful source of information for human binocular vision?

    NASA Astrophysics Data System (ADS)

    Harris, Julie M.

    2010-02-01

    When an object is closer to an observer than the background, the small differences between right and left eye views are interpreted by the human brain as depth. This basic ability of the human visual system, called stereopsis, lies at the core of all binocular three-dimensional (3-D) perception and related technological display development. To achieve stereopsis, it is traditionally assumed that corresponding locations in the right and left eye's views must first be matched, then the relative differences between right and left eye locations are used to calculate depth. But this is not the whole story. At every object-background boundary, there are regions of the background that only one eye can see because, in the other eye's view, the foreground object occludes that region of background. Such monocular zones do not have a corresponding match in the other eye's view and can thus cause problems for depth extraction algorithms. In this paper I will discuss evidence, from our knowledge of human visual perception, illustrating that monocular zones do not pose problems for our human visual systems, rather, our visual systems can extract depth from such zones. I review the relevant human perception literature in this area, and show some recent data aimed at quantifying the perception of depth from monocular zones. The paper finishes with a discussion of the potential importance of considering monocular zones, for stereo display technology and depth compression algorithms.

  17. Assessment of a visually guided autonomous exploration robot

    NASA Astrophysics Data System (ADS)

    Harris, C.; Evans, R.; Tidey, E.

    2008-10-01

    A system has been developed to enable a robot vehicle to autonomously explore and map an indoor environment using only visual sensors. The vehicle is equipped with a single camera, whose output is wirelessly transmitted to an off-board standard PC for processing. Visual features within the camera imagery are extracted and tracked, and their 3D positions are calculated using a Structure from Motion algorithm. As the vehicle travels, obstacles in its surroundings are identified and a map of the explored region is generated. This paper discusses suitable criteria for assessing the performance of the system by computer-based simulation and practical experiments with a real vehicle. Performance measures identified include the positional accuracy of the 3D map and the vehicle's location, the efficiency and completeness of the exploration and the system reliability. Selected results are presented and the effect of key system parameters and algorithms on performance is assessed. This work was funded by the Systems Engineering for Autonomous Systems (SEAS) Defence Technology Centre established by the UK Ministry of Defence.

  18. FAST (Four chamber view And Swing Technique) Echo: a Novel and Simple Algorithm to Visualize Standard Fetal Echocardiographic Planes

    PubMed Central

    Yeo, Lami; Romero, Roberto; Jodicke, Cristiano; Oggè, Giovanna; Lee, Wesley; Kusanovic, Juan Pedro; Vaisbuch, Edi; Hassan, Sonia S.

    2010-01-01

    Objective To describe a novel and simple algorithm (FAST Echo: Four chamber view And Swing Technique) to visualize standard diagnostic planes of fetal echocardiography from dataset volumes obtained with spatiotemporal image correlation (STIC) and applying a new display technology (OmniView). Methods We developed an algorithm to image standard fetal echocardiographic planes by drawing four dissecting lines through the longitudinal view of the ductal arch contained in a STIC volume dataset. Three of the lines are locked to provide simultaneous visualization of targeted planes, and the fourth line (unlocked) “swings” through the ductal arch image (“swing technique”), providing an infinite number of cardiac planes in sequence. Each line generated the following plane(s): 1) Line 1: three-vessels and trachea view; 2) Line 2: five-chamber view and long axis view of the aorta (obtained by rotation of the five-chamber view on the y-axis); 3) Line 3: four-chamber view; and 4) “Swing” line: three-vessels and trachea view, five-chamber view and/or long axis view of the aorta, four-chamber view, and stomach. The algorithm was then tested in 50 normal hearts (15.3 – 40 weeks of gestation) and visualization rates for cardiac diagnostic planes were calculated. To determine if the algorithm could identify planes that departed from the normal images, we tested the algorithm in 5 cases with proven congenital heart defects. Results In normal cases, the FAST Echo algorithm (3 locked lines and rotation of the five-chamber view on the y-axis) was able to generate the intended planes (longitudinal view of the ductal arch, pulmonary artery, three-vessels and trachea view, five-chamber view, long axis view of the aorta, four-chamber view): 1) individually in 100% of cases [except for the three-vessel and trachea view, which was seen in 98% (49/50)]; and 2) simultaneously in 98% (49/50). The “swing technique” was able to generate the three-vessels and trachea view, five-chamber view and/or long axis view of the aorta, four-chamber view, and stomach in 100% of normal cases. In the abnormal cases, the FAST Echo algorithm demonstrated the cardiac defects and displayed views that deviated from what was expected from the examination of normal hearts. The “swing technique” was useful in demonstrating the specific diagnosis due to visualization of an infinite number of cardiac planes in sequence. Conclusions This novel and simple algorithm can be used to visualize standard fetal echocardiographic planes in normal fetal hearts. The FAST Echo algorithm may simplify examination of the fetal heart and could reduce operator dependency. Using this algorithm, the inability to obtain expected views or the appearance of abnormal views in the generated planes should raise the index of suspicion for congenital heart disease. PMID:20878671

  19. Four-chamber view and 'swing technique' (FAST) echo: a novel and simple algorithm to visualize standard fetal echocardiographic planes.

    PubMed

    Yeo, L; Romero, R; Jodicke, C; Oggè, G; Lee, W; Kusanovic, J P; Vaisbuch, E; Hassan, S

    2011-04-01

    To describe a novel and simple algorithm (four-chamber view and 'swing technique' (FAST) echo) for visualization of standard diagnostic planes of fetal echocardiography from dataset volumes obtained with spatiotemporal image correlation (STIC) and applying a new display technology (OmniView). We developed an algorithm to image standard fetal echocardiographic planes by drawing four dissecting lines through the longitudinal view of the ductal arch contained in a STIC volume dataset. Three of the lines are locked to provide simultaneous visualization of targeted planes, and the fourth line (unlocked) 'swings' through the ductal arch image (swing technique), providing an infinite number of cardiac planes in sequence. Each line generates the following plane(s): (a) Line 1: three-vessels and trachea view; (b) Line 2: five-chamber view and long-axis view of the aorta (obtained by rotation of the five-chamber view on the y-axis); (c) Line 3: four-chamber view; and (d) 'swing line': three-vessels and trachea view, five-chamber view and/or long-axis view of the aorta, four-chamber view and stomach. The algorithm was then tested in 50 normal hearts in fetuses at 15.3-40 weeks' gestation and visualization rates for cardiac diagnostic planes were calculated. To determine whether the algorithm could identify planes that departed from the normal images, we tested the algorithm in five cases with proven congenital heart defects. In normal cases, the FAST echo algorithm (three locked lines and rotation of the five-chamber view on the y-axis) was able to generate the intended planes (longitudinal view of the ductal arch, pulmonary artery, three-vessels and trachea view, five-chamber view, long-axis view of the aorta, four-chamber view) individually in 100% of cases (except for the three-vessels and trachea view, which was seen in 98% (49/50)) and simultaneously in 98% (49/50). The swing technique was able to generate the three-vessels and trachea view, five-chamber view and/or long-axis view of the aorta, four-chamber view and stomach in 100% of normal cases. In the abnormal cases, the FAST echo algorithm demonstrated the cardiac defects and displayed views that deviated from what was expected from the examination of normal hearts. The swing technique was useful for demonstrating the specific diagnosis due to visualization of an infinite number of cardiac planes in sequence. This novel and simple algorithm can be used to visualize standard fetal echocardiographic planes in normal fetal hearts. The FAST echo algorithm may simplify examination of the fetal heart and could reduce operator dependency. Using this algorithm, inability to obtain expected views or the appearance of abnormal views in the generated planes should raise the index of suspicion for congenital heart disease. Copyright © 2011 ISUOG. Published by John Wiley & Sons, Ltd.

  20. SKL algorithm based fabric image matching and retrieval

    NASA Astrophysics Data System (ADS)

    Cao, Yichen; Zhang, Xueqin; Ma, Guojian; Sun, Rongqing; Dong, Deping

    2017-07-01

    Intelligent computer image processing technology provides convenience and possibility for designers to carry out designs. Shape analysis can be achieved by extracting SURF feature. However, high dimension of SURF feature causes to lower matching speed. To solve this problem, this paper proposed a fast fabric image matching algorithm based on SURF K-means and LSH algorithm. By constructing the bag of visual words on K-Means algorithm, and forming feature histogram of each image, the dimension of SURF feature is reduced at the first step. Then with the help of LSH algorithm, the features are encoded and the dimension is further reduced. In addition, the indexes of each image and each class of image are created, and the number of matching images is decreased by LSH hash bucket. Experiments on fabric image database show that this algorithm can speed up the matching and retrieval process, the result can satisfy the requirement of dress designers with accuracy and speed.

  1. Superior visual performance in nocturnal insects: neural principles and bio-inspired technologies

    NASA Astrophysics Data System (ADS)

    Warrant, Eric J.

    2016-04-01

    At night, our visual capacities are severely reduced, with a complete loss in our ability to see colour and a dramatic loss in our ability to see fine spatial and temporal details. This is not the case for many nocturnal animals, notably insects. Our recent work, particularly on fast-flying moths and bees and on ball-rolling dung beetles, has shown that nocturnal animals are able to distinguish colours, to detect faint movements, to learn visual landmarks, to orient to the faint pattern of polarised light produced by the moon and to navigate using the stars. These impressive visual abilities are the result of exquisitely adapted eyes and visual systems, the product of millions of years of evolution. Nocturnal animals typically have highly sensitive eye designs and visual neural circuitry that is optimised for extracting reliable information from dim and noisy visual images. Even though we are only at the threshold of understanding the neural mechanisms responsible for reliable nocturnal vision, growing evidence suggests that the neural summation of photons in space and time is critically important: even though vision in dim light becomes necessarily coarser and slower, it also becomes significantly more reliable. We explored the benefits of spatiotemporal summation by creating a computer algorithm that mimicked nocturnal visual processing strategies. This algorithm dramatically increased the reliability of video collected in dim light, including the preservation of colour, strengthening evidence that summation strategies are essential for nocturnal vision.

  2. Method for enhancing single-trial P300 detection by introducing the complexity degree of image information in rapid serial visual presentation tasks

    PubMed Central

    Lin, Zhimin; Zeng, Ying; Tong, Li; Zhang, Hangming; Zhang, Chi

    2017-01-01

    The application of electroencephalogram (EEG) generated by human viewing images is a new thrust in image retrieval technology. A P300 component in the EEG is induced when the subjects see their point of interest in a target image under the rapid serial visual presentation (RSVP) experimental paradigm. We detected the single-trial P300 component to determine whether a subject was interested in an image. In practice, the latency and amplitude of the P300 component may vary in relation to different experimental parameters, such as target probability and stimulus semantics. Thus, we proposed a novel method, Target Recognition using Image Complexity Priori (TRICP) algorithm, in which the image information is introduced in the calculation of the interest score in the RSVP paradigm. The method combines information from the image and EEG to enhance the accuracy of single-trial P300 detection on the basis of traditional single-trial P300 detection algorithm. We defined an image complexity parameter based on the features of the different layers of a convolution neural network (CNN). We used the TRICP algorithm to compute for the complexity of an image to quantify the effect of different complexity images on the P300 components and training specialty classifier according to the image complexity. We compared TRICP with the HDCA algorithm. Results show that TRICP is significantly higher than the HDCA algorithm (Wilcoxon Sign Rank Test, p<0.05). Thus, the proposed method can be used in other and visual task-related single-trial event-related potential detection. PMID:29283998

  3. Visualization Techniques in Space and Atmospheric Sciences

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, E. P. (Editor); Bredekamp, Joseph H. (Editor)

    1995-01-01

    Unprecedented volumes of data will be generated by research programs that investigate the Earth as a system and the origin of the universe, which will in turn require analysis and interpretation that will lead to meaningful scientific insight. Providing a widely distributed research community with the ability to access, manipulate, analyze, and visualize these complex, multidimensional data sets depends on a wide range of computer science and technology topics. Data storage and compression, data base management, computational methods and algorithms, artificial intelligence, telecommunications, and high-resolution display are just a few of the topics addressed. A unifying theme throughout the papers with regards to advanced data handling and visualization is the need for interactivity, speed, user-friendliness, and extensibility.

  4. Threshold matrix for digital halftoning by genetic algorithm optimization

    NASA Astrophysics Data System (ADS)

    Alander, Jarmo T.; Mantere, Timo J.; Pyylampi, Tero

    1998-10-01

    Digital halftoning is used both in low and high resolution high quality printing technologies. Our method is designed to be mainly used for low resolution ink jet marking machines to produce both gray tone and color images. The main problem with digital halftoning is pink noise caused by the human eye's visual transfer function. To compensate for this the random dot patterns used are optimized to contain more blue than pink noise. Several such dot pattern generator threshold matrices have been created automatically by using genetic algorithm optimization, a non-deterministic global optimization method imitating natural evolution and genetics. A hybrid of genetic algorithm with a search method based on local backtracking was developed together with several fitness functions evaluating dot patterns for rectangular grids. By modifying the fitness function, a family of dot generators results, each with its particular statistical features. Several versions of genetic algorithms, backtracking and fitness functions were tested to find a reasonable combination. The generated threshold matrices have been tested by simulating a set of test images using the Khoros image processing system. Even though the work was focused on developing low resolution marking technology, the resulting family of dot generators can be applied also in other halftoning application areas including high resolution printing technology.

  5. Infrared image enhancement based on the edge detection and mathematical morphology

    NASA Astrophysics Data System (ADS)

    Zhang, Linlin; Zhao, Yuejin; Dong, Liquan; Liu, Xiaohua; Yu, Xiaomei; Hui, Mei; Chu, Xuhong; Gong, Cheng

    2010-11-01

    The development of the un-cooled infrared imaging technology from military necessity. At present, It is widely applied in industrial, medicine, scientific and technological research and so on. The infrared radiation temperature distribution of the measured object's surface can be observed visually. The collection of infrared images from our laboratory has following characteristics: Strong spatial correlation, Low contrast , Poor visual effect; Without color or shadows because of gray image , and has low resolution; Low definition compare to the visible light image; Many kinds of noise are brought by the random disturbances of the external environment. Digital image processing are widely applied in many areas, it can now be studied up close and in detail in many research field. It has become one kind of important means of the human visual continuation. Traditional methods for image enhancement cannot capture the geometric information of images and tend to amplify noise. In order to remove noise and improve visual effect. Meanwhile, To overcome the above enhancement issues. The mathematical model of FPA unit was constructed based on matrix transformation theory. According to characteristics of FPA, Image enhancement algorithm which combined with mathematical morphology and edge detection are established. First of all, Image profile is obtained by using the edge detection combine with mathematical morphological operators. And then, through filling the template profile by original image to get the ideal background image, The image noise can be removed on the base of the above method. The experiments show that utilizing the proposed algorithm can enhance image detail and the signal to noise ratio.

  6. Properties of the numerical algorithms for problems of quantum information technologies: Benefits of deep analysis

    NASA Astrophysics Data System (ADS)

    Chernyavskiy, Andrey; Khamitov, Kamil; Teplov, Alexey; Voevodin, Vadim; Voevodin, Vladimir

    2016-10-01

    In recent years, quantum information technologies (QIT) showed great development, although, the way of the implementation of QIT faces the serious difficulties, some of which are challenging computational tasks. This work is devoted to the deep and broad analysis of the parallel algorithmic properties of such tasks. As an example we take one- and two-qubit transformations of a many-qubit quantum state, which are the most critical kernels of many important QIT applications. The analysis of the algorithms uses the methodology of the AlgoWiki project (algowiki-project.org) and consists of two parts: theoretical and experimental. Theoretical part includes features like sequential and parallel complexity, macro structure, and visual information graph. Experimental part was made by using the petascale Lomonosov supercomputer (Moscow State University, Russia) and includes the analysis of locality and memory access, scalability and the set of more specific dynamic characteristics of realization. This approach allowed us to obtain bottlenecks and generate ideas of efficiency improvement.

  7. A Powerful, Cost Effective, Web Based Engineering Solution Supporting Conjunction Detection and Visual Analysis

    NASA Astrophysics Data System (ADS)

    Novak, Daniel M.; Biamonti, Davide; Gross, Jeremy; Milnes, Martin

    2013-08-01

    An innovative and visually appealing tool is presented for efficient all-vs-all conjunction analysis on a large catalogue of objects. The conjunction detection uses a nearest neighbour search algorithm, based on spatial binning and identification of pairs of objects in adjacent bins. This results in the fastest all vs all filtering the authors are aware of. The tool is constructed on a server-client architecture, where the server broadcasts to the client the conjunction data and ephemerides, while the client supports the user interface through a modern browser, without plug-in. In order to make the tool flexible and maintainable, Java software technologies were used on the server side, including Spring, Camel, ActiveMQ and CometD. The user interface and visualisation are based on the latest web technologies: HTML5, WebGL, THREE.js. Importance has been given on the ergonomics and visual appeal of the software. In fact certain design concepts have been borrowed from the gaming industry.

  8. Dual energy computed tomography for the head.

    PubMed

    Naruto, Norihito; Itoh, Toshihide; Noguchi, Kyo

    2018-02-01

    Dual energy CT (DECT) is a promising technology that provides better diagnostic accuracy in several brain diseases. DECT can generate various types of CT images from a single acquisition data set at high kV and low kV based on material decomposition algorithms. The two-material decomposition algorithm can separate bone/calcification from iodine accurately. The three-material decomposition algorithm can generate a virtual non-contrast image, which helps to identify conditions such as brain hemorrhage. A virtual monochromatic image has the potential to eliminate metal artifacts by reducing beam-hardening effects. DECT also enables exploration of advanced imaging to make diagnosis easier. One such novel application of DECT is the X-Map, which helps to visualize ischemic stroke in the brain without using iodine contrast medium.

  9. A parallel spatiotemporal saliency and discriminative online learning method for visual target tracking in aerial videos.

    PubMed

    Aghamohammadi, Amirhossein; Ang, Mei Choo; A Sundararajan, Elankovan; Weng, Ng Kok; Mogharrebi, Marzieh; Banihashem, Seyed Yashar

    2018-01-01

    Visual tracking in aerial videos is a challenging task in computer vision and remote sensing technologies due to appearance variation difficulties. Appearance variations are caused by camera and target motion, low resolution noisy images, scale changes, and pose variations. Various approaches have been proposed to deal with appearance variation difficulties in aerial videos, and amongst these methods, the spatiotemporal saliency detection approach reported promising results in the context of moving target detection. However, it is not accurate for moving target detection when visual tracking is performed under appearance variations. In this study, a visual tracking method is proposed based on spatiotemporal saliency and discriminative online learning methods to deal with appearance variations difficulties. Temporal saliency is used to represent moving target regions, and it was extracted based on the frame difference with Sauvola local adaptive thresholding algorithms. The spatial saliency is used to represent the target appearance details in candidate moving regions. SLIC superpixel segmentation, color, and moment features can be used to compute feature uniqueness and spatial compactness of saliency measurements to detect spatial saliency. It is a time consuming process, which prompted the development of a parallel algorithm to optimize and distribute the saliency detection processes that are loaded into the multi-processors. Spatiotemporal saliency is then obtained by combining the temporal and spatial saliencies to represent moving targets. Finally, a discriminative online learning algorithm was applied to generate a sample model based on spatiotemporal saliency. This sample model is then incrementally updated to detect the target in appearance variation conditions. Experiments conducted on the VIVID dataset demonstrated that the proposed visual tracking method is effective and is computationally efficient compared to state-of-the-art methods.

  10. A parallel spatiotemporal saliency and discriminative online learning method for visual target tracking in aerial videos

    PubMed Central

    2018-01-01

    Visual tracking in aerial videos is a challenging task in computer vision and remote sensing technologies due to appearance variation difficulties. Appearance variations are caused by camera and target motion, low resolution noisy images, scale changes, and pose variations. Various approaches have been proposed to deal with appearance variation difficulties in aerial videos, and amongst these methods, the spatiotemporal saliency detection approach reported promising results in the context of moving target detection. However, it is not accurate for moving target detection when visual tracking is performed under appearance variations. In this study, a visual tracking method is proposed based on spatiotemporal saliency and discriminative online learning methods to deal with appearance variations difficulties. Temporal saliency is used to represent moving target regions, and it was extracted based on the frame difference with Sauvola local adaptive thresholding algorithms. The spatial saliency is used to represent the target appearance details in candidate moving regions. SLIC superpixel segmentation, color, and moment features can be used to compute feature uniqueness and spatial compactness of saliency measurements to detect spatial saliency. It is a time consuming process, which prompted the development of a parallel algorithm to optimize and distribute the saliency detection processes that are loaded into the multi-processors. Spatiotemporal saliency is then obtained by combining the temporal and spatial saliencies to represent moving targets. Finally, a discriminative online learning algorithm was applied to generate a sample model based on spatiotemporal saliency. This sample model is then incrementally updated to detect the target in appearance variation conditions. Experiments conducted on the VIVID dataset demonstrated that the proposed visual tracking method is effective and is computationally efficient compared to state-of-the-art methods. PMID:29438421

  11. Progressive Visual Analytics: User-Driven Visual Exploration of In-Progress Analytics.

    PubMed

    Stolper, Charles D; Perer, Adam; Gotz, David

    2014-12-01

    As datasets grow and analytic algorithms become more complex, the typical workflow of analysts launching an analytic, waiting for it to complete, inspecting the results, and then re-Iaunching the computation with adjusted parameters is not realistic for many real-world tasks. This paper presents an alternative workflow, progressive visual analytics, which enables an analyst to inspect partial results of an algorithm as they become available and interact with the algorithm to prioritize subspaces of interest. Progressive visual analytics depends on adapting analytical algorithms to produce meaningful partial results and enable analyst intervention without sacrificing computational speed. The paradigm also depends on adapting information visualization techniques to incorporate the constantly refining results without overwhelming analysts and provide interactions to support an analyst directing the analytic. The contributions of this paper include: a description of the progressive visual analytics paradigm; design goals for both the algorithms and visualizations in progressive visual analytics systems; an example progressive visual analytics system (Progressive Insights) for analyzing common patterns in a collection of event sequences; and an evaluation of Progressive Insights and the progressive visual analytics paradigm by clinical researchers analyzing electronic medical records.

  12. Chronodes: Interactive Multifocus Exploration of Event Sequences

    PubMed Central

    POLACK, PETER J.; CHEN, SHANG-TSE; KAHNG, MINSUK; DE BARBARO, KAYA; BASOLE, RAHUL; SHARMIN, MOUSHUMI; CHAU, DUEN HORNG

    2018-01-01

    The advent of mobile health (mHealth) technologies challenges the capabilities of current visualizations, interactive tools, and algorithms. We present Chronodes, an interactive system that unifies data mining and human-centric visualization techniques to support explorative analysis of longitudinal mHealth data. Chronodes extracts and visualizes frequent event sequences that reveal chronological patterns across multiple participant timelines of mHealth data. It then combines novel interaction and visualization techniques to enable multifocus event sequence analysis, which allows health researchers to interactively define, explore, and compare groups of participant behaviors using event sequence combinations. Through summarizing insights gained from a pilot study with 20 behavioral and biomedical health experts, we discuss Chronodes’s efficacy and potential impact in the mHealth domain. Ultimately, we outline important open challenges in mHealth, and offer recommendations and design guidelines for future research. PMID:29515937

  13. Quantitative fluorescence angiography for neurosurgical interventions.

    PubMed

    Weichelt, Claudia; Duscha, Philipp; Steinmeier, Ralf; Meyer, Tobias; Kuß, Julia; Cimalla, Peter; Kirsch, Matthias; Sobottka, Stephan B; Koch, Edmund; Schackert, Gabriele; Morgenstern, Ute

    2013-06-01

    Present methods for quantitative measurement of cerebral perfusion during neurosurgical operations require additional technology for measurement, data acquisition, and processing. This study used conventional fluorescence video angiography--as an established method to visualize blood flow in brain vessels--enhanced by a quantifying perfusion software tool. For these purposes, the fluorescence dye indocyanine green is given intravenously, and after activation by a near-infrared light source the fluorescence signal is recorded. Video data are analyzed by software algorithms to allow quantification of the blood flow. Additionally, perfusion is measured intraoperatively by a reference system. Furthermore, comparing reference measurements using a flow phantom were performed to verify the quantitative blood flow results of the software and to validate the software algorithm. Analysis of intraoperative video data provides characteristic biological parameters. These parameters were implemented in the special flow phantom for experimental validation of the developed software algorithms. Furthermore, various factors that influence the determination of perfusion parameters were analyzed by means of mathematical simulation. Comparing patient measurement, phantom experiment, and computer simulation under certain conditions (variable frame rate, vessel diameter, etc.), the results of the software algorithms are within the range of parameter accuracy of the reference methods. Therefore, the software algorithm for calculating cortical perfusion parameters from video data presents a helpful intraoperative tool without complex additional measurement technology.

  14. Motion correction for improved estimation of heart rate using a visual spectrum camera

    NASA Astrophysics Data System (ADS)

    Tarbox, Elizabeth A.; Rios, Christian; Kaur, Balvinder; Meyer, Shaun; Hirt, Lauren; Tran, Vy; Scott, Kaitlyn; Ikonomidou, Vasiliki

    2017-05-01

    Heart rate measurement using a visual spectrum recording of the face has drawn interest over the last few years as a technology that can have various health and security applications. In our previous work, we have shown that it is possible to estimate the heart beat timing accurately enough to perform heart rate variability analysis for contactless stress detection. However, a major confounding factor in this approach is the presence of movement, which can interfere with the measurements. To mitigate the effects of movement, in this work we propose the use of face detection and tracking based on the Karhunen-Loewe algorithm in order to counteract measurement errors introduced by normal subject motion, as expected during a common seated conversation setting. We analyze the requirements on image acquisition for the algorithm to work, and its performance under different ranges of motion, changes of distance to the camera, as well and the effect of illumination changes due to different positioning with respect to light sources on the acquired signal. Our results suggest that the effect of face tracking on visual-spectrum based cardiac signal estimation depends on the amplitude of the motion. While for larger-scale conversation-induced motion it can significantly improve estimation accuracy, with smaller-scale movements, such as the ones caused by breathing or talking without major movement errors in facial tracking may interfere with signal estimation. Overall, employing facial tracking is a crucial step in adapting this technology to real-life situations with satisfactory results.

  15. On detection and visualization techniques for cyber security situation awareness

    NASA Astrophysics Data System (ADS)

    Yu, Wei; Wei, Shixiao; Shen, Dan; Blowers, Misty; Blasch, Erik P.; Pham, Khanh D.; Chen, Genshe; Zhang, Hanlin; Lu, Chao

    2013-05-01

    Networking technologies are exponentially increasing to meet worldwide communication requirements. The rapid growth of network technologies and perversity of communications pose serious security issues. In this paper, we aim to developing an integrated network defense system with situation awareness capabilities to present the useful information for human analysts. In particular, we implement a prototypical system that includes both the distributed passive and active network sensors and traffic visualization features, such as 1D, 2D and 3D based network traffic displays. To effectively detect attacks, we also implement algorithms to transform real-world data of IP addresses into images and study the pattern of attacks and use both the discrete wavelet transform (DWT) based scheme and the statistical based scheme to detect attacks. Through an extensive simulation study, our data validate the effectiveness of our implemented defense system.

  16. Characterization of Volitional Electromyographic Signals in the Lower Extremity After Motor Complete Spinal Cord Injury.

    PubMed

    Heald, Elizabeth; Hart, Ronald; Kilgore, Kevin; Peckham, P Hunter

    2017-06-01

    Previous studies have demonstrated the presence of intact axons across a spinal cord lesion, even in those clinically diagnosed with complete spinal cord injury (SCI). These axons may allow volitional motor signals to be transmitted through the injury, even in the absence of visible muscle contraction. To demonstrate the presence of volitional electromyographic (EMG) activity below the lesion in motor complete SCI and to characterize this activity to determine its value for potential use as a neuroprosthetic command source. Twenty-four subjects with complete (AIS A or B), chronic, cervical SCI were tested for the presence of volitional below-injury EMG activity. Surface electrodes recorded from 8 to 12 locations of each lower limb, while participants were asked to attempt specific movements of the lower extremity in response to visual and audio cues. EMG trials were ranked through visual inspection, and were scored using an amplitude threshold algorithm to identify channels of interest with volitional motor unit activity. Significant below-injury muscle activity was identified through visual inspection in 16 of 24 participants, and visual inspection rankings were well correlated to the algorithm scoring. The surface EMG protocol utilized here is relatively simple and noninvasive, ideal for a clinical screening tool. The majority of subjects tested were able to produce a volitional EMG signal below their injury level, and the algorithm developed allows automatic identification of signals of interest. The presence of this volitional activity in the lower extremity could provide an innovative new command signal source for implanted neuroprostheses or other assistive technology.

  17. Creation of an Accurate Algorithm to Detect Snellen Best Documented Visual Acuity from Ophthalmology Electronic Health Record Notes.

    PubMed

    Mbagwu, Michael; French, Dustin D; Gill, Manjot; Mitchell, Christopher; Jackson, Kathryn; Kho, Abel; Bryar, Paul J

    2016-05-04

    Visual acuity is the primary measure used in ophthalmology to determine how well a patient can see. Visual acuity for a single eye may be recorded in multiple ways for a single patient visit (eg, Snellen vs. Jäger units vs. font print size), and be recorded for either distance or near vision. Capturing the best documented visual acuity (BDVA) of each eye in an individual patient visit is an important step for making electronic ophthalmology clinical notes useful in research. Currently, there is limited methodology for capturing BDVA in an efficient and accurate manner from electronic health record (EHR) notes. We developed an algorithm to detect BDVA for right and left eyes from defined fields within electronic ophthalmology clinical notes. We designed an algorithm to detect the BDVA from defined fields within 295,218 ophthalmology clinical notes with visual acuity data present. About 5668 unique responses were identified and an algorithm was developed to map all of the unique responses to a structured list of Snellen visual acuities. Visual acuity was captured from a total of 295,218 ophthalmology clinical notes during the study dates. The algorithm identified all visual acuities in the defined visual acuity section for each eye and returned a single BDVA for each eye. A clinician chart review of 100 random patient notes showed a 99% accuracy detecting BDVA from these records and 1% observed error. Our algorithm successfully captures best documented Snellen distance visual acuity from ophthalmology clinical notes and transforms a variety of inputs into a structured Snellen equivalent list. Our work, to the best of our knowledge, represents the first attempt at capturing visual acuity accurately from large numbers of electronic ophthalmology notes. Use of this algorithm can benefit research groups interested in assessing visual acuity for patient centered outcome. All codes used for this study are currently available, and will be made available online at https://phekb.org.

  18. Creation of an Accurate Algorithm to Detect Snellen Best Documented Visual Acuity from Ophthalmology Electronic Health Record Notes

    PubMed Central

    French, Dustin D; Gill, Manjot; Mitchell, Christopher; Jackson, Kathryn; Kho, Abel; Bryar, Paul J

    2016-01-01

    Background Visual acuity is the primary measure used in ophthalmology to determine how well a patient can see. Visual acuity for a single eye may be recorded in multiple ways for a single patient visit (eg, Snellen vs. Jäger units vs. font print size), and be recorded for either distance or near vision. Capturing the best documented visual acuity (BDVA) of each eye in an individual patient visit is an important step for making electronic ophthalmology clinical notes useful in research. Objective Currently, there is limited methodology for capturing BDVA in an efficient and accurate manner from electronic health record (EHR) notes. We developed an algorithm to detect BDVA for right and left eyes from defined fields within electronic ophthalmology clinical notes. Methods We designed an algorithm to detect the BDVA from defined fields within 295,218 ophthalmology clinical notes with visual acuity data present. About 5668 unique responses were identified and an algorithm was developed to map all of the unique responses to a structured list of Snellen visual acuities. Results Visual acuity was captured from a total of 295,218 ophthalmology clinical notes during the study dates. The algorithm identified all visual acuities in the defined visual acuity section for each eye and returned a single BDVA for each eye. A clinician chart review of 100 random patient notes showed a 99% accuracy detecting BDVA from these records and 1% observed error. Conclusions Our algorithm successfully captures best documented Snellen distance visual acuity from ophthalmology clinical notes and transforms a variety of inputs into a structured Snellen equivalent list. Our work, to the best of our knowledge, represents the first attempt at capturing visual acuity accurately from large numbers of electronic ophthalmology notes. Use of this algorithm can benefit research groups interested in assessing visual acuity for patient centered outcome. All codes used for this study are currently available, and will be made available online at https://phekb.org. PMID:27146002

  19. Accelerating Demand Paging for Local and Remote Out-of-Core Visualization

    NASA Technical Reports Server (NTRS)

    Ellsworth, David

    2001-01-01

    This paper describes a new algorithm that improves the performance of application-controlled demand paging for the out-of-core visualization of data sets that are on either local disks or disks on remote servers. The performance improvements come from better overlapping the computation with the page reading process, and by performing multiple page reads in parallel. The new algorithm can be applied to many different visualization algorithms since application-controlled demand paging is not specific to any visualization algorithm. The paper includes measurements that show that the new multi-threaded paging algorithm decreases the time needed to compute visualizations by one third when using one processor and reading data from local disk. The time needed when using one processor and reading data from remote disk decreased by up to 60%. Visualization runs using data from remote disk ran about as fast as ones using data from local disk because the remote runs were able to make use of the remote server's high performance disk array.

  20. A Multilevel Gamma-Clustering Layout Algorithm for Visualization of Biological Networks

    PubMed Central

    Hruz, Tomas; Lucas, Christoph; Laule, Oliver; Zimmermann, Philip

    2013-01-01

    Visualization of large complex networks has become an indispensable part of systems biology, where organisms need to be considered as one complex system. The visualization of the corresponding network is challenging due to the size and density of edges. In many cases, the use of standard visualization algorithms can lead to high running times and poorly readable visualizations due to many edge crossings. We suggest an approach that analyzes the structure of the graph first and then generates a new graph which contains specific semantic symbols for regular substructures like dense clusters. We propose a multilevel gamma-clustering layout visualization algorithm (MLGA) which proceeds in three subsequent steps: (i) a multilevel γ-clustering is used to identify the structure of the underlying network, (ii) the network is transformed to a tree, and (iii) finally, the resulting tree which shows the network structure is drawn using a variation of a force-directed algorithm. The algorithm has a potential to visualize very large networks because it uses modern clustering heuristics which are optimized for large graphs. Moreover, most of the edges are removed from the visual representation which allows keeping the overview over complex graphs with dense subgraphs. PMID:23864855

  1. Visual performance-based image enhancement methodology: an investigation of contrast enhancement algorithms

    NASA Astrophysics Data System (ADS)

    Neriani, Kelly E.; Herbranson, Travis J.; Reis, George A.; Pinkus, Alan R.; Goodyear, Charles D.

    2006-05-01

    While vast numbers of image enhancing algorithms have already been developed, the majority of these algorithms have not been assessed in terms of their visual performance-enhancing effects using militarily relevant scenarios. The goal of this research was to apply a visual performance-based assessment methodology to evaluate six algorithms that were specifically designed to enhance the contrast of digital images. The image enhancing algorithms used in this study included three different histogram equalization algorithms, the Autolevels function, the Recursive Rational Filter technique described in Marsi, Ramponi, and Carrato1 and the multiscale Retinex algorithm described in Rahman, Jobson and Woodell2. The methodology used in the assessment has been developed to acquire objective human visual performance data as a means of evaluating the contrast enhancement algorithms. Objective performance metrics, response time and error rate, were used to compare algorithm enhanced images versus two baseline conditions, original non-enhanced images and contrast-degraded images. Observers completed a visual search task using a spatial-forcedchoice paradigm. Observers searched images for a target (a military vehicle) hidden among foliage and then indicated in which quadrant of the screen the target was located. Response time and percent correct were measured for each observer. Results of the study and future directions are discussed.

  2. High-performance technology for indexing of high volumes of Earth remote sensing data

    NASA Astrophysics Data System (ADS)

    Strotov, Valery V.; Taganov, Alexander I.; Kolesenkov, Aleksandr N.; Kostrov, Boris V.

    2017-10-01

    The present paper has suggested a technology for search, indexing, cataloging and distribution of aerospace images on the basis of geo-information approach, cluster and spectral analysis. It has considered information and algorithmic support of the system. Functional circuit of the system and structure of the geographical data base have been developed on the basis of the geographical online portal technology. Taking into account heterogeneity of information obtained from various sources it is reasonable to apply a geoinformation platform that allows analyzing space location of objects and territories and executing complex processing of information. Geoinformation platform is based on cartographic fundamentals with the uniform coordinate system, the geographical data base, a set of algorithms and program modules for execution of various tasks. The technology for adding by particular users and companies of images taken by means of professional and amateur devices and also processed by various software tools to the array system has been suggested. Complex usage of visual and instrumental approaches allows significantly expanding an application area of Earth remote sensing data. Development and implementation of new algorithms based on the complex usage of new methods for processing of structured and unstructured data of high volumes will increase periodicity and rate of data updating. The paper has shown that application of original algorithms for search, indexing and cataloging of aerospace images will provide an easy access to information spread by hundreds of suppliers and allow increasing an access rate to aerospace images up to 5 times in comparison with current analogues.

  3. Quantifying Pilot Visual Attention in Low Visibility Terminal Operations

    NASA Technical Reports Server (NTRS)

    Ellis, Kyle K.; Arthur, J. J.; Latorella, Kara A.; Kramer, Lynda J.; Shelton, Kevin J.; Norman, Robert M.; Prinzel, Lawrence J.

    2012-01-01

    Quantifying pilot visual behavior allows researchers to determine not only where a pilot is looking and when, but holds implications for specific behavioral tracking when these data are coupled with flight technical performance. Remote eye tracking systems have been integrated into simulators at NASA Langley with effectively no impact on the pilot environment. This paper discusses the installation and use of a remote eye tracking system. The data collection techniques from a complex human-in-the-loop (HITL) research experiment are discussed; especially, the data reduction algorithms and logic to transform raw eye tracking data into quantified visual behavior metrics, and analysis methods to interpret visual behavior. The findings suggest superior performance for Head-Up Display (HUD) and improved attentional behavior for Head-Down Display (HDD) implementations of Synthetic Vision System (SVS) technologies for low visibility terminal area operations. Keywords: eye tracking, flight deck, NextGen, human machine interface, aviation

  4. Interactive and coordinated visualization approaches for biological data analysis.

    PubMed

    Cruz, António; Arrais, Joel P; Machado, Penousal

    2018-03-26

    The field of computational biology has become largely dependent on data visualization tools to analyze the increasing quantities of data gathered through the use of new and growing technologies. Aside from the volume, which often results in large amounts of noise and complex relationships with no clear structure, the visualization of biological data sets is hindered by their heterogeneity, as data are obtained from different sources and contain a wide variety of attributes, including spatial and temporal information. This requires visualization approaches that are able to not only represent various data structures simultaneously but also provide exploratory methods that allow the identification of meaningful relationships that would not be perceptible through data analysis algorithms alone. In this article, we present a survey of visualization approaches applied to the analysis of biological data. We focus on graph-based visualizations and tools that use coordinated multiple views to represent high-dimensional multivariate data, in particular time series gene expression, protein-protein interaction networks and biological pathways. We then discuss how these methods can be used to help solve the current challenges surrounding the visualization of complex biological data sets.

  5. Correlative visualization techniques for multidimensional data

    NASA Technical Reports Server (NTRS)

    Treinish, Lloyd A.; Goettsche, Craig

    1989-01-01

    Critical to the understanding of data is the ability to provide pictorial or visual representation of those data, particularly in support of correlative data analysis. Despite the advancement of visualization techniques for scientific data over the last several years, there are still significant problems in bringing today's hardware and software technology into the hands of the typical scientist. For example, there are other computer science domains outside of computer graphics that are required to make visualization effective such as data management. Well-defined, flexible mechanisms for data access and management must be combined with rendering algorithms, data transformation, etc. to form a generic visualization pipeline. A generalized approach to data visualization is critical for the correlative analysis of distinct, complex, multidimensional data sets in the space and Earth sciences. Different classes of data representation techniques must be used within such a framework, which can range from simple, static two- and three-dimensional line plots to animation, surface rendering, and volumetric imaging. Static examples of actual data analyses will illustrate the importance of an effective pipeline in data visualization system.

  6. Technical note: DIRART--A software suite for deformable image registration and adaptive radiotherapy research.

    PubMed

    Yang, Deshan; Brame, Scott; El Naqa, Issam; Aditya, Apte; Wu, Yu; Goddu, S Murty; Mutic, Sasa; Deasy, Joseph O; Low, Daniel A

    2011-01-01

    Recent years have witnessed tremendous progress in image guide radiotherapy technology and a growing interest in the possibilities for adapting treatment planning and delivery over the course of treatment. One obstacle faced by the research community has been the lack of a comprehensive open-source software toolkit dedicated for adaptive radiotherapy (ART). To address this need, the authors have developed a software suite called the Deformable Image Registration and Adaptive Radiotherapy Toolkit (DIRART). DIRART is an open-source toolkit developed in MATLAB. It is designed in an object-oriented style with focus on user-friendliness, features, and flexibility. It contains four classes of DIR algorithms, including the newer inverse consistency algorithms to provide consistent displacement vector field in both directions. It also contains common ART functions, an integrated graphical user interface, a variety of visualization and image-processing features, dose metric analysis functions, and interface routines. These interface routines make DIRART a powerful complement to the Computational Environment for Radiotherapy Research (CERR) and popular image-processing toolkits such as ITK. DIRART provides a set of image processing/registration algorithms and postprocessing functions to facilitate the development and testing of DIR algorithms. It also offers a good amount of options for DIR results visualization, evaluation, and validation. By exchanging data with treatment planning systems via DICOM-RT files and CERR, and by bringing image registration algorithms closer to radiotherapy applications, DIRART is potentially a convenient and flexible platform that may facilitate ART and DIR research. 0 2011 Ameri-

  7. Spatiotemporal video deinterlacing using control grid interpolation

    NASA Astrophysics Data System (ADS)

    Venkatesan, Ragav; Zwart, Christine M.; Frakes, David H.; Li, Baoxin

    2015-03-01

    With the advent of progressive format display and broadcast technologies, video deinterlacing has become an important video-processing technique. Numerous approaches exist in the literature to accomplish deinterlacing. While most earlier methods were simple linear filtering-based approaches, the emergence of faster computing technologies and even dedicated video-processing hardware in display units has allowed higher quality but also more computationally intense deinterlacing algorithms to become practical. Most modern approaches analyze motion and content in video to select different deinterlacing methods for various spatiotemporal regions. We introduce a family of deinterlacers that employs spectral residue to choose between and weight control grid interpolation based spatial and temporal deinterlacing methods. The proposed approaches perform better than the prior state-of-the-art based on peak signal-to-noise ratio, other visual quality metrics, and simple perception-based subjective evaluations conducted by human viewers. We further study the advantages of using soft and hard decision thresholds on the visual performance.

  8. ABACAS: algorithm-based automatic contiguation of assembled sequences

    PubMed Central

    Assefa, Samuel; Keane, Thomas M.; Otto, Thomas D.; Newbold, Chris; Berriman, Matthew

    2009-01-01

    Summary: Due to the availability of new sequencing technologies, we are now increasingly interested in sequencing closely related strains of existing finished genomes. Recently a number of de novo and mapping-based assemblers have been developed to produce high quality draft genomes from new sequencing technology reads. New tools are necessary to take contigs from a draft assembly through to a fully contiguated genome sequence. ABACAS is intended as a tool to rapidly contiguate (align, order, orientate), visualize and design primers to close gaps on shotgun assembled contigs based on a reference sequence. The input to ABACAS is a set of contigs which will be aligned to the reference genome, ordered and orientated, visualized in the ACT comparative browser, and optimal primer sequences are automatically generated. Availability and Implementation: ABACAS is implemented in Perl and is freely available for download from http://abacas.sourceforge.net Contact: sa4@sanger.ac.uk PMID:19497936

  9. SEURAT: visual analytics for the integrated analysis of microarray data.

    PubMed

    Gribov, Alexander; Sill, Martin; Lück, Sonja; Rücker, Frank; Döhner, Konstanze; Bullinger, Lars; Benner, Axel; Unwin, Antony

    2010-06-03

    In translational cancer research, gene expression data is collected together with clinical data and genomic data arising from other chip based high throughput technologies. Software tools for the joint analysis of such high dimensional data sets together with clinical data are required. We have developed an open source software tool which provides interactive visualization capability for the integrated analysis of high-dimensional gene expression data together with associated clinical data, array CGH data and SNP array data. The different data types are organized by a comprehensive data manager. Interactive tools are provided for all graphics: heatmaps, dendrograms, barcharts, histograms, eventcharts and a chromosome browser, which displays genetic variations along the genome. All graphics are dynamic and fully linked so that any object selected in a graphic will be highlighted in all other graphics. For exploratory data analysis the software provides unsupervised data analytics like clustering, seriation algorithms and biclustering algorithms. The SEURAT software meets the growing needs of researchers to perform joint analysis of gene expression, genomical and clinical data.

  10. Multispectral image analysis for object recognition and classification

    NASA Astrophysics Data System (ADS)

    Viau, C. R.; Payeur, P.; Cretu, A.-M.

    2016-05-01

    Computer and machine vision applications are used in numerous fields to analyze static and dynamic imagery in order to assist or automate decision-making processes. Advancements in sensor technologies now make it possible to capture and visualize imagery at various wavelengths (or bands) of the electromagnetic spectrum. Multispectral imaging has countless applications in various fields including (but not limited to) security, defense, space, medical, manufacturing and archeology. The development of advanced algorithms to process and extract salient information from the imagery is a critical component of the overall system performance. The fundamental objective of this research project was to investigate the benefits of combining imagery from the visual and thermal bands of the electromagnetic spectrum to improve the recognition rates and accuracy of commonly found objects in an office setting. A multispectral dataset (visual and thermal) was captured and features from the visual and thermal images were extracted and used to train support vector machine (SVM) classifiers. The SVM's class prediction ability was evaluated separately on the visual, thermal and multispectral testing datasets.

  11. Assisting the visually impaired: obstacle detection and warning system by acoustic feedback.

    PubMed

    Rodríguez, Alberto; Yebes, J Javier; Alcantarilla, Pablo F; Bergasa, Luis M; Almazán, Javier; Cela, Andrés

    2012-12-17

    The aim of this article is focused on the design of an obstacle detection system for assisting visually impaired people. A dense disparity map is computed from the images of a stereo camera carried by the user. By using the dense disparity map, potential obstacles can be detected in 3D in indoor and outdoor scenarios. A ground plane estimation algorithm based on RANSAC plus filtering techniques allows the robust detection of the ground in every frame. A polar grid representation is proposed to account for the potential obstacles in the scene. The design is completed with acoustic feedback to assist visually impaired users while approaching obstacles. Beep sounds with different frequencies and repetitions inform the user about the presence of obstacles. Audio bone conducting technology is employed to play these sounds without interrupting the visually impaired user from hearing other important sounds from its local environment. A user study participated by four visually impaired volunteers supports the proposed system.

  12. Assisting the Visually Impaired: Obstacle Detection and Warning System by Acoustic Feedback

    PubMed Central

    Rodríguez, Alberto; Yebes, J. Javier; Alcantarilla, Pablo F.; Bergasa, Luis M.; Almazán, Javier; Cela, Andrés

    2012-01-01

    The aim of this article is focused on the design of an obstacle detection system for assisting visually impaired people. A dense disparity map is computed from the images of a stereo camera carried by the user. By using the dense disparity map, potential obstacles can be detected in 3D in indoor and outdoor scenarios. A ground plane estimation algorithm based on RANSAC plus filtering techniques allows the robust detection of the ground in every frame. A polar grid representation is proposed to account for the potential obstacles in the scene. The design is completed with acoustic feedback to assist visually impaired users while approaching obstacles. Beep sounds with different frequencies and repetitions inform the user about the presence of obstacles. Audio bone conducting technology is employed to play these sounds without interrupting the visually impaired user from hearing other important sounds from its local environment. A user study participated by four visually impaired volunteers supports the proposed system. PMID:23247413

  13. The openGL visualization of the 2D parallel FDTD algorithm

    NASA Astrophysics Data System (ADS)

    Walendziuk, Wojciech

    2005-02-01

    This paper presents a way of visualization of a two-dimensional version of a parallel algorithm of the FDTD method. The visualization module was created on the basis of the OpenGL graphic standard with the use of the GLUT interface. In addition, the work includes the results of the efficiency of the parallel algorithm in the form of speedup charts.

  14. Integrating Algorithm Visualization Video into a First-Year Algorithm and Data Structure Course

    ERIC Educational Resources Information Center

    Crescenzi, Pilu; Malizia, Alessio; Verri, M. Cecilia; Diaz, Paloma; Aedo, Ignacio

    2012-01-01

    In this paper we describe the results that we have obtained while integrating algorithm visualization (AV) movies (strongly tightened with the other teaching material), within a first-year undergraduate course on algorithms and data structures. Our experimental results seem to support the hypothesis that making these movies available significantly…

  15. Effects of visualization on algorithm comprehension

    NASA Astrophysics Data System (ADS)

    Mulvey, Matthew

    Computer science students are expected to learn and apply a variety of core algorithms which are an essential part of the field. Any one of these algorithms by itself is not necessarily extremely complex, but remembering the large variety of algorithms and the differences between them is challenging. To address this challenge, we present a novel algorithm visualization tool designed to enhance students understanding of Dijkstra's algorithm by allowing them to discover the rules of the algorithm for themselves. It is hoped that a deeper understanding of the algorithm will help students correctly select, adapt and apply the appropriate algorithm when presented with a problem to solve, and that what is learned here will be applicable to the design of other visualization tools designed to teach different algorithms. Our visualization tool is currently in the prototype stage, and this thesis will discuss the pedagogical approach that informs its design, as well as the results of some initial usability testing. Finally, to clarify the direction for further development of the tool, four different variations of the prototype were implemented, and the instructional effectiveness of each was assessed by having a small sample participants use the different versions of the prototype and then take a quiz to assess their comprehension of the algorithm.

  16. Denoising and 4D visualization of OCT images

    PubMed Central

    Gargesha, Madhusudhana; Jenkins, Michael W.; Rollins, Andrew M.; Wilson, David L.

    2009-01-01

    We are using Optical Coherence Tomography (OCT) to image structure and function of the developing embryonic heart in avian models. Fast OCT imaging produces very large 3D (2D + time) and 4D (3D volumes + time) data sets, which greatly challenge ones ability to visualize results. Noise in OCT images poses additional challenges. We created an algorithm with a quick, data set specific optimization for reduction of both shot and speckle noise and applied it to 3D visualization and image segmentation in OCT. When compared to baseline algorithms (median, Wiener, orthogonal wavelet, basic non-orthogonal wavelet), a panel of experts judged the new algorithm to give much improved volume renderings concerning both noise and 3D visualization. Specifically, the algorithm provided a better visualization of the myocardial and endocardial surfaces, and the interaction of the embryonic heart tube with surrounding tissue. Quantitative evaluation using an image quality figure of merit also indicated superiority of the new algorithm. Noise reduction aided semi-automatic 2D image segmentation, as quantitatively evaluated using a contour distance measure with respect to an expert segmented contour. In conclusion, the noise reduction algorithm should be quite useful for visualization and quantitative measurements (e.g., heart volume, stroke volume, contraction velocity, etc.) in OCT embryo images. With its semi-automatic, data set specific optimization, we believe that the algorithm can be applied to OCT images from other applications. PMID:18679509

  17. Comparing Learning Performance of Students Using Algorithm Visualizations Collaboratively on Different Engagement Levels

    ERIC Educational Resources Information Center

    Laakso, Mikko-Jussi; Myller, Niko; Korhonen, Ari

    2009-01-01

    In this paper, two emerging learning and teaching methods have been studied: collaboration in concert with algorithm visualization. When visualizations have been employed in collaborative learning, collaboration introduces new challenges for the visualization tools. In addition, new theories are needed to guide the development and research of the…

  18. Robot Evolutionary Localization Based on Attentive Visual Short-Term Memory

    PubMed Central

    Vega, Julio; Perdices, Eduardo; Cañas, José M.

    2013-01-01

    Cameras are one of the most relevant sensors in autonomous robots. However, two of their challenges are to extract useful information from captured images, and to manage the small field of view of regular cameras. This paper proposes implementing a dynamic visual memory to store the information gathered from a moving camera on board a robot, followed by an attention system to choose where to look with this mobile camera, and a visual localization algorithm that incorporates this visual memory. The visual memory is a collection of relevant task-oriented objects and 3D segments, and its scope is wider than the current camera field of view. The attention module takes into account the need to reobserve objects in the visual memory and the need to explore new areas. The visual memory is useful also in localization tasks, as it provides more information about robot surroundings than the current instantaneous image. This visual system is intended as underlying technology for service robot applications in real people's homes. Several experiments have been carried out, both with simulated and real Pioneer and Nao robots, to validate the system and each of its components in office scenarios. PMID:23337333

  19. Applying a visual language for image processing as a graphical teaching tool in medical imaging

    NASA Astrophysics Data System (ADS)

    Birchman, James J.; Tanimoto, Steven L.; Rowberg, Alan H.; Choi, Hyung-Sik; Kim, Yongmin

    1992-05-01

    Typical user interaction in image processing is with command line entries, pull-down menus, or text menu selections from a list, and as such is not generally graphical in nature. Although applying these interactive methods to construct more sophisticated algorithms from a series of simple image processing steps may be clear to engineers and programmers, it may not be clear to clinicians. A solution to this problem is to implement a visual programming language using visual representations to express image processing algorithms. Visual representations promote a more natural and rapid understanding of image processing algorithms by providing more visual insight into what the algorithms do than the interactive methods mentioned above can provide. Individuals accustomed to dealing with images will be more likely to understand an algorithm that is represented visually. This is especially true of referring physicians, such as surgeons in an intensive care unit. With the increasing acceptance of picture archiving and communications system (PACS) workstations and the trend toward increasing clinical use of image processing, referring physicians will need to learn more sophisticated concepts than simply image access and display. If the procedures that they perform commonly, such as window width and window level adjustment and image enhancement using unsharp masking, are depicted visually in an interactive environment, it will be easier for them to learn and apply these concepts. The software described in this paper is a visual programming language for imaging processing which has been implemented on the NeXT computer using NeXTstep user interface development tools and other tools in an object-oriented environment. The concept is based upon the description of a visual language titled `Visualization of Vision Algorithms' (VIVA). Iconic representations of simple image processing steps are placed into a workbench screen and connected together into a dataflow path by the user. As the user creates and edits a dataflow path, more complex algorithms can be built on the screen. Once the algorithm is built, it can be executed, its results can be reviewed, and operator parameters can be interactively adjusted until an optimized output is produced. The optimized algorithm can then be saved and added to the system as a new operator. This system has been evaluated as a graphical teaching tool for window width and window level adjustment, image enhancement using unsharp masking, and other techniques.

  20. Computer-Based Algorithmic Determination of Muscle Movement Onset Using M-Mode Ultrasonography

    DTIC Science & Technology

    2017-05-01

    contraction images were analyzed visually and with three different classes of algorithms: pixel standard deviation (SD), high-pass filter and Teager Kaiser...Linear relationships and agreements between computed and visual muscle onset were calculated. The top algorithms were high-pass filtered with a 30 Hz...suggest that computer automated determination using high-pass filtering is a potential objective alternative to visual determination in human

  1. Storyline Visualization: A Compelling Way to Understand Patterns over Time and Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2017-10-16

    Storyline visualization is a compelling way to understand patterns over time and space. Much effort has been spent developing efficient and aesthetically pleasing layout optimization algorithms. But what if those algorithms are optimizing the wrong things? To answer this question, we conducted a design study with different storyline layout algorithms. We found that users with our new design principles for storyline visualization outperform existing methods.

  2. Aural mapping of STEM concepts using literature mining

    NASA Astrophysics Data System (ADS)

    Bharadwaj, Venkatesh

    Recent technological applications have made the life of people too much dependent on Science, Technology, Engineering, and Mathematics (STEM) and its applications. Understanding basic level science is a must in order to use and contribute to this technological revolution. Science education in middle and high school levels however depends heavily on visual representations such as models, diagrams, figures, animations and presentations etc. This leaves visually impaired students with very few options to learn science and secure a career in STEM related areas. Recent experiments have shown that small aural clues called Audemes are helpful in understanding and memorization of science concepts among visually impaired students. Audemes are non-verbal sound translations of a science concept. In order to facilitate science concepts as Audemes, for visually impaired students, this thesis presents an automatic system for audeme generation from STEM textbooks. This thesis describes the systematic application of multiple Natural Language Processing tools and techniques, such as dependency parser, POS tagger, Information Retrieval algorithm, Semantic mapping of aural words, machine learning etc., to transform the science concept into a combination of atomic-sounds, thus forming an audeme. We present a rule based classification method for all STEM related concepts. This work also presents a novel way of mapping and extracting most related sounds for the words being used in textbook. Additionally, machine learning methods are used in the system to guarantee the customization of output according to a user's perception. The system being presented is robust, scalable, fully automatic and dynamically adaptable for audeme generation.

  3. Mathematical detection of aortic valve opening (B point) in impedance cardiography: A comparison of three popular algorithms.

    PubMed

    Árbol, Javier Rodríguez; Perakakis, Pandelis; Garrido, Alba; Mata, José Luis; Fernández-Santaella, M Carmen; Vila, Jaime

    2017-03-01

    The preejection period (PEP) is an index of left ventricle contractility widely used in psychophysiological research. Its computation requires detecting the moment when the aortic valve opens, which coincides with the B point in the first derivative of impedance cardiogram (ICG). Although this operation has been traditionally made via visual inspection, several algorithms based on derivative calculations have been developed to enable an automatic performance of the task. However, despite their popularity, data about their empirical validation are not always available. The present study analyzes the performance in the estimation of the aortic valve opening of three popular algorithms, by comparing their performance with the visual detection of the B point made by two independent scorers. Algorithm 1 is based on the first derivative of the ICG, Algorithm 2 on the second derivative, and Algorithm 3 on the third derivative. Algorithm 3 showed the highest accuracy rate (78.77%), followed by Algorithm 1 (24.57%) and Algorithm 2 (13.82%). In the automatic computation of PEP, Algorithm 2 resulted in significantly more missed cycles (48.57%) than Algorithm 1 (6.3%) and Algorithm 3 (3.5%). Algorithm 2 also estimated a significantly lower average PEP (70 ms), compared with the values obtained by Algorithm 1 (119 ms) and Algorithm 3 (113 ms). Our findings indicate that the algorithm based on the third derivative of the ICG performs significantly better. Nevertheless, a visual inspection of the signal proves indispensable, and this article provides a novel visual guide to facilitate the manual detection of the B point. © 2016 Society for Psychophysiological Research.

  4. Technical Note: DIRART – A software suite for deformable image registration and adaptive radiotherapy research

    PubMed Central

    Yang, Deshan; Brame, Scott; El Naqa, Issam; Aditya, Apte; Wu, Yu; Murty Goddu, S.; Mutic, Sasa; Deasy, Joseph O.; Low, Daniel A.

    2011-01-01

    Purpose: Recent years have witnessed tremendous progress in image guide radiotherapy technology and a growing interest in the possibilities for adapting treatment planning and delivery over the course of treatment. One obstacle faced by the research community has been the lack of a comprehensive open-source software toolkit dedicated for adaptive radiotherapy (ART). To address this need, the authors have developed a software suite called the Deformable Image Registration and Adaptive Radiotherapy Toolkit (DIRART). Methods:DIRART is an open-source toolkit developed in MATLAB. It is designed in an object-oriented style with focus on user-friendliness, features, and flexibility. It contains four classes of DIR algorithms, including the newer inverse consistency algorithms to provide consistent displacement vector field in both directions. It also contains common ART functions, an integrated graphical user interface, a variety of visualization and image-processing features, dose metric analysis functions, and interface routines. These interface routines make DIRART a powerful complement to the Computational Environment for Radiotherapy Research (CERR) and popular image-processing toolkits such as ITK. Results: DIRART provides a set of image processing∕registration algorithms and postprocessing functions to facilitate the development and testing of DIR algorithms. It also offers a good amount of options for DIR results visualization, evaluation, and validation. Conclusions: By exchanging data with treatment planning systems via DICOM-RT files and CERR, and by bringing image registration algorithms closer to radiotherapy applications, DIRART is potentially a convenient and flexible platform that may facilitate ART and DIR research. PMID:21361176

  5. Overview of Human-Centric Space Situational Awareness (SSA) Science and Technology (S&T)

    NASA Astrophysics Data System (ADS)

    Ianni, J.; Aleva, D.; Ellis, S.

    2012-09-01

    A number of organizations, within the government, industry, and academia, are researching ways to help humans understand and react to events in space. The problem is both helped and complicated by the fact that there are numerous data sources that need to be planned (i.e., tasked), collected, processed, analyzed, and disseminated. A large part of the research is in support of the Joint Space Operational Center (JSpOC), National Air and Space Intelligence Center (NASIC), and similar organizations. Much recent research has been specifically targeting the JSpOC Mission System (JMS) which has provided a unifying software architecture. This paper will first outline areas of science and technology (S&T) related to human-centric space situational awareness (SSA) and space command and control (C2) including: 1. Object visualization - especially data fused from disparate sources. Also satellite catalog visualizations that convey the physical relationships between space objects. 2. Data visualization - improve data trend analysis as in visual analytics and interactive visualization; e.g., satellite anomaly trends over time, space weather visualization, dynamic visualizations 3. Workflow support - human-computer interfaces that encapsulate multiple computer services (i.e., algorithms, programs, applications) into a 4. Command and control - e.g., tools that support course of action (COA) development and selection, tasking for satellites and sensors, etc. 5. Collaboration - improve individuals or teams ability to work with others; e.g., video teleconferencing, shared virtual spaces, file sharing, virtual white-boards, chat, and knowledge search. 6. Hardware/facilities - e.g., optimal layouts for operations centers, ergonomic workstations, immersive displays, interaction technologies, and mobile computing. Secondly we will provide a survey of organizations working these areas and suggest where more attention may be needed. Although no detailed master plan exists for human-centric SSA and C2, we see little redundancy among the groups supporting SSA human factors at this point.

  6. Graphical programming interface: A development environment for MRI methods.

    PubMed

    Zwart, Nicholas R; Pipe, James G

    2015-11-01

    To introduce a multiplatform, Python language-based, development environment called graphical programming interface for prototyping MRI techniques. The interface allows developers to interact with their scientific algorithm prototypes visually in an event-driven environment making tasks such as parameterization, algorithm testing, data manipulation, and visualization an integrated part of the work-flow. Algorithm developers extend the built-in functionality through simple code interfaces designed to facilitate rapid implementation. This article shows several examples of algorithms developed in graphical programming interface including the non-Cartesian MR reconstruction algorithms for PROPELLER and spiral as well as spin simulation and trajectory visualization of a FLORET example. The graphical programming interface framework is shown to be a versatile prototyping environment for developing numeric algorithms used in the latest MR techniques. © 2014 Wiley Periodicals, Inc.

  7. Process Mining for Individualized Behavior Modeling Using Wireless Tracking in Nursing Homes

    PubMed Central

    Fernández-Llatas, Carlos; Benedi, José-Miguel; García-Gómez, Juan M.; Traver, Vicente

    2013-01-01

    The analysis of human behavior patterns is increasingly used for several research fields. The individualized modeling of behavior using classical techniques requires too much time and resources to be effective. A possible solution would be the use of pattern recognition techniques to automatically infer models to allow experts to understand individual behavior. However, traditional pattern recognition algorithms infer models that are not readily understood by human experts. This limits the capacity to benefit from the inferred models. Process mining technologies can infer models as workflows, specifically designed to be understood by experts, enabling them to detect specific behavior patterns in users. In this paper, the eMotiva process mining algorithms are presented. These algorithms filter, infer and visualize workflows. The workflows are inferred from the samples produced by an indoor location system that stores the location of a resident in a nursing home. The visualization tool is able to compare and highlight behavior patterns in order to facilitate expert understanding of human behavior. This tool was tested with nine real users that were monitored for a 25-week period. The results achieved suggest that the behavior of users is continuously evolving and changing and that this change can be measured, allowing for behavioral change detection. PMID:24225907

  8. Y0: An innovative tool for spatial data analysis

    NASA Astrophysics Data System (ADS)

    Wilson, Jeremy C.

    1993-08-01

    This paper describes an advanced analysis and visualization tool, called Y0 (pronounced ``Why not?!''), that has been developed to directly support the scientific process for earth and space science research. Y0 aids the scientific research process by enabling the user to formulate algorithms and models within an integrated environment, and then interactively explore the solution space with the aid of appropriate visualizations. Y0 has been designed to provide strong support for both quantitative analysis and rich visualization. The user's algorithm or model is defined in terms of algebraic formulas in cells on worksheets, in a similar fashion to spreadsheet programs. Y0 is specifically designed to provide the data types and rich function set necessary for effective analysis and manipulation of remote sensing data. This includes various types of arrays, geometric objects, and objects for representing geographic coordinate system mappings. Visualization of results is tailored to the needs of remote sensing, with straightforward methods of composing, comparing, and animating imagery and graphical information, with reference to geographical coordinate systems. Y0 is based on advanced object-oriented technology. It is implemented in C++ for use in Unix environments, with a user interface based on the X window system. Y0 has been delivered under contract to Unidata, a group which provides data and software support to atmospheric researches in universities affiliated with UCAR. This paper will explore the key concepts in Y0, describe its utility for remote sensing analysis and visualization, and will give a specific example of its application to the problem of measuring glacier flow rates from Landsat imagery.

  9. Features Extraction of Flotation Froth Images and BP Neural Network Soft-Sensor Model of Concentrate Grade Optimized by Shuffled Cuckoo Searching Algorithm

    PubMed Central

    Wang, Jie-sheng; Han, Shuang; Shen, Na-na; Li, Shu-xia

    2014-01-01

    For meeting the forecasting target of key technology indicators in the flotation process, a BP neural network soft-sensor model based on features extraction of flotation froth images and optimized by shuffled cuckoo search algorithm is proposed. Based on the digital image processing technique, the color features in HSI color space, the visual features based on the gray level cooccurrence matrix, and the shape characteristics based on the geometric theory of flotation froth images are extracted, respectively, as the input variables of the proposed soft-sensor model. Then the isometric mapping method is used to reduce the input dimension, the network size, and learning time of BP neural network. Finally, a shuffled cuckoo search algorithm is adopted to optimize the BP neural network soft-sensor model. Simulation results show that the model has better generalization results and prediction accuracy. PMID:25133210

  10. Haptic augmented skin surface generation toward telepalpation from a mobile skin image.

    PubMed

    Kim, K

    2018-05-01

    Very little is known about the methods of integrating palpation techniques to existing mobile teleskin imaging that delivers low quality tactile information (roughness) for telepalpation. However, no study has been reported yet regarding telehaptic palpation using mobile phone images for teledermatology or teleconsultations of skincare. This study is therefore aimed at introducing a new algorithm accurately reconstructing a haptic augmented skin surface for telehaptic palpation using a low-cost clip-on microscope simply attached to a mobile phone. Multiple algorithms such as gradient-based image enhancement, roughness-adaptive tactile mask generation, roughness-enhanced 3D tactile map building, and visual and haptic rendering with a three-degrees-of-freedom (DOF) haptic device were developed and integrated as one system. Evaluation experiments have been conducted to test the performance of 3D roughness reconstruction with/without the tactile mask. The results confirm that reconstructed haptic roughness with the tactile mask is superior to the reconstructed haptic roughness without the tactile mask. Additional experiments demonstrate that the proposed algorithm is robust against varying lighting conditions and blurring. In last, a user study has been designed to see the effect of the haptic modality to the existing visual only interface and the results attest that the haptic skin palpation can significantly improve the skin exam performance. Mobile image-based telehaptic palpation technology was proposed, and an initial version was developed. The developed technology was tested with several skin images and the experimental results showed the superiority of the proposed scheme in terms of the performance of haptic augmentation of real skin images. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. A real-time phoneme counting algorithm and application for speech rate monitoring.

    PubMed

    Aharonson, Vered; Aharonson, Eran; Raichlin-Levi, Katia; Sotzianu, Aviv; Amir, Ofer; Ovadia-Blechman, Zehava

    2017-03-01

    Adults who stutter can learn to control and improve their speech fluency by modifying their speaking rate. Existing speech therapy technologies can assist this practice by monitoring speaking rate and providing feedback to the patient, but cannot provide an accurate, quantitative measurement of speaking rate. Moreover, most technologies are too complex and costly to be used for home practice. We developed an algorithm and a smartphone application that monitor a patient's speaking rate in real time and provide user-friendly feedback to both patient and therapist. Our speaking rate computation is performed by a phoneme counting algorithm which implements spectral transition measure extraction to estimate phoneme boundaries. The algorithm is implemented in real time in a mobile application that presents its results in a user-friendly interface. The application incorporates two modes: one provides the patient with visual feedback of his/her speech rate for self-practice and another provides the speech therapist with recordings, speech rate analysis and tools to manage the patient's practice. The algorithm's phoneme counting accuracy was validated on ten healthy subjects who read a paragraph at slow, normal and fast paces, and was compared to manual counting of speech experts. Test-retest and intra-counter reliability were assessed. Preliminary results indicate differences of -4% to 11% between automatic and human phoneme counting. Differences were largest for slow speech. The application can thus provide reliable, user-friendly, real-time feedback for speaking rate control practice. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Assistive technology for ultrasound-guided central venous catheter placement.

    PubMed

    Ikhsan, Mohammad; Tan, Kok Kiong; Putra, Andi Sudjana

    2018-01-01

    This study evaluated the existing technology used to improve the safety and ease of ultrasound-guided central venous catheterization. Electronic database searches were conducted in Scopus, IEEE, Google Patents, and relevant conference databases (SPIE, MICCAI, and IEEE conferences) for related articles on assistive technology for ultrasound-guided central venous catheterization. A total of 89 articles were examined and pointed to several fields that are currently the focus of improvements to ultrasound-guided procedures. These include improving needle visualization, needle guides and localization technology, image processing algorithms to enhance and segment important features within the ultrasound image, robotic assistance using probe-mounted manipulators, and improving procedure ergonomics through in situ projections of important information. Probe-mounted robotic manipulators provide a promising avenue for assistive technology developed for freehand ultrasound-guided percutaneous procedures. However, there is currently a lack of clinical trials to validate the effectiveness of these devices.

  13. Treemap Visualizations for Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Ianni, J.; Gorrell, Z.

    Making sense of massive data sets is a problem for many military domains including space. With unwieldy big data sets used for space situational awareness (SSA), important trends and outliers may not be easy to spot especially not at-a-glance. One method being explored to visualize SSA data sets is called treemapping. Treemaps fill screen space with nested rectangles (tiles) of various sizes and colors to represent multiple dimensions of hierarchical data sets. By mapping these dimensions effectively with a tiling algorithm that maintains an appropriate aspect ratio, patterns can emerge that often would have gone unnoticed. The ability to interactively perform range filtering (in our case with sliders) and object drill-downs (hyperlinking the tiles) make this technology powerful for in-depth analyses in addition to at-a-glance awareness. For one SSA analysis, the tiles could represent satellites that are grouped by country, sized by apogee, and colored/shaded by the launch date. Filter sliders could allow apogee range or launch dates to be narrowed for better resolution of a smaller data set. The application of this technology for the Joint Space Operations Center (JSpOC) Mission System (JMS) is being explored on a DARPA Small Business Innovative Research (SBIR) effort as a plug-in to the existing User-Defined Operational Picture (UDOP). In addition, visualization of DARPA OrbitOutlook small telescope data will be demonstrated. This research will investigate what SSA analyses are best served by treemaps, the best tiling algorithms for these problems, and how the treemaps should be integrated into the existing JMS UDOP workflow. Finally, we introduce a variation of treemaps that help leaders allocate their time to tasks based on importance and urgency.

  14. Development of an algorithm for improving quality and information processing capacity of MathSpeak synthetic speech renderings.

    PubMed

    Isaacson, M D; Srinivasan, S; Lloyd, L L

    2010-01-01

    MathSpeak is a set of rules for non speaking of mathematical expressions. These rules have been incorporated into a computerised module that translates printed mathematics into the non-ambiguous MathSpeak form for synthetic speech rendering. Differences between individual utterances produced with the translator module are difficult to discern because of insufficient pausing between utterances; hence, the purpose of this study was to develop an algorithm for improving the synthetic speech rendering of MathSpeak. To improve synthetic speech renderings, an algorithm for inserting pauses was developed based upon recordings of middle and high school math teachers speaking mathematic expressions. Efficacy testing of this algorithm was conducted with college students without disabilities and high school/college students with visual impairments. Parameters measured included reception accuracy, short-term memory retention, MathSpeak processing capacity and various rankings concerning the quality of synthetic speech renderings. All parameters measured showed statistically significant improvements when the algorithm was used. The algorithm improves the quality and information processing capacity of synthetic speech renderings of MathSpeak. This increases the capacity of individuals with print disabilities to perform mathematical activities and to successfully fulfill science, technology, engineering and mathematics academic and career objectives.

  15. A Review on Real-Time 3D Ultrasound Imaging Technology

    PubMed Central

    Zeng, Zhaozheng

    2017-01-01

    Real-time three-dimensional (3D) ultrasound (US) has attracted much more attention in medical researches because it provides interactive feedback to help clinicians acquire high-quality images as well as timely spatial information of the scanned area and hence is necessary in intraoperative ultrasound examinations. Plenty of publications have been declared to complete the real-time or near real-time visualization of 3D ultrasound using volumetric probes or the routinely used two-dimensional (2D) probes. So far, a review on how to design an interactive system with appropriate processing algorithms remains missing, resulting in the lack of systematic understanding of the relevant technology. In this article, previous and the latest work on designing a real-time or near real-time 3D ultrasound imaging system are reviewed. Specifically, the data acquisition techniques, reconstruction algorithms, volume rendering methods, and clinical applications are presented. Moreover, the advantages and disadvantages of state-of-the-art approaches are discussed in detail. PMID:28459067

  16. A Review on Real-Time 3D Ultrasound Imaging Technology.

    PubMed

    Huang, Qinghua; Zeng, Zhaozheng

    2017-01-01

    Real-time three-dimensional (3D) ultrasound (US) has attracted much more attention in medical researches because it provides interactive feedback to help clinicians acquire high-quality images as well as timely spatial information of the scanned area and hence is necessary in intraoperative ultrasound examinations. Plenty of publications have been declared to complete the real-time or near real-time visualization of 3D ultrasound using volumetric probes or the routinely used two-dimensional (2D) probes. So far, a review on how to design an interactive system with appropriate processing algorithms remains missing, resulting in the lack of systematic understanding of the relevant technology. In this article, previous and the latest work on designing a real-time or near real-time 3D ultrasound imaging system are reviewed. Specifically, the data acquisition techniques, reconstruction algorithms, volume rendering methods, and clinical applications are presented. Moreover, the advantages and disadvantages of state-of-the-art approaches are discussed in detail.

  17. Single-image hard-copy display of the spine utilizing digital radiography

    NASA Astrophysics Data System (ADS)

    Artz, Dorothy S.; Janchar, Timothy; Milzman, David; Freedman, Matthew T.; Mun, Seong K.

    1997-04-01

    Regions of the entire spine contain a wide latitude of tissue densities within the imaged field of view presenting a problem for adequate radiological evaluation. With screen/film technology, the optimal technique for one area of the radiograph is sub-optimal for another area. Computed radiography (CR) with its inherent wide dynamic range, has been shown to be better than screen/film for lateral cervical spine imaging, but limitations are still present with standard image processing. By utilizing a dynamic range control (DRC) algorithm based on unsharp masking and signal transformation prior to gradation and frequency processing within the CR system, more vertebral bodies can be seen on a single hard copy display of the lateral cervical, thoracic, and thoracolumbar examinations. Examinations of the trauma cross-table lateral cervical spine, lateral thoracic spine, and lateral thoracolumbar spine were collected on live patient using photostimulable storage phosphor plates, the Fuji FCR 9000 reader, and the Fuji AC-3 computed radiography reader. Two images were produced from a single exposure; one with standard image processing and the second image with the standard process and the additional DRC algorithm. Both sets were printed from a Fuji LP 414 laser printer. Two different DRC algorithms were applied depending on which portion of the spine was not well visualized. One algorithm increased optical density and the second algorithm decreased optical density. The resultant image pairs were then reviewed by a panel of radiologists. Images produced with the additional DRC algorithm demonstrated improved visualization of previously 'under exposed' and 'over exposed' regions within the same image. Where lung field had previously obscured bony detail of the lateral thoracolumbar spine due to 'over exposure,' the image with the DRC applied to decrease the optical density allowed for easy visualization of the entire area of interest. For areas of the lateral cervical spine and lateral thoracic spine that typically have a low optical density value, the DRC algorithm used increased the optical density over that region improving visualization of C7-T2 and T11-L2 vertebral bodies; critical in trauma radiography. Emergency medicine physicians also reviewing the lateral cervical spine images were able to clear 37% of the DRC images compared to 30% of the non-DRC images for removal of the cervical collar. The DRC processed images reviewed by the physicians do not have a typical screen/film appearance; however, these different images were preferred for the three examinations in this study. This method of image processing after being tested and accepted, is in use clinically at Georgetown University Medical Center Department of Radiology for the following examinations: cervical spine, lateral thoracic spine, lateral thoracolumbar examinations, facial bones, shoulder, sternum, feet and portable chest. Computed radiography imaging of the spine is improved with the addition of histogram equalization known as dynamic range control (DRC). More anatomical structures are visualized on a single hard copy display.

  18. Material Interface Reconstruction in VisIt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meredith, J S

    In this paper, we first survey a variety of approaches to material interface reconstruction and their applicability to visualization, and we investigate the details of the current reconstruction algorithm in the VisIt scientific analysis and visualization tool. We then provide a novel implementation of the original VisIt algorithm that makes use of a wide range of the finite element zoo during reconstruction. This approach results in dramatic improvements in quality and performance without sacrificing the strengths of the VisIt algorithm as it relates to visualization.

  19. Personal sleep pattern visualization using sequence-based kernel self-organizing map on sound data.

    PubMed

    Wu, Hongle; Kato, Takafumi; Yamada, Tomomi; Numao, Masayuki; Fukui, Ken-Ichi

    2017-07-01

    We propose a method to discover sleep patterns via clustering of sound events recorded during sleep. The proposed method extends the conventional self-organizing map algorithm by kernelization and sequence-based technologies to obtain a fine-grained map that visualizes the distribution and changes of sleep-related events. We introduced features widely applied in sound processing and popular kernel functions to the proposed method to evaluate and compare performance. The proposed method provides a new aspect of sleep monitoring because the results demonstrate that sound events can be directly correlated to an individual's sleep patterns. In addition, by visualizing the transition of cluster dynamics, sleep-related sound events were found to relate to the various stages of sleep. Therefore, these results empirically warrant future study into the assessment of personal sleep quality using sound data. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A convolutional neural network neutrino event classifier

    DOE PAGES

    Aurisano, A.; Radovic, A.; Rocco, D.; ...

    2016-09-01

    Here, convolutional neural networks (CNNs) have been widely applied in the computer vision community to solve complex problems in image recognition and analysis. We describe an application of the CNN technology to the problem of identifying particle interactions in sampling calorimeters used commonly in high energy physics and high energy neutrino physics in particular. Following a discussion of the core concepts of CNNs and recent innovations in CNN architectures related to the field of deep learning, we outline a specific application to the NOvA neutrino detector. This algorithm, CVN (Convolutional Visual Network) identifies neutrino interactions based on their topology withoutmore » the need for detailed reconstruction and outperforms algorithms currently in use by the NOvA collaboration.« less

  1. EEG-based "serious" games and monitoring tools for pain management.

    PubMed

    Sourina, Olga; Wang, Qiang; Nguyen, Minh Khoa

    2011-01-01

    EEG-based "serious games" for medical applications attracted recently more attention from the research community and industry as wireless EEG reading devices became easily available on the market. EEG-based technology has been applied in anesthesiology, psychology, etc. In this paper, we proposed and developed EEG-based "serious" games and doctor's monitoring tools that could be used for pain management. As EEG signal is considered to have a fractal nature, we proposed and develop a novel spatio-temporal fractal based algorithm for brain state quantification. The algorithm is implemented with blobby visualization tools for patient monitoring and in EEG-based "serious" games. Such games could be used by patient even at home convenience for pain management as an alternative to traditional drug treatment.

  2. A convolutional neural network neutrino event classifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aurisano, A.; Radovic, A.; Rocco, D.

    Here, convolutional neural networks (CNNs) have been widely applied in the computer vision community to solve complex problems in image recognition and analysis. We describe an application of the CNN technology to the problem of identifying particle interactions in sampling calorimeters used commonly in high energy physics and high energy neutrino physics in particular. Following a discussion of the core concepts of CNNs and recent innovations in CNN architectures related to the field of deep learning, we outline a specific application to the NOvA neutrino detector. This algorithm, CVN (Convolutional Visual Network) identifies neutrino interactions based on their topology withoutmore » the need for detailed reconstruction and outperforms algorithms currently in use by the NOvA collaboration.« less

  3. Iterative Assessment of Statistically-Oriented and Standard Algorithms for Determining Muscle Onset with Intramuscular Electromyography.

    PubMed

    Tenan, Matthew S; Tweedell, Andrew J; Haynes, Courtney A

    2017-12-01

    The onset of muscle activity, as measured by electromyography (EMG), is a commonly applied metric in biomechanics. Intramuscular EMG is often used to examine deep musculature and there are currently no studies examining the effectiveness of algorithms for intramuscular EMG onset. The present study examines standard surface EMG onset algorithms (linear envelope, Teager-Kaiser Energy Operator, and sample entropy) and novel algorithms (time series mean-variance analysis, sequential/batch processing with parametric and nonparametric methods, and Bayesian changepoint analysis). Thirteen male and 5 female subjects had intramuscular EMG collected during isolated biceps brachii and vastus lateralis contractions, resulting in 103 trials. EMG onset was visually determined twice by 3 blinded reviewers. Since the reliability of visual onset was high (ICC (1,1) : 0.92), the mean of the 6 visual assessments was contrasted with the algorithmic approaches. Poorly performing algorithms were stepwise eliminated via (1) root mean square error analysis, (2) algorithm failure to identify onset/premature onset, (3) linear regression analysis, and (4) Bland-Altman plots. The top performing algorithms were all based on Bayesian changepoint analysis of rectified EMG and were statistically indistinguishable from visual analysis. Bayesian changepoint analysis has the potential to produce more reliable, accurate, and objective intramuscular EMG onset results than standard methodologies.

  4. Image segmentation evaluation for very-large datasets

    NASA Astrophysics Data System (ADS)

    Reeves, Anthony P.; Liu, Shuang; Xie, Yiting

    2016-03-01

    With the advent of modern machine learning methods and fully automated image analysis there is a need for very large image datasets having documented segmentations for both computer algorithm training and evaluation. Current approaches of visual inspection and manual markings do not scale well to big data. We present a new approach that depends on fully automated algorithm outcomes for segmentation documentation, requires no manual marking, and provides quantitative evaluation for computer algorithms. The documentation of new image segmentations and new algorithm outcomes are achieved by visual inspection. The burden of visual inspection on large datasets is minimized by (a) customized visualizations for rapid review and (b) reducing the number of cases to be reviewed through analysis of quantitative segmentation evaluation. This method has been applied to a dataset of 7,440 whole-lung CT images for 6 different segmentation algorithms designed to fully automatically facilitate the measurement of a number of very important quantitative image biomarkers. The results indicate that we could achieve 93% to 99% successful segmentation for these algorithms on this relatively large image database. The presented evaluation method may be scaled to much larger image databases.

  5. Visual improvement for bad handwriting based on Monte-Carlo method

    NASA Astrophysics Data System (ADS)

    Shi, Cao; Xiao, Jianguo; Xu, Canhui; Jia, Wenhua

    2014-03-01

    A visual improvement algorithm based on Monte Carlo simulation is proposed in this paper, in order to enhance visual effects for bad handwriting. The whole improvement process is to use well designed typeface so as to optimize bad handwriting image. In this process, a series of linear operators for image transformation are defined for transforming typeface image to approach handwriting image. And specific parameters of linear operators are estimated by Monte Carlo method. Visual improvement experiments illustrate that the proposed algorithm can effectively enhance visual effect for handwriting image as well as maintain the original handwriting features, such as tilt, stroke order and drawing direction etc. The proposed visual improvement algorithm, in this paper, has a huge potential to be applied in tablet computer and Mobile Internet, in order to improve user experience on handwriting.

  6. SEURAT: Visual analytics for the integrated analysis of microarray data

    PubMed Central

    2010-01-01

    Background In translational cancer research, gene expression data is collected together with clinical data and genomic data arising from other chip based high throughput technologies. Software tools for the joint analysis of such high dimensional data sets together with clinical data are required. Results We have developed an open source software tool which provides interactive visualization capability for the integrated analysis of high-dimensional gene expression data together with associated clinical data, array CGH data and SNP array data. The different data types are organized by a comprehensive data manager. Interactive tools are provided for all graphics: heatmaps, dendrograms, barcharts, histograms, eventcharts and a chromosome browser, which displays genetic variations along the genome. All graphics are dynamic and fully linked so that any object selected in a graphic will be highlighted in all other graphics. For exploratory data analysis the software provides unsupervised data analytics like clustering, seriation algorithms and biclustering algorithms. Conclusions The SEURAT software meets the growing needs of researchers to perform joint analysis of gene expression, genomical and clinical data. PMID:20525257

  7. The Cognitive Visualization System with the Dynamic Projection of Multidimensional Data

    NASA Astrophysics Data System (ADS)

    Gorohov, V.; Vitkovskiy, V.

    2008-08-01

    The phenomenon of cognitive machine drawing consists in the generation on the screen the special graphic representations, which create in the brain of human operator entertainment means. These means seem man by aesthetically attractive and, thus, they stimulate its descriptive imagination, closely related to the intuitive mechanisms of thinking. The essence of cognitive effect lies in the fact that man receives the moving projection as pseudo-three-dimensional object characterizing multidimensional means in the multidimensional space. After the thorough qualitative study of the visual aspects of multidimensional means with the aid of the enumerated algorithms appears the possibility, using algorithms of standard machine drawing to paint the interesting user separate objects or the groups of objects. Then it is possible to again return to the dynamic behavior of the rotation of means for the purpose of checking the intuitive ideas of user about the clusters and the connections in multidimensional data. Is possible the development of the methods of cognitive machine drawing in combination with other information technologies, first of all with the packets of digital processing of images and multidimensional statistical analysis.

  8. Simultaneous reconstruction of 3D refractive index, temperature, and intensity distribution of combustion flame by double computed tomography technologies based on spatial phase-shifting method

    NASA Astrophysics Data System (ADS)

    Guo, Zhenyan; Song, Yang; Yuan, Qun; Wulan, Tuya; Chen, Lei

    2017-06-01

    In this paper, a transient multi-parameter three-dimensional (3D) reconstruction method is proposed to diagnose and visualize a combustion flow field. Emission and transmission tomography based on spatial phase-shifted technology are combined to reconstruct, simultaneously, the various physical parameter distributions of a propane flame. Two cameras triggered by the internal trigger mode capture the projection information of the emission and moiré tomography, respectively. A two-step spatial phase-shifting method is applied to extract the phase distribution in the moiré fringes. By using the filtered back-projection algorithm, we reconstruct the 3D refractive-index distribution of the combustion flow field. Finally, the 3D temperature distribution of the flame is obtained from the refractive index distribution using the Gladstone-Dale equation. Meanwhile, the 3D intensity distribution is reconstructed based on the radiation projections from the emission tomography. Therefore, the structure and edge information of the propane flame are well visualized.

  9. Multiscale Methods, Parallel Computation, and Neural Networks for Real-Time Computer Vision.

    NASA Astrophysics Data System (ADS)

    Battiti, Roberto

    1990-01-01

    This thesis presents new algorithms for low and intermediate level computer vision. The guiding ideas in the presented approach are those of hierarchical and adaptive processing, concurrent computation, and supervised learning. Processing of the visual data at different resolutions is used not only to reduce the amount of computation necessary to reach the fixed point, but also to produce a more accurate estimation of the desired parameters. The presented adaptive multiple scale technique is applied to the problem of motion field estimation. Different parts of the image are analyzed at a resolution that is chosen in order to minimize the error in the coefficients of the differential equations to be solved. Tests with video-acquired images show that velocity estimation is more accurate over a wide range of motion with respect to the homogeneous scheme. In some cases introduction of explicit discontinuities coupled to the continuous variables can be used to avoid propagation of visual information from areas corresponding to objects with different physical and/or kinematic properties. The human visual system uses concurrent computation in order to process the vast amount of visual data in "real -time." Although with different technological constraints, parallel computation can be used efficiently for computer vision. All the presented algorithms have been implemented on medium grain distributed memory multicomputers with a speed-up approximately proportional to the number of processors used. A simple two-dimensional domain decomposition assigns regions of the multiresolution pyramid to the different processors. The inter-processor communication needed during the solution process is proportional to the linear dimension of the assigned domain, so that efficiency is close to 100% if a large region is assigned to each processor. Finally, learning algorithms are shown to be a viable technique to engineer computer vision systems for different applications starting from multiple-purpose modules. In the last part of the thesis a well known optimization method (the Broyden-Fletcher-Goldfarb-Shanno memoryless quasi -Newton method) is applied to simple classification problems and shown to be superior to the "error back-propagation" algorithm for numerical stability, automatic selection of parameters, and convergence properties.

  10. A reference guide for tree analysis and visualization

    PubMed Central

    2010-01-01

    The quantities of data obtained by the new high-throughput technologies, such as microarrays or ChIP-Chip arrays, and the large-scale OMICS-approaches, such as genomics, proteomics and transcriptomics, are becoming vast. Sequencing technologies become cheaper and easier to use and, thus, large-scale evolutionary studies towards the origins of life for all species and their evolution becomes more and more challenging. Databases holding information about how data are related and how they are hierarchically organized expand rapidly. Clustering analysis is becoming more and more difficult to be applied on very large amounts of data since the results of these algorithms cannot be efficiently visualized. Most of the available visualization tools that are able to represent such hierarchies, project data in 2D and are lacking often the necessary user friendliness and interactivity. For example, the current phylogenetic tree visualization tools are not able to display easy to understand large scale trees with more than a few thousand nodes. In this study, we review tools that are currently available for the visualization of biological trees and analysis, mainly developed during the last decade. We describe the uniform and standard computer readable formats to represent tree hierarchies and we comment on the functionality and the limitations of these tools. We also discuss on how these tools can be developed further and should become integrated with various data sources. Here we focus on freely available software that offers to the users various tree-representation methodologies for biological data analysis. PMID:20175922

  11. Using the Mean Shift Algorithm to Make Post Hoc Improvements to the Accuracy of Eye Tracking Data Based on Probable Fixation Locations

    DTIC Science & Technology

    2010-08-01

    astigmatism and other sources, and stay constant from time to time (LC Technologies, 2000). Systematic errors can sometimes reach many degrees of visual angle...Taking the average of all disparities would mean treating each as equally important regardless of whether they are from correct or incorrect mappings. In...likely stop somewhere near the centroid because the large hM basically treats every point equally (or nearly equally if using the multivariate

  12. Arabidopsis Gene Family Profiler (aGFP)--user-oriented transcriptomic database with easy-to-use graphic interface.

    PubMed

    Dupl'áková, Nikoleta; Renák, David; Hovanec, Patrik; Honysová, Barbora; Twell, David; Honys, David

    2007-07-23

    Microarray technologies now belong to the standard functional genomics toolbox and have undergone massive development leading to increased genome coverage, accuracy and reliability. The number of experiments exploiting microarray technology has markedly increased in recent years. In parallel with the rapid accumulation of transcriptomic data, on-line analysis tools are being introduced to simplify their use. Global statistical data analysis methods contribute to the development of overall concepts about gene expression patterns and to query and compose working hypotheses. More recently, these applications are being supplemented with more specialized products offering visualization and specific data mining tools. We present a curated gene family-oriented gene expression database, Arabidopsis Gene Family Profiler (aGFP; http://agfp.ueb.cas.cz), which gives the user access to a large collection of normalised Affymetrix ATH1 microarray datasets. The database currently contains NASC Array and AtGenExpress transcriptomic datasets for various tissues at different developmental stages of wild type plants gathered from nearly 350 gene chips. The Arabidopsis GFP database has been designed as an easy-to-use tool for users needing an easily accessible resource for expression data of single genes, pre-defined gene families or custom gene sets, with the further possibility of keyword search. Arabidopsis Gene Family Profiler presents a user-friendly web interface using both graphic and text output. Data are stored at the MySQL server and individual queries are created in PHP script. The most distinguishable features of Arabidopsis Gene Family Profiler database are: 1) the presentation of normalized datasets (Affymetrix MAS algorithm and calculation of model-based gene-expression values based on the Perfect Match-only model); 2) the choice between two different normalization algorithms (Affymetrix MAS4 or MAS5 algorithms); 3) an intuitive interface; 4) an interactive "virtual plant" visualizing the spatial and developmental expression profiles of both gene families and individual genes. Arabidopsis GFP gives users the possibility to analyze current Arabidopsis developmental transcriptomic data starting with simple global queries that can be expanded and further refined to visualize comparative and highly selective gene expression profiles.

  13. Brain functional network connectivity based on a visual task: visual information processing-related brain regions are significantly activated in the task state.

    PubMed

    Yang, Yan-Li; Deng, Hong-Xia; Xing, Gui-Yang; Xia, Xiao-Luan; Li, Hai-Fang

    2015-02-01

    It is not clear whether the method used in functional brain-network related research can be applied to explore the feature binding mechanism of visual perception. In this study, we investigated feature binding of color and shape in visual perception. Functional magnetic resonance imaging data were collected from 38 healthy volunteers at rest and while performing a visual perception task to construct brain networks active during resting and task states. Results showed that brain regions involved in visual information processing were obviously activated during the task. The components were partitioned using a greedy algorithm, indicating the visual network existed during the resting state. Z-values in the vision-related brain regions were calculated, confirming the dynamic balance of the brain network. Connectivity between brain regions was determined, and the result showed that occipital and lingual gyri were stable brain regions in the visual system network, the parietal lobe played a very important role in the binding process of color features and shape features, and the fusiform and inferior temporal gyri were crucial for processing color and shape information. Experimental findings indicate that understanding visual feature binding and cognitive processes will help establish computational models of vision, improve image recognition technology, and provide a new theoretical mechanism for feature binding in visual perception.

  14. Analysis of retinal and cortical components of Retinex algorithms

    NASA Astrophysics Data System (ADS)

    Yeonan-Kim, Jihyun; Bertalmío, Marcelo

    2017-05-01

    Following Land and McCann's first proposal of the Retinex theory, numerous Retinex algorithms that differ considerably both algorithmically and functionally have been developed. We clarify the relationships among various Retinex families by associating their spatial processing structures to the neural organizations in the retina and the primary visual cortex in the brain. Some of the Retinex algorithms have a retina-like processing structure (Land's designator idea and NASA Retinex), and some show a close connection with the cortical structures in the primary visual area of the brain (two-dimensional L&M Retinex). A third group of Retinexes (the variational Retinex) manifests an explicit algorithmic relation to Wilson-Cowan's physiological model. We intend to overview these three groups of Retinexes with the frame of reference in the biological visual mechanisms.

  15. Hybrid simulated annealing and its application to optimization of hidden Markov models for visual speech recognition.

    PubMed

    Lee, Jong-Seok; Park, Cheol Hoon

    2010-08-01

    We propose a novel stochastic optimization algorithm, hybrid simulated annealing (SA), to train hidden Markov models (HMMs) for visual speech recognition. In our algorithm, SA is combined with a local optimization operator that substitutes a better solution for the current one to improve the convergence speed and the quality of solutions. We mathematically prove that the sequence of the objective values converges in probability to the global optimum in the algorithm. The algorithm is applied to train HMMs that are used as visual speech recognizers. While the popular training method of HMMs, the expectation-maximization algorithm, achieves only local optima in the parameter space, the proposed method can perform global optimization of the parameters of HMMs and thereby obtain solutions yielding improved recognition performance. The superiority of the proposed algorithm to the conventional ones is demonstrated via isolated word recognition experiments.

  16. Creating Engaging Online Learning Material with the JSAV JavaScript Algorithm Visualization Library

    ERIC Educational Resources Information Center

    Karavirta, Ville; Shaffer, Clifford A.

    2016-01-01

    Data Structures and Algorithms are a central part of Computer Science. Due to their abstract and dynamic nature, they are a difficult topic to learn for many students. To alleviate these learning difficulties, instructors have turned to algorithm visualizations (AV) and AV systems. Research has shown that especially engaging AVs can have an impact…

  17. HD-MTL: Hierarchical Deep Multi-Task Learning for Large-Scale Visual Recognition.

    PubMed

    Fan, Jianping; Zhao, Tianyi; Kuang, Zhenzhong; Zheng, Yu; Zhang, Ji; Yu, Jun; Peng, Jinye

    2017-02-09

    In this paper, a hierarchical deep multi-task learning (HD-MTL) algorithm is developed to support large-scale visual recognition (e.g., recognizing thousands or even tens of thousands of atomic object classes automatically). First, multiple sets of multi-level deep features are extracted from different layers of deep convolutional neural networks (deep CNNs), and they are used to achieve more effective accomplishment of the coarseto- fine tasks for hierarchical visual recognition. A visual tree is then learned by assigning the visually-similar atomic object classes with similar learning complexities into the same group, which can provide a good environment for determining the interrelated learning tasks automatically. By leveraging the inter-task relatedness (inter-class similarities) to learn more discriminative group-specific deep representations, our deep multi-task learning algorithm can train more discriminative node classifiers for distinguishing the visually-similar atomic object classes effectively. Our hierarchical deep multi-task learning (HD-MTL) algorithm can integrate two discriminative regularization terms to control the inter-level error propagation effectively, and it can provide an end-to-end approach for jointly learning more representative deep CNNs (for image representation) and more discriminative tree classifier (for large-scale visual recognition) and updating them simultaneously. Our incremental deep learning algorithms can effectively adapt both the deep CNNs and the tree classifier to the new training images and the new object classes. Our experimental results have demonstrated that our HD-MTL algorithm can achieve very competitive results on improving the accuracy rates for large-scale visual recognition.

  18. Comparison of Matrix Frequency-Doubling Technology (FDT) Perimetry with the SWEDISH Interactive Thresholding Algorithm (SITA) Standard Automated Perimetry (SAP) in Mild Glaucoma.

    PubMed

    Doozandeh, Azadeh; Irandoost, Farnoosh; Mirzajani, Ali; Yazdani, Shahin; Pakravan, Mohammad; Esfandiari, Hamed

    2017-01-01

    This study aimed to compare second-generation frequency-doubling technology (FDT) perimetry with standard automated perimetry (SAP) in mild glaucoma. Forty-seven eyes of 47 participants who had mild visual field defect by SAP were included in this study. All participants were examined using SITA 24-2 (SITA-SAP) and matrix 24-2 (Matrix-FDT). The correlations of global indices and the number of defects on pattern deviation (PD) plots were determined. Agreement between two sets regarding the stage of visual field damage was assessed. Pearson's correlation, intra-cluster comparison, paired t-test, and 95% limit of agreement were calculated. Although there was no significant difference between global indices, the agreement between the two devices regarding the global indices was weak (the limit of agreement for mean deviation was -6.08 to 6.08 and that for pattern standard deviation was -4.42 to 3.42). The agreement between SITA-SAP and Matrix-FDT regarding the Glaucoma Hemifield Test (GHT) and the number of defective points in each quadrant and staging of the visual field damage was also weak. Because the correlation between SITA-SAP and Matrix-FDT regarding global indices, GHT, number of defective points, and stage of the visual field damage in mild glaucoma is weak, Matrix-FDT cannot be used interchangeably with SITA-SAP in the early stages of glaucoma.

  19. Visual Inference Programming

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin; Timucin, Dogan; Rabbette, Maura; Curry, Charles; Allan, Mark; Lvov, Nikolay; Clanton, Sam; Pilewskie, Peter

    2002-01-01

    The goal of visual inference programming is to develop a software framework data analysis and to provide machine learning algorithms for inter-active data exploration and visualization. The topics include: 1) Intelligent Data Understanding (IDU) framework; 2) Challenge problems; 3) What's new here; 4) Framework features; 5) Wiring diagram; 6) Generated script; 7) Results of script; 8) Initial algorithms; 9) Independent Component Analysis for instrument diagnosis; 10) Output sensory mapping virtual joystick; 11) Output sensory mapping typing; 12) Closed-loop feedback mu-rhythm control; 13) Closed-loop training; 14) Data sources; and 15) Algorithms. This paper is in viewgraph form.

  20. IT as an enabler of sustainable use of data from innovative technical components for assisted living.

    PubMed

    Knaup, Petra; Schöpe, Lothar

    2012-01-01

    The authors see the major potential of systematically processing data from AAL-technology in higher sustainability, higher technology acceptance, higher security, higher robustness, higher flexibility and better integration in existing structures and processes. This potential is currently underachieved and not yet systematically promoted. The authors have written a position paper on potential and necessity of substantial IT research enhancing Ambient Assisted Living (AAL) applications. This paper summarizes the most important challenges in the fields health care, data protection, operation and user interfaces. Research in medical informatics is necessary among others in the fields flexible authorization concept, medical information needs, algorithms to evaluate user profiles and visualization of aggregated data.

  1. An on-line calibration algorithm for external parameters of visual system based on binocular stereo cameras

    NASA Astrophysics Data System (ADS)

    Wang, Liqiang; Liu, Zhen; Zhang, Zhonghua

    2014-11-01

    Stereo vision is the key in the visual measurement, robot vision, and autonomous navigation. Before performing the system of stereo vision, it needs to calibrate the intrinsic parameters for each camera and the external parameters of the system. In engineering, the intrinsic parameters remain unchanged after calibrating cameras, and the positional relationship between the cameras could be changed because of vibration, knocks and pressures in the vicinity of the railway or motor workshops. Especially for large baselines, even minute changes in translation or rotation can affect the epipolar geometry and scene triangulation to such a degree that visual system becomes disabled. A technology including both real-time examination and on-line recalibration for the external parameters of stereo system becomes particularly important. This paper presents an on-line method for checking and recalibrating the positional relationship between stereo cameras. In epipolar geometry, the external parameters of cameras can be obtained by factorization of the fundamental matrix. Thus, it offers a method to calculate the external camera parameters without any special targets. If the intrinsic camera parameters are known, the external parameters of system can be calculated via a number of random matched points. The process is: (i) estimating the fundamental matrix via the feature point correspondences; (ii) computing the essential matrix from the fundamental matrix; (iii) obtaining the external parameters by decomposition of the essential matrix. In the step of computing the fundamental matrix, the traditional methods are sensitive to noise and cannot ensure the estimation accuracy. We consider the feature distribution situation in the actual scene images and introduce a regional weighted normalization algorithm to improve accuracy of the fundamental matrix estimation. In contrast to traditional algorithms, experiments on simulated data prove that the method improves estimation robustness and accuracy of the fundamental matrix. Finally, we take an experiment for computing the relationship of a pair of stereo cameras to demonstrate accurate performance of the algorithm.

  2. The research of autonomous obstacle avoidance of mobile robot based on multi-sensor integration

    NASA Astrophysics Data System (ADS)

    Zhao, Ming; Han, Baoling

    2016-11-01

    The object of this study is the bionic quadruped mobile robot. The study has proposed a system design plan for mobile robot obstacle avoidance with the binocular stereo visual sensor and the self-control 3D Lidar integrated with modified ant colony optimization path planning to realize the reconstruction of the environmental map. Because the working condition of a mobile robot is complex, the result of the 3D reconstruction with a single binocular sensor is undesirable when feature points are few and the light condition is poor. Therefore, this system integrates the stereo vision sensor blumblebee2 and the Lidar sensor together to detect the cloud information of 3D points of environmental obstacles. This paper proposes the sensor information fusion technology to rebuild the environment map. Firstly, according to the Lidar data and visual data on obstacle detection respectively, and then consider two methods respectively to detect the distribution of obstacles. Finally fusing the data to get the more complete, more accurate distribution of obstacles in the scene. Then the thesis introduces ant colony algorithm. It has analyzed advantages and disadvantages of the ant colony optimization and its formation cause deeply, and then improved the system with the help of the ant colony optimization to increase the rate of convergence and precision of the algorithm in robot path planning. Such improvements and integrations overcome the shortcomings of the ant colony optimization like involving into the local optimal solution easily, slow search speed and poor search results. This experiment deals with images and programs the motor drive under the compiling environment of Matlab and Visual Studio and establishes the visual 2.5D grid map. Finally it plans a global path for the mobile robot according to the ant colony algorithm. The feasibility and effectiveness of the system are confirmed by ROS and simulation platform of Linux.

  3. Uncluttered Single-Image Visualization of Vascular Structures using GPU and Integer Programming

    PubMed Central

    Won, Joong-Ho; Jeon, Yongkweon; Rosenberg, Jarrett; Yoon, Sungroh; Rubin, Geoffrey D.; Napel, Sandy

    2013-01-01

    Direct projection of three-dimensional branching structures, such as networks of cables, blood vessels, or neurons onto a 2D image creates the illusion of intersecting structural parts and creates challenges for understanding and communication. We present a method for visualizing such structures, and demonstrate its utility in visualizing the abdominal aorta and its branches, whose tomographic images might be obtained by computed tomography or magnetic resonance angiography, in a single two-dimensional stylistic image, without overlaps among branches. The visualization method, termed uncluttered single-image visualization (USIV), involves optimization of geometry. This paper proposes a novel optimization technique that utilizes an interesting connection of the optimization problem regarding USIV to the protein structure prediction problem. Adopting the integer linear programming-based formulation for the protein structure prediction problem, we tested the proposed technique using 30 visualizations produced from five patient scans with representative anatomical variants in the abdominal aortic vessel tree. The novel technique can exploit commodity-level parallelism, enabling use of general-purpose graphics processing unit (GPGPU) technology that yields a significant speedup. Comparison of the results with the other optimization technique previously reported elsewhere suggests that, in most aspects, the quality of the visualization is comparable to that of the previous one, with a significant gain in the computation time of the algorithm. PMID:22291148

  4. A multilevel layout algorithm for visualizing physical and genetic interaction networks, with emphasis on their modular organization.

    PubMed

    Tuikkala, Johannes; Vähämaa, Heidi; Salmela, Pekka; Nevalainen, Olli S; Aittokallio, Tero

    2012-03-26

    Graph drawing is an integral part of many systems biology studies, enabling visual exploration and mining of large-scale biological networks. While a number of layout algorithms are available in popular network analysis platforms, such as Cytoscape, it remains poorly understood how well their solutions reflect the underlying biological processes that give rise to the network connectivity structure. Moreover, visualizations obtained using conventional layout algorithms, such as those based on the force-directed drawing approach, may become uninformative when applied to larger networks with dense or clustered connectivity structure. We implemented a modified layout plug-in, named Multilevel Layout, which applies the conventional layout algorithms within a multilevel optimization framework to better capture the hierarchical modularity of many biological networks. Using a wide variety of real life biological networks, we carried out a systematic evaluation of the method in comparison with other layout algorithms in Cytoscape. The multilevel approach provided both biologically relevant and visually pleasant layout solutions in most network types, hence complementing the layout options available in Cytoscape. In particular, it could improve drawing of large-scale networks of yeast genetic interactions and human physical interactions. In more general terms, the biological evaluation framework developed here enables one to assess the layout solutions from any existing or future graph drawing algorithm as well as to optimize their performance for a given network type or structure. By making use of the multilevel modular organization when visualizing biological networks, together with the biological evaluation of the layout solutions, one can generate convenient visualizations for many network biology applications.

  5. Towards human-computer synergetic analysis of large-scale biological data.

    PubMed

    Singh, Rahul; Yang, Hui; Dalziel, Ben; Asarnow, Daniel; Murad, William; Foote, David; Gormley, Matthew; Stillman, Jonathan; Fisher, Susan

    2013-01-01

    Advances in technology have led to the generation of massive amounts of complex and multifarious biological data in areas ranging from genomics to structural biology. The volume and complexity of such data leads to significant challenges in terms of its analysis, especially when one seeks to generate hypotheses or explore the underlying biological processes. At the state-of-the-art, the application of automated algorithms followed by perusal and analysis of the results by an expert continues to be the predominant paradigm for analyzing biological data. This paradigm works well in many problem domains. However, it also is limiting, since domain experts are forced to apply their instincts and expertise such as contextual reasoning, hypothesis formulation, and exploratory analysis after the algorithm has produced its results. In many areas where the organization and interaction of the biological processes is poorly understood and exploratory analysis is crucial, what is needed is to integrate domain expertise during the data analysis process and use it to drive the analysis itself. In context of the aforementioned background, the results presented in this paper describe advancements along two methodological directions. First, given the context of biological data, we utilize and extend a design approach called experiential computing from multimedia information system design. This paradigm combines information visualization and human-computer interaction with algorithms for exploratory analysis of large-scale and complex data. In the proposed approach, emphasis is laid on: (1) allowing users to directly visualize, interact, experience, and explore the data through interoperable visualization-based and algorithmic components, (2) supporting unified query and presentation spaces to facilitate experimentation and exploration, (3) providing external contextual information by assimilating relevant supplementary data, and (4) encouraging user-directed information visualization, data exploration, and hypotheses formulation. Second, to illustrate the proposed design paradigm and measure its efficacy, we describe two prototype web applications. The first, called XMAS (Experiential Microarray Analysis System) is designed for analysis of time-series transcriptional data. The second system, called PSPACE (Protein Space Explorer) is designed for holistic analysis of structural and structure-function relationships using interactive low-dimensional maps of the protein structure space. Both these systems promote and facilitate human-computer synergy, where cognitive elements such as domain knowledge, contextual reasoning, and purpose-driven exploration, are integrated with a host of powerful algorithmic operations that support large-scale data analysis, multifaceted data visualization, and multi-source information integration. The proposed design philosophy, combines visualization, algorithmic components and cognitive expertise into a seamless processing-analysis-exploration framework that facilitates sense-making, exploration, and discovery. Using XMAS, we present case studies that analyze transcriptional data from two highly complex domains: gene expression in the placenta during human pregnancy and reaction of marine organisms to heat stress. With PSPACE, we demonstrate how complex structure-function relationships can be explored. These results demonstrate the novelty, advantages, and distinctions of the proposed paradigm. Furthermore, the results also highlight how domain insights can be combined with algorithms to discover meaningful knowledge and formulate evidence-based hypotheses during the data analysis process. Finally, user studies against comparable systems indicate that both XMAS and PSPACE deliver results with better interpretability while placing lower cognitive loads on the users. XMAS is available at: http://tintin.sfsu.edu:8080/xmas. PSPACE is available at: http://pspace.info/.

  6. Towards human-computer synergetic analysis of large-scale biological data

    PubMed Central

    2013-01-01

    Background Advances in technology have led to the generation of massive amounts of complex and multifarious biological data in areas ranging from genomics to structural biology. The volume and complexity of such data leads to significant challenges in terms of its analysis, especially when one seeks to generate hypotheses or explore the underlying biological processes. At the state-of-the-art, the application of automated algorithms followed by perusal and analysis of the results by an expert continues to be the predominant paradigm for analyzing biological data. This paradigm works well in many problem domains. However, it also is limiting, since domain experts are forced to apply their instincts and expertise such as contextual reasoning, hypothesis formulation, and exploratory analysis after the algorithm has produced its results. In many areas where the organization and interaction of the biological processes is poorly understood and exploratory analysis is crucial, what is needed is to integrate domain expertise during the data analysis process and use it to drive the analysis itself. Results In context of the aforementioned background, the results presented in this paper describe advancements along two methodological directions. First, given the context of biological data, we utilize and extend a design approach called experiential computing from multimedia information system design. This paradigm combines information visualization and human-computer interaction with algorithms for exploratory analysis of large-scale and complex data. In the proposed approach, emphasis is laid on: (1) allowing users to directly visualize, interact, experience, and explore the data through interoperable visualization-based and algorithmic components, (2) supporting unified query and presentation spaces to facilitate experimentation and exploration, (3) providing external contextual information by assimilating relevant supplementary data, and (4) encouraging user-directed information visualization, data exploration, and hypotheses formulation. Second, to illustrate the proposed design paradigm and measure its efficacy, we describe two prototype web applications. The first, called XMAS (Experiential Microarray Analysis System) is designed for analysis of time-series transcriptional data. The second system, called PSPACE (Protein Space Explorer) is designed for holistic analysis of structural and structure-function relationships using interactive low-dimensional maps of the protein structure space. Both these systems promote and facilitate human-computer synergy, where cognitive elements such as domain knowledge, contextual reasoning, and purpose-driven exploration, are integrated with a host of powerful algorithmic operations that support large-scale data analysis, multifaceted data visualization, and multi-source information integration. Conclusions The proposed design philosophy, combines visualization, algorithmic components and cognitive expertise into a seamless processing-analysis-exploration framework that facilitates sense-making, exploration, and discovery. Using XMAS, we present case studies that analyze transcriptional data from two highly complex domains: gene expression in the placenta during human pregnancy and reaction of marine organisms to heat stress. With PSPACE, we demonstrate how complex structure-function relationships can be explored. These results demonstrate the novelty, advantages, and distinctions of the proposed paradigm. Furthermore, the results also highlight how domain insights can be combined with algorithms to discover meaningful knowledge and formulate evidence-based hypotheses during the data analysis process. Finally, user studies against comparable systems indicate that both XMAS and PSPACE deliver results with better interpretability while placing lower cognitive loads on the users. XMAS is available at: http://tintin.sfsu.edu:8080/xmas. PSPACE is available at: http://pspace.info/. PMID:24267485

  7. Autoregressive-moving-average hidden Markov model for vision-based fall prediction-An application for walker robot.

    PubMed

    Taghvaei, Sajjad; Jahanandish, Mohammad Hasan; Kosuge, Kazuhiro

    2017-01-01

    Population aging of the societies requires providing the elderly with safe and dependable assistive technologies in daily life activities. Improving the fall detection algorithms can play a major role in achieving this goal. This article proposes a real-time fall prediction algorithm based on the acquired visual data of a user with walking assistive system from a depth sensor. In the lack of a coupled dynamic model of the human and the assistive walker a hybrid "system identification-machine learning" approach is used. An autoregressive-moving-average (ARMA) model is fitted on the time-series walking data to forecast the upcoming states, and a hidden Markov model (HMM) based classifier is built on the top of the ARMA model to predict falling in the upcoming time frames. The performance of the algorithm is evaluated through experiments with four subjects including an experienced physiotherapist while using a walker robot in five different falling scenarios; namely, fall forward, fall down, fall back, fall left, and fall right. The algorithm successfully predicts the fall with a rate of 84.72%.

  8. RayPlus: a Web-Based Platform for Medical Image Processing.

    PubMed

    Yuan, Rong; Luo, Ming; Sun, Zhi; Shi, Shuyue; Xiao, Peng; Xie, Qingguo

    2017-04-01

    Medical image can provide valuable information for preclinical research, clinical diagnosis, and treatment. As the widespread use of digital medical imaging, many researchers are currently developing medical image processing algorithms and systems in order to accommodate a better result to clinical community, including accurate clinical parameters or processed images from the original images. In this paper, we propose a web-based platform to present and process medical images. By using Internet and novel database technologies, authorized users can easily access to medical images and facilitate their workflows of processing with server-side powerful computing performance without any installation. We implement a series of algorithms of image processing and visualization in the initial version of Rayplus. Integration of our system allows much flexibility and convenience for both research and clinical communities.

  9. Augmented reality system

    NASA Astrophysics Data System (ADS)

    Lin, Chien-Liang; Su, Yu-Zheng; Hung, Min-Wei; Huang, Kuo-Cheng

    2010-08-01

    In recent years, Augmented Reality (AR)[1][2][3] is very popular in universities and research organizations. The AR technology has been widely used in Virtual Reality (VR) fields, such as sophisticated weapons, flight vehicle development, data model visualization, virtual training, entertainment and arts. AR has characteristics to enhance the display output as a real environment with specific user interactive functions or specific object recognitions. It can be use in medical treatment, anatomy training, precision instrument casting, warplane guidance, engineering and distance robot control. AR has a lot of vantages than VR. This system developed combines sensors, software and imaging algorithms to make users feel real, actual and existing. Imaging algorithms include gray level method, image binarization method, and white balance method in order to make accurate image recognition and overcome the effects of light.

  10. Novel data visualizations of X-ray data for aviation security applications using the Open Threat Assessment Platform (OTAP)

    NASA Astrophysics Data System (ADS)

    Gittinger, Jaxon M.; Jimenez, Edward S.; Holswade, Erica A.; Nunna, Rahul S.

    2017-02-01

    This work will demonstrate the implementation of a traditional and non-traditional visualization of x-ray images for aviation security applications that will be feasible with open system architecture initiatives such as the Open Threat Assessment Platform (OTAP). Anomalies of interest to aviation security are fluid, where characteristic signals of anomalies of interest can evolve rapidly. OTAP is a limited scope open architecture baggage screening prototype that intends to allow 3rd-party vendors to develop and easily implement, integrate, and deploy detection algorithms and specialized hardware on a field deployable screening technology [13]. In this study, stereoscopic images were created using an unmodified, field-deployed system and rendered on the Oculus Rift, a commercial virtual reality video gaming headset. The example described in this work is not dependent on the Oculus Rift, and is possible using any comparable hardware configuration capable of rendering stereoscopic images. The depth information provided from viewing the images will aid in the detection of characteristic signals from anomalies of interest. If successful, OTAP has the potential to allow for aviation security to become more fluid in its adaptation to the evolution of anomalies of interest. This work demonstrates one example that is easily implemented using the OTAP platform, that could lead to the future generation of ATR algorithms and data visualization approaches.

  11. Research on optimal path planning algorithm of task-oriented optical remote sensing satellites

    NASA Astrophysics Data System (ADS)

    Liu, Yunhe; Xu, Shengli; Liu, Fengjing; Yuan, Jingpeng

    2015-08-01

    GEO task-oriented optical remote sensing satellite, is very suitable for long-term continuous monitoring and quick access to imaging. With the development of high resolution optical payload technology and satellite attitude control technology, GEO optical remote sensing satellites will become an important developing trend for aerospace remote sensing satellite in the near future. In the paper, we focused on GEO optical remote sensing satellite plane array stare imaging characteristics and real-time leading mission of earth observation mode, targeted on satisfying needs of the user with the minimum cost of maneuver, and put forward the optimal path planning algorithm centered on transformation from geographic coordinate space to Field of plane, and finally reduced the burden of the control system. In this algorithm, bounded irregular closed area on the ground would be transformed based on coordinate transformation relations in to the reference plane for field of the satellite payload, and then using the branch and bound method to search for feasible solutions, cutting off the non-feasible solution in the solution space based on pruning strategy; and finally trimming some suboptimal feasible solutions based on the optimization index until a feasible solution for the global optimum. Simulation and visualization presentation software testing results verified the feasibility and effectiveness of the strategy.

  12. RGB-D SLAM Combining Visual Odometry and Extended Information Filter

    PubMed Central

    Zhang, Heng; Liu, Yanli; Tan, Jindong; Xiong, Naixue

    2015-01-01

    In this paper, we present a novel RGB-D SLAM system based on visual odometry and an extended information filter, which does not require any other sensors or odometry. In contrast to the graph optimization approaches, this is more suitable for online applications. A visual dead reckoning algorithm based on visual residuals is devised, which is used to estimate motion control input. In addition, we use a novel descriptor called binary robust appearance and normals descriptor (BRAND) to extract features from the RGB-D frame and use them as landmarks. Furthermore, considering both the 3D positions and the BRAND descriptors of the landmarks, our observation model avoids explicit data association between the observations and the map by marginalizing the observation likelihood over all possible associations. Experimental validation is provided, which compares the proposed RGB-D SLAM algorithm with just RGB-D visual odometry and a graph-based RGB-D SLAM algorithm using the publicly-available RGB-D dataset. The results of the experiments demonstrate that our system is quicker than the graph-based RGB-D SLAM algorithm. PMID:26263990

  13. Model-based clustering for RNA-seq data.

    PubMed

    Si, Yaqing; Liu, Peng; Li, Pinghua; Brutnell, Thomas P

    2014-01-15

    RNA-seq technology has been widely adopted as an attractive alternative to microarray-based methods to study global gene expression. However, robust statistical tools to analyze these complex datasets are still lacking. By grouping genes with similar expression profiles across treatments, cluster analysis provides insight into gene functions and networks, and hence is an important technique for RNA-seq data analysis. In this manuscript, we derive clustering algorithms based on appropriate probability models for RNA-seq data. An expectation-maximization algorithm and another two stochastic versions of expectation-maximization algorithms are described. In addition, a strategy for initialization based on likelihood is proposed to improve the clustering algorithms. Moreover, we present a model-based hybrid-hierarchical clustering method to generate a tree structure that allows visualization of relationships among clusters as well as flexibility of choosing the number of clusters. Results from both simulation studies and analysis of a maize RNA-seq dataset show that our proposed methods provide better clustering results than alternative methods such as the K-means algorithm and hierarchical clustering methods that are not based on probability models. An R package, MBCluster.Seq, has been developed to implement our proposed algorithms. This R package provides fast computation and is publicly available at http://www.r-project.org

  14. Morphological spot counting from stacked images for automated analysis of gene copy numbers by fluorescence in situ hybridization.

    PubMed

    Grigoryan, Artyom M; Dougherty, Edward R; Kononen, Juha; Bubendorf, Lukas; Hostetter, Galen; Kallioniemi, Olli

    2002-01-01

    Fluorescence in situ hybridization (FISH) is a molecular diagnostic technique in which a fluorescent labeled probe hybridizes to a target nucleotide sequence of deoxyribose nucleic acid. Upon excitation, each chromosome containing the target sequence produces a fluorescent signal (spot). Because fluorescent spot counting is tedious and often subjective, automated digital algorithms to count spots are desirable. New technology provides a stack of images on multiple focal planes throughout a tissue sample. Multiple-focal-plane imaging helps overcome the biases and imprecision inherent in single-focal-plane methods. This paper proposes an algorithm for global spot counting in stacked three-dimensional slice FISH images without the necessity of nuclei segmentation. It is designed to work in complex backgrounds, when there are agglomerated nuclei, and in the presence of illumination gradients. It is based on the morphological top-hat transform, which locates intensity spikes on irregular backgrounds. After finding signals in the slice images, the algorithm groups these together to form three-dimensional spots. Filters are employed to separate legitimate spots from fluorescent noise. The algorithm is set in a comprehensive toolbox that provides visualization and analytic facilities. It includes simulation software that allows examination of algorithm performance for various image and algorithm parameter settings, including signal size, signal density, and the number of slices.

  15. Performance-scalable volumetric data classification for online industrial inspection

    NASA Astrophysics Data System (ADS)

    Abraham, Aby J.; Sadki, Mustapha; Lea, R. M.

    2002-03-01

    Non-intrusive inspection and non-destructive testing of manufactured objects with complex internal structures typically requires the enhancement, analysis and visualization of high-resolution volumetric data. Given the increasing availability of fast 3D scanning technology (e.g. cone-beam CT), enabling on-line detection and accurate discrimination of components or sub-structures, the inherent complexity of classification algorithms inevitably leads to throughput bottlenecks. Indeed, whereas typical inspection throughput requirements range from 1 to 1000 volumes per hour, depending on density and resolution, current computational capability is one to two orders-of-magnitude less. Accordingly, speeding up classification algorithms requires both reduction of algorithm complexity and acceleration of computer performance. A shape-based classification algorithm, offering algorithm complexity reduction, by using ellipses as generic descriptors of solids-of-revolution, and supporting performance-scalability, by exploiting the inherent parallelism of volumetric data, is presented. A two-stage variant of the classical Hough transform is used for ellipse detection and correlation of the detected ellipses facilitates position-, scale- and orientation-invariant component classification. Performance-scalability is achieved cost-effectively by accelerating a PC host with one or more COTS (Commercial-Off-The-Shelf) PCI multiprocessor cards. Experimental results are reported to demonstrate the feasibility and cost-effectiveness of the data-parallel classification algorithm for on-line industrial inspection applications.

  16. Analysis and visualization of intracardiac electrograms in diagnosis and research: Concept and application of KaPAVIE.

    PubMed

    Oesterlein, Tobias Georg; Schmid, Jochen; Bauer, Silvio; Jadidi, Amir; Schmitt, Claus; Dössel, Olaf; Luik, Armin

    2016-04-01

    Progress in biomedical engineering has improved the hardware available for diagnosis and treatment of cardiac arrhythmias. But although huge amounts of intracardiac electrograms (EGMs) can be acquired during electrophysiological examinations, there is still a lack of software aiding diagnosis. The development of novel algorithms for the automated analysis of EGMs has proven difficult, due to the highly interdisciplinary nature of this task and hampered data access in clinical systems. Thus we developed a software platform, which allows rapid implementation of new algorithms, verification of their functionality and suitable visualization for discussion in the clinical environment. A software for visualization was developed in Qt5 and C++ utilizing the class library of VTK. The algorithms for signal analysis were implemented in MATLAB. Clinical data for analysis was exported from electroanatomical mapping systems. The visualization software KaPAVIE (Karlsruhe Platform for Analysis and Visualization of Intracardiac Electrograms) was implemented and tested on several clinical datasets. Both common and novel algorithms were implemented which address important clinical questions in diagnosis of different arrhythmias. It proved useful in discussions with clinicians due to its interactive and user-friendly design. Time after export from the clinical mapping system to visualization is below 5min. KaPAVIE(2) is a powerful platform for the development of novel algorithms in the clinical environment. Simultaneous and interactive visualization of measured EGM data and the results of analysis will aid diagnosis and help understanding the underlying mechanisms of complex arrhythmias like atrial fibrillation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Study on visual detection method for wind turbine blade failure

    NASA Astrophysics Data System (ADS)

    Chen, Jianping; Shen, Zhenteng

    2018-02-01

    Start your abstract here…At present, the non-destructive testing methods of the wind turbine blades has fiber bragg grating, sound emission and vibration detection, but there are all kinds of defects, and the engineering application is difficult. In this regard, three-point slope deviation method, which is a kind of visual inspection method, is proposed for monitoring the running status of wind turbine blade based on the image processing technology. A better blade image can be got through calibration, image splicing, pretreatment and threshold segmentation algorithm. Design of the early warning system to monitor wind turbine blade running condition, recognition rate, stability and impact factors of the method were statistically analysed. The experimental results shown showed that it has highly accurate and good monitoring effect.

  18. Automatic Perceptual Color Map Generation for Realistic Volume Visualization

    PubMed Central

    Silverstein, Jonathan C.; Parsad, Nigel M.; Tsirline, Victor

    2008-01-01

    Advances in computed tomography imaging technology and inexpensive high performance computer graphics hardware are making high-resolution, full color (24-bit) volume visualizations commonplace. However, many of the color maps used in volume rendering provide questionable value in knowledge representation and are non-perceptual thus biasing data analysis or even obscuring information. These drawbacks, coupled with our need for realistic anatomical volume rendering for teaching and surgical planning, has motivated us to explore the auto-generation of color maps that combine natural colorization with the perceptual discriminating capacity of grayscale. As evidenced by the examples shown that have been created by the algorithm described, the merging of perceptually accurate and realistically colorized virtual anatomy appears to insightfully interpret and impartially enhance volume rendered patient data. PMID:18430609

  19. The Convolutional Visual Network for Identification and Reconstruction of NOvA Events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Psihas, Fernanda

    In 2016 the NOvA experiment released results for the observation of oscillations in the vμ and ve channels as well as ve cross section measurements using neutrinos from Fermilab’s NuMI beam. These and other measurements in progress rely on the accurate identification and reconstruction of the neutrino flavor and energy recorded by our detectors. This presentation describes the first application of convolutional neural network technology for event identification and reconstruction in particle detectors like NOvA. The Convolutional Visual Network (CVN) Algorithm was developed for identification, categorization, and reconstruction of NOvA events. It increased the selection efficiency of the ve appearancemore » signal by 40% and studies show potential impact to the vμ disappearance analysis.« less

  20. Database Integrity Monitoring for Synthetic Vision Systems Using Machine Vision and SHADE

    NASA Technical Reports Server (NTRS)

    Cooper, Eric G.; Young, Steven D.

    2005-01-01

    In an effort to increase situational awareness, the aviation industry is investigating technologies that allow pilots to visualize what is outside of the aircraft during periods of low-visibility. One of these technologies, referred to as Synthetic Vision Systems (SVS), provides the pilot with real-time computer-generated images of obstacles, terrain features, runways, and other aircraft regardless of weather conditions. To help ensure the integrity of such systems, methods of verifying the accuracy of synthetically-derived display elements using onboard remote sensing technologies are under investigation. One such method is based on a shadow detection and extraction (SHADE) algorithm that transforms computer-generated digital elevation data into a reference domain that enables direct comparison with radar measurements. This paper describes machine vision techniques for making this comparison and discusses preliminary results from application to actual flight data.

  1. Integrating segmentation methods from the Insight Toolkit into a visualization application.

    PubMed

    Martin, Ken; Ibáñez, Luis; Avila, Lisa; Barré, Sébastien; Kaspersen, Jon H

    2005-12-01

    The Insight Toolkit (ITK) initiative from the National Library of Medicine has provided a suite of state-of-the-art segmentation and registration algorithms ideally suited to volume visualization and analysis. A volume visualization application that effectively utilizes these algorithms provides many benefits: it allows access to ITK functionality for non-programmers, it creates a vehicle for sharing and comparing segmentation techniques, and it serves as a visual debugger for algorithm developers. This paper describes the integration of image processing functionalities provided by the ITK into VolView, a visualization application for high performance volume rendering. A free version of this visualization application is publicly available and is available in the online version of this paper. The process for developing ITK plugins for VolView according to the publicly available API is described in detail, and an application of ITK VolView plugins to the segmentation of Abdominal Aortic Aneurysms (AAAs) is presented. The source code of the ITK plugins is also publicly available and it is included in the online version.

  2. A hierarchical word-merging algorithm with class separability measure.

    PubMed

    Wang, Lei; Zhou, Luping; Shen, Chunhua; Liu, Lingqiao; Liu, Huan

    2014-03-01

    In image recognition with the bag-of-features model, a small-sized visual codebook is usually preferred to obtain a low-dimensional histogram representation and high computational efficiency. Such a visual codebook has to be discriminative enough to achieve excellent recognition performance. To create a compact and discriminative codebook, in this paper we propose to merge the visual words in a large-sized initial codebook by maximally preserving class separability. We first show that this results in a difficult optimization problem. To deal with this situation, we devise a suboptimal but very efficient hierarchical word-merging algorithm, which optimally merges two words at each level of the hierarchy. By exploiting the characteristics of the class separability measure and designing a novel indexing structure, the proposed algorithm can hierarchically merge 10,000 visual words down to two words in merely 90 seconds. Also, to show the properties of the proposed algorithm and reveal its advantages, we conduct detailed theoretical analysis to compare it with another hierarchical word-merging algorithm that maximally preserves mutual information, obtaining interesting findings. Experimental studies are conducted to verify the effectiveness of the proposed algorithm on multiple benchmark data sets. As shown, it can efficiently produce more compact and discriminative codebooks than the state-of-the-art hierarchical word-merging algorithms, especially when the size of the codebook is significantly reduced.

  3. Efficient terrestrial laser scan segmentation exploiting data structure

    NASA Astrophysics Data System (ADS)

    Mahmoudabadi, Hamid; Olsen, Michael J.; Todorovic, Sinisa

    2016-09-01

    New technologies such as lidar enable the rapid collection of massive datasets to model a 3D scene as a point cloud. However, while hardware technology continues to advance, processing 3D point clouds into informative models remains complex and time consuming. A common approach to increase processing efficiently is to segment the point cloud into smaller sections. This paper proposes a novel approach for point cloud segmentation using computer vision algorithms to analyze panoramic representations of individual laser scans. These panoramas can be quickly created using an inherent neighborhood structure that is established during the scanning process, which scans at fixed angular increments in a cylindrical or spherical coordinate system. In the proposed approach, a selected image segmentation algorithm is applied on several input layers exploiting this angular structure including laser intensity, range, normal vectors, and color information. These segments are then mapped back to the 3D point cloud so that modeling can be completed more efficiently. This approach does not depend on pre-defined mathematical models and consequently setting parameters for them. Unlike common geometrical point cloud segmentation methods, the proposed method employs the colorimetric and intensity data as another source of information. The proposed algorithm is demonstrated on several datasets encompassing variety of scenes and objects. Results show a very high perceptual (visual) level of segmentation and thereby the feasibility of the proposed algorithm. The proposed method is also more efficient compared to Random Sample Consensus (RANSAC), which is a common approach for point cloud segmentation.

  4. Diagnosis of glaucoma and detection of glaucoma progression using spectral domain optical coherence tomography.

    PubMed

    Grewal, Dilraj S; Tanna, Angelo P

    2013-03-01

    With the rapid adoption of spectral domain optical coherence tomography (SDOCT) in clinical practice and the recent advances in software technology, there is a need for a review of the literature on glaucoma detection and progression analysis algorithms designed for the commercially available instruments. Peripapillary retinal nerve fiber layer (RNFL) thickness and macular thickness, including segmental macular thickness calculation algorithms, have been demonstrated to be repeatable and reproducible, and have a high degree of diagnostic sensitivity and specificity in discriminating between healthy and glaucomatous eyes across the glaucoma continuum. Newer software capabilities such as glaucoma progression detection algorithms provide an objective analysis of longitudinally obtained structural data that enhances our ability to detect glaucomatous progression. RNFL measurements obtained with SDOCT appear more sensitive than time domain OCT (TDOCT) for glaucoma progression detection; however, agreement with the assessments of visual field progression is poor. Over the last few years, several studies have been performed to assess the diagnostic performance of SDOCT structural imaging and its validity in assessing glaucoma progression. Most evidence suggests that SDOCT performs similarly to TDOCT for glaucoma diagnosis; however, SDOCT may be superior for the detection of early stage disease. With respect to progression detection, SDOCT represents an important technological advance because of its improved resolution and repeatability. Advancements in RNFL thickness quantification, segmental macular thickness calculation and progression detection algorithms, when used correctly, may help to improve our ability to diagnose and manage glaucoma.

  5. A Simulation and Modeling Framework for Space Situational Awareness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olivier, S S

    This paper describes the development and initial demonstration of a new, integrated modeling and simulation framework, encompassing the space situational awareness enterprise, for quantitatively assessing the benefit of specific sensor systems, technologies and data analysis techniques. The framework is based on a flexible, scalable architecture to enable efficient, physics-based simulation of the current SSA enterprise, and to accommodate future advancements in SSA systems. In particular, the code is designed to take advantage of massively parallel computer systems available, for example, at Lawrence Livermore National Laboratory. The details of the modeling and simulation framework are described, including hydrodynamic models of satellitemore » intercept and debris generation, orbital propagation algorithms, radar cross section calculations, optical brightness calculations, generic radar system models, generic optical system models, specific Space Surveillance Network models, object detection algorithms, orbit determination algorithms, and visualization tools. The use of this integrated simulation and modeling framework on a specific scenario involving space debris is demonstrated.« less

  6. Real-Time Noise Removal for Line-Scanning Hyperspectral Devices Using a Minimum Noise Fraction-Based Approach

    PubMed Central

    Bjorgan, Asgeir; Randeberg, Lise Lyngsnes

    2015-01-01

    Processing line-by-line and in real-time can be convenient for some applications of line-scanning hyperspectral imaging technology. Some types of processing, like inverse modeling and spectral analysis, can be sensitive to noise. The MNF (minimum noise fraction) transform provides suitable denoising performance, but requires full image availability for the estimation of image and noise statistics. In this work, a modified algorithm is proposed. Incrementally-updated statistics enables the algorithm to denoise the image line-by-line. The denoising performance has been compared to conventional MNF and found to be equal. With a satisfying denoising performance and real-time implementation, the developed algorithm can denoise line-scanned hyperspectral images in real-time. The elimination of waiting time before denoised data are available is an important step towards real-time visualization of processed hyperspectral data. The source code can be found at http://www.github.com/ntnu-bioopt/mnf. This includes an implementation of conventional MNF denoising. PMID:25654717

  7. Advanced biologically plausible algorithms for low-level image processing

    NASA Astrophysics Data System (ADS)

    Gusakova, Valentina I.; Podladchikova, Lubov N.; Shaposhnikov, Dmitry G.; Markin, Sergey N.; Golovan, Alexander V.; Lee, Seong-Whan

    1999-08-01

    At present, in computer vision, the approach based on modeling the biological vision mechanisms is extensively developed. However, up to now, real world image processing has no effective solution in frameworks of both biologically inspired and conventional approaches. Evidently, new algorithms and system architectures based on advanced biological motivation should be developed for solution of computational problems related to this visual task. Basic problems that should be solved for creation of effective artificial visual system to process real world imags are a search for new algorithms of low-level image processing that, in a great extent, determine system performance. In the present paper, the result of psychophysical experiments and several advanced biologically motivated algorithms for low-level processing are presented. These algorithms are based on local space-variant filter, context encoding visual information presented in the center of input window, and automatic detection of perceptually important image fragments. The core of latter algorithm are using local feature conjunctions such as noncolinear oriented segment and composite feature map formation. Developed algorithms were integrated into foveal active vision model, the MARR. It is supposed that proposed algorithms may significantly improve model performance while real world image processing during memorizing, search, and recognition.

  8. A multilevel layout algorithm for visualizing physical and genetic interaction networks, with emphasis on their modular organization

    PubMed Central

    2012-01-01

    Background Graph drawing is an integral part of many systems biology studies, enabling visual exploration and mining of large-scale biological networks. While a number of layout algorithms are available in popular network analysis platforms, such as Cytoscape, it remains poorly understood how well their solutions reflect the underlying biological processes that give rise to the network connectivity structure. Moreover, visualizations obtained using conventional layout algorithms, such as those based on the force-directed drawing approach, may become uninformative when applied to larger networks with dense or clustered connectivity structure. Methods We implemented a modified layout plug-in, named Multilevel Layout, which applies the conventional layout algorithms within a multilevel optimization framework to better capture the hierarchical modularity of many biological networks. Using a wide variety of real life biological networks, we carried out a systematic evaluation of the method in comparison with other layout algorithms in Cytoscape. Results The multilevel approach provided both biologically relevant and visually pleasant layout solutions in most network types, hence complementing the layout options available in Cytoscape. In particular, it could improve drawing of large-scale networks of yeast genetic interactions and human physical interactions. In more general terms, the biological evaluation framework developed here enables one to assess the layout solutions from any existing or future graph drawing algorithm as well as to optimize their performance for a given network type or structure. Conclusions By making use of the multilevel modular organization when visualizing biological networks, together with the biological evaluation of the layout solutions, one can generate convenient visualizations for many network biology applications. PMID:22448851

  9. Visualization of protein interaction networks: problems and solutions

    PubMed Central

    2013-01-01

    Background Visualization concerns the representation of data visually and is an important task in scientific research. Protein-protein interactions (PPI) are discovered using either wet lab techniques, such mass spectrometry, or in silico predictions tools, resulting in large collections of interactions stored in specialized databases. The set of all interactions of an organism forms a protein-protein interaction network (PIN) and is an important tool for studying the behaviour of the cell machinery. Since graphic representation of PINs may highlight important substructures, e.g. protein complexes, visualization is more and more used to study the underlying graph structure of PINs. Although graphs are well known data structures, there are different open problems regarding PINs visualization: the high number of nodes and connections, the heterogeneity of nodes (proteins) and edges (interactions), the possibility to annotate proteins and interactions with biological information extracted by ontologies (e.g. Gene Ontology) that enriches the PINs with semantic information, but complicates their visualization. Methods In these last years many software tools for the visualization of PINs have been developed. Initially thought for visualization only, some of them have been successively enriched with new functions for PPI data management and PIN analysis. The paper analyzes the main software tools for PINs visualization considering four main criteria: (i) technology, i.e. availability/license of the software and supported OS (Operating System) platforms; (ii) interoperability, i.e. ability to import/export networks in various formats, ability to export data in a graphic format, extensibility of the system, e.g. through plug-ins; (iii) visualization, i.e. supported layout and rendering algorithms and availability of parallel implementation; (iv) analysis, i.e. availability of network analysis functions, such as clustering or mining of the graph, and the possibility to interact with external databases. Results Currently, many tools are available and it is not easy for the users choosing one of them. Some tools offer sophisticated 2D and 3D network visualization making available many layout algorithms, others tools are more data-oriented and support integration of interaction data coming from different sources and data annotation. Finally, some specialistic tools are dedicated to the analysis of pathways and cellular processes and are oriented toward systems biology studies, where the dynamic aspects of the processes being studied are central. Conclusion A current trend is the deployment of open, extensible visualization tools (e.g. Cytoscape), that may be incrementally enriched by the interactomics community with novel and more powerful functions for PIN analysis, through the development of plug-ins. On the other hand, another emerging trend regards the efficient and parallel implementation of the visualization engine that may provide high interactivity and near real-time response time, as in NAViGaTOR. From a technological point of view, open-source, free and extensible tools, like Cytoscape, guarantee a long term sustainability due to the largeness of the developers and users communities, and provide a great flexibility since new functions are continuously added by the developer community through new plug-ins, but the emerging parallel, often closed-source tools like NAViGaTOR, can offer near real-time response time also in the analysis of very huge PINs. PMID:23368786

  10. The infrared video image pseudocolor processing system

    NASA Astrophysics Data System (ADS)

    Zhu, Yong; Zhang, JiangLing

    2003-11-01

    The infrared video image pseudo-color processing system, emphasizing on the algorithm and its implementation for measured object"s 2D temperature distribution using pseudo-color technology, is introduced in the paper. The data of measured object"s thermal image is the objective presentation of its surface temperature distribution, but the color has a close relationship with people"s subjective cognition. The so-called pseudo-color technology cross the bridge between subjectivity and objectivity, and represents the measured object"s temperature distribution in reason and at first hand. The algorithm of pseudo-color is based on the distance of IHS space. Thereby the definition of pseudo-color visual resolution is put forward. Both the software (which realize the map from the sample data to the color space) and the hardware (which carry out the conversion from the color space to palette by HDL) co-operate. Therefore the two levels map which is logic map and physical map respectively is presented. The system has been used abroad in failure diagnose of electric power devices, fire protection for lifesaving and even SARS detection in CHINA lately.

  11. Fake Plate Vehicle Auditing Based on Composite Constraints in Internet of Things Environment

    NASA Astrophysics Data System (ADS)

    Li, Shasha; Xiangji Huang, Jimmy; Tohti, Turdi

    2018-03-01

    Accordance to the real application demands, this paper proposes a fake plate vehicle auditing method based on composite constrains strategy, a corresponding simulated IOT (internet of things) environment was created and uses liner matrix, Base64 encryption and grid monitoring technology and puts forward a real-time detecting algorithm for fake plate vehicles. The developed real system not only shows the superiority on its speed, detection accuracy and visualization, it also be good at realizing the vehicle’s real-time position and predicting the possible traveling trajectory.

  12. Arachne—A web-based event viewer for MINERνA

    NASA Astrophysics Data System (ADS)

    Tagg, N.; Brangham, J.; Chvojka, J.; Clairemont, M.; Day, M.; Eberly, B.; Felix, J.; Fields, L.; Gago, A. M.; Gran, R.; Harris, D. A.; Kordosky, M.; Lee, H.; Maggi, G.; Maher, E.; Mann, W. A.; Marshall, C. M.; McFarland, K. S.; McGowan, A. M.; Mislivec, A.; Mousseau, J.; Osmanov, B.; Osta, J.; Paolone, V.; Perdue, G.; Ransome, R. D.; Ray, H.; Schellman, H.; Schmitz, D. W.; Simon, C.; Solano Salinas, C. J.; Tice, B. G.; Walding, J.; Walton, T.; Wolcott, J.; Zhang, D.; Ziemer, B. P.; MinerνA Collaboration

    2012-06-01

    Neutrino interaction events in the MINERνA detector are visually represented with a web-based tool called Arachne. Data are retrieved from a central server via AJAX, and client-side JavaScript draws images into the user's browser window using the draft HTML 5 standard. These technologies allow neutrino interactions to be viewed by anyone with a web browser, allowing for easy hand-scanning of particle interactions. Arachne has been used in MINERνA to evaluate neutrino data in a prototype detector, to tune reconstruction algorithms, and for public outreach and education.

  13. Arachne - A web-based event viewer for MINERvA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tagg, N.; /Otterbein Coll.; Brangham, J.

    2011-11-01

    Neutrino interaction events in the MINERvA detector are visually represented with a web-based tool called Arachne. Data are retrieved from a central server via AJAX, and client-side JavaScript draws images into the user's browser window using the draft HTML 5 standard. These technologies allow neutrino interactions to be viewed by anyone with a web browser, allowing for easy hand-scanning of particle interactions. Arachne has been used in MINERvA to evaluate neutrino data in a prototype detector, to tune reconstruction algorithms, and for public outreach and education.

  14. An Novel Architecture of Large-scale Communication in IOT

    NASA Astrophysics Data System (ADS)

    Ma, Wubin; Deng, Su; Huang, Hongbin

    2018-03-01

    In recent years, many scholars have done a great deal of research on the development of Internet of Things and networked physical systems. However, few people have made the detailed visualization of the large-scale communications architecture in the IOT. In fact, the non-uniform technology between IPv6 and access points has led to a lack of broad principles of large-scale communications architectures. Therefore, this paper presents the Uni-IPv6 Access and Information Exchange Method (UAIEM), a new architecture and algorithm that addresses large-scale communications in the IOT.

  15. A Pervasive Parallel Processing Framework for Data Visualization and Analysis at Extreme Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Kwan-Liu

    Most of today’s visualization libraries and applications are based off of what is known today as the visualization pipeline. In the visualization pipeline model, algorithms are encapsulated as “filtering” components with inputs and outputs. These components can be combined by connecting the outputs of one filter to the inputs of another filter. The visualization pipeline model is popular because it provides a convenient abstraction that allows users to combine algorithms in powerful ways. Unfortunately, the visualization pipeline cannot run effectively on exascale computers. Experts agree that the exascale machine will comprise processors that contain many cores. Furthermore, physical limitations willmore » prevent data movement in and out of the chip (that is, between main memory and the processing cores) from keeping pace with improvements in overall compute performance. To use these processors to their fullest capability, it is essential to carefully consider memory access. This is where the visualization pipeline fails. Each filtering component in the visualization library is expected to take a data set in its entirety, perform some computation across all of the elements, and output the complete results. The process of iterating over all elements must be repeated in each filter, which is one of the worst possible ways to traverse memory when trying to maximize the number of executions per memory access. This project investigates a new type of visualization framework that exhibits a pervasive parallelism necessary to run on exascale machines. Our framework achieves this by defining algorithms in terms of functors, which are localized, stateless operations. Functors can be composited in much the same way as filters in the visualization pipeline. But, functors’ design allows them to be concurrently running on massive amounts of lightweight threads. Only with such fine-grained parallelism can we hope to fill the billions of threads we expect will be necessary for efficient computation on an exascale computer. This project concludes with a functional prototype containing pervasively parallel algorithms that perform demonstratively well on many-core processors. These algorithms are fundamental for performing data analysis and visualization at extreme scale.« less

  16. An algorithm for encryption of secret images into meaningful images

    NASA Astrophysics Data System (ADS)

    Kanso, A.; Ghebleh, M.

    2017-03-01

    Image encryption algorithms typically transform a plain image into a noise-like cipher image, whose appearance is an indication of encrypted content. Bao and Zhou [Image encryption: Generating visually meaningful encrypted images, Information Sciences 324, 2015] propose encrypting the plain image into a visually meaningful cover image. This improves security by masking existence of encrypted content. Following their approach, we propose a lossless visually meaningful image encryption scheme which improves Bao and Zhou's algorithm by making the encrypted content, i.e. distortions to the cover image, more difficult to detect. Empirical results are presented to show high quality of the resulting images and high security of the proposed algorithm. Competence of the proposed scheme is further demonstrated by means of comparison with Bao and Zhou's scheme.

  17. COALA-System for Visual Representation of Cryptography Algorithms

    ERIC Educational Resources Information Center

    Stanisavljevic, Zarko; Stanisavljevic, Jelena; Vuletic, Pavle; Jovanovic, Zoran

    2014-01-01

    Educational software systems have an increasingly significant presence in engineering sciences. They aim to improve students' attitudes and knowledge acquisition typically through visual representation and simulation of complex algorithms and mechanisms or hardware systems that are often not available to the educational institutions. This paper…

  18. Decontaminate feature for tracking: adaptive tracking via evolutionary feature subset

    NASA Astrophysics Data System (ADS)

    Liu, Qiaoyuan; Wang, Yuru; Yin, Minghao; Ren, Jinchang; Li, Ruizhi

    2017-11-01

    Although various visual tracking algorithms have been proposed in the last 2-3 decades, it remains a challenging problem for effective tracking with fast motion, deformation, occlusion, etc. Under complex tracking conditions, most tracking models are not discriminative and adaptive enough. When the combined feature vectors are inputted to the visual models, this may lead to redundancy causing low efficiency and ambiguity causing poor performance. An effective tracking algorithm is proposed to decontaminate features for each video sequence adaptively, where the visual modeling is treated as an optimization problem from the perspective of evolution. Every feature vector is compared to a biological individual and then decontaminated via classical evolutionary algorithms. With the optimized subsets of features, the "curse of dimensionality" has been avoided while the accuracy of the visual model has been improved. The proposed algorithm has been tested on several publicly available datasets with various tracking challenges and benchmarked with a number of state-of-the-art approaches. The comprehensive experiments have demonstrated the efficacy of the proposed methodology.

  19. Filtering Based Adaptive Visual Odometry Sensor Framework Robust to Blurred Images

    PubMed Central

    Zhao, Haiying; Liu, Yong; Xie, Xiaojia; Liao, Yiyi; Liu, Xixi

    2016-01-01

    Visual odometry (VO) estimation from blurred image is a challenging problem in practical robot applications, and the blurred images will severely reduce the estimation accuracy of the VO. In this paper, we address the problem of visual odometry estimation from blurred images, and present an adaptive visual odometry estimation framework robust to blurred images. Our approach employs an objective measure of images, named small image gradient distribution (SIGD), to evaluate the blurring degree of the image, then an adaptive blurred image classification algorithm is proposed to recognize the blurred images, finally we propose an anti-blurred key-frame selection algorithm to enable the VO robust to blurred images. We also carried out varied comparable experiments to evaluate the performance of the VO algorithms with our anti-blur framework under varied blurred images, and the experimental results show that our approach can achieve superior performance comparing to the state-of-the-art methods under the condition with blurred images while not increasing too much computation cost to the original VO algorithms. PMID:27399704

  20. Applied Augmented Reality for High Precision Maintenance

    NASA Astrophysics Data System (ADS)

    Dever, Clark

    Augmented Reality had a major consumer breakthrough this year with Pokemon Go. The underlying technologies that made that app a success with gamers can be applied to improve the efficiency and efficacy of workers. This session will explore some of the use cases for augmented reality in an industrial environment. In doing so, the environmental impacts and human factors that must be considered will be explored. Additionally, the sensors, algorithms, and visualization techniques used to realize augmented reality will be discussed. The benefits of augmented reality solutions in industrial environments include automated data recording, improved quality assurance, reduction in training costs and improved mean-time-to-resolution. As technology continues to follow Moore's law, more applications will become feasible as performance-per-dollar increases across all system components.

  1. A visual analytic framework for data fusion in investigative intelligence

    NASA Astrophysics Data System (ADS)

    Cai, Guoray; Gross, Geoff; Llinas, James; Hall, David

    2014-05-01

    Intelligence analysis depends on data fusion systems to provide capabilities of detecting and tracking important objects, events, and their relationships in connection to an analytical situation. However, automated data fusion technologies are not mature enough to offer reliable and trustworthy information for situation awareness. Given the trend of increasing sophistication of data fusion algorithms and loss of transparency in data fusion process, analysts are left out of the data fusion process cycle with little to no control and confidence on the data fusion outcome. Following the recent rethinking of data fusion as human-centered process, this paper proposes a conceptual framework towards developing alternative data fusion architecture. This idea is inspired by the recent advances in our understanding of human cognitive systems, the science of visual analytics, and the latest thinking about human-centered data fusion. Our conceptual framework is supported by an analysis of the limitation of existing fully automated data fusion systems where the effectiveness of important algorithmic decisions depend on the availability of expert knowledge or the knowledge of the analyst's mental state in an investigation. The success of this effort will result in next generation data fusion systems that can be better trusted while maintaining high throughput.

  2. Specialized Computer Systems for Environment Visualization

    NASA Astrophysics Data System (ADS)

    Al-Oraiqat, Anas M.; Bashkov, Evgeniy A.; Zori, Sergii A.

    2018-06-01

    The need for real time image generation of landscapes arises in various fields as part of tasks solved by virtual and augmented reality systems, as well as geographic information systems. Such systems provide opportunities for collecting, storing, analyzing and graphically visualizing geographic data. Algorithmic and hardware software tools for increasing the realism and efficiency of the environment visualization in 3D visualization systems are proposed. This paper discusses a modified path tracing algorithm with a two-level hierarchy of bounding volumes and finding intersections with Axis-Aligned Bounding Box. The proposed algorithm eliminates the branching and hence makes the algorithm more suitable to be implemented on the multi-threaded CPU and GPU. A modified ROAM algorithm is used to solve the qualitative visualization of reliefs' problems and landscapes. The algorithm is implemented on parallel systems—cluster and Compute Unified Device Architecture-networks. Results show that the implementation on MPI clusters is more efficient than Graphics Processing Unit/Graphics Processing Clusters and allows real-time synthesis. The organization and algorithms of the parallel GPU system for the 3D pseudo stereo image/video synthesis are proposed. With realizing possibility analysis on a parallel GPU-architecture of each stage, 3D pseudo stereo synthesis is performed. An experimental prototype of a specialized hardware-software system 3D pseudo stereo imaging and video was developed on the CPU/GPU. The experimental results show that the proposed adaptation of 3D pseudo stereo imaging to the architecture of GPU-systems is efficient. Also it accelerates the computational procedures of 3D pseudo-stereo synthesis for the anaglyph and anamorphic formats of the 3D stereo frame without performing optimization procedures. The acceleration is on average 11 and 54 times for test GPUs.

  3. Pilot-based parametric channel estimation algorithm for DCO-OFDM-based visual light communications

    NASA Astrophysics Data System (ADS)

    Qian, Xuewen; Deng, Honggui; He, Hailang

    2017-10-01

    Due to wide modulation bandwidth in optical communication, multipath channels may be non-sparse and deteriorate communication performance heavily. Traditional compressive sensing-based channel estimation algorithm cannot be employed in this kind of situation. In this paper, we propose a practical parametric channel estimation algorithm for orthogonal frequency division multiplexing (OFDM)-based visual light communication (VLC) systems based on modified zero correlation code (ZCC) pair that has the impulse-like correlation property. Simulation results show that the proposed algorithm achieves better performances than existing least squares (LS)-based algorithm in both bit error ratio (BER) and frequency response estimation.

  4. Retinex enhancement of infrared images.

    PubMed

    Li, Ying; He, Renjie; Xu, Guizhi; Hou, Changzhi; Sun, Yunyan; Guo, Lei; Rao, Liyun; Yan, Weili

    2008-01-01

    With the ability of imaging the temperature distribution of body, infrared imaging is promising in diagnostication and prognostication of diseases. However the poor quality of the raw original infrared images prevented applications and one of the essential problems is the low contrast appearance of the imagined object. In this paper, the image enhancement technique based on the Retinex theory is studied, which is a process that automatically retrieve the visual realism to images. The algorithms, including Frackle-McCann algorithm, McCann99 algorithm, single-scale Retinex algorithm, multi-scale Retinex algorithm and multi-scale Retinex algorithm with color restoration, are experienced to the enhancement of infrared images. The entropy measurements along with the visual inspection were compared and results shown the algorithms based on Retinex theory have the ability in enhancing the infrared image. Out of the algorithms compared, MSRCR demonstrated the best performance.

  5. Implementing virtual reality interfaces for the geosciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bethel, W.; Jacobsen, J.; Austin, A.

    1996-06-01

    For the past few years, a multidisciplinary team of computer and earth scientists at Lawrence Berkeley National Laboratory has been exploring the use of advanced user interfaces, commonly called {open_quotes}Virtual Reality{close_quotes} (VR), coupled with visualization and scientific computing software. Working closely with industry, these efforts have resulted in an environment in which VR technology is coupled with existing visualization and computational tools. VR technology may be thought of as a user interface. It is useful to think of a spectrum, ranging the gamut from command-line interfaces to completely immersive environments. In the former, one uses the keyboard to enter threemore » or six-dimensional parameters. In the latter, three or six-dimensional information is provided by trackers contained either in hand-held devices or attached to the user in some fashion, e.g. attached to a head-mounted display. Rich, extensible and often complex languages are a vehicle whereby the user controls parameters to manipulate object position and location in a virtual world, but the keyboard is the obstacle in that typing is cumbersome, error-prone and typically slow. In the latter, the user can interact with these parameters by means of motor skills which are highly developed. Two specific geoscience application areas will be highlighted. In the first, we have used VR technology to manipulate three-dimensional input parameters, such as the spatial location of injection or production wells in a reservoir simulator. In the second, we demonstrate how VR technology has been used to manipulate visualization tools, such as a tool for computing streamlines via manipulation of a {open_quotes}rake.{close_quotes} The rake is presented to the user in the form of a {open_quotes}virtual well{close_quotes} icon, and provides parameters used by the streamlines algorithm.« less

  6. Visual difference metric for realistic image synthesis

    NASA Astrophysics Data System (ADS)

    Bolin, Mark R.; Meyer, Gary W.

    1999-05-01

    An accurate and efficient model of human perception has been developed to control the placement of sample in a realistic image synthesis algorithm. Previous sampling techniques have sought to spread the error equally across the image plane. However, this approach neglects the fact that the renderings are intended to be displayed for a human observer. The human visual system has a varying sensitivity to error that is based upon the viewing context. This means that equivalent optical discrepancies can be very obvious in one situation and imperceptible in another. It is ultimately the perceptibility of this error that governs image quality and should be used as the basis of a sampling algorithm. This paper focuses on a simplified version of the Lubin Visual Discrimination Metric (VDM) that was developed for insertion into an image synthesis algorithm. The sampling VDM makes use of a Haar wavelet basis for the cortical transform and a less severe spatial pooling operation. The model was extended for color including the effects of chromatic aberration. Comparisons are made between the execution time and visual difference map for the original Lubin and simplified visual difference metrics. Results for the realistic image synthesis algorithm are also presented.

  7. Algorithm Visualization in Teaching Practice

    ERIC Educational Resources Information Center

    Törley, Gábor

    2014-01-01

    This paper presents the history of algorithm visualization (AV), highlighting teaching-methodology aspects. A combined, two-group pedagogical experiment will be presented as well, which measured the efficiency and the impact on the abstract thinking of AV. According to the results, students, who learned with AV, performed better in the experiment.

  8. Natural Inspired Intelligent Visual Computing and Its Application to Viticulture.

    PubMed

    Ang, Li Minn; Seng, Kah Phooi; Ge, Feng Lu

    2017-05-23

    This paper presents an investigation of natural inspired intelligent computing and its corresponding application towards visual information processing systems for viticulture. The paper has three contributions: (1) a review of visual information processing applications for viticulture; (2) the development of natural inspired computing algorithms based on artificial immune system (AIS) techniques for grape berry detection; and (3) the application of the developed algorithms towards real-world grape berry images captured in natural conditions from vineyards in Australia. The AIS algorithms in (2) were developed based on a nature-inspired clonal selection algorithm (CSA) which is able to detect the arcs in the berry images with precision, based on a fitness model. The arcs detected are then extended to perform the multiple arcs and ring detectors information processing for the berry detection application. The performance of the developed algorithms were compared with traditional image processing algorithms like the circular Hough transform (CHT) and other well-known circle detection methods. The proposed AIS approach gave a Fscore of 0.71 compared with Fscores of 0.28 and 0.30 for the CHT and a parameter-free circle detection technique (RPCD) respectively.

  9. Volumetric visualization algorithm development for an FPGA-based custom computing machine

    NASA Astrophysics Data System (ADS)

    Sallinen, Sami J.; Alakuijala, Jyrki; Helminen, Hannu; Laitinen, Joakim

    1998-05-01

    Rendering volumetric medical images is a burdensome computational task for contemporary computers due to the large size of the data sets. Custom designed reconfigurable hardware could considerably speed up volume visualization if an algorithm suitable for the platform is used. We present an algorithm and speedup techniques for visualizing volumetric medical CT and MR images with a custom-computing machine based on a Field Programmable Gate Array (FPGA). We also present simulated performance results of the proposed algorithm calculated with a software implementation running on a desktop PC. Our algorithm is capable of generating perspective projection renderings of single and multiple isosurfaces with transparency, simulated X-ray images, and Maximum Intensity Projections (MIP). Although more speedup techniques exist for parallel projection than for perspective projection, we have constrained ourselves to perspective viewing, because of its importance in the field of radiotherapy. The algorithm we have developed is based on ray casting, and the rendering is sped up by three different methods: shading speedup by gradient precalculation, a new generalized version of Ray-Acceleration by Distance Coding (RADC), and background ray elimination by speculative ray selection.

  10. Binary mesh partitioning for cache-efficient visualization.

    PubMed

    Tchiboukdjian, Marc; Danjean, Vincent; Raffin, Bruno

    2010-01-01

    One important bottleneck when visualizing large data sets is the data transfer between processor and memory. Cache-aware (CA) and cache-oblivious (CO) algorithms take into consideration the memory hierarchy to design cache efficient algorithms. CO approaches have the advantage to adapt to unknown and varying memory hierarchies. Recent CA and CO algorithms developed for 3D mesh layouts significantly improve performance of previous approaches, but they lack of theoretical performance guarantees. We present in this paper a {\\schmi O}(N\\log N) algorithm to compute a CO layout for unstructured but well shaped meshes. We prove that a coherent traversal of a N-size mesh in dimension d induces less than N/B+{\\schmi O}(N/M;{1/d}) cache-misses where B and M are the block size and the cache size, respectively. Experiments show that our layout computation is faster and significantly less memory consuming than the best known CO algorithm. Performance is comparable to this algorithm for classical visualization algorithm access patterns, or better when the BSP tree produced while computing the layout is used as an acceleration data structure adjusted to the layout. We also show that cache oblivious approaches lead to significant performance increases on recent GPU architectures.

  11. New algorithms for processing time-series big EEG data within mobile health monitoring systems.

    PubMed

    Serhani, Mohamed Adel; Menshawy, Mohamed El; Benharref, Abdelghani; Harous, Saad; Navaz, Alramzana Nujum

    2017-10-01

    Recent advances in miniature biomedical sensors, mobile smartphones, wireless communications, and distributed computing technologies provide promising techniques for developing mobile health systems. Such systems are capable of monitoring epileptic seizures reliably, which are classified as chronic diseases. Three challenging issues raised in this context with regard to the transformation, compression, storage, and visualization of big data, which results from a continuous recording of epileptic seizures using mobile devices. In this paper, we address the above challenges by developing three new algorithms to process and analyze big electroencephalography data in a rigorous and efficient manner. The first algorithm is responsible for transforming the standard European Data Format (EDF) into the standard JavaScript Object Notation (JSON) and compressing the transformed JSON data to decrease the size and time through the transfer process and to increase the network transfer rate. The second algorithm focuses on collecting and storing the compressed files generated by the transformation and compression algorithm. The collection process is performed with respect to the on-the-fly technique after decompressing files. The third algorithm provides relevant real-time interaction with signal data by prospective users. It particularly features the following capabilities: visualization of single or multiple signal channels on a smartphone device and query data segments. We tested and evaluated the effectiveness of our approach through a software architecture model implementing a mobile health system to monitor epileptic seizures. The experimental findings from 45 experiments are promising and efficiently satisfy the approach's objectives in a price of linearity. Moreover, the size of compressed JSON files and transfer times are reduced by 10% and 20%, respectively, while the average total time is remarkably reduced by 67% through all performed experiments. Our approach successfully develops efficient algorithms in terms of processing time, memory usage, and energy consumption while maintaining a high scalability of the proposed solution. Our approach efficiently supports data partitioning and parallelism relying on the MapReduce platform, which can help in monitoring and automatic detection of epileptic seizures. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Research to Operations: From Point Positions, Earthquake and Tsunami Modeling to GNSS-augmented Tsunami Early Warning

    NASA Astrophysics Data System (ADS)

    Stough, T.; Green, D. S.

    2017-12-01

    This collaborative research to operations demonstration brings together the data and algorithms from NASA research, technology, and applications-funded projects to deliver relevant data streams, algorithms, predictive models, and visualization tools to the NOAA National Tsunami Warning Center (NTWC) and Pacific Tsunami Warning Center (PTWC). Using real-time GNSS data and models in an operational environment, we will test and evaluate an augmented capability for tsunami early warning. Each of three research groups collect data from a selected network of real-time GNSS stations, exchange data consisting of independently processed 1 Hz station displacements, and merge the output into a single, more accurate and reliable set. The resulting merged data stream is delivered from three redundant locations to the TWCs with a latency of 5-10 seconds. Data from a number of seismogeodetic stations with collocated GPS and accelerometer instruments are processed for displacements and seismic velocities and also delivered. Algorithms for locating and determining the magnitude of earthquakes as well as algorithms that compute the source function of a potential tsunami using this new data stream are included in the demonstration. The delivered data, algorithms, models and tools are hosted on NOAA-operated machines at both warning centers, and, once tested, the results will be evaluated for utility in improving the speed and accuracy of tsunami warnings. This collaboration has the potential to dramatically improve the speed and accuracy of the TWCs local tsunami information over the current seismometer-only based methods. In our first year of this work, we have established and deployed an architecture for data movement and algorithm installation at the TWC's. We are addressing data quality issues and porting algorithms into the TWCs operating environment. Our initial module deliveries will focus on estimating moment magnitude (Mw) from Peak Ground Displacement (PGD), within 2-3 minutes of the event, and coseismic displacements converging to static offsets. We will also develop visualizations of module outputs tailored to the operational environment. In the context of this work, we will also discuss this research to operations approach and other opportunities within the NASA Applied Science Disaster Program.

  13. Cognitive programs: software for attention's executive

    PubMed Central

    Tsotsos, John K.; Kruijne, Wouter

    2014-01-01

    What are the computational tasks that an executive controller for visual attention must solve? This question is posed in the context of the Selective Tuning model of attention. The range of required computations go beyond top-down bias signals or region-of-interest determinations, and must deal with overt and covert fixations, process timing and synchronization, information routing, memory, matching control to task, spatial localization, priming, and coordination of bottom-up with top-down information. During task execution, results must be monitored to ensure the expected results. This description includes the kinds of elements that are common in the control of any kind of complex machine or system. We seek a mechanistic integration of the above, in other words, algorithms that accomplish control. Such algorithms operate on representations, transforming a representation of one kind into another, which then forms the input to yet another algorithm. Cognitive Programs (CPs) are hypothesized to capture exactly such representational transformations via stepwise sequences of operations. CPs, an updated and modernized offspring of Ullman's Visual Routines, impose an algorithmic structure to the set of attentional functions and play a role in the overall shaping of attentional modulation of the visual system so that it provides its best performance. This requires that we consider the visual system as a dynamic, yet general-purpose processor tuned to the task and input of the moment. This differs dramatically from the almost universal cognitive and computational views, which regard vision as a passively observing module to which simple questions about percepts can be posed, regardless of task. Differing from Visual Routines, CPs explicitly involve the critical elements of Visual Task Executive (vTE), Visual Attention Executive (vAE), and Visual Working Memory (vWM). Cognitive Programs provide the software that directs the actions of the Selective Tuning model of visual attention. PMID:25505430

  14. Computer vision for RGB-D sensors: Kinect and its applications.

    PubMed

    Shao, Ling; Han, Jungong; Xu, Dong; Shotton, Jamie

    2013-10-01

    Kinect sensor, high-resolution depth and visual (RGB) sensing has become available for widespread use as an off-the-shelf technology. This special issue is specifically dedicated to new algorithms and/or new applications based on the Kinect (or similar RGB-D) sensors. In total, we received over ninety submissions from more than twenty countries all around the world. The submissions cover a wide range of areas including object and scene classification, 3-D pose estimation, visual tracking, data fusion, human action/activity recognition, 3-D reconstruction, mobile robotics, and so on. After two rounds of review by at least two (mostly three) expert reviewers for each paper, the Guest Editors have selected twelve high-quality papers to be included in this highly popular special issue. The papers that comprise this issue are briefly summarized.

  15. Study of Earthquake Disaster Prediction System of Langfang city Based on GIS

    NASA Astrophysics Data System (ADS)

    Huang, Meng; Zhang, Dian; Li, Pan; Zhang, YunHui; Zhang, RuoFei

    2017-07-01

    In this paper, according to the status of China’s need to improve the ability of earthquake disaster prevention, this paper puts forward the implementation plan of earthquake disaster prediction system of Langfang city based on GIS. Based on the GIS spatial database, coordinate transformation technology, GIS spatial analysis technology and PHP development technology, the seismic damage factor algorithm is used to predict the damage of the city under different intensity earthquake disaster conditions. The earthquake disaster prediction system of Langfang city is based on the B / S system architecture. Degree and spatial distribution and two-dimensional visualization display, comprehensive query analysis and efficient auxiliary decision-making function to determine the weak earthquake in the city and rapid warning. The system has realized the transformation of the city’s earthquake disaster reduction work from static planning to dynamic management, and improved the city’s earthquake and disaster prevention capability.

  16. System-of-Systems Technology-Portfolio-Analysis Tool

    NASA Technical Reports Server (NTRS)

    O'Neil, Daniel; Mankins, John; Feingold, Harvey; Johnson, Wayne

    2012-01-01

    Advanced Technology Life-cycle Analysis System (ATLAS) is a system-of-systems technology-portfolio-analysis software tool. ATLAS affords capabilities to (1) compare estimates of the mass and cost of an engineering system based on competing technological concepts; (2) estimate life-cycle costs of an outer-space-exploration architecture for a specified technology portfolio; (3) collect data on state-of-the-art and forecasted technology performance, and on operations and programs; and (4) calculate an index of the relative programmatic value of a technology portfolio. ATLAS facilitates analysis by providing a library of analytical spreadsheet models for a variety of systems. A single analyst can assemble a representation of a system of systems from the models and build a technology portfolio. Each system model estimates mass, and life-cycle costs are estimated by a common set of cost models. Other components of ATLAS include graphical-user-interface (GUI) software, algorithms for calculating the aforementioned index, a technology database, a report generator, and a form generator for creating the GUI for the system models. At the time of this reporting, ATLAS is a prototype, embodied in Microsoft Excel and several thousand lines of Visual Basic for Applications that run on both Windows and Macintosh computers.

  17. Framework and algorithms for illustrative visualizations of time-varying flows on unstructured meshes

    DOE PAGES

    Rattner, Alexander S.; Guillen, Donna Post; Joshi, Alark; ...

    2016-03-17

    Photo- and physically realistic techniques are often insufficient for visualization of fluid flow simulations, especially for 3D and time-varying studies. Substantial research effort has been dedicated to the development of non-photorealistic and illustration-inspired visualization techniques for compact and intuitive presentation of such complex datasets. However, a great deal of work has been reproduced in this field, as many research groups have developed specialized visualization software. Additionally, interoperability between illustrative visualization software is limited due to diverse processing and rendering architectures employed in different studies. In this investigation, a framework for illustrative visualization is proposed, and implemented in MarmotViz, a ParaViewmore » plug-in, enabling its use on a variety of computing platforms with various data file formats and mesh geometries. Region-of-interest identification and feature-tracking algorithms incorporated into this tool are described. Implementations of multiple illustrative effect algorithms are also presented to demonstrate the use and flexibility of this framework. Here, by providing an integrated framework for illustrative visualization of CFD data, MarmotViz can serve as a valuable asset for the interpretation of simulations of ever-growing scale.« less

  18. Multiple feature fusion via covariance matrix for visual tracking

    NASA Astrophysics Data System (ADS)

    Jin, Zefenfen; Hou, Zhiqiang; Yu, Wangsheng; Wang, Xin; Sun, Hui

    2018-04-01

    Aiming at the problem of complicated dynamic scenes in visual target tracking, a multi-feature fusion tracking algorithm based on covariance matrix is proposed to improve the robustness of the tracking algorithm. In the frame-work of quantum genetic algorithm, this paper uses the region covariance descriptor to fuse the color, edge and texture features. It also uses a fast covariance intersection algorithm to update the model. The low dimension of region covariance descriptor, the fast convergence speed and strong global optimization ability of quantum genetic algorithm, and the fast computation of fast covariance intersection algorithm are used to improve the computational efficiency of fusion, matching, and updating process, so that the algorithm achieves a fast and effective multi-feature fusion tracking. The experiments prove that the proposed algorithm can not only achieve fast and robust tracking but also effectively handle interference of occlusion, rotation, deformation, motion blur and so on.

  19. Flattening maps for the visualization of multibranched vessels.

    PubMed

    Zhu, Lei; Haker, Steven; Tannenbaum, Allen

    2005-02-01

    In this paper, we present two novel algorithms which produce flattened visualizations of branched physiological surfaces, such as vessels. The first approach is a conformal mapping algorithm based on the minimization of two Dirichlet functionals. From a triangulated representation of vessel surfaces, we show how the algorithm can be implemented using a finite element technique. The second method is an algorithm which adjusts the conformal mapping to produce a flattened representation of the original surface while preserving areas. This approach employs the theory of optimal mass transport. Furthermore, a new way of extracting center lines for vessel fly-throughs is provided.

  20. Flattening Maps for the Visualization of Multibranched Vessels

    PubMed Central

    Zhu, Lei; Haker, Steven; Tannenbaum, Allen

    2013-01-01

    In this paper, we present two novel algorithms which produce flattened visualizations of branched physiological surfaces, such as vessels. The first approach is a conformal mapping algorithm based on the minimization of two Dirichlet functionals. From a triangulated representation of vessel surfaces, we show how the algorithm can be implemented using a finite element technique. The second method is an algorithm which adjusts the conformal mapping to produce a flattened representation of the original surface while preserving areas. This approach employs the theory of optimal mass transport. Furthermore, a new way of extracting center lines for vessel fly-throughs is provided. PMID:15707245

  1. Visualizing the global secondary structure of a viral RNA genome with cryo-electron microscopy

    PubMed Central

    Garmann, Rees F.; Gopal, Ajaykumar; Athavale, Shreyas S.; Knobler, Charles M.; Gelbart, William M.; Harvey, Stephen C.

    2015-01-01

    The lifecycle, and therefore the virulence, of single-stranded (ss)-RNA viruses is regulated not only by their particular protein gene products, but also by the secondary and tertiary structure of their genomes. The secondary structure of the entire genomic RNA of satellite tobacco mosaic virus (STMV) was recently determined by selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE). The SHAPE analysis suggested a single highly extended secondary structure with much less branching than occurs in the ensemble of structures predicted by purely thermodynamic algorithms. Here we examine the solution-equilibrated STMV genome by direct visualization with cryo-electron microscopy (cryo-EM), using an RNA of similar length transcribed from the yeast genome as a control. The cryo-EM data reveal an ensemble of branching patterns that are collectively consistent with the SHAPE-derived secondary structure model. Thus, our results both elucidate the statistical nature of the secondary structure of large ss-RNAs and give visual support for modern RNA structure determination methods. Additionally, this work introduces cryo-EM as a means to distinguish between competing secondary structure models if the models differ significantly in terms of the number and/or length of branches. Furthermore, with the latest advances in cryo-EM technology, we suggest the possibility of developing methods that incorporate restraints from cryo-EM into the next generation of algorithms for the determination of RNA secondary and tertiary structures. PMID:25752599

  2. Visualizing Dynamic Bitcoin Transaction Patterns.

    PubMed

    McGinn, Dan; Birch, David; Akroyd, David; Molina-Solana, Miguel; Guo, Yike; Knottenbelt, William J

    2016-06-01

    This work presents a systemic top-down visualization of Bitcoin transaction activity to explore dynamically generated patterns of algorithmic behavior. Bitcoin dominates the cryptocurrency markets and presents researchers with a rich source of real-time transactional data. The pseudonymous yet public nature of the data presents opportunities for the discovery of human and algorithmic behavioral patterns of interest to many parties such as financial regulators, protocol designers, and security analysts. However, retaining visual fidelity to the underlying data to retain a fuller understanding of activity within the network remains challenging, particularly in real time. We expose an effective force-directed graph visualization employed in our large-scale data observation facility to accelerate this data exploration and derive useful insight among domain experts and the general public alike. The high-fidelity visualizations demonstrated in this article allowed for collaborative discovery of unexpected high frequency transaction patterns, including automated laundering operations, and the evolution of multiple distinct algorithmic denial of service attacks on the Bitcoin network.

  3. Visualizing Dynamic Bitcoin Transaction Patterns

    PubMed Central

    McGinn, Dan; Birch, David; Akroyd, David; Molina-Solana, Miguel; Guo, Yike; Knottenbelt, William J.

    2016-01-01

    Abstract This work presents a systemic top-down visualization of Bitcoin transaction activity to explore dynamically generated patterns of algorithmic behavior. Bitcoin dominates the cryptocurrency markets and presents researchers with a rich source of real-time transactional data. The pseudonymous yet public nature of the data presents opportunities for the discovery of human and algorithmic behavioral patterns of interest to many parties such as financial regulators, protocol designers, and security analysts. However, retaining visual fidelity to the underlying data to retain a fuller understanding of activity within the network remains challenging, particularly in real time. We expose an effective force-directed graph visualization employed in our large-scale data observation facility to accelerate this data exploration and derive useful insight among domain experts and the general public alike. The high-fidelity visualizations demonstrated in this article allowed for collaborative discovery of unexpected high frequency transaction patterns, including automated laundering operations, and the evolution of multiple distinct algorithmic denial of service attacks on the Bitcoin network. PMID:27441715

  4. VHP - An environment for the remote visualization of heuristic processes

    NASA Technical Reports Server (NTRS)

    Crawford, Stuart L.; Leiner, Barry M.

    1991-01-01

    A software system called VHP is introduced which permits the visualization of heuristic algorithms on both resident and remote hardware platforms. The VHP is based on the DCF tool for interprocess communication and is applicable to remote algorithms which can be on different types of hardware and in languages other than VHP. The VHP system is of particular interest to systems in which the visualization of remote processes is required such as robotics for telescience applications.

  5. Evaluating HDR photos using Web 2.0 technology

    NASA Astrophysics Data System (ADS)

    Qiu, Guoping; Mei, Yujie; Duan, Jiang

    2011-01-01

    High dynamic range (HDR) photography is an emerging technology that has the potential to dramatically enhance the visual quality and realism of digital photos. One of the key technical challenges of HDR photography is displaying HDR photos on conventional devices through tone mapping or dynamic range compression. Although many different tone mapping techniques have been developed in recent years, evaluating tone mapping operators prove to be extremely difficult. Web2.0, social media and crowd-sourcing are emerging Internet technologies which can be harnessed to harvest the brain power of the mass to solve difficult problems in science, engineering and businesses. Paired comparison is used in the scientific study of preferences and attitudes and has been shown to be capable of obtaining an interval-scale ordering of items along a psychometric dimension such as preference or importance. In this paper, we exploit these technologies for evaluating HDR tone mapping algorithms. We have developed a Web2.0 style system that enables Internet users from anywhere to evaluate tone mapped HDR photos at any time. We adopt a simple paired comparison protocol, Internet users are presented a pair of tone mapped images and are simply asked to select the one that they think is better or click a "no difference" button. These user inputs are collected in the web server and analyzed by a rank aggregation algorithm which ranks the tone mapped photos according to the votes they received. We present experimental results which demonstrate that the emerging Internet technologies can be exploited as a new paradigm for evaluating HDR tone mapping algorithms. The advantages of this approach include the potential of collecting large user inputs under a variety of viewing environments rather than limited user participation under controlled laboratory environments thus enabling more robust and reliable quality assessment. We also present data analysis to correlate user generated qualitative indices with quantitative image statistics which may provide useful guidance for developing better tone mapping operators.

  6. Integrating concept ontology and multitask learning to achieve more effective classifier training for multilevel image annotation.

    PubMed

    Fan, Jianping; Gao, Yuli; Luo, Hangzai

    2008-03-01

    In this paper, we have developed a new scheme for achieving multilevel annotations of large-scale images automatically. To achieve more sufficient representation of various visual properties of the images, both the global visual features and the local visual features are extracted for image content representation. To tackle the problem of huge intraconcept visual diversity, multiple types of kernels are integrated to characterize the diverse visual similarity relationships between the images more precisely, and a multiple kernel learning algorithm is developed for SVM image classifier training. To address the problem of huge interconcept visual similarity, a novel multitask learning algorithm is developed to learn the correlated classifiers for the sibling image concepts under the same parent concept and enhance their discrimination and adaptation power significantly. To tackle the problem of huge intraconcept visual diversity for the image concepts at the higher levels of the concept ontology, a novel hierarchical boosting algorithm is developed to learn their ensemble classifiers hierarchically. In order to assist users on selecting more effective hypotheses for image classifier training, we have developed a novel hyperbolic framework for large-scale image visualization and interactive hypotheses assessment. Our experiments on large-scale image collections have also obtained very positive results.

  7. VTK-m: Accelerating the Visualization Toolkit for Massively Threaded Architectures

    DOE PAGES

    Moreland, Kenneth; Sewell, Christopher; Usher, William; ...

    2016-05-09

    Here, one of the most critical challenges for high-performance computing (HPC) scientific visualization is execution on massively threaded processors. Of the many fundamental changes we are seeing in HPC systems, one of the most profound is a reliance on new processor types optimized for execution bandwidth over latency hiding. Our current production scientific visualization software is not designed for these new types of architectures. To address this issue, the VTK-m framework serves as a container for algorithms, provides flexible data representation, and simplifies the design of visualization algorithms on new and future computer architecture.

  8. VTK-m: Accelerating the Visualization Toolkit for Massively Threaded Architectures

    DOE PAGES

    Moreland, Kenneth; Sewell, Christopher; Usher, William; ...

    2016-05-09

    Execution on massively threaded processors is one of the most critical challenges for high-performance computing (HPC) scientific visualization. Of the many fundamental changes we are seeing in HPC systems, one of the most profound is a reliance on new processor types optimized for execution bandwidth over latency hiding. Moreover, our current production scientific visualization software is not designed for these new types of architectures. In order to address this issue, the VTK-m framework serves as a container for algorithms, provides flexible data representation, and simplifies the design of visualization algorithms on new and future computer architecture.

  9. Fuzzy Integral-Based Gaze Control of a Robotic Head for Human Robot Interaction.

    PubMed

    Yoo, Bum-Soo; Kim, Jong-Hwan

    2015-09-01

    During the last few decades, as a part of effort to enhance natural human robot interaction (HRI), considerable research has been carried out to develop human-like gaze control. However, most studies did not consider hardware implementation, real-time processing, and the real environment, factors that should be taken into account to achieve natural HRI. This paper proposes a fuzzy integral-based gaze control algorithm, operating in real-time and the real environment, for a robotic head. We formulate the gaze control as a multicriteria decision making problem and devise seven human gaze-inspired criteria. Partial evaluations of all candidate gaze directions are carried out with respect to the seven criteria defined from perceived visual, auditory, and internal inputs, and fuzzy measures are assigned to a power set of the criteria to reflect the user defined preference. A fuzzy integral of the partial evaluations with respect to the fuzzy measures is employed to make global evaluations of all candidate gaze directions. The global evaluation values are adjusted by applying inhibition of return and are compared with the global evaluation values of the previous gaze directions to decide the final gaze direction. The effectiveness of the proposed algorithm is demonstrated with a robotic head, developed in the Robot Intelligence Technology Laboratory at Korea Advanced Institute of Science and Technology, through three interaction scenarios and three comparison scenarios with another algorithm.

  10. [Image processing system of visual prostheses based on digital signal processor DM642].

    PubMed

    Xie, Chengcheng; Lu, Yanyu; Gu, Yun; Wang, Jing; Chai, Xinyu

    2011-09-01

    This paper employed a DSP platform to create the real-time and portable image processing system, and introduced a series of commonly used algorithms for visual prostheses. The results of performance evaluation revealed that this platform could afford image processing algorithms to be executed in real time.

  11. Looking at Algorithm Visualization through the Eyes of Pre-Service ICT Teachers

    ERIC Educational Resources Information Center

    Saltan, Fatih

    2016-01-01

    The study investigated pre-service ICT teachers' perceptions of algorithm visualization (AV) with regard to appropriateness of teaching levels and contribution to learning and motivation. In order to achieve this aim, a qualitative case study was carried out. The participants consisted of 218 pre-service ICT teachers from four different…

  12. Incorporating a Wheeled Vehicle Model in a New Monocular Visual Odometry Algorithm for Dynamic Outdoor Environments

    PubMed Central

    Jiang, Yanhua; Xiong, Guangming; Chen, Huiyan; Lee, Dah-Jye

    2014-01-01

    This paper presents a monocular visual odometry algorithm that incorporates a wheeled vehicle model for ground vehicles. The main innovation of this algorithm is to use the single-track bicycle model to interpret the relationship between the yaw rate and side slip angle, which are the two most important parameters that describe the motion of a wheeled vehicle. Additionally, the pitch angle is also considered since the planar-motion hypothesis often fails due to the dynamic characteristics of wheel suspensions and tires in real-world environments. Linearization is used to calculate a closed-form solution of the motion parameters that works as a hypothesis generator in a RAndom SAmple Consensus (RANSAC) scheme to reduce the complexity in solving equations involving trigonometric. All inliers found are used to refine the winner solution through minimizing the reprojection error. Finally, the algorithm is applied to real-time on-board visual localization applications. Its performance is evaluated by comparing against the state-of-the-art monocular visual odometry methods using both synthetic data and publicly available datasets over several kilometers in dynamic outdoor environments. PMID:25256109

  13. Development of CD3 cell quantitation algorithms for renal allograft biopsy rejection assessment utilizing open source image analysis software.

    PubMed

    Moon, Andres; Smith, Geoffrey H; Kong, Jun; Rogers, Thomas E; Ellis, Carla L; Farris, Alton B Brad

    2018-02-01

    Renal allograft rejection diagnosis depends on assessment of parameters such as interstitial inflammation; however, studies have shown interobserver variability regarding interstitial inflammation assessment. Since automated image analysis quantitation can be reproducible, we devised customized analysis methods for CD3+ T-cell staining density as a measure of rejection severity and compared them with established commercial methods along with visual assessment. Renal biopsy CD3 immunohistochemistry slides (n = 45), including renal allografts with various degrees of acute cellular rejection (ACR) were scanned for whole slide images (WSIs). Inflammation was quantitated in the WSIs using pathologist visual assessment, commercial algorithms (Aperio nuclear algorithm for CD3+ cells/mm 2 and Aperio positive pixel count algorithm), and customized open source algorithms developed in ImageJ with thresholding/positive pixel counting (custom CD3+%) and identification of pixels fulfilling "maxima" criteria for CD3 expression (custom CD3+ cells/mm 2 ). Based on visual inspections of "markup" images, CD3 quantitation algorithms produced adequate accuracy. Additionally, CD3 quantitation algorithms correlated between each other and also with visual assessment in a statistically significant manner (r = 0.44 to 0.94, p = 0.003 to < 0.0001). Methods for assessing inflammation suggested a progression through the tubulointerstitial ACR grades, with statistically different results in borderline versus other ACR types, in all but the custom methods. Assessment of CD3-stained slides using various open source image analysis algorithms presents salient correlations with established methods of CD3 quantitation. These analysis techniques are promising and highly customizable, providing a form of on-slide "flow cytometry" that can facilitate additional diagnostic accuracy in tissue-based assessments.

  14. Visualizing and improving the robustness of phase retrieval algorithms

    DOE PAGES

    Tripathi, Ashish; Leyffer, Sven; Munson, Todd; ...

    2015-06-01

    Coherent x-ray diffractive imaging is a novel imaging technique that utilizes phase retrieval and nonlinear optimization methods to image matter at nanometer scales. We explore how the convergence properties of a popular phase retrieval algorithm, Fienup's HIO, behave by introducing a reduced dimensionality problem allowing us to visualize and quantify convergence to local minima and the globally optimal solution. We then introduce generalizations of HIO that improve upon the original algorithm's ability to converge to the globally optimal solution.

  15. Visualizing and improving the robustness of phase retrieval algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, Ashish; Leyffer, Sven; Munson, Todd

    Coherent x-ray diffractive imaging is a novel imaging technique that utilizes phase retrieval and nonlinear optimization methods to image matter at nanometer scales. We explore how the convergence properties of a popular phase retrieval algorithm, Fienup's HIO, behave by introducing a reduced dimensionality problem allowing us to visualize and quantify convergence to local minima and the globally optimal solution. We then introduce generalizations of HIO that improve upon the original algorithm's ability to converge to the globally optimal solution.

  16. A Novel Robot Visual Homing Method Based on SIFT Features

    PubMed Central

    Zhu, Qidan; Liu, Chuanjia; Cai, Chengtao

    2015-01-01

    Warping is an effective visual homing method for robot local navigation. However, the performance of the warping method can be greatly influenced by the changes of the environment in a real scene, thus resulting in lower accuracy. In order to solve the above problem and to get higher homing precision, a novel robot visual homing algorithm is proposed by combining SIFT (scale-invariant feature transform) features with the warping method. The algorithm is novel in using SIFT features as landmarks instead of the pixels in the horizon region of the panoramic image. In addition, to further improve the matching accuracy of landmarks in the homing algorithm, a novel mismatching elimination algorithm, based on the distribution characteristics of landmarks in the catadioptric panoramic image, is proposed. Experiments on image databases and on a real scene confirm the effectiveness of the proposed method. PMID:26473880

  17. The research and application of visual saliency and adaptive support vector machine in target tracking field.

    PubMed

    Chen, Yuantao; Xu, Weihong; Kuang, Fangjun; Gao, Shangbing

    2013-01-01

    The efficient target tracking algorithm researches have become current research focus of intelligent robots. The main problems of target tracking process in mobile robot face environmental uncertainty. They are very difficult to estimate the target states, illumination change, target shape changes, complex backgrounds, and other factors and all affect the occlusion in tracking robustness. To further improve the target tracking's accuracy and reliability, we present a novel target tracking algorithm to use visual saliency and adaptive support vector machine (ASVM). Furthermore, the paper's algorithm has been based on the mixture saliency of image features. These features include color, brightness, and sport feature. The execution process used visual saliency features and those common characteristics have been expressed as the target's saliency. Numerous experiments demonstrate the effectiveness and timeliness of the proposed target tracking algorithm in video sequences where the target objects undergo large changes in pose, scale, and illumination.

  18. Indoor magnetic navigation for the blind.

    PubMed

    Riehle, Timothy H; Anderson, Shane M; Lichter, Patrick A; Giudice, Nicholas A; Sheikh, Suneel I; Knuesel, Robert J; Kollmann, Daniel T; Hedin, Daniel S

    2012-01-01

    Indoor navigation technology is needed to support seamless mobility for the visually impaired. This paper describes the construction of and evaluation of a navigation system that infers the users' location using only magnetic sensing. It is well known that the environments within steel frame structures are subject to significant magnetic distortions. Many of these distortions are persistent and have sufficient strength and spatial characteristics to allow their use as the basis for a location technology. This paper describes the development and evaluation of a prototype magnetic navigation system consisting of a wireless magnetometer placed at the users' hip streaming magnetic readings to a smartphone processing location algorithms. Human trials were conducted to assess the efficacy of the system by studying route-following performance with blind and sighted subjects using the navigation system for real-time guidance.

  19. Consistency of visual assessments of mammographic breast density from vendor-specific "for presentation" images.

    PubMed

    Abdolell, Mohamed; Tsuruda, Kaitlyn; Lightfoot, Christopher B; Barkova, Eva; McQuaid, Melanie; Caines, Judy; Iles, Sian E

    2016-01-01

    Discussions of percent breast density (PD) and breast cancer risk implicitly assume that visual assessments of PD are comparable between vendors despite differences in technology and display algorithms. This study examines the extent to which visual assessments of PD differ between mammograms acquired from two vendors. Pairs of "for presentation" digital mammography images were obtained from two mammography units for 146 women who had a screening mammogram on one vendor unit followed by a diagnostic mammogram on a different vendor unit. Four radiologists independently visually assessed PD from single left mediolateral oblique view images from the two vendors. Analysis of variance, intra-class correlation coefficients (ICC), scatter plots, and Bland-Altman plots were used to evaluate PD assessments between vendors. The mean radiologist PD for each image was used as a consensus PD measure. Overall agreement of the PD assessments was excellent between the two vendors with an ICC of 0.95 (95% confidence interval: 0.93 to 0.97). Bland-Altman plots demonstrated narrow upper and lower limits of agreement between the vendors with only a small bias (2.3 percentage points). The results of this study support the assumption that visual assessment of PD is consistent across mammography vendors despite vendor-specific appearances of "for presentation" images.

  20. Image Analysis via Fuzzy-Reasoning Approach: Prototype Applications at NASA

    NASA Technical Reports Server (NTRS)

    Dominguez, Jesus A.; Klinko, Steven J.

    2004-01-01

    A set of imaging techniques based on Fuzzy Reasoning (FR) approach was built for NASA at Kennedy Space Center (KSC) to perform complex real-time visual-related safety prototype tasks, such as detection and tracking of moving Foreign Objects Debris (FOD) during the NASA Space Shuttle liftoff and visual anomaly detection on slidewires used in the emergency egress system for Space Shuttle at the launch pad. The system has also proved its prospective in enhancing X-ray images used to screen hard-covered items leading to a better visualization. The system capability was used as well during the imaging analysis of the Space Shuttle Columbia accident. These FR-based imaging techniques include novel proprietary adaptive image segmentation, image edge extraction, and image enhancement. Probabilistic Neural Network (PNN) scheme available from NeuroShell(TM) Classifier and optimized via Genetic Algorithm (GA) was also used along with this set of novel imaging techniques to add powerful learning and image classification capabilities. Prototype applications built using these techniques have received NASA Space Awards, including a Board Action Award, and are currently being filed for patents by NASA; they are being offered for commercialization through the Research Triangle Institute (RTI), an internationally recognized corporation in scientific research and technology development. Companies from different fields, including security, medical, text digitalization, and aerospace, are currently in the process of licensing these technologies from NASA.

  1. Sockeye: A 3D Environment for Comparative Genomics

    PubMed Central

    Montgomery, Stephen B.; Astakhova, Tamara; Bilenky, Mikhail; Birney, Ewan; Fu, Tony; Hassel, Maik; Melsopp, Craig; Rak, Marcin; Robertson, A. Gordon; Sleumer, Monica; Siddiqui, Asim S.; Jones, Steven J.M.

    2004-01-01

    Comparative genomics techniques are used in bioinformatics analyses to identify the structural and functional properties of DNA sequences. As the amount of available sequence data steadily increases, the ability to perform large-scale comparative analyses has become increasingly relevant. In addition, the growing complexity of genomic feature annotation means that new approaches to genomic visualization need to be explored. We have developed a Java-based application called Sockeye that uses three-dimensional (3D) graphics technology to facilitate the visualization of annotation and conservation across multiple sequences. This software uses the Ensembl database project to import sequence and annotation information from several eukaryotic species. A user can additionally import their own custom sequence and annotation data. Individual annotation objects are displayed in Sockeye by using custom 3D models. Ensembl-derived and imported sequences can be analyzed by using a suite of multiple and pair-wise alignment algorithms. The results of these comparative analyses are also displayed in the 3D environment of Sockeye. By using the Java3D API to visualize genomic data in a 3D environment, we are able to compactly display cross-sequence comparisons. This provides the user with a novel platform for visualizing and comparing genomic feature organization. PMID:15123592

  2. Rubber hose surface defect detection system based on machine vision

    NASA Astrophysics Data System (ADS)

    Meng, Fanwu; Ren, Jingrui; Wang, Qi; Zhang, Teng

    2018-01-01

    As an important part of connecting engine, air filter, engine, cooling system and automobile air-conditioning system, automotive hose is widely used in automobile. Therefore, the determination of the surface quality of the hose is particularly important. This research is based on machine vision technology, using HALCON algorithm for the processing of the hose image, and identifying the surface defects of the hose. In order to improve the detection accuracy of visual system, this paper proposes a method to classify the defects to reduce misjudegment. The experimental results show that the method can detect surface defects accurately.

  3. A Scan Line Algorithm for Computer Generated Flight Visuals,

    DTIC Science & Technology

    1981-02-01

    8217--- P FIG. 3.4 POLYGON CLIPPING 13 f ace cnri ProtyPriority f ace index etrd Protyindex index 0 n -i FIG. 3.5 FACE - PRIORITY LINK 3.4 Perspecliite...along edges vr2 and 1a1.1, and then along the segment rs results in the point p being assigned colour !15 20 1 35cl +.-9C 2 + I- C3 + 3-C4 49 49 14 14...AR-002-259 0 DEPARTMENT OF DEFENCE 0DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION 7- n AERONAUTICAL RESEARCH LABORATORIES TN4 MELBOURNE, VICTORIA 1 b

  4. Infrared image enhancement using H(infinity) bounds for surveillance applications.

    PubMed

    Qidwai, Uvais

    2008-08-01

    In this paper, two algorithms have been presented to enhance the infrared (IR) images. Using the autoregressive moving average model structure and H(infinity) optimal bounds, the image pixels are mapped from the IR pixel space into normal optical image space, thus enhancing the IR image for improved visual quality. Although H(infinity)-based system identification algorithms are very common now, they are not quite suitable for real-time applications owing to their complexity. However, many variants of such algorithms are possible that can overcome this constraint. Two such algorithms have been developed and implemented in this paper. Theoretical and algorithmic results show remarkable enhancement in the acquired images. This will help in enhancing the visual quality of IR images for surveillance applications.

  5. PCSYS: The optimal design integration system picture drawing system with hidden line algorithm capability for aerospace vehicle configurations

    NASA Technical Reports Server (NTRS)

    Hague, D. S.; Vanderburg, J. D.

    1977-01-01

    A vehicle geometric definition based upon quadrilateral surface elements to produce realistic pictures of an aerospace vehicle. The PCSYS programs can be used to visually check geometric data input, monitor geometric perturbations, and to visualize the complex spatial inter-relationships between the internal and external vehicle components. PCSYS has two major component programs. The between program, IMAGE, draws a complex aerospace vehicle pictorial representation based on either an approximate but rapid hidden line algorithm or without any hidden line algorithm. The second program, HIDDEN, draws a vehicle representation using an accurate but time consuming hidden line algorithm.

  6. Milestone Completion Report WBS 1.3.5.05 ECP/VTK-m FY17Q4 [MS-17/03-06] Key Reduce / Spatial Division / Basic Advect / Normals STDA05-4.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreland, Kenneth D.

    The FY17Q4 milestone of the ECP/VTK-m project includes the completion of a key-reduce scheduling mechanism, a spatial division algorithm, an algorithm for basic particle advection, and the computation of smoothed surface normals. With the completion of this milestone, we are able to, respectively, more easily group like elements (a common visualization algorithm operation), provide the fundamentals for geometric search structures, provide the fundamentals for many flow visualization algorithms, and provide more realistic rendering of surfaces approximated with facets.

  7. ClusterViz: A Cytoscape APP for Cluster Analysis of Biological Network.

    PubMed

    Wang, Jianxin; Zhong, Jiancheng; Chen, Gang; Li, Min; Wu, Fang-xiang; Pan, Yi

    2015-01-01

    Cluster analysis of biological networks is one of the most important approaches for identifying functional modules and predicting protein functions. Furthermore, visualization of clustering results is crucial to uncover the structure of biological networks. In this paper, ClusterViz, an APP of Cytoscape 3 for cluster analysis and visualization, has been developed. In order to reduce complexity and enable extendibility for ClusterViz, we designed the architecture of ClusterViz based on the framework of Open Services Gateway Initiative. According to the architecture, the implementation of ClusterViz is partitioned into three modules including interface of ClusterViz, clustering algorithms and visualization and export. ClusterViz fascinates the comparison of the results of different algorithms to do further related analysis. Three commonly used clustering algorithms, FAG-EC, EAGLE and MCODE, are included in the current version. Due to adopting the abstract interface of algorithms in module of the clustering algorithms, more clustering algorithms can be included for the future use. To illustrate usability of ClusterViz, we provided three examples with detailed steps from the important scientific articles, which show that our tool has helped several research teams do their research work on the mechanism of the biological networks.

  8. ICT Teachers' Acceptance of "Scratch" as Algorithm Visualization Software

    ERIC Educational Resources Information Center

    Saltan, Fatih; Kara, Mehmet

    2016-01-01

    This study aims to investigate the acceptance of ICT teachers pertaining to the use of Scratch as an Algorithm Visualization (AV) software in terms of perceived ease of use and perceived usefulness. An embedded mixed method research design was used in the study, in which qualitative data were embedded in quantitative ones and used to explain the…

  9. Algorithm Visualization: The State of the Field

    ERIC Educational Resources Information Center

    Shaffer, Clifford A.; Cooper, Matthew L.; Alon, Alexander Joel D.; Akbar, Monika; Stewart, Michael; Ponce, Sean; Edwards, Stephen H.

    2010-01-01

    We present findings regarding the state of the field of Algorithm Visualization (AV) based on our analysis of a collection of over 500 AVs. We examine how AVs are distributed among topics, who created them and when, their overall quality, and how they are disseminated. There does exist a cadre of good AVs and active developers. Unfortunately, we…

  10. Denoising imaging polarimetry by adapted BM3D method.

    PubMed

    Tibbs, Alexander B; Daly, Ilse M; Roberts, Nicholas W; Bull, David R

    2018-04-01

    In addition to the visual information contained in intensity and color, imaging polarimetry allows visual information to be extracted from the polarization of light. However, a major challenge of imaging polarimetry is image degradation due to noise. This paper investigates the mitigation of noise through denoising algorithms and compares existing denoising algorithms with a new method, based on BM3D (Block Matching 3D). This algorithm, Polarization-BM3D (PBM3D), gives visual quality superior to the state of the art across all images and noise standard deviations tested. We show that denoising polarization images using PBM3D allows the degree of polarization to be more accurately calculated by comparing it with spectral polarimetry measurements.

  11. DSP Implementation of the Retinex Image Enhancement Algorithm

    NASA Technical Reports Server (NTRS)

    Hines, Glenn; Rahman, Zia-Ur; Jobson, Daniel; Woodell, Glenn

    2004-01-01

    The Retinex is a general-purpose image enhancement algorithm that is used to produce good visual representations of scenes. It performs a non-linear spatial/spectral transform that synthesizes strong local contrast enhancement and color constancy. A real-time, video frame rate implementation of the Retinex is required to meet the needs of various potential users. Retinex processing contains a relatively large number of complex computations, thus to achieve real-time performance using current technologies requires specialized hardware and software. In this paper we discuss the design and development of a digital signal processor (DSP) implementation of the Retinex. The target processor is a Texas Instruments TMS320C6711 floating point DSP. NTSC video is captured using a dedicated frame-grabber card, Retinex processed, and displayed on a standard monitor. We discuss the optimizations used to achieve real-time performance of the Retinex and also describe our future plans on using alternative architectures.

  12. A pervasive parallel framework for visualization: final report for FWP 10-014707

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreland, Kenneth D.

    2014-01-01

    We are on the threshold of a transformative change in the basic architecture of highperformance computing. The use of accelerator processors, characterized by large core counts, shared but asymmetrical memory, and heavy thread loading, is quickly becoming the norm in high performance computing. These accelerators represent significant challenges in updating our existing base of software. An intrinsic problem with this transition is a fundamental programming shift from message passing processes to much more fine thread scheduling with memory sharing. Another problem is the lack of stability in accelerator implementation; processor and compiler technology is currently changing rapidly. This report documentsmore » the results of our three-year ASCR project to address these challenges. Our project includes the development of the Dax toolkit, which contains the beginnings of new algorithms for a new generation of computers and the underlying infrastructure to rapidly prototype and build further algorithms as necessary.« less

  13. Global motion compensated visual attention-based video watermarking

    NASA Astrophysics Data System (ADS)

    Oakes, Matthew; Bhowmik, Deepayan; Abhayaratne, Charith

    2016-11-01

    Imperceptibility and robustness are two key but complementary requirements of any watermarking algorithm. Low-strength watermarking yields high imperceptibility but exhibits poor robustness. High-strength watermarking schemes achieve good robustness but often suffer from embedding distortions resulting in poor visual quality in host media. This paper proposes a unique video watermarking algorithm that offers a fine balance between imperceptibility and robustness using motion compensated wavelet-based visual attention model (VAM). The proposed VAM includes spatial cues for visual saliency as well as temporal cues. The spatial modeling uses the spatial wavelet coefficients while the temporal modeling accounts for both local and global motion to arrive at the spatiotemporal VAM for video. The model is then used to develop a video watermarking algorithm, where a two-level watermarking weighting parameter map is generated from the VAM saliency maps using the saliency model and data are embedded into the host image according to the visual attentiveness of each region. By avoiding higher strength watermarking in the visually attentive region, the resulting watermarked video achieves high perceived visual quality while preserving high robustness. The proposed VAM outperforms the state-of-the-art video visual attention methods in joint saliency detection and low computational complexity performance. For the same embedding distortion, the proposed visual attention-based watermarking achieves up to 39% (nonblind) and 22% (blind) improvement in robustness against H.264/AVC compression, compared to existing watermarking methodology that does not use the VAM. The proposed visual attention-based video watermarking results in visual quality similar to that of low-strength watermarking and a robustness similar to those of high-strength watermarking.

  14. Designing highly flexible and usable cyberinfrastructures for convergence.

    PubMed

    Herr, Bruce W; Huang, Weixia; Penumarthy, Shashikant; Börner, Katy

    2006-12-01

    This article presents the results of a 7-year-long quest into the development of a "dream tool" for our research in information science and scientometrics and more recently, network science. The results are two cyberinfrastructures (CI): The Cyberinfrastructure for Information Visualization and the Network Workbench that enjoy a growing national and interdisciplinary user community. Both CIs use the cyberinfrastructure shell (CIShell) software specification, which defines interfaces between data sets and algorithms/services and provides a means to bundle them into powerful tools and (Web) services. In fact, CIShell might be our major contribution to progress in convergence. Just as Wikipedia is an "empty shell" that empowers lay persons to share text, a CIShell implementation is an "empty shell" that empowers user communities to plug-and-play, share, compare and combine data sets, algorithms, and compute resources across national and disciplinary boundaries. It is argued here that CIs will not only transform the way science is conducted but also will play a major role in the diffusion of expertise, data sets, algorithms, and technologies across multiple disciplines and business sectors leading to a more integrative science.

  15. Encoding color information for visual tracking: Algorithms and benchmark.

    PubMed

    Liang, Pengpeng; Blasch, Erik; Ling, Haibin

    2015-12-01

    While color information is known to provide rich discriminative clues for visual inference, most modern visual trackers limit themselves to the grayscale realm. Despite recent efforts to integrate color in tracking, there is a lack of comprehensive understanding of the role color information can play. In this paper, we attack this problem by conducting a systematic study from both the algorithm and benchmark perspectives. On the algorithm side, we comprehensively encode 10 chromatic models into 16 carefully selected state-of-the-art visual trackers. On the benchmark side, we compile a large set of 128 color sequences with ground truth and challenge factor annotations (e.g., occlusion). A thorough evaluation is conducted by running all the color-encoded trackers, together with two recently proposed color trackers. A further validation is conducted on an RGBD tracking benchmark. The results clearly show the benefit of encoding color information for tracking. We also perform detailed analysis on several issues, including the behavior of various combinations between color model and visual tracker, the degree of difficulty of each sequence for tracking, and how different challenge factors affect the tracking performance. We expect the study to provide the guidance, motivation, and benchmark for future work on encoding color in visual tracking.

  16. Learning to rank using user clicks and visual features for image retrieval.

    PubMed

    Yu, Jun; Tao, Dacheng; Wang, Meng; Rui, Yong

    2015-04-01

    The inconsistency between textual features and visual contents can cause poor image search results. To solve this problem, click features, which are more reliable than textual information in justifying the relevance between a query and clicked images, are adopted in image ranking model. However, the existing ranking model cannot integrate visual features, which are efficient in refining the click-based search results. In this paper, we propose a novel ranking model based on the learning to rank framework. Visual features and click features are simultaneously utilized to obtain the ranking model. Specifically, the proposed approach is based on large margin structured output learning and the visual consistency is integrated with the click features through a hypergraph regularizer term. In accordance with the fast alternating linearization method, we design a novel algorithm to optimize the objective function. This algorithm alternately minimizes two different approximations of the original objective function by keeping one function unchanged and linearizing the other. We conduct experiments on a large-scale dataset collected from the Microsoft Bing image search engine, and the results demonstrate that the proposed learning to rank models based on visual features and user clicks outperforms state-of-the-art algorithms.

  17. View-Dependent Streamline Deformation and Exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, Xin; Edwards, John; Chen, Chun-Ming

    Occlusion presents a major challenge in visualizing 3D flow and tensor fields using streamlines. Displaying too many streamlines creates a dense visualization filled with occluded structures, but displaying too few streams risks losing important features. We propose a new streamline exploration approach by visually manipulating the cluttered streamlines by pulling visible layers apart and revealing the hidden structures underneath. This paper presents a customized view-dependent deformation algorithm and an interactive visualization tool to minimize visual cluttering for visualizing 3D vector and tensor fields. The algorithm is able to maintain the overall integrity of the fields and expose previously hidden structures.more » Our system supports both mouse and direct-touch interactions to manipulate the viewing perspectives and visualize the streamlines in depth. By using a lens metaphor of different shapes to select the transition zone of the targeted area interactively, the users can move their focus and examine the vector or tensor field freely.« less

  18. Image communication scheme based on dynamic visual cryptography and computer generated holography

    NASA Astrophysics Data System (ADS)

    Palevicius, Paulius; Ragulskis, Minvydas

    2015-01-01

    Computer generated holograms are often exploited to implement optical encryption schemes. This paper proposes the integration of dynamic visual cryptography (an optical technique based on the interplay of visual cryptography and time-averaging geometric moiré) with Gerchberg-Saxton algorithm. A stochastic moiré grating is used to embed the secret into a single cover image. The secret can be visually decoded by a naked eye if only the amplitude of harmonic oscillations corresponds to an accurately preselected value. The proposed visual image encryption scheme is based on computer generated holography, optical time-averaging moiré and principles of dynamic visual cryptography. Dynamic visual cryptography is used both for the initial encryption of the secret image and for the final decryption. Phase data of the encrypted image are computed by using Gerchberg-Saxton algorithm. The optical image is decrypted using the computationally reconstructed field of amplitudes.

  19. Anatomic vascular phantom for the verification of MRA and XRA visualization and fusion

    NASA Astrophysics Data System (ADS)

    Mankovich, Nicholas J.; Lambert, Timothy; Zrimec, Tatjana; Hiller, John B.

    1995-05-01

    A project is underway to develop automated methods of fusing cerebral magnetic resonance angiography (MRA) and x-ray angiography (XRA) for creating accurate visualizations used in planning treatment of vascular disease. We have developed a vascular phantom suitable for testing segmentation and fusion algorithms with either derived images (psuedo-MRA/psuedo-XRA) or actual MRA or XRA image sequences. The initial unilateral arterial phantom design, based on normal human anatomy, contains 48 tapering vascular segments with lumen diameters from 2.5 millimeter to 0.25 millimeter. The initial phantom used rapid prototyping technology (stereolithography) with a 0.9 millimeter vessel wall fabricated in an ultraviolet-cured plastic. The model fabrication resulted in a hollow vessel model comprising the internal carotid artery, the ophthalmic artery, and the proximal segments of the anterior, middle, and posterior cerebral arteries. The complete model was fabricated but the model's lumen could not be cleared for vessels with less than 1 millimeter diameter. Measurements of selected vascular outer diameters as judged against the CAD specification showed an accuracy of 0.14 mm and precision (standard deviation) of 0.15 mm. The plastic vascular model produced provides a fixed geometric framework for the evaluation of imaging protocols and the development of algorithms for both segmentation and fusion.

  20. GWAS in a Box: Statistical and Visual Analytics of Structured Associations via GenAMap

    PubMed Central

    Xing, Eric P.; Curtis, Ross E.; Schoenherr, Georg; Lee, Seunghak; Yin, Junming; Puniyani, Kriti; Wu, Wei; Kinnaird, Peter

    2014-01-01

    With the continuous improvement in genotyping and molecular phenotyping technology and the decreasing typing cost, it is expected that in a few years, more and more clinical studies of complex diseases will recruit thousands of individuals for pan-omic genetic association analyses. Hence, there is a great need for algorithms and software tools that could scale up to the whole omic level, integrate different omic data, leverage rich structure information, and be easily accessible to non-technical users. We present GenAMap, an interactive analytics software platform that 1) automates the execution of principled machine learning methods that detect genome- and phenome-wide associations among genotypes, gene expression data, and clinical or other macroscopic traits, and 2) provides new visualization tools specifically designed to aid in the exploration of association mapping results. Algorithmically, GenAMap is based on a new paradigm for GWAS and PheWAS analysis, termed structured association mapping, which leverages various structures in the omic data. We demonstrate the function of GenAMap via a case study of the Brem and Kruglyak yeast dataset, and then apply it on a comprehensive eQTL analysis of the NIH heterogeneous stock mice dataset and report some interesting findings. GenAMap is available from http://sailing.cs.cmu.edu/genamap. PMID:24905018

  1. Implementing Operational Analytics using Big Data Technologies to Detect and Predict Sensor Anomalies

    NASA Astrophysics Data System (ADS)

    Coughlin, J.; Mital, R.; Nittur, S.; SanNicolas, B.; Wolf, C.; Jusufi, R.

    2016-09-01

    Operational analytics when combined with Big Data technologies and predictive techniques have been shown to be valuable in detecting mission critical sensor anomalies that might be missed by conventional analytical techniques. Our approach helps analysts and leaders make informed and rapid decisions by analyzing large volumes of complex data in near real-time and presenting it in a manner that facilitates decision making. It provides cost savings by being able to alert and predict when sensor degradations pass a critical threshold and impact mission operations. Operational analytics, which uses Big Data tools and technologies, can process very large data sets containing a variety of data types to uncover hidden patterns, unknown correlations, and other relevant information. When combined with predictive techniques, it provides a mechanism to monitor and visualize these data sets and provide insight into degradations encountered in large sensor systems such as the space surveillance network. In this study, data from a notional sensor is simulated and we use big data technologies, predictive algorithms and operational analytics to process the data and predict sensor degradations. This study uses data products that would commonly be analyzed at a site. This study builds on a big data architecture that has previously been proven valuable in detecting anomalies. This paper outlines our methodology of implementing an operational analytic solution through data discovery, learning and training of data modeling and predictive techniques, and deployment. Through this methodology, we implement a functional architecture focused on exploring available big data sets and determine practical analytic, visualization, and predictive technologies.

  2. Algorithm Visualization System for Teaching Spatial Data Algorithms

    ERIC Educational Resources Information Center

    Nikander, Jussi; Helminen, Juha; Korhonen, Ari

    2010-01-01

    TRAKLA2 is a web-based learning environment for data structures and algorithms. The system delivers automatically assessed algorithm simulation exercises that are solved using a graphical user interface. In this work, we introduce a novel learning environment for spatial data algorithms, SDA-TRAKLA2, which has been implemented on top of the…

  3. Three-Dimensional Reconstruction of the Virtual Plant Branching Structure Based on Terrestrial LIDAR Technologies and L-System

    NASA Astrophysics Data System (ADS)

    Gong, Y.; Yang, Y.; Yang, X.

    2018-04-01

    For the purpose of extracting productions of some specific branching plants effectively and realizing its 3D reconstruction, Terrestrial LiDAR data was used as extraction source of production, and a 3D reconstruction method based on Terrestrial LiDAR technologies combined with the L-system was proposed in this article. The topology structure of the plant architectures was extracted using the point cloud data of the target plant with space level segmentation mechanism. Subsequently, L-system productions were obtained and the structural parameters and production rules of branches, which fit the given plant, was generated. A three-dimensional simulation model of target plant was established combined with computer visualization algorithm finally. The results suggest that the method can effectively extract a given branching plant topology and describes its production, realizing the extraction of topology structure by the computer algorithm for given branching plant and also simplifying the extraction of branching plant productions which would be complex and time-consuming by L-system. It improves the degree of automation in the L-system extraction of productions of specific branching plants, providing a new way for the extraction of branching plant production rules.

  4. OpenEIS. Developer Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lutes, Robert G.; Neubauer, Casey C.; Haack, Jereme N.

    2015-03-31

    The Department of Energy’s (DOE’s) Building Technologies Office (BTO) is supporting the development of an open-source software tool for analyzing building energy and operational data: OpenEIS (open energy information system). This tool addresses the problems of both owners of building data and developers of tools to analyze this data. Building owners and managers have data but lack the tools to analyze it while tool developers lack data in a common format to ease development of reusable data analysis tools. This document is intended for developers of applications and explains the mechanisms for building analysis applications, accessing data, and displaying datamore » using a visualization from the included library. A brief introduction to the visualizations can be used as a jumping off point for developers familiar with JavaScript to produce their own. Several example applications are included which can be used along with this document to implement algorithms for performing energy data analysis.« less

  5. JPL Big Data Technologies for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Jones, Dayton L.; D'Addario, L. R.; De Jong, E. M.; Mattmann, C. A.; Rebbapragada, U. D.; Thompson, D. R.; Wagstaff, K.

    2014-04-01

    During the past three years the Jet Propulsion Laboratory has been working on several technologies to deal with big data challenges facing next-generation radio arrays, among other applications. This program has focused on the following four areas: 1) We are investigating high-level ASIC architectures that reduce power consumption for cross-correlation of data from large interferometer arrays by one to two orders of magnitude. The cost of operations for the Square Kilometre Array (SKA), which may be dominated by the cost of power for data processing, is a serious concern. A large improvement in correlator power efficiency could have a major positive impact. 2) Data-adaptive algorithms (machine learning) for real-time detection and classification of fast transient signals in high volume data streams are being developed and demonstrated. Studies of the dynamic universe, particularly searches for fast (<< 1 second) transient events, require that data be analyzed rapidly and with robust RFI rejection. JPL, in collaboration with the International Center for Radio Astronomy Research in Australia, has developed a fast transient search system for eventual deployment on ASKAP. In addition, a real-time transient detection experiment is now running continuously and commensally on NRAO's Very Long Baseline Array. 3) Scalable frameworks for data archiving, mining, and distribution are being applied to radio astronomy. A set of powerful open-source Object Oriented Data Technology (OODT) tools is now available through Apache. OODT was developed at JPL for Earth science data archives, but it is proving to be useful for radio astronomy, planetary science, health care, Earth climate, and other large-scale archives. 4) We are creating automated, event-driven data visualization tools that can be used to extract information from a wide range of complex data sets. Visualization of complex data can be improved through algorithms that detect events or features of interest and autonomously generate images or video to display those features. This work has been carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wylie, Brian Neil; Moreland, Kenneth D.

    Graphs are a vital way of organizing data with complex correlations. A good visualization of a graph can fundamentally change human understanding of the data. Consequently, there is a rich body of work on graph visualization. Although there are many techniques that are effective on small to medium sized graphs (tens of thousands of nodes), there is a void in the research for visualizing massive graphs containing millions of nodes. Sandia is one of the few entities in the world that has the means and motivation to handle data on such a massive scale. For example, homeland security generates graphsmore » from prolific media sources such as television, telephone, and the Internet. The purpose of this project is to provide the groundwork for visualizing such massive graphs. The research provides for two major feature gaps: a parallel, interactive visualization framework and scalable algorithms to make the framework usable to a practical application. Both the frameworks and algorithms are designed to run on distributed parallel computers, which are already available at Sandia. Some features are integrated into the ThreatView{trademark} application and future work will integrate further parallel algorithms.« less

  7. Visualizing Matrix Multiplication

    ERIC Educational Resources Information Center

    Daugulis, Peteris; Sondore, Anita

    2018-01-01

    Efficient visualizations of computational algorithms are important tools for students, educators, and researchers. In this article, we point out an innovative visualization technique for matrix multiplication. This method differs from the standard, formal approach by using block matrices to make computations more visual. We find this method a…

  8. Drivers’ Visual Behavior-Guided RRT Motion Planner for Autonomous On-Road Driving

    PubMed Central

    Du, Mingbo; Mei, Tao; Liang, Huawei; Chen, Jiajia; Huang, Rulin; Zhao, Pan

    2016-01-01

    This paper describes a real-time motion planner based on the drivers’ visual behavior-guided rapidly exploring random tree (RRT) approach, which is applicable to on-road driving of autonomous vehicles. The primary novelty is in the use of the guidance of drivers’ visual search behavior in the framework of RRT motion planner. RRT is an incremental sampling-based method that is widely used to solve the robotic motion planning problems. However, RRT is often unreliable in a number of practical applications such as autonomous vehicles used for on-road driving because of the unnatural trajectory, useless sampling, and slow exploration. To address these problems, we present an interesting RRT algorithm that introduces an effective guided sampling strategy based on the drivers’ visual search behavior on road and a continuous-curvature smooth method based on B-spline. The proposed algorithm is implemented on a real autonomous vehicle and verified against several different traffic scenarios. A large number of the experimental results demonstrate that our algorithm is feasible and efficient for on-road autonomous driving. Furthermore, the comparative test and statistical analyses illustrate that its excellent performance is superior to other previous algorithms. PMID:26784203

  9. Drivers' Visual Behavior-Guided RRT Motion Planner for Autonomous On-Road Driving.

    PubMed

    Du, Mingbo; Mei, Tao; Liang, Huawei; Chen, Jiajia; Huang, Rulin; Zhao, Pan

    2016-01-15

    This paper describes a real-time motion planner based on the drivers' visual behavior-guided rapidly exploring random tree (RRT) approach, which is applicable to on-road driving of autonomous vehicles. The primary novelty is in the use of the guidance of drivers' visual search behavior in the framework of RRT motion planner. RRT is an incremental sampling-based method that is widely used to solve the robotic motion planning problems. However, RRT is often unreliable in a number of practical applications such as autonomous vehicles used for on-road driving because of the unnatural trajectory, useless sampling, and slow exploration. To address these problems, we present an interesting RRT algorithm that introduces an effective guided sampling strategy based on the drivers' visual search behavior on road and a continuous-curvature smooth method based on B-spline. The proposed algorithm is implemented on a real autonomous vehicle and verified against several different traffic scenarios. A large number of the experimental results demonstrate that our algorithm is feasible and efficient for on-road autonomous driving. Furthermore, the comparative test and statistical analyses illustrate that its excellent performance is superior to other previous algorithms.

  10. Design, Implementation and Evaluation of an Indoor Navigation System for Visually Impaired People

    PubMed Central

    Martinez-Sala, Alejandro Santos; Losilla, Fernando; Sánchez-Aarnoutse, Juan Carlos; García-Haro, Joan

    2015-01-01

    Indoor navigation is a challenging task for visually impaired people. Although there are guidance systems available for such purposes, they have some drawbacks that hamper their direct application in real-life situations. These systems are either too complex, inaccurate, or require very special conditions (i.e., rare in everyday life) to operate. In this regard, Ultra-Wideband (UWB) technology has been shown to be effective for indoor positioning, providing a high level of accuracy and low installation complexity. This paper presents SUGAR, an indoor navigation system for visually impaired people which uses UWB for positioning, a spatial database of the environment for pathfinding through the application of the A* algorithm, and a guidance module. The interaction with the user takes place using acoustic signals and voice commands played through headphones. The suitability of the system for indoor navigation has been verified by means of a functional and usable prototype through a field test with a blind person. In addition, other tests have been conducted in order to show the accuracy of different relevant parts of the system. PMID:26703610

  11. Information processing for aerospace structural health monitoring

    NASA Astrophysics Data System (ADS)

    Lichtenwalner, Peter F.; White, Edward V.; Baumann, Erwin W.

    1998-06-01

    Structural health monitoring (SHM) technology provides a means to significantly reduce life cycle of aerospace vehicles by eliminating unnecessary inspections, minimizing inspection complexity, and providing accurate diagnostics and prognostics to support vehicle life extension. In order to accomplish this, a comprehensive SHM system will need to acquire data from a wide variety of diverse sensors including strain gages, accelerometers, acoustic emission sensors, crack growth gages, corrosion sensors, and piezoelectric transducers. Significant amounts of computer processing will then be required to convert this raw sensor data into meaningful information which indicates both the diagnostics of the current structural integrity as well as the prognostics necessary for planning and managing the future health of the structure in a cost effective manner. This paper provides a description of the key types of information processing technologies required in an effective SHM system. These include artificial intelligence techniques such as neural networks, expert systems, and fuzzy logic for nonlinear modeling, pattern recognition, and complex decision making; signal processing techniques such as Fourier and wavelet transforms for spectral analysis and feature extraction; statistical algorithms for optimal detection, estimation, prediction, and fusion; and a wide variety of other algorithms for data analysis and visualization. The intent of this paper is to provide an overview of the role of information processing for SHM, discuss various technologies which can contribute to accomplishing this role, and present some example applications of information processing for SHM implemented at the Boeing Company.

  12. Update on laser vision correction using wavefront analysis with the CustomCornea system and LADARVision 193-nm excimer laser

    NASA Astrophysics Data System (ADS)

    Maguen, Ezra I.; Salz, James J.; McDonald, Marguerite B.; Pettit, George H.; Papaioannou, Thanassis; Grundfest, Warren S.

    2002-06-01

    A study was undertaken to assess whether results of laser vision correction with the LADARVISION 193-nm excimer laser (Alcon-Autonomous technologies) can be improved with the use of wavefront analysis generated by a proprietary system including a Hartman-Schack sensor and expressed using Zernicke polynomials. A total of 82 eyes underwent LASIK in several centers with an improved algorithm, using the CustomCornea system. A subgroup of 48 eyes of 24 patients was randomized so that one eye undergoes conventional treatment and one eye undergoes treatment based on wavefront analysis. Treatment parameters were equal for each type of refractive error. 83% of all eyes had uncorrected vision of 20/20 or better and 95% were 20/25 or better. In all groups, uncorrected visual acuities did not improve significantly in eyes treated with wavefront analysis compared to conventional treatments. Higher order aberrations were consistently better corrected in eyes undergoing treatment based on wavefront analysis for LASIK at 6 months postop. In addition, the number of eyes with reduced RMS was significantly higher in the subset of eyes treated with a wavefront algorithm (38% vs. 5%). Wavefront technology may improve the outcomes of laser vision correction with the LADARVISION excimer laser. Further refinements of the technology and clinical trials will contribute to this goal.

  13. Detection and classification of concealed weapons using a magnetometer-based portal

    NASA Astrophysics Data System (ADS)

    Kotter, Dale K.; Roybal, Lyle G.; Polk, Robert E.

    2002-08-01

    A concealed weapons detection technology was developed through the support of the National Institute of Justice (NIJ) to provide a non intrusive means for rapid detection, location, and archiving of data (including visual) of potential suspects and weapon threats. This technology, developed by the Idaho National Engineering and Environmental Laboratory (INEEL), has been applied in a portal style weapons detection system using passive magnetic sensors as its basis. This paper will report on enhancements to the weapon detection system to enable weapon classification and to discriminate threats from non-threats. Advanced signal processing algorithms were used to analyze the magnetic spectrum generated when a person passes through a portal. These algorithms analyzed multiple variables including variance in the magnetic signature from random weapon placement and/or orientation. They perform pattern recognition and calculate the probability that the collected magnetic signature correlates to a known database of weapon versus non-weapon responses. Neural networks were used to further discriminate weapon type and identify controlled electronic items such as cell phones and pagers. False alarms were further reduced by analyzing the magnetic detector response by using a Joint Time Frequency Analysis digital signal processing technique. The frequency components and power spectrum for a given sensor response were derived. This unique fingerprint provided additional information to aid in signal analysis. This technology has the potential to produce major improvements in weapon detection and classification.

  14. Perception-oriented fusion of multi-sensor imagery: visible, IR, and SAR

    NASA Astrophysics Data System (ADS)

    Sidorchuk, D.; Volkov, V.; Gladilin, S.

    2018-04-01

    This paper addresses the problem of image fusion of optical (visible and thermal domain) data and radar data for the purpose of visualization. These types of images typically contain a lot of complimentary information, and their joint visualization can be useful and more convenient for human user than a set of individual images. To solve the image fusion problem we propose a novel algorithm that utilizes some peculiarities of human color perception and based on the grey-scale structural visualization. Benefits of presented algorithm are exemplified by satellite imagery.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreland, Kenneth; Sewell, Christopher; Usher, William

    Here, one of the most critical challenges for high-performance computing (HPC) scientific visualization is execution on massively threaded processors. Of the many fundamental changes we are seeing in HPC systems, one of the most profound is a reliance on new processor types optimized for execution bandwidth over latency hiding. Our current production scientific visualization software is not designed for these new types of architectures. To address this issue, the VTK-m framework serves as a container for algorithms, provides flexible data representation, and simplifies the design of visualization algorithms on new and future computer architecture.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreland, Kenneth; Sewell, Christopher; Usher, William

    Execution on massively threaded processors is one of the most critical challenges for high-performance computing (HPC) scientific visualization. Of the many fundamental changes we are seeing in HPC systems, one of the most profound is a reliance on new processor types optimized for execution bandwidth over latency hiding. Moreover, our current production scientific visualization software is not designed for these new types of architectures. In order to address this issue, the VTK-m framework serves as a container for algorithms, provides flexible data representation, and simplifies the design of visualization algorithms on new and future computer architecture.

  17. An optimized web-based approach for collaborative stereoscopic medical visualization

    PubMed Central

    Kaspar, Mathias; Parsad, Nigel M; Silverstein, Jonathan C

    2013-01-01

    Objective Medical visualization tools have traditionally been constrained to tethered imaging workstations or proprietary client viewers, typically part of hospital radiology systems. To improve accessibility to real-time, remote, interactive, stereoscopic visualization and to enable collaboration among multiple viewing locations, we developed an open source approach requiring only a standard web browser with no added client-side software. Materials and Methods Our collaborative, web-based, stereoscopic, visualization system, CoWebViz, has been used successfully for the past 2 years at the University of Chicago to teach immersive virtual anatomy classes. It is a server application that streams server-side visualization applications to client front-ends, comprised solely of a standard web browser with no added software. Results We describe optimization considerations, usability, and performance results, which make CoWebViz practical for broad clinical use. We clarify technical advances including: enhanced threaded architecture, optimized visualization distribution algorithms, a wide range of supported stereoscopic presentation technologies, and the salient theoretical and empirical network parameters that affect our web-based visualization approach. Discussion The implementations demonstrate usability and performance benefits of a simple web-based approach for complex clinical visualization scenarios. Using this approach overcomes technical challenges that require third-party web browser plug-ins, resulting in the most lightweight client. Conclusions Compared to special software and hardware deployments, unmodified web browsers enhance remote user accessibility to interactive medical visualization. Whereas local hardware and software deployments may provide better interactivity than remote applications, our implementation demonstrates that a simplified, stable, client approach using standard web browsers is sufficient for high quality three-dimensional, stereoscopic, collaborative and interactive visualization. PMID:23048008

  18. Video quality assessment using a statistical model of human visual speed perception.

    PubMed

    Wang, Zhou; Li, Qiang

    2007-12-01

    Motion is one of the most important types of information contained in natural video, but direct use of motion information in the design of video quality assessment algorithms has not been deeply investigated. Here we propose to incorporate a recent model of human visual speed perception [Nat. Neurosci. 9, 578 (2006)] and model visual perception in an information communication framework. This allows us to estimate both the motion information content and the perceptual uncertainty in video signals. Improved video quality assessment algorithms are obtained by incorporating the model as spatiotemporal weighting factors, where the weight increases with the information content and decreases with the perceptual uncertainty. Consistent improvement over existing video quality assessment algorithms is observed in our validation with the video quality experts group Phase I test data set.

  19. A bioinspired collision detection algorithm for VLSI implementation

    NASA Astrophysics Data System (ADS)

    Cuadri, J.; Linan, G.; Stafford, R.; Keil, M. S.; Roca, E.

    2005-06-01

    In this paper a bioinspired algorithm for collision detection is proposed, based on previous models of the locust (Locusta migratoria) visual system reported by F.C. Rind and her group, in the University of Newcastle-upon-Tyne. The algorithm is suitable for VLSI implementation in standard CMOS technologies as a system-on-chip for automotive applications. The working principle of the algorithm is to process a video stream that represents the current scenario, and to fire an alarm whenever an object approaches on a collision course. Moreover, it establishes a scale of warning states, from no danger to collision alarm, depending on the activity detected in the current scenario. In the worst case, the minimum time before collision at which the model fires the collision alarm is 40 msec (1 frame before, at 25 frames per second). Since the average time to successfully fire an airbag system is 2 msec, even in the worst case, this algorithm would be very helpful to more efficiently arm the airbag system, or even take some kind of collision avoidance countermeasures. Furthermore, two additional modules have been included: a "Topological Feature Estimator" and an "Attention Focusing Algorithm". The former takes into account the shape of the approaching object to decide whether it is a person, a road line or a car. This helps to take more adequate countermeasures and to filter false alarms. The latter centres the processing power into the most active zones of the input frame, thus saving memory and processing time resources.

  20. An electrooculogram-based binary saccade sequence classification (BSSC) technique for augmentative communication and control.

    PubMed

    Keegan, Johnalan; Burke, Edward; Condron, James

    2009-01-01

    In the field of assistive technology, the electrooculogram (EOG) can be used as a channel of communication and the basis of a man-machine interface. For many people with severe motor disabilities, simple actions such as changing the TV channel require assistance. This paper describes a method of detecting saccadic eye movements and the use of a saccade sequence classification algorithm to facilitate communication and control. Saccades are fast eye movements that occurs when a person's gaze jumps from one fixation point to another. The classification is based on pre-defined sequences of saccades, guided by a static visual template (e.g. a page or poster). The template, consisting of a table of symbols each having a clearly identifiable fixation point, is situated within view of the user. To execute a particular command, the user moves his or her gaze through a pre-defined path of eye movements. This results in a well-formed sequence of saccades which are translated into a command if a match is found in a library of predefined sequences. A coordinate transformation algorithm is applied to each candidate sequence of recorded saccades to mitigate the effect of changes in the user's position and orientation relative to the visual template. Upon recognition of a saccade sequence from the library, its associated command is executed. A preliminary experiment in which two subjects were instructed to perform a series of command sequences consisting of 8 different commands are presented in the final sections. The system is also shown to be extensible to facilitate convenient text entry via an alphabetic visual template.

  1. SpecPad: device-independent NMR data visualization and processing based on the novel DART programming language and Html5 Web technology.

    PubMed

    Guigas, Bruno

    2017-09-01

    SpecPad is a new device-independent software program for the visualization and processing of one-dimensional and two-dimensional nuclear magnetic resonance (NMR) time domain (FID) and frequency domain (spectrum) data. It is the result of a project to investigate whether the novel programming language DART, in combination with Html5 Web technology, forms a suitable base to write an NMR data evaluation software which runs on modern computing devices such as Android, iOS, and Windows tablets as well as on Windows, Linux, and Mac OS X desktop PCs and notebooks. Another topic of interest is whether this technique also effectively supports the required sophisticated graphical and computational algorithms. SpecPad is device-independent because DART's compiled executable code is JavaScript and can, therefore, be run by the browsers of PCs and tablets. Because of Html5 browser cache technology, SpecPad may be operated off-line. Network access is only required during data import or export, e.g. via a Cloud service, or for software updates. A professional and easy to use graphical user interface consistent across all hardware platforms supports touch screen features on mobile devices for zooming and panning and for NMR-related interactive operations such as phasing, integration, peak picking, or atom assignment. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Visual question answering using hierarchical dynamic memory networks

    NASA Astrophysics Data System (ADS)

    Shang, Jiayu; Li, Shiren; Duan, Zhikui; Huang, Junwei

    2018-04-01

    Visual Question Answering (VQA) is one of the most popular research fields in machine learning which aims to let the computer learn to answer natural language questions with images. In this paper, we propose a new method called hierarchical dynamic memory networks (HDMN), which takes both question attention and visual attention into consideration impressed by Co-Attention method, which is the best (or among the best) algorithm for now. Additionally, we use bi-directional LSTMs, which have a better capability to remain more information from the question and image, to replace the old unit so that we can capture information from both past and future sentences to be used. Then we rebuild the hierarchical architecture for not only question attention but also visual attention. What's more, we accelerate the algorithm via a new technic called Batch Normalization which helps the network converge more quickly than other algorithms. The experimental result shows that our model improves the state of the art on the large COCO-QA dataset, compared with other methods.

  3. A fast and automatic fusion algorithm for unregistered multi-exposure image sequence

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Yu, Feihong

    2014-09-01

    Human visual system (HVS) can visualize all the brightness levels of the scene through visual adaptation. However, the dynamic range of most commercial digital cameras and display devices are smaller than the dynamic range of human eye. This implies low dynamic range (LDR) images captured by normal digital camera may lose image details. We propose an efficient approach to high dynamic (HDR) image fusion that copes with image displacement and image blur degradation in a computationally efficient manner, which is suitable for implementation on mobile devices. The various image registration algorithms proposed in the previous literatures are unable to meet the efficiency and performance requirements in the application of mobile devices. In this paper, we selected Oriented Brief (ORB) detector to extract local image structures. The descriptor selected in multi-exposure image fusion algorithm has to be fast and robust to illumination variations and geometric deformations. ORB descriptor is the best candidate in our algorithm. Further, we perform an improved RANdom Sample Consensus (RANSAC) algorithm to reject incorrect matches. For the fusion of images, a new approach based on Stationary Wavelet Transform (SWT) is used. The experimental results demonstrate that the proposed algorithm generates high quality images at low computational cost. Comparisons with a number of other feature matching methods show that our method gets better performance.

  4. Scalable 3D image conversion and ergonomic evaluation

    NASA Astrophysics Data System (ADS)

    Kishi, Shinsuke; Kim, Sang Hyun; Shibata, Takashi; Kawai, Takashi; Häkkinen, Jukka; Takatalo, Jari; Nyman, Göte

    2008-02-01

    Digital 3D cinema has recently become popular and a number of high-quality 3D films have been produced. However, in contrast with advances in 3D display technology, it has been pointed out that there is a lack of suitable 3D content and content creators. Since 3D display methods and viewing environments vary widely, there is expectation that high-quality content will be multi-purposed. On the other hand, there is increasing interest in the bio-medical effects of image content of various types and there are moves toward international standardization, so 3D content production needs to take into consideration safety and conformity with international guidelines. The aim of the authors' research is to contribute to the production and application of 3D content that is safe and comfortable to watch by developing a scalable 3D conversion technology. In this paper, the authors focus on the process of changing the screen size, examining a conversion algorithm and its effectiveness. The authors evaluated the visual load imposed during the viewing of various 3D content converted by the prototype algorithm as compared with ideal conditions and with content expanded without conversion. Sheffe's paired comparison method was used for evaluation. To examine the effects of screen size reduction on viewers, changes in user impression and experience were elucidated using the IBQ methodology. The results of the evaluation are presented along with a discussion of the effectiveness and potential of the developed scalable 3D conversion algorithm and future research tasks.

  5. Introduction to Vector Field Visualization

    NASA Technical Reports Server (NTRS)

    Kao, David; Shen, Han-Wei

    2010-01-01

    Vector field visualization techniques are essential to help us understand the complex dynamics of flow fields. These can be found in a wide range of applications such as study of flows around an aircraft, the blood flow in our heart chambers, ocean circulation models, and severe weather predictions. The vector fields from these various applications can be visually depicted using a number of techniques such as particle traces and advecting textures. In this tutorial, we present several fundamental algorithms in flow visualization including particle integration, particle tracking in time-dependent flows, and seeding strategies. For flows near surfaces, a wide variety of synthetic texture-based algorithms have been developed to depict near-body flow features. The most common approach is based on the Line Integral Convolution (LIC) algorithm. There also exist extensions of LIC to support more flexible texture generations for 3D flow data. This tutorial reviews these algorithms. Tensor fields are found in several real-world applications and also require the aid of visualization to help users understand their data sets. Examples where one can find tensor fields include mechanics to see how material respond to external forces, civil engineering and geomechanics of roads and bridges, and the study of neural pathway via diffusion tensor imaging. This tutorial will provide an overview of the different tensor field visualization techniques, discuss basic tensor decompositions, and go into detail on glyph based methods, deformation based methods, and streamline based methods. Practical examples will be used when presenting the methods; and applications from some case studies will be used as part of the motivation.

  6. View-Dependent Streamline Deformation and Exploration

    PubMed Central

    Tong, Xin; Edwards, John; Chen, Chun-Ming; Shen, Han-Wei; Johnson, Chris R.; Wong, Pak Chung

    2016-01-01

    Occlusion presents a major challenge in visualizing 3D flow and tensor fields using streamlines. Displaying too many streamlines creates a dense visualization filled with occluded structures, but displaying too few streams risks losing important features. We propose a new streamline exploration approach by visually manipulating the cluttered streamlines by pulling visible layers apart and revealing the hidden structures underneath. This paper presents a customized view-dependent deformation algorithm and an interactive visualization tool to minimize visual clutter in 3D vector and tensor fields. The algorithm is able to maintain the overall integrity of the fields and expose previously hidden structures. Our system supports both mouse and direct-touch interactions to manipulate the viewing perspectives and visualize the streamlines in depth. By using a lens metaphor of different shapes to select the transition zone of the targeted area interactively, the users can move their focus and examine the vector or tensor field freely. PMID:26600061

  7. View-Dependent Streamline Deformation and Exploration.

    PubMed

    Tong, Xin; Edwards, John; Chen, Chun-Ming; Shen, Han-Wei; Johnson, Chris R; Wong, Pak Chung

    2016-07-01

    Occlusion presents a major challenge in visualizing 3D flow and tensor fields using streamlines. Displaying too many streamlines creates a dense visualization filled with occluded structures, but displaying too few streams risks losing important features. We propose a new streamline exploration approach by visually manipulating the cluttered streamlines by pulling visible layers apart and revealing the hidden structures underneath. This paper presents a customized view-dependent deformation algorithm and an interactive visualization tool to minimize visual clutter in 3D vector and tensor fields. The algorithm is able to maintain the overall integrity of the fields and expose previously hidden structures. Our system supports both mouse and direct-touch interactions to manipulate the viewing perspectives and visualize the streamlines in depth. By using a lens metaphor of different shapes to select the transition zone of the targeted area interactively, the users can move their focus and examine the vector or tensor field freely.

  8. Visual saliency-based fast intracoding algorithm for high efficiency video coding

    NASA Astrophysics Data System (ADS)

    Zhou, Xin; Shi, Guangming; Zhou, Wei; Duan, Zhemin

    2017-01-01

    Intraprediction has been significantly improved in high efficiency video coding over H.264/AVC with quad-tree-based coding unit (CU) structure from size 64×64 to 8×8 and more prediction modes. However, these techniques cause a dramatic increase in computational complexity. An intracoding algorithm is proposed that consists of perceptual fast CU size decision algorithm and fast intraprediction mode decision algorithm. First, based on the visual saliency detection, an adaptive and fast CU size decision method is proposed to alleviate intraencoding complexity. Furthermore, a fast intraprediction mode decision algorithm with step halving rough mode decision method and early modes pruning algorithm is presented to selectively check the potential modes and effectively reduce the complexity of computation. Experimental results show that our proposed fast method reduces the computational complexity of the current HM to about 57% in encoding time with only 0.37% increases in BD rate. Meanwhile, the proposed fast algorithm has reasonable peak signal-to-noise ratio losses and nearly the same subjective perceptual quality.

  9. Beyond Visual Communication Technology.

    ERIC Educational Resources Information Center

    Bell, Thomas P.

    1993-01-01

    Discusses various aspects of visual communication--light, semiotics, codes, photography, typography, and visual literacy--within the context of the communications technology area of technology education. (SK)

  10. Screening Algorithm to Guide Decisions on Whether to Conduct a Health Impact Assessment

    EPA Pesticide Factsheets

    Provides a visual aid in the form of a decision algorithm that helps guide discussions about whether to proceed with an HIA. The algorithm can help structure, standardize, and document the decision process.

  11. Navigation and Self-Semantic Location of Drones in Indoor Environments by Combining the Visual Bug Algorithm and Entropy-Based Vision.

    PubMed

    Maravall, Darío; de Lope, Javier; Fuentes, Juan P

    2017-01-01

    We introduce a hybrid algorithm for the self-semantic location and autonomous navigation of robots using entropy-based vision and visual topological maps. In visual topological maps the visual landmarks are considered as leave points for guiding the robot to reach a target point (robot homing) in indoor environments. These visual landmarks are defined from images of relevant objects or characteristic scenes in the environment. The entropy of an image is directly related to the presence of a unique object or the presence of several different objects inside it: the lower the entropy the higher the probability of containing a single object inside it and, conversely, the higher the entropy the higher the probability of containing several objects inside it. Consequently, we propose the use of the entropy of images captured by the robot not only for the landmark searching and detection but also for obstacle avoidance. If the detected object corresponds to a landmark, the robot uses the suggestions stored in the visual topological map to reach the next landmark or to finish the mission. Otherwise, the robot considers the object as an obstacle and starts a collision avoidance maneuver. In order to validate the proposal we have defined an experimental framework in which the visual bug algorithm is used by an Unmanned Aerial Vehicle (UAV) in typical indoor navigation tasks.

  12. Navigation and Self-Semantic Location of Drones in Indoor Environments by Combining the Visual Bug Algorithm and Entropy-Based Vision

    PubMed Central

    Maravall, Darío; de Lope, Javier; Fuentes, Juan P.

    2017-01-01

    We introduce a hybrid algorithm for the self-semantic location and autonomous navigation of robots using entropy-based vision and visual topological maps. In visual topological maps the visual landmarks are considered as leave points for guiding the robot to reach a target point (robot homing) in indoor environments. These visual landmarks are defined from images of relevant objects or characteristic scenes in the environment. The entropy of an image is directly related to the presence of a unique object or the presence of several different objects inside it: the lower the entropy the higher the probability of containing a single object inside it and, conversely, the higher the entropy the higher the probability of containing several objects inside it. Consequently, we propose the use of the entropy of images captured by the robot not only for the landmark searching and detection but also for obstacle avoidance. If the detected object corresponds to a landmark, the robot uses the suggestions stored in the visual topological map to reach the next landmark or to finish the mission. Otherwise, the robot considers the object as an obstacle and starts a collision avoidance maneuver. In order to validate the proposal we have defined an experimental framework in which the visual bug algorithm is used by an Unmanned Aerial Vehicle (UAV) in typical indoor navigation tasks. PMID:28900394

  13. Cell Phones, Tablets, and Other Mobile Technology for Users with Visual Impairments

    MedlinePlus

    ... Visual Impairments Cell Phones, Tablets, and Other Mobile Technology for Users with Visual Impairments The Mobile Revolution ... 223 Likes) Cell Phones, Tablets, and Other Mobile Technology Touchscreen Smartphone Accessibility for People with Visual Impairments ...

  14. Adaptive and accelerated tracking-learning-detection

    NASA Astrophysics Data System (ADS)

    Guo, Pengyu; Li, Xin; Ding, Shaowen; Tian, Zunhua; Zhang, Xiaohu

    2013-08-01

    An improved online long-term visual tracking algorithm, named adaptive and accelerated TLD (AA-TLD) based on Tracking-Learning-Detection (TLD) which is a novel tracking framework has been introduced in this paper. The improvement focuses on two aspects, one is adaption, which makes the algorithm not dependent on the pre-defined scanning grids by online generating scale space, and the other is efficiency, which uses not only algorithm-level acceleration like scale prediction that employs auto-regression and moving average (ARMA) model to learn the object motion to lessen the detector's searching range and the fixed number of positive and negative samples that ensures a constant retrieving time, but also CPU and GPU parallel technology to achieve hardware acceleration. In addition, in order to obtain a better effect, some TLD's details are redesigned, which uses a weight including both normalized correlation coefficient and scale size to integrate results, and adjusts distance metric thresholds online. A contrastive experiment on success rate, center location error and execution time, is carried out to show a performance and efficiency upgrade over state-of-the-art TLD with partial TLD datasets and Shenzhou IX return capsule image sequences. The algorithm can be used in the field of video surveillance to meet the need of real-time video tracking.

  15. Information fusion performance evaluation for motion imagery data using mutual information: initial study

    NASA Astrophysics Data System (ADS)

    Grieggs, Samuel M.; McLaughlin, Michael J.; Ezekiel, Soundararajan; Blasch, Erik

    2015-06-01

    As technology and internet use grows at an exponential rate, video and imagery data is becoming increasingly important. Various techniques such as Wide Area Motion imagery (WAMI), Full Motion Video (FMV), and Hyperspectral Imaging (HSI) are used to collect motion data and extract relevant information. Detecting and identifying a particular object in imagery data is an important step in understanding visual imagery, such as content-based image retrieval (CBIR). Imagery data is segmented and automatically analyzed and stored in dynamic and robust database. In our system, we seek utilize image fusion methods which require quality metrics. Many Image Fusion (IF) algorithms have been proposed based on different, but only a few metrics, used to evaluate the performance of these algorithms. In this paper, we seek a robust, objective metric to evaluate the performance of IF algorithms which compares the outcome of a given algorithm to ground truth and reports several types of errors. Given the ground truth of a motion imagery data, it will compute detection failure, false alarm, precision and recall metrics, background and foreground regions statistics, as well as split and merge of foreground regions. Using the Structural Similarity Index (SSIM), Mutual Information (MI), and entropy metrics; experimental results demonstrate the effectiveness of the proposed methodology for object detection, activity exploitation, and CBIR.

  16. The advanced progress of precoding technology in 5g system

    NASA Astrophysics Data System (ADS)

    An, Chenyi

    2017-09-01

    With the development of technology, people began to put forward higher requirements for the mobile system, the emergence of the 5G subvert the track of the development of mobile communication technology. In the research of the core technology of 5G mobile communication, large scale MIMO, and precoding technology is a research hotspot. At present, the research on precoding technology in 5G system analyzes the various methods of linear precoding, the maximum ratio transmission (MRT) precoding algorithm, zero forcing (ZF) precoding algorithm, minimum mean square error (MMSE) precoding algorithm based on maximum signal to leakage and noise ratio (SLNR). Precoding algorithms are analyzed and summarized in detail. At the same time, we also do some research on nonlinear precoding methods, such as dirty paper precoding, THP precoding algorithm and so on. Through these analysis, we can find the advantages and disadvantages of each algorithm, as well as the development trend of each algorithm, grasp the development of the current 5G system precoding technology. Therefore, the research results and data of this paper can be used as reference for the development of precoding technology in 5G system.

  17. Analysis of CAD Model-based Visual Tracking for Microassembly using a New Block Set for MATLAB/Simulink

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Andrey V.; Laurent, Guillaume J.; Clévy, Cédric; Tamadazte, Brahim; Lutz, Philippe

    2015-10-01

    Microassembly is an innovative alternative to the microfabrication process of MOEMS, which is quite complex. It usually implies the use of microrobots controlled by an operator. The reliability of this approach has been already confirmed for micro-optical technologies. However, the characterization of assemblies has shown that the operator is the main source of inaccuracies in the teleoperated microassembly. Therefore, there is great interest in automating the microassembly process. One of the constraints of automation in microscale is the lack of high precision sensors capable to provide the full information about the object position. Thus, the usage of visual-based feedback represents a very promising approach allowing to automate the microassembly process. The purpose of this article is to characterize the techniques of object position estimation based on the visual data, i.e., visual tracking techniques from the ViSP library. These algorithms enables a 3-D object pose using a single view of the scene and the CAD model of the object. The performance of three main types of model-based trackers is analyzed and quantified: edge-based, texture-based and hybrid tracker. The problems of visual tracking in microscale are discussed. The control of the micromanipulation station used in the framework of our project is performed using a new Simulink block set. Experimental results are shown and demonstrate the possibility to obtain the repeatability below 1 µm.

  18. A faster technique for rendering meshes in multiple display systems

    NASA Astrophysics Data System (ADS)

    Hand, Randall E.; Moorhead, Robert J., II

    2003-05-01

    Level of detail algorithms have widely been implemented in architectural VR walkthroughs and video games, but have not had widespread use in VR terrain visualization systems. This thesis explains a set of optimizations to allow most current level of detail algorithms run in the types of multiple display systems used in VR. It improves both the visual quality of the system through use of graphics hardware acceleration, and improves the framerate and running time through moifications to the computaitons that drive the algorithms. Using ROAM as a testbed, results show improvements between 10% and 100% on varying machines.

  19. Expansion of the visual angle of a car rear-view image via an image mosaic algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Zhuangwen; Zhu, Liangrong; Sun, Xincheng

    2015-05-01

    The rear-view image system is one of the active safety devices in cars and is widely applied in all types of vehicles and traffic safety areas. However, studies made by both domestic and foreign researchers were based on a single image capture device while reversing, so a blind area still remained to drivers. Even if multiple cameras were used to expand the visual angle of the car's rear-view image in some studies, the blind area remained because different source images were not mosaicked together. To acquire an expanded visual angle of a car rear-view image, two charge-coupled device cameras with optical axes angled at 30 deg were mounted below the left and right fenders of a car in three light conditions-sunny outdoors, cloudy outdoors, and an underground garage-to capture rear-view heterologous images of the car. Then these rear-view heterologous images were rapidly registered through the scale invariant feature transform algorithm. Combined with the random sample consensus algorithm, the two heterologous images were finally mosaicked using the linear weighted gradated in-and-out fusion algorithm, and a seamless and visual-angle-expanded rear-view image was acquired. The four-index test results showed that the algorithms can mosaic rear-view images well in the underground garage condition, where the average rate of correct matching was the lowest among the three conditions. The rear-view image mosaic algorithm presented had the best information preservation, the shortest computation time and the most complete preservation of the image detail features compared to the mean value method (MVM) and segmental fusion method (SFM), and it was also able to perform better in real time and provided more comprehensive image details than MVM and SFM. In addition, it had the most complete image preservation from source images among the three algorithms. The method introduced by this paper provided the basis for researching the expansion of the visual angle of a car rear-view image in all-weather conditions.

  20. A Distributed Compressive Sensing Scheme for Event Capture in Wireless Visual Sensor Networks

    NASA Astrophysics Data System (ADS)

    Hou, Meng; Xu, Sen; Wu, Weiling; Lin, Fei

    2018-01-01

    Image signals which acquired by wireless visual sensor network can be used for specific event capture. This event capture is realized by image processing at the sink node. A distributed compressive sensing scheme is used for the transmission of these image signals from the camera nodes to the sink node. A measurement and joint reconstruction algorithm for these image signals are proposed in this paper. Make advantage of spatial correlation between images within a sensing area, the cluster head node which as the image decoder can accurately co-reconstruct these image signals. The subjective visual quality and the reconstruction error rate are used for the evaluation of reconstructed image quality. Simulation results show that the joint reconstruction algorithm achieves higher image quality at the same image compressive rate than the independent reconstruction algorithm.

  1. An Educational System for Learning Search Algorithms and Automatically Assessing Student Performance

    ERIC Educational Resources Information Center

    Grivokostopoulou, Foteini; Perikos, Isidoros; Hatzilygeroudis, Ioannis

    2017-01-01

    In this paper, first we present an educational system that assists students in learning and tutors in teaching search algorithms, an artificial intelligence topic. Learning is achieved through a wide range of learning activities. Algorithm visualizations demonstrate the operational functionality of algorithms according to the principles of active…

  2. Remote sensing image denoising application by generalized morphological component analysis

    NASA Astrophysics Data System (ADS)

    Yu, Chong; Chen, Xiong

    2014-12-01

    In this paper, we introduced a remote sensing image denoising method based on generalized morphological component analysis (GMCA). This novel algorithm is the further extension of morphological component analysis (MCA) algorithm to the blind source separation framework. The iterative thresholding strategy adopted by GMCA algorithm firstly works on the most significant features in the image, and then progressively incorporates smaller features to finely tune the parameters of whole model. Mathematical analysis of the computational complexity of GMCA algorithm is provided. Several comparison experiments with state-of-the-art denoising algorithms are reported. In order to make quantitative assessment of algorithms in experiments, Peak Signal to Noise Ratio (PSNR) index and Structural Similarity (SSIM) index are calculated to assess the denoising effect from the gray-level fidelity aspect and the structure-level fidelity aspect, respectively. Quantitative analysis on experiment results, which is consistent with the visual effect illustrated by denoised images, has proven that the introduced GMCA algorithm possesses a marvelous remote sensing image denoising effectiveness and ability. It is even hard to distinguish the original noiseless image from the recovered image by adopting GMCA algorithm through visual effect.

  3. 3D documenatation of the petalaindera: digital heritage preservation methods using 3D laser scanner and photogrammetry

    NASA Astrophysics Data System (ADS)

    Sharif, Harlina Md; Hazumi, Hazman; Hafizuddin Meli, Rafiq

    2018-01-01

    3D imaging technologies have undergone massive revolution in recent years. Despite this rapid development, documentation of 3D cultural assets in Malaysia is still very much reliant upon conventional techniques such as measured drawings and manual photogrammetry. There is very little progress towards exploring new methods or advanced technologies to convert 3D cultural assets into 3D visual representation and visualization models that are easily accessible for information sharing. In recent years, however, the advent of computer vision (CV) algorithms make it possible to reconstruct 3D geometry of objects by using image sequences from digital cameras, which are then processed by web services and freeware applications. This paper presents a completed stage of an exploratory study that investigates the potentials of using CV automated image-based open-source software and web services to reconstruct and replicate cultural assets. By selecting an intricate wooden boat, Petalaindera, this study attempts to evaluate the efficiency of CV systems and compare it with the application of 3D laser scanning, which is known for its accuracy, efficiency and high cost. The final aim of this study is to compare the visual accuracy of 3D models generated by CV system, and 3D models produced by 3D scanning and manual photogrammetry for an intricate subject such as the Petalaindera. The final objective is to explore cost-effective methods that could provide fundamental guidelines on the best practice approach for digital heritage in Malaysia.

  4. EDITORIAL: Focus on Visualization in Physics FOCUS ON VISUALIZATION IN PHYSICS

    NASA Astrophysics Data System (ADS)

    Sanders, Barry C.; Senden, Tim; Springel, Volker

    2008-12-01

    Advances in physics are intimately connected with developments in a new technology, the telescope, precision clocks, even the computer all have heralded a shift in thinking. These landmark developments open new opportunities accelerating research and in turn new scientific directions. These technological drivers often correspond to new instruments, but equally might just as well flag a new mathematical tool, an algorithm or even means to visualize physics in a new way. Early on in this twenty-first century, scientific communities are just starting to explore the potential of digital visualization. Whether visualization is used to represent and communicate complex concepts, or to understand and interpret experimental data, or to visualize solutions to complex dynamical equations, the basic tools of visualization are shared in each of these applications and implementations. High-performance computing exemplifies the integration of visualization with leading research. Visualization is an indispensable tool for analyzing and interpreting complex three-dimensional dynamics as well as to diagnose numerical problems in intricate parallel calculation algorithms. The effectiveness of visualization arises by exploiting the unmatched capability of the human eye and visual cortex to process the large information content of images. In a brief glance, we recognize patterns or identify subtle features even in noisy data, something that is difficult or impossible to achieve with more traditional forms of data analysis. Importantly, visualizations guide the intuition of researchers and help to comprehend physical phenomena that lie far outside of direct experience. In fact, visualizations literally allow us to see what would otherwise remain completely invisible. For example, artificial imagery created to visualize the distribution of dark matter in the Universe has been instrumental to develop the notion of a cosmic web, and for helping to establish the current standard model of cosmology wherein this (in principle invisible) dark matter dominates the cosmic matter content. The advantages of visualization found for simulated data also hold for real world data as well. With the application of computerized acquisition many scientific disciplines are witnessing exponential growth rates of the volume of accumulated raw data, which often makes it daunting to condense the information into a manageable form, a challenge that can be addressed by modern visualization techniques. Such visualizations are also often an enticing way to communicate scientific results to the general public. This need for visualization is especially true in basic science, with its reliance on a benevolent and interested general public that drives the need for high-quality visualizations. Despite the widespread use of visualization, this technology has suffered from a lack of the unifying influence of shared common experiences. As with any emerging technology practitioners have often independently found solutions to similar problems. It is the aim of this focus issue to celebrate the importance of visualization, report on its growing use by the broad community of physicists, including biophysics, chemical physics, geophysics, astrophysics, and medical physics, and provide an opportunity for the diverse community of scientists using visualization to share work in one issue of a journal that itself is in the vanguard of supporting visualization and multimedia. A remarkable breadth and diversity of visualization in physics is to be found in this issue spanning fundamental aspects of relativity theory to computational fluid dynamics. The topics span length scales that are as small as quantum phenomena to the entire observable Universe. We have been impressed by the quality of the submissions and hope that this snap-shot will introduce, inform, motivate and maybe even help to unify visualization in physics. Readers are also directed to the December issue of Physics World which includes the following features highlighting work in this collection and other novel uses of visualization techniques: 'A feast of visualization' Physics World December 2008 pp 20 23 'Seeing the quantum world' by Barry Sanders Physics World December 2008 pp 24 27 'A picture of the cosmos' by Mark SubbaRao and Miguel Aragon-Calvo Physics World December 2008 pp 29 32 'Thinking outside the cube' by César A Hidalgo Physics World December 2008 pp 34 37 Focus on Visualization in Physics Contents Visualization of spiral and scroll waves in simulated and experimental cardiac tissue E M Cherry and F H Fenton Visualization of large scale structure from the Sloan Digital Sky Survey M U SubbaRao, M A Aragón-Calvo, H W Chen, J M Quashnock, A S Szalay and D G York How computers can help us in creating an intuitive access to relativity Hanns Ruder, Daniel Weiskopf, Hans-Peter Nollert and Thomas Müller Lagrangian particle tracking in three dimensions via single-camera in-line digital holography Jiang Lu, Jacob P Fugal, Hansen Nordsiek, Ewe Wei Saw, Raymond A Shaw and Weidong Yang Quantifying spatial heterogeneity from images Andrew E Pomerantz and Yi-Qiao Song Disaggregation and scientific visualization of earthscapes considering trends and spatial dependence structures S Grunwald Strength through structure: visualization and local assessment of the trabecular bone structure C Räth, R Monetti, J Bauer, I Sidorenko, D Müller, M Matsuura, E-M Lochmüller, P Zysset and F Eckstein Thermonuclear supernovae: a multi-scale astrophysical problem challenging numerical simulations and visualization F K Röpke and R Bruckschen Visualization needs and techniques for astrophysical simulations W Kapferer and T Riser Flow visualization and field line advection in computational fluid dynamics: application to magnetic fields and turbulent flows Pablo Mininni, Ed Lee, Alan Norton and John Clyne Splotch: visualizing cosmological simulations K Dolag, M Reinecke, C Gheller and S Imboden Visualizing a silicon quantum computer Barry C Sanders, Lloyd C L Hollenberg, Darran Edmundson and Andrew Edmundson Colliding galaxies, rotating neutron stars and merging black holes—visualizing high dimensional datasets on arbitrary meshes Werner Benger A low complexity visualization tool that helps to perform complex systems analysis M G Beiró, J I Alvarez-Hamelin and J R Busch Visualizing astrophysical N-body systems John Dubinski

  5. MDO can help resolve the designer's dilemma. [multidisciplinary design optimization

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw; Tulinius, Jan R.

    1991-01-01

    Multidisciplinary design optimization (MDO) is presented as a rapidly growing body of methods, algorithms, and techniques that will provide a quantum jump in the effectiveness and efficiency of the quantitative side of design, and will turn that side into an environment in which the qualitative side can thrive. MDO borrows from CAD/CAM for graphic visualization of geometrical and numerical data, data base technology, and in computer software and hardware. Expected benefits from this methodology are a rational, mathematically consistent approach to hypersonic aircraft designs, designs pushed closer to the optimum, and a design process either shortened or leaving time available for different concepts to be explored.

  6. The clinical value of large neuroimaging data sets in Alzheimer's disease.

    PubMed

    Toga, Arthur W

    2012-02-01

    Rapid advances in neuroimaging and cyberinfrastructure technologies have brought explosive growth in the Web-based warehousing, availability, and accessibility of imaging data on a variety of neurodegenerative and neuropsychiatric disorders and conditions. There has been a prolific development and emergence of complex computational infrastructures that serve as repositories of databases and provide critical functionalities such as sophisticated image analysis algorithm pipelines and powerful three-dimensional visualization and statistical tools. The statistical and operational advantages of collaborative, distributed team science in the form of multisite consortia push this approach in a diverse range of population-based investigations. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. The Influence of Texture Symmetry in Marker Pointing:. Experimenting with Humans and Algorithms

    NASA Astrophysics Data System (ADS)

    Cardaci, M.; Tabacchi, M. E.

    2012-12-01

    Symmetry plays a fundamental role in aiding the visual system, to organize its environmental stimuli and to detect visual patterns of natural and artificial objects. Various kinds of symmetry exist, and we will discuss how internal symmetry due to textures influences the choice of direction in visual tasks. Two experiments are presented: the first, with human subjects, deals with the effect of textures on preferences for a pointing direction. The second emulates the performances obtained in the first through the use of an algorithm based on a physic metaphor. Results from both experiments are shown and comment.

  8. New human-centered linear and nonlinear motion cueing algorithms for control of simulator motion systems

    NASA Astrophysics Data System (ADS)

    Telban, Robert J.

    While the performance of flight simulator motion system hardware has advanced substantially, the development of the motion cueing algorithm, the software that transforms simulated aircraft dynamics into realizable motion commands, has not kept pace. To address this, new human-centered motion cueing algorithms were developed. A revised "optimal algorithm" uses time-invariant filters developed by optimal control, incorporating human vestibular system models. The "nonlinear algorithm" is a novel approach that is also formulated by optimal control, but can also be updated in real time. It incorporates a new integrated visual-vestibular perception model that includes both visual and vestibular sensation and the interaction between the stimuli. A time-varying control law requires the matrix Riccati equation to be solved in real time by a neurocomputing approach. Preliminary pilot testing resulted in the optimal algorithm incorporating a new otolith model, producing improved motion cues. The nonlinear algorithm vertical mode produced a motion cue with a time-varying washout, sustaining small cues for longer durations and washing out large cues more quickly compared to the optimal algorithm. The inclusion of the integrated perception model improved the responses to longitudinal and lateral cues. False cues observed with the NASA adaptive algorithm were absent. As a result of unsatisfactory sensation, an augmented turbulence cue was added to the vertical mode for both the optimal and nonlinear algorithms. The relative effectiveness of the algorithms, in simulating aircraft maneuvers, was assessed with an eleven-subject piloted performance test conducted on the NASA Langley Visual Motion Simulator (VMS). Two methods, the quasi-objective NASA Task Load Index (TLX), and power spectral density analysis of pilot control, were used to assess pilot workload. TLX analysis reveals, in most cases, less workload and variation among pilots with the nonlinear algorithm. Control input analysis shows pilot-induced oscillations on a straight-in approach are less prevalent compared to the optimal algorithm. The augmented turbulence cues increased workload on an offset approach that the pilots deemed more realistic compared to the NASA adaptive algorithm. The takeoff with engine failure showed the least roll activity for the nonlinear algorithm, with the least rudder pedal activity for the optimal algorithm.

  9. Application of a novel particle tracking algorithm in the flow visualization of an artificial abdominal aortic aneurysm.

    PubMed

    Zhang, Yang; Wang, Yuan; He, Wenbo; Yang, Bin

    2014-01-01

    A novel Particle Tracking Velocimetry (PTV) algorithm based on Voronoi Diagram (VD) is proposed and briefed as VD-PTV. The robustness of VD-PTV for pulsatile flow is verified through a test that includes a widely used artificial flow and a classic reference algorithm. The proposed algorithm is then applied to visualize the flow in an artificial abdominal aortic aneurysm included in a pulsatile circulation system that simulates the aortic blood flow in human body. Results show that, large particles tend to gather at the upstream boundary because of the backflow eddies that follow the pulsation. This qualitative description, together with VD-PTV, has laid a foundation for future works that demand high-level quantification.

  10. A Markov chain model for image ranking system in social networks

    NASA Astrophysics Data System (ADS)

    Zin, Thi Thi; Tin, Pyke; Toriu, Takashi; Hama, Hiromitsu

    2014-03-01

    In today world, different kinds of networks such as social, technological, business and etc. exist. All of the networks are similar in terms of distributions, continuously growing and expanding in large scale. Among them, many social networks such as Facebook, Twitter, Flickr and many others provides a powerful abstraction of the structure and dynamics of diverse kinds of inter personal connection and interaction. Generally, the social network contents are created and consumed by the influences of all different social navigation paths that lead to the contents. Therefore, identifying important and user relevant refined structures such as visual information or communities become major factors in modern decision making world. Moreover, the traditional method of information ranking systems cannot be successful due to their lack of taking into account the properties of navigation paths driven by social connections. In this paper, we propose a novel image ranking system in social networks by using the social data relational graphs from social media platform jointly with visual data to improve the relevance between returned images and user intentions (i.e., social relevance). Specifically, we propose a Markov chain based Social-Visual Ranking algorithm by taking social relevance into account. By using some extensive experiments, we demonstrated the significant and effectiveness of the proposed social-visual ranking method.

  11. Removing Visual Bias in Filament Identification: A New Goodness-of-fit Measure

    NASA Astrophysics Data System (ADS)

    Green, C.-E.; Cunningham, M. R.; Dawson, J. R.; Jones, P. A.; Novak, G.; Fissel, L. M.

    2017-05-01

    Different combinations of input parameters to filament identification algorithms, such as disperse and filfinder, produce numerous different output skeletons. The skeletons are a one-pixel-wide representation of the filamentary structure in the original input image. However, these output skeletons may not necessarily be a good representation of that structure. Furthermore, a given skeleton may not be as good of a representation as another. Previously, there has been no mathematical “goodness-of-fit” measure to compare output skeletons to the input image. Thus far this has been assessed visually, introducing visual bias. We propose the application of the mean structural similarity index (MSSIM) as a mathematical goodness-of-fit measure. We describe the use of the MSSIM to find the output skeletons that are the most mathematically similar to the original input image (the optimum, or “best,” skeletons) for a given algorithm, and independently of the algorithm. This measure makes possible systematic parameter studies, aimed at finding the subset of input parameter values returning optimum skeletons. It can also be applied to the output of non-skeleton-based filament identification algorithms, such as the Hessian matrix method. The MSSIM removes the need to visually examine thousands of output skeletons, and eliminates the visual bias, subjectivity, and limited reproducibility inherent in that process, representing a major improvement upon existing techniques. Importantly, it also allows further automation in the post-processing of output skeletons, which is crucial in this era of “big data.”

  12. Study on bi-directional pedestrian movement using ant algorithms

    NASA Astrophysics Data System (ADS)

    Sibel, Gokce; Ozhan, Kayacan

    2016-01-01

    A cellular automata model is proposed to simulate bi-directional pedestrian flow. Pedestrian movement is investigated by using ant algorithms. Ants communicate with each other by dropping a chemical, called a pheromone, on the substrate while crawling forward. Similarly, it is considered that oppositely moving pedestrians drop ‘visual pheromones’ on their way and the visual pheromones might cause attractive or repulsive interactions. This pheromenon is introduced into modelling the pedestrians’ walking preference. In this way, the decision-making process of pedestrians will be based on ‘the instinct of following’. At some densities, the relationships of velocity-density and flux-density are analyzed for different evaporation rates of visual pheromones. Lane formation and phase transition are observed for certain evaporation rates of visual pheromones.

  13. Deep first formal concept search.

    PubMed

    Zhang, Tao; Li, Hui; Hong, Wenxue; Yuan, Xiamei; Wei, Xinyu

    2014-01-01

    The calculation of formal concepts is a very important part in the theory of formal concept analysis (FCA); however, within the framework of FCA, computing all formal concepts is the main challenge because of its exponential complexity and difficulty in visualizing the calculating process. With the basic idea of Depth First Search, this paper presents a visualization algorithm by the attribute topology of formal context. Limited by the constraints and calculation rules, all concepts are achieved by the visualization global formal concepts searching, based on the topology degenerated with the fixed start and end points, without repetition and omission. This method makes the calculation of formal concepts precise and easy to operate and reflects the integrity of the algorithm, which enables it to be suitable for visualization analysis.

  14. A new approach of data clustering using a flock of agents.

    PubMed

    Picarougne, Fabien; Azzag, Hanene; Venturini, Gilles; Guinot, Christiane

    2007-01-01

    This paper presents a new bio-inspired algorithm (FClust) that dynamically creates and visualizes groups of data. This algorithm uses the concepts of a flock of agents that move together in a complex manner with simple local rules. Each agent represents one data. The agents move together in a 2D environment with the aim of creating homogeneous groups of data. These groups are visualized in real time, and help the domain expert to understand the underlying structure of the data set, like for example a realistic number of classes, clusters of similar data, isolated data. We also present several extensions of this algorithm, which reduce its computational cost, and make use of a 3D display. This algorithm is then tested on artificial and real-world data, and a heuristic algorithm is used to evaluate the relevance of the obtained partitioning.

  15. Fast instantaneous center of rotation estimation algorithm for a skied-steered robot

    NASA Astrophysics Data System (ADS)

    Kniaz, V. V.

    2015-05-01

    Skid-steered robots are widely used as mobile platforms for machine vision systems. However it is hard to achieve a stable motion of such robots along desired trajectory due to an unpredictable wheel slip. It is possible to compensate the unpredictable wheel slip and stabilize the motion of the robot using visual odometry. This paper presents a fast optical flow based algorithm for estimation of instantaneous center of rotation, angular and longitudinal speed of the robot. The proposed algorithm is based on Horn-Schunck variational optical flow estimation method. The instantaneous center of rotation and motion of the robot is estimated by back projection of optical flow field to the ground surface. The developed algorithm was tested using skid-steered mobile robot. The robot is based on a mobile platform that includes two pairs of differential driven motors and a motor controller. Monocular visual odometry system consisting of a singleboard computer and a low cost webcam is mounted on the mobile platform. A state-space model of the robot was derived using standard black-box system identification. The input (commands) and the output (motion) were recorded using a dedicated external motion capture system. The obtained model was used to control the robot without visual odometry data. The paper is concluded with the algorithm quality estimation by comparison of the trajectories estimated by the algorithm with the data from motion capture system.

  16. Enhancing the usability and performance of structured association mapping algorithms using automation, parallelization, and visualization in the GenAMap software system

    PubMed Central

    2012-01-01

    Background Structured association mapping is proving to be a powerful strategy to find genetic polymorphisms associated with disease. However, these algorithms are often distributed as command line implementations that require expertise and effort to customize and put into practice. Because of the difficulty required to use these cutting-edge techniques, geneticists often revert to simpler, less powerful methods. Results To make structured association mapping more accessible to geneticists, we have developed an automatic processing system called Auto-SAM. Auto-SAM enables geneticists to run structured association mapping algorithms automatically, using parallelization. Auto-SAM includes algorithms to discover gene-networks and find population structure. Auto-SAM can also run popular association mapping algorithms, in addition to five structured association mapping algorithms. Conclusions Auto-SAM is available through GenAMap, a front-end desktop visualization tool. GenAMap and Auto-SAM are implemented in JAVA; binaries for GenAMap can be downloaded from http://sailing.cs.cmu.edu/genamap. PMID:22471660

  17. Optimizing wavefront-guided corrections for highly aberrated eyes in the presence of registration uncertainty

    PubMed Central

    Shi, Yue; Queener, Hope M.; Marsack, Jason D.; Ravikumar, Ayeswarya; Bedell, Harold E.; Applegate, Raymond A.

    2013-01-01

    Dynamic registration uncertainty of a wavefront-guided correction with respect to underlying wavefront error (WFE) inevitably decreases retinal image quality. A partial correction may improve average retinal image quality and visual acuity in the presence of registration uncertainties. The purpose of this paper is to (a) develop an algorithm to optimize wavefront-guided correction that improves visual acuity given registration uncertainty and (b) test the hypothesis that these corrections provide improved visual performance in the presence of these uncertainties as compared to a full-magnitude correction or a correction by Guirao, Cox, and Williams (2002). A stochastic parallel gradient descent (SPGD) algorithm was used to optimize the partial-magnitude correction for three keratoconic eyes based on measured scleral contact lens movement. Given its high correlation with logMAR acuity, the retinal image quality metric log visual Strehl was used as a predictor of visual acuity. Predicted values of visual acuity with the optimized corrections were validated by regressing measured acuity loss against predicted loss. Measured loss was obtained from normal subjects viewing acuity charts that were degraded by the residual aberrations generated by the movement of the full-magnitude correction, the correction by Guirao, and optimized SPGD correction. Partial-magnitude corrections optimized with an SPGD algorithm provide at least one line improvement of average visual acuity over the full magnitude and the correction by Guirao given the registration uncertainty. This study demonstrates that it is possible to improve the average visual acuity by optimizing wavefront-guided correction in the presence of registration uncertainty. PMID:23757512

  18. Human Computation in Visualization: Using Purpose Driven Games for Robust Evaluation of Visualization Algorithms.

    PubMed

    Ahmed, N; Zheng, Ziyi; Mueller, K

    2012-12-01

    Due to the inherent characteristics of the visualization process, most of the problems in this field have strong ties with human cognition and perception. This makes the human brain and sensory system the only truly appropriate evaluation platform for evaluating and fine-tuning a new visualization method or paradigm. However, getting humans to volunteer for these purposes has always been a significant obstacle, and thus this phase of the development process has traditionally formed a bottleneck, slowing down progress in visualization research. We propose to take advantage of the newly emerging field of Human Computation (HC) to overcome these challenges. HC promotes the idea that rather than considering humans as users of the computational system, they can be made part of a hybrid computational loop consisting of traditional computation resources and the human brain and sensory system. This approach is particularly successful in cases where part of the computational problem is considered intractable using known computer algorithms but is trivial to common sense human knowledge. In this paper, we focus on HC from the perspective of solving visualization problems and also outline a framework by which humans can be easily seduced to volunteer their HC resources. We introduce a purpose-driven game titled "Disguise" which serves as a prototypical example for how the evaluation of visualization algorithms can be mapped into a fun and addicting activity, allowing this task to be accomplished in an extensive yet cost effective way. Finally, we sketch out a framework that transcends from the pure evaluation of existing visualization methods to the design of a new one.

  19. Learning sorting algorithms through visualization construction

    NASA Astrophysics Data System (ADS)

    Cetin, Ibrahim; Andrews-Larson, Christine

    2016-01-01

    Recent increased interest in computational thinking poses an important question to researchers: What are the best ways to teach fundamental computing concepts to students? Visualization is suggested as one way of supporting student learning. This mixed-method study aimed to (i) examine the effect of instruction in which students constructed visualizations on students' programming achievement and students' attitudes toward computer programming, and (ii) explore how this kind of instruction supports students' learning according to their self-reported experiences in the course. The study was conducted with 58 pre-service teachers who were enrolled in their second programming class. They expect to teach information technology and computing-related courses at the primary and secondary levels. An embedded experimental model was utilized as a research design. Students in the experimental group were given instruction that required students to construct visualizations related to sorting, whereas students in the control group viewed pre-made visualizations. After the instructional intervention, eight students from each group were selected for semi-structured interviews. The results showed that the intervention based on visualization construction resulted in significantly better acquisition of sorting concepts. However, there was no significant difference between the groups with respect to students' attitudes toward computer programming. Qualitative data analysis indicated that students in the experimental group constructed necessary abstractions through their engagement in visualization construction activities. The authors of this study argue that the students' active engagement in the visualization construction activities explains only one side of students' success. The other side can be explained through the instructional approach, constructionism in this case, used to design instruction. The conclusions and implications of this study can be used by researchers and instructors dealing with computational thinking.

  20. Musculoskeletal-see-through mirror: computational modeling and algorithm for whole-body muscle activity visualization in real time.

    PubMed

    Murai, Akihiko; Kurosaki, Kosuke; Yamane, Katsu; Nakamura, Yoshihiko

    2010-12-01

    In this paper, we present a system that estimates and visualizes muscle tensions in real time using optical motion capture and electromyography (EMG). The system overlays rendered musculoskeletal human model on top of a live video image of the subject. The subject therefore has an impression that he/she sees the muscles with tension information through the cloth and skin. The main technical challenge lies in real-time estimation of muscle tension. Since existing algorithms using mathematical optimization to distribute joint torques to muscle tensions are too slow for our purpose, we develop a new algorithm that computes a reasonable approximation of muscle tensions based on the internal connections between muscles known as neuronal binding. The algorithm can estimate the tensions of 274 muscles in only 16 ms, and the whole visualization system runs at about 15 fps. The developed system is applied to assisting sport training, and the user case studies show its usefulness. Possible applications include interfaces for assisting rehabilitation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Cytoprophet: a Cytoscape plug-in for protein and domain interaction networks inference.

    PubMed

    Morcos, Faruck; Lamanna, Charles; Sikora, Marcin; Izaguirre, Jesús

    2008-10-01

    Cytoprophet is a software tool that allows prediction and visualization of protein and domain interaction networks. It is implemented as a plug-in of Cytoscape, an open source software framework for analysis and visualization of molecular networks. Cytoprophet implements three algorithms that predict new potential physical interactions using the domain composition of proteins and experimental assays. The algorithms for protein and domain interaction inference include maximum likelihood estimation (MLE) using expectation maximization (EM); the set cover approach maximum specificity set cover (MSSC) and the sum-product algorithm (SPA). After accepting an input set of proteins with Uniprot ID/Accession numbers and a selected prediction algorithm, Cytoprophet draws a network of potential interactions with probability scores and GO distances as edge attributes. A network of domain interactions between the domains of the initial protein list can also be generated. Cytoprophet was designed to take advantage of the visual capabilities of Cytoscape and be simple to use. An example of inference in a signaling network of myxobacterium Myxococcus xanthus is presented and available at Cytoprophet's website. http://cytoprophet.cse.nd.edu.

  2. Perceptual Contrast Enhancement with Dynamic Range Adjustment

    PubMed Central

    Zhang, Hong; Li, Yuecheng; Chen, Hao; Yuan, Ding; Sun, Mingui

    2013-01-01

    Recent years, although great efforts have been made to improve its performance, few Histogram equalization (HE) methods take human visual perception (HVP) into account explicitly. The human visual system (HVS) is more sensitive to edges than brightness. This paper proposes to take use of this nature intuitively and develops a perceptual contrast enhancement approach with dynamic range adjustment through histogram modification. The use of perceptual contrast connects the image enhancement problem with the HVS. To pre-condition the input image before the HE procedure is implemented, a perceptual contrast map (PCM) is constructed based on the modified Difference of Gaussian (DOG) algorithm. As a result, the contrast of the image is sharpened and high frequency noise is suppressed. A modified Clipped Histogram Equalization (CHE) is also developed which improves visual quality by automatically detecting the dynamic range of the image with improved perceptual contrast. Experimental results show that the new HE algorithm outperforms several state-of-the-art algorithms in improving perceptual contrast and enhancing details. In addition, the new algorithm is simple to implement, making it suitable for real-time applications. PMID:24339452

  3. Error analysis of satellite attitude determination using a vision-based approach

    NASA Astrophysics Data System (ADS)

    Carozza, Ludovico; Bevilacqua, Alessandro

    2013-09-01

    Improvements in communication and processing technologies have opened the doors to exploit on-board cameras to compute objects' spatial attitude using only the visual information from sequences of remote sensed images. The strategies and the algorithmic approach used to extract such information affect the estimation accuracy of the three-axis orientation of the object. This work presents a method for analyzing the most relevant error sources, including numerical ones, possible drift effects and their influence on the overall accuracy, referring to vision-based approaches. The method in particular focuses on the analysis of the image registration algorithm, carried out through on-purpose simulations. The overall accuracy has been assessed on a challenging case study, for which accuracy represents the fundamental requirement. In particular, attitude determination has been analyzed for small satellites, by comparing theoretical findings to metric results from simulations on realistic ground-truth data. Significant laboratory experiments, using a numerical control unit, have further confirmed the outcome. We believe that our analysis approach, as well as our findings in terms of error characterization, can be useful at proof-of-concept design and planning levels, since they emphasize the main sources of error for visual based approaches employed for satellite attitude estimation. Nevertheless, the approach we present is also of general interest for all the affine applicative domains which require an accurate estimation of three-dimensional orientation parameters (i.e., robotics, airborne stabilization).

  4. Visual Prediction of Rover Slip: Learning Algorithms and Field Experiments

    DTIC Science & Technology

    2008-01-01

    DATES COVERED 00-00-2008 to 00-00-2008 4. TITLE AND SUBTITLE Visual Prediction of Rover Slip: Learning Algorithms and Field Experiments 5a...rover mobility [23, 78]. Remote slip prediction will enable safe traversals on large slopes covered with sand, drift material or loose crater ejecta...aqueous processes, e.g., mineral-rich out- crops which imply exposure to water [92] or putative lake formations or shorelines, layered deposits, etc

  5. Implementation of dictionary pair learning algorithm for image quality improvement

    NASA Astrophysics Data System (ADS)

    Vimala, C.; Aruna Priya, P.

    2018-04-01

    This paper proposes an image denoising on dictionary pair learning algorithm. Visual information is transmitted in the form of digital images is becoming a major method of communication in the modern age, but the image obtained after transmissions is often corrupted with noise. The received image needs processing before it can be used in applications. Image denoising involves the manipulation of the image data to produce a visually high quality image.

  6. Complex scenes and situations visualization in hierarchical learning algorithm with dynamic 3D NeoAxis engine

    NASA Astrophysics Data System (ADS)

    Graham, James; Ternovskiy, Igor V.

    2013-06-01

    We applied a two stage unsupervised hierarchical learning system to model complex dynamic surveillance and cyber space monitoring systems using a non-commercial version of the NeoAxis visualization software. The hierarchical scene learning and recognition approach is based on hierarchical expectation maximization, and was linked to a 3D graphics engine for validation of learning and classification results and understanding the human - autonomous system relationship. Scene recognition is performed by taking synthetically generated data and feeding it to a dynamic logic algorithm. The algorithm performs hierarchical recognition of the scene by first examining the features of the objects to determine which objects are present, and then determines the scene based on the objects present. This paper presents a framework within which low level data linked to higher-level visualization can provide support to a human operator and be evaluated in a detailed and systematic way.

  7. On Applying the Prognostic Performance Metrics

    NASA Technical Reports Server (NTRS)

    Saxena, Abhinav; Celaya, Jose; Saha, Bhaskar; Saha, Sankalita; Goebel, Kai

    2009-01-01

    Prognostics performance evaluation has gained significant attention in the past few years. As prognostics technology matures and more sophisticated methods for prognostic uncertainty management are developed, a standardized methodology for performance evaluation becomes extremely important to guide improvement efforts in a constructive manner. This paper is in continuation of previous efforts where several new evaluation metrics tailored for prognostics were introduced and were shown to effectively evaluate various algorithms as compared to other conventional metrics. Specifically, this paper presents a detailed discussion on how these metrics should be interpreted and used. Several shortcomings identified, while applying these metrics to a variety of real applications, are also summarized along with discussions that attempt to alleviate these problems. Further, these metrics have been enhanced to include the capability of incorporating probability distribution information from prognostic algorithms as opposed to evaluation based on point estimates only. Several methods have been suggested and guidelines have been provided to help choose one method over another based on probability distribution characteristics. These approaches also offer a convenient and intuitive visualization of algorithm performance with respect to some of these new metrics like prognostic horizon and alpha-lambda performance, and also quantify the corresponding performance while incorporating the uncertainty information.

  8. DeitY-TU face database: its design, multiple camera capturing, characteristics, and evaluation

    NASA Astrophysics Data System (ADS)

    Bhowmik, Mrinal Kanti; Saha, Kankan; Saha, Priya; Bhattacharjee, Debotosh

    2014-10-01

    The development of the latest face databases is providing researchers different and realistic problems that play an important role in the development of efficient algorithms for solving the difficulties during automatic recognition of human faces. This paper presents the creation of a new visual face database, named the Department of Electronics and Information Technology-Tripura University (DeitY-TU) face database. It contains face images of 524 persons belonging to different nontribes and Mongolian tribes of north-east India, with their anthropometric measurements for identification. Database images are captured within a room with controlled variations in illumination, expression, and pose along with variability in age, gender, accessories, make-up, and partial occlusion. Each image contains the combined primary challenges of face recognition, i.e., illumination, expression, and pose. This database also represents some new features: soft biometric traits such as mole, freckle, scar, etc., and facial anthropometric variations that may be helpful for researchers for biometric recognition. It also gives an equivalent study of the existing two-dimensional face image databases. The database has been tested using two baseline algorithms: linear discriminant analysis and principal component analysis, which may be used by other researchers as the control algorithm performance score.

  9. Approaches to automatic parameter fitting in a microscopy image segmentation pipeline: An exploratory parameter space analysis.

    PubMed

    Held, Christian; Nattkemper, Tim; Palmisano, Ralf; Wittenberg, Thomas

    2013-01-01

    Research and diagnosis in medicine and biology often require the assessment of a large amount of microscopy image data. Although on the one hand, digital pathology and new bioimaging technologies find their way into clinical practice and pharmaceutical research, some general methodological issues in automated image analysis are still open. In this study, we address the problem of fitting the parameters in a microscopy image segmentation pipeline. We propose to fit the parameters of the pipeline's modules with optimization algorithms, such as, genetic algorithms or coordinate descents, and show how visual exploration of the parameter space can help to identify sub-optimal parameter settings that need to be avoided. This is of significant help in the design of our automatic parameter fitting framework, which enables us to tune the pipeline for large sets of micrographs. The underlying parameter spaces pose a challenge for manual as well as automated parameter optimization, as the parameter spaces can show several local performance maxima. Hence, optimization strategies that are not able to jump out of local performance maxima, like the hill climbing algorithm, often result in a local maximum.

  10. Approaches to automatic parameter fitting in a microscopy image segmentation pipeline: An exploratory parameter space analysis

    PubMed Central

    Held, Christian; Nattkemper, Tim; Palmisano, Ralf; Wittenberg, Thomas

    2013-01-01

    Introduction: Research and diagnosis in medicine and biology often require the assessment of a large amount of microscopy image data. Although on the one hand, digital pathology and new bioimaging technologies find their way into clinical practice and pharmaceutical research, some general methodological issues in automated image analysis are still open. Methods: In this study, we address the problem of fitting the parameters in a microscopy image segmentation pipeline. We propose to fit the parameters of the pipeline's modules with optimization algorithms, such as, genetic algorithms or coordinate descents, and show how visual exploration of the parameter space can help to identify sub-optimal parameter settings that need to be avoided. Results: This is of significant help in the design of our automatic parameter fitting framework, which enables us to tune the pipeline for large sets of micrographs. Conclusion: The underlying parameter spaces pose a challenge for manual as well as automated parameter optimization, as the parameter spaces can show several local performance maxima. Hence, optimization strategies that are not able to jump out of local performance maxima, like the hill climbing algorithm, often result in a local maximum. PMID:23766941

  11. Medical image classification based on multi-scale non-negative sparse coding.

    PubMed

    Zhang, Ruijie; Shen, Jian; Wei, Fushan; Li, Xiong; Sangaiah, Arun Kumar

    2017-11-01

    With the rapid development of modern medical imaging technology, medical image classification has become more and more important in medical diagnosis and clinical practice. Conventional medical image classification algorithms usually neglect the semantic gap problem between low-level features and high-level image semantic, which will largely degrade the classification performance. To solve this problem, we propose a multi-scale non-negative sparse coding based medical image classification algorithm. Firstly, Medical images are decomposed into multiple scale layers, thus diverse visual details can be extracted from different scale layers. Secondly, for each scale layer, the non-negative sparse coding model with fisher discriminative analysis is constructed to obtain the discriminative sparse representation of medical images. Then, the obtained multi-scale non-negative sparse coding features are combined to form a multi-scale feature histogram as the final representation for a medical image. Finally, SVM classifier is combined to conduct medical image classification. The experimental results demonstrate that our proposed algorithm can effectively utilize multi-scale and contextual spatial information of medical images, reduce the semantic gap in a large degree and improve medical image classification performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Hierarchical Learning of Tree Classifiers for Large-Scale Plant Species Identification.

    PubMed

    Fan, Jianping; Zhou, Ning; Peng, Jinye; Gao, Ling

    2015-11-01

    In this paper, a hierarchical multi-task structural learning algorithm is developed to support large-scale plant species identification, where a visual tree is constructed for organizing large numbers of plant species in a coarse-to-fine fashion and determining the inter-related learning tasks automatically. For a given parent node on the visual tree, it contains a set of sibling coarse-grained categories of plant species or sibling fine-grained plant species, and a multi-task structural learning algorithm is developed to train their inter-related classifiers jointly for enhancing their discrimination power. The inter-level relationship constraint, e.g., a plant image must first be assigned to a parent node (high-level non-leaf node) correctly if it can further be assigned to the most relevant child node (low-level non-leaf node or leaf node) on the visual tree, is formally defined and leveraged to learn more discriminative tree classifiers over the visual tree. Our experimental results have demonstrated the effectiveness of our hierarchical multi-task structural learning algorithm on training more discriminative tree classifiers for large-scale plant species identification.

  13. Search of the Deep and Dark Web via DARPA Memex

    NASA Astrophysics Data System (ADS)

    Mattmann, C. A.

    2015-12-01

    Search has progressed through several stages due to the increasing size of the Web. Search engines first focused on text and its rate of occurrence; then focused on the notion of link analysis and citation then on interactivity and guided search; and now on the use of social media - who we interact with, what we comment on, and who we follow (and who follows us). The next stage, referred to as "deep search," requires solutions that can bring together text, images, video, importance, interactivity, and social media to solve this challenging problem. The Apache Nutch project provides an open framework for large-scale, targeted, vertical search with capabilities to support all past and potential future search engine foci. Nutch is a flexible infrastructure allowing open access to ranking; URL selection and filtering approaches, to the link graph generated from search, and Nutch has spawned entire sub communities including Apache Hadoop and Apache Tika. It addresses many current needs with the capability to support new technologies such as image and video. On the DARPA Memex project, we are creating create specific extensions to Nutch that will directly improve its overall technological superiority for search and that will directly allow us to address complex search problems including human trafficking. We are integrating state-of-the-art algorithms developed by Kitware for IARPA Aladdin combined with work by Harvard to provide image and video understanding support allowing automatic detection of people and things and massive deployment via Nutch. We are expanding Apache Tika for scene understanding, object/person detection and classification in images/video. We are delivering an interactive and visual interface for initiating Nutch crawls. The interface uses Python technologies to expose Nutch data and to provide a domain specific language for crawls. With the Bokeh visualization library the interface we are delivering simple interactive crawl visualization and plotting techniques for exploring crawled information. The platform classifies, identify, and thwart predators, help to find victims and to identify buyers in human trafficking and will deliver technological superiority in search engines for DARPA. We are already transitioning the technologies into Geo and Planetary Science, and Bioinformatics.

  14. XCluSim: a visual analytics tool for interactively comparing multiple clustering results of bioinformatics data

    PubMed Central

    2015-01-01

    Background Though cluster analysis has become a routine analytic task for bioinformatics research, it is still arduous for researchers to assess the quality of a clustering result. To select the best clustering method and its parameters for a dataset, researchers have to run multiple clustering algorithms and compare them. However, such a comparison task with multiple clustering results is cognitively demanding and laborious. Results In this paper, we present XCluSim, a visual analytics tool that enables users to interactively compare multiple clustering results based on the Visual Information Seeking Mantra. We build a taxonomy for categorizing existing techniques of clustering results visualization in terms of the Gestalt principles of grouping. Using the taxonomy, we choose the most appropriate interactive visualizations for presenting individual clustering results from different types of clustering algorithms. The efficacy of XCluSim is shown through case studies with a bioinformatician. Conclusions Compared to other relevant tools, XCluSim enables users to compare multiple clustering results in a more scalable manner. Moreover, XCluSim supports diverse clustering algorithms and dedicated visualizations and interactions for different types of clustering results, allowing more effective exploration of details on demand. Through case studies with a bioinformatics researcher, we received positive feedback on the functionalities of XCluSim, including its ability to help identify stably clustered items across multiple clustering results. PMID:26328893

  15. Learning and Recognition of Clothing Genres From Full-Body Images.

    PubMed

    Hidayati, Shintami C; You, Chuang-Wen; Cheng, Wen-Huang; Hua, Kai-Lung

    2018-05-01

    According to the theory of clothing design, the genres of clothes can be recognized based on a set of visually differentiable style elements, which exhibit salient features of visual appearance and reflect high-level fashion styles for better describing clothing genres. Instead of using less-discriminative low-level features or ambiguous keywords to identify clothing genres, we proposed a novel approach for automatically classifying clothing genres based on the visually differentiable style elements. A set of style elements, that are crucial for recognizing specific visual styles of clothing genres, were identified based on the clothing design theory. In addition, the corresponding salient visual features of each style element were identified and formulated with variables that can be computationally derived with various computer vision algorithms. To evaluate the performance of our algorithm, a dataset containing 3250 full-body shots crawled from popular online stores was built. Recognition results show that our proposed algorithms achieved promising overall precision, recall, and -score of 88.76%, 88.53%, and 88.64% for recognizing upperwear genres, and 88.21%, 88.17%, and 88.19% for recognizing lowerwear genres, respectively. The effectiveness of each style element and its visual features on recognizing clothing genres was demonstrated through a set of experiments involving different sets of style elements or features. In summary, our experimental results demonstrate the effectiveness of the proposed method in clothing genre recognition.

  16. School, Family and Other Influences on Assistive Technology Use: Access and Challenges for Students with Visual Impairment in Singapore

    ERIC Educational Resources Information Center

    Wong, Meng Ee; Cohen, Libby

    2011-01-01

    Assistive technologies are essential enablers for individuals with visual impairments, but although Singapore is technologically advanced, students with visual impairments are not yet full participants in this technological society. This study investigates the barriers and challenges to the use of assistive technologies by students with visual…

  17. Deep Learning in Medical Imaging: General Overview

    PubMed Central

    Lee, June-Goo; Jun, Sanghoon; Cho, Young-Won; Lee, Hyunna; Kim, Guk Bae

    2017-01-01

    The artificial neural network (ANN)–a machine learning technique inspired by the human neuronal synapse system–was introduced in the 1950s. However, the ANN was previously limited in its ability to solve actual problems, due to the vanishing gradient and overfitting problems with training of deep architecture, lack of computing power, and primarily the absence of sufficient data to train the computer system. Interest in this concept has lately resurfaced, due to the availability of big data, enhanced computing power with the current graphics processing units, and novel algorithms to train the deep neural network. Recent studies on this technology suggest its potentially to perform better than humans in some visual and auditory recognition tasks, which may portend its applications in medicine and healthcare, especially in medical imaging, in the foreseeable future. This review article offers perspectives on the history, development, and applications of deep learning technology, particularly regarding its applications in medical imaging. PMID:28670152

  18. Deep Learning in Medical Imaging: General Overview.

    PubMed

    Lee, June-Goo; Jun, Sanghoon; Cho, Young-Won; Lee, Hyunna; Kim, Guk Bae; Seo, Joon Beom; Kim, Namkug

    2017-01-01

    The artificial neural network (ANN)-a machine learning technique inspired by the human neuronal synapse system-was introduced in the 1950s. However, the ANN was previously limited in its ability to solve actual problems, due to the vanishing gradient and overfitting problems with training of deep architecture, lack of computing power, and primarily the absence of sufficient data to train the computer system. Interest in this concept has lately resurfaced, due to the availability of big data, enhanced computing power with the current graphics processing units, and novel algorithms to train the deep neural network. Recent studies on this technology suggest its potentially to perform better than humans in some visual and auditory recognition tasks, which may portend its applications in medicine and healthcare, especially in medical imaging, in the foreseeable future. This review article offers perspectives on the history, development, and applications of deep learning technology, particularly regarding its applications in medical imaging.

  19. Wireless Control of Smartphones with Tongue Motion Using Tongue Drive Assistive Technology

    PubMed Central

    Kim, Jeonghee; Huo, Xueliang

    2010-01-01

    Tongue Drive System (TDS) is a noninvasive, wireless and wearable assistive technology that helps people with severe disabilities control their environments using their tongue motion. TDS translates specific tongue gestures to commands by detecting a small permanent magnetic tracer on the users’ tongue. We have linked the TDS to a smartphone (iPhone/iPod Touch) with a customized wireless module, added to the iPhone. We also migrated and ran the TDS sensor signal processing algorithm and graphical user interface on the iPhone in real time. The TDS-iPhone interface was evaluated by four able-bodied subjects for dialing 10-digit phone numbers using the standard telephone keypad and three methods of prompting the numbers: visual, auditory, and cognitive. Preliminary results showed that the interface worked quite reliably at a rate of 15.4 digits per minute, on average, with negligible errors. PMID:21096049

  20. On Optimizing H. 264/AVC Rate Control by Improving R-D Model and Incorporating HVS Characteristics

    NASA Astrophysics Data System (ADS)

    Zhu, Zhongjie; Wang, Yuer; Bai, Yongqiang; Jiang, Gangyi

    2010-12-01

    The state-of-the-art JVT-G012 rate control algorithm of H.264 is improved from two aspects. First, the quadratic rate-distortion (R-D) model is modified based on both empirical observations and theoretical analysis. Second, based on the existing physiological and psychological research findings of human vision, the rate control algorithm is optimized by incorporating the main characteristics of the human visual system (HVS) such as contrast sensitivity, multichannel theory, and masking effect. Experiments are conducted, and experimental results show that the improved algorithm can simultaneously enhance the overall subjective visual quality and improve the rate control precision effectively.

  1. Toward GEOS-6, A Global Cloud System Resolving Atmospheric Model

    NASA Technical Reports Server (NTRS)

    Putman, William M.

    2010-01-01

    NASA is committed to observing and understanding the weather and climate of our home planet through the use of multi-scale modeling systems and space-based observations. Global climate models have evolved to take advantage of the influx of multi- and many-core computing technologies and the availability of large clusters of multi-core microprocessors. GEOS-6 is a next-generation cloud system resolving atmospheric model that will place NASA at the forefront of scientific exploration of our atmosphere and climate. Model simulations with GEOS-6 will produce a realistic representation of our atmosphere on the scale of typical satellite observations, bringing a visual comprehension of model results to a new level among the climate enthusiasts. In preparation for GEOS-6, the agency's flagship Earth System Modeling Framework [JDl] has been enhanced to support cutting-edge high-resolution global climate and weather simulations. Improvements include a cubed-sphere grid that exposes parallelism; a non-hydrostatic finite volume dynamical core, and algorithm designed for co-processor technologies, among others. GEOS-6 represents a fundamental advancement in the capability of global Earth system models. The ability to directly compare global simulations at the resolution of spaceborne satellite images will lead to algorithm improvements and better utilization of space-based observations within the GOES data assimilation system

  2. Crossword: A Fully Automated Algorithm for the Segmentation and Quality Control of Protein Microarray Images

    PubMed Central

    2015-01-01

    Biological assays formatted as microarrays have become a critical tool for the generation of the comprehensive data sets required for systems-level understanding of biological processes. Manual annotation of data extracted from images of microarrays, however, remains a significant bottleneck, particularly for protein microarrays due to the sensitivity of this technology to weak artifact signal. In order to automate the extraction and curation of data from protein microarrays, we describe an algorithm called Crossword that logically combines information from multiple approaches to fully automate microarray segmentation. Automated artifact removal is also accomplished by segregating structured pixels from the background noise using iterative clustering and pixel connectivity. Correlation of the location of structured pixels across image channels is used to identify and remove artifact pixels from the image prior to data extraction. This component improves the accuracy of data sets while reducing the requirement for time-consuming visual inspection of the data. Crossword enables a fully automated protocol that is robust to significant spatial and intensity aberrations. Overall, the average amount of user intervention is reduced by an order of magnitude and the data quality is increased through artifact removal and reduced user variability. The increase in throughput should aid the further implementation of microarray technologies in clinical studies. PMID:24417579

  3. Computationally Efficient Clustering of Audio-Visual Meeting Data

    NASA Astrophysics Data System (ADS)

    Hung, Hayley; Friedland, Gerald; Yeo, Chuohao

    This chapter presents novel computationally efficient algorithms to extract semantically meaningful acoustic and visual events related to each of the participants in a group discussion using the example of business meeting recordings. The recording setup involves relatively few audio-visual sensors, comprising a limited number of cameras and microphones. We first demonstrate computationally efficient algorithms that can identify who spoke and when, a problem in speech processing known as speaker diarization. We also extract visual activity features efficiently from MPEG4 video by taking advantage of the processing that was already done for video compression. Then, we present a method of associating the audio-visual data together so that the content of each participant can be managed individually. The methods presented in this article can be used as a principal component that enables many higher-level semantic analysis tasks needed in search, retrieval, and navigation.

  4. The visual information system

    Treesearch

    Merlyn J. Paulson

    1979-01-01

    This paper outlines a project level process (V.I.S.) which utilizes very accurate and flexible computer algorithms in combination with contemporary site analysis and design techniques for visual evaluation, design and management. The process provides logical direction and connecting bridges through problem identification, information collection and verification, visual...

  5. Applications of aerospace technology in industry: A technology transfer profile. Visual display systems

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The growth of common as well as emerging visual display technologies are surveyed. The major inference is that contemporary society is rapidly growing evermore reliant on visual display for a variety of purposes. Because of its unique mission requirements, the National Aeronautics and Space Administration has contributed in an important and specific way to the growth of visual display technology. These contributions are characterized by the use of computer-driven visual displays to provide an enormous amount of information concisely, rapidly and accurately.

  6. Infrared and Visual Image Fusion through Fuzzy Measure and Alternating Operators

    PubMed Central

    Bai, Xiangzhi

    2015-01-01

    The crucial problem of infrared and visual image fusion is how to effectively extract the image features, including the image regions and details and combine these features into the final fusion result to produce a clear fused image. To obtain an effective fusion result with clear image details, an algorithm for infrared and visual image fusion through the fuzzy measure and alternating operators is proposed in this paper. Firstly, the alternating operators constructed using the opening and closing based toggle operator are analyzed. Secondly, two types of the constructed alternating operators are used to extract the multi-scale features of the original infrared and visual images for fusion. Thirdly, the extracted multi-scale features are combined through the fuzzy measure-based weight strategy to form the final fusion features. Finally, the final fusion features are incorporated with the original infrared and visual images using the contrast enlargement strategy. All the experimental results indicate that the proposed algorithm is effective for infrared and visual image fusion. PMID:26184229

  7. Infrared and Visual Image Fusion through Fuzzy Measure and Alternating Operators.

    PubMed

    Bai, Xiangzhi

    2015-07-15

    The crucial problem of infrared and visual image fusion is how to effectively extract the image features, including the image regions and details and combine these features into the final fusion result to produce a clear fused image. To obtain an effective fusion result with clear image details, an algorithm for infrared and visual image fusion through the fuzzy measure and alternating operators is proposed in this paper. Firstly, the alternating operators constructed using the opening and closing based toggle operator are analyzed. Secondly, two types of the constructed alternating operators are used to extract the multi-scale features of the original infrared and visual images for fusion. Thirdly, the extracted multi-scale features are combined through the fuzzy measure-based weight strategy to form the final fusion features. Finally, the final fusion features are incorporated with the original infrared and visual images using the contrast enlargement strategy. All the experimental results indicate that the proposed algorithm is effective for infrared and visual image fusion.

  8. Volumetric three-dimensional intravascular ultrasound visualization using shape-based nonlinear interpolation

    PubMed Central

    2013-01-01

    Background Intravascular ultrasound (IVUS) is a standard imaging modality for identification of plaque formation in the coronary and peripheral arteries. Volumetric three-dimensional (3D) IVUS visualization provides a powerful tool to overcome the limited comprehensive information of 2D IVUS in terms of complex spatial distribution of arterial morphology and acoustic backscatter information. Conventional 3D IVUS techniques provide sub-optimal visualization of arterial morphology or lack acoustic information concerning arterial structure due in part to low quality of image data and the use of pixel-based IVUS image reconstruction algorithms. In the present study, we describe a novel volumetric 3D IVUS reconstruction algorithm to utilize IVUS signal data and a shape-based nonlinear interpolation. Methods We developed an algorithm to convert a series of IVUS signal data into a fully volumetric 3D visualization. Intermediary slices between original 2D IVUS slices were generated utilizing the natural cubic spline interpolation to consider the nonlinearity of both vascular structure geometry and acoustic backscatter in the arterial wall. We evaluated differences in image quality between the conventional pixel-based interpolation and the shape-based nonlinear interpolation methods using both virtual vascular phantom data and in vivo IVUS data of a porcine femoral artery. Volumetric 3D IVUS images of the arterial segment reconstructed using the two interpolation methods were compared. Results In vitro validation and in vivo comparative studies with the conventional pixel-based interpolation method demonstrated more robustness of the shape-based nonlinear interpolation algorithm in determining intermediary 2D IVUS slices. Our shape-based nonlinear interpolation demonstrated improved volumetric 3D visualization of the in vivo arterial structure and more realistic acoustic backscatter distribution compared to the conventional pixel-based interpolation method. Conclusions This novel 3D IVUS visualization strategy has the potential to improve ultrasound imaging of vascular structure information, particularly atheroma determination. Improved volumetric 3D visualization with accurate acoustic backscatter information can help with ultrasound molecular imaging of atheroma component distribution. PMID:23651569

  9. Multidimensional scaling for evolutionary algorithms--visualization of the path through search space and solution space using Sammon mapping.

    PubMed

    Pohlheim, Hartmut

    2006-01-01

    Multidimensional scaling as a technique for the presentation of high-dimensional data with standard visualization techniques is presented. The technique used is often known as Sammon mapping. We explain the mathematical foundations of multidimensional scaling and its robust calculation. We also demonstrate the use of this technique in the area of evolutionary algorithms. First, we present the visualization of the path through the search space of the best individuals during an optimization run. We then apply multidimensional scaling to the comparison of multiple runs regarding the variables of individuals and multi-criteria objective values (path through the solution space).

  10. Functional Principal Component Analysis and Randomized Sparse Clustering Algorithm for Medical Image Analysis

    PubMed Central

    Lin, Nan; Jiang, Junhai; Guo, Shicheng; Xiong, Momiao

    2015-01-01

    Due to the advancement in sensor technology, the growing large medical image data have the ability to visualize the anatomical changes in biological tissues. As a consequence, the medical images have the potential to enhance the diagnosis of disease, the prediction of clinical outcomes and the characterization of disease progression. But in the meantime, the growing data dimensions pose great methodological and computational challenges for the representation and selection of features in image cluster analysis. To address these challenges, we first extend the functional principal component analysis (FPCA) from one dimension to two dimensions to fully capture the space variation of image the signals. The image signals contain a large number of redundant features which provide no additional information for clustering analysis. The widely used methods for removing the irrelevant features are sparse clustering algorithms using a lasso-type penalty to select the features. However, the accuracy of clustering using a lasso-type penalty depends on the selection of the penalty parameters and the threshold value. In practice, they are difficult to determine. Recently, randomized algorithms have received a great deal of attentions in big data analysis. This paper presents a randomized algorithm for accurate feature selection in image clustering analysis. The proposed method is applied to both the liver and kidney cancer histology image data from the TCGA database. The results demonstrate that the randomized feature selection method coupled with functional principal component analysis substantially outperforms the current sparse clustering algorithms in image cluster analysis. PMID:26196383

  11. MASH Suite Pro: A Comprehensive Software Tool for Top-Down Proteomics*

    PubMed Central

    Cai, Wenxuan; Guner, Huseyin; Gregorich, Zachery R.; Chen, Albert J.; Ayaz-Guner, Serife; Peng, Ying; Valeja, Santosh G.; Liu, Xiaowen; Ge, Ying

    2016-01-01

    Top-down mass spectrometry (MS)-based proteomics is arguably a disruptive technology for the comprehensive analysis of all proteoforms arising from genetic variation, alternative splicing, and posttranslational modifications (PTMs). However, the complexity of top-down high-resolution mass spectra presents a significant challenge for data analysis. In contrast to the well-developed software packages available for data analysis in bottom-up proteomics, the data analysis tools in top-down proteomics remain underdeveloped. Moreover, despite recent efforts to develop algorithms and tools for the deconvolution of top-down high-resolution mass spectra and the identification of proteins from complex mixtures, a multifunctional software platform, which allows for the identification, quantitation, and characterization of proteoforms with visual validation, is still lacking. Herein, we have developed MASH Suite Pro, a comprehensive software tool for top-down proteomics with multifaceted functionality. MASH Suite Pro is capable of processing high-resolution MS and tandem MS (MS/MS) data using two deconvolution algorithms to optimize protein identification results. In addition, MASH Suite Pro allows for the characterization of PTMs and sequence variations, as well as the relative quantitation of multiple proteoforms in different experimental conditions. The program also provides visualization components for validation and correction of the computational outputs. Furthermore, MASH Suite Pro facilitates data reporting and presentation via direct output of the graphics. Thus, MASH Suite Pro significantly simplifies and speeds up the interpretation of high-resolution top-down proteomics data by integrating tools for protein identification, quantitation, characterization, and visual validation into a customizable and user-friendly interface. We envision that MASH Suite Pro will play an integral role in advancing the burgeoning field of top-down proteomics. PMID:26598644

  12. Evaluation of an Automated Swallow-Detection Algorithm Using Visual Biofeedback in Healthy Adults and Head and Neck Cancer Survivors.

    PubMed

    Constantinescu, Gabriela; Kuffel, Kristina; Aalto, Daniel; Hodgetts, William; Rieger, Jana

    2018-06-01

    Mobile health (mHealth) technologies may offer an opportunity to address longstanding clinical challenges, such as access and adherence to swallowing therapy. Mobili-T ® is an mHealth device that uses surface electromyography (sEMG) to provide biofeedback on submental muscles activity during exercise. An automated swallow-detection algorithm was developed for Mobili-T ® . This study evaluated the performance of the swallow-detection algorithm. Ten healthy participants and 10 head and neck cancer (HNC) patients were fitted with the device. Signal was acquired during regular, effortful, and Mendelsohn maneuver saliva swallows, as well as lip presses, tongue, and head movements. Signals of interest were tagged during data acquisition and used to evaluate algorithm performance. Sensitivity and positive predictive values (PPV) were calculated for each participant. Saliva swallows were compared between HNC and controls in the four sEMG-based parameters used in the algorithm: duration, peak amplitude ratio, median frequency, and 15th percentile of the power spectrum density. In healthy participants, sensitivity and PPV were 92.3 and 83.9%, respectively. In HNC patients, sensitivity was 92.7% and PPV was 72.2%. In saliva swallows, HNC patients had longer event durations (U = 1925.5, p < 0.001), lower median frequency (U = 2674.0, p < 0.001), and lower 15th percentile of the power spectrum density [t(176.9) = 2.07, p < 0.001] than healthy participants. The automated swallow-detection algorithm performed well with healthy participants and retained a high sensitivity, but had lowered PPV with HNC patients. With respect to Mobili-T ® , the algorithm will next be evaluated using the mHealth system.

  13. Improved GSO Optimized ESN Soft-Sensor Model of Flotation Process Based on Multisource Heterogeneous Information Fusion

    PubMed Central

    Wang, Jie-sheng; Han, Shuang; Shen, Na-na

    2014-01-01

    For predicting the key technology indicators (concentrate grade and tailings recovery rate) of flotation process, an echo state network (ESN) based fusion soft-sensor model optimized by the improved glowworm swarm optimization (GSO) algorithm is proposed. Firstly, the color feature (saturation and brightness) and texture features (angular second moment, sum entropy, inertia moment, etc.) based on grey-level co-occurrence matrix (GLCM) are adopted to describe the visual characteristics of the flotation froth image. Then the kernel principal component analysis (KPCA) method is used to reduce the dimensionality of the high-dimensional input vector composed by the flotation froth image characteristics and process datum and extracts the nonlinear principal components in order to reduce the ESN dimension and network complex. The ESN soft-sensor model of flotation process is optimized by the GSO algorithm with congestion factor. Simulation results show that the model has better generalization and prediction accuracy to meet the online soft-sensor requirements of the real-time control in the flotation process. PMID:24982935

  14. Traffic light detection and intersection crossing using mobile computer vision

    NASA Astrophysics Data System (ADS)

    Grewei, Lynne; Lagali, Christopher

    2017-05-01

    The solution for Intersection Detection and Crossing to support the development of blindBike an assisted biking system for the visually impaired is discussed. Traffic light detection and intersection crossing are key needs in the task of biking. These problems are tackled through the use of mobile computer vision, in the form of a mobile application on an Android phone. This research builds on previous Traffic Light detection algorithms with a focus on efficiency and compatibility on a resource-limited platform. Light detection is achieved through blob detection algorithms utilizing training data to detect patterns of Red, Green and Yellow in complex real world scenarios where multiple lights may be present. Also, issues of obscurity and scale are addressed. Safe Intersection crossing in blindBike is also discussed. This module takes a conservative "assistive" technology approach. To achieve this blindBike use's not only the Android device but, an external bike cadence Bluetooth/Ant enabled sensor. Real world testing results are given and future work is discussed.

  15. No-reference quality assessment based on visual perception

    NASA Astrophysics Data System (ADS)

    Li, Junshan; Yang, Yawei; Hu, Shuangyan; Zhang, Jiao

    2014-11-01

    The visual quality assessment of images/videos is an ongoing hot research topic, which has become more and more important for numerous image and video processing applications with the rapid development of digital imaging and communication technologies. The goal of image quality assessment (IQA) algorithms is to automatically assess the quality of images/videos in agreement with human quality judgments. Up to now, two kinds of models have been used for IQA, namely full-reference (FR) and no-reference (NR) models. For FR models, IQA algorithms interpret image quality as fidelity or similarity with a perfect image in some perceptual space. However, the reference image is not available in many practical applications, and a NR IQA approach is desired. Considering natural vision as optimized by the millions of years of evolutionary pressure, many methods attempt to achieve consistency in quality prediction by modeling salient physiological and psychological features of the human visual system (HVS). To reach this goal, researchers try to simulate HVS with image sparsity coding and supervised machine learning, which are two main features of HVS. A typical HVS captures the scenes by sparsity coding, and uses experienced knowledge to apperceive objects. In this paper, we propose a novel IQA approach based on visual perception. Firstly, a standard model of HVS is studied and analyzed, and the sparse representation of image is accomplished with the model; and then, the mapping correlation between sparse codes and subjective quality scores is trained with the regression technique of least squaresupport vector machine (LS-SVM), which gains the regressor that can predict the image quality; the visual metric of image is predicted with the trained regressor at last. We validate the performance of proposed approach on Laboratory for Image and Video Engineering (LIVE) database, the specific contents of the type of distortions present in the database are: 227 images of JPEG2000, 233 images of JPEG, 174 images of White Noise, 174 images of Gaussian Blur, 174 images of Fast Fading. The database includes subjective differential mean opinion score (DMOS) for each image. The experimental results show that the proposed approach not only can assess many kinds of distorted images quality, but also exhibits a superior accuracy and monotonicity.

  16. What does voice-processing technology support today?

    PubMed Central

    Nakatsu, R; Suzuki, Y

    1995-01-01

    This paper describes the state of the art in applications of voice-processing technologies. In the first part, technologies concerning the implementation of speech recognition and synthesis algorithms are described. Hardware technologies such as microprocessors and DSPs (digital signal processors) are discussed. Software development environment, which is a key technology in developing applications software, ranging from DSP software to support software also is described. In the second part, the state of the art of algorithms from the standpoint of applications is discussed. Several issues concerning evaluation of speech recognition/synthesis algorithms are covered, as well as issues concerning the robustness of algorithms in adverse conditions. Images Fig. 3 PMID:7479720

  17. Hearing Shapes: Event-related Potentials Reveal the Time Course of Auditory-Visual Sensory Substitution.

    PubMed

    Graulty, Christian; Papaioannou, Orestis; Bauer, Phoebe; Pitts, Michael A; Canseco-Gonzalez, Enriqueta

    2018-04-01

    In auditory-visual sensory substitution, visual information (e.g., shape) can be extracted through strictly auditory input (e.g., soundscapes). Previous studies have shown that image-to-sound conversions that follow simple rules [such as the Meijer algorithm; Meijer, P. B. L. An experimental system for auditory image representation. Transactions on Biomedical Engineering, 39, 111-121, 1992] are highly intuitive and rapidly learned by both blind and sighted individuals. A number of recent fMRI studies have begun to explore the neuroplastic changes that result from sensory substitution training. However, the time course of cross-sensory information transfer in sensory substitution is largely unexplored and may offer insights into the underlying neural mechanisms. In this study, we recorded ERPs to soundscapes before and after sighted participants were trained with the Meijer algorithm. We compared these posttraining versus pretraining ERP differences with those of a control group who received the same set of 80 auditory/visual stimuli but with arbitrary pairings during training. Our behavioral results confirmed the rapid acquisition of cross-sensory mappings, and the group trained with the Meijer algorithm was able to generalize their learning to novel soundscapes at impressive levels of accuracy. The ERP results revealed an early cross-sensory learning effect (150-210 msec) that was significantly enhanced in the algorithm-trained group compared with the control group as well as a later difference (420-480 msec) that was unique to the algorithm-trained group. These ERP modulations are consistent with previous fMRI results and provide additional insight into the time course of cross-sensory information transfer in sensory substitution.

  18. The implement of Talmud property allocation algorithm based on graphic point-segment way

    NASA Astrophysics Data System (ADS)

    Cen, Haifeng

    2017-04-01

    Under the guidance of the Talmud allocation scheme's theory, the paper analyzes the algorithm implemented process via the perspective of graphic point-segment way, and designs the point-segment way's Talmud property allocation algorithm. Then it uses Java language to implement the core of allocation algorithm, by using Android programming to build a visual interface.

  19. Stereoscopic-3D display design: a new paradigm with Intel Adaptive Stable Image Technology [IA-SIT

    NASA Astrophysics Data System (ADS)

    Jain, Sunil

    2012-03-01

    Stereoscopic-3D (S3D) proliferation on personal computers (PC) is mired by several technical and business challenges: a) viewing discomfort due to cross-talk amongst stereo images; b) high system cost; and c) restricted content availability. Users expect S3D visual quality to be better than, or at least equal to, what they are used to enjoying on 2D in terms of resolution, pixel density, color, and interactivity. Intel Adaptive Stable Image Technology (IA-SIT) is a foundational technology, successfully developed to resolve S3D system design challenges and deliver high quality 3D visualization at PC price points. Optimizations in display driver, panel timing firmware, backlight hardware, eyewear optical stack, and synch mechanism combined can help accomplish this goal. Agnostic to refresh rate, IA-SIT will scale with shrinking of display transistors and improvements in liquid crystal and LED materials. Industry could profusely benefit from the following calls to action:- 1) Adopt 'IA-SIT S3D Mode' in panel specs (via VESA) to help panel makers monetize S3D; 2) Adopt 'IA-SIT Eyewear Universal Optical Stack' and algorithm (via CEA) to help PC peripheral makers develop stylish glasses; 3) Adopt 'IA-SIT Real Time Profile' for sub-100uS latency control (via BT Sig) to extend BT into S3D; and 4) Adopt 'IA-SIT Architecture' for Monitors and TVs to monetize via PC attach.

  20. IViPP: A Tool for Visualization in Particle Physics

    NASA Astrophysics Data System (ADS)

    Tran, Hieu; Skiba, Elizabeth; Baldwin, Doug

    2011-10-01

    Experiments and simulations in physics generate a lot of data; visualization is helpful to prepare that data for analysis. IViPP (Interactive Visualizations in Particle Physics) is an interactive computer program that visualizes results of particle physics simulations or experiments. IViPP can handle data from different simulators, such as SRIM or MCNP. It can display relevant geometry and measured scalar data; it can do simple selection from the visualized data. In order to be an effective visualization tool, IViPP must have a software architecture that can flexibly adapt to new data sources and display styles. It must be able to display complicated geometry and measured data with a high dynamic range. We therefore organize it in a highly modular structure, we develop libraries to describe geometry algorithmically, use rendering algorithms running on the powerful GPU to display 3-D geometry at interactive rates, and we represent scalar values in a visual form of scientific notation that shows both mantissa and exponent. This work was supported in part by the US Department of Energy through the Laboratory for Laser Energetics (LLE), with special thanks to Craig Sangster at LLE.

  1. Audio visual speech source separation via improved context dependent association model

    NASA Astrophysics Data System (ADS)

    Kazemi, Alireza; Boostani, Reza; Sobhanmanesh, Fariborz

    2014-12-01

    In this paper, we exploit the non-linear relation between a speech source and its associated lip video as a source of extra information to propose an improved audio-visual speech source separation (AVSS) algorithm. The audio-visual association is modeled using a neural associator which estimates the visual lip parameters from a temporal context of acoustic observation frames. We define an objective function based on mean square error (MSE) measure between estimated and target visual parameters. This function is minimized for estimation of the de-mixing vector/filters to separate the relevant source from linear instantaneous or time-domain convolutive mixtures. We have also proposed a hybrid criterion which uses AV coherency together with kurtosis as a non-Gaussianity measure. Experimental results are presented and compared in terms of visually relevant speech detection accuracy and output signal-to-interference ratio (SIR) of source separation. The suggested audio-visual model significantly improves relevant speech classification accuracy compared to existing GMM-based model and the proposed AVSS algorithm improves the speech separation quality compared to reference ICA- and AVSS-based methods.

  2. Local spatio-temporal analysis in vision systems

    NASA Astrophysics Data System (ADS)

    Geisler, Wilson S.; Bovik, Alan; Cormack, Lawrence; Ghosh, Joydeep; Gildeen, David

    1994-07-01

    The aims of this project are the following: (1) develop a physiologically and psychophysically based model of low-level human visual processing (a key component of which are local frequency coding mechanisms); (2) develop image models and image-processing methods based upon local frequency coding; (3) develop algorithms for performing certain complex visual tasks based upon local frequency representations, (4) develop models of human performance in certain complex tasks based upon our understanding of low-level processing; and (5) develop a computational testbed for implementing, evaluating and visualizing the proposed models and algorithms, using a massively parallel computer. Progress has been substantial on all aims. The highlights include the following: (1) completion of a number of psychophysical and physiological experiments revealing new, systematic and exciting properties of the primate (human and monkey) visual system; (2) further development of image models that can accurately represent the local frequency structure in complex images; (3) near completion in the construction of the Texas Active Vision Testbed; (4) development and testing of several new computer vision algorithms dealing with shape-from-texture, shape-from-stereo, and depth-from-focus; (5) implementation and evaluation of several new models of human visual performance; and (6) evaluation, purchase and installation of a MasPar parallel computer.

  3. Contrast Enhancement Algorithm Based on Gap Adjustment for Histogram Equalization

    PubMed Central

    Chiu, Chung-Cheng; Ting, Chih-Chung

    2016-01-01

    Image enhancement methods have been widely used to improve the visual effects of images. Owing to its simplicity and effectiveness histogram equalization (HE) is one of the methods used for enhancing image contrast. However, HE may result in over-enhancement and feature loss problems that lead to unnatural look and loss of details in the processed images. Researchers have proposed various HE-based methods to solve the over-enhancement problem; however, they have largely ignored the feature loss problem. Therefore, a contrast enhancement algorithm based on gap adjustment for histogram equalization (CegaHE) is proposed. It refers to a visual contrast enhancement algorithm based on histogram equalization (VCEA), which generates visually pleasing enhanced images, and improves the enhancement effects of VCEA. CegaHE adjusts the gaps between two gray values based on the adjustment equation, which takes the properties of human visual perception into consideration, to solve the over-enhancement problem. Besides, it also alleviates the feature loss problem and further enhances the textures in the dark regions of the images to improve the quality of the processed images for human visual perception. Experimental results demonstrate that CegaHE is a reliable method for contrast enhancement and that it significantly outperforms VCEA and other methods. PMID:27338412

  4. Fourier domain image fusion for differential X-ray phase-contrast breast imaging.

    PubMed

    Coello, Eduardo; Sperl, Jonathan I; Bequé, Dirk; Benz, Tobias; Scherer, Kai; Herzen, Julia; Sztrókay-Gaul, Anikó; Hellerhoff, Karin; Pfeiffer, Franz; Cozzini, Cristina; Grandl, Susanne

    2017-04-01

    X-Ray Phase-Contrast (XPC) imaging is a novel technology with a great potential for applications in clinical practice, with breast imaging being of special interest. This work introduces an intuitive methodology to combine and visualize relevant diagnostic features, present in the X-ray attenuation, phase shift and scattering information retrieved in XPC imaging, using a Fourier domain fusion algorithm. The method allows to present complementary information from the three acquired signals in one single image, minimizing the noise component and maintaining visual similarity to a conventional X-ray image, but with noticeable enhancement in diagnostic features, details and resolution. Radiologists experienced in mammography applied the image fusion method to XPC measurements of mastectomy samples and evaluated the feature content of each input and the fused image. This assessment validated that the combination of all the relevant diagnostic features, contained in the XPC images, was present in the fused image as well. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Infrared dim and small target detecting and tracking method inspired by Human Visual System

    NASA Astrophysics Data System (ADS)

    Dong, Xiabin; Huang, Xinsheng; Zheng, Yongbin; Shen, Lurong; Bai, Shengjian

    2014-01-01

    Detecting and tracking dim and small target in infrared images and videos is one of the most important techniques in many computer vision applications, such as video surveillance and infrared imaging precise guidance. Recently, more and more algorithms based on Human Visual System (HVS) have been proposed to detect and track the infrared dim and small target. In general, HVS concerns at least three mechanisms including contrast mechanism, visual attention and eye movement. However, most of the existing algorithms simulate only a single one of the HVS mechanisms, resulting in many drawbacks of these algorithms. A novel method which combines the three mechanisms of HVS is proposed in this paper. First, a group of Difference of Gaussians (DOG) filters which simulate the contrast mechanism are used to filter the input image. Second, a visual attention, which is simulated by a Gaussian window, is added at a point near the target in order to further enhance the dim small target. This point is named as the attention point. Eventually, the Proportional-Integral-Derivative (PID) algorithm is first introduced to predict the attention point of the next frame of an image which simulates the eye movement of human being. Experimental results of infrared images with different types of backgrounds demonstrate the high efficiency and accuracy of the proposed method to detect and track the dim and small targets.

  6. A Computationally Efficient Visual Saliency Algorithm Suitable for an Analog CMOS Implementation.

    PubMed

    D'Angelo, Robert; Wood, Richard; Lowry, Nathan; Freifeld, Geremy; Huang, Haiyao; Salthouse, Christopher D; Hollosi, Brent; Muresan, Matthew; Uy, Wes; Tran, Nhut; Chery, Armand; Poppe, Dorothy C; Sonkusale, Sameer

    2018-06-27

    Computer vision algorithms are often limited in their application by the large amount of data that must be processed. Mammalian vision systems mitigate this high bandwidth requirement by prioritizing certain regions of the visual field with neural circuits that select the most salient regions. This work introduces a novel and computationally efficient visual saliency algorithm for performing this neuromorphic attention-based data reduction. The proposed algorithm has the added advantage that it is compatible with an analog CMOS design while still achieving comparable performance to existing state-of-the-art saliency algorithms. This compatibility allows for direct integration with the analog-to-digital conversion circuitry present in CMOS image sensors. This integration leads to power savings in the converter by quantizing only the salient pixels. Further system-level power savings are gained by reducing the amount of data that must be transmitted and processed in the digital domain. The analog CMOS compatible formulation relies on a pulse width (i.e., time mode) encoding of the pixel data that is compatible with pulse-mode imagers and slope based converters often used in imager designs. This letter begins by discussing this time-mode encoding for implementing neuromorphic architectures. Next, the proposed algorithm is derived. Hardware-oriented optimizations and modifications to this algorithm are proposed and discussed. Next, a metric for quantifying saliency accuracy is proposed, and simulation results of this metric are presented. Finally, an analog synthesis approach for a time-mode architecture is outlined, and postsynthesis transistor-level simulations that demonstrate functionality of an implementation in a modern CMOS process are discussed.

  7. Comparison of 30-2 Standard and Fast programs of Swedish Interactive Threshold Algorithm of Humphrey Field Analyzer for perimetry in patients with intracranial tumors.

    PubMed

    Singh, Manav Deep; Jain, Kanika

    2017-11-01

    To find out whether 30-2 Swedish Interactive Threshold Algorithm (SITA) Fast is comparable to 30-2 SITA Standard as a tool for perimetry among the patients with intracranial tumors. This was a prospective cross-sectional study involving 80 patients aged ≥18 years with imaging proven intracranial tumors and visual acuity better than 20/60. The patients underwent multiple visual field examinations using the two algorithms till consistent and repeatable results were obtained. A total of 140 eyes of 80 patients were analyzed. Almost 60% of patients undergoing perimetry with SITA Standard required two or more sessions to obtain consistent results, whereas the same could be obtained in 81.42% with SITA Fast in the first session itself. Of 140 eyes, 70 eyes had recordable field defects and the rest had no defects as detected by either of the two algorithms. Mean deviation (MD) (P = 0.56), pattern standard deviation (PSD) (P = 0.22), visual field index (P = 0.83) and number of depressed points at P < 5%, 2%, 1%, and 0.5% on MD and PSD probability plots showed no statistically significant difference between two algorithms. Bland-Altman test showed that considerable variability existed between two algorithms. Perimetry performed by SITA Standard and SITA Fast algorithm of Humphrey Field Analyzer gives comparable results among the patients of intracranial tumors. Being more time efficient and with a shorter learning curve, SITA Fast my be recommended as a standard test for the purpose of perimetry among these patients.

  8. An Alternative Option to Dedicated Braille Notetakers for People with Visual Impairments: Universal Technology for Better Access

    ERIC Educational Resources Information Center

    Hong, Sunggye

    2012-01-01

    Technology provides equal access to information and helps people with visual impairments to complete tasks more independently. Among various assistive technology options for people with visual impairments, braille notetakers have been considered the most significant because of their technological innovation. Braille notetakers allow users who are…

  9. Advancing Partnerships Towards an Integrated Approach to Oil Spill Response

    NASA Astrophysics Data System (ADS)

    Green, D. S.; Stough, T.; Gallegos, S. C.; Leifer, I.; Murray, J. J.; Streett, D.

    2015-12-01

    Oil spills can cause enormous ecological and economic devastation, necessitating application of the best science and technology available, and remote sensing is playing a growing critical role in the detection and monitoring of oil spills, as well as facilitating validation of remote sensing oil spill products. The FOSTERRS (Federal Oil Science Team for Emergency Response Remote Sensing) interagency working group seeks to ensure that during an oil spill, remote sensing assets (satellite/aircraft/instruments) and analysis techniques are quickly, effectively, appropriately, and seamlessly available to oil spills responders. Yet significant challenges remain for addressing oils spanning a vast range of chemical properties that may be spilled from the Tropics to the Arctic, with algorithms and scientific understanding needing advances to keep up with technology. Thus, FOSTERRS promotes enabling scientific discovery to ensure robust utilization of available technology as well as identifying technologies moving up the TRL (Technology Readiness Level). A recent FOSTERRS facilitated support activity involved deployment of the AVIRIS NG (Airborne Visual Infrared Imaging Spectrometer- Next Generation) during the Santa Barbara Oil Spill to validate the potential of airborne hyperspectral imaging to real-time map beach tar coverage including surface validation data. Many developing airborne technologies have potential to transition to space-based platforms providing global readiness.

  10. Challenges and Recent Developments in Hearing Aids: Part I. Speech Understanding in Noise, Microphone Technologies and Noise Reduction Algorithms

    PubMed Central

    Chung, King

    2004-01-01

    This review discusses the challenges in hearing aid design and fitting and the recent developments in advanced signal processing technologies to meet these challenges. The first part of the review discusses the basic concepts and the building blocks of digital signal processing algorithms, namely, the signal detection and analysis unit, the decision rules, and the time constants involved in the execution of the decision. In addition, mechanisms and the differences in the implementation of various strategies used to reduce the negative effects of noise are discussed. These technologies include the microphone technologies that take advantage of the spatial differences between speech and noise and the noise reduction algorithms that take advantage of the spectral difference and temporal separation between speech and noise. The specific technologies discussed in this paper include first-order directional microphones, adaptive directional microphones, second-order directional microphones, microphone matching algorithms, array microphones, multichannel adaptive noise reduction algorithms, and synchrony detection noise reduction algorithms. Verification data for these technologies, if available, are also summarized. PMID:15678225

  11. Geometric modeling of subcellular structures, organelles, and multiprotein complexes

    PubMed Central

    Feng, Xin; Xia, Kelin; Tong, Yiying; Wei, Guo-Wei

    2013-01-01

    SUMMARY Recently, the structure, function, stability, and dynamics of subcellular structures, organelles, and multi-protein complexes have emerged as a leading interest in structural biology. Geometric modeling not only provides visualizations of shapes for large biomolecular complexes but also fills the gap between structural information and theoretical modeling, and enables the understanding of function, stability, and dynamics. This paper introduces a suite of computational tools for volumetric data processing, information extraction, surface mesh rendering, geometric measurement, and curvature estimation of biomolecular complexes. Particular emphasis is given to the modeling of cryo-electron microscopy data. Lagrangian-triangle meshes are employed for the surface presentation. On the basis of this representation, algorithms are developed for surface area and surface-enclosed volume calculation, and curvature estimation. Methods for volumetric meshing have also been presented. Because the technological development in computer science and mathematics has led to multiple choices at each stage of the geometric modeling, we discuss the rationales in the design and selection of various algorithms. Analytical models are designed to test the computational accuracy and convergence of proposed algorithms. Finally, we select a set of six cryo-electron microscopy data representing typical subcellular complexes to demonstrate the efficacy of the proposed algorithms in handling biomolecular surfaces and explore their capability of geometric characterization of binding targets. This paper offers a comprehensive protocol for the geometric modeling of subcellular structures, organelles, and multiprotein complexes. PMID:23212797

  12. Computational model for perception of objects and motions.

    PubMed

    Yang, WenLu; Zhang, LiQing; Ma, LiBo

    2008-06-01

    Perception of objects and motions in the visual scene is one of the basic problems in the visual system. There exist 'What' and 'Where' pathways in the superior visual cortex, starting from the simple cells in the primary visual cortex. The former is able to perceive objects such as forms, color, and texture, and the latter perceives 'where', for example, velocity and direction of spatial movement of objects. This paper explores brain-like computational architectures of visual information processing. We propose a visual perceptual model and computational mechanism for training the perceptual model. The computational model is a three-layer network. The first layer is the input layer which is used to receive the stimuli from natural environments. The second layer is designed for representing the internal neural information. The connections between the first layer and the second layer, called the receptive fields of neurons, are self-adaptively learned based on principle of sparse neural representation. To this end, we introduce Kullback-Leibler divergence as the measure of independence between neural responses and derive the learning algorithm based on minimizing the cost function. The proposed algorithm is applied to train the basis functions, namely receptive fields, which are localized, oriented, and bandpassed. The resultant receptive fields of neurons in the second layer have the characteristics resembling that of simple cells in the primary visual cortex. Based on these basis functions, we further construct the third layer for perception of what and where in the superior visual cortex. The proposed model is able to perceive objects and their motions with a high accuracy and strong robustness against additive noise. Computer simulation results in the final section show the feasibility of the proposed perceptual model and high efficiency of the learning algorithm.

  13. QAPgrid: A Two Level QAP-Based Approach for Large-Scale Data Analysis and Visualization

    PubMed Central

    Inostroza-Ponta, Mario; Berretta, Regina; Moscato, Pablo

    2011-01-01

    Background The visualization of large volumes of data is a computationally challenging task that often promises rewarding new insights. There is great potential in the application of new algorithms and models from combinatorial optimisation. Datasets often contain “hidden regularities” and a combined identification and visualization method should reveal these structures and present them in a way that helps analysis. While several methodologies exist, including those that use non-linear optimization algorithms, severe limitations exist even when working with only a few hundred objects. Methodology/Principal Findings We present a new data visualization approach (QAPgrid) that reveals patterns of similarities and differences in large datasets of objects for which a similarity measure can be computed. Objects are assigned to positions on an underlying square grid in a two-dimensional space. We use the Quadratic Assignment Problem (QAP) as a mathematical model to provide an objective function for assignment of objects to positions on the grid. We employ a Memetic Algorithm (a powerful metaheuristic) to tackle the large instances of this NP-hard combinatorial optimization problem, and we show its performance on the visualization of real data sets. Conclusions/Significance Overall, the results show that QAPgrid algorithm is able to produce a layout that represents the relationships between objects in the data set. Furthermore, it also represents the relationships between clusters that are feed into the algorithm. We apply the QAPgrid on the 84 Indo-European languages instance, producing a near-optimal layout. Next, we produce a layout of 470 world universities with an observed high degree of correlation with the score used by the Academic Ranking of World Universities compiled in the The Shanghai Jiao Tong University Academic Ranking of World Universities without the need of an ad hoc weighting of attributes. Finally, our Gene Ontology-based study on Saccharomyces cerevisiae fully demonstrates the scalability and precision of our method as a novel alternative tool for functional genomics. PMID:21267077

  14. QAPgrid: a two level QAP-based approach for large-scale data analysis and visualization.

    PubMed

    Inostroza-Ponta, Mario; Berretta, Regina; Moscato, Pablo

    2011-01-18

    The visualization of large volumes of data is a computationally challenging task that often promises rewarding new insights. There is great potential in the application of new algorithms and models from combinatorial optimisation. Datasets often contain "hidden regularities" and a combined identification and visualization method should reveal these structures and present them in a way that helps analysis. While several methodologies exist, including those that use non-linear optimization algorithms, severe limitations exist even when working with only a few hundred objects. We present a new data visualization approach (QAPgrid) that reveals patterns of similarities and differences in large datasets of objects for which a similarity measure can be computed. Objects are assigned to positions on an underlying square grid in a two-dimensional space. We use the Quadratic Assignment Problem (QAP) as a mathematical model to provide an objective function for assignment of objects to positions on the grid. We employ a Memetic Algorithm (a powerful metaheuristic) to tackle the large instances of this NP-hard combinatorial optimization problem, and we show its performance on the visualization of real data sets. Overall, the results show that QAPgrid algorithm is able to produce a layout that represents the relationships between objects in the data set. Furthermore, it also represents the relationships between clusters that are feed into the algorithm. We apply the QAPgrid on the 84 Indo-European languages instance, producing a near-optimal layout. Next, we produce a layout of 470 world universities with an observed high degree of correlation with the score used by the Academic Ranking of World Universities compiled in the The Shanghai Jiao Tong University Academic Ranking of World Universities without the need of an ad hoc weighting of attributes. Finally, our Gene Ontology-based study on Saccharomyces cerevisiae fully demonstrates the scalability and precision of our method as a novel alternative tool for functional genomics.

  15. Data-Parallel Algorithm for Contour Tree Construction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sewell, Christopher Meyer; Ahrens, James Paul; Carr, Hamish

    2017-01-19

    The goal of this project is to develop algorithms for additional visualization and analysis filters in order to expand the functionality of the VTK-m toolkit to support less critical but commonly used operators.

  16. Virtual reality visualization algorithms for the ALICE high energy physics experiment on the LHC at CERN

    NASA Astrophysics Data System (ADS)

    Myrcha, Julian; Trzciński, Tomasz; Rokita, Przemysław

    2017-08-01

    Analyzing massive amounts of data gathered during many high energy physics experiments, including but not limited to the LHC ALICE detector experiment, requires efficient and intuitive methods of visualisation. One of the possible approaches to that problem is stereoscopic 3D data visualisation. In this paper, we propose several methods that provide high quality data visualisation and we explain how those methods can be applied in virtual reality headsets. The outcome of this work is easily applicable to many real-life applications needed in high energy physics and can be seen as a first step towards using fully immersive virtual reality technologies within the frames of the ALICE experiment.

  17. A denoising algorithm for CT image using low-rank sparse coding

    NASA Astrophysics Data System (ADS)

    Lei, Yang; Xu, Dong; Zhou, Zhengyang; Wang, Tonghe; Dong, Xue; Liu, Tian; Dhabaan, Anees; Curran, Walter J.; Yang, Xiaofeng

    2018-03-01

    We propose a denoising method of CT image based on low-rank sparse coding. The proposed method constructs an adaptive dictionary of image patches and estimates the sparse coding regularization parameters using the Bayesian interpretation. A low-rank approximation approach is used to simultaneously construct the dictionary and achieve sparse representation through clustering similar image patches. A variable-splitting scheme and a quadratic optimization are used to reconstruct CT image based on achieved sparse coefficients. We tested this denoising technology using phantom, brain and abdominal CT images. The experimental results showed that the proposed method delivers state-of-art denoising performance, both in terms of objective criteria and visual quality.

  18. Visualization-by-Sketching: An Artist's Interface for Creating Multivariate Time-Varying Data Visualizations.

    PubMed

    Schroeder, David; Keefe, Daniel F

    2016-01-01

    We present Visualization-by-Sketching, a direct-manipulation user interface for designing new data visualizations. The goals are twofold: First, make the process of creating real, animated, data-driven visualizations of complex information more accessible to artists, graphic designers, and other visual experts with traditional, non-technical training. Second, support and enhance the role of human creativity in visualization design, enabling visual experimentation and workflows similar to what is possible with traditional artistic media. The approach is to conceive of visualization design as a combination of processes that are already closely linked with visual creativity: sketching, digital painting, image editing, and reacting to exemplars. Rather than studying and tweaking low-level algorithms and their parameters, designers create new visualizations by painting directly on top of a digital data canvas, sketching data glyphs, and arranging and blending together multiple layers of animated 2D graphics. This requires new algorithms and techniques to interpret painterly user input relative to data "under" the canvas, balance artistic freedom with the need to produce accurate data visualizations, and interactively explore large (e.g., terabyte-sized) multivariate datasets. Results demonstrate a variety of multivariate data visualization techniques can be rapidly recreated using the interface. More importantly, results and feedback from artists support the potential for interfaces in this style to attract new, creative users to the challenging task of designing more effective data visualizations and to help these users stay "in the creative zone" as they work.

  19. Integrated biophotonics in endoscopic oncology

    NASA Astrophysics Data System (ADS)

    Muguruma, Naoki; DaCosta, Ralph S.; Wilson, Brian C.; Marcon, Norman E.

    2009-02-01

    Gastrointestinal endoscopy has made great progress during last decade. Diagnostic accuracy can be enhanced by better training, improved dye-contrast techniques method, and the development of new image processing technologies. However, diagnosis using conventional endoscopy with white-light optical imaging is essentially limited by being based on morphological changes and/or visual attribution: hue, saturation and intensity, interpretation of which depends on the endoscopist's eye and brain. In microlesions in the gastrointestinal tract, we still rely ultimately on the histopathological diagnosis from biopsy specimens. Autofluorescence imaging system has been applied for lesions which have been difficult to morphologically recognize or are indistinct with conventional endoscope, and this approach has potential application for the diagnosis of dysplastic lesions and early cancers in the gastrointestinal tract, supplementing the information from white light endoscopy. This system has an advantage that it needs no administration of a photosensitive agent, making it suitable as a screening method for the early detection of neoplastic tissues. Narrow band imaging (NBI) is a novel endoscopic technique which can distinguish neoplastic and non-neoplastic lesions without chromoendoscopy. Magnifying endoscopy in combination with NBI has an obvious advantage, namely analysis of the epithelial pit pattern and the vascular network. This new technique allows a detailed visualization in early neoplastic lesions of esophagus, stomach and colon. However, problems remain; how to combine these technologies in an optimum diagnostic strategy, how to apply them into the algorithm for therapeutic decision-making, and how to standardize several classifications surrounding them. 'Molecular imaging' is a concept representing the most novel imaging methods in medicine, although the definition of the word is still controversial. In the field of gastrointestinal endoscopy, the future of endoscopic diagnosis is likely to be impacted by a combination of biomarkers and technology, and 'endoscopic molecular imaging' should be defined as "visualization of molecular characteristics with endoscopy". These innovations will allow us not only to locate a tumor or dysplastic lesion but also to visualize its molecular characteristics (e.g., DNA mutations and polymorphisms, gene and/or protein expression), and the activity of specific molecules and biological processes that affect tumor behavior and/or its response to therapy. In the near future, these methods should be promising technologies that will play a central role in gastrointestinal oncology.

  20. Pyramid algorithms as models of human cognition

    NASA Astrophysics Data System (ADS)

    Pizlo, Zygmunt; Li, Zheng

    2003-06-01

    There is growing body of experimental evidence showing that human perception and cognition involves mechanisms that can be adequately modeled by pyramid algorithms. The main aspect of those mechanisms is hierarchical clustering of information: visual images, spatial relations, and states as well as transformations of a problem. In this paper we review prior psychophysical and simulation results on visual size transformation, size discrimination, speed-accuracy tradeoff, figure-ground segregation, and the traveling salesman problem. We also present our new results on graph search and on the 15-puzzle.

  1. Intelligent Visual Input: A Graphical Method for Rapid Entry of Patient-Specific Data

    PubMed Central

    Bergeron, Bryan P.; Greenes, Robert A.

    1987-01-01

    Intelligent Visual Input (IVI) provides a rapid, graphical method of data entry for both expert system interaction and medical record keeping purposes. Key components of IVI include: a high-resolution graphic display; an interface supportive of rapid selection, i.e., one utilizing a mouse or light pen; algorithm simplification modules; and intelligent graphic algorithm expansion modules. A prototype IVI system, designed to facilitate entry of physical exam findings, is used to illustrates the potential advantages of this approach.

  2. Hiding the Disk and Network Latency of Out-of-Core Visualization

    NASA Technical Reports Server (NTRS)

    Ellsworth, David

    2001-01-01

    This paper describes an algorithm that improves the performance of application-controlled demand paging for out-of-core visualization by hiding the latency of reading data from both local disks or disks on remote servers. The performance improvements come from better overlapping the computation with the page reading process, and by performing multiple page reads in parallel. The paper includes measurements that show that the new multithreaded paging algorithm decreases the time needed to compute visualizations by one third when using one processor and reading data from local disk. The time needed when using one processor and reading data from remote disk decreased by two thirds. Visualization runs using data from remote disk actually ran faster than ones using data from local disk because the remote runs were able to make use of the remote server's high performance disk array.

  3. Exploring Gigabyte Datasets in Real Time: Architectures, Interfaces and Time-Critical Design

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Gerald-Yamasaki, Michael (Technical Monitor)

    1998-01-01

    Architectures and Interfaces: The implications of real-time interaction on software architecture design: decoupling of interaction/graphics and computation into asynchronous processes. The performance requirements of graphics and computation for interaction. Time management in such an architecture. Examples of how visualization algorithms must be modified for high performance. Brief survey of interaction techniques and design, including direct manipulation and manipulation via widgets. talk discusses how human factors considerations drove the design and implementation of the virtual wind tunnel. Time-Critical Design: A survey of time-critical techniques for both computation and rendering. Emphasis on the assignment of a time budget to both the overall visualization environment and to each individual visualization technique in the environment. The estimation of the benefit and cost of an individual technique. Examples of the modification of visualization algorithms to allow time-critical control.

  4. Advanced Image Processing for Defect Visualization in Infrared Thermography

    NASA Technical Reports Server (NTRS)

    Plotnikov, Yuri A.; Winfree, William P.

    1997-01-01

    Results of a defect visualization process based on pulse infrared thermography are presented. Algorithms have been developed to reduce the amount of operator participation required in the process of interpreting thermographic images. The algorithms determine the defect's depth and size from the temporal and spatial thermal distributions that exist on the surface of the investigated object following thermal excitation. A comparison of the results from thermal contrast, time derivative, and phase analysis methods for defect visualization are presented. These comparisons are based on three dimensional simulations of a test case representing a plate with multiple delaminations. Comparisons are also based on experimental data obtained from a specimen with flat bottom holes and a composite panel with delaminations.

  5. Benchmarking of data fusion algorithms in support of earth observation based Antarctic wildlife monitoring

    NASA Astrophysics Data System (ADS)

    Witharana, Chandi; LaRue, Michelle A.; Lynch, Heather J.

    2016-03-01

    Remote sensing is a rapidly developing tool for mapping the abundance and distribution of Antarctic wildlife. While both panchromatic and multispectral imagery have been used in this context, image fusion techniques have received little attention. We tasked seven widely-used fusion algorithms: Ehlers fusion, hyperspherical color space fusion, high-pass fusion, principal component analysis (PCA) fusion, University of New Brunswick fusion, and wavelet-PCA fusion to resolution enhance a series of single-date QuickBird-2 and Worldview-2 image scenes comprising penguin guano, seals, and vegetation. Fused images were assessed for spectral and spatial fidelity using a variety of quantitative quality indicators and visual inspection methods. Our visual evaluation elected the high-pass fusion algorithm and the University of New Brunswick fusion algorithm as best for manual wildlife detection while the quantitative assessment suggested the Gram-Schmidt fusion algorithm and the University of New Brunswick fusion algorithm as best for automated classification. The hyperspherical color space fusion algorithm exhibited mediocre results in terms of spectral and spatial fidelities. The PCA fusion algorithm showed spatial superiority at the expense of spectral inconsistencies. The Ehlers fusion algorithm and the wavelet-PCA algorithm showed the weakest performances. As remote sensing becomes a more routine method of surveying Antarctic wildlife, these benchmarks will provide guidance for image fusion and pave the way for more standardized products for specific types of wildlife surveys.

  6. Semantics of directly manipulating spatializations.

    PubMed

    Hu, Xinran; Bradel, Lauren; Maiti, Dipayan; House, Leanna; North, Chris; Leman, Scotland

    2013-12-01

    When high-dimensional data is visualized in a 2D plane by using parametric projection algorithms, users may wish to manipulate the layout of the data points to better reflect their domain knowledge or to explore alternative structures. However, few users are well-versed in the algorithms behind the visualizations, making parameter tweaking more of a guessing game than a series of decisive interactions. Translating user interactions into algorithmic input is a key component of Visual to Parametric Interaction (V2PI) [13]. Instead of adjusting parameters, users directly move data points on the screen, which then updates the underlying statistical model. However, we have found that some data points that are not moved by the user are just as important in the interactions as the data points that are moved. Users frequently move some data points with respect to some other 'unmoved' data points that they consider as spatially contextual. However, in current V2PI interactions, these points are not explicitly identified when directly manipulating the moved points. We design a richer set of interactions that makes this context more explicit, and a new algorithm and sophisticated weighting scheme that incorporates the importance of these unmoved data points into V2PI.

  7. Annotating image ROIs with text descriptions for multimodal biomedical document retrieval

    NASA Astrophysics Data System (ADS)

    You, Daekeun; Simpson, Matthew; Antani, Sameer; Demner-Fushman, Dina; Thoma, George R.

    2013-01-01

    Regions of interest (ROIs) that are pointed to by overlaid markers (arrows, asterisks, etc.) in biomedical images are expected to contain more important and relevant information than other regions for biomedical article indexing and retrieval. We have developed several algorithms that localize and extract the ROIs by recognizing markers on images. Cropped ROIs then need to be annotated with contents describing them best. In most cases accurate textual descriptions of the ROIs can be found from figure captions, and these need to be combined with image ROIs for annotation. The annotated ROIs can then be used to, for example, train classifiers that separate ROIs into known categories (medical concepts), or to build visual ontologies, for indexing and retrieval of biomedical articles. We propose an algorithm that pairs visual and textual ROIs that are extracted from images and figure captions, respectively. This algorithm based on dynamic time warping (DTW) clusters recognized pointers into groups, each of which contains pointers with identical visual properties (shape, size, color, etc.). Then a rule-based matching algorithm finds the best matching group for each textual ROI mention. Our method yields a precision and recall of 96% and 79%, respectively, when ground truth textual ROI data is used.

  8. Crosswalk navigation for people with visual impairments on a wearable device

    NASA Astrophysics Data System (ADS)

    Cheng, Ruiqi; Wang, Kaiwei; Yang, Kailun; Long, Ningbo; Hu, Weijian; Chen, Hao; Bai, Jian; Liu, Dong

    2017-09-01

    Detecting and reminding of crosswalks at urban intersections is one of the most important demands for people with visual impairments. A real-time crosswalk detection algorithm, adaptive extraction and consistency analysis (AECA), is proposed. Compared with existing algorithms, which detect crosswalks in ideal scenarios, the AECA algorithm performs better in challenging scenarios, such as crosswalks at far distances, low-contrast crosswalks, pedestrian occlusion, various illuminances, and the limited resources of portable PCs. Bright stripes of crosswalks are extracted by adaptive thresholding, and are gathered to form crosswalks by consistency analysis. On the testing dataset, the proposed algorithm achieves a precision of 84.6% and a recall of 60.1%, which are higher than the bipolarity-based algorithm. The position and orientation of crosswalks are conveyed to users by voice prompts so as to align themselves with crosswalks and walk along crosswalks. The field tests carried out in various practical scenarios prove the effectiveness and reliability of the proposed navigation approach.

  9. Dynamic Visualization of Co-expression in Systems Genetics Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    New, Joshua Ryan; Huang, Jian; Chesler, Elissa J

    2008-01-01

    Biologists hope to address grand scientific challenges by exploring the abundance of data made available through modern microarray technology and other high-throughput techniques. The impact of this data, however, is limited unless researchers can effectively assimilate such complex information and integrate it into their daily research; interactive visualization tools are called for to support the effort. Specifically, typical studies of gene co-expression require novel visualization tools that enable the dynamic formulation and fine-tuning of hypotheses to aid the process of evaluating sensitivity of key parameters. These tools should allow biologists to develop an intuitive understanding of the structure of biologicalmore » networks and discover genes which reside in critical positions in networks and pathways. By using a graph as a universal data representation of correlation in gene expression data, our novel visualization tool employs several techniques that when used in an integrated manner provide innovative analytical capabilities. Our tool for interacting with gene co-expression data integrates techniques such as: graph layout, qualitative subgraph extraction through a novel 2D user interface, quantitative subgraph extraction using graph-theoretic algorithms or by querying an optimized b-tree, dynamic level-of-detail graph abstraction, and template-based fuzzy classification using neural networks. We demonstrate our system using a real-world workflow from a large-scale, systems genetics study of mammalian gene co-expression.« less

  10. Motion Cueing Algorithm Development: Piloted Performance Testing of the Cueing Algorithms

    NASA Technical Reports Server (NTRS)

    Houck, Jacob A. (Technical Monitor); Telban, Robert J.; Cardullo, Frank M.; Kelly, Lon C.

    2005-01-01

    The relative effectiveness in simulating aircraft maneuvers with both current and newly developed motion cueing algorithms was assessed with an eleven-subject piloted performance evaluation conducted on the NASA Langley Visual Motion Simulator (VMS). In addition to the current NASA adaptive algorithm, two new cueing algorithms were evaluated: the optimal algorithm and the nonlinear algorithm. The test maneuvers included a straight-in approach with a rotating wind vector, an offset approach with severe turbulence and an on/off lateral gust that occurs as the aircraft approaches the runway threshold, and a takeoff both with and without engine failure after liftoff. The maneuvers were executed with each cueing algorithm with added visual display delay conditions ranging from zero to 200 msec. Two methods, the quasi-objective NASA Task Load Index (TLX), and power spectral density analysis of pilot control, were used to assess pilot workload. Piloted performance parameters for the approach maneuvers, the vertical velocity upon touchdown and the runway touchdown position, were also analyzed but did not show any noticeable difference among the cueing algorithms. TLX analysis reveals, in most cases, less workload and variation among pilots with the nonlinear algorithm. Control input analysis shows pilot-induced oscillations on a straight-in approach were less prevalent compared to the optimal algorithm. The augmented turbulence cues increased workload on an offset approach that the pilots deemed more realistic compared to the NASA adaptive algorithm. The takeoff with engine failure showed the least roll activity for the nonlinear algorithm, with the least rudder pedal activity for the optimal algorithm.

  11. Robot Vision Library

    NASA Technical Reports Server (NTRS)

    Howard, Andrew B.; Ansar, Adnan I.; Litwin, Todd E.; Goldberg, Steven B.

    2009-01-01

    The JPL Robot Vision Library (JPLV) provides real-time robot vision algorithms for developers who are not vision specialists. The package includes algorithms for stereo ranging, visual odometry and unsurveyed camera calibration, and has unique support for very wideangle lenses

  12. Toward an improved haptic zooming algorithm for graphical information accessed by individuals who are blind and visually impaired.

    PubMed

    Rastogi, Ravi; Pawluk, Dianne T V

    2013-01-01

    An increasing amount of information content used in school, work, and everyday living is presented in graphical form. Unfortunately, it is difficult for people who are blind or visually impaired to access this information, especially when many diagrams are needed. One problem is that details, even in relatively simple visual diagrams, can be very difficult to perceive using touch. With manually created tactile diagrams, these details are often presented in separate diagrams which must be selected from among others. Being able to actively zoom in on an area of a single diagram so that the details can be presented at a reasonable size for exploration purposes seems a simpler approach for the user. However, directly using visual zooming methods have some limitations when used haptically. Therefore, a new zooming method is proposed to avoid these pitfalls. A preliminary experiment was performed to examine the usefulness of the algorithm compared to not using zooming. The results showed that the number of correct responses improved with the developed zooming algorithm and participants found it to be more usable than not using zooming for exploration of a floor map.

  13. Teachers of Students with Visual Impairments and Their Use of Assistive Technology: Measuring the Proficiency of Teachers and Their Identification with a Community of Practice

    ERIC Educational Resources Information Center

    Siu, Yue-Ting; Morash, Valerie S.

    2014-01-01

    Introduction: This article presents an instrument that measures the assistive technology proficiency of teachers of students with visual impairments and their identification with a community of practice that values assistive technology. Teachers' deficits in assistive technology proficiency negatively impact students who are visually impaired by…

  14. Three-step sequential positioning algorithm during sonographic evaluation for appendicitis increases appendiceal visualization rate and reduces CT use.

    PubMed

    Chang, Stephanie T; Jeffrey, R Brooke; Olcott, Eric W

    2014-11-01

    The purpose of this article is to examine the rates of appendiceal visualization by sonography, imaging-based diagnoses of appendicitis, and CT use after appendiceal sonography, before and after the introduction of a sonographic algorithm involving sequential changes in patient positioning. We used a search engine to retrospectively identify patients who underwent graded-compression sonography for suspected appendicitis during 6-month periods before (period 1; 419 patients) and after (period 2; 486 patients) implementation of a new three-step positional sonographic algorithm. The new algorithm included initial conventional supine scanning and, as long as the appendix remained nonvisualized, left posterior oblique scanning and then "second-look" supine scanning. Abdominal CT within 7 days after sonography was recorded. Between periods 1 and 2, appendiceal visualization on sonography increased from 31.0% to 52.5% (p < 0.001), postsonography CT use decreased from 31.3% to 17.7% (p < 0.001), and the proportion of imaging-based diagnoses of appendicitis made by sonography increased from 63.8% to 85.7% (p = 0.002). The incidence of appendicitis diagnosed by imaging (either sonography or CT) remained similar at 16.5% and 17.3%, respectively (p = 0.790). Sensitivity and overall accuracy were 57.8% (95% CI, 44.8-70.1%) and 93.0% (95% CI, 90.1-95.3%), respectively, in period 1 and 76.5% (95% CI, 65.8-85.2%) and 95.4% (95% CI, 93.1-97.1%), respectively, in period 2. Similar findings were observed for adults and children. Implementation of an ultrasound algorithm with sequential positioning significantly improved the appendiceal visualization rate and the proportion of imaging-based diagnoses of appendicitis made by ultrasound, enabling a concomitant decrease in abdominal CT use in both children and adults.

  15. Science & Technology Review October 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aufderheide III, M B

    This month's issue has the following articles: (1) Important Missions, Great Science, and Innovative Technology--Commentary by Cherry A. Murray; (2) NanoFoil{reg_sign} Solders with Less Heat--Soldering and brazing to join an array of materials are now Soldering and brazing to join an array of materials are now possible without furnaces, torches, or lead; (3) Detecting Radiation on the Move--An award-winning technology can detect even small amounts An award-winning technology can detect even small amounts of radioactive material in transit; (4) Identifying Airborne Pathogens in Time to Respond--A mass spectrometer identifies airborne spores in less than A mass spectrometer identifies airborne sporesmore » in less than a minute with no false positives; (5) Picture Perfect with VisIt--The Livermore-developed software tool VisIt helps scientists The Livermore-developed software tool VisIt helps scientists visualize and analyze large data sets; (6) Revealing the Mysteries of Water--Scientists are using Livermore's Thunder supercomputer and new algorithms to understand the phases of water; and (7) Lightweight Target Generates Bright, Energetic X Rays--Livermore scientists are producing aerogel targets for use in inertial Livermore scientists are producing aerogel targets for use in inertial confinement fusion experiments and radiation-effects testing.« less

  16. SU-G-JeP3-05: Geometry Based Transperineal Ultrasound Probe Positioning for Image Guided Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camps, S; With, P de; Verhaegen, F

    2016-06-15

    Purpose: The use of ultrasound (US) imaging in radiotherapy is not widespread, primarily due to the need for skilled operators performing the scans. Automation of probe positioning has the potential to remove this need and minimize operator dependence. We introduce an algorithm for obtaining a US probe position that allows good anatomical structure visualization based on clinical requirements. The first application is on 4D transperineal US images of prostate cancer patients. Methods: The algorithm calculates the probe position and orientation using anatomical information provided by a reference CT scan, always available in radiotherapy workflows. As initial test, we apply themore » algorithm on a CIRS pelvic US phantom to obtain a set of possible probe positions. Subsequently, five of these positions are randomly chosen and used to acquire actual US volumes of the phantom. Visual inspection of these volumes reveal if the whole prostate, and adjacent edges of bladder and rectum are fully visualized, as clinically required. In addition, structure positions on the acquired US volumes are compared to predictions of the algorithm. Results: All acquired volumes fulfill the clinical requirements as specified in the previous section. Preliminary quantitative evaluation was performed on thirty consecutive slices of two volumes, on which the structures are easily recognizable. The mean absolute distances (MAD) between actual anatomical structure positions and positions predicted by the algorithm were calculated. This resulted in MAD of 2.4±0.4 mm for prostate, 3.2±0.9 mm for bladder and 3.3±1.3 mm for rectum. Conclusion: Visual inspection and quantitative evaluation show that the algorithm is able to propose probe positions that fulfill all clinical requirements. The obtained MAD is on average 2.9 mm. However, during evaluation we assumed no errors in structure segmentation and probe positioning. In future steps, accurate estimation of these errors will allow for better evaluation of the achieved accuracy.« less

  17. Obstacle Detection in Indoor Environment for Visually Impaired Using Mobile Camera

    NASA Astrophysics Data System (ADS)

    Rahman, Samiur; Ullah, Sana; Ullah, Sehat

    2018-01-01

    Obstacle detection can improve the mobility as well as the safety of visually impaired people. In this paper, we present a system using mobile camera for visually impaired people. The proposed algorithm works in indoor environment and it uses a very simple technique of using few pre-stored floor images. In indoor environment all unique floor types are considered and a single image is stored for each unique floor type. These floor images are considered as reference images. The algorithm acquires an input image frame and then a region of interest is selected and is scanned for obstacle using pre-stored floor images. The algorithm compares the present frame and the next frame and compute mean square error of the two frames. If mean square error is less than a threshold value α then it means that there is no obstacle in the next frame. If mean square error is greater than α then there are two possibilities; either there is an obstacle or the floor type is changed. In order to check if the floor is changed, the algorithm computes mean square error of next frame and all stored floor types. If minimum of mean square error is less than a threshold value α then flour is changed otherwise there exist an obstacle. The proposed algorithm works in real-time and 96% accuracy has been achieved.

  18. A Screen Space GPGPU Surface LIC Algorithm for Distributed Memory Data Parallel Sort Last Rendering Infrastructures

    NASA Astrophysics Data System (ADS)

    Loring, B.; Karimabadi, H.; Rortershteyn, V.

    2015-10-01

    The surface line integral convolution(LIC) visualization technique produces dense visualization of vector fields on arbitrary surfaces. We present a screen space surface LIC algorithm for use in distributed memory data parallel sort last rendering infrastructures. The motivations for our work are to support analysis of datasets that are too large to fit in the main memory of a single computer and compatibility with prevalent parallel scientific visualization tools such as ParaView and VisIt. By working in screen space using OpenGL we can leverage the computational power of GPUs when they are available and run without them when they are not. We address efficiency and performance issues that arise from the transformation of data from physical to screen space by selecting an alternate screen space domain decomposition. We analyze the algorithm's scaling behavior with and without GPUs on two high performance computing systems using data from turbulent plasma simulations.

  19. Research on conflict detection algorithm in 3D visualization environment of urban rail transit line

    NASA Astrophysics Data System (ADS)

    Wang, Li; Xiong, Jing; You, Kuokuo

    2017-03-01

    In this paper, a method of collision detection is introduced, and the theory of three-dimensional modeling of underground buildings and urban rail lines is realized by rapidly extracting the buildings that are in conflict with the track area in the 3D visualization environment. According to the characteristics of the buildings, CSG and B-rep are used to model the buildings based on CSG and B-rep. On the basis of studying the modeling characteristics, this paper proposes to use the AABB level bounding volume method to detect the first conflict and improve the detection efficiency, and then use the triangular rapid intersection detection algorithm to detect the conflict, and finally determine whether the building collides with the track area. Through the algorithm of this paper, we can quickly extract buildings colliding with the influence area of the track line, so as to help the line design, choose the best route and calculate the cost of land acquisition in the three-dimensional visualization environment.

  20. Application of a Noise Adaptive Contrast Sensitivity Function to Image Data Compression

    NASA Astrophysics Data System (ADS)

    Daly, Scott J.

    1989-08-01

    The visual contrast sensitivity function (CSF) has found increasing use in image compression as new algorithms optimize the display-observer interface in order to reduce the bit rate and increase the perceived image quality. In most compression algorithms, increasing the quantization intervals reduces the bit rate at the expense of introducing more quantization error, a potential image quality degradation. The CSF can be used to distribute this error as a function of spatial frequency such that it is undetectable by the human observer. Thus, instead of being mathematically lossless, the compression algorithm can be designed to be visually lossless, with the advantage of a significantly reduced bit rate. However, the CSF is strongly affected by image noise, changing in both shape and peak sensitivity. This work describes a model of the CSF that includes these changes as a function of image noise level by using the concepts of internal visual noise, and tests this model in the context of image compression with an observer study.

  1. Visualization for Hyper-Heuristics. Front-End Graphical User Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroenung, Lauren

    Modern society is faced with ever more complex problems, many of which can be formulated as generate-and-test optimization problems. General-purpose optimization algorithms are not well suited for real-world scenarios where many instances of the same problem class need to be repeatedly and efficiently solved because they are not targeted to a particular scenario. Hyper-heuristics automate the design of algorithms to create a custom algorithm for a particular scenario. While such automated design has great advantages, it can often be difficult to understand exactly how a design was derived and why it should be trusted. This project aims to address thesemore » issues of usability by creating an easy-to-use graphical user interface (GUI) for hyper-heuristics to support practitioners, as well as scientific visualization of the produced automated designs. My contributions to this project are exhibited in the user-facing portion of the developed system and the detailed scientific visualizations created from back-end data.« less

  2. A Screen Space GPGPU Surface LIC Algorithm for Distributed Memory Data Parallel Sort Last Rendering Infrastructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loring, Burlen; Karimabadi, Homa; Rortershteyn, Vadim

    2014-07-01

    The surface line integral convolution(LIC) visualization technique produces dense visualization of vector fields on arbitrary surfaces. We present a screen space surface LIC algorithm for use in distributed memory data parallel sort last rendering infrastructures. The motivations for our work are to support analysis of datasets that are too large to fit in the main memory of a single computer and compatibility with prevalent parallel scientific visualization tools such as ParaView and VisIt. By working in screen space using OpenGL we can leverage the computational power of GPUs when they are available and run without them when they are not.more » We address efficiency and performance issues that arise from the transformation of data from physical to screen space by selecting an alternate screen space domain decomposition. We analyze the algorithm's scaling behavior with and without GPUs on two high performance computing systems using data from turbulent plasma simulations.« less

  3. Phenotyping and Visualizing Infusion-Related Reactions for Breast Cancer Patients.

    PubMed

    Sun, Deyu; Sarda, Gopal; Skube, Steven J; Blaes, Anne H; Khairat, Saif; Melton, Genevieve B; Zhang, Rui

    2017-01-01

    Infusion-related reactions (IRRs) are typical adverse events for breast cancer patients. Detecting IRRs and visualizing their occurance associated with the drug treatment would potentially assist clinicians to improve patient safety and help researchers model IRRs and analyze their risk factors. We developed and evaluated a phenotyping algorithm to detect IRRs for breast cancer patients. We also designed a visualization prototype to render IRR patients' medications, lab tests and vital signs over time. By comparing with the 42 randomly selected doses that are manually labeled by a domain expert, the sensitivity, positive predictive value, specificity, and negative predictive value of the algorithms are 69%, 60%, 79%, and 85%, respectively. Using the algorithm, an incidence of 6.4% of patients and 1.8% of doses for docetaxel, 8.7% and 3.2% for doxorubicin, 10.4% and 1.2% for paclitaxel, 16.1% and 1.1% for trastuzumab were identified retrospectively. The incidences estimated are consistent with related studies.

  4. Phenotyping and Visualizing Infusion-Related Reactions for Breast Cancer Patients

    PubMed Central

    Sun, Deyu; Sarda, Gopal; Skube, Steven J.; Blaes, Anne H.; Khairat, Saif; Melton, Genevieve B.; Zhang, Rui

    2018-01-01

    Infusion-related reactions (IRRs) are typical adverse events for breast cancer patients. Detecting IRRs and visualizing their occurance associated with the drug treatment would potentially assist clinicians to improve patient safety and help researchers model IRRs and analyze their risk factors. We developed and evaluated a phenotyping algorithm to detect IRRs for breast cancer patients. We also designed a visualization prototype to render IRR patients’ medications, lab tests and vital signs over time. By comparing with the 42 randomly selected doses that are manually labeled by a domain expert, the sensitivity, positive predictive value, specificity, and negative predictive value of the algorithms are 69%, 60%, 79%, and 85%, respectively. Using the algorithm, an incidence of 6.4% of patients and 1.8% of doses for docetaxel, 8.7% and 3.2% for doxorubicin, 10.4% and 1.2% for paclitaxel, 16.1% and 1.1% for trastuzumab were identified retrospectively. The incidences estimated are consistent with related studies. PMID:29295166

  5. Progressive Learning of Topic Modeling Parameters: A Visual Analytics Framework.

    PubMed

    El-Assady, Mennatallah; Sevastjanova, Rita; Sperrle, Fabian; Keim, Daniel; Collins, Christopher

    2018-01-01

    Topic modeling algorithms are widely used to analyze the thematic composition of text corpora but remain difficult to interpret and adjust. Addressing these limitations, we present a modular visual analytics framework, tackling the understandability and adaptability of topic models through a user-driven reinforcement learning process which does not require a deep understanding of the underlying topic modeling algorithms. Given a document corpus, our approach initializes two algorithm configurations based on a parameter space analysis that enhances document separability. We abstract the model complexity in an interactive visual workspace for exploring the automatic matching results of two models, investigating topic summaries, analyzing parameter distributions, and reviewing documents. The main contribution of our work is an iterative decision-making technique in which users provide a document-based relevance feedback that allows the framework to converge to a user-endorsed topic distribution. We also report feedback from a two-stage study which shows that our technique results in topic model quality improvements on two independent measures.

  6. Optical/digital identification/verification system based on digital watermarking technology

    NASA Astrophysics Data System (ADS)

    Herrigel, Alexander; Voloshynovskiy, Sviatoslav V.; Hrytskiv, Zenon D.

    2000-06-01

    This paper presents a new approach for the secure integrity verification of driver licenses, passports or other analogue identification documents. The system embeds (detects) the reference number of the identification document with the DCT watermark technology in (from) the owner photo of the identification document holder. During verification the reference number is extracted and compared with the reference number printed in the identification document. The approach combines optical and digital image processing techniques. The detection system must be able to scan an analogue driver license or passport, convert the image of this document into a digital representation and then apply the watermark verification algorithm to check the payload of the embedded watermark. If the payload of the watermark is identical with the printed visual reference number of the issuer, the verification was successful and the passport or driver license has not been modified. This approach constitutes a new class of application for the watermark technology, which was originally targeted for the copyright protection of digital multimedia data. The presented approach substantially increases the security of the analogue identification documents applied in many European countries.

  7. Topic Transition in Educational Videos Using Visually Salient Words

    ERIC Educational Resources Information Center

    Gandhi, Ankit; Biswas, Arijit; Deshmukh, Om

    2015-01-01

    In this paper, we propose a visual saliency algorithm for automatically finding the topic transition points in an educational video. First, we propose a method for assigning a saliency score to each word extracted from an educational video. We design several mid-level features that are indicative of visual saliency. The optimal feature combination…

  8. Generating descriptive visual words and visual phrases for large-scale image applications.

    PubMed

    Zhang, Shiliang; Tian, Qi; Hua, Gang; Huang, Qingming; Gao, Wen

    2011-09-01

    Bag-of-visual Words (BoWs) representation has been applied for various problems in the fields of multimedia and computer vision. The basic idea is to represent images as visual documents composed of repeatable and distinctive visual elements, which are comparable to the text words. Notwithstanding its great success and wide adoption, visual vocabulary created from single-image local descriptors is often shown to be not as effective as desired. In this paper, descriptive visual words (DVWs) and descriptive visual phrases (DVPs) are proposed as the visual correspondences to text words and phrases, where visual phrases refer to the frequently co-occurring visual word pairs. Since images are the carriers of visual objects and scenes, a descriptive visual element set can be composed by the visual words and their combinations which are effective in representing certain visual objects or scenes. Based on this idea, a general framework is proposed for generating DVWs and DVPs for image applications. In a large-scale image database containing 1506 object and scene categories, the visual words and visual word pairs descriptive to certain objects or scenes are identified and collected as the DVWs and DVPs. Experiments show that the DVWs and DVPs are informative and descriptive and, thus, are more comparable with the text words than the classic visual words. We apply the identified DVWs and DVPs in several applications including large-scale near-duplicated image retrieval, image search re-ranking, and object recognition. The combination of DVW and DVP performs better than the state of the art in large-scale near-duplicated image retrieval in terms of accuracy, efficiency and memory consumption. The proposed image search re-ranking algorithm: DWPRank outperforms the state-of-the-art algorithm by 12.4% in mean average precision and about 11 times faster in efficiency.

  9. Visualization assisted by parallel processing

    NASA Astrophysics Data System (ADS)

    Lange, B.; Rey, H.; Vasques, X.; Puech, W.; Rodriguez, N.

    2011-01-01

    This paper discusses the experimental results of our visualization model for data extracted from sensors. The objective of this paper is to find a computationally efficient method to produce a real time rendering visualization for a large amount of data. We develop visualization method to monitor temperature variance of a data center. Sensors are placed on three layers and do not cover all the room. We use particle paradigm to interpolate data sensors. Particles model the "space" of the room. In this work we use a partition of the particle set, using two mathematical methods: Delaunay triangulation and Voronoý cells. Avis and Bhattacharya present these two algorithms in. Particles provide information on the room temperature at different coordinates over time. To locate and update particles data we define a computational cost function. To solve this function in an efficient way, we use a client server paradigm. Server computes data and client display this data on different kind of hardware. This paper is organized as follows. The first part presents related algorithm used to visualize large flow of data. The second part presents different platforms and methods used, which was evaluated in order to determine the better solution for the task proposed. The benchmark use the computational cost of our algorithm that formed based on located particles compared to sensors and on update of particles value. The benchmark was done on a personal computer using CPU, multi core programming, GPU programming and hybrid GPU/CPU. GPU programming method is growing in the research field; this method allows getting a real time rendering instates of a precompute rendering. For improving our results, we compute our algorithm on a High Performance Computing (HPC), this benchmark was used to improve multi-core method. HPC is commonly used in data visualization (astronomy, physic, etc) for improving the rendering and getting real-time.

  10. Research on the framework and key technologies of panoramic visualization for smart distribution network

    NASA Astrophysics Data System (ADS)

    Du, Jian; Sheng, Wanxing; Lin, Tao; Lv, Guangxian

    2018-05-01

    Nowadays, the smart distribution network has made tremendous progress, and the business visualization becomes even more significant and indispensable. Based on the summarization of traditional visualization technologies and demands of smart distribution network, a panoramic visualization application is proposed in this paper. The overall architecture, integrated architecture and service architecture of panoramic visualization application is firstly presented. Then, the architecture design and main functions of panoramic visualization system are elaborated in depth. In addition, the key technologies related to the application is discussed briefly. At last, two typical visualization scenarios in smart distribution network, which are risk warning and fault self-healing, proves that the panoramic visualization application is valuable for the operation and maintenance of the distribution network.

  11. A Method for the Evaluation of Thousands of Automated 3D Stem Cell Segmentations

    PubMed Central

    Bajcsy, Peter; Simon, Mylene; Florczyk, Stephen; Simon, Carl G.; Juba, Derek; Brady, Mary

    2016-01-01

    There is no segmentation method that performs perfectly with any data set in comparison to human segmentation. Evaluation procedures for segmentation algorithms become critical for their selection. The problems associated with segmentation performance evaluations and visual verification of segmentation results are exaggerated when dealing with thousands of 3D image volumes because of the amount of computation and manual inputs needed. We address the problem of evaluating 3D segmentation performance when segmentation is applied to thousands of confocal microscopy images (z-stacks). Our approach is to incorporate experimental imaging and geometrical criteria, and map them into computationally efficient segmentation algorithms that can be applied to a very large number of z-stacks. This is an alternative approach to considering existing segmentation methods and evaluating most state-of-the-art algorithms. We designed a methodology for 3D segmentation performance characterization that consists of design, evaluation and verification steps. The characterization integrates manual inputs from projected surrogate “ground truth” of statistically representative samples and from visual inspection into the evaluation. The novelty of the methodology lies in (1) designing candidate segmentation algorithms by mapping imaging and geometrical criteria into algorithmic steps, and constructing plausible segmentation algorithms with respect to the order of algorithmic steps and their parameters, (2) evaluating segmentation accuracy using samples drawn from probability distribution estimates of candidate segmentations, and (3) minimizing human labor needed to create surrogate “truth” by approximating z-stack segmentations with 2D contours from three orthogonal z-stack projections and by developing visual verification tools. We demonstrate the methodology by applying it to a dataset of 1253 mesenchymal stem cells. The cells reside on 10 different types of biomaterial scaffolds, and are stained for actin and nucleus yielding 128 460 image frames (on average 125 cells/scaffold × 10 scaffold types × 2 stains × 51 frames/cell). After constructing and evaluating six candidates of 3D segmentation algorithms, the most accurate 3D segmentation algorithm achieved an average precision of 0.82 and an accuracy of 0.84 as measured by the Dice similarity index where values greater than 0.7 indicate a good spatial overlap. A probability of segmentation success was 0.85 based on visual verification, and a computation time was 42.3 h to process all z-stacks. While the most accurate segmentation technique was 4.2 times slower than the second most accurate algorithm, it consumed on average 9.65 times less memory per z-stack segmentation. PMID:26268699

  12. iCAVE: an open source tool for visualizing biomolecular networks in 3D, stereoscopic 3D and immersive 3D

    PubMed Central

    Liluashvili, Vaja; Kalayci, Selim; Fluder, Eugene; Wilson, Manda; Gabow, Aaron

    2017-01-01

    Abstract Visualizations of biomolecular networks assist in systems-level data exploration in many cellular processes. Data generated from high-throughput experiments increasingly inform these networks, yet current tools do not adequately scale with concomitant increase in their size and complexity. We present an open source software platform, interactome-CAVE (iCAVE), for visualizing large and complex biomolecular interaction networks in 3D. Users can explore networks (i) in 3D using a desktop, (ii) in stereoscopic 3D using 3D-vision glasses and a desktop, or (iii) in immersive 3D within a CAVE environment. iCAVE introduces 3D extensions of known 2D network layout, clustering, and edge-bundling algorithms, as well as new 3D network layout algorithms. Furthermore, users can simultaneously query several built-in databases within iCAVE for network generation or visualize their own networks (e.g., disease, drug, protein, metabolite). iCAVE has modular structure that allows rapid development by addition of algorithms, datasets, or features without affecting other parts of the code. Overall, iCAVE is the first freely available open source tool that enables 3D (optionally stereoscopic or immersive) visualizations of complex, dense, or multi-layered biomolecular networks. While primarily designed for researchers utilizing biomolecular networks, iCAVE can assist researchers in any field. PMID:28814063

  13. Hierarchical event selection for video storyboards with a case study on snooker video visualization.

    PubMed

    Parry, Matthew L; Legg, Philip A; Chung, David H S; Griffiths, Iwan W; Chen, Min

    2011-12-01

    Video storyboard, which is a form of video visualization, summarizes the major events in a video using illustrative visualization. There are three main technical challenges in creating a video storyboard, (a) event classification, (b) event selection and (c) event illustration. Among these challenges, (a) is highly application-dependent and requires a significant amount of application specific semantics to be encoded in a system or manually specified by users. This paper focuses on challenges (b) and (c). In particular, we present a framework for hierarchical event representation, and an importance-based selection algorithm for supporting the creation of a video storyboard from a video. We consider the storyboard to be an event summarization for the whole video, whilst each individual illustration on the board is also an event summarization but for a smaller time window. We utilized a 3D visualization template for depicting and annotating events in illustrations. To demonstrate the concepts and algorithms developed, we use Snooker video visualization as a case study, because it has a concrete and agreeable set of semantic definitions for events and can make use of existing techniques of event detection and 3D reconstruction in a reliable manner. Nevertheless, most of our concepts and algorithms developed for challenges (b) and (c) can be applied to other application areas. © 2010 IEEE

  14. iCAVE: an open source tool for visualizing biomolecular networks in 3D, stereoscopic 3D and immersive 3D.

    PubMed

    Liluashvili, Vaja; Kalayci, Selim; Fluder, Eugene; Wilson, Manda; Gabow, Aaron; Gümüs, Zeynep H

    2017-08-01

    Visualizations of biomolecular networks assist in systems-level data exploration in many cellular processes. Data generated from high-throughput experiments increasingly inform these networks, yet current tools do not adequately scale with concomitant increase in their size and complexity. We present an open source software platform, interactome-CAVE (iCAVE), for visualizing large and complex biomolecular interaction networks in 3D. Users can explore networks (i) in 3D using a desktop, (ii) in stereoscopic 3D using 3D-vision glasses and a desktop, or (iii) in immersive 3D within a CAVE environment. iCAVE introduces 3D extensions of known 2D network layout, clustering, and edge-bundling algorithms, as well as new 3D network layout algorithms. Furthermore, users can simultaneously query several built-in databases within iCAVE for network generation or visualize their own networks (e.g., disease, drug, protein, metabolite). iCAVE has modular structure that allows rapid development by addition of algorithms, datasets, or features without affecting other parts of the code. Overall, iCAVE is the first freely available open source tool that enables 3D (optionally stereoscopic or immersive) visualizations of complex, dense, or multi-layered biomolecular networks. While primarily designed for researchers utilizing biomolecular networks, iCAVE can assist researchers in any field. © The Authors 2017. Published by Oxford University Press.

  15. Visual recognition and inference using dynamic overcomplete sparse learning.

    PubMed

    Murray, Joseph F; Kreutz-Delgado, Kenneth

    2007-09-01

    We present a hierarchical architecture and learning algorithm for visual recognition and other visual inference tasks such as imagination, reconstruction of occluded images, and expectation-driven segmentation. Using properties of biological vision for guidance, we posit a stochastic generative world model and from it develop a simplified world model (SWM) based on a tractable variational approximation that is designed to enforce sparse coding. Recent developments in computational methods for learning overcomplete representations (Lewicki & Sejnowski, 2000; Teh, Welling, Osindero, & Hinton, 2003) suggest that overcompleteness can be useful for visual tasks, and we use an overcomplete dictionary learning algorithm (Kreutz-Delgado, et al., 2003) as a preprocessing stage to produce accurate, sparse codings of images. Inference is performed by constructing a dynamic multilayer network with feedforward, feedback, and lateral connections, which is trained to approximate the SWM. Learning is done with a variant of the back-propagation-through-time algorithm, which encourages convergence to desired states within a fixed number of iterations. Vision tasks require large networks, and to make learning efficient, we take advantage of the sparsity of each layer to update only a small subset of elements in a large weight matrix at each iteration. Experiments on a set of rotated objects demonstrate various types of visual inference and show that increasing the degree of overcompleteness improves recognition performance in difficult scenes with occluded objects in clutter.

  16. Satellite Imagery Assisted Road-Based Visual Navigation System

    NASA Astrophysics Data System (ADS)

    Volkova, A.; Gibbens, P. W.

    2016-06-01

    There is a growing demand for unmanned aerial systems as autonomous surveillance, exploration and remote sensing solutions. Among the key concerns for robust operation of these systems is the need to reliably navigate the environment without reliance on global navigation satellite system (GNSS). This is of particular concern in Defence circles, but is also a major safety issue for commercial operations. In these circumstances, the aircraft needs to navigate relying only on information from on-board passive sensors such as digital cameras. An autonomous feature-based visual system presented in this work offers a novel integral approach to the modelling and registration of visual features that responds to the specific needs of the navigation system. It detects visual features from Google Earth* build a feature database. The same algorithm then detects features in an on-board cameras video stream. On one level this serves to localise the vehicle relative to the environment using Simultaneous Localisation and Mapping (SLAM). On a second level it correlates them with the database to localise the vehicle with respect to the inertial frame. The performance of the presented visual navigation system was compared using the satellite imagery from different years. Based on comparison results, an analysis of the effects of seasonal, structural and qualitative changes of the imagery source on the performance of the navigation algorithm is presented. * The algorithm is independent of the source of satellite imagery and another provider can be used

  17. A systematic review of the technology-based assessment of visual perception and exploration behaviour in association football.

    PubMed

    McGuckian, Thomas B; Cole, Michael H; Pepping, Gert-Jan

    2018-04-01

    To visually perceive opportunities for action, athletes rely on the movements of their eyes, head and body to explore their surrounding environment. To date, the specific types of technology and their efficacy for assessing the exploration behaviours of association footballers have not been systematically reviewed. This review aimed to synthesise the visual perception and exploration behaviours of footballers according to the task constraints, action requirements of the experimental task, and level of expertise of the athlete, in the context of the technology used to quantify the visual perception and exploration behaviours of footballers. A systematic search for papers that included keywords related to football, technology, and visual perception was conducted. All 38 included articles utilised eye-movement registration technology to quantify visual perception and exploration behaviour. The experimental domain appears to influence the visual perception behaviour of footballers, however no studies investigated exploration behaviours of footballers in open-play situations. Studies rarely utilised representative stimulus presentation or action requirements. To fully understand the visual perception requirements of athletes, it is recommended that future research seek to validate alternate technologies that are capable of investigating the eye, head and body movements associated with the exploration behaviours of footballers during representative open-play situations.

  18. Joint Prior Learning for Visual Sensor Network Noisy Image Super-Resolution

    PubMed Central

    Yue, Bo; Wang, Shuang; Liang, Xuefeng; Jiao, Licheng; Xu, Caijin

    2016-01-01

    The visual sensor network (VSN), a new type of wireless sensor network composed of low-cost wireless camera nodes, is being applied for numerous complex visual analyses in wild environments, such as visual surveillance, object recognition, etc. However, the captured images/videos are often low resolution with noise. Such visual data cannot be directly delivered to the advanced visual analysis. In this paper, we propose a joint-prior image super-resolution (JPISR) method using expectation maximization (EM) algorithm to improve VSN image quality. Unlike conventional methods that only focus on upscaling images, JPISR alternatively solves upscaling mapping and denoising in the E-step and M-step. To meet the requirement of the M-step, we introduce a novel non-local group-sparsity image filtering method to learn the explicit prior and induce the geometric duality between images to learn the implicit prior. The EM algorithm inherently combines the explicit prior and implicit prior by joint learning. Moreover, JPISR does not rely on large external datasets for training, which is much more practical in a VSN. Extensive experiments show that JPISR outperforms five state-of-the-art methods in terms of both PSNR, SSIM and visual perception. PMID:26927114

  19. GPU Accelerated Browser for Neuroimaging Genomics.

    PubMed

    Zigon, Bob; Li, Huang; Yao, Xiaohui; Fang, Shiaofen; Hasan, Mohammad Al; Yan, Jingwen; Moore, Jason H; Saykin, Andrew J; Shen, Li

    2018-04-25

    Neuroimaging genomics is an emerging field that provides exciting opportunities to understand the genetic basis of brain structure and function. The unprecedented scale and complexity of the imaging and genomics data, however, have presented critical computational bottlenecks. In this work we present our initial efforts towards building an interactive visual exploratory system for mining big data in neuroimaging genomics. A GPU accelerated browsing tool for neuroimaging genomics is created that implements the ANOVA algorithm for single nucleotide polymorphism (SNP) based analysis and the VEGAS algorithm for gene-based analysis, and executes them at interactive rates. The ANOVA algorithm is 110 times faster than the 4-core OpenMP version, while the VEGAS algorithm is 375 times faster than its 4-core OpenMP counter part. This approach lays a solid foundation for researchers to address the challenges of mining large-scale imaging genomics datasets via interactive visual exploration.

  20. The Tools, Approaches and Applications of Visual Literacy in the Visual Arts Department of Cross River University of Technology, Calabar, Nigeria

    ERIC Educational Resources Information Center

    Ecoma, Victor

    2016-01-01

    The paper reflects upon the tools, approaches and applications of visual literacy in the Visual Arts Department of Cross River University of Technology, Calabar, Nigeria. The objective of the discourse is to examine how the visual arts training and practice equip students with skills in visual literacy through methods of production, materials and…

  1. The validity of visual acuity assessment using mobile technology devices in the primary care setting.

    PubMed

    O'Neill, Samuel; McAndrew, Darryl J

    2016-04-01

    The assessment of visual acuity is indicated in a number of clinical circumstances. It is commonly conducted through the use of a Snellen wall chart. Mobile technology developments and adoption rates by clinicians may potentially provide more convenient methods of assessing visual acuity. Limited data exist on the validity of these devices and applications. The objective of this study was to evaluate the assessment of distance visual acuity using mobile technology devices against the commonly used 3-metre Snellen chart in a primary care setting. A prospective quantitative comparative study was conducted at a regional medical practice. The visual acuity of 60 participants was assessed on a Snellen wall chart and two mobile technology devices (iPhone, iPad). Visual acuity intervals were converted to logarithm of minimum angle of resolution (logMAR) scores and subjected to intraclass correlation coefficient (ICC) assessment. The results show a high level of general agreement between testing modality (ICC 0.917 with a 95% confidence interval of 0.887-0.940). The high level of agreement of visual acuity results between the Snellen wall chart and both mobile technology devices suggests that clinicians can use this technology with confidence in the primary care setting.

  2. Teaching AI Search Algorithms in a Web-Based Educational System

    ERIC Educational Resources Information Center

    Grivokostopoulou, Foteini; Hatzilygeroudis, Ioannis

    2013-01-01

    In this paper, we present a way of teaching AI search algorithms in a web-based adaptive educational system. Teaching is based on interactive examples and exercises. Interactive examples, which use visualized animations to present AI search algorithms in a step-by-step way with explanations, are used to make learning more attractive. Practice…

  3. An Automatic Assessment System of Diabetic Foot Ulcers Based on Wound Area Determination, Color Segmentation, and Healing Score Evaluation.

    PubMed

    Wang, Lei; Pedersen, Peder C; Strong, Diane M; Tulu, Bengisu; Agu, Emmanuel; Ignotz, Ron; He, Qian

    2015-08-07

    For individuals with type 2 diabetes, foot ulcers represent a significant health issue. The aim of this study is to design and evaluate a wound assessment system to help wound clinics assess patients with foot ulcers in a way that complements their current visual examination and manual measurements of their foot ulcers. The physical components of the system consist of an image capture box, a smartphone for wound image capture and a laptop for analyzing the wound image. The wound image assessment algorithms calculate the overall wound area, color segmented wound areas, and a healing score, to provide a quantitative assessment of the wound healing status both for a single wound image and comparisons of subsequent images to an initial wound image. The system was evaluated by assessing foot ulcers for 12 patients in the Wound Clinic at University of Massachusetts Medical School. As performance measures, the Matthews correlation coefficient (MCC) value for the wound area determination algorithm tested on 32 foot ulcer images was .68. The clinical validity of our healing score algorithm relative to the experienced clinicians was measured by Krippendorff's alpha coefficient (KAC) and ranged from .42 to .81. Our system provides a promising real-time method for wound assessment based on image analysis. Clinical comparisons indicate that the optimized mean-shift-based algorithm is well suited for wound area determination. Clinical evaluation of our healing score algorithm shows its potential to provide clinicians with a quantitative method for evaluating wound healing status. © 2015 Diabetes Technology Society.

  4. Corneal Stability following Hyperopic LASIK with Advanced Laser Ablation Profiles Analyzed by a Light Propagation Study

    PubMed Central

    Gharaibeh, Almutez M.; Villanueva, Asier; Mas, David; Espinosa, Julian

    2018-01-01

    Purpose To assess anterior corneal surface stability 12 months following hyperopic LASIK correction with a light propagation algorithm. Setting Vissum Instituto Oftalmológico de Alicante, Universidad Miguel Hernández, Alicante, Spain. Methods This retrospective consecutive observational study includes 37 eyes of 37 patients treated with 6th-generation excimer laser platform (Schwind Amaris). Hyperopic LASIK was performed in all of them by the same surgeon (JLA) and completed 12-month follow-up. Corneal topography was analyzed with a light propagation algorithm, to assess the stability of the corneal outcomes along one year of follow-up. Results Between three and twelve months postoperatively, an objective corneal power (OCP) regression of 0.39 D and 0.41 D was found for 6 mm and 9 mm central corneal zone, respectively. Subjective outcomes at the end of the follow-up period were as follows: 65% of eyes had spherical equivalent within ±0.50 D. 70% of eyes had an uncorrected distance visual acuity 20/20 or better. 86% of eyes had the same or better corrected distance visual acuity. In terms of stability, 0.14 D of regression was found. No statistically significant differences were found for all the study parameters evaluated at different postoperative moments over the 12-month period. Conclusions Light propagation analysis confirms corneal surface stability following modern hyperopic LASIK with a 6th-generation excimer laser technology over a 12-month period. PMID:29785300

  5. Membrane connectivity estimated by digital image analysis of HER2 immunohistochemistry is concordant with visual scoring and fluorescence in situ hybridization results: algorithm evaluation on breast cancer tissue microarrays

    PubMed Central

    2011-01-01

    Introduction The human epidermal growth factor receptor 2 (HER2) is an established biomarker for management of patients with breast cancer. While conventional testing of HER2 protein expression is based on semi-quantitative visual scoring of the immunohistochemistry (IHC) result, efforts to reduce inter-observer variation and to produce continuous estimates of the IHC data are potentiated by digital image analysis technologies. Methods HER2 IHC was performed on the tissue microarrays (TMAs) of 195 patients with an early ductal carcinoma of the breast. Digital images of the IHC slides were obtained by Aperio ScanScope GL Slide Scanner. Membrane connectivity algorithm (HER2-CONNECT™, Visiopharm) was used for digital image analysis (DA). A pathologist evaluated the images on the screen twice (visual evaluations: VE1 and VE2). HER2 fluorescence in situ hybridization (FISH) was performed on the corresponding sections of the TMAs. The agreement between the IHC HER2 scores, obtained by VE1, VE2, and DA was tested for individual TMA spots and patient's maximum TMA spot values (VE1max, VE2max, DAmax). The latter were compared with the FISH data. Correlation of the continuous variable of the membrane connectivity estimate with the FISH data was tested. Results The pathologist intra-observer agreement (VE1 and VE2) on HER2 IHC score was almost perfect: kappa 0.91 (by spot) and 0.88 (by patient). The agreement between visual evaluation and digital image analysis was almost perfect at the spot level (kappa 0.86 and 0.87, with VE1 and VE2 respectively) and at the patient level (kappa 0.80 and 0.86, with VE1max and VE2max, respectively). The DA was more accurate than VE in detection of FISH-positive patients by recruiting 3 or 2 additional FISH-positive patients to the IHC score 2+ category from the IHC 0/1+ category by VE1max or VE2max, respectively. The DA continuous variable of the membrane connectivity correlated with the FISH data (HER2 and CEP17 copy numbers, and HER2/CEP17 ratio). Conclusion HER2 IHC digital image analysis based on membrane connectivity estimate was in almost perfect agreement with the visual evaluation of the pathologist and more accurate in detection of HER2 FISH-positive patients. Most immediate benefit of integrating the DA algorithm into the routine pathology HER2 testing may be obtained by alerting/reassuring pathologists of potentially misinterpreted IHC 0/1+ versus 2+ cases. PMID:21943197

  6. Membrane connectivity estimated by digital image analysis of HER2 immunohistochemistry is concordant with visual scoring and fluorescence in situ hybridization results: algorithm evaluation on breast cancer tissue microarrays.

    PubMed

    Laurinaviciene, Aida; Dasevicius, Darius; Ostapenko, Valerijus; Jarmalaite, Sonata; Lazutka, Juozas; Laurinavicius, Arvydas

    2011-09-23

    The human epidermal growth factor receptor 2 (HER2) is an established biomarker for management of patients with breast cancer. While conventional testing of HER2 protein expression is based on semi-quantitative visual scoring of the immunohistochemistry (IHC) result, efforts to reduce inter-observer variation and to produce continuous estimates of the IHC data are potentiated by digital image analysis technologies. HER2 IHC was performed on the tissue microarrays (TMAs) of 195 patients with an early ductal carcinoma of the breast. Digital images of the IHC slides were obtained by Aperio ScanScope GL Slide Scanner. Membrane connectivity algorithm (HER2-CONNECT, Visiopharm) was used for digital image analysis (DA). A pathologist evaluated the images on the screen twice (visual evaluations: VE1 and VE2). HER2 fluorescence in situ hybridization (FISH) was performed on the corresponding sections of the TMAs. The agreement between the IHC HER2 scores, obtained by VE1, VE2, and DA was tested for individual TMA spots and patient's maximum TMA spot values (VE1max, VE2max, DAmax). The latter were compared with the FISH data. Correlation of the continuous variable of the membrane connectivity estimate with the FISH data was tested. The pathologist intra-observer agreement (VE1 and VE2) on HER2 IHC score was almost perfect: kappa 0.91 (by spot) and 0.88 (by patient). The agreement between visual evaluation and digital image analysis was almost perfect at the spot level (kappa 0.86 and 0.87, with VE1 and VE2 respectively) and at the patient level (kappa 0.80 and 0.86, with VE1max and VE2max, respectively). The DA was more accurate than VE in detection of FISH-positive patients by recruiting 3 or 2 additional FISH-positive patients to the IHC score 2+ category from the IHC 0/1+ category by VE1max or VE2max, respectively. The DA continuous variable of the membrane connectivity correlated with the FISH data (HER2 and CEP17 copy numbers, and HER2/CEP17 ratio). HER2 IHC digital image analysis based on membrane connectivity estimate was in almost perfect agreement with the visual evaluation of the pathologist and more accurate in detection of HER2 FISH-positive patients. Most immediate benefit of integrating the DA algorithm into the routine pathology HER2 testing may be obtained by alerting/reassuring pathologists of potentially misinterpreted IHC 0/1+ versus 2+ cases.

  7. The research of network database security technology based on web service

    NASA Astrophysics Data System (ADS)

    Meng, Fanxing; Wen, Xiumei; Gao, Liting; Pang, Hui; Wang, Qinglin

    2013-03-01

    Database technology is one of the most widely applied computer technologies, its security is becoming more and more important. This paper introduced the database security, network database security level, studies the security technology of the network database, analyzes emphatically sub-key encryption algorithm, applies this algorithm into the campus-one-card system successfully. The realization process of the encryption algorithm is discussed, this method is widely used as reference in many fields, particularly in management information system security and e-commerce.

  8. Underwater image enhancement through depth estimation based on random forest

    NASA Astrophysics Data System (ADS)

    Tai, Shen-Chuan; Tsai, Ting-Chou; Huang, Jyun-Han

    2017-11-01

    Light absorption and scattering in underwater environments can result in low-contrast images with a distinct color cast. This paper proposes a systematic framework for the enhancement of underwater images. Light transmission is estimated using the random forest algorithm. RGB values, luminance, color difference, blurriness, and the dark channel are treated as features in training and estimation. Transmission is calculated using an ensemble machine learning algorithm to deal with a variety of conditions encountered in underwater environments. A color compensation and contrast enhancement algorithm based on depth information was also developed with the aim of improving the visual quality of underwater images. Experimental results demonstrate that the proposed scheme outperforms existing methods with regard to subjective visual quality as well as objective measurements.

  9. Rover-based visual target tracking validation and mission infusion

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Steele, Robert D.; Ansar, Adnan I.; Ali, Khaled; Nesnas, Issa

    2005-01-01

    The Mars Exploration Rovers (MER'03), Spirit and Opportunity, represent the state of the art in rover operations on Mars. This paper presents validation experiments of different visual tracking algorithms using the rover's navigation camera.

  10. Combined Feature Based and Shape Based Visual Tracker for Robot Navigation

    NASA Technical Reports Server (NTRS)

    Deans, J.; Kunz, C.; Sargent, R.; Park, E.; Pedersen, L.

    2005-01-01

    We have developed a combined feature based and shape based visual tracking system designed to enable a planetary rover to visually track and servo to specific points chosen by a user with centimeter precision. The feature based tracker uses invariant feature detection and matching across a stereo pair, as well as matching pairs before and after robot movement in order to compute an incremental 6-DOF motion at each tracker update. This tracking method is subject to drift over time, which can be compensated by the shape based method. The shape based tracking method consists of 3D model registration, which recovers 6-DOF motion given sufficient shape and proper initialization. By integrating complementary algorithms, the combined tracker leverages the efficiency and robustness of feature based methods with the precision and accuracy of model registration. In this paper, we present the algorithms and their integration into a combined visual tracking system.

  11. Creating a meaningful visual perception in blind volunteers by optic nerve stimulation

    NASA Astrophysics Data System (ADS)

    Brelén, M. E.; Duret, F.; Gérard, B.; Delbeke, J.; Veraart, C.

    2005-03-01

    A blind volunteer, suffering from retinitis pigmentosa, has been chronically implanted with an optic nerve visual prosthesis. Vision rehabilitation with this volunteer has concentrated on the development of a stimulation strategy according to which video camera images are converted into stimulation pulses. The aim is to convey as much information as possible about the visual scene within the limits of the device's capabilities. Pattern recognition tasks were used to assess the effectiveness of the stimulation strategy. The results demonstrate how even a relatively basic algorithm can efficiently convey useful information regarding the visual scene. By increasing the number of phosphenes used in the algorithm, better performance is observed but a longer training period is required. After a learning period, the volunteer achieved a pattern recognition score of 85% at 54 s on average per pattern. After nine evaluation sessions, when using a stimulation strategy exploiting all available phosphenes, no saturation effect has yet been observed.

  12. Visual perception system and method for a humanoid robot

    NASA Technical Reports Server (NTRS)

    Chelian, Suhas E. (Inventor); Linn, Douglas Martin (Inventor); Wampler, II, Charles W. (Inventor); Bridgwater, Lyndon (Inventor); Wells, James W. (Inventor); Mc Kay, Neil David (Inventor)

    2012-01-01

    A robotic system includes a humanoid robot with robotic joints each moveable using an actuator(s), and a distributed controller for controlling the movement of each of the robotic joints. The controller includes a visual perception module (VPM) for visually identifying and tracking an object in the field of view of the robot under threshold lighting conditions. The VPM includes optical devices for collecting an image of the object, a positional extraction device, and a host machine having an algorithm for processing the image and positional information. The algorithm visually identifies and tracks the object, and automatically adapts an exposure time of the optical devices to prevent feature data loss of the image under the threshold lighting conditions. A method of identifying and tracking the object includes collecting the image, extracting positional information of the object, and automatically adapting the exposure time to thereby prevent feature data loss of the image.

  13. Real-time interactive tractography analysis for multimodal brain visualization tool: MultiXplore

    NASA Astrophysics Data System (ADS)

    Bakhshmand, Saeed M.; de Ribaupierre, Sandrine; Eagleson, Roy

    2017-03-01

    Most debilitating neurological disorders can have anatomical origins. Yet unlike other body organs, the anatomy alone cannot easily provide an understanding of brain functionality. In fact, addressing the challenge of linking structural and functional connectivity remains in the frontiers of neuroscience. Aggregating multimodal neuroimaging datasets may be critical for developing theories that span brain functionality, global neuroanatomy and internal microstructures. Functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) are main such techniques that are employed to investigate the brain under normal and pathological conditions. FMRI records blood oxygenation level of the grey matter (GM), whereas DTI is able to reveal the underlying structure of the white matter (WM). Brain global activity is assumed to be an integration of GM functional hubs and WM neural pathways that serve to connect them. In this study we developed and evaluated a two-phase algorithm. This algorithm is employed in a 3D interactive connectivity visualization framework and helps to accelerate clustering of virtual neural pathways. In this paper, we will detail an algorithm that makes use of an index-based membership array formed for a whole brain tractography file and corresponding parcellated brain atlas. Next, we demonstrate efficiency of the algorithm by measuring required times for extracting a variety of fiber clusters, which are chosen in such a way to resemble all sizes probable output data files that algorithm will generate. The proposed algorithm facilitates real-time visual inspection of neuroimaging data to further the discovery in structure-function relationship of the brain networks.

  14. Indexed triangle strips optimization for real-time visualization using genetic algorithm: preliminary study

    NASA Astrophysics Data System (ADS)

    Tanaka, Kiyoshi; Takano, Shuichi; Sugimura, Tatsuo

    2000-10-01

    In this work we focus on the indexed triangle strips that is an extended representation of triangle strips to improve the efficiency for geometrical transformation of vertices, and present a method to construct optimum indexed triangle strips using Genetic Algorithm (GA) for real-time visualization. The main objective of this work is how to optimally construct indexed triangle strips by improving the ratio that reuses the data stored in the cash memory and simultaneously reducing the total index numbers with GA. Simulation results verify that the average index numbers and cache miss ratio per polygon cold be small, and consequently the total visualization time required for the optimum solution obtained by this scheme could be remarkably reduced.

  15. Identify Structural Flaw Location and Type with an Inverse Algorithm of Resonance Inspection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Wei; Lai, Canhai; Sun, Xin

    To evaluate the fitness-for-service of a structural component and to quantify its remaining useful life, aging and service-induced structural flaws must be quantitatively determined in service or during scheduled maintenance shutdowns. Resonance inspection (RI), a non-destructive evaluation (NDE) technique, distinguishes the anomalous parts from the good parts based on changes in the natural frequency spectra. Known for its numerous advantages, i.e., low inspection cost, high testing speed, and broad applicability to complex structures, RI has been widely used in the automobile industry for quality inspection. However, compared to other contemporary direct visualization-based NDE methods, a more widespread application of RImore » faces a fundamental challenge because such technology is unable to quantify the flaw details, e.g. location, dimensions, and types. In this study, the applicability of a maximum correlation-based inverse RI algorithm developed by the authors is further studied for various flaw cases. It is demonstrated that a variety of common structural flaws, i.e. stiffness degradation, voids, and cracks, can be accurately retrieved by this algorithm even when multiple different types of flaws coexist. The quantitative relations between the damage identification results and the flaw characteristics are also developed to assist the evaluation of the actual state of health of the engineering structures.« less

  16. Numerical characteristics of quantum computer simulation

    NASA Astrophysics Data System (ADS)

    Chernyavskiy, A.; Khamitov, K.; Teplov, A.; Voevodin, V.; Voevodin, Vl.

    2016-12-01

    The simulation of quantum circuits is significantly important for the implementation of quantum information technologies. The main difficulty of such modeling is the exponential growth of dimensionality, thus the usage of modern high-performance parallel computations is relevant. As it is well known, arbitrary quantum computation in circuit model can be done by only single- and two-qubit gates, and we analyze the computational structure and properties of the simulation of such gates. We investigate the fact that the unique properties of quantum nature lead to the computational properties of the considered algorithms: the quantum parallelism make the simulation of quantum gates highly parallel, and on the other hand, quantum entanglement leads to the problem of computational locality during simulation. We use the methodology of the AlgoWiki project (algowiki-project.org) to analyze the algorithm. This methodology consists of theoretical (sequential and parallel complexity, macro structure, and visual informational graph) and experimental (locality and memory access, scalability and more specific dynamic characteristics) parts. Experimental part was made by using the petascale Lomonosov supercomputer (Moscow State University, Russia). We show that the simulation of quantum gates is a good base for the research and testing of the development methods for data intense parallel software, and considered methodology of the analysis can be successfully used for the improvement of the algorithms in quantum information science.

  17. Visualizing Without Vision at the Microscale: Students With Visual Impairments Explore Cells With Touch

    NASA Astrophysics Data System (ADS)

    Jones, M. Gail; Minogue, James; Oppewal, Tom; Cook, Michelle P.; Broadwell, Bethany

    2006-12-01

    Science instruction is typically highly dependent on visual representations of scientific concepts that are communicated through textbooks, teacher presentations, and computer-based multimedia materials. Little is known about how students with visual impairments access and interpret these types of visually-dependent instructional materials. This study explored the efficacy of new haptic (simulated tactile feedback and kinesthetics) instructional technology for teaching cell morphology and function to middle and high school students with visual impairments. The study examined students' prior experiences learning about the cell and cell functions in classroom instruction, as well as how haptic feedback technology impacted students' awareness of the 3-D nature of an animal cell, the morphology and function of cell organelles, and students' interest in the haptic technology as an instructional tool. Twenty-one students with visual impairment participated in the study. Students explored a tactile model of the cell with a haptic point probe that allowed them to feel the cell and its organelles. Results showed that students made significant gains in their ability to identify cell organelles and found the technology to be highly interesting as an instructional tool. The need for additional adaptive technology for students with visual impairments is discussed.

  18. Information Technology and Transcription of Reading Materials for the Visually Impaired Persons in Nigeria

    ERIC Educational Resources Information Center

    Nkiko, Christopher; Atinmo, Morayo I.; Michael-Onuoha, Happiness Chijioke; Ilogho, Julie E.; Fagbohun, Michael O.; Ifeakachuku, Osinulu; Adetomiwa, Basiru; Usman, Kazeem Omeiza

    2018-01-01

    Studies have shown inadequate reading materials for the visually impaired in Nigeria. Information technology has greatly advanced the provision of information to the visually impaired in other industrialized climes. This study investigated the extent of application of information technology to the transcription of reading materials for the…

  19. Sense and avoid technology for Global Hawk and Predator UAVs

    NASA Astrophysics Data System (ADS)

    McCalmont, John F.; Utt, James; Deschenes, Michael; Taylor, Michael J.

    2005-05-01

    The Sensors Directorate at the Air Force Research Laboratory (AFRL) along with Defense Research Associates, Inc. (DRA) conducted a flight demonstration of technology that could potentially satisfy the Federal Aviation Administration's (FAA) requirement for Unmanned Aerial Vehicles (UAVs) to sense and avoid local air traffic sufficient to provide an "...equivalent level of safety, comparable to see-and-avoid requirements for manned aircraft". This FAA requirement must be satisfied for autonomous UAV operation within the national airspace. The real-time on-board system passively detects approaching aircraft, both cooperative and non-cooperative, using imaging sensors operating in the visible/near infrared band and a passive moving target indicator algorithm. Detection range requirements for RQ-4 and MQ-9 UAVs were determined based on analysis of flight geometries, avoidance maneuver timelines, system latencies and human pilot performance. Flight data and UAV operating parameters were provided by the system program offices, prime contractors, and flight-test personnel. Flight demonstrations were conducted using a surrogate UAV (Aero Commander) and an intruder aircraft (Beech Bonanza). The system demonstrated target detection ranges out to 3 nautical miles in nose-to-nose scenarios and marginal visual meteorological conditions. (VMC) This paper will describe the sense and avoid requirements definition process and the system concept (sensors, algorithms, processor, and flight rest results) that has demonstrated the potential to satisfy the FAA sense and avoid requirements.

  20. Assistive Technology for Students with Visual Impairments: In-Service Teacher Training and Its Relationship to Student Access and Usage across Academic Subject Areas

    ERIC Educational Resources Information Center

    Segers, Kathryn S.

    2014-01-01

    Technology is used in almost every school and classroom today and motivates and intrigues students with vision. This same technology is often not accessible to students with visual impairments and blindness. Assistive technology must be used by students with visual impairments and blindness in order to access a computer, the Internet, and print…

  1. Visualization of Sliding and Deformation of Orbital Fat During Eye Rotation

    PubMed Central

    Hötte, Gijsbert J.; Schaafsma, Peter J.; Botha, Charl P.; Wielopolski, Piotr A.; Simonsz, Huibert J.

    2016-01-01

    Purpose Little is known about the way orbital fat slides and/or deforms during eye movements. We compared two deformation algorithms from a sequence of MRI volumes to visualize this complex behavior. Methods Time-dependent deformation data were derived from motion-MRI volumes using Lucas and Kanade Optical Flow (LK3D) and nonrigid registration (B-splines) deformation algorithms. We compared how these two algorithms performed regarding sliding and deformation in three critical areas: the sclera-fat interface, how the optic nerve moves through the fat, and how the fat is squeezed out under the tendon of a relaxing rectus muscle. The efficacy was validated using identified tissue markers such as the lens and blood vessels in the fat. Results Fat immediately behind the eye followed eye rotation by approximately one-half. This was best visualized using the B-splines technique as it showed less ripping of tissue and less distortion. Orbital fat flowed around the optic nerve during eye rotation. In this case, LK3D provided better visualization as it allowed orbital fat tissue to split. The resolution was insufficient to visualize fat being squeezed out between tendon and sclera. Conclusion B-splines performs better in tracking structures such as the lens, while LK3D allows fat tissue to split as should happen as the optic nerve slides through the fat. Orbital fat follows eye rotation by one-half and flows around the optic nerve during eye rotation. Translational Relevance Visualizing orbital fat deformation and sliding offers the opportunity to accurately locate a region of cicatrization and permit an individualized surgical plan. PMID:27540495

  2. A graph-theoretical analysis algorithm for quantifying the transition from sensory input to motor output by an emotional stimulus.

    PubMed

    Karmonik, Christof; Fung, Steve H; Dulay, M; Verma, A; Grossman, Robert G

    2013-01-01

    Graph-theoretical analysis algorithms have been used for identifying subnetworks in the human brain during the Default Mode State. Here, these methods are expanded to determine the interaction of the sensory and the motor subnetworks during the performance of an approach-avoidance paradigm utilizing the correlation strength between the signal intensity time courses as measure of synchrony. From functional magnetic resonance imaging (fMRI) data of 9 healthy volunteers, two signal time courses, one from the primary visual cortex (sensory input) and one from the motor cortex (motor output) were identified and a correlation difference map was calculated. Graph networks were created from this map and visualized with spring-embedded layouts and 3D layouts in the original anatomical space. Functional clusters in these networks were identified with the MCODE clustering algorithm. Interactions between the sensory sub-network and the motor sub-network were quantified through the interaction strengths of these clusters. The percentages of interactions involving the visual cortex ranged from 85 % to 18 % and the motor cortex ranged from 40 % to 9 %. Other regions with high interactions were: frontal cortex (19 ± 18 %), insula (17 ± 22 %), cuneus (16 ± 15 %), supplementary motor area (SMA, 11 ± 18 %) and subcortical regions (11 ± 10 %). Interactions between motor cortex, SMA and visual cortex accounted for 12 %, between visual cortex and cuneus for 8 % and between motor cortex, SMA and cuneus for 6 % of all interactions. These quantitative findings are supported by the visual impressions from the 2D and 3D network layouts.

  3. A method for automatically abstracting visual documents

    NASA Technical Reports Server (NTRS)

    Rorvig, Mark E.

    1994-01-01

    Visual documents--motion sequences on film, videotape, and digital recording--constitute a major source of information for the Space Agency, as well as all other government and private sector entities. This article describes a method for automatically selecting key frames from visual documents. These frames may in turn be used to represent the total image sequence of visual documents in visual libraries, hypermedia systems, and training algorithm reduces 51 minutes of video sequences to 134 frames; a reduction of information in the range of 700:1.

  4. Using virtual environment technology for preadapting astronauts to the novel sensory conditions of microgravity

    NASA Technical Reports Server (NTRS)

    Duncan, K. M.; Harm, D. L.; Crosier, W. G.; Worthington, J. W.

    1993-01-01

    A unique training device is being developed at the Johnson Space Center Neurosciences Laboratory to help reduce or eliminate Space Motion Sickness (SMS) and spatial orientation disturbances that occur during spaceflight. The Device for Orientation and Motion Environments Preflight Adaptation Trainer (DOME PAT) uses virtual reality technology to simulate some sensory rearrangements experienced by astronauts in microgravity. By exposing a crew member to this novel environment preflight, it is expected that he/she will become partially adapted, and thereby suffer fewer symptoms inflight. The DOME PAT is a 3.7 m spherical dome, within which a 170 by 100 deg field of view computer-generated visual database is projected. The visual database currently in use depicts the interior of a Shuttle spacelab. The trainee uses a six degree-of-freedom, isometric force hand controller to navigate through the virtual environment. Alternatively, the trainee can be 'moved' about within the virtual environment by the instructor, or can look about within the environment by wearing a restraint that controls scene motion in response to head movements. The computer system is comprised of four personal computers that provide the real time control and user interface, and two Silicon Graphics computers that generate the graphical images. The image generator computers use custom algorithms to compensate for spherical image distortion, while maintaining a video update rate of 30 Hz. The DOME PAT is the first such system known to employ virtual reality technology to reduce the untoward effects of the sensory rearrangement associated with exposure to microgravity, and it does so in a very cost-effective manner.

  5. An algorithm for pavement crack detection based on multiscale space

    NASA Astrophysics Data System (ADS)

    Liu, Xiang-long; Li, Qing-quan

    2006-10-01

    Conventional human-visual and manual field pavement crack detection method and approaches are very costly, time-consuming, dangerous, labor-intensive and subjective. They possess various drawbacks such as having a high degree of variability of the measure results, being unable to provide meaningful quantitative information and almost always leading to inconsistencies in crack details over space and across evaluation, and with long-periodic measurement. With the development of the public transportation and the growth of the Material Flow System, the conventional method can far from meet the demands of it, thereby, the automatic pavement state data gathering and data analyzing system come to the focus of the vocation's attention, and developments in computer technology, digital image acquisition, image processing and multi-sensors technology made the system possible, but the complexity of the image processing always made the data processing and data analyzing come to the bottle-neck of the whole system. According to the above description, a robust and high-efficient parallel pavement crack detection algorithm based on Multi-Scale Space is proposed in this paper. The proposed method is based on the facts that: (1) the crack pixels in pavement images are darker than their surroundings and continuous; (2) the threshold values of gray-level pavement images are strongly related with the mean value and standard deviation of the pixel-grey intensities. The Multi-Scale Space method is used to improve the data processing speed and minimize the effectiveness caused by image noise. Experiment results demonstrate that the advantages are remarkable: (1) it can correctly discover tiny cracks, even from very noise pavement image; (2) the efficiency and accuracy of the proposed algorithm are superior; (3) its application-dependent nature can simplify the design of the entire system.

  6. a Web-Based Platform for Visualizing Spatiotemporal Dynamics of Big Taxi Data

    NASA Astrophysics Data System (ADS)

    Xiong, H.; Chen, L.; Gui, Z.

    2017-09-01

    With more and more vehicles equipped with Global Positioning System (GPS), access to large-scale taxi trajectory data has become increasingly easy. Taxis are valuable sensors and information associated with taxi trajectory can provide unprecedented insight into many aspects of city life. But analysing these data presents many challenges. Visualization of taxi data is an efficient way to represent its distributions and structures and reveal hidden patterns in the data. However, Most of the existing visualization systems have some shortcomings. On the one hand, the passenger loading status and speed information cannot be expressed. On the other hand, mono-visualization form limits the information presentation. In view of these problems, this paper designs and implements a visualization system in which we use colour and shape to indicate passenger loading status and speed information and integrate various forms of taxi visualization. The main work as follows: 1. Pre-processing and storing the taxi data into MongoDB database. 2. Visualization of hotspots for taxi pickup points. Through DBSCAN clustering algorithm, we cluster the extracted taxi passenger's pickup locations to produce passenger hotspots. 3. Visualizing the dynamic of taxi moving trajectory using interactive animation. We use a thinning algorithm to reduce the amount of data and design a preloading strategyto load the data smoothly. Colour and shape are used to visualize the taxi trajectory data.

  7. A grid layout algorithm for automatic drawing of biochemical networks.

    PubMed

    Li, Weijiang; Kurata, Hiroyuki

    2005-05-01

    Visualization is indispensable in the research of complex biochemical networks. Available graph layout algorithms are not adequate for satisfactorily drawing such networks. New methods are required to visualize automatically the topological architectures and facilitate the understanding of the functions of the networks. We propose a novel layout algorithm to draw complex biochemical networks. A network is modeled as a system of interacting nodes on squared grids. A discrete cost function between each node pair is designed based on the topological relation and the geometric positions of the two nodes. The layouts are produced by minimizing the total cost. We design a fast algorithm to minimize the discrete cost function, by which candidate layouts can be produced efficiently. A simulated annealing procedure is used to choose better candidates. Our algorithm demonstrates its ability to exhibit cluster structures clearly in relatively compact layout areas without any prior knowledge. We developed Windows software to implement the algorithm for CADLIVE. All materials can be freely downloaded from http://kurata21.bio.kyutech.ac.jp/grid/grid_layout.htm; http://www.cadlive.jp/ http://kurata21.bio.kyutech.ac.jp/grid/grid_layout.htm; http://www.cadlive.jp/

  8. [Automatic Sleep Stage Classification Based on an Improved K-means Clustering Algorithm].

    PubMed

    Xiao, Shuyuan; Wang, Bei; Zhang, Jian; Zhang, Qunfeng; Zou, Junzhong

    2016-10-01

    Sleep stage scoring is a hotspot in the field of medicine and neuroscience.Visual inspection of sleep is laborious and the results may be subjective to different clinicians.Automatic sleep stage classification algorithm can be used to reduce the manual workload.However,there are still limitations when it encounters complicated and changeable clinical cases.The purpose of this paper is to develop an automatic sleep staging algorithm based on the characteristics of actual sleep data.In the proposed improved K-means clustering algorithm,points were selected as the initial centers by using a concept of density to avoid the randomness of the original K-means algorithm.Meanwhile,the cluster centers were updated according to the‘Three-Sigma Rule’during the iteration to abate the influence of the outliers.The proposed method was tested and analyzed on the overnight sleep data of the healthy persons and patients with sleep disorders after continuous positive airway pressure(CPAP)treatment.The automatic sleep stage classification results were compared with the visual inspection by qualified clinicians and the averaged accuracy reached 76%.With the analysis of morphological diversity of sleep data,it was proved that the proposed improved K-means algorithm was feasible and valid for clinical practice.

  9. Change Detection Algorithms for Surveillance in Visual IoT: A Comparative Study

    NASA Astrophysics Data System (ADS)

    Akram, Beenish Ayesha; Zafar, Amna; Akbar, Ali Hammad; Wajid, Bilal; Chaudhry, Shafique Ahmad

    2018-01-01

    The VIoT (Visual Internet of Things) connects virtual information world with real world objects using sensors and pervasive computing. For video surveillance in VIoT, ChD (Change Detection) is a critical component. ChD algorithms identify regions of change in multiple images of the same scene recorded at different time intervals for video surveillance. This paper presents performance comparison of histogram thresholding and classification ChD algorithms using quantitative measures for video surveillance in VIoT based on salient features of datasets. The thresholding algorithms Otsu, Kapur, Rosin and classification methods k-means, EM (Expectation Maximization) were simulated in MATLAB using diverse datasets. For performance evaluation, the quantitative measures used include OSR (Overall Success Rate), YC (Yule's Coefficient) and JC (Jaccard's Coefficient), execution time and memory consumption. Experimental results showed that Kapur's algorithm performed better for both indoor and outdoor environments with illumination changes, shadowing and medium to fast moving objects. However, it reflected degraded performance for small object size with minor changes. Otsu algorithm showed better results for indoor environments with slow to medium changes and nomadic object mobility. k-means showed good results in indoor environment with small object size producing slow change, no shadowing and scarce illumination changes.

  10. Visualization of the Construction of Ancient Roman Buildings in Ostia Using Point Cloud Data

    NASA Astrophysics Data System (ADS)

    Hori, Y.; Ogawa, T.

    2017-02-01

    The implementation of laser scanning in the field of archaeology provides us with an entirely new dimension in research and surveying. It allows us to digitally recreate individual objects, or entire cities, using millions of three-dimensional points grouped together in what is referred to as "point clouds". In addition, the visualization of the point cloud data, which can be used in the final report by archaeologists and architects, should usually be produced as a JPG or TIFF file. Not only the visualization of point cloud data, but also re-examination of older data and new survey of the construction of Roman building applying remote-sensing technology for precise and detailed measurements afford new information that may lead to revising drawings of ancient buildings which had been adduced as evidence without any consideration of a degree of accuracy, and finally can provide new research of ancient buildings. We used laser scanners at fields because of its speed, comprehensive coverage, accuracy and flexibility of data manipulation. Therefore, we "skipped" many of post-processing and focused on the images created from the meta-data simply aligned using a tool which extended automatic feature-matching algorithm and a popular renderer that can provide graphic results.

  11. Consumer visual appraisal and shelf life of leg chops from suckling kids raised with natural milk or milk replacer.

    PubMed

    Ripoll, Guillermo; Alcalde, María J; Argüello, Anastasio; Córdoba, María G; Panea, Begoña

    2018-05-01

    The use of milk replacers to feed suckling kids could affect the shelf life and appearance of the meat. Leg chops were evaluated by consumers and the instrumental color was measured. A machine learning algorithm was used to relate them. The aim of this experiment was to study the shelf life of the meat of kids reared with dam's milk or milk replacers and to ascertain which illuminant and instrumental color variables are used by consumers as criteria to evaluate that visual appraisal. Meat from kids reared with milk replacers was more valuable and had a longer shelf life than meat from kids reared with natural milk. Consumers used the color of the whole surface of the leg chop to assess the appearance of meat. Lightness and hue angle were the prime cues used to evaluate the appearance of meat. Illuminant D65 was more useful for relating the visual appraisal with the instrumental color using a machine learning algorithm. The machine learning algorithms showed that the underlying rules used by consumers to evaluate the appearance of suckling kid meat are not at all linear and can be computationally schematized into a simple algorithm. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. An approach to integrate the human vision psychology and perception knowledge into image enhancement

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Huang, Xifeng; Ping, Jiang

    2009-07-01

    Image enhancement is very important image preprocessing technology especially when the image is captured in the poor imaging condition or dealing with the high bits image. The benefactor of image enhancement either may be a human observer or a computer vision process performing some kind of higher-level image analysis, such as target detection or scene understanding. One of the main objects of the image enhancement is getting a high dynamic range image and a high contrast degree image for human perception or interpretation. So, it is very necessary to integrate either empirical or statistical human vision psychology and perception knowledge into image enhancement. The human vision psychology and perception claims that humans' perception and response to the intensity fluctuation δu of visual signals are weighted by the background stimulus u, instead of being plainly uniform. There are three main laws: Weber's law, Weber- Fechner's law and Stevens's Law that describe this phenomenon in the psychology and psychophysics. This paper will integrate these three laws of the human vision psychology and perception into a very popular image enhancement algorithm named Adaptive Plateau Equalization (APE). The experiments were done on the high bits star image captured in night scene and the infrared-red image both the static image and the video stream. For the jitter problem in the video stream, this algorithm reduces this problem using the difference between the current frame's plateau value and the previous frame's plateau value to correct the current frame's plateau value. Considering the random noise impacts, the pixel value mapping process is not only depending on the current pixel but the pixels in the window surround the current pixel. The window size is usually 3×3. The process results of this improved algorithms is evaluated by the entropy analysis and visual perception analysis. The experiments' result showed the improved APE algorithms improved the quality of the image, the target and the surrounding assistant targets could be identified easily, and the noise was not amplified much. For the low quality image, these improved algorithms augment the information entropy and improve the image and the video stream aesthetic quality, while for the high quality image they will not debase the quality of the image.

  13. Visuals for Interactive Video: Old Fashioned Images for a New Fangled Technology.

    ERIC Educational Resources Information Center

    Braden, Roberts A.

    Pointing out that interactive video (IAV) represents a synthesis of four primary technologies--computers, television, visual design, and instructional design--this paper discusses the what, why, and how of IAV visuals. The features and relevant aspects of each technology are briefly discussed, as well as the impact of each of these technologies…

  14. Improving Observation and Practicum Experiences for a Preservice Teacher with Visual Impairment through the Use of Assistive Technology

    ERIC Educational Resources Information Center

    Lima, Jonathan M.; Ivy, Sarah E.

    2017-01-01

    This article describes and evaluates a technological approach to support a preservice teacher of visually impaired students with extremely low vision to conduct essential assessments for a learner with multiple disabilities and visual impairment with limited distraction to the child and classroom. The selected technology discussed here was…

  15. The research on medical image classification algorithm based on PLSA-BOW model.

    PubMed

    Cao, C H; Cao, H L

    2016-04-29

    With the rapid development of modern medical imaging technology, medical image classification has become more important for medical diagnosis and treatment. To solve the existence of polysemous words and synonyms problem, this study combines the word bag model with PLSA (Probabilistic Latent Semantic Analysis) and proposes the PLSA-BOW (Probabilistic Latent Semantic Analysis-Bag of Words) model. In this paper we introduce the bag of words model in text field to image field, and build the model of visual bag of words model. The method enables the word bag model-based classification method to be further improved in accuracy. The experimental results show that the PLSA-BOW model for medical image classification can lead to a more accurate classification.

  16. Textual and visual content-based anti-phishing: a Bayesian approach.

    PubMed

    Zhang, Haijun; Liu, Gang; Chow, Tommy W S; Liu, Wenyin

    2011-10-01

    A novel framework using a Bayesian approach for content-based phishing web page detection is presented. Our model takes into account textual and visual contents to measure the similarity between the protected web page and suspicious web pages. A text classifier, an image classifier, and an algorithm fusing the results from classifiers are introduced. An outstanding feature of this paper is the exploration of a Bayesian model to estimate the matching threshold. This is required in the classifier for determining the class of the web page and identifying whether the web page is phishing or not. In the text classifier, the naive Bayes rule is used to calculate the probability that a web page is phishing. In the image classifier, the earth mover's distance is employed to measure the visual similarity, and our Bayesian model is designed to determine the threshold. In the data fusion algorithm, the Bayes theory is used to synthesize the classification results from textual and visual content. The effectiveness of our proposed approach was examined in a large-scale dataset collected from real phishing cases. Experimental results demonstrated that the text classifier and the image classifier we designed deliver promising results, the fusion algorithm outperforms either of the individual classifiers, and our model can be adapted to different phishing cases. © 2011 IEEE

  17. Clustervision: Visual Supervision of Unsupervised Clustering.

    PubMed

    Kwon, Bum Chul; Eysenbach, Ben; Verma, Janu; Ng, Kenney; De Filippi, Christopher; Stewart, Walter F; Perer, Adam

    2018-01-01

    Clustering, the process of grouping together similar items into distinct partitions, is a common type of unsupervised machine learning that can be useful for summarizing and aggregating complex multi-dimensional data. However, data can be clustered in many ways, and there exist a large body of algorithms designed to reveal different patterns. While having access to a wide variety of algorithms is helpful, in practice, it is quite difficult for data scientists to choose and parameterize algorithms to get the clustering results relevant for their dataset and analytical tasks. To alleviate this problem, we built Clustervision, a visual analytics tool that helps ensure data scientists find the right clustering among the large amount of techniques and parameters available. Our system clusters data using a variety of clustering techniques and parameters and then ranks clustering results utilizing five quality metrics. In addition, users can guide the system to produce more relevant results by providing task-relevant constraints on the data. Our visual user interface allows users to find high quality clustering results, explore the clusters using several coordinated visualization techniques, and select the cluster result that best suits their task. We demonstrate this novel approach using a case study with a team of researchers in the medical domain and showcase that our system empowers users to choose an effective representation of their complex data.

  18. Exact and approximate graph matching using random walks.

    PubMed

    Gori, Marco; Maggini, Marco; Sarti, Lorenzo

    2005-07-01

    In this paper, we propose a general framework for graph matching which is suitable for different problems of pattern recognition. The pattern representation we assume is at the same time highly structured, like for classic syntactic and structural approaches, and of subsymbolic nature with real-valued features, like for connectionist and statistic approaches. We show that random walk based models, inspired by Google's PageRank, give rise to a spectral theory that nicely enhances the graph topological features at node level. As a straightforward consequence, we derive a polynomial algorithm for the classic graph isomorphism problem, under the restriction of dealing with Markovian spectrally distinguishable graphs (MSD), a class of graphs that does not seem to be easily reducible to others proposed in the literature. The experimental results that we found on different test-beds of the TC-15 graph database show that the defined MSD class "almost always" covers the database, and that the proposed algorithm is significantly more efficient than top scoring VF algorithm on the same data. Most interestingly, the proposed approach is very well-suited for dealing with partial and approximate graph matching problems, derived for instance from image retrieval tasks. We consider the objects of the COIL-100 visual collection and provide a graph-based representation, whose node's labels contain appropriate visual features. We show that the adoption of classic bipartite graph matching algorithms offers a straightforward generalization of the algorithm given for graph isomorphism and, finally, we report very promising experimental results on the COIL-100 visual collection.

  19. Integration of today's digital state with tomorrow's visual environment

    NASA Astrophysics Data System (ADS)

    Fritsche, Dennis R.; Liu, Victor; Markandey, Vishal; Heimbuch, Scott

    1996-03-01

    New developments in visual communication technologies, and the increasingly digital nature of the industry infrastructure as a whole, are converging to enable new visual environments with an enhanced visual component in interaction, entertainment, and education. New applications and markets can be created, but this depends on the ability of the visual communications industry to provide market solutions that are cost effective and user friendly. Industry-wide cooperation in the development of integrated, open architecture applications enables the realization of such market solutions. This paper describes the work being done by Texas Instruments, in the development of its Digital Light ProcessingTM technology, to support the development of new visual communications technologies and applications.

  20. Web-based interactive 2D/3D medical image processing and visualization software.

    PubMed

    Mahmoudi, Seyyed Ehsan; Akhondi-Asl, Alireza; Rahmani, Roohollah; Faghih-Roohi, Shahrooz; Taimouri, Vahid; Sabouri, Ahmad; Soltanian-Zadeh, Hamid

    2010-05-01

    There are many medical image processing software tools available for research and diagnosis purposes. However, most of these tools are available only as local applications. This limits the accessibility of the software to a specific machine, and thus the data and processing power of that application are not available to other workstations. Further, there are operating system and processing power limitations which prevent such applications from running on every type of workstation. By developing web-based tools, it is possible for users to access the medical image processing functionalities wherever the internet is available. In this paper, we introduce a pure web-based, interactive, extendable, 2D and 3D medical image processing and visualization application that requires no client installation. Our software uses a four-layered design consisting of an algorithm layer, web-user-interface layer, server communication layer, and wrapper layer. To compete with extendibility of the current local medical image processing software, each layer is highly independent of other layers. A wide range of medical image preprocessing, registration, and segmentation methods are implemented using open source libraries. Desktop-like user interaction is provided by using AJAX technology in the web-user-interface. For the visualization functionality of the software, the VRML standard is used to provide 3D features over the web. Integration of these technologies has allowed implementation of our purely web-based software with high functionality without requiring powerful computational resources in the client side. The user-interface is designed such that the users can select appropriate parameters for practical research and clinical studies. Copyright (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  1. Research on the key technologies of 3D spatial data organization and management for virtual building environments

    NASA Astrophysics Data System (ADS)

    Gong, Jun; Zhu, Qing

    2006-10-01

    As the special case of VGE in the fields of AEC (architecture, engineering and construction), Virtual Building Environment (VBE) has been broadly concerned. Highly complex, large-scale 3d spatial data is main bottleneck of VBE applications, so 3d spatial data organization and management certainly becomes the core technology for VBE. This paper puts forward 3d spatial data model for VBE, and the performance to implement it is very high. Inherent storage method of CAD data makes data redundant, and doesn't concern efficient visualization, which is a practical bottleneck to integrate CAD model, so An Efficient Method to Integrate CAD Model Data is put forward. Moreover, Since the 3d spatial indices based on R-tree are usually limited by their weakness of low efficiency due to the severe overlap of sibling nodes and the uneven size of nodes, a new node-choosing algorithm of R-tree are proposed.

  2. Perceptual approaches to finding features in data

    NASA Astrophysics Data System (ADS)

    Rogowitz, Bernice E.

    2013-03-01

    Electronic imaging applications hinge on the ability to discover features in data. For example, doctors examine diagnostic images for tumors, broken bones and changes in metabolic activity. Financial analysts explore visualizations of market data to find correlations, outliers and interaction effects. Seismologists look for signatures in geological data to tell them where to drill or where an earthquake may begin. These data are very diverse, including images, numbers, graphs, 3-D graphics, and text, and are growing exponentially, largely through the rise in automatic data collection technologies such as sensors and digital imaging. This paper explores important trends in the art and science of finding features in data, such as the tension between bottom-up and top-down processing, the semantics of features, and the integration of human- and algorithm-based approaches. This story is told from the perspective of the IS and T/SPIE Conference on Human Vision and Electronic Imaging (HVEI), which has fostered research at the intersection between human perception and the evolution of new technologies.

  3. Distributed rendering for multiview parallax displays

    NASA Astrophysics Data System (ADS)

    Annen, T.; Matusik, W.; Pfister, H.; Seidel, H.-P.; Zwicker, M.

    2006-02-01

    3D display technology holds great promise for the future of television, virtual reality, entertainment, and visualization. Multiview parallax displays deliver stereoscopic views without glasses to arbitrary positions within the viewing zone. These systems must include a high-performance and scalable 3D rendering subsystem in order to generate multiple views at real-time frame rates. This paper describes a distributed rendering system for large-scale multiview parallax displays built with a network of PCs, commodity graphics accelerators, multiple projectors, and multiview screens. The main challenge is to render various perspective views of the scene and assign rendering tasks effectively. In this paper we investigate two different approaches: Optical multiplexing for lenticular screens and software multiplexing for parallax-barrier displays. We describe the construction of large-scale multi-projector 3D display systems using lenticular and parallax-barrier technology. We have developed different distributed rendering algorithms using the Chromium stream-processing framework and evaluate the trade-offs and performance bottlenecks. Our results show that Chromium is well suited for interactive rendering on multiview parallax displays.

  4. Towards a high sensitivity small animal PET system based on CZT detectors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Abbaszadeh, Shiva; Levin, Craig

    2017-03-01

    Small animal positron emission tomography (PET) is a biological imaging technology that allows non-invasive interrogation of internal molecular and cellular processes and mechanisms of disease. New PET molecular probes with high specificity are under development to target, detect, visualize, and quantify subtle molecular and cellular processes associated with cancer, heart disease, and neurological disorders. However, the limited uptake of these targeted probes leads to significant reduction in signal. There is a need to advance the performance of small animal PET system technology to reach its full potential for molecular imaging. Our goal is to assemble a small animal PET system based on CZT detectors and to explore methods to enhance its photon sensitivity. In this work, we reconstruct an image from a phantom using a two-panel subsystem consisting of six CZT crystals in each panel. For image reconstruction, coincidence events with energy between 450 and 570 keV were included. We are developing an algorithm to improve sensitivity of the system by including multiple interaction events.

  5. 2005 AG20/20 Annual Review

    NASA Technical Reports Server (NTRS)

    Ross, Kenton W.; McKellip, Rodney D.

    2005-01-01

    Topics covered include: Implementation and Validation of Sensor-Based Site-Specific Crop Management; Enhanced Management of Agricultural Perennial Systems (EMAPS) Using GIS and Remote Sensing; Validation and Application of Geospatial Information for Early Identification of Stress in Wheat; Adapting and Validating Precision Technologies for Cotton Production in the Mid-Southern United States - 2004 Progress Report; Development of a System to Automatically Geo-Rectify Images; Economics of Precision Agriculture Technologies in Cotton Production-AG 2020 Prescription Farming Automation Algorithms; Field Testing a Sensor-Based Applicator for Nitrogen and Phosphorus Application; Early Detection of Citrus Diseases Using Machine Vision and DGPS; Remote Sensing of Citrus Tree Stress Levels and Factors; Spectral-based Nitrogen Sensing for Citrus; Characterization of Tree Canopies; In-field Sensing of Shallow Water Tables and Hydromorphic Soils with an Electromagnetic Induction Profiler; Maintaining the Competitiveness of Tree Fruit Production Through Precision Agriculture; Modeling and Visualizing Terrain and Remote Sensing Data for Research and Education in Precision Agriculture; Thematic Soil Mapping and Crop-Based Strategies for Site-Specific Management; and Crop-Based Strategies for Site-Specific Management.

  6. Approximate geodesic distances reveal biologically relevant structures in microarray data.

    PubMed

    Nilsson, Jens; Fioretos, Thoas; Höglund, Mattias; Fontes, Magnus

    2004-04-12

    Genome-wide gene expression measurements, as currently determined by the microarray technology, can be represented mathematically as points in a high-dimensional gene expression space. Genes interact with each other in regulatory networks, restricting the cellular gene expression profiles to a certain manifold, or surface, in gene expression space. To obtain knowledge about this manifold, various dimensionality reduction methods and distance metrics are used. For data points distributed on curved manifolds, a sensible distance measure would be the geodesic distance along the manifold. In this work, we examine whether an approximate geodesic distance measure captures biological similarities better than the traditionally used Euclidean distance. We computed approximate geodesic distances, determined by the Isomap algorithm, for one set of lymphoma and one set of lung cancer microarray samples. Compared with the ordinary Euclidean distance metric, this distance measure produced more instructive, biologically relevant, visualizations when applying multidimensional scaling. This suggests the Isomap algorithm as a promising tool for the interpretation of microarray data. Furthermore, the results demonstrate the benefit and importance of taking nonlinearities in gene expression data into account.

  7. Drogue pose estimation for unmanned aerial vehicle autonomous aerial refueling system based on infrared vision sensor

    NASA Astrophysics Data System (ADS)

    Chen, Shanjun; Duan, Haibin; Deng, Yimin; Li, Cong; Zhao, Guozhi; Xu, Yan

    2017-12-01

    Autonomous aerial refueling is a significant technology that can significantly extend the endurance of unmanned aerial vehicles. A reliable method that can accurately estimate the position and attitude of the probe relative to the drogue is the key to such a capability. A drogue pose estimation method based on infrared vision sensor is introduced with the general goal of yielding an accurate and reliable drogue state estimate. First, by employing direct least squares ellipse fitting and convex hull in OpenCV, a feature point matching and interference point elimination method is proposed. In addition, considering the conditions that some infrared LEDs are damaged or occluded, a missing point estimation method based on perspective transformation and affine transformation is designed. Finally, an accurate and robust pose estimation algorithm improved by the runner-root algorithm is proposed. The feasibility of the designed visual measurement system is demonstrated by flight test, and the results indicate that our proposed method enables precise and reliable pose estimation of the probe relative to the drogue, even in some poor conditions.

  8. Mathematical simulation and optimization of cutting mode in turning of workpieces made of nickel-based heat-resistant alloy

    NASA Astrophysics Data System (ADS)

    Bogoljubova, M. N.; Afonasov, A. I.; Kozlov, B. N.; Shavdurov, D. E.

    2018-05-01

    A predictive simulation technique of optimal cutting modes in the turning of workpieces made of nickel-based heat-resistant alloys, different from the well-known ones, is proposed. The impact of various factors on the cutting process with the purpose of determining optimal parameters of machining in concordance with certain effectiveness criteria is analyzed in the paper. A mathematical model of optimization, algorithms and computer programmes, visual graphical forms reflecting dependences of the effectiveness criteria – productivity, net cost, and tool life on parameters of the technological process - have been worked out. A nonlinear model for multidimensional functions, “solution of the equation with multiple unknowns”, “a coordinate descent method” and heuristic algorithms are accepted to solve the problem of optimization of cutting mode parameters. Research shows that in machining of workpieces made from heat-resistant alloy AISI N07263, the highest possible productivity will be achieved with the following parameters: cutting speed v = 22.1 m/min., feed rate s=0.26 mm/rev; tool life T = 18 min.; net cost – 2.45 per hour.

  9. Information theoretic analysis of canny edge detection in visual communication

    NASA Astrophysics Data System (ADS)

    Jiang, Bo; Rahman, Zia-ur

    2011-06-01

    In general edge detection evaluation, the edge detectors are examined, analyzed, and compared either visually or with a metric for specific an application. This analysis is usually independent of the characteristics of the image-gathering, transmission and display processes that do impact the quality of the acquired image and thus, the resulting edge image. We propose a new information theoretic analysis of edge detection that unites the different components of the visual communication channel and assesses edge detection algorithms in an integrated manner based on Shannon's information theory. The edge detection algorithm here is considered to achieve high performance only if the information rate from the scene to the edge approaches the maximum possible. Thus, by setting initial conditions of the visual communication system as constant, different edge detection algorithms could be evaluated. This analysis is normally limited to linear shift-invariant filters so in order to examine the Canny edge operator in our proposed system, we need to estimate its "power spectral density" (PSD). Since the Canny operator is non-linear and shift variant, we perform the estimation for a set of different system environment conditions using simulations. In our paper we will first introduce the PSD of the Canny operator for a range of system parameters. Then, using the estimated PSD, we will assess the Canny operator using information theoretic analysis. The information-theoretic metric is also used to compare the performance of the Canny operator with other edge-detection operators. This also provides a simple tool for selecting appropriate edgedetection algorithms based on system parameters, and for adjusting their parameters to maximize information throughput.

  10. Fusion of multichannel local and global structural cues for photo aesthetics evaluation.

    PubMed

    Luming Zhang; Yue Gao; Zimmermann, Roger; Qi Tian; Xuelong Li

    2014-03-01

    Photo aesthetic quality evaluation is a fundamental yet under addressed task in computer vision and image processing fields. Conventional approaches are frustrated by the following two drawbacks. First, both the local and global spatial arrangements of image regions play an important role in photo aesthetics. However, existing rules, e.g., visual balance, heuristically define which spatial distribution among the salient regions of a photo is aesthetically pleasing. Second, it is difficult to adjust visual cues from multiple channels automatically in photo aesthetics assessment. To solve these problems, we propose a new photo aesthetics evaluation framework, focusing on learning the image descriptors that characterize local and global structural aesthetics from multiple visual channels. In particular, to describe the spatial structure of the image local regions, we construct graphlets small-sized connected graphs by connecting spatially adjacent atomic regions. Since spatially adjacent graphlets distribute closely in their feature space, we project them onto a manifold and subsequently propose an embedding algorithm. The embedding algorithm encodes the photo global spatial layout into graphlets. Simultaneously, the importance of graphlets from multiple visual channels are dynamically adjusted. Finally, these post-embedding graphlets are integrated for photo aesthetics evaluation using a probabilistic model. Experimental results show that: 1) the visualized graphlets explicitly capture the aesthetically arranged atomic regions; 2) the proposed approach generalizes and improves four prominent aesthetic rules; and 3) our approach significantly outperforms state-of-the-art algorithms in photo aesthetics prediction.

  11. Assistive Technology Competencies of Teachers of Students with Visual Impairments: A Comparison of Perceptions

    ERIC Educational Resources Information Center

    Zhou, Li; Smith, Derrick W.; Parker, Amy T.; Griffin-Shirley, Nora

    2011-01-01

    This study surveyed teachers of students with visual impairments in Texas on their perceptions of a set of assistive technology competencies developed for teachers of students with visual impairments by Smith and colleagues (2009). Differences in opinion between practicing teachers of students with visual impairments and Smith's group of…

  12. A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain

    NASA Technical Reports Server (NTRS)

    Hall, Lawrence O.; Bensaid, Amine M.; Clarke, Laurence P.; Velthuizen, Robert P.; Silbiger, Martin S.; Bezdek, James C.

    1992-01-01

    Magnetic resonance (MR) brain section images are segmented and then synthetically colored to give visual representations of the original data with three approaches: the literal and approximate fuzzy c-means unsupervised clustering algorithms and a supervised computational neural network, a dynamic multilayered perception trained with the cascade correlation learning algorithm. Initial clinical results are presented on both normal volunteers and selected patients with brain tumors surrounded by edema. Supervised and unsupervised segmentation techniques provide broadly similar results. Unsupervised fuzzy algorithms were visually observed to show better segmentation when compared with raw image data for volunteer studies. However, for a more complex segmentation problem with tumor/edema or cerebrospinal fluid boundary, where the tissues have similar MR relaxation behavior, inconsistency in rating among experts was observed.

  13. Visual to Parametric Interaction (V2PI)

    PubMed Central

    Maiti, Dipayan; Endert, Alex; North, Chris

    2013-01-01

    Typical data visualizations result from linear pipelines that start by characterizing data using a model or algorithm to reduce the dimension and summarize structure, and end by displaying the data in a reduced dimensional form. Sensemaking may take place at the end of the pipeline when users have an opportunity to observe, digest, and internalize any information displayed. However, some visualizations mask meaningful data structures when model or algorithm constraints (e.g., parameter specifications) contradict information in the data. Yet, due to the linearity of the pipeline, users do not have a natural means to adjust the displays. In this paper, we present a framework for creating dynamic data displays that rely on both mechanistic data summaries and expert judgement. The key is that we develop both the theory and methods of a new human-data interaction to which we refer as “ Visual to Parametric Interaction” (V2PI). With V2PI, the pipeline becomes bi-directional in that users are embedded in the pipeline; users learn from visualizations and the visualizations adjust to expert judgement. We demonstrate the utility of V2PI and a bi-directional pipeline with two examples. PMID:23555552

  14. TreeNetViz: revealing patterns of networks over tree structures.

    PubMed

    Gou, Liang; Zhang, Xiaolong Luke

    2011-12-01

    Network data often contain important attributes from various dimensions such as social affiliations and areas of expertise in a social network. If such attributes exhibit a tree structure, visualizing a compound graph consisting of tree and network structures becomes complicated. How to visually reveal patterns of a network over a tree has not been fully studied. In this paper, we propose a compound graph model, TreeNet, to support visualization and analysis of a network at multiple levels of aggregation over a tree. We also present a visualization design, TreeNetViz, to offer the multiscale and cross-scale exploration and interaction of a TreeNet graph. TreeNetViz uses a Radial, Space-Filling (RSF) visualization to represent the tree structure, a circle layout with novel optimization to show aggregated networks derived from TreeNet, and an edge bundling technique to reduce visual complexity. Our circular layout algorithm reduces both total edge-crossings and edge length and also considers hierarchical structure constraints and edge weight in a TreeNet graph. These experiments illustrate that the algorithm can reduce visual cluttering in TreeNet graphs. Our case study also shows that TreeNetViz has the potential to support the analysis of a compound graph by revealing multiscale and cross-scale network patterns. © 2011 IEEE

  15. Pedagogical Praxis Surrounding the Integration of Photography, Visual Literacy, Digital Literacy, and Educational Technology into Business Education Classrooms: A Focus Group Study

    ERIC Educational Resources Information Center

    Schlosser, Peter Allen

    2010-01-01

    This paper reports on an investigation into how Marketing and Business Education Teachers utilize and integrate educational technology into curriculum through the use of photography. The ontology of this visual, technological, and language interface is explored with an eye toward visual literacy, digital literacy, and pedagogical praxis, focusing…

  16. Improved CORF model of simple cell combined with non-classical receptive field and its application on edge detection

    NASA Astrophysics Data System (ADS)

    Sun, Xiao; Chai, Guobei; Liu, Wei; Bao, Wenzhuo; Zhao, Xiaoning; Ming, Delie

    2018-02-01

    Simple cells in primary visual cortex are believed to extract local edge information from a visual scene. In this paper, inspired by different receptive field properties and visual information flow paths of neurons, an improved Combination of Receptive Fields (CORF) model combined with non-classical receptive fields was proposed to simulate the responses of simple cell's receptive fields. Compared to the classical model, the proposed model is able to better imitate simple cell's physiologic structure with consideration of facilitation and suppression of non-classical receptive fields. And on this base, an edge detection algorithm as an application of the improved CORF model was proposed. Experimental results validate the robustness of the proposed algorithm to noise and background interference.

  17. Noise removing in encrypted color images by statistical analysis

    NASA Astrophysics Data System (ADS)

    Islam, N.; Puech, W.

    2012-03-01

    Cryptographic techniques are used to secure confidential data from unauthorized access but these techniques are very sensitive to noise. A single bit change in encrypted data can have catastrophic impact over the decrypted data. This paper addresses the problem of removing bit error in visual data which are encrypted using AES algorithm in the CBC mode. In order to remove the noise, a method is proposed which is based on the statistical analysis of each block during the decryption. The proposed method exploits local statistics of the visual data and confusion/diffusion properties of the encryption algorithm to remove the errors. Experimental results show that the proposed method can be used at the receiving end for the possible solution for noise removing in visual data in encrypted domain.

  18. Real-time recording and classification of eye movements in an immersive virtual environment.

    PubMed

    Diaz, Gabriel; Cooper, Joseph; Kit, Dmitry; Hayhoe, Mary

    2013-10-10

    Despite the growing popularity of virtual reality environments, few laboratories are equipped to investigate eye movements within these environments. This primer is intended to reduce the time and effort required to incorporate eye-tracking equipment into a virtual reality environment. We discuss issues related to the initial startup and provide algorithms necessary for basic analysis. Algorithms are provided for the calculation of gaze angle within a virtual world using a monocular eye-tracker in a three-dimensional environment. In addition, we provide algorithms for the calculation of the angular distance between the gaze and a relevant virtual object and for the identification of fixations, saccades, and pursuit eye movements. Finally, we provide tools that temporally synchronize gaze data and the visual stimulus and enable real-time assembly of a video-based record of the experiment using the Quicktime MOV format, available at http://sourceforge.net/p/utdvrlibraries/. This record contains the visual stimulus, the gaze cursor, and associated numerical data and can be used for data exportation, visual inspection, and validation of calculated gaze movements.

  19. Real-time recording and classification of eye movements in an immersive virtual environment

    PubMed Central

    Diaz, Gabriel; Cooper, Joseph; Kit, Dmitry; Hayhoe, Mary

    2013-01-01

    Despite the growing popularity of virtual reality environments, few laboratories are equipped to investigate eye movements within these environments. This primer is intended to reduce the time and effort required to incorporate eye-tracking equipment into a virtual reality environment. We discuss issues related to the initial startup and provide algorithms necessary for basic analysis. Algorithms are provided for the calculation of gaze angle within a virtual world using a monocular eye-tracker in a three-dimensional environment. In addition, we provide algorithms for the calculation of the angular distance between the gaze and a relevant virtual object and for the identification of fixations, saccades, and pursuit eye movements. Finally, we provide tools that temporally synchronize gaze data and the visual stimulus and enable real-time assembly of a video-based record of the experiment using the Quicktime MOV format, available at http://sourceforge.net/p/utdvrlibraries/. This record contains the visual stimulus, the gaze cursor, and associated numerical data and can be used for data exportation, visual inspection, and validation of calculated gaze movements. PMID:24113087

  20. Image segmentation and 3D visualization for MRI mammography

    NASA Astrophysics Data System (ADS)

    Li, Lihua; Chu, Yong; Salem, Angela F.; Clark, Robert A.

    2002-05-01

    MRI mammography has a number of advantages, including the tomographic, and therefore three-dimensional (3-D) nature, of the images. It allows the application of MRI mammography to breasts with dense tissue, post operative scarring, and silicon implants. However, due to the vast quantity of images and subtlety of difference in MR sequence, there is a need for reliable computer diagnosis to reduce the radiologist's workload. The purpose of this work was to develop automatic breast/tissue segmentation and visualization algorithms to aid physicians in detecting and observing abnormalities in breast. Two segmentation algorithms were developed: one for breast segmentation, the other for glandular tissue segmentation. In breast segmentation, the MRI image is first segmented using an adaptive growing clustering method. Two tracing algorithms were then developed to refine the breast air and chest wall boundaries of breast. The glandular tissue segmentation was performed using an adaptive thresholding method, in which the threshold value was spatially adaptive using a sliding window. The 3D visualization of the segmented 2D slices of MRI mammography was implemented under IDL environment. The breast and glandular tissue rendering, slicing and animation were displayed.

  1. Visual Contrast Enhancement Algorithm Based on Histogram Equalization

    PubMed Central

    Ting, Chih-Chung; Wu, Bing-Fei; Chung, Meng-Liang; Chiu, Chung-Cheng; Wu, Ya-Ching

    2015-01-01

    Image enhancement techniques primarily improve the contrast of an image to lend it a better appearance. One of the popular enhancement methods is histogram equalization (HE) because of its simplicity and effectiveness. However, it is rarely applied to consumer electronics products because it can cause excessive contrast enhancement and feature loss problems. These problems make the images processed by HE look unnatural and introduce unwanted artifacts in them. In this study, a visual contrast enhancement algorithm (VCEA) based on HE is proposed. VCEA considers the requirements of the human visual perception in order to address the drawbacks of HE. It effectively solves the excessive contrast enhancement problem by adjusting the spaces between two adjacent gray values of the HE histogram. In addition, VCEA reduces the effects of the feature loss problem by using the obtained spaces. Furthermore, VCEA enhances the detailed textures of an image to generate an enhanced image with better visual quality. Experimental results show that images obtained by applying VCEA have higher contrast and are more suited to human visual perception than those processed by HE and other HE-based methods. PMID:26184219

  2. The implementation of thermal image visualization by HDL based on pseudo-color

    NASA Astrophysics Data System (ADS)

    Zhu, Yong; Zhang, JiangLing

    2004-11-01

    The pseudo-color method which maps the sampled data to intuitive perception colors is a kind of powerful visualization way. And the all-around system of pseudo-color visualization, which includes the primary principle, model and HDL (Hardware Description Language) implementation for the thermal images, is expatiated on in the paper. The thermal images whose signal is modulated as video reflect the temperature distribution of measured object, so they have the speciality of mass and real-time. The solution to the intractable problem is as follows: First, the reasonable system, i.e. the combining of global pseudo-color visualization and local special area accurate measure, muse be adopted. Then, the HDL pseudo-color algorithms in SoC (System on Chip) carry out the system to ensure the real-time. Finally, the key HDL algorithms for direct gray levels connection coding, proportional gray levels map coding and enhanced gray levels map coding are presented, and its simulation results are showed. The pseudo-color visualization of thermal images implemented by HDL in the paper has effective application in the aspect of electric power equipment test and medical health diagnosis.

  3. Virtual Environments in Scientific Visualization

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Lisinski, T. A. (Technical Monitor)

    1994-01-01

    Virtual environment technology is a new way of approaching the interface between computers and humans. Emphasizing display and user control that conforms to the user's natural ways of perceiving and thinking about space, virtual environment technologies enhance the ability to perceive and interact with computer generated graphic information. This enhancement potentially has a major effect on the field of scientific visualization. Current examples of this technology include the Virtual Windtunnel being developed at NASA Ames Research Center. Other major institutions such as the National Center for Supercomputing Applications and SRI International are also exploring this technology. This talk will be describe several implementations of virtual environments for use in scientific visualization. Examples include the visualization of unsteady fluid flows (the virtual windtunnel), the visualization of geodesics in curved spacetime, surface manipulation, and examples developed at various laboratories.

  4. Novel algorithm to identify and differentiate specific digital signature of breath sound in patients with diffuse parenchymal lung disease.

    PubMed

    Bhattacharyya, Parthasarathi; Mondal, Ashok; Dey, Rana; Saha, Dipanjan; Saha, Goutam

    2015-05-01

    Auscultation is an important part of the clinical examination of different lung diseases. Objective analysis of lung sounds based on underlying characteristics and its subsequent automatic interpretations may help a clinical practice. We collected the breath sounds from 8 normal subjects and 20 diffuse parenchymal lung disease (DPLD) patients using a newly developed instrument and then filtered off the heart sounds using a novel technology. The collected sounds were thereafter analysed digitally on several characteristics as dynamical complexity, texture information and regularity index to find and define their unique digital signatures for differentiating normality and abnormality. For convenience of testing, these characteristic signatures of normal and DPLD lung sounds were transformed into coloured visual representations. The predictive power of these images has been validated by six independent observers that include three physicians. The proposed method gives a classification accuracy of 100% for composite features for both the normal as well as lung sound signals from DPLD patients. When tested by independent observers on the visually transformed images, the positive predictive value to diagnose the normality and DPLD remained 100%. The lung sounds from the normal and DPLD subjects could be differentiated and expressed according to their digital signatures. On visual transformation to coloured images, they retain 100% predictive power. This technique may assist physicians to diagnose DPLD from visual images bearing the digital signature of the condition. © 2015 Asian Pacific Society of Respirology.

  5. Eye movements reveal epistemic curiosity in human observers.

    PubMed

    Baranes, Adrien; Oudeyer, Pierre-Yves; Gottlieb, Jacqueline

    2015-12-01

    Saccadic (rapid) eye movements are primary means by which humans and non-human primates sample visual information. However, while saccadic decisions are intensively investigated in instrumental contexts where saccades guide subsequent actions, it is largely unknown how they may be influenced by curiosity - the intrinsic desire to learn. While saccades are sensitive to visual novelty and visual surprise, no study has examined their relation to epistemic curiosity - interest in symbolic, semantic information. To investigate this question, we tracked the eye movements of human observers while they read trivia questions and, after a brief delay, were visually given the answer. We show that higher curiosity was associated with earlier anticipatory orienting of gaze toward the answer location without changes in other metrics of saccades or fixations, and that these influences were distinct from those produced by variations in confidence and surprise. Across subjects, the enhancement of anticipatory gaze was correlated with measures of trait curiosity from personality questionnaires. Finally, a machine learning algorithm could predict curiosity in a cross-subject manner, relying primarily on statistical features of the gaze position before the answer onset and independently of covariations in confidence or surprise, suggesting potential practical applications for educational technologies, recommender systems and research in cognitive sciences. With this article, we provide full access to the annotated database allowing readers to reproduce the results. Epistemic curiosity produces specific effects on oculomotor anticipation that can be used to read out curiosity states. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. HSI-Find: A Visualization and Search Service for Terascale Spectral Image Catalogs

    NASA Astrophysics Data System (ADS)

    Thompson, D. R.; Smith, A. T.; Castano, R.; Palmer, E. E.; Xing, Z.

    2013-12-01

    Imaging spectrometers are remote sensing instruments commonly deployed on aircraft and spacecraft. They provide surface reflectance in hundreds of wavelength channels, creating data cubes known as hyperspecrtral images. They provide rich compositional information making them powerful tools for planetary and terrestrial science. These data products can be challenging to interpret because they contain datapoints numbering in the thousands (Dawn VIR) or millions (AVIRIS-C). Cross-image studies or exploratory searches involving more than one scene are rare; data volumes are often tens of GB per image and typical consumer-grade computers cannot store more than a handful of images in RAM. Visualizing the information in a single scene is challenging since the human eye can only distinguish three color channels out of the hundreds available. To date, analysis has been performed mostly on single images using purpose-built software tools that require extensive training and commercial licenses. The HSIFind software suite provides a scalable distributed solution to the problem of visualizing and searching large catalogs of spectral image data. It consists of a RESTful web service that communicates to a javascript-based browser client. The software provides basic visualization through an intuitive visual interface, allowing users with minimal training to explore the images or view selected spectra. Users can accumulate a library of spectra from one or more images and use these to search for similar materials. The result appears as an intensity map showing the extent of a spectral feature in a scene. Continuum removal can isolate diagnostic absorption features. The server-side mapping algorithm uses an efficient matched filter algorithm that can process a megapixel image cube in just a few seconds. This enables real-time interaction, leading to a new way of interacting with the data: the user can launch a search with a single mouse click and see the resulting map in seconds. This allows the user to quickly explore each image, ascertain the main units of surface material, localize outliers, and develop an understanding of the various materials' spectral characteristics. The HSIFind software suite is currently in beta testing at the Planetary Science Institute and a process is underway to release it under an open source license to the broader community. We believe it will benefit instrument operations during remote planetary exploration, where tactical mission decisions demand rapid analysis of each new dataset. The approach also holds potential for public spectral catalogs where its shallow learning curve and portability can make these datasets accessible to a much wider range of researchers. Acknowledgements: The HSIFind project acknowledges the NASA Advanced MultiMission Operating System (AMMOS) and the Multimission Ground Support Services (MGSS). E. Palmer is with the Planetary Science Institute, Tucson, AZ. Other authors are with the Jet Propulsion Laboratory, Pasadena, CA. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration. Copyright 2013, California Institute of Technology.

  7. Nonlinear Multiscale Transformations: From Synchronization to Error Control

    DTIC Science & Technology

    2001-07-01

    transformation (plus the quantization step) has taken place, a lossless Lempel - Ziv compression algorithm is applied to reduce the size of the transformed... compressed data are all very close, however the visual quality of the reconstructed image is significantly better for the EC compression algorithm ...used in recent times in the first step of transform coding algorithms for image compression . Ideally, a multiscale transformation allows for an

  8. Infrared small target tracking based on SOPC

    NASA Astrophysics Data System (ADS)

    Hu, Taotao; Fan, Xiang; Zhang, Yu-Jin; Cheng, Zheng-dong; Zhu, Bin

    2011-01-01

    The paper presents a low cost FPGA based solution for a real-time infrared small target tracking system. A specialized architecture is presented based on a soft RISC processor capable of running kernel based mean shift tracking algorithm. Mean shift tracking algorithm is realized in NIOS II soft-core with SOPC (System on a Programmable Chip) technology. Though mean shift algorithm is widely used for target tracking, the original mean shift algorithm can not be directly used for infrared small target tracking. As infrared small target only has intensity information, so an improved mean shift algorithm is presented in this paper. How to describe target will determine whether target can be tracked by mean shift algorithm. Because color target can be tracked well by mean shift algorithm, imitating color image expression, spatial component and temporal component are advanced to describe target, which forms pseudo-color image. In order to improve the processing speed parallel technology and pipeline technology are taken. Two RAM are taken to stored images separately by ping-pong technology. A FLASH is used to store mass temp data. The experimental results show that infrared small target is tracked stably in complicated background.

  9. Analysis of Rhythms in Experimental Signals

    NASA Astrophysics Data System (ADS)

    Desherevskii, A. V.; Zhuravlev, V. I.; Nikolsky, A. N.; Sidorin, A. Ya.

    2017-12-01

    We compare algorithms designed to extract quasiperiodic components of a signal and estimate the amplitude, phase, stability, and other characteristics of a rhythm in a sliding window in the presence of data gaps. Each algorithm relies on its own rhythm model; therefore, it is necessary to use different algorithms depending on the research objectives. The described set of algorithms and methods is implemented in the WinABD software package, which includes a time-series database management system, a powerful research complex, and an interactive data-visualization environment.

  10. Different CT perfusion algorithms in the detection of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage.

    PubMed

    Cremers, Charlotte H P; Dankbaar, Jan Willem; Vergouwen, Mervyn D I; Vos, Pieter C; Bennink, Edwin; Rinkel, Gabriel J E; Velthuis, Birgitta K; van der Schaaf, Irene C

    2015-05-01

    Tracer delay-sensitive perfusion algorithms in CT perfusion (CTP) result in an overestimation of the extent of ischemia in thromboembolic stroke. In diagnosing delayed cerebral ischemia (DCI) after aneurysmal subarachnoid hemorrhage (aSAH), delayed arrival of contrast due to vasospasm may also overestimate the extent of ischemia. We investigated the diagnostic accuracy of tracer delay-sensitive and tracer delay-insensitive algorithms for detecting DCI. From a prospectively collected series of aSAH patients admitted between 2007-2011, we included patients with any clinical deterioration other than rebleeding within 21 days after SAH who underwent NCCT/CTP/CTA imaging. Causes of clinical deterioration were categorized into DCI and no DCI. CTP maps were calculated with tracer delay-sensitive and tracer delay-insensitive algorithms and were visually assessed for the presence of perfusion deficits by two independent observers with different levels of experience. The diagnostic value of both algorithms was calculated for both observers. Seventy-one patients were included. For the experienced observer, the positive predictive values (PPVs) were 0.67 for the delay-sensitive and 0.66 for the delay-insensitive algorithm, and the negative predictive values (NPVs) were 0.73 and 0.74. For the less experienced observer, PPVs were 0.60 for both algorithms, and NPVs were 0.66 for the delay-sensitive and 0.63 for the delay-insensitive algorithm. Test characteristics are comparable for tracer delay-sensitive and tracer delay-insensitive algorithms for the visual assessment of CTP in diagnosing DCI. This indicates that both algorithms can be used for this purpose.

  11. The Human is the Loop: New Directions for Visual Analytics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Endert, Alexander; Hossain, Shahriar H.; Ramakrishnan, Naren

    2014-01-28

    Visual analytics is the science of marrying interactive visualizations and analytic algorithms to support exploratory knowledge discovery in large datasets. We argue for a shift from a ‘human in the loop’ philosophy for visual analytics to a ‘human is the loop’ viewpoint, where the focus is on recognizing analysts’ work processes, and seamlessly fitting analytics into that existing interactive process. We survey a range of projects that provide visual analytic support contextually in the sensemaking loop, and outline a research agenda along with future challenges.

  12. a Web-Based Interactive Platform for Co-Clustering Spatio-Temporal Data

    NASA Astrophysics Data System (ADS)

    Wu, X.; Poorthuis, A.; Zurita-Milla, R.; Kraak, M.-J.

    2017-09-01

    Since current studies on clustering analysis mainly focus on exploring spatial or temporal patterns separately, a co-clustering algorithm is utilized in this study to enable the concurrent analysis of spatio-temporal patterns. To allow users to adopt and adapt the algorithm for their own analysis, it is integrated within the server side of an interactive web-based platform. The client side of the platform, running within any modern browser, is a graphical user interface (GUI) with multiple linked visualizations that facilitates the understanding, exploration and interpretation of the raw dataset and co-clustering results. Users can also upload their own datasets and adjust clustering parameters within the platform. To illustrate the use of this platform, an annual temperature dataset from 28 weather stations over 20 years in the Netherlands is used. After the dataset is loaded, it is visualized in a set of linked visualizations: a geographical map, a timeline and a heatmap. This aids the user in understanding the nature of their dataset and the appropriate selection of co-clustering parameters. Once the dataset is processed by the co-clustering algorithm, the results are visualized in the small multiples, a heatmap and a timeline to provide various views for better understanding and also further interpretation. Since the visualization and analysis are integrated in a seamless platform, the user can explore different sets of co-clustering parameters and instantly view the results in order to do iterative, exploratory data analysis. As such, this interactive web-based platform allows users to analyze spatio-temporal data using the co-clustering method and also helps the understanding of the results using multiple linked visualizations.

  13. Performance analysis of visual tracking algorithms for motion-based user interfaces on mobile devices

    NASA Astrophysics Data System (ADS)

    Winkler, Stefan; Rangaswamy, Karthik; Tedjokusumo, Jefry; Zhou, ZhiYing

    2008-02-01

    Determining the self-motion of a camera is useful for many applications. A number of visual motion-tracking algorithms have been developed till date, each with their own advantages and restrictions. Some of them have also made their foray into the mobile world, powering augmented reality-based applications on phones with inbuilt cameras. In this paper, we compare the performances of three feature or landmark-guided motion tracking algorithms, namely marker-based tracking with MXRToolkit, face tracking based on CamShift, and MonoSLAM. We analyze and compare the complexity, accuracy, sensitivity, robustness and restrictions of each of the above methods. Our performance tests are conducted over two stages: The first stage of testing uses video sequences created with simulated camera movements along the six degrees of freedom in order to compare accuracy in tracking, while the second stage analyzes the robustness of the algorithms by testing for manipulative factors like image scaling and frame-skipping.

  14. A fuzzy measure approach to motion frame analysis for scene detection. M.S. Thesis - Houston Univ.

    NASA Technical Reports Server (NTRS)

    Leigh, Albert B.; Pal, Sankar K.

    1992-01-01

    This paper addresses a solution to the problem of scene estimation of motion video data in the fuzzy set theoretic framework. Using fuzzy image feature extractors, a new algorithm is developed to compute the change of information in each of two successive frames to classify scenes. This classification process of raw input visual data can be used to establish structure for correlation. The algorithm attempts to fulfill the need for nonlinear, frame-accurate access to video data for applications such as video editing and visual document archival/retrieval systems in multimedia environments.

  15. Visualizing Vector Fields Using Line Integral Convolution and Dye Advection

    NASA Technical Reports Server (NTRS)

    Shen, Han-Wei; Johnson, Christopher R.; Ma, Kwan-Liu

    1996-01-01

    We present local and global techniques to visualize three-dimensional vector field data. Using the Line Integral Convolution (LIC) method to image the global vector field, our new algorithm allows the user to introduce colored 'dye' into the vector field to highlight local flow features. A fast algorithm is proposed that quickly recomputes the dyed LIC images. In addition, we introduce volume rendering methods that can map the LIC texture on any contour surface and/or translucent region defined by additional scalar quantities, and can follow the advection of colored dye throughout the volume.

  16. Biplane reconstruction and visualization of virtual endoscopic and fluoroscopic views for interventional device navigation

    NASA Astrophysics Data System (ADS)

    Wagner, Martin G.; Strother, Charles M.; Schafer, Sebastian; Mistretta, Charles A.

    2016-03-01

    Biplane fluoroscopic imaging is an important tool for minimally invasive procedures for the treatment of cerebrovascular diseases. However, finding a good working angle for the C-arms of the angiography system as well as navigating based on the 2D projection images can be a difficult task. The purpose of this work is to propose a novel 4D reconstruction algorithm for interventional devices from biplane fluoroscopy images and to propose new techniques for a better visualization of the results. The proposed reconstruction methods binarizes the fluoroscopic images using a dedicated noise reduction algorithm for curvilinear structures and a global thresholding approach. A topology preserving thinning algorithm is then applied and a path search algorithm minimizing the curvature of the device is used to extract the 2D device centerlines. Finally, the 3D device path is reconstructed using epipolar geometry. The point correspondences are determined by a monotonic mapping function that minimizes the reconstruction error. The three dimensional reconstruction of the device path allows the rendering of virtual fluoroscopy images from arbitrary angles as well as 3D visualizations like virtual endoscopic views or glass pipe renderings, where the vessel wall is rendered with a semi-transparent material. This work also proposes a combination of different visualization techniques in order to increase the usability and spatial orientation for the user. A combination of synchronized endoscopic and glass pipe views is proposed, where the virtual endoscopic camera position is determined based on the device tip location as well as the previous camera position using a Kalman filter in order to create a smooth path. Additionally, vessel centerlines are displayed and the path to the target is highlighted. Finally, the virtual endoscopic camera position is also visualized in the glass pipe view to further improve the spatial orientation. The proposed techniques could considerably improve the workflow of minimally invasive procedures for the treatment of cerebrovascular diseases.

  17. Data-driven advice for applying machine learning to bioinformatics problems

    PubMed Central

    Olson, Randal S.; La Cava, William; Mustahsan, Zairah; Varik, Akshay; Moore, Jason H.

    2017-01-01

    As the bioinformatics field grows, it must keep pace not only with new data but with new algorithms. Here we contribute a thorough analysis of 13 state-of-the-art, commonly used machine learning algorithms on a set of 165 publicly available classification problems in order to provide data-driven algorithm recommendations to current researchers. We present a number of statistical and visual comparisons of algorithm performance and quantify the effect of model selection and algorithm tuning for each algorithm and dataset. The analysis culminates in the recommendation of five algorithms with hyperparameters that maximize classifier performance across the tested problems, as well as general guidelines for applying machine learning to supervised classification problems. PMID:29218881

  18. An Interactive Assessment Framework for Visual Engagement: Statistical Analysis of a TEDx Video

    ERIC Educational Resources Information Center

    Farhan, Muhammad; Aslam, Muhammad

    2017-01-01

    This study aims to assess the visual engagement of the video lectures. This analysis can be useful for the presenter and student to find out the overall visual attention of the videos. For this purpose, a new algorithm and data collection module are developed. Videos can be transformed into a dataset with the help of data collection module. The…

  19. [Spatial domain display for interference image dataset].

    PubMed

    Wang, Cai-Ling; Li, Yu-Shan; Liu, Xue-Bin; Hu, Bing-Liang; Jing, Juan-Juan; Wen, Jia

    2011-11-01

    The requirements of imaging interferometer visualization is imminent for the user of image interpretation and information extraction. However, the conventional researches on visualization only focus on the spectral image dataset in spectral domain. Hence, the quick show of interference spectral image dataset display is one of the nodes in interference image processing. The conventional visualization of interference dataset chooses classical spectral image dataset display method after Fourier transformation. In the present paper, the problem of quick view of interferometer imager in image domain is addressed and the algorithm is proposed which simplifies the matter. The Fourier transformation is an obstacle since its computation time is very large and the complexion would be even deteriorated with the size of dataset increasing. The algorithm proposed, named interference weighted envelopes, makes the dataset divorced from transformation. The authors choose three interference weighted envelopes respectively based on the Fourier transformation, features of interference data and human visual system. After comparing the proposed with the conventional methods, the results show the huge difference in display time.

  20. 77 FR 5291 - Thermo Tech Technologies Inc., T.V.G. Technologies Ltd., and Visual Frontier, Inc.; Order of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-02

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Thermo Tech Technologies Inc., T.V.G. Technologies Ltd., and Visual Frontier, Inc.; Order of Suspension of Trading January 31, 2012. It appears to... is a lack of current and accurate information concerning the securities of T.V.G. Technologies Ltd...

  1. Research on key technologies for data-interoperability-based metadata, data compression and encryption, and their application

    NASA Astrophysics Data System (ADS)

    Yu, Xu; Shao, Quanqin; Zhu, Yunhai; Deng, Yuejin; Yang, Haijun

    2006-10-01

    With the development of informationization and the separation between data management departments and application departments, spatial data sharing becomes one of the most important objectives for the spatial information infrastructure construction, and spatial metadata management system, data transmission security and data compression are the key technologies to realize spatial data sharing. This paper discusses the key technologies for metadata based on data interoperability, deeply researches the data compression algorithms such as adaptive Huffman algorithm, LZ77 and LZ78 algorithm, studies to apply digital signature technique to encrypt spatial data, which can not only identify the transmitter of spatial data, but also find timely whether the spatial data are sophisticated during the course of network transmission, and based on the analysis of symmetric encryption algorithms including 3DES,AES and asymmetric encryption algorithm - RAS, combining with HASH algorithm, presents a improved mix encryption method for spatial data. Digital signature technology and digital watermarking technology are also discussed. Then, a new solution of spatial data network distribution is put forward, which adopts three-layer architecture. Based on the framework, we give a spatial data network distribution system, which is efficient and safe, and also prove the feasibility and validity of the proposed solution.

  2. Overview of Human-Centric Space Situational Awareness Science and Technology

    DTIC Science & Technology

    2012-09-01

    AGI), the developers of Satellite Tool Kit ( STK ), has provided demonstrations of innovative SSA visualization concepts that take advantage of the...needs inherent with SSA. RH has conducted CTAs and developed work-centered human-computer interfaces, visualizations , and collaboration technologies...all end users. RH’s Battlespace Visualization Branch researches methods to exploit the visual channel primarily to improve decision making and

  3. A novel way to rapidly monitor microplastics in soil by hyperspectral imaging technology and chemometrics.

    PubMed

    Shan, Jiajia; Zhao, Junbo; Liu, Lifen; Zhang, Yituo; Wang, Xue; Wu, Fengchang

    2018-07-01

    Hyperspectral imaging technology has been investigated as a possible way to detect microplastics contamination in soil directly and efficiently in this study. Hyperspectral images with wavelength range between 400 and 1000 nm were obtained from soil samples containing different materials including microplastics, fresh leaves, wilted leaves, rocks and dry branches. Supervised classification algorithms such as support vector machine (SVM), mahalanobis distance (MD) and maximum likelihood (ML) algorithms were used to identify microplastics from the other materials in hyperspectral images. To investigate the effect of particle size and color, white polyethylene (PE) and black PE particles extracted from soil with two different particle size ranges (1-5 mm and 0.5-1 mm) were studied in this work. The results showed that SVM was the most applicable method for detecting white PE in soil, with the precision of 84% and 77% for PE particles in size ranges of 1-5 mm and 0.5-1 mm respectively. The precision of black PE detection achieved by SVM were 58% and 76% for particles of 1-5 mm and 0.5-1 mm respectively. Six kinds of household polymers including drink bottle, bottle cap, rubber, packing bag, clothes hanger and plastic clip were used to validate the developed method, and the classification precision of polymers were obtained from 79% to 100% and 86%-99% for microplastics particle 1-5 mm and 0.5-1 mm respectively. The results indicate that hyperspectral imaging technology is a potential technique to determine and visualize the microplastics with particle size from 0.5 to 5 mm on soil surface directly. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Technological advances in the surgical treatment of movement disorders.

    PubMed

    Gross, Robert E; McDougal, Margaret E

    2013-08-01

    Technological innovations have driven the advancement of the surgical treatment of movement disorders, from the invention of the stereotactic frame to the adaptation of deep brain stimulation (DBS). Along these lines, this review will describe recent advances in inserting neuromodulation modalities, including DBS, to the target, and in the delivery of therapy at the target. Recent radiological advances are altering the way that DBS leads are targeted and inserted, by refining the ability to visualize the subcortical targets using high-field strength magnetic resonance imaging and other innovations, such as diffusion tensor imaging, and the development of novel targeting devices enabling purely anatomical implantations without the need for neurophysiological monitoring. New portable computed tomography scanners also are facilitating lead implantation without monitoring, as well as improving radiological verification of DBS lead location. Advances in neurophysiological mapping include efforts to develop automatic target verification algorithms, and probabilistic maps to guide target selection. The delivery of therapy at the target is being improved by the development of the next generation of internal pulse generators (IPGs). These include constant current devices that mitigate the variability introduced by impedance changes of the stimulated tissue and, in the near future, devices that deliver novel stimulation patterns with improved efficiency. Closed-loop adaptive IPGs are being tested, which may tailor stimulation to ongoing changes in the nervous system, reflected in biomarkers continuously recorded by the devices. Finer-grained DBS leads, in conjunction with new IPGs and advanced programming tools, may offer improved outcomes via current steering algorithms. Finally, even thermocoagulation-essentially replaced by DBS-is being advanced by new minimally-invasive approaches that may improve this therapy for selected patients in whom it may be preferred. Functional neurosurgery has a history of being driven by technological innovation, a tradition that continues into its future.

  5. The artificial retina for track reconstruction at the LHC crossing rate

    NASA Astrophysics Data System (ADS)

    Abba, A.; Bedeschi, F.; Citterio, M.; Caponio, F.; Cusimano, A.; Geraci, A.; Marino, P.; Morello, M. J.; Neri, N.; Punzi, G.; Piucci, A.; Ristori, L.; Spinella, F.; Stracka, S.; Tonelli, D.

    2016-04-01

    We present the results of an R&D study for a specialized processor capable of precisely reconstructing events with hundreds of charged-particle tracks in pixel and silicon strip detectors at 40 MHz, thus suitable for processing LHC events at the full crossing frequency. For this purpose we design and test a massively parallel pattern-recognition algorithm, inspired to the current understanding of the mechanisms adopted by the primary visual cortex of mammals in the early stages of visual-information processing. The detailed geometry and charged-particle's activity of a large tracking detector are simulated and used to assess the performance of the artificial retina algorithm. We find that high-quality tracking in large detectors is possible with sub-microsecond latencies when the algorithm is implemented in modern, high-speed, high-bandwidth FPGA devices.

  6. Fault Detection of Bearing Systems through EEMD and Optimization Algorithm

    PubMed Central

    Lee, Dong-Han; Ahn, Jong-Hyo; Koh, Bong-Hwan

    2017-01-01

    This study proposes a fault detection and diagnosis method for bearing systems using ensemble empirical mode decomposition (EEMD) based feature extraction, in conjunction with particle swarm optimization (PSO), principal component analysis (PCA), and Isomap. First, a mathematical model is assumed to generate vibration signals from damaged bearing components, such as the inner-race, outer-race, and rolling elements. The process of decomposing vibration signals into intrinsic mode functions (IMFs) and extracting statistical features is introduced to develop a damage-sensitive parameter vector. Finally, PCA and Isomap algorithm are used to classify and visualize this parameter vector, to separate damage characteristics from healthy bearing components. Moreover, the PSO-based optimization algorithm improves the classification performance by selecting proper weightings for the parameter vector, to maximize the visualization effect of separating and grouping of parameter vectors in three-dimensional space. PMID:29143772

  7. Talkoot Portals: Discover, Tag, Share, and Reuse Collaborative Science Workflows

    NASA Astrophysics Data System (ADS)

    Wilson, B. D.; Ramachandran, R.; Lynnes, C.

    2009-05-01

    A small but growing number of scientists are beginning to harness Web 2.0 technologies, such as wikis, blogs, and social tagging, as a transformative way of doing science. These technologies provide researchers easy mechanisms to critique, suggest and share ideas, data and algorithms. At the same time, large suites of algorithms for science analysis are being made available as remotely-invokable Web Services, which can be chained together to create analysis workflows. This provides the research community an unprecedented opportunity to collaborate by sharing their workflows with one another, reproducing and analyzing research results, and leveraging colleagues' expertise to expedite the process of scientific discovery. However, wikis and similar technologies are limited to text, static images and hyperlinks, providing little support for collaborative data analysis. A team of information technology and Earth science researchers from multiple institutions have come together to improve community collaboration in science analysis by developing a customizable "software appliance" to build collaborative portals for Earth Science services and analysis workflows. The critical requirement is that researchers (not just information technologists) be able to build collaborative sites around service workflows within a few hours. We envision online communities coming together, much like Finnish "talkoot" (a barn raising), to build a shared research space. Talkoot extends a freely available, open source content management framework with a series of modules specific to Earth Science for registering, creating, managing, discovering, tagging and sharing Earth Science web services and workflows for science data processing, analysis and visualization. Users will be able to author a "science story" in shareable web notebooks, including plots or animations, backed up by an executable workflow that directly reproduces the science analysis. New services and workflows of interest will be discoverable using tag search, and advertised using "service casts" and "interest casts" (Atom feeds). Multiple science workflow systems will be plugged into the system, with initial support for UAH's Mining Workflow Composer and the open-source Active BPEL engine, and JPL's SciFlo engine and the VizFlow visual programming interface. With the ability to share and execute analysis workflows, Talkoot portals can be used to do collaborative science in addition to communicate ideas and results. It will be useful for different science domains, mission teams, research projects and organizations. Thus, it will help to solve the "sociological" problem of bringing together disparate groups of researchers, and the technical problem of advertising, discovering, developing, documenting, and maintaining inter-agency science workflows. The presentation will discuss the goals of and barriers to Science 2.0, the social web technologies employed in the Talkoot software appliance (e.g. CMS, social tagging, personal presence, advertising by feeds, etc.), illustrate the resulting collaborative capabilities, and show early prototypes of the web interfaces (e.g. embedded workflows).

  8. Devices for visually impaired people: High technological devices with low user acceptance and no adaptability for children.

    PubMed

    Gori, Monica; Cappagli, Giulia; Tonelli, Alessia; Baud-Bovy, Gabriel; Finocchietti, Sara

    2016-10-01

    Considering that cortical plasticity is maximal in the child, why are the majority of technological devices available for visually impaired users meant for adults and not for children? Moreover, despite high technological advancements in recent years, why is there still no full user acceptance of existing sensory substitution devices? The goal of this review is to create a link between neuroscientists and engineers by opening a discussion about the direction that the development of technological devices for visually impaired people is taking. Firstly, we review works on spatial and social skills in children with visual impairments, showing that lack of vision is associated with other sensory and motor delays. Secondly, we present some of the technological solutions developed to date for visually impaired people. Doing this, we highlight the core features of these systems and discuss their limits. We also discuss the possible reasons behind the low adaptability in children. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Research on fast Fourier transforms algorithm of huge remote sensing image technology with GPU and partitioning technology.

    PubMed

    Yang, Xue; Li, Xue-You; Li, Jia-Guo; Ma, Jun; Zhang, Li; Yang, Jan; Du, Quan-Ye

    2014-02-01

    Fast Fourier transforms (FFT) is a basic approach to remote sensing image processing. With the improvement of capacity of remote sensing image capture with the features of hyperspectrum, high spatial resolution and high temporal resolution, how to use FFT technology to efficiently process huge remote sensing image becomes the critical step and research hot spot of current image processing technology. FFT algorithm, one of the basic algorithms of image processing, can be used for stripe noise removal, image compression, image registration, etc. in processing remote sensing image. CUFFT function library is the FFT algorithm library based on CPU and FFTW. FFTW is a FFT algorithm developed based on CPU in PC platform, and is currently the fastest CPU based FFT algorithm function library. However there is a common problem that once the available memory or memory is less than the capacity of image, there will be out of memory or memory overflow when using the above two methods to realize image FFT arithmetic. To address this problem, a CPU and partitioning technology based Huge Remote Fast Fourier Transform (HRFFT) algorithm is proposed in this paper. By improving the FFT algorithm in CUFFT function library, the problem of out of memory and memory overflow is solved. Moreover, this method is proved rational by experiment combined with the CCD image of HJ-1A satellite. When applied to practical image processing, it improves effect of the image processing, speeds up the processing, which saves the time of computation and achieves sound result.

  10. Information Hiding: an Annotated Bibliography

    DTIC Science & Technology

    1999-04-13

    parameters needed for reconstruction are enciphered using DES . The encrypted image is hidden in a cover image . [153] 074115, ‘Watermarking algorithm ...authors present a block based watermarking algorithm for digital images . The D.C.T. of the block is increased by a certain value. Quality control is...includes evaluation of the watermark robustness and the subjec- tive visual image quality. Two algorithms use the frequency domain while the two others use

  11. Experimental Investigation of the Performance of Image Registration and De-aliasing Algorithms

    DTIC Science & Technology

    2009-09-01

    spread function In the literature these types of algorithms are sometimes hcluded under the broad umbrella of superresolution . However, in the current...We use one of these patterns to visually demonstrate successful de-aliasing 15. SUBJECT TERMS Image de-aliasing Superresolution Microscanning Image...undersampled point spread function. In the literature these types of algorithms are sometimes included under the broad umbrella of superresolution . However, in

  12. Grid computing technology for hydrological applications

    NASA Astrophysics Data System (ADS)

    Lecca, G.; Petitdidier, M.; Hluchy, L.; Ivanovic, M.; Kussul, N.; Ray, N.; Thieron, V.

    2011-06-01

    SummaryAdvances in e-Infrastructure promise to revolutionize sensing systems and the way in which data are collected and assimilated, and complex water systems are simulated and visualized. According to the EU Infrastructure 2010 work-programme, data and compute infrastructures and their underlying technologies, either oriented to tackle scientific challenges or complex problem solving in engineering, are expected to converge together into the so-called knowledge infrastructures, leading to a more effective research, education and innovation in the next decade and beyond. Grid technology is recognized as a fundamental component of e-Infrastructures. Nevertheless, this emerging paradigm highlights several topics, including data management, algorithm optimization, security, performance (speed, throughput, bandwidth, etc.), and scientific cooperation and collaboration issues that require further examination to fully exploit it and to better inform future research policies. The paper illustrates the results of six different surface and subsurface hydrology applications that have been deployed on the Grid. All the applications aim to answer to strong requirements from the Civil Society at large, relatively to natural and anthropogenic risks. Grid technology has been successfully tested to improve flood prediction, groundwater resources management and Black Sea hydrological survey, by providing large computing resources. It is also shown that Grid technology facilitates e-cooperation among partners by means of services for authentication and authorization, seamless access to distributed data sources, data protection and access right, and standardization.

  13. Spatio-temporal colour correction of strongly degraded movies

    NASA Astrophysics Data System (ADS)

    Islam, A. B. M. Tariqul; Farup, Ivar

    2011-01-01

    The archives of motion pictures represent an important part of precious cultural heritage. Unfortunately, these cinematography collections are vulnerable to different distortions such as colour fading which is beyond the capability of photochemical restoration process. Spatial colour algorithms-Retinex and ACE provide helpful tool in restoring strongly degraded colour films but, there are some challenges associated with these algorithms. We present an automatic colour correction technique for digital colour restoration of strongly degraded movie material. The method is based upon the existing STRESS algorithm. In order to cope with the problem of highly correlated colour channels, we implemented a preprocessing step in which saturation enhancement is performed in a PCA space. Spatial colour algorithms tend to emphasize all details in the images, including dust and scratches. Surprisingly, we found that the presence of these defects does not affect the behaviour of the colour correction algorithm. Although the STRESS algorithm is already in itself more efficient than traditional spatial colour algorithms, it is still computationally expensive. To speed it up further, we went beyond the spatial domain of the frames and extended the algorithm to the temporal domain. This way, we were able to achieve an 80 percent reduction of the computational time compared to processing every single frame individually. We performed two user experiments and found that the visual quality of the resulting frames was significantly better than with existing methods. Thus, our method outperforms the existing ones in terms of both visual quality and computational efficiency.

  14. iOS--Worthy of the Hype as Assistive Technology for Visual Impairments? A Phenomenological Study of iOS Device Use by Individuals with Visual Impairments

    ERIC Educational Resources Information Center

    Scott, Shari

    2013-01-01

    This qualitative study sought to explore the shared essence of the lived experiences of early adopters of iOS devices as assistive technology by persons with visual impairments. The capstone question addressed the idea of whether any one device could fully meet the assistive technology needs of this population. Purposeful sampling methods were…

  15. [Astigmatic keratotomy with the femtosecond laser: correction of high astigmatisms after keratoplasty].

    PubMed

    Kook, D; Bühren, J; Klaproth, O K; Bauch, A S; Derhartunian, V; Kohnen, T

    2011-02-01

    The purpose of this study was to evaluate a novel technique for the correction of postoperative astigmatism after penetrating keratoplasty with the use of the femtosecond laser creating astigmatic keratotomies (femto-AK) in the scope of a retrospective case series. Clinical data of ten eyes of nine patients with high residual astigmatism after penetrating keratoplasty undergoing paired femto-AK using a 60-kHz femtosecond laser (IntraLase™, AMO) were analyzed. A new software algorithm was used to create paired arcuate cuts deep into the donor corneal button with different cut angles. Target values were refraction, uncorrected visual acuity, best corrected visual acuity, topographic data (Orbscan®, Bausch & Lomb, Rochester, NY, USA), and corneal wavefront analysis using Visual Optics Lab (VOL)-Pro 7.14 Software (Sarver and Associates). Vector analysis was performed using the Holladay, Cravy and Koch formula. Statistical analysis was performed to detect significances between visits using Student's t test. All procedures were performed without any major complications. The mean follow-up was 13 months. The mean patient age was 48.7 years. The preoperative mean uncorrected visual acuity (logMAR) was 1.27, best corrected visual acuity 0.55, mean subjective cylinder -7.4 D, and mean topometric astigmatism 9.3 D. The postoperative mean uncorrected visual acuity (logMAR) was 1.12, best corrected visual acuity 0.47, mean subjective cylinder -4.1 D, and mean topometric astigmatism 6.5 D. Differences between corneal higher order aberrations showed a high standard deviation and were therefore not statistically significant. Astigmatic keratotomy using the femtosecond laser seems to be a safe and effective tool for the correction of higher corneal astigmatisms. Due to the biomechanical properties of the cornea and missing empirical data for the novel femto-AK technology, higher numbers of patients are necessary to develop optimal treatment nomograms.

  16. Supporting Students' Knowledge Integration with Technology-Enhanced Inquiry Curricula

    ERIC Educational Resources Information Center

    Chiu, Jennifer Lopseen

    2010-01-01

    Dynamic visualizations of scientific phenomena have the potential to transform how students learn and understand science. Dynamic visualizations enable interaction and experimentation with unobservable atomic-level phenomena. A series of studies clarify the conditions under which embedding dynamic visualizations in technology-enhanced inquiry…

  17. Assessing the quality of activities in a smart environment.

    PubMed

    Cook, Diane J; Schmitter-Edgecombe, M

    2009-01-01

    Pervasive computing technology can provide valuable health monitoring and assistance technology to help individuals live independent lives in their own homes. As a critical part of this technology, our objective is to design software algorithms that recognize and assess the consistency of activities of daily living that individuals perform in their own homes. We have designed algorithms that automatically learn Markov models for each class of activity. These models are used to recognize activities that are performed in a smart home and to identify errors and inconsistencies in the performed activity. We validate our approach using data collected from 60 volunteers who performed a series of activities in our smart apartment testbed. The results indicate that the algorithms correctly label the activities and successfully assess the completeness and consistency of the performed task. Our results indicate that activity recognition and assessment can be automated using machine learning algorithms and smart home technology. These algorithms will be useful for automating remote health monitoring and interventions.

  18. Conservative multizonal interface algorithm for the 3-D Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Klopfer, G. H.; Molvik, G. A.

    1991-01-01

    A conservative zonal interface algorithm using features of both structured and unstructured mesh CFD technology is presented. The flow solver within each of the zones is based on structured mesh CFD technology. The interface algorithm was implemented into two three-dimensional Navier-Stokes finite volume codes and was found to yield good results.

  19. Network visualization of conformational sampling during molecular dynamics simulation.

    PubMed

    Ahlstrom, Logan S; Baker, Joseph Lee; Ehrlich, Kent; Campbell, Zachary T; Patel, Sunita; Vorontsov, Ivan I; Tama, Florence; Miyashita, Osamu

    2013-11-01

    Effective data reduction methods are necessary for uncovering the inherent conformational relationships present in large molecular dynamics (MD) trajectories. Clustering algorithms provide a means to interpret the conformational sampling of molecules during simulation by grouping trajectory snapshots into a few subgroups, or clusters, but the relationships between the individual clusters may not be readily understood. Here we show that network analysis can be used to visualize the dominant conformational states explored during simulation as well as the connectivity between them, providing a more coherent description of conformational space than traditional clustering techniques alone. We compare the results of network visualization against 11 clustering algorithms and principal component conformer plots. Several MD simulations of proteins undergoing different conformational changes demonstrate the effectiveness of networks in reaching functional conclusions. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. [The study of functional status in the perception of visual information depending on the method of technical color mixing on LCD and DLP projectors technology].

    PubMed

    Merkulova, A G; Osokina, E S; Bukhtiiarov, I V

    2014-10-01

    The case of compare two ways of projection color visual images, characterized by different spatial-temporal characteristics of visual stimuli, presents the methodology and the set of techniques. Received comparative data, identifying risks of regulation disorder of the functional state and development general, mental and visual fatigue during prolonged strenuous visual activity, according to two types of test tasks, which are the most typical for the use of modern projectors to work with the audience, both inthe process of implementation of learning technologies and the collective take responsible decisions by expert groups that control of complex technological processes.

Top